WorldWideScience

Sample records for submillimeter spectral line

  1. TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics

    Science.gov (United States)

    Caux, E.; Kahane, C.; Castets, A.; Coutens, A.; Ceccarelli, C.; Bacmann, A.; Bisschop, S.; Bottinelli, S.; Comito, C.; Helmich, F. P.; Lefloch, B.; Parise, B.; Schilke, P.; Tielens, A. G. G. M.; van Dishoeck, E.; Vastel, C.; Wakelam, V.; Walters, A.

    2011-08-01

    Context. Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. Aims: While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high mass protostars, very little exists on low mass protostars, which are believed to resemble our own Sun's progenitor. To help fill up this gap in our understanding, we carried out a complete spectral survey of the bands at 3, 2, 1, and 0.9 mm towards the solar type protostar IRAS 16293-2422. Methods: The observations covered a range of about 200 GHz and were obtained with the IRAM-30 m and JCMT-15 m telescopes during about 300 h of observations. Particular attention was devoted to the inter-calibration of the acquired spectra with previous observations. All the lines detected with more than 3σ confidence-interval certainty and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Results: More than 4000 lines were detected (with σ ≥ 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (about two-thirds) of the lines are weak and produced by complex organic molecules. The analysis of the profiles of more than 1000 lines belonging to 70 species firmly establishes the presence of two distinct velocity components associated with the two objects, A and B, forming the IRAS 16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 M⊙ object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 M⊙. The difference in the rest velocities

  2. TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics

    NARCIS (Netherlands)

    Caux, E.; Kahane, C.; Castets, A.; Coutens, A.; Ceccarelli, C.; Bacmann, A.; Bisschop, S.; Bottinelli, S.; Comito, C.; Helmich, F. P.; Lefloch, B.; Parise, B.; Schilke, P.; Tielens, A. G. G. M.; van Dishoeck, E.; Vastel, C.; Wakelam, V.; Walters, A.

    Context. Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. Aims. While unbiased surveys at the millimeter

  3. Tracing Magnetic Fields With The Polarization Of Submillimeter Lines

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2017-10-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.

  4. Microwave, Millimeter, Submillimeter, and Far Infrared Spectral Databases

    Science.gov (United States)

    Pearson, J. C.; Pickett, H. M.; Drouin, B. J.; Chen, P.; Cohen, E. A.

    2002-01-01

    The spectrum of most known astrophysical molecules is derived from transitions between a few hundred to a few hundred thousand energy levels populated at room temperature. In the microwave and millimeter wave regions. spectroscopy is almost always performed with traditional microwave techniques. In the submillimeter and far infrared microwave technique becomes progressively more technologically challenging and infrared techniques become more widely employed as the wavelength gets shorter. Infrared techniques are typically one to two orders of magnitude less precise but they do generate all the strong features in the spectrum. With microwave technique, it is generally impossible and rarely necessary to measure every single transition of a molecular species, so careful fitting of quantum mechanical Hamiltonians to the transitions measured are required to produce the complete spectral picture of the molecule required by astronomers. The fitting process produces the most precise data possible and is required in the interpret heterodyne observations. The drawback of traditional microwave technique is that precise knowledge of the band origins of low lying excited states is rarely gained. The fitting of data interpolates well for the range of quantum numbers where there is laboratory data, but extrapolation is almost never precise. The majority of high resolution spectroscopic data is millimeter or longer in wavelength and a very limited number of molecules have ever been studied with microwave techniques at wavelengths shorter than 0.3 millimeters. The situation with infrared technique is similarly dire in the submillimeter and far infrared because the black body sources used are competing with a very significant thermal background making the signal to noise poor. Regardless of the technique used the data must be archived in a way useful for the interpretation of observations.

  5. Spectral Line Shapes. Proceedings

    International Nuclear Information System (INIS)

    Zoppi, M.; Ulivi, L.

    1997-01-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database

  6. EMPIRICAL PREDICTIONS FOR (SUB-)MILLIMETER LINE AND CONTINUUM DEEP FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Da Cunha, Elisabete; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Elbaz, David; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Riechers, Dominik [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Weiss, Axel, E-mail: cunha@mpia.de [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)

    2013-03-01

    Modern (sub-)millimeter/radio interferometers such as ALMA, JVLA, and the PdBI successor NOEMA will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[C II] lines and dust continuum emission in the (sub-)millimeter regime. In this paper, we present empirical predictions for such line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared Advanced Camera for Surveys and NICMOS data on the Hubble Ultra Deep Field (over an area of about 12 arcmin{sup 2}). Using a physically motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13,099 galaxies with redshifts up to z = 5, and obtain median-likelihood estimates of their stellar mass, star formation rate, dust attenuation, and dust luminosity. We combine the attenuated stellar spectra with a library of infrared emission models spanning a wide range of dust temperatures to derive statistical constraints on the dust emission in the infrared and (sub-)millimeter which are consistent with the observed optical/near-infrared emission in terms of energy balance. This allows us to estimate, for each galaxy, the (sub-)millimeter continuum flux densities in several ALMA, PdBI/NOEMA, and JVLA bands. As a consistency check, we verify that the 850 {mu}m number counts and extragalactic background light derived using our predictions are consistent with previous observations. Using empirical relations between the observed CO/[C II] line luminosities and the infrared luminosity of star-forming galaxies, we infer the luminosity of the CO(1-0) and [C II] lines from the estimated infrared luminosity of each galaxy in our sample

  7. Submillimeter Wave Antenna With Slow Wave Feed Line

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Kotiranta, Mikko

    2009-01-01

    Submillimeter wave radiation, which is also referred to as terahertz radiation, has not been extensively explored until recently due to a lack of reliable components and devices in this frequency range. Current advances in technology have made it possible to explore this portion of the electromag...

  8. HerMES: Spectral energy distributions of submillimeter galaxies at z > 4

    International Nuclear Information System (INIS)

    Huang, J.-S.; Rigopoulou, D.; Magdis, G.; Rowan-Robinson, M.; Clements, D. L.; Dai, Y.; Fazio, G. G.; Bock, J. J.; Burgarella, D.; Chapman, S.; Cooray, A.; Farrah, D.; Glenn, J.; Oliver, S.; Smith, A. J.; Wang, L.; Page, M.; Symeonidis, M.; Riechers, D.; Roseboom, I.

    2014-01-01

    We present a study of the infrared properties for a sample of seven spectroscopically confirmed submillimeter galaxies (SMGs) at z > 4.0. By combining ground-based near-infrared, Spitzer IRAC and MIPS, Herschel SPIRE, and ground-based submillimeter/millimeter photometry, we construct their spectral energy distributions (SEDs) and a composite model to fit the SEDs. The model includes a stellar emission component at λ rest < 3.5 μm, a hot dust component peaking at λ rest ∼ 5 μm, and cold dust component which becomes significant for λ rest > 50 μm. Six objects in the sample are detected at 250 and 350 μm. The dust temperatures for the sources in this sample are in the range of 40-80 K, and their L FIR ∼ 10 13 L ☉ qualifies them as hyper-luminous infrared galaxies. The mean FIR-radio index for this sample is around (q) = 2.2 indicating no radio excess in their radio emission. Most sources in the sample have 24 μm detections corresponding to a rest-frame 4.5 μm luminosity of Log 10 (L 4.5 /L ☉ ) = 11 ∼ 11.5. Their L 4.5 /L FIR ratios are very similar to those of starburst-dominated SMGs at z ∼ 2. The L CO – L FIR relation for this sample is consistent with that determined for local ULIRGs and SMGs at z ∼ 2. We conclude that SMGs at z > 4 are hotter and more luminous in the FIR but otherwise very similar to those at z ∼ 2. None of these sources show any sign of the strong QSO phase being triggered.

  9. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8

    Directory of Open Access Journals (Sweden)

    S. A. Buehler

    2012-07-01

    Full Text Available Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8, which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.

  10. Deconvolution of spectral line profile by FTS

    International Nuclear Information System (INIS)

    Lego, J.

    1977-01-01

    The possibility is studied of determining the components of the spectral line profile using Fourier transformation. The different types of the spectral line profiles are described and the conditions for their generation discussed. The main result is the discovery of the possibility to obtain the parameters of the different components directly from the interferogram without using the Fourier transformation. The method under discussion strongly simplifies evaluation while preserving or increasing accuracy. (author)

  11. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  12. CO Spectral Line Energy Distributions of Infrared-Luminous Galaxies and Active Galactic Nuclei

    Science.gov (United States)

    Papadopoulos, Padeli P.; van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR(8-1000 μm) >~ 1011 L sun), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR>1012 L sun), and two powerful local active galactic nuclei (AGNs)—the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293—using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C+ line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  13. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-01-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR (8-1000 μm) ∼> 10 11 L sun ), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR >10 12 L sun ), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C + line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  14. GOSAT-2014 methane spectral line list

    International Nuclear Information System (INIS)

    Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yoshida, Y.; Matsunaga, T.

    2015-01-01

    The updated methane spectral line list GOSAT-2014 for the 5550–6240 cm −1 region with the intensity cutoff of 5×10 –25 cm/molecule at 296 K is presented. The line list is based on the extensive measurements of the methane spectral line parameters performed at different temperatures and pressures of methane without and with buffer gases N 2 , O 2 and air. It contains the following spectral line parameters of about 12150 transitions: line position, line intensity, energy of lower state, air-induced and self-pressure-induced broadening and shift coefficients and temperature exponent of air-broadening coefficient. The accuracy of the line positions and intensities are considerably improved in comparison with the previous version GOSAT-2009. The improvement of the line list is done mainly due to the involving to the line position and intensity retrieval of six new spectra recorded with short path way (8.75 cm). The air-broadening and air-shift coefficients for the J-manifolds of the 2ν 3 (F 2 ) band are refitted using the new more precise values of the line positions and intensities. The line assignment is considerably extended. The lower state J-value was assigned to 6397 lines representing 94.4% of integrated intensity of the considering wavenumber region. The complete assignment was done for 2750 lines. - Highlights: • The upgrade of the GOSAT methane line list in the 5550–6240 cm −1 region is done. • 12,146 experimental methane line positions and intensities are retrieved. • 6376 lower energy levels for methane lines are determined

  15. An Interferometric Spectral-Line and Imaging Survey of VY Canis Majoris in the 345 GHz Band

    OpenAIRE

    Kaminski, T.; Gottlieb, C. A.; Young, K. H.; Menten, K. M.; Patel, N. A.

    2013-01-01

    A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array. Two hundred twenty three spectral features from 19 molecules (not counting isotopic species of some of them) were observed, including the rotational spectra of TiO, TiO2, and AlCl for the first time in this source. The parameters and an atlas of all spectral features is presented. Observations of each line with a synthesized beam of ~0.9 arcsec, reveal the c...

  16. Chemical exchange effects in spectral line shapes

    International Nuclear Information System (INIS)

    Diaz, M.A.; Veguillas, J.

    1990-01-01

    A theory of spectral-line shapes has been extended to the case in which relaxation broadening may be influenced by reactive interactions. This extension is valid for gaseous systems in the same way it is valid for condensed media, and particularly, for such chemical mechanisms as isomerizations. The dependence of the spectral rate on the chemical exchange rate is clarified. Finally, a discussion concerning the above aspects and their applications has been included. (author)

  17. Constancy of spectral-line bisectors

    International Nuclear Information System (INIS)

    Gray, D.F.

    1983-01-01

    Bisectors of spectral line profiles in cool stars indicate the strength of convection in the photospheres of these objects. The present investigation is concerned with the feasibility of studying time variations in line bisectors, the reality of apparent line-to-line differences within the same stellar spectrum, and bisector differences between stars of identical spectral types. The differences considered pertain to the shape of the bisector. The material used in the investigation was acquired at the McDonald Observatory using a 1728 diode Reticon array at the coudefocus of the 2.1-m telescope. Observed bisector errors are discussed. It is established that different lines in the same star show significantly different bisectors. The observed error bands are shown by the shaded regions. The slope and curvature are unique for each case

  18. Spectral line polarimetry with a channeled polarimeter.

    Science.gov (United States)

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  19. An Interferometric Spectral Line and Imaging Survey of VY Canis Majoris in the 345 GHz Band

    Science.gov (United States)

    Kamiński, T.; Gottlieb, C. A.; Young, K. H.; Menten, K. M.; Patel, N. A.

    2013-12-01

    A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array (SMA). Two hundred twenty-three spectral features from 19 molecules (not counting isotopic species of some of them) were observed, including the rotational spectra of TiO, TiO2, and AlCl for the first time in this source. The parameters and an atlas of all spectral features are presented. Observations of each line with a synthesized beam of ~0.''9, reveal the complex kinematics and morphology of the nebula surrounding VY CMa. Many of the molecules are observed in high-lying rotational levels or in excited vibrational levels. From these, it was established that the main source of the submillimeter-wave continuum (dust) and the high-excitation molecular gas (the star) are separated by about 0.''15. Apparent coincidences between the molecular gas observed with the SMA, and some of the arcs and knots observed at infrared wavelengths and in the optical scattered light by the Hubble Space Telescope are identified. The observations presented here provide important constraints on the molecular chemistry in oxygen-dominated circumstellar environments and a deeper picture of the complex circumstellar environment of VY CMa.

  20. Handbook of spectral lines in diamond

    CERN Document Server

    Dischler, Bernhard

    2012-01-01

    This handbook is a breakthrough in the understanding of the large number of spectral lines in diamond. Data on more than 2000 lines and bands are presented in 200 tables, including many unpublished results. With a novel organization scheme, the search for a specific line is greatly simplified as a benefit for researchers and students. In order to meet the interest in the understanding of the spectra, structure assignments for 80 % of the lines are given, of which 15 % only were published before. The majority of the structures for the 300 centers is explained in most cases for the first time. A key instrument in the interpretation is the analysis by donor-acceptor pair transitions. In a special chapter 95 such centers are listed and discussed, of which only two have been published before, the first one by the present author in 1994.

  1. Pressure broadening measurement of submillimeter-wave lines of O3

    International Nuclear Information System (INIS)

    Yamada, M.M.; Amano, T.

    2005-01-01

    The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, 16 O 18 O 16 O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5-3% accuracy for the normal species transitions

  2. Autoionization spectral line shapes in dense plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A.Ya.; Pikuz, T.A.; Suess, W.; Geissel, M.

    2001-01-01

    The distortion of resonance line shapes due to the accumulation of a large number of satellite transitions is discovered by means of X-ray optical methods with simultaneous high spectral (λ/δλ≅8000) and spatial resolution (δx≅7 μm). Disappearance of the He α resonance line emission near the target surface is observed while Rydberg satellite intensity accumulates near the resonance line position. He β and He γ resonance line shapes are also shown to be seriously affected by opacity, higher-order line emissions from autoionizing states and inhomogeneous spatial emission. Opposite to resonance line emissions the He β satellites originate only from a very narrow spatial interval. New temperature and density diagnostics employing the 1s2131' and 1s3131'-satellites are developed. Moreover, even-J components of the satellite line emissions were resolved in the present high resolution experiments. Line transitions from the autoionizing states 1s2131' are therefore also proposed for space resolved Stark broadening analysis and local high density probing. Theorists are encouraged to provide accurate Stark broadening data for the transitions 1s2131 ' →1s 2 21+hv

  3. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies

    Science.gov (United States)

    Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.

    2017-09-01

    We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}˜ 40{--}70 K), dense (n({{H}})˜ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}˜ 20{--}30 K), dense (n({{H}})˜ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.

  4. Planetary submillimeter spectroscopy

    Science.gov (United States)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  5. The ALMA Protostellar Interferometric Line Survey (PILS). First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA

    Science.gov (United States)

    Jørgensen, J. K.; van der Wiel, M. H. D.; Coutens, A.; Lykke, J. M.; Müller, H. S. P.; van Dishoeck, E. F.; Calcutt, H.; Bjerkeli, P.; Bourke, T. L.; Drozdovskaya, M. N.; Favre, C.; Fayolle, E. C.; Garrod, R. T.; Jacobsen, S. K.; Öberg, K. I.; Persson, M. V.; Wampfler, S. F.

    2016-11-01

    Context. The inner regions of the envelopes surrounding young protostars are characterized by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. The Atacama Large Millimeter/submillimeter Array (ALMA) provides an unprecedented view of these regions zooming in on solar system scales of nearby protostars and mapping the emission from rare species. Aims: The goal is to introduce a systematic survey, the Protostellar Interferometric Line Survey (PILS), of the chemical complexity of one of the nearby astrochemical templates, the Class 0 protostellar binary IRAS 16293-2422, using ALMA in order to understand the origin of the complex molecules formed in its vicinity. In addition to presenting the overall survey, the analysis in this paper focuses on new results for the prebiotic molecule glycolaldehyde, its isomers, and rarer isotopologues and other related molecules. Methods: An unbiased spectral survey of IRAS 16293-2422 covering the full frequency range from 329 to 363 GHz (0.8 mm) has been obtained with ALMA, in addition to a few targeted observations at 3.0 and 1.3 mm. The data consist of full maps of the protostellar binary system with an angular resolution of 0.5'' (60 AU diameter), a spectral resolution of 0.2 km s-1, and a sensitivity of 4-5 mJy beam-1 km s-1, which is approximately two orders of magnitude better than any previous studies. Results: More than 10 000 features are detected toward one component in the protostellar binary, corresponding to an average line density of approximately one line per 3 km s-1. Glycolaldehyde; its isomers, methyl formate and acetic acid; and its reduced alcohol, ethylene glycol, are clearly detected and their emission well-modeled with an excitation temperature of 300 K. For ethylene glycol both lowest state conformers, aGg' and gGg', are detected, the latter for the first time in the interstellar medium (ISM). The abundance of glycolaldehyde is comparable to or

  6. An Interferometric 270--355 GHz Spectral Line Survey of the Red Supergiant VY CMa

    Science.gov (United States)

    Menten, K. M.; Young, K. H.; Patel, N. A.; Gottlieb, C. A.; Thaddeus, P.; McCarthy, M. C.; Gurwell, M. A.; Belloche, A.; Kaminski, T.; Verheyen, L.; Decin, L.; Brunken, S.; Holger, S. P. M.

    2011-05-01

    We have used the Submillimeter Array to image the molecular line emission in the circumstellar envelope of the peculiar red supergiant star VY Canis Majoris over the whole 870 μm atmospheric window. Employing adaptive calibration using the object's continuum emission we achieve high quality one arcsecond resolution imaging of the whole 280--355 GHz range within which we find 211 distinct spectral lines from 33 molecules (including isotopologues) plus 40 unidentified lines. From the distribution of molecules we are obtaining their abundances and isotopologic abundance ratios. Using data for multiple transitions in a number of molecules we are deriving the physical conditions in the circumstellar envelope to reach a picture of the star's chemistry that can be compared with models. Our legacy survey is accompanied by a strong laboratory effort that helps with the identification of possibly newly found molecules traced by unidentified lines. We shall create a publicly accessible database of spectral-line channel-maps of the emission from all the lines detected in the survey.

  7. Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao; Kroll, Jay A.; Rad, Mary L.; Hays, Brian M.; Sanders, James L.; Cross, Trevor N.; Wehres, Nadine; McGuire, Brett A. [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Lis, Dariusz C.; Sumner, Matthew C., E-mail: susanna.widicus.weaver@emory.edu [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States)

    2017-09-01

    Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ  = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature, density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.

  8. SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER

    International Nuclear Information System (INIS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J.; Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R.; Bendo, George J.; Madden, Suzanne C.; Wolfire, Mark G.; Boselli, Alessandro; Cooray, Asantha; Page, Mathew J.

    2012-01-01

    The first complete submillimeter spectrum (190-670 μm) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J up = 4-13), lines from H 2 O, the fundamental rotational transition of hydrogen fluoride, two o-H 2 O + lines, and one line each from CH + and OH + have been detected, together with the two [C I] lines and the [N II] 205 μm line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H 2 ) = 10 4.5 and 10 2.9 cm –3 and temperatures of T kin = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H 2 ) ∼ 10 4 cm –3 and an X-ray flux of 9 erg s –1 cm –2 , consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T kin ∼ 40 K) and high density (n(H 2 ) in the range 10 6.7 -10 7.9 cm –3 ). The emission of H 2 O + and OH + are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N II] 205 μm line is consistent with previous photoionization models of the starburst.

  9. SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R. [Center for Astrophysics and Space Astronomy, 389-UCB, University of Colorado, Boulder, CO 80303 (United States); Bendo, George J. [UK ALMA Regional Centre Node, Jordell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Madden, Suzanne C. [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Wolfire, Mark G. [Astronomy Department, University of Maryland, College Park, MD 20742 (United States); Boselli, Alessandro [Laboratoire d' Astrophysique de Marseille-LAM, Universite d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Cooray, Asantha [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Page, Mathew J., E-mail: luigi.spinoglio@iaps.inaf.it [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2012-10-20

    The first complete submillimeter spectrum (190-670 {mu}m) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J {sub up} = 4-13), lines from H{sub 2}O, the fundamental rotational transition of hydrogen fluoride, two o-H{sub 2}O{sup +} lines, and one line each from CH{sup +} and OH{sup +} have been detected, together with the two [C I] lines and the [N II] 205 {mu}m line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H{sub 2}) = 10{sup 4.5} and 10{sup 2.9} cm{sup -3} and temperatures of T {sub kin} = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H{sub 2}) {approx} 10{sup 4} cm{sup -3} and an X-ray flux of 9 erg s{sup -1} cm{sup -2}, consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T {sub kin} {approx} 40 K) and high density (n(H{sub 2}) in the range 10{sup 6.7}-10{sup 7.9} cm{sup -3}). The emission of H{sub 2}O{sup +} and OH{sup +} are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N

  10. Submillimeter and far-infrared line observations of M17 SW - A clumpy molecular cloud penetrated by ultraviolet radiation

    Science.gov (United States)

    Stutzki, J.; Genzel, R.; Harris, A. I.; Stacey, G. J.; Jaffe, D. T.

    1988-01-01

    Millimeter, submillimeter, and far-IR spectroscopic observations of the M17 SW star formation region are reported. Strong forbidden C II 158 micron and CO J = 7 - 6 line emission arises in an H II region/molecular cloud interface of several pc thickness. Weaker forbidden C II emission appears to be extended over 15 pc throughout the molecular cloud. CO J = 14 - 13 and forbidden O I 145 micron spectra indicate high temperatures and densities for both molecular and atomic gas in the interface. The results require the molecular cloud near the interface to be clumpy or filamentary. The extended forbidden C II emission throughout the molecular cloud has a level around 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. The high gas temperature of molecular material in the UV-illuminated interface region suggests that CO self-shielding and heating of CO by photoelectrons are important.

  11. AN INTERFEROMETRIC SPECTRAL LINE AND IMAGING SURVEY OF VY CANIS MAJORIS IN THE 345 GHz BAND

    International Nuclear Information System (INIS)

    Kamiński, T.; Menten, K. M.; Gottlieb, C. A.; Young, K. H.; Patel, N. A.

    2013-01-01

    A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array (SMA). Two hundred twenty-three spectral features from 19 molecules (not counting isotopic species of some of them) were observed, including the rotational spectra of TiO, TiO 2 , and AlCl for the first time in this source. The parameters and an atlas of all spectral features are presented. Observations of each line with a synthesized beam of ∼0.''9, reveal the complex kinematics and morphology of the nebula surrounding VY CMa. Many of the molecules are observed in high-lying rotational levels or in excited vibrational levels. From these, it was established that the main source of the submillimeter-wave continuum (dust) and the high-excitation molecular gas (the star) are separated by about 0.''15. Apparent coincidences between the molecular gas observed with the SMA, and some of the arcs and knots observed at infrared wavelengths and in the optical scattered light by the Hubble Space Telescope are identified. The observations presented here provide important constraints on the molecular chemistry in oxygen-dominated circumstellar environments and a deeper picture of the complex circumstellar environment of VY CMa

  12. Relative spectral response calibration using Ti plasma lines

    Science.gov (United States)

    Teng, FEI; Congyuan, PAN; Qiang, ZENG; Qiuping, WANG; Xuewei, DU

    2018-04-01

    This work introduces the branching ratio (BR) method for determining relative spectral responses, which are needed routinely in laser induced breakdown spectroscopy (LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.

  13. First extragalactic detection of submillimeter CH rotational lines from the Herschel space observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rangwala, Naseem; Maloney, Philip R.; Glenn, Jason; Kamenetzky, Julia [Center for Astrophysics and Space Astronomy, University of Colorado, 1255 38th street, Boulder, CO 80303 (United States); Wilson, Christine D.; Schirm, Maximilien R. P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Spinoglio, Luigi; Pereira Santaella, Miguel [Istituto di Fisica dello Spazio Interplanetario, INAF, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2014-06-20

    We present the first extragalactic detections of several CH rotational transitions in the far-infrared in four nearby galaxies, NGC 1068, Arp 220, M82, and NGC 253, using the Herschel Space Observatory. The CH lines in all four galaxies are a factor of 2-4 brighter than the adjacent HCN and HCO{sup +} J = 6-5 lines (also detected in the same spectra). In the star-formation-dominated galaxies, M82, NGC 253, and Arp 220, the CH/CO abundance ratio is low (∼10{sup –5}), implying that the CH is primarily arising in diffuse and translucent gas where the chemistry is driven by UV radiation as found in the Milky Way interstellar matter. In NGC 1068, which has a luminous active galactic nucleus (AGN), the CH/CO ratio is an order of magnitude higher, suggesting that CH formation is driven by an X-ray-dominated region (XDR). Our XDR models show that both the CH and CO abundances in NGC 1068 can be explained by an XDR-driven chemistry for gas densities and molecular hydrogen column densities that are well constrained by the CO observations. We conclude that the CH/CO ratio may a good indicator of the presence of AGN in galaxies. We also discuss the feasibility of detecting CH in intermediate- to high-z galaxies with ALMA.

  14. Deconvolution of EPR spectral lines with an approximate method

    International Nuclear Information System (INIS)

    Jimenez D, H.; Cabral P, A.

    1990-10-01

    A recently reported approximation expression to deconvolution Lorentzian-Gaussian spectral lines. with small Gaussian contribution, is applied to study an EPR line shape. The potassium-ammonium solution line reported in the literature by other authors was used and the results are compared with those obtained by employing a precise method. (Author)

  15. (Sub)millimeter emission lines of molecules in born-again stars

    Science.gov (United States)

    Tafoya, D.; Toalá, J. A.; Vlemmings, W. H. T.; Guerrero, M. A.; De Beck, E.; González, M.; Kimeswenger, S.; Zijlstra, A. A.; Sánchez-Monge, Á.; Treviño-Morales, S. P.

    2017-04-01

    Context. Born-again stars provide a unique possibility to study the evolution of the circumstellar envelope of evolved stars in human timescales. Up until now, most of the observations of the circumstellar material in these stars have been limited to studying the relatively hot gas and dust. In other evolved stars, the emission from rotational transitions of molecules, such as CO, is commonly used to study the cool component of their circumstellar envelopes. Thus, the detection and study of molecular gas in born-again stars is of great importance when attempting to understand their composition and chemical evolution. In addition, the molecular emission is an invaluable tool for exploring the physical conditions, kinematics, and formation of asymmetric structures in the circumstellar envelopes of these evolved stars. However, up until now, all attempts to detect molecular emission from the cool material around born-again stars have failed. Aims: We searched for emission from rotational transitions of molecules in the hydrogen-deficient circumstellar envelopes of born-again stars to explore the chemical composition, kinematics, and physical parameters of the relatively cool gas. Methods: We carried out observations using the APEX and IRAM 30 m telescopes to search for molecular emission toward four well-studied born-again stars, V4334 Sgr, V605 Aql, A30, and A78, that are thought to represent an evolutionary sequence. Results: For the first time, we detected emission from HCN and H13CN molecules toward V4334 Sgr, and CO emission in V605 Aql. No molecular emission was detected above the noise level toward A30 and A78. The detected lines exhibit broad linewidths ≳150 km s-1, which indicates that the emission comes from gas ejected during the born-again event, rather than from the old planetary nebula. A first estimate of the H12CN/H13CN abundance ratio in the circumstellar environment of V4334 Sgr is ≈3, which is similar to the value of the 12C/13C ratio measured

  16. Spectral line profiles in weakly turbulent plasmas

    International Nuclear Information System (INIS)

    Capes, H.; Voslamber, D.

    1976-07-01

    The unified theory of line broadening by electron perturbers is generalized to include the case of a weakly turbulent plasma. The collision operator in the line shape expression is shown to be the sum of two terms, both containing effects arising from the non-equilibrium nature of the plasma. One of the two terms represents the influence of individual atom-particle interactions occuring via the nonequilibrium dielectric plasma medium. The other term is due to the interaction of the atom with the turbulent waves. Both terms contain damping and diffusion effects arising from the plasma turbulence

  17. Spectral classification of emission-line galaxies

    International Nuclear Information System (INIS)

    Veilleux, S.; Osterbrock, D.E.

    1987-01-01

    A revised method of classification of narrow-line active galaxies and H II region-like galaxies is proposed. It involves the line ratios which take full advantage of the physical distinction between the two types of objects and minimize the effects of reddening correction and errors in the flux calibration. Large sets of internally consistent data are used, including new, previously unpublished measurements. Predictions of recent photoionization models by power-law spectra and by hot stars are compared with the observations. The classification is based on the observational data interpreted on the basis of these models. 63 references

  18. Star formation relations and CO spectral line energy distributions across the J-ladder and redshift

    Energy Technology Data Exchange (ETDEWEB)

    Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Leonidaki, I.; Xilouris, E. M. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece); Weiß, A.; Henkel, C. [Max-Planck-Institut fur Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Zhang, Z.-Y. [UK Astronomy Technology Centre, Science and Technology Facilities Council, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Van der Werf, P.; Meijerink, R. [Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden (Netherlands); Aalto, S. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Observatory, 43994 Onsala (Sweden); Armus, L.; Díaz-Santos, T. [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Evans, A. S. [Astronomy Department, University of Virginia Charlottesville, VA 22904 (United States); Fischer, J. [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Gao, Y. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); González-Alfonso, E. [Universidad de Alcala de Henares, Departamento de Fśica, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Harris, A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Naylor, D. A. [Institute for Space Imaging Science, Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada); Smith, H. A. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Spaans, M., E-mail: t.greve@ucl.ac.uk [Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); and others

    2014-10-20

    We present FIR [50-300 μm]–CO luminosity relations (i.e., log L{sub FIR}=αlog L{sub CO}{sup ′}+β) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z ≤ 0.1) (Ultra) Luminous Infrared Galaxies (LIRGs; L {sub IR[8-1000} {sub μm]} > 10{sup 11} L {sub ☉}) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIR luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR–CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR–CO luminosity relations (i.e., α ≅ 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (β ∼ 2). In the simplest physical scenario, this is expected from the (also) linear FIR–(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (∼100 K) and dense (>10{sup 4} cm{sup –3}) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for

  19. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    Science.gov (United States)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  20. Neutral helium spectral lines in dense plasmas

    International Nuclear Information System (INIS)

    Omar, Banaz; Wierling, August; Roepke, Gerd; Guenter, Sibylle

    2006-01-01

    Shift and broadening of isolated neutral helium lines 7281 A ring (2 1 P-3 1 S), 7065 A ring (2 3 P-3 3 S), 6678 A ring (2 1 P-3 1 D), 5048 A ring (2 1 P-4 1 S), 4922 A ring (2 1 P-4 1 D), and 4713 A ring (2 3 P-4 3 S) in a dense plasma are investigated. Based on a quantum statistical theory, the electronic contributions to the shift and width are considered, using the method of thermodynamic Green functions. Dynamic screening of the electron-atom interaction is included. Compared to the width, the electronic shift is more affected by dynamical screening. This effect increases at high density. A cut-off procedure for strong collisions is used. The contribution of the ions is taken into account in a quasi-static approximation, with both the quadratic Stark effect and the quadrupole interaction included. The results for shift and width agree well with the available experimental and theoretical data

  1. Molecular gas in the Herschel-selected strongly lensed submillimeter galaxies at z 2-4 as probed by multi-J CO lines

    Science.gov (United States)

    Yang, C.; Omont, A.; Beelen, A.; Gao, Y.; van der Werf, P.; Gavazzi, R.; Zhang, Z.-Y.; Ivison, R.; Lehnert, M.; Liu, D.; Oteo, I.; González-Alfonso, E.; Dannerbauer, H.; Cox, P.; Krips, M.; Neri, R.; Riechers, D.; Baker, A. J.; Michałowski, M. J.; Cooray, A.; Smail, I.

    2017-12-01

    We present the IRAM-30 m observations of multiple-J CO (Jup mostly from 3 up to 8) and [C I](3P2 → 3P1) ([C I](2-1) hereafter) line emission in a sample of redshift 2-4 submillimeter galaxies (SMGs). These SMGs are selected among the brightest-lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Forty-seven CO lines and 7 [C I](2-1) lines have been detected in 15 lensed SMGs. A non-negligible effect of differential lensing is found for the CO emission lines, which could have caused significant underestimations of the linewidths, and hence of the dynamical masses. The CO spectral line energy distributions (SLEDs), peaking around Jup 5-7, are found to be similar to those of the local starburst-dominated ultra-luminous infrared galaxies and of the previously studied SMGs. After correcting for lensing amplification, we derived the global properties of the bulk of molecular gas in the SMGs using non-LTE radiative transfer modelling, such as the molecular gas density nH2 102.5-104.1 cm-3 and the kinetic temperature Tk 20-750 K. The gas thermal pressure Pth ranging from 105 K cm-3 to 106 K cm-3 is found to be correlated with star formation efficiency. Further decomposing the CO SLEDs into two excitation components, we find a low-excitation component with nH2 102.8-104.6 cm-3 and Tk 20-30 K, which is less correlated with star formation, and a high-excitation one (nH2 102.7-104.2 cm-3, Tk 60-400 K) which is tightly related to the on-going star-forming activity. Additionally, tight linear correlations between the far-infrared and CO line luminosities have been confirmed for the Jup ≥ 5 CO lines of these SMGs, implying that these CO lines are good tracers of star formation. The [C I](2-1) lines follow the tight linear correlation between the luminosities of the [C I](2-1) and the CO(1-0) line found in local starbursts, indicating that [C I] lines could serve as good total molecular gas mass tracers for high-redshift SMGs as well

  2. Analysis of visible spectral lines in LHD helium discharge

    International Nuclear Information System (INIS)

    Wan, B.N.; Goto, M.; Morita, S.

    1999-06-01

    In this study, visible spectral lines in LHD helium discharges are analyzed and it was found that they could be well fitted with gaussian profile. The results reveal a simple mechanism of helium atom recycling. Ion temperatures were also derived from the fitting. A typical value of the ion temperature obtained was about 6 eV. (author)

  3. LDR: A submillimeter great observatory

    Science.gov (United States)

    Wilson, Robert

    1990-12-01

    The Large Deployable Reflector (LDR), a high Earth orbit free flying 10 to 20 m diameter deployable telescope, is described. The LDR is intended for use throughout the submillimeter band, using imaging receivers with unprecedented sensitivity and angular resolution. Its mission is to produce pictures of line emission regions in the solar neighborhood, in nearby galaxies and in objects at the edge of the known galaxy distribution. It is predicted to be an ideal instrument for exploring the first galaxies and protogalaxies as the submillimeter cooling lines should light up as soon as metals form.

  4. DISCOVERY OF TIME VARIATION OF THE INTENSITY OF MOLECULAR LINES IN IRC+10216 IN THE SUBMILLIMETER AND FAR-INFRARED DOMAINS

    Energy Technology Data Exchange (ETDEWEB)

    Cernicharo, J.; Quintana-Lacaci, G.; Agúndez, M.; Velilla-Prieto, L. [Group of Molecular Astrophysics, ICMM, CSIC, C/Sor Juana Inés de La Cruz N3, E-28049 Madrid (Spain); Teyssier, D.; García-Lario, P. [ESA, ESAC, P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Daniel, F. [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); Decin, L. [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Guélin, M. [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, F-38406 St-Martin d' Hères (France); Encrenaz, P. [LERMA, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); De Beck, E. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE 439 92 Onsala (Sweden); Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Groenewegen, M. A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, B-1180 Brussels (Belgium); Neufeld, D. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Pearson, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-11-20

    We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species toward the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the Heterodyne Instrument for the Far-Infrared (HIFI) instrument on board Herschel and with the IRAM30 m telescope. They cover several observing periods spreading over three years. The line intensity variations for molecules produced in the external layers of the envelope most likely result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations must take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The submillimeter and far infrared lines of asymptotic giant branch stars can no longer be considered as safe intensity calibrators.

  5. Spectral line intensity irreversibility in circulatory plasma magnetization processes

    Science.gov (United States)

    Qu, Z. Q.; Dun, G. T.

    2012-01-01

    Spectral line intensity variation is found to be irreversible in circulatory plasma magnetization process by experiments described in this paper, i.e., the curves illustrating spectral line photon fluxes irradiated from a light source immerged in a magnetic field by increasing the magnetic induction cannot be reproduced by decreasing the magnetic induction within the errors. There are two plasma magnetization patterns found. One shows that the intensities are greater at the same magnetic inductions during the magnetic induction decreasing process after the increasing, and the other gives the opposite effect. This reveals that the magneto-induced excitation and de-excitation process is irreversible like ferromagnetic magnetization. But the two irreversible processes are very different in many aspects stated in the text.

  6. Opacity of expanding media: The effect of spectral lines

    International Nuclear Information System (INIS)

    Karp, A.H.; Lasher, G.; Chan, K.L.; Salpeter, E.E.

    1977-01-01

    Spectral lines are more effective in slowing the transport of radiation in expanding (or contracting) objects than in static ones. The velocity gradient associated with the expansion causes the frequency of the photons to be continuously redshifted relative to the rest frame of the gas through which they travel. Those photons which are redshifted to the frequency of a sufficiently strong line will be absorbed by the corresponding bound-bound transition, and the net effect will be to increase the effective opacity of the gas. In certain cases the effect can be taken into account by using an effective opacity, the expansion opacity, which is a function not only of the temperature and density but also of the velocity gradient.Practical formulae for computing the expansion opacity and its Rosseland mean in terms of sums over spectral lines are derived. It is shown that the cumulative effect of many weak lines can be important, implying that a large list of spectral lines is required to obtain results of even modest accuracy. Numerical computations using the 260,000-entry line list of Kurucz and Peytremann have been completed and some samples of the result are given. The general effect may be important in many astronomical objects, but only in some of these will be detailed approach of this paper be appropriate. In optically thick supernova shells, the effect is important both in maintaining the radiation in thermal equilibrium as it diffuses out of the shell and in increasing the value of the total opacity. The enhancement of the opacity ranges from less than 1% to more than an order of magnitude, depending on the temperature, density, and velocity gradient

  7. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  8. An ultrafast line-by-line algorithm for calculating spectral transmittance and radiance

    International Nuclear Information System (INIS)

    Tan, X.

    2013-01-01

    An ultrafast line-by-line algorithm for calculating spectral transmittance and radiance of gases is presented. The algorithm is based on fast convolution of the Voigt line profile using Fourier transform and a binning technique. The algorithm breaks a radiative transfer calculation into two steps: a one-time pre-computation step in which a set of pressure independent coefficients are computed using the spectral line information; a normal calculation step in which the Fourier transform coefficients of the optical depth are calculated using the line of sight information and the coefficients pre-computed in the first step, the optical depth is then calculated using an inverse Fourier transform and the spectral transmittance and radiance are calculated. The algorithm is significantly faster than line-by-line algorithms that do not employ special speedup techniques by a factor of 10 3 –10 6 . A case study of the 2.7 μm band of H 2 O vapor is presented. -- Highlights: •An ultrafast line-by-line model based on FFT and a binning technique is presented. •Computationally expensive calculations are factored out into a pre-computation step. •It is 10 3 –10 8 times faster than LBL algorithms that do not employ speedup techniques. •Good agreement with experimental data for the 2.7 μm band of H 2 O

  9. SPECTRALLY RESOLVED PURE ROTATIONAL LINES OF WATER IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Pontoppidan, Klaus M.; Salyk, Colette; Blake, Geoffrey A.; Kaeufl, Hans Ulrich

    2010-01-01

    We present ground-based high-resolution N-band spectra (Δv = 15 km s -1 ) of pure rotational lines of water vapor in two protoplanetary disks surrounding the pre-main-sequence stars AS 205N and RNO 90, selected based on detections of rotational water lines by the Spitzer InfraRed Spectrograph. Using VISIR on the Very Large Telescope, we spectrally resolve individual lines and show that they have widths of 30-60 km s -1 , consistent with an origin in Keplerian disks at radii of ∼1 AU. The water lines have similar widths to those of the CO at 4.67 μm, indicating that the mid-infrared water lines trace similar radii. The rotational temperatures of the water are 540 and 600 K in the two disks, respectively. However, the line ratios show evidence of non-LTE excitation, with low-excitation line fluxes being overpredicted by two-dimensional disk LTE models. Due to the limited number of observed lines and the non-LTE line ratios, an accurate measure of the water ortho/para (O/P) ratio is not available, but a best estimate for AS 205N is O/P =4.5 ± 1.0, apparently ruling out a low-temperature origin of the water. The spectra demonstrate that high-resolution spectroscopy of rotational water lines is feasible from the ground, and further that ground-based high-resolution spectroscopy is likely to significantly improve our understanding of the inner disk chemistry revealed by recent Spitzer observations.

  10. Laser line shape and spectral density of frequency noise

    International Nuclear Information System (INIS)

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-01-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise

  11. Submillimeter and far infrared line observations of M17 SW: A clumpy molecular cloud penetrated by UV radiation

    Science.gov (United States)

    Stutzki, J.; Stacey, G. J.; Genzel, R.; Harris, A. I.; Jaffe, d. T.; Lugten, J. B.

    1987-01-01

    Millimeter, submillimeter, and far infrared spectroscopic observations of the M17 SW star formation region are discussed. The results require the molecular cloud near the interface to be clumpy or filamentary. As a consequence, far ultraviolet radiation from the central OB stellar cluster can penetrate into the dense molecular cloud to a depth of several pc, thus creating bright and extended (CII) emission from the photodissociated surfaces of dense atomic and molecular clumps or sheets. The extended (CII) emission throughout the molecular cloud SW of the M17 complex has a level 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. This suggests that the molecular cloud as a whole is penetrated by ultraviolet radiation and has a clumpy or filamentary structure. The number of B stars expected to be embedded in the M17 molecular cloud probably can provide the UV radiation necessary for the extended (CII) emission. Alternatively, the UV radiation could be external, if the interstellar radiation in the vicinity of M17 is higher than in the solar neighborhood.

  12. Phase coherence and Rabi frequency induced ultranarrow spectral line

    International Nuclear Information System (INIS)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta; Mahapatra, Prasanta Kumar

    2012-01-01

    A scheme is proposed to achieve ultranarrow spectral line in the fluorescence spectrum of a lifetime broadened multilevel phase-coherent atom. It is shown that for weak-field coupling, ultranarrow spectral feature in the fluorescence spectrum can be generated by controlling the values of the Rabi frequencies involved in the coherent mechanism of the system. For fixed values of the Rabi frequencies in the weak-field limit, ultranarrow feature appears in the spectrum through the adjustment of the relative phase of the coherent fields. The results highlight that, larger the values of the decay rates associated with the field-driven channels, more pronounced is the phenomenon of narrowing in the spectrum.

  13. Stark Broadening of Cr III Spectral Lines: DO White Dwarfs

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2018-04-01

    Full Text Available Using the modified semiempirical method of Dimitrijević and Konjević, Stark widths have been calculated for six Cr III transitions, for an electron density of 10 17 cm ‒ 3 and for temperatures from 5000–80,000 K. Results have been used for the investigation of the influence of Stark broadening on spectral lines in cool DO white dwarf atmospheres. Calculated Stark widths will be implemented in the STARK-B database, which is also a part of the Virtual Atomic and Molecular Data Center (VAMDC.

  14. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  15. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  16. A VIRTUAL SKY WITH EXTRAGALACTIC H I AND CO LINES FOR THE SQUARE KILOMETRE ARRAY AND THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Obreschkow, D.; Kloeckner, H.-R.; Heywood, I.; Rawlings, S.; Levrier, F.

    2009-01-01

    We present a sky simulation of the atomic H I-emission line and the first 10 12 C 16 O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h -1 Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z max ; e.g., for z max = 10, the field of view yields ∼4 x 4 deg 2 . For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 10 8 M sun . This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a Λ cold dark matter (ΛCDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h -1 Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z ∼> 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models.

  17. PREFACE: XXII International Conference on Spectral Line Shapes 2014

    Science.gov (United States)

    Parigger, C. G.

    2014-11-01

    The 22nd International Conference on Spectral Line Shapes (ICSLS) was convened at The University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee, USA, during June 1 to 6, 2014. A variety of topics of interest to the line shape community were addressed during invited and contributed oral and poster presentations. General categories of the ICSLS 2014 scientific contents included Astrophysics, Biomedical Physics, High and Low Temperature Plasma Physics, Magnetic Fusion Physics, Neutrals Atomic-Molecular-Optical (AMO) Physics, and Applied Physics. Research interests at UTSI and at the Center for Laser Applications (CLA) focus on Applied Physics and Plasma Physics areas such as laser-induced breakdown spectroscopy, spectroscopy with ultra-short light pulses, combustion diagnostics, to name a few. Consequently, the presentations during the conference addressed a variety of these topics. Attendance at the conference included researchers from North America, Africa, Asia and Europe, with an international representation showing 250 authors and co-authors with over 25 different citizenships, and 100 participants at the Conference. Figure 1 shows a photo of Conference attendees. The schedule included 82 contributions, 41 oral and 41 poster presentations. The 29 invited, 12 contributed oral and 41 contributed poster presentations were selected following communication with the international organizing committee members. A smart phone ''app'' was also utilized, thanks to Elsevier, to communicate electronic versions of the posters during the conference. Special thanks go to the members of the international and local committees for their work in organizing the 22nd ICSLS. In addition, thank you notes also go to the peer reviewers for the proceedings. Following the success of the IOP: Journal of Physics Conference Series selected for the 21st ICSLS publication, the proceedings papers report ongoing research activities. Papers submitted amount to 68 in number, or 83% of

  18. Theoretical profiles of the spectral lines of the hydrogen atom

    International Nuclear Information System (INIS)

    Nguyen, H.; Herman, L.; Drawin, H.W.

    1965-01-01

    The line-broadening problem of the hydrogen lines has been formulated in the quasistatic approximation as far as the ions are concerned, and in the classical path approximation as far as the broadening due to collisions with electrons is concerned. These electrons interfere in different numerical results only by the self-correlation function of the fluctuating electrical field strength created at each point in the plasma. The Lewis correction has been applied, but using the whole velocity distribution function of the electrons. The formula which represents the usual impact profile, valid only for frequencies much smaller than the plasma frequency, has been extended using another formula which will be valid up to the neighbourhood of that spectral region where the quasi-static approximation begins to be valid also for the electrons. As an example, the line profile of Ly α is given by some graphs for T = 10 4 deg. K and electron densities N = 10 17 cm -3 and N = 10 18 cm -3 . (authors) [fr

  19. Overlapping communities detection based on spectral analysis of line graphs

    Science.gov (United States)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  20. GBTIDL: Reduction and Analysis of GBT Spectral Line Data

    Science.gov (United States)

    Marganian, P.; Garwood, R. W.; Braatz, J. A.; Radziwill, N. M.; Maddalena, R. J.

    2013-03-01

    GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.

  1. Initial analyses of surface spectral radiance between observations and Line-By-Line calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.D.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miller, N.E.; Shippert, T.R.; Turner, D.D. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1996-04-01

    The evaluation an improvement of radiative transfer calculations are essential to attain improved performance of general circulation models (GCMs) for climate change applications. A Quality Measurement Experiment (QME) is being conducted to analyze the spectral residuals between the downwelling longwave radiance measured by the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) and spectral radiance calculated by the Line-By-Line Radiative Transfer Model (LBLRTM). The three critical components of this study are (1) the assessment of the quality of the high resolution AERI measurements, (2) the assessment of the ability to define the atmospheric state in the radiating column, and (3) the evaluation of the capability of LBLRTM. Validations have been performed on spectral radiance data, obtained from April 1994 through July 1994, through the analysis of the spectral interval and physical process. The results are archived as a function of time, enabling the retrieval of specific data and facilitating investigations and diurnal effects, seasonal effects, and longer-term trends. While the initial focus is restricted to clear-sky analyses, efforts are under way to include the effects of clouds and aerosols. Plans are well formulated for the extension of the current approach to the shortwave. An overview of the concept of the QME is described by Miller et al. (1994), and a detailed description of this study is provided by Clough et al. (1994).

  2. Atomic data and spectral line intensities for Ne III

    CERN Document Server

    Bhatia, A K; Landi, E

    2003-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s sup 2 2p sup 4 , 2s2p sup 5 , 2s sup 2 2p sup 3 3s, and 2s sup 2 2p sup 3 3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 15, 25, 35, and 45 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT sub e (K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10 sup 8 -10 sup 1 sup 4 cm sup - sup 3. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensi...

  3. An unbiased spectral line survey toward R CrA IRS7B in the 345 GHz window with ASTE

    DEFF Research Database (Denmark)

    Watanabe, Yoshimasa; Sakai, Nami; Lindberg, Johan

    2012-01-01

    We have conducted a spectral line survey in the 332-364 GHz region with the Atacama Submillimeter Telescope Experiment 10 m telescope toward R CrA IRS7B, a low-mass protostar in the Class 0 or Class 0/I transitional stage. We have also performed some supplementary observations in the 450 GHz band...... corino. These results suggest a weak hot corino activity in R CrA IRS7B. On the other hand, the carbon-chain related molecules, CCH and c-C3H2, are found to be abundant. However, this source cannot be classified as a WCCC source, since long carbon-chain molecules are not detected. If WCCC and hot corino...... chemistry represent the two extremes in chemical compositions of low-mass Class 0 sources, R CrA IRS7B would be a source with a mixture of these two chemical characteristics. The UV radiation from the nearby Herbig Ae star R CrA may also affect the chemical composition. The present line survey demonstrates...

  4. ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Weiss, Axel [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Elbaz, David; Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Riechers, Dominik [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Smail, Ian, E-mail: cunha@mpia.de [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-03-20

    Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

  5. PREFACE: XXI International Conference on Spectral Line Shapes (ICSLS 2012)

    Science.gov (United States)

    Devdariani, Alexander Z.

    2012-12-01

    The 21st International Conference on Spectral Line Shapes, ICSLS, was held in the historic main building of St Petersburg State University (St. Petersburg, Russia) on 3-9 June 2012. The event continued the tradition started in 1978 in Meudon Observatory in Paris. Representatives of line shape physics have since met every two years in different locations in Europe and North America. The most recent events were held in St John's, Newfoundland, Canada (2010), Valladolid, Spain (2008), and Auburn, AL (USA). Traditionally, the conferences consider experimental and theoretical issues of studying spectral line shapes, diagnostic utilization of spectral line profiles observed in absorption, emission or scattering of electromagnetic radiation by atoms, molecules, and clusters in different environments, including neutral environments, laboratory low and fusion plasmas, astrophysical conditions, and planetary atmospheres. The Conference was attended by over 100 professionals from Europe, Asia, America, Africa and New Zealand. The conference program was put together in such a way so as to exclude any parallel sessions. Five afternoon sessions featured 19 invited talks and 20 oral contributions, and two evening sessions offered 61 poster presentations, including post-deadline posters. This setup allowed for a relaxed and unhurried discussion of results and facilitated productive networking. The invited talks were selected by recommendation of members of the International Scientific Committee. The Organizers would like to thank all the members of the International Scientific Committee for their proposals on the agenda and their valuable advice. When considering candidates for oral contributions, the organizers took into account the suggestions and preferences of potential conference participants. When selecting the theses of poster presentations, the organizers focused on the topics in line with the theme of the conference and studies with well-formulated results. It must be

  6. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    Science.gov (United States)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  7. Atomic data and spectral line intensities for Fe XVII

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Doschek, G.A.

    2003-01-01

    Electron impact collision strengths and spontaneous radiative decay rates are calculated for Fe XVII. The data pertain to the 73 levels of the configurations, 2s 2 2p 6 , 2s 2 2p 5 3s, 2s 2 2p 5 3p 2s 2 2p 5 3d, 2s2p 6 3s, 2s2p 6 3p, 2s2p 6 3d, 2s 2 2p 5 4s, 2s 2 2p 5 4p, 2s 2 2p 5 4d, 2s2p 6 4s, 2s2p 6 4p, and 2s2p 6 4d. Collision strengths are calculated at 11 incident electron energies: 58.5, 65.0, 70.0, 76.0, 85.0, 127.5, 170.0, 212.5, 255.0, 340.0, and 425.0 Ry. This work is an improvement over our earlier work on Fe XVII in two respects: (1) configurations involving 4s, 4p, and 4d electrons have been added and (2) a broader range of incident electron energies is used in the computation of collision strengths and excitation rate coefficients. Relative spectral line intensities are calculated for astrophysically important transitions. These are obtained by computing the excitation rate coefficients (cm 3 s -1 ), i.e., the collision strengths integrated over a Maxwellian electron distribution, and then solving the equations of detailed balance for the populations of the 73 energy levels, assuming a collisional excitation model and an electron temperature of 4 x 10 6 K. This temperature is typical for Fe XVII when formed in equilibrium by collisional ionization and recombination. Using the excitation rate coefficients and the radiative decay rates, level populations are computed for five electron densities and are given in this paper

  8. MAPPING THE LINEARLY POLARIZED SPECTRAL LINE EMISSION AROUND THE EVOLVED STAR IRC+10216

    Energy Technology Data Exchange (ETDEWEB)

    Girart, J. M. [Institut de Ciencies de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciencies, C5p 2, 08193 Bellaterra, Catalunya (Spain); Patel, N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vlemmings, W. H. T. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Rao, Ramprasad, E-mail: girart@ice.cat [Submillimeter Array, Academia Sinica Institute of Astronomy and Astrophysics, 645 N. Aohoku Place, Hilo, HI 96720 (United States)

    2012-05-20

    We present spectro-polarimetric observations of several molecular lines obtained with the Submillimeter Array toward the carbon-rich asymptotic giant branch star IRC+10216. We have detected and mapped the linear polarization of the CO 3-2, SiS 19-18, and CS 7-6 lines. The polarization arises at a distance of {approx_equal} 450 AU from the star and is blueshifted with respect to the Stokes I. The SiS 19-18 polarization pattern appears to be consistent with a locally radial magnetic field configuration. However, the CO 3-2 and CS 7-6 line polarization suggests an overall complex magnetic field morphology within the envelope. This work demonstrates the feasibility of using spectro-polarimetric observations to carry out tomographic imaging of the magnetic field in circumstellar envelopes.

  9. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  10. AN UNBIASED SPECTRAL LINE SURVEY TOWARD R CrA IRS7B IN THE 345 GHz WINDOW WITH ASTE

    International Nuclear Information System (INIS)

    Watanabe, Yoshimasa; Sakai, Nami; Yamamoto, Satoshi; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.

    2012-01-01

    We have conducted a spectral line survey in the 332-364 GHz region with the Atacama Submillimeter Telescope Experiment 10 m telescope toward R CrA IRS7B, a low-mass protostar in the Class 0 or Class 0/I transitional stage. We have also performed some supplementary observations in the 450 GHz band. In total, 16 molecular species are identified in the 332-364 GHz region. Strong emission lines of CN and CCH are observed, whereas complex organic molecules and long carbon-chain molecules, which are characteristics of hot corino and warm carbon-chain chemistry (WCCC) source, respectively, are not detected. The rotation temperature of CH 3 OH is evaluated to be 31 K, which is significantly lower than that reported for the prototypical hot corino IRAS 16293-2422 (∼85 K). The deuterium fractionation ratios for CCH and H 2 CO are obtained to be 0.038 and 0.050, respectively, which are much lower than those in the hot corino. These results suggest a weak hot corino activity in R CrA IRS7B. On the other hand, the carbon-chain related molecules, CCH and c-C 3 H 2 , are found to be abundant. However, this source cannot be classified as a WCCC source, since long carbon-chain molecules are not detected. If WCCC and hot corino chemistry represent the two extremes in chemical compositions of low-mass Class 0 sources, R CrA IRS7B would be a source with a mixture of these two chemical characteristics. The UV radiation from the nearby Herbig Ae star R CrA may also affect the chemical composition. The present line survey demonstrates further chemical diversity in low-mass star-forming regions.

  11. Theoretical description of spectral line profiles of parent molecules in cometary comae

    International Nuclear Information System (INIS)

    Hu, Hong-Yao; Larson, H.P.; Hsieh, K.C.

    1991-01-01

    The present overview of cometary spectral-line profiles obtainable through advancements in high-resolution spectroscopic studies, which allow the retrieval of coma kinematic properties from velocity-resolved spectral-line profiles, incorporates the most important gas dynamic processes into an outflow model which is tailored to the interpretation of spectroscopic observations of parent molecules. The model is then used to study the influence on parent-molecule spectral line profile formation of the field-of-view, the expansion velocity, the kinetic temperature, and the anisotropic outflow distributions. 31 refs

  12. Spectral function for a nonsymmetric differential operator on the half line

    Directory of Open Access Journals (Sweden)

    Wuqing Ning

    2017-05-01

    Full Text Available In this article we study the spectral function for a nonsymmetric differential operator on the half line. Two cases of the coefficient matrix are considered, and for each case we prove by Marchenko's method that, to the boundary value problem, there corresponds a spectral function related to which a Marchenko-Parseval equality and an expansion formula are established. Our results extend the classical spectral theory for self-adjoint Sturm-Liouville operators and Dirac operators.

  13. THE GBT 67–93.6 GHz SPECTRAL LINE SURVEY OF ORION-KL

    International Nuclear Information System (INIS)

    Frayer, D. T.; Maddalena, Ronald J.; Meijer, M.; Hough, L.; White, S.; Norrod, R.; Watts, G.; Stennes, M.; Simon, R.; Woody, D.; Whitehead, M.; Ford, P.; Mello, M.; Bloss, M.; Srikanth, S.; Pospieszalski, M.; Bryerton, E.

    2015-01-01

    We present a 67–93.6 GHz spectral line survey of Orion-KL with the new 4 mm Receiver on the Green Bank Telescope (GBT). The survey reaches unprecedented depths and covers the low-frequency end of the 3 mm atmospheric window which has been relatively unexplored previously. The entire spectral-line survey is published electronically for general use by the astronomical community. The calibration and performance of the 4 mm Receiver on the GBT is also summarized

  14. LABORATORY MEASUREMENTS OF WHITE DWARF PHOTOSPHERIC SPECTRAL LINES: Hβ

    International Nuclear Information System (INIS)

    Falcon, Ross E.; Gomez, T. A.; Montgomery, M. H.; Winget, D. E.; Rochau, G. A.; Bailey, J. E.; Nagayama, T.

    2015-01-01

    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. Here we present time-resolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, n e , and n = 2 level population, n 2 . Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from n e ∼ 4 to ∼30 × 10 16 cm −3 throughout a 120-ns evolution of our plasma. Also, we observe n 2 to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ∼55 ns to become consistent with LTE. This supports our electron-temperature determination of T e ∼ 1.3 eV (∼15,000 K) after this time. At n e ≳ 10 17 cm −3 , we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ 2 ) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines

  15. Submillimeter heterodyne receiver for the CSO telescope

    International Nuclear Information System (INIS)

    Gulkis, S.

    1988-01-01

    This task is to build a cryogenically cooled 620 to 700 GHz astronomical receiver that will be used as a facility instrument at the CalTech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. The receiver will have applications as a very high resolution spectrometer to investigate spectral lines in planetary and satellite atmospheres, and comets. The receiver will also be used to make continuum measurements of planets, satellites, and asteroids. During FY88, a scale model (200 GHz) SIS mixer radiometer was built and intrgrated into a cryostat designed for use on the CSO telescope. This system will serve as a model to guide the work on the higher frequency mixer. A solid state local oscillator source that covers two bands in the 600 to 700 GHz has been developed under contract JPL and will be delivered before the end of the year. Work has continued on the SIS materials needed for the 620 to 700 GHz mixer. Test hardware has been developed which allow the 1 to 5 curves for SIS material to be easily measured

  16. Herschel SPIRE FTS spectral line source calibrators

    DEFF Research Database (Denmark)

    Hopwood, Rosalind; Polehampton, Edward; Valtchanov, Ivan

    2015-01-01

    We present a summary of the Herschel SPIRE/FTS calibration programme to monitor the repeatability of spectral lines. Observations of planetary nebulae and post-AGB stars are used to assess repeatability and model the asymmetry of the instrument line shape.......We present a summary of the Herschel SPIRE/FTS calibration programme to monitor the repeatability of spectral lines. Observations of planetary nebulae and post-AGB stars are used to assess repeatability and model the asymmetry of the instrument line shape....

  17. Improved documentation of spectral lines for inductively coupled plasma emission spectrometry

    Science.gov (United States)

    Doidge, Peter S.

    2018-05-01

    An approach to improving the documentation of weak spectral lines falling near the prominent analytical lines used in inductively coupled plasma optical emission spectrometry (ICP-OES) is described. Measurements of ICP emission spectra in the regions around several hundred prominent lines, using concentrated solutions (up to 1% w/v) of some 70 elements, and comparison of the observed spectra with both recent published work and with the output of a computer program that allows calculation of transitions between the known energy levels, show that major improvements can be made in the coverage of spectral atlases for ICP-OES, with respect to "classical" line tables. It is argued that the atomic spectral data (wavelengths, energy levels) required for the reliable identification and documentation of a large majority of the weak interfering lines of the elements detectable by ICP-OES now exist, except for most of the observed lines of the lanthanide elements. In support of this argument, examples are provided from a detailed analysis of a spectral window centered on the prominent Pb II 220.353 nm line, and from a selected line-rich spectrum (W). Shortcomings in existing analyses are illustrated with reference to selected spectral interferences due to Zr. This approach has been used to expand the spectral-line library used in commercial ICP-ES instruments (Agilent 700-ES/5100-ES). The precision of wavelength measurements is evaluated in terms of the shot-noise limit, while the absolute accuracy of wavelength measurement is characterised through comparison with a small set of precise Ritz wavelengths for Sb I, and illustrated through the identification of Zr III lines; it is further shown that fractional-pixel absolute wavelength accuracies can be achieved. Finally, problems with the wavelengths and classifications of certain Au I lines are discussed.

  18. A universal representation of Rydberg spectral line shapes in plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Stamm, R.; Talin, B.; Bureyeva, L.; Lisitsa, V. S.

    2001-01-01

    A universal representation of Rydberg atom line shapes in plasmas is obtained. It bases on analytical formulas for intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principle quantum numbers n, n'>>1, Δn=n-n'<< n and the frequency fluctuation model (FFM) for account of ion thermal motion effects. The line shapes are presented in a universal manner as functions of plasma temperatures and densities

  19. Stark broadening measurements of Xe III spectral lines

    International Nuclear Information System (INIS)

    Pelaez, R J; Cirisan, M; Djurovic, S; Aparicio, J A; Mar, S

    2006-01-01

    This work reports measured Stark widths of doubly ionized xenon lines. Pulsed arc was used as a plasma source. Measured electron densities and temperatures were in the ranges of (0.2 - 1.6) x 10 23 m -3 and 18 300-25 500 K, respectively. Stark halfwidths of lines from 6s-6p, 6s-4f and 5d-6p transitions have been measured and compared with available experimental and theoretical data

  20. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    International Nuclear Information System (INIS)

    Shapovalova, A. I.; Burenkov, A. N.; Popović, L. Č.; Kovačević, J.; Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L.; Ilić, D.; Kovačević, A.; Kollatschny, W.; Bochkarev, N. G.; León-Tavares, J.; Mercado, A.; Benítez, E.; Dultzin, D.; De la Fuente, E.

    2012-01-01

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted Hα, Hβ, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the Hβ and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F max /F min ) of Ark 564 is between 1.5 for Hα and 1.8 for the Fe II lines. The correlation between the Fe II and Hβ flux variations is of higher significance than that of Hα and Hβ (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  1. Science with the wideband Submillimeter Array: A Strategy for the Decade 2017-2027

    Science.gov (United States)

    Wilner, D.; Keto, E.; Bower, G.; Ching, T. C.; Gurwell, M.; Hirano, N.; Keating, G.; Lai, S. P.; Patel, N.; Petitpas, G.; Qi, C.; Sridharan, T. K.; Urata, Y.; Young, K.; Zhang, Q.; Zhao, J.-H.

    2017-01-01

    The Submillimeter Array (SMA) comprises eight movable 6-meter diameter antennas sited on Maunakea, Hawaii, designed for high spatial and spectral resolution observations at submillimeter wavelengths. Pioneering observations with the SMA have provided new insights into a wide variety of astrophysical phenomena, including the formation and evolution of galaxies, stars and planets, and the nature of the supermassive black hole at the center of the Milky Way. Following careful deliberation, the SMA project is embarking on an ambitious, staged, strategic upgrade that will increase its instantaneous bandwidth and dramatically improve its observational sensitivity and speed. The unique capabilities of this ultra-wideband SMA - the "wSMA" promise to spark a new era of forefront discoveries. In brief, the wSMA upgrade will provide a core receiver set providing dual-polarization observing bands covering the 345 GHz and 230 GHz atmospheric windows, each with 32 GHz of spectral coverage. Together with upgrades of the signal transport system and digital correlator, this brings a factor of 16 increase in instantaneous bandwidth from the original SMA capability. For continuum observations, speed increases linearly with bandwidth to a given level of sensitivity, enabling more observations to the same depth in the same amount of time. Or, for a given amount of time, the sensitivity increases as the square root of bandwidth, enabling deeper observations. For line observations, spectral coverage increases linearly with bandwidth, enabling observations of many lines simultaneously, all at high spectral resolution. In effect, every wSMA observation of an astronomical source is an imaging spectral line survey, and an enormous amount of information can be extracted from such data in conjunction with physical, chemical and dynamical models. This whitepaper elaborates on illustrative examples in key scientific areas, including the evolutionary state of protostellar sources, the chemistry

  2. Stark broadening of Ca IV spectral lines of astrophysical interest

    Science.gov (United States)

    Alonso-Medina, A.; Colón, C.

    2014-12-01

    Ca IV emission lines are under the preview of Solar Ultraviolet Measurements of Emitted Radiation device aboard the Solar and Heliospheric Observatory. Also, lines of the Ca IV in planetary nebulae NGC 7027 were detected with the Short Wavelength Spectrometer on board the Infrared Space Observatory. These facts justify an attempt to provide new spectroscopic parameters of Ca IV. There are no theoretical or experimental Stark broadening data for Ca IV. Using the Griem semi-empirical approach and the COWAN code, we report in this paper calculated values of the Stark broadening parameters for 467 lines of Ca IV. They were calculated using a set of wavefunctions obtained by using Hartree-Fock relativistic calculations. These lines arising from 3s23p4ns (n = 4, 5), 3s23p44p, 3s23p4nd (n = 3, 4) configurations. Stark widths and shifts are presented for an electron density of 1017 cm-3 and temperatures T = 10 000, 20 000 and 50 200 K. As these data cannot be compared to others in the literature, we present an analysis of the different regularities of the values presented in this work.

  3. THE SDSS-III APOGEE SPECTRAL LINE LIST FOR H-BAND SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Shetrone, M. [University of Texas at Austin, McDonald Observatory (United States); Bizyaev, D.; Chojnowski, D. [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Lawler, J. E. [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); Prieto, C. Allende; Zamora, O.; García-Hernández, D. A.; Souto, D. [Instituto de Astrofísica de Canarias, Calle Vía Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Johnson, J. A. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, V. V. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Cunha, K. [Observatório Nacional, Rua General Jose Cristino, 77, 20921-400 São Cristóvão, Rio de Janeiro, RJ (Brazil); Holtzman, J. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Pérez, A. E. García; Sobeck, J.; Majewski, S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Mészáros, Sz. [ELTE Gothard Astrophysical Observatory, H-9704 Szombathely, Szent Imre herceg st. 112 (Hungary); Koesterke, L. [The University of Texas at Austin, Texas Advanced Computing Center (United States); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-12-15

    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.

  4. Stark broadening of several Bi IV spectral lines of astrophysical interest

    Science.gov (United States)

    Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.

    2017-09-01

    The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.

  5. Kinetic theory of spectral line broadening in plasmas

    International Nuclear Information System (INIS)

    Hussey, T.W.

    1974-01-01

    A formal kinetic theory is used to cast the line shape function into a form that, while similar to the ''unified'' theories of Smith, Cooper, and Vidal and of Voslamber, does not introduce some of the usual approximations. The resulting line shape function explicitly includes the initial correlations between the atom and perturbers, and also demonstrates the natural separation of plasma mean field and collisional effects. The classical path and no-quenching approximations are discussed and ultimately employed; however, they are not required in the formal development. The weak coupling limit is considered as a systematic approximation to the formal results. It is shown tha different ways of applying this limit lead to different expressions for the memory operator, some of which correspond to existing theories. One approximation is considered which systematically incorporates the effects of electron correlations within the framework of a unified theory. In addition, a practical approximation suitable for a strongly interacting plasma is discussed

  6. Suitable spectral line shape calculations for inertial confinement plasma diagnosis

    International Nuclear Information System (INIS)

    Lambert, D.; Louis-Jacquet, M.

    1982-09-01

    In plasma confinement experiments, the knowledge of the plasma state at the maximum compression time would be of utmost interest. For quite many experiments, this time can correspond to a stationary state during which the X emission conditions for a moderate Z element are maximum. Since this diagnosis mean deals with emission only, we need to get rid of reabsorption problems, since their calculation depends on the use of an ionization-excitation plasma model. That is the reason why we focus our attention onto the aspects of spectroscopic theory which control the low reabsorption line shapes - from high values of n - and more precisely the lesser reabsorbed parts of the line shapes - the wings instead of the center

  7. Millimeter- and submillimeter-wave surveys of Orion A emission lines in the ranges 200.7-202.3, 203.7-205.3, and 330-360 GHz

    International Nuclear Information System (INIS)

    Jewell, P.R.; Hollis, J.M.; Lovas, F.J.; Snyder, L.E.

    1989-01-01

    A continuous spectral line survey of the Orion A position from 330.5 to 360.1 GHz was carried out. This survey covers nearly the entire 870 micron atmospheric window accessible from ground-based observations. Approximately 160 distinct spectral features composed of about 180 lines were detected, 29 of which could not be readily identified. In addition, Orion A from 200.7 to 202.3 GHz and from 203.7 to 205.3 GHz and 42 distinct new spectral lines were detected, including four that are unidentified at present. These data sets are the first thorough survey results in these spectral regions. The new interstellar lines in the survey bands are tabulated and displayed graphically. Moreover, the data are being made available to the Astronomical Data Center at the Goddard Space Flight Center for distribution by request to the astronomical community. 14 refs

  8. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  9. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    International Nuclear Information System (INIS)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-01-01

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 ∼> z ∼> 0.3) and luminosities, finding an average accuracy in (1 + z phot )/(1 + z spec ) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 μm flux ∼> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L IR ∼> 10 12 L ☉ ), and 3% of the total SFRD at z ∼ 2

  10. Role of noise in the diode-laser spectroscopy of the spectral line profile

    International Nuclear Information System (INIS)

    Nadezhdinskii, Aleksandr I; Plotnichenko, V V; Ponurovskii, Ya Ya; Spiridonov, Maksim V

    2000-01-01

    Questions concerning precise measurements of the spectral-line-profile parameters by diode-laser spectroscopic methods were examined. The instrumental function of a distributed-feedback diode laser (λ =1.53 μm), consisting of the additive contributions of the noise due to spontaneous emission, frequency fluctuations, and intensity fluctuations, was investigated. An analytical formula was obtained for the spectrum of the diode-laser field formed by frequency fluctuations. The spectral density g 0 of the frequency fluctuations, determining the width of the central part of the emission line profile of a diode laser, was found by two independent methods (by fitting to a Doppler-broadened absorption line profile and by finding the intensity of the residual radiation and the saturated-absorption line width). The parameters Ω and Γ of the spectral density of the frequency fluctuations, coupled to the relaxation oscillations and determining the wing of the diode-laser emission line profile, were determined experimentally. By taking into account the instrumental function of the diode laser, involving successive convolution with the recorded emission spectra, it was possible to reproduce correctly the spectral line profile and to solve accurately the problem of the 'optical zero'. The role of the correlation between the intensity noise and the diode-laser frequency was considered. (laser applications and other topics in quantum electronics)

  11. Effects of self-similar correlations on the spectral line shape in the neutral gas

    International Nuclear Information System (INIS)

    Kharintsev, S.S.; Salakhov, M.Kh.

    2001-01-01

    The paper is devoted to the study of the influence of self-similar correlations on the Doppler and pressure broadening within the non-equilibrium Boltzmann gas. The diffuse model for the thermal motion of the radiator and the self-similar mechanism of interference of scalar perturbations for phase shifts of an atomic oscillator are developed. It is shown that taking into account self-similar correlation in a description of the spectral line shape allows one to explain, on the one hand, the additional spectral line Dicke-narrowing in the Doppler regime, and, on the other hand, the asymmetry in wings of the spectral line in a high pressure region

  12. Demonstration of Submillimeter Astrophysics Technology at Caltech Submillimeter Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — Detector technology developments will determine the science product of future astrophysics missions and projects, and this is especially true at submillimeter...

  13. A new method of organizing spectral line intensity ratio fluctuations of nightglow emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric night airglow emissions is presented. The same kind of linearization effect has previously been studied with spectrochemical light sources together with a spectrometer. A linear graph was obtained for atomic spectral lines and vibrational bandspectra when the spectral line intensity ratio fluctuations were plotted versus the photon energies of these emissions. To study this effect data from a number of different photometer investigations of night airglow emissions at different times and places have been used. (author)

  14. Indium determination by spectral overlappings of lines in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gomez, J.J.; Huicque, L. d'; Garcia Vior, L.O.

    1991-01-01

    A molybdenum hollow-cathode lamp filled with neon can be used to determine indium. Characteristic concentration for this element is 4.5 mg/L in the 325 nm spectral region for the Mo(I) 325.621 nm line. In addition, values of 0.4 mg/L and 0.3 mg/L are obtained with the Mo(I) 410.215 nm and Ne(I) 451.151 nm lines, respectively. These spectral overlappings allow the determination of indium in silver-cadmium-indium alloys. (Author) [es

  15. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    International Nuclear Information System (INIS)

    Bredice, F.; Pacheco Martinez, P.; Sánchez-Aké, C.; Villagrán-Muniz, M.

    2015-01-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ jl I j /g j A jl ), where I j is the integrated intensity of the spectral line, g j is the statistical weight of the level j, λ jl is the wavelength of the considered line and A jl is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B i , and δ i , we developed as a power series of time, the logarithm of I n (t)/I n (t 0 ), where I n (t) is the integrated intensity of any spectral line at time t, and I n (t 0 ) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B i and δ i and therefore the Boltzmann plot surface from the temporal evolution of carbon lines obtained from a plasma generated by a Nd:YAG laser

  16. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F., E-mail: faustob@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas, P.O. Box 3 C. P.1897 Gonnet, La Plata (Argentina); Pacheco Martinez, P. [Grupo de Espectroscopía Óptica de Emisión y Láser, Universidad del Atlántico, Barranquilla (Colombia); Sánchez-Aké, C.; Villagrán-Muniz, M. [Laboratorio de Fotofísica, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México D.F. 04510 (Mexico)

    2015-05-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ{sub jl}I{sub j}/g{sub j}A{sub jl}), where I{sub j} is the integrated intensity of the spectral line, g{sub j} is the statistical weight of the level j, λ{sub jl} is the wavelength of the considered line and A{sub jl} is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B{sub i}, and δ{sub i}, we developed as a power series of time, the logarithm of I{sub n}(t)/I{sub n}(t{sub 0}), where I{sub n}(t) is the integrated intensity of any spectral line at time t, and I{sub n}(t{sub 0}) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B{sub i} and δ{sub i} and therefore the Boltzmann plot surface from the temporal

  17. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalova, A. I.; Burenkov, A. N. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Popovic, L. C.; Kovacevic, J. [Astronomical Observatory, Volgina 7, 11160 Belgrade 74 (Serbia); Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L. [Instituto Nacional de Astrofisica, Optica y Electronica, Apartado Postal 51-216, 72000 Puebla (Mexico); Ilic, D.; Kovacevic, A. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Kollatschny, W. [Institut fuer Astrophysik, Georg-August-Universitaet, Goettingen (Germany); Bochkarev, N. G. [Sternberg Astronomical Institute, Moscow (Russian Federation); Leon-Tavares, J. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FIN-02540 Kylmaelae (Finland); Mercado, A. [Universidad Politecnica de Baja California, Av. de la Industria 291, 21010 Mexicali, B.C. (Mexico); Benitez, E.; Dultzin, D. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, Mexico, D.F. 04510 (Mexico); De la Fuente, E., E-mail: ashap@sao.ru [Instituto de Astronomia y Meteorologia, Dpto. de Fisica CUCEI, Universidad de Guadalajara, Av. Vallarta 2602, 44130 Guadalajara, Jalisco (Mexico)

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  18. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    Science.gov (United States)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  19. Stochastic theory of relaxation and collisional broadening of spectral line shapes

    International Nuclear Information System (INIS)

    Faid, K.

    1986-01-01

    A complete stochastic theory of relaxation is developed in terms of a homogeneous equation for the averaged density matrix of a system immersed in a thermal bath. This theory is then used as the basis of a new stochastic approach to the phenomenon of collisional broadening of spectral line shapes. Single-photon and multiphoton processes are studied. The features of a line shape are linked by simple expressions to the statistical properties of a stochastic hermitian Hamiltonian. The ordinary line shape predicted by Kubo's approach is generalized. The present approach predicts broadening as well as asymmetry and shift. A representation of line shapes in multiphoton processes by diagrams is also developed

  20. Infrared spectral line parameters of HBr and DBr at elevated temperatures

    International Nuclear Information System (INIS)

    Stocker, R.N.; Goldman, A.

    1976-01-01

    The electric dipole matrix elements for pure rotation and vibration-rotation transitions, with /m/<=40 and v<=v'<=6, having derived for HBr and DBr by using the Rydberg-Klein-Rees (RKR) potentials and numerical solutions of the Schroedinger equation. An improved dipole-moment expansion was determined by fitting these matrix elements to the available experimental data on line intensities. A least squares analysis of the available line position constants gave an improved set of Dunham coefficients good for spectral lines with both large and small quantum numbers v and J. The results were then used to generate a compilation of individual line parameters for the Δv = 1 bands of HBr and DBr at temperatures up to 3000 K. These parameters, together with previously compiled line parameters for HCl, HF, CO and NO, are being used for line-by-line calculations of radiance from a hot source as seen through an atmospheric path. (author)

  1. [Analysis of software for identifying spectral line of laser-induced breakdown spectroscopy based on LabVIEW].

    Science.gov (United States)

    Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2012-03-01

    Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.

  2. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    Science.gov (United States)

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The measurement and interpretation of Ne VII spectral line intensity ratios

    International Nuclear Information System (INIS)

    Lang, J.

    1983-03-01

    Results are presented for the measurement, using the branching ratios calibration method, of the spectral intensities of Ne VII lines emitted from a theta-pinch plasma whose electron temperature and density have been found by laser scattering and alternate techniques. (author)

  4. Intensity and shape of spectral lines from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamelot, G; Jaegle, P; Carillon, A; Wehenkel, C [Centre National de la Recherche Scientifique, 91 - Orsay (France); Paris-11 Univ., 91 - Orsay (France); Ecole Polytechnique, 91 - Palaiseau (France))

    1979-01-01

    In starting from spectral studies of multicharged ions in dense laser-produced plasmas, the main processes which determine the intensity and the shape of lines in the X-UV range are described. The role of radiation transfer is underlined. Intensity anomalies resulting from occurrence of population inversions are considered and a recent experiment performed for investigating such anomalies is described.

  5. The gravitational microlens influence on X-ray spectral line generated by an AGN accretion disc

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2001-01-01

    Full Text Available The influence of gravitational microlensing on the X-ray spectral line profiles originated from a relativistic accretion disc has been studied. Using a disc model, we show that microlensing can induce noticeable changes in the line shapes when the Einstein ring radius associated with the microlens is of a size comparable to that of the accretion disc. Taking into account the relatively small size of the X-ray accretion disc, we found that compact objects (of about a Solar mass which belong to the bulge of the host galaxy can produce significant changes in the X-ray line profile of AGN.

  6. Stark shift measurements of Xe II and Xe III spectral lines

    International Nuclear Information System (INIS)

    Cirisan, M; Pelaez, R J; Djurovic, S; Aparicio, J A; Mar, S

    2007-01-01

    Stark shift measurements of singly and doubly ionized Xe spectral lines are presented in this paper. Shifts of 110 Xe II lines and 42 Xe III lines are reported, including a significant number of new results. A low-pressure-pulsed arc with 95% of He and 5% of Xe was used as a plasma source. All measurements were performed under the following plasma conditions: electron density (0.2-1.4) x 10 23 m -3 and electron temperature 18 000-23 000 K. The measured Stark shifts are compared with other experimental and theoretical data

  7. Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas

    International Nuclear Information System (INIS)

    Lisitsa, V.S.

    2009-01-01

    An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)

  8. Utilize the spectral line pair of the same ionized state ion to measure the ion temperature of tokamak plasma

    International Nuclear Information System (INIS)

    Lin Xiaodong

    2000-01-01

    Making use of a Fabry-Perot interferometer driven by a piezoelectric crystal and selecting the suitable separation of plates, the ion temperature is defined by measuring the superimposed profile of the spectral line pair of the same ionized state ions in Tokamak. The advantage of this method is to higher spectral resolution and wider spectral range select

  9. X-ray spectral line coincidences between fluorine VIII (and IX) and transition metal lines

    International Nuclear Information System (INIS)

    Charatis, G.; Rockett, P.D.; Burkhalter, P.G.

    1983-01-01

    X-ray spectroscopy was performed in the 12 to 15 A region, recording L-shell lines from selected laser-irradiated transition metals. Line coincidences and near coincidences were identified between Fe, Cr, Mn, and Ni L-spectra, and F VIII and F IX K-shell lines. Wavelengths were determined to accuracies of 1 to 3 mA and will be utilized in selecting potential pumping candidates in future x-ray lasing schemes. High-resolution x-ray spectra were collected under controlled illumination and target conditions using 1.05 μm and 0.527 μm laser excitation with the KMS CHROMA laser

  10. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    Science.gov (United States)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  11. A new method of organizing spectral line intensity ratio fluctuations of auroral emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric auroral emissions is presented. The same kind of linearization effect has previously been found in nightglow emissions from photometer measurements and in the spectrochemical field from studies of optical light sources. Linear graphs have been obtained for atomic spectral lines and vibrational bandspectra when the spectral line ratio fluctuations were plotted versus the photon energies of these emissions. This new effect has been studied with a spectrophotometer in auroral emissions, where linear graphs have been obtained on different auroral occasions. By doing such studies of auroral light it is possible to see the importance of the inelastic scattering cross section between electrons - atoms and electrons - molecules. In this way it has shown to be possible to determine the mean energy of the interacting thermal electrons that are active in the different auroral phases. (author)

  12. Solar Spectral Lines with Special Polarization Properties for the Calibration of Instrument Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Casini, R.; Alemán, T. del Pino; Judge, P. G. [High Altitude Observatory, National Center for Atmospheric Research 1, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-10-20

    We investigate atomic transitions that have previously been identified as having zero polarization from the Zeeman effect. Our goal is to identify spectral lines that can be used for the calibration of instrumental polarization of large astronomical and solar telescopes, such as the Daniel K. Inouye Solar Telescope, which is currently under construction on Haleakala. We use a numerical model that takes into account the generation of scattering polarization and its modification by the presence of a magnetic field of arbitrary strength. We adopt values for the Landé factors from spectroscopic measurements or semi-empirical results, thus relaxing the common assumption of LS-coupling previously used in the literature. The mechanisms dominating the polarization of particular transitions are identified, and we summarize groups of various spectral lines useful for the calibration of spectropolarimetric instruments, classified according to their polarization properties.

  13. Investigation of Tree Spectral Reflectance Characteristics Using a Mobile Terrestrial Line Spectrometer and Laser Scanner

    Directory of Open Access Journals (Sweden)

    Eetu Puttonen

    2013-07-01

    Full Text Available In mobile terrestrial hyperspectral imaging, individual trees often present large variations in spectral reflectance that may impact the relevant applications, but the related studies have been seldom reported. To fill this gap, this study was dedicated to investigating the spectral reflectance characteristics of individual trees with a Sensei mobile mapping system, which comprises a Specim line spectrometer and an Ibeo Lux laser scanner. The addition of the latter unit facilitates recording the structural characteristics of the target trees synchronously, and this is beneficial for revealing the characteristics of the spatial distributions of tree spectral reflectance with variations at different levels. Then, the parts of trees with relatively low-level variations can be extracted. At the same time, since it is difficult to manipulate the whole spectrum, the traditional concept of vegetation indices (VI based on some particular spectral bands was taken into account here. Whether the assumed VIs capable of behaving consistently for the whole crown of each tree was also checked. The specific analyses were deployed based on four deciduous tree species and six kinds of VIs. The test showed that with the help of the laser scanner data, the parts of individual trees with relatively low-level variations can be located. Based on these parts, the relatively stable spectral reflectance characteristics for different tree species can be learnt.

  14. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Neutral Vanadium (V i)

    Energy Technology Data Exchange (ETDEWEB)

    Saloman, Edward B. [Dakota Consulting, Inc., 1110 Bonifant Street, Suite 310, Silver Spring, MD 20910 (United States); Kramida, Alexander [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of the neutral vanadium atom, V i, have been compiled. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g -factors and leading percentage compositions for the levels are included where available, as well as wavelengths calculated from the energy levels (Ritz wavelengths). Wavelengths are reported for 3985 transitions, and 549 energy levels are determined. The observed relative intensities normalized to a common scale are provided.

  15. Techniques for obtaining velocity distributions of atoms or ions from Doppler-broadened spectral line profiles

    International Nuclear Information System (INIS)

    Moran, T.G.

    1986-12-01

    Analysis of the doppler-broadened profiles of spectral lines radiated by atoms or ions in plasmas yields information about their velocity distributions. Researchers have analysed profiles of lines radiated by atoms in isotropic velocity distributions in several ways, one being the inversion of the integral equation which relates the velocity distribution to the line profile. This inversion formula was derived for a separate application and was given to within an arbitrary multiplicative constant. This paper presents a new derivation which obtains the inversion exactly, using a method which is easily generalized for determination of anisotropic velocity distribution functions. The technique to obtain an anisotropic velocity distribution function from line profiles measured at different angles is outlined

  16. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Science.gov (United States)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  17. Investigation of oxygen impurity transport using the O4+ visible spectral line in the Aditya tokamak

    International Nuclear Information System (INIS)

    Chowdhuri, M.B.; Ghosh, J.; Banerjee, S.; Dey, Ritu; Manchanda, R.; Kumar, Vinay; Vasu, P.; Patel, K.M.; Atrey, P.K.; Shankara Joisa, Y.; Rao, C.V.S.; Tanna, R.L.; Raju, D.; Chattopadhyay, P.K.; Jha, R.; Gupta, C.N.; Bhatt, S.B.; Saxena, Y.C.

    2013-01-01

    Intense visible lines from Be-like oxygen impurity are routinely observed in the Aditya tokamak. The spatial profile of brightness of a Be-like oxygen spectral line (2p3p 3 D 3 –2p3d 3 F 4 ) at 650.024 nm is used to investigate oxygen impurity transport in typical discharges of the Aditya tokamak. A 1.0 m multi-track spectrometer (Czerny–Turner) capable of simultaneous measurements from eight lines of sight is used to obtain the radial profile of brightness of O 4+ spectral emission. The emissivity profile of O 4+ spectral emission is obtained from the spatial profile of brightness using an Abel-like matrix inversion. The oxygen transport coefficients are determined by reproducing the experimentally measured emissivity profiles of O 4+ , using a one-dimensional empirical impurity transport code, STRAHL. Much higher values of the diffusion coefficient compared with the neo-classical values are observed in both the high magnetic field edge region (D inboard max ∼30 m 2 s -1 ) and the low magnetic field edge region (D outboard max ∼45 m 2 s -1 ) of typical Aditya ohmic plasmas, which seems to be due to fluctuation-induced transport. The diffusion coefficient at the limiter radius in the low-field (outboard) region is typically ∼ twice as high as that at the limiter radius in the high-field (inboard) region. (paper)

  18. EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708

    International Nuclear Information System (INIS)

    Sharon, Chelsea E.; Baker, Andrew J.; Harris, Andrew I.; Tacconi, Linda J.; Lutz, Dieter; Longmore, Steven N.

    2015-01-01

    We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ∼500 km s –1 that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blueshifted component dispersion-dominated and the redshifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8 ± 4.0)/sin 2 (i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the redshifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ∼1'' resolution of our observations could not have distinguished between the two components due to their separation (0.''73 ± 0.''06), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys

  19. EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Chelsea E.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Harris, Andrew I. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Tacconi, Linda J.; Lutz, Dieter [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Longmore, Steven N. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Warf, Birkenhead CH41 1LD (United Kingdom)

    2015-01-10

    We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ∼500 km s{sup –1} that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blueshifted component dispersion-dominated and the redshifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8 ± 4.0)/sin {sup 2}(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the redshifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ∼1'' resolution of our observations could not have distinguished between the two components due to their separation (0.''73 ± 0.''06), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys.

  20. HERSCHEL/SPIRE SUBMILLIMETER SPECTRA OF LOCAL ACTIVE GALAXIES {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Pereira-Santaella, Miguel; Spinoglio, Luigi; Busquet, Gemma [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Wilson, Christine D.; Schirm, Maximilien R. P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem [Center for Astrophysics and Space Astronomy, 389-UCB, University of Colorado, Boulder, CO 80303 (United States); Isaak, Kate G. [ESA Astrophysics Missions Division, ESTEC, P.O. Box 299, 2200 AG Noordwijk (Netherlands); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Boselli, Alessandro [Laboratoire d' Astrophysique de Marseille (LAM), Universite d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Cooray, Asantha [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Cormier, Diane, E-mail: miguel.pereira@ifsi-roma.inaf.it [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France)

    2013-05-01

    We present the submillimeter spectra from 450 to 1550 GHz of 11 nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) on board Herschel. We detect CO transitions from J{sub up} = 4 to 12, as well as the two [C I] fine structure lines at 492 and 809 GHz and the [N II]1461 GHz line. We used radiative transfer models to analyze the observed CO spectral line energy distributions. The FTS CO data were complemented with ground-based observations of the low-J CO lines. We found that the warm molecular gas traced by the mid-J CO transitions has similar physical conditions (n{sub H{sub 2}}{approx} 10{sup 3.2}-10{sup 3.9} cm{sup -3} and T{sub kin} {approx} 300-800 K) in most of our galaxies. Furthermore, we found that this warm gas is likely producing the mid-IR rotational H{sub 2} emission. We could not determine the specific heating mechanism of the warm gas, however, it is possibly related to the star formation activity in these galaxies. Our modeling of the [C I] emission suggests that it is produced in cold (T{sub kin} < 30 K) and dense (n{sub H{sub 2}}>10{sup 3} cm{sup -3}) molecular gas. Transitions of other molecules are often detected in our SPIRE/FTS spectra. The HF J = 1-0 transition at 1232 GHz is detected in absorption in UGC 05101 and in emission in NGC 7130. In the latter, near-infrared pumping, chemical pumping, or collisional excitation with electrons are plausible excitation mechanisms likely related to the active galactic nucleus of this galaxy. In some galaxies, few H{sub 2}O emission lines are present. Additionally, three OH{sup +} lines at 909, 971, and 1033 GHz are identified in NGC 7130.

  1. Nonlocal electron kinetics and spectral line emission in the positive column of an argon glow discharge

    International Nuclear Information System (INIS)

    Golubovskii, Yu; Kalanov, D; Gorchakov, S; Uhrlandt, D

    2015-01-01

    Modern non-local electron kinetics theory predicts several interesting effects connected with spectral line emission from the positive column in the range of low and medium pressures and currents. Some theoretical works describe non-monotonic behavior of the radial profiles of line emission at intermediate pressures and currents between the validity ranges of the non-local and local approximation of the electron kinetics. Despite a great number of publications, there have been no systematic measurements attempting to confirm these theoretical predictions through experiments. In this work the radial profiles of the line emission from the positive column of an argon glow discharge have been measured with high spatial resolution and new effects caused by the narrowing and broadening of the spatial emission profiles with dependence on discharge conditions have been discovered. The effect of intensity maximum shift predicted by theory using a self-consistent model was not found in the experiment. The properties of the spectral line radiation are influenced by the peculiarities of the formation of the high-energy tail of the electron energy distribution function. An interpretation of the observed effects based on the non-local character of the electron kinetics in radially inhomogeneous fields is given. The obtained experimental data are compared with the results of calculations. (paper)

  2. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    International Nuclear Information System (INIS)

    Lane, Ryan A.; Shemmer, Ohad; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2011-01-01

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 ≤ z ≤ 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame ∼0.1-5 μm spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  3. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ryan A.; Shemmer, Ohad [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States); Fan Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Strauss, Michael A., E-mail: RyanLane@my.unt.edu, E-mail: ohad@unt.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2011-12-20

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 {<=} z {<=} 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame {approx}0.1-5 {mu}m spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  4. A search for spectral lines in gamma-ray bursts using TGRS

    International Nuclear Information System (INIS)

    Kurczynski, P.; Palmer, D.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Madden, N. W.; Pehl, R. H.

    1998-01-01

    We present the results of an ongoing search for narrow spectral lines in gamma-ray burst data. TGRS, the Transient Gamma-Ray Spectrometer aboard the Wind satellite is a high energy-resolution Ge device. Thus it is uniquely situated among the array of space-based, burst sensitive instruments to look for line features in gamma-ray burst spectra. Our search strategy adopts a two tiered approach. An automated 'quick look' scan searches spectra for statistically significant deviations from the continuum. We analyzed all possible time accumulations of spectra as well as individual spectra for each burst. Follow-up analysis of potential line candidates uses model fitting with F-test and χ 2 tests for statistical significance

  5. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Lisitsa, V.

    2010-01-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  6. New assignment of 14N NQR spectral lines for tetrazoles derivatives

    Science.gov (United States)

    Mamadazizov, Sultonazar; Shelyapina, Marina G.; Kupriyanova, Galina S.; Mozzhukhin, George V.

    2018-04-01

    In recent years, considerable interest has been shown in the study of tetrazole derivatives, which attract attention as highly nitrogenous compounds for use as an isosteric substitutes for various functional groups that leads to creation of novel biologically active substances. NQR techniques, being sensitive to the local environment of 14N nuclei, provide great opportunities to study these new substances. To make investigation of complex compounds containing tetrazoles derivatives easier and more reliable a correctly assigned 14N NQR spectra of tetrazoles are required. Here we report on the results of our DFT B3LYP calculations of 14N NQR spectral parameters (quadrupole coupling constant Qcc and the asymmetry parameter of the electric field gradient η) for tetrazole, 5-aminotetrazole and 5-aminotetrazole monohydrate. It has been found that the commonly accepted assignment of the 14N NQR spectral lines for these molecules is incorrect. A new assignment for these molecules is proposed.

  7. In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines

    Science.gov (United States)

    Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik

    2015-11-01

    The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.

  8. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  9. Atlas of Atomic Spectral Lines of Neptunium Emitted by an Inductively Coupled Plasma

    International Nuclear Information System (INIS)

    DeKalb, E.L.; Edelson, M.C.

    1987-01-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred (1) and Haaland (2). Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  10. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2016-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  11. PROBING THE SOLAR ATMOSPHERE USING OSCILLATIONS OF INFRARED CO SPECTRAL LINES

    International Nuclear Information System (INIS)

    Penn, M. J.; Schad, T.; Cox, E.

    2011-01-01

    Oscillations were observed across the whole solar disk using the Doppler shift and line center intensity of spectral lines from the CO molecule near 4666 nm with the National Solar Observatory's McMath/Pierce solar telescope. Power, coherence, and phase spectra were examined, and diagnostic diagrams reveal power ridges at the solar global mode frequencies to show that these oscillations are solar p-modes. The phase was used to determine the height of formation of the CO lines by comparison with the IR continuum intensity phase shifts as measured in Kopp et al.; we find that the CO line formation height varies from 425 km μ > 0.5. The velocity power spectra show that while the sum of the background and p-mode power increases with height in the solar atmosphere as seen in previous work, the power in the p-modes only (background subtracted) decreases with height. The CO line center intensity weakens in regions of stronger magnetic fields, as does the p-mode oscillation power. Across most of the solar surface the phase shift is larger than the expected value of 90 0 for an adiabatic atmosphere. We fit the phase spectra at different disk positions with a simple atmospheric model to determine that the acoustic cutoff frequency is about 4.5 mHz with only small variations, but that the thermal relaxation frequency drops significantly from 2.7 to 0 mHz at these heights in the solar atmosphere.

  12. Spectral properties of X-ray selected narrow emission line galaxies

    Science.gov (United States)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (Halpha, Hbeta, [NII]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines

  13. Sub-millimeter science with the Heinrich-Hertz-Telescope

    Science.gov (United States)

    Dumke, Michael

    The Heinrich-Hertz-Telescope on Mt. Graham, Arizona, is a state-of-the-art single-dish radio telescope for observations in the sub-millimeter wavelength range. It is operated by the Sub-Millimeter Telescope Observatory (SMTO), which is a collaboration between the University of Arizona, Tucson, and the Max-Planck-Institut für Radioastronomie, Bonn. In this talk I give an overview over the telescope and its instrumentation, and show some examples of forefront research performed by astronomers from both the U.S. and Europe using this instrument. The telescope is located on Mt. Graham, Arizona, at an altitude of 3178 m, which ensures sub-mm weather conditions during a significant amount of available observing time. It has a primary reflector of 10 m diameter, mounted on a carbon fiber backup structure, and is equipped with a corotating enclosure. The surface accuracy of the primary reflector is 12 microns rms, what makes the HHT the most accurate radio telescope ever built. For spectral line observations, SIS receivers covering the frequency range from 200 to 500 GHz are available. Furthermore, a Hot-Electron-Bolometer, developed at the CfA, can be used for spectral line observations above 800 GHz. The continuum receivers are a 4-color bolometer, observing at 1300, 870, 450, and 350 microns, and a 19-channel bolometer array, developed at the MPIfR, which is sensitive around 850 microns. In the last few years, the HHT has been used by several groups to perform astronomical research. The most notable result was the measurement of the CO(9--8) line in Orion at 1.037 THz with the Hot-Electron Bolometer -- the first radioastronomical observation above 1 THz from a ground-based telescope. Several galactic molecular line sources have been mapped in the CO(7--6) line at 806 GHz, and in two fine-structure lines of atomic carbon. A continuum map of the galactic center at 850 microns could be produced using the new 19-channel bolometer array. Even external galaxies, where

  14. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    Science.gov (United States)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  15. Spitzer spectral line mapping of the HH211 outflow

    DEFF Research Database (Denmark)

    Dionatos, Odyssefs; Nisini, Brunella; Cabrit, Sylvie

    2010-01-01

    of emission line diagnostics and an existing grid of molecular shock models. The physical properties of the warm gas are compared against other molecular jet tracers and to the results of a similar study towards the L1448-C outflow. Results: We have detected and mapped the v=0-0 S(0) - S(7) H2 lines and fine...... compared to solar abundances by a factor ~10-50. Conclusions: Spitzer spectral mapping observations reveal for the first time a cool H$_2$ component towards the CO jet of HH211 consistent with the CO material being fully molecular and warm at ~ 300 K. The maps also reveal for the first time the existence...... uncertainties on jet speed and shock conditions are too large for a definite conclusion....

  16. SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features

    Science.gov (United States)

    Harwit, M.

    2010-03-01

    We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.

  17. Spectral radiance of strong lines in positive column mercury discharges with argon carrier gas

    International Nuclear Information System (INIS)

    Sansonetti, Craig J; Reader, Joseph

    2006-01-01

    The spectral radiance of the 185 and 254 nm lines in two positive column mercury discharge lamps was measured over a wide range of operating conditions. The lamps had internal diameters of 5 and 23 mm. Argon was used as a carrier gas. The lamps were operated with cold spot temperatures of 20, 40 and 60 0 C. At each of these temperatures, results were obtained for five currents ranging from 20 to 100 mA for the 5 mm lamp and from 200 to 1000 mA for the 23 mm lamp. For each current studied, results were determined for argon pressures ranging from 66.6 to 666 Pa (0.5 to 5.0 Torr) in the 5 mm lamp and 26.6 to 666 Pa (0.2 to 5.0 Torr) in the 23 mm lamp. An argon miniarc was used as the radiometric standard. By calibrating the spectral response of the optical system with a well-characterized mercury pencil lamp, results were obtained for 12 additional Hg lines from 289 to 579 nm. For the 23 mm lamp the electric field in the positive column was measured. For this lamp the radiated power as a percentage of input power was also determined. The results provide an experimental basis for validating computer models of Hg fluorescent lamp discharges

  18. The multi-spectral line-polarization MSE system on Alcator C-Mod

    International Nuclear Information System (INIS)

    Mumgaard, R. T.; Khoury, M.; Scott, S. D.

    2016-01-01

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

  19. The multi-spectral line-polarization MSE system on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Scott, S. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2016-11-15

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

  20. On-line spectral diagnostic system for Dalian Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chaoyang; Wei, Shen; Du, Xuewei [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Du, Liangliang [National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui 230029 (China); Wang, Qiuping, E-mail: qiuping@ustc.edu.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhang, Weiqing; Wu, Guorong; Dai, Dongxu [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yang, Xueming, E-mail: xmyang@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2015-05-21

    The Dalian Coherent Light Source (DCLS) is a Free electron laser (FEL) user facility currently under construction in the northeast of China. It is designed to work on high gain high harmonic principle with the capability of wavelength continuously tunable in the EUV regime of 50–150 nm. The light source has unique features such as the turntable radiation frequency, wide spectral range, high brightness and peak power, very short pulse time structure, etc. A key diagnostic task in DCLS is the on-line source spectral characteristic recording during the source development, and for the definition of the experimental conditions. For this purpose, an online grazing incidence spectrometer with a toroidal mirror and a variable-line-spacing plane grating is designed and presented in this paper to monitor each single FEL pulse. A circular stage is chosen to fit the focal curve and to realize the wavelength scanning. This scanning mechanics is simpler and stable. Resolving power (λ/Δλ) of this spectrometer is better than 12,000 in the whole wavelength range.

  1. On-line spectral diagnostic system for Dalian Coherent Light Source

    International Nuclear Information System (INIS)

    Li, Chaoyang; Wei, Shen; Du, Xuewei; Du, Liangliang; Wang, Qiuping; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Yang, Xueming

    2015-01-01

    The Dalian Coherent Light Source (DCLS) is a Free electron laser (FEL) user facility currently under construction in the northeast of China. It is designed to work on high gain high harmonic principle with the capability of wavelength continuously tunable in the EUV regime of 50–150 nm. The light source has unique features such as the turntable radiation frequency, wide spectral range, high brightness and peak power, very short pulse time structure, etc. A key diagnostic task in DCLS is the on-line source spectral characteristic recording during the source development, and for the definition of the experimental conditions. For this purpose, an online grazing incidence spectrometer with a toroidal mirror and a variable-line-spacing plane grating is designed and presented in this paper to monitor each single FEL pulse. A circular stage is chosen to fit the focal curve and to realize the wavelength scanning. This scanning mechanics is simpler and stable. Resolving power (λ/Δλ) of this spectrometer is better than 12,000 in the whole wavelength range

  2. Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es [Istituto Ricerche Solari Locarno, 6600, Locarno, Switzerland, associated to USI, Università della Svizzera Italiana (Switzerland)

    2017-07-01

    Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.

  3. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    Science.gov (United States)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  4. Atomic structure calculations and identification of EUV and SXR spectral lines in Sr XXX

    International Nuclear Information System (INIS)

    Goyal, Arun; Khatri, Indu; Aggarwal, Sunny; Singh, A.K.; Mohan, Man

    2015-01-01

    We report an extensive theoretical study of atomic data for Sr XXX in a wide range with L-shell electron excitations to the M-shell. We have calculated energy levels, wave-function compositions and lifetimes for lowest 113 fine structure levels and wavelengths of an extreme Ultraviolet (EUV) and soft X-ray (SXR) transitions. We have employed multi-configuration Dirac Fock method (MCDF) approach within the framework of Dirac–Coulomb Hamiltonian including quantum electrodynamics (QED) and Breit corrections. We have also presented the radiative data for electric and magnetic dipole (E1, M1) and quadrupole (E2, M2) transitions from the ground state. We have made comparisons with available energy levels compiled by NIST and achieve good agreement. But due to inadequate data in the literature, analogous relativistic distorted wave calculations have also been performed using flexible atomic code (FAC) to assess the reliability and accuracy of our results. Additionally, we have provided new atomic data for Sr XXX which is not published elsewhere in the literature and we believe that our results may be beneficial in fusion plasma research and astrophysical investigations and applications. - Highlights: • 113 Lowest levels for Sr XXX are calculated. • Extreme Ultraviolet (EUV) and soft-X ray (SXR) spectral lines are identified. • Wavelengths of EUV and SXR spectral lines are reported. • E1, E2, M1 and M2 transition rates, oscillator strengths and lines strengths for lowest 113 levels are presented. • Lifetimes for lowest 113 fine structure levels are provided

  5. Submillimeter Array (SMA) Newsletter August 2011

    OpenAIRE

    Blundell, Raymond

    2011-01-01

    Submillimeter Array (SMA) Newsletter August 2011 Blundell, Raymond Submillimeter Array Newsletter | Number 12 | August 2011 CONTENTS 1 From the Director SCIENCE HIGHLIGHTS: 2 Faint Submillimeter Sources behind Massive Lensing Clusters 5 Millimeter Imaging of the β Pictoris Debris Disk: Evidence for a Planetesimal Belt 7 Physical Properties of the Circumnuclear Starburst Ring in the Barred Galaxy NGC1097 TECHNICAL HIGHLIGHTS: 9 ...

  6. Measurement Results of the Caltech Submillimeter Observatory 230 GHz and 460 GHz Balanced Receivers

    Science.gov (United States)

    Kooi, J. W.; Monje, R. R.; Force, B. L.; Rice, F.; Miller, D.; Phillips, T. G.

    2010-03-01

    The Caltech Submillimeter observatory (CSO) is located on top of Mauna Kea, Hawaii, at an altitude of 4.2km. The existing suite of heterodyne receivers covering the submillimeter band is rapidly aging, and in need of replacement. To this extend we have developed a family of balanced receivers covering the astrophysical important 180-720 GHz atmospheric windows. For the CSO, wide IF bandwidth receivers are implemented in a balanced receiver configuration with dual frequency observation capability. This arrangement was opted to be an optimal compromise between scientific merit and finite funding. In principle, the balanced receiver configuration has the advantage that common mode amplitude noise in the LO system is canceled, while at the same time utilizing all available LO power. Both of these features facilitate the use of commercially available synthesized LO system. In combination with a 4 GHz IF bandwidth, the described receiver layout allows for rapid high resolution spectral line surveys. Dual frequency observation is another important mode of operation offered by the new facility instrumentation. Two band observations are accomplished by separating the H and V polarizations of the incoming signal and routing them via folded optics to the appropriate polarization sensitive balanced mixer. Scientifically this observation mode facilitates pointing for the higher receiver band under mediocre weather conditions and a doubling of scientific throughput (2 x 4 GHz) under good weather conditions. Not only do these changes greatly enhance the spectroscopic capabilities of the CSO, they also enable the observatory to be integrated into the Harvard-Smithsonian Submillimeter Array (eSMA) as an additional baseline. The upgrade of the 345 GHz/650 GHz dual band balanced receivers is not far behind. All the needed hardware has been procured, and commissioning is expected the summer of 2010. The SIS junctions are capable of a 2-12 GHz bandwidth.

  7. THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: IMPLICATIONS FOR SPECTRAL LINE INTENSITY MAPPING AT MILLIMETER WAVELENGTHS AND CMB SPECTRAL DISTORTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, C. L.; Walter, F. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Chluba, J. [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, M13 9PL (United Kingdom); Decarli, R. [Max-Planck Institute for Astronomy, D-69117 Heidelberg (Germany); Aravena, M. [Nucleo de Astronomia, Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Wagg, J. [Square Kilometre Array Organisation, Lower Withington, Cheshire (United Kingdom); Popping, G. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Cortes, P. [Joint ALMA Observatory—ESO, Av. Alonso de Cordova, 3104, Santiago (Chile); Hodge, J. [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL2333 RA Leiden (Netherlands); Weiss, A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Bertoldi, F. [Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Riechers, D., E-mail: ccarilli@aoc.nrao.edu [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States)

    2016-12-10

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii] 158 μ m line emission from very high redshift galaxies ( z  ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B}  = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B}  = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.

  8. Survey for C-Band High Spectral Lines with the Arecibo Telescope

    Science.gov (United States)

    Tan, Wei Siang

    High-mass stars have masses greater than 8 solar masses and are the main source of heavy elements such as iron in the interstellar medium. This type of stars form in giant molecular clouds. Studying the molecular environment in star-forming regions is crucial to understand the physical structure and conditions that lead to the formation of high-mass stars. This thesis presents observations conducted with the 305m Arecibo Telescope in Puerto Rico of twelve high-mass star forming regions. Every source was observed in multiple transitions of molecular species including CH, CH3OH, H2CS, and OH lines, and a radio recombination line. The observations were conducted with the C-Band High receiver of the Arecibo Telescope in the frequency range of 6.0 to 7.4GHz. The goals of the observations were to investigate the detectability of different molecular species (including new possible molecular masers) and obtain high sensitivity observations of the 6.7GHz CH3OH line to detect absorption and use it as a probe of the kinematics of the molecular material with respect to the ionized gas. Among the results of the observations, we report detection of 6.7GHz CH3OH masers toward nine regions, OH masers toward five sources, 6.7GHz CH3OH absorption toward four sources (including tentative detections), and detection of H2CS toward the star forming region G34.26+0.15. We also found a variable and recurrent 6.7GHz CH3OH maser in G45.12+0.13. The 6.7GHz CH 3OH and 6278.65MHz H2CS absorption lines were modeled using the radiative transfer code RADEX to investigate the physical conditions of the molecular clouds responsible for the absorption lines. Our analysis of the absorption lines supports the interpretation that the spectral lines are tracing molecular envelopes of HII regions. In the case of 6.7GHz CH 3OH absorption, our results and data from an extensive literature review indicate that absorption is rare, but that a population of 6.7GHz CH 3OH absorbers may be present at levels

  9. CO Spectral Line Energy Distributions in Galactic Sources: Empirical Interpretation of Extragalactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Bergin, E. A. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Goicoechea, J. R.; Cernicharo, J. [Grupo de Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (CSIC) E-28049 Madrid (Spain); Gerin, M.; Gusdorf, A. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, F-75005, Paris (France); Lis, D. C. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014, Paris (France); Schilke, P., E-mail: nindriolo@stsci.edu [I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2017-02-10

    The relative populations in rotational transitions of CO can be useful for inferring gas conditions and excitation mechanisms at work in the interstellar medium. We present CO emission lines from rotational transitions observed with Herschel /HIFI in the star-forming cores Orion S, Orion KL, Sgr B2(M), and W49N. Integrated line fluxes from these observations are combined with those from Herschel /PACS observations of the same sources to construct CO spectral line energy distributions (SLEDs) from 5≤ J{sub u} ≤ 48. These CO SLEDs are compared to those reported in other galaxies, with the intention of empirically determining which mechanisms dominate excitation in such systems. We find that CO SLEDs in Galactic star-forming cores cannot be used to reproduce those observed in other galaxies, although the discrepancies arise primarily as a result of beam filling factors. The much larger regions sampled by the Herschel beams at distances of several megaparsecs contain significant amounts of cooler gas, which dominate the extragalactic CO SLEDs, in contrast to observations of Galactic star-forming regions, which are focused specifically on cores containing primarily hot molecular gas.

  10. The influence of collisions with noble gases on spectral lines of hydrogen isotopes

    International Nuclear Information System (INIS)

    Hermans, P.

    1982-01-01

    In this thesis measurements on the collisional broadening of the depolarized Rayleigh line and the broadening and shift of the rotational Raman lines (radiative transitions 0→2, 1→3 and 2→4) are presented. The experiments were carried out as a function of temperature from 23 K to 311 K for three systems, viz. H 2 -He, H 2 -Ne and H 2 -Ar. Also results of close coupled calculations on the broadening and shift are presented as a function of temperature for the four spectral lines mentioned. The calculations were performed for two systems, viz H 2 -He and H 2 -Ne. For the system H 2 -He two interaction potentials were used as a starting point, and a comparison between these potentials was made. Now that it is possible to do computations on effects related to the non-spherical interaction of the pure hydrogen isotopes, the availability of experimental data is of great importance. Many experiments on these effects have been performed over the last two decades, but their results are scattered throughout the literature. Therefore, in the last chapter of this thesis the experimental results for the pure hydrogen isotopes and in mixtures with noble gases are compiled to serve as comparing material for the calculations. The presentation is such that a direct comparison with calculations is facilitated. (Auth.)

  11. Submillimeter heterodyne arrays for APEX

    NARCIS (Netherlands)

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.

    2008-01-01

    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  12. The Bernese atmospheric multiple catalog access tool (BEAMCAT): a tool for users of popular spectral line catalogs

    International Nuclear Information System (INIS)

    Feist, D.G.Dietrich G.

    2004-01-01

    Users of spectroscopic data bases in the microwave region quickly realize that each existing spectral line catalog provide only part of the information that they would like to have. As a workaround for this problem, several merged spectral line data bases have been created by different groups. However, these merged data bases are usually very specific for a certain application and are difficult to maintain. The BEAMCAT data base takes a totally new approach that makes it possible to generate merged spectral line catalogs from any number of source catalogs in multiple user-defined formats. The current version of BEAMCAT contains the complete JPL and HITRAN catalog. Other catalogs like GEISA will soon be included, too. As a first application of the BEAMCAT data base, the author conducted a thorough intercomparison of spectral parameters for all the transitions that the JPL catalog and HITRAN have in common. The intercomparison shows that the spectral parameters in the catalogs are by no means identical. While the difference in center frequency is usually small, the differences in line intensity reach from almost exact match to discrepancies of several orders of magnitude. While it cannot be ruled out that some of the lines were matched incorrectly, this intercomparison might be helpful to identify problems with the original catalogs

  13. First application of the spectral difference method for lifetime measurements of doppler attenuated line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Duckwitz, Hannah [Institut fuer Kernphysik, Koeln Univ. (Germany); Petkov, Pavel [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2016-07-01

    In this new approach to lifetime measurements via Doppler attenuated line shapes, the spectra of a feeding f and a deexciting transition d of the level of interest are used to determine the lifetime without any lineshape analysis of the feeding transition (direct or indirect). Similarly to the DDC method, the decay function λ{sub d}n{sub d}(t) of the deexciting transition is determined. The feeding of the level is included via the spectral difference of the two successive decays. Consequently, the determined lifetime is the real lifetime. After transforming both transitions into the same energy region, their spectral difference D(v{sub θ}) = S{sub d}(v{sub θ})-S{sub f}(v{sub θ}) = ∫{sub 0}{sup ∞}(∂P{sub θ}(t,v{sub θ}))/(∂t)n{sub d}(t) dt, is solved for n{sub d}(t). Dividing n{sub d}(t) by the decay function λ{sub d}n{sub d}(t) should yield a constant τ value for the level lifetime as a function of the time t. After the development and test of the procedure in 2015, it is now applied for the first time. Two level lifetimes are determined in {sup 86}Sr for the 2{sup +}{sub 2} and the 2{sup +}{sub 3} levels.

  14. Studying the complex spectral line profiles in the spectra of hot emission stars and quasars .

    Science.gov (United States)

    Danezis, E.; Lyratzi, E.; Antoniou, A.; Popović, L. Č.; Dimitrijević, M. S.

    Some Hot Emission Stars and AGNs present peculiar spectral line profiles which are due to DACs and SACs phenomena. The origin and the mechanisms which are responsible for the creation of DACs/SACs is an important problem that has been studied by many researchers. This paper is a review of our efforts to study the origin and the mechanisms of these phenomena. At first we present a theoretic ad hoc picture for the structure of the plasma that surrounds the specific category of hot emission stars that present DACs or SACs. Then we present the mathematical model that we constructed, which is based on the properties of the above ad hoc theoretical structure. Finally, we present some results from our statistical studies that prove the consistency of our model with the classical physical theory.

  15. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    Science.gov (United States)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  16. Semifragile Speech Watermarking Based on Least Significant Bit Replacement of Line Spectral Frequencies

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Nematollahi

    2017-01-01

    Full Text Available There are various techniques for speech watermarking based on modifying the linear prediction coefficients (LPCs; however, the estimated and modified LPCs vary from each other even without attacks. Because line spectral frequency (LSF has less sensitivity to watermarking than LPC, watermark bits are embedded into the maximum number of LSFs by applying the least significant bit replacement (LSBR method. To reduce the differences between estimated and modified LPCs, a checking loop is added to minimize the watermark extraction error. Experimental results show that the proposed semifragile speech watermarking method can provide high imperceptibility and that any manipulation of the watermark signal destroys the watermark bits since manipulation changes it to a random stream of bits.

  17. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies

    International Nuclear Information System (INIS)

    Yang Chun; Buldyreva, Jeanna; Gordon, Iouli E.; Rohart, Francois; Cuisset, Arnaud; Mouret, Gael; Bocquet, Robin; Hindle, Francis

    2008-01-01

    The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5-3 THz (17-100 cm -1 ) frequency range (purely rotational transitions with 5≤J≤36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere

  18. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chun [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France); Buldyreva, Jeanna [Institut UTINAM, UMR CNRS 6213, Universite de Franche-Comte, 16, Route de Gray, 25030 Besancon Cedex (France); Gordon, Iouli E. [Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, 60 Garden Street, Cambridge, MA 02138-1516 (United States); Rohart, Francois [Laboratoire de Physique des Lasers, Atomes et Molecules, UMR CNRS 8523, Batiment P5-135, Universite de Lille 1, 59655 Villeneuve d' Ascq Cedex (France); Cuisset, Arnaud; Mouret, Gael; Bocquet, Robin [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France); Hindle, Francis [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France)], E-mail: francis.hindle@univ-littoral.fr

    2008-11-15

    The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5-3 THz (17-100 cm{sup -1}) frequency range (purely rotational transitions with 5{<=}J{<=}36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere.

  19. Measurement of transition probabilities in Kr II UV and visible spectral lines

    International Nuclear Information System (INIS)

    Mar, S; Val, J A del; RodrIguez, F; Pelaez, R J; Gonzalez, V R; Gonzalo, A B; Castro, A de; Aparicio, J A

    2006-01-01

    This work reports an extensive collection of 120 atomic transition probabilities of Kr II lines in the spectral region 350-720 nm, all of them measured in an emission experiment. For many of them, these are the first data up to the authors' knowledge. Relative intensity measurements have been obtained on a pulsed discharge lamp and the absolute A ki -values have been calculated by considering the available data from the literature as reference for the plasma temperature diagnosis. Excitation temperature (14 000-28 000 K) has been determined by using the Boltzmann-plot method. The plasma electron density (0.2-0.8 x 10 23 m -3 ) has been determined by two-wavelength interferometry. This work extends a previous one already published by our laboratory [1, 2]. Comparisons have also been made with previous literature values

  20. SPECTRAL LINE SURVEY TOWARD MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yuri; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Shimonishi, Takashi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramakiazaaoba 6-3, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Sakai, Nami [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, Yuri [Center for Computational Sciences, The University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Kawamura, Akiko [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2016-02-20

    Spectral line survey observations of seven molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamental species such as CS, SO, CCH, HCN, HCO{sup +}, and HNC are detected in addition to those of CO and {sup 13}CO, while CH{sub 3}OH is not detected in any source and N{sub 2}H{sup +} is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the seven sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic of the LMC without influences by star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH{sub 3}OH. Feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO{sup +} and SO/HCO{sup +} ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along the molecular cloud formation.

  1. Unexpected temporal evolution of atomic spectral lines of aluminum in a laser induced breakdown spectroscopy experiment

    International Nuclear Information System (INIS)

    Saad, Rawad; L'Hermite, Daniel; Bousquet, Bruno

    2014-01-01

    The temporal evolution of the laser induced breakdown (LIBS) signal of a pure aluminum sample was studied under nitrogen and air atmospheres. In addition to the usual decrease of signal due to plasma cooling, unexpected temporal evolutions were observed for a spectral lines of aluminum, which revealed the existence of collisional energy transfer effects. Furthermore, molecular bands of AlN and AlO were observed in the LIBS spectra, indicating recombination of aluminum with the ambient gas. Within the experimental conditions reported in this study, both collisional energy transfer and recombination processes occurred around 1.5 μs after the laser shot. This highlights the possible influence of collisional and chemical effects inside the plasma that can play a role on LIBS signals. - Highlights: • Persistence of two Al I lines related to the 61,844 cm −1 energy level only under nitrogen atmosphere. • Collisional energy transfer effect exists between aluminum and nitrogen. • Observation of molecular band of AlN (under nitrogen) and AlO (under air) after a delay time of 1.5 µs. • 20% of oxygen in air is sufficient to annihilate both the collisional energy transfer effect and the AlN molecular formation

  2. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    International Nuclear Information System (INIS)

    Filippi, F.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-01-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  3. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, F., E-mail: francesco.filippi@roma1.infn.it [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Cianchi, A. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Mostacci, A.; Palumbo, L. [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Zigler, A. [Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  4. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Singly Ionized Vanadium (V ii)

    Energy Technology Data Exchange (ETDEWEB)

    Saloman, Edward B. [Dakota Consulting, Inc., 1110 Bonifant Street, Suite 310, Silver Spring, MD 20910 (United States); Kramida, Alexander [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V ii, have been compiled. The experimentally derived energy levels belong to the configurations 3 d {sup 4}, 3 d {sup 3} ns ( n  = 4, 5, 6), 3 d {sup 3} np , and 3 d {sup 3} nd ( n  = 4, 5), 3 d {sup 3}4 f , 3 d {sup 2}4 s {sup 2}, and 3 d {sup 2}4 s 4 p . Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g -factors and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm{sup −1}, corresponding to 14.634(7) eV. This is 130 cm{sup −1} higher than the previously recommended value from Iglesias et al.

  5. No Photon Left Behind: How Billions of Spectral Lines are Transforming Planetary Sciences

    Science.gov (United States)

    Villanueva, Geronimo L.

    2014-06-01

    With the advent of realistic potential energy surface (PES) and dipole moment surface (DMS) descriptions, theoretically computed linelists can now synthesize accurate spectral parameters for billions of spectral lines sampling the untamed high-energy molecular domain. Being the initial driver for these databases the characterization of stellar spectra, these theoretical databases, in combination with decades of precise experimental studies (nicely compiled in community databases such as HITRAN and GEISA), are leading to unprecedented precisions in the characterization of planetary atmospheres. Cometary sciences are among the most affected by this spectroscopic revolution. Even though comets are relatively cold bodies (T˜100 K), their infrared molecular emission is mainly defined by non-LTE solar fluorescence induced by a high-energy source (Sun, T˜5600 K). In order to interpret high-resolution spectra of comets acquired with extremely powerful telescopes (e.g., Keck, VLT, NASA-IRTF), we have developed advanced non-LTE fluorescence models that integrate the high-energy dynamic range of ab-initio databases (e.g., BT2, VTT, HPT2, BYTe, TROVE) and the precision of laboratory and semi-empirical compilations (e.g., HITRAN, GEISA, CDMS, WKMC, SELP, IUPAC). These new models allow us to calculate realistic non-LTE pumps, cascades, branching-ratios, and emission rates for a broad range of excitation regimes for H2O, HDO, HCN, HNC and NH3. We have implemented elements of these compilations to the study of Mars spectra, and we are now exploring its application to modeling non-LTE emission in exoplanets. In this presentation, we present application of these advanced models to interpret highresolution spectra of comets, Mars and exoplanets.

  6. Excitation and abundance of C-3 in star forming cores : Herschel/HIFI observations of the sight-lines to W31C and W49N

    NARCIS (Netherlands)

    Mookerjea, B.; Giesen, T.; Stutzki, J.; Cernicharo, J.; Goicoechea, J. R.; De Luca, M.; Bell, T. A.; Gupta, H.; Gerin, M.; Persson, C. M.; Sonnentrucker, P.; Makai, Z.; Black, J.; Boulanger, F.; Coutens, A.; Dartois, E.; Encrenaz, P.; Falgarone, E.; Geballe, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Kazmierczak, M.; Kolos, R.; Krelowski, J.; Lis, D. C.; Martin-Pintado, J.; Menten, K. M.; Monje, R.; Pearson, J. C.; Perault, M.; Phillips, T. G.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Teyssier, D.; Vastel, C.; Yu, S.; Dieleman, P.; Guesten, R.; Honingh, C. E.; Morris, P.; Roelfsema, P.; Schieder, R.; Tielens, A. G. G. M.; Zmuidzinas, J.

    2010-01-01

    We present spectrally resolved observations of triatomic carbon (C-3) in several ro-vibrational transitions between the vibrational ground state and the low-energy nu(2) bending mode at frequencies between 1654-1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N,

  7. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1985-01-01

    The propagation of submillimeter-waves (smm) in tokamak plasmas has been investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses have been carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system has been employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes have been developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements

  8. Submillimeter wave propagation in tokamak plasmas

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Staats, P.A.; Vander Sluis, K.L.; Mansfield, D.K.; Park, H.; Johnson, L.C.

    1986-01-01

    Propagation of submillimeter waves (smm) in tokamak plasma was investigated both theoretically and experimentally to ensure successful measurements of electron density and plasma current distributions in tokamak devices. Theoretical analyses were carried out to study the polarization of the smm waves in TFTR and ISX-B tokamaks. A multichord smm wave interferometer/polarimeter system was employed to simultaneously measure the line electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The experimental study on TFTR is under way. Computer codes were developed and have been used to study the wave propagation and to reconstruct the distributions of plasma current and density from the measured data. The results are compared with other measurements. 5 references, 2 figures

  9. The Submillimeter Telescope (SMT) project

    International Nuclear Information System (INIS)

    Martin, R.N.; Baars, J.W.M.

    1990-01-01

    To exploit the potential of submillimeter astronomy, the Submillimeter Telescope (SMT) will be located at an altitude of 3178 meters on Emerald Peak 75 miles northeast of Tucson in Southern Arizona. The instrument is an altazimuth mounted f/13.8 Cassegrain homology telescope with two Nasmyth and bent Cassegrain foci. It will have diffraction limited performance at a wavelength of 300 microns and an operating overall figure accuracy of 15 microns rms. An important feature of the SMT is the construction of the primary and secondary reflectors out of aluminum-core CFRP face sheet sandwich panels, and the reflector backup structure and secondary support out of CFRP structural elements. This modern technology provides both a means for reaching the required precision of the SMT for both night and day operation (basically because of the low coefficient of thermal expansion and high strength-to-weight ratio of CFRP) and a potential route for the realization of lightweight telescopes of even greater accuracy in the future. The SMT will be the highest accuracy radio telescope ever built (at least a factor of 2 more accurate than existing telescopes). In addition, the SMT will be the first 10 m-class submillimeter telescope with a surface designed for efficient measurements at the important 350 microns wavelength atmospheric window. 9 refs

  10. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    Science.gov (United States)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  11. On the Origin of the Flare Emission in IRIS ’ SJI 2832 Filter:Balmer Continuum or Spectral Lines?

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, Lucia; Krucker, Säm [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Heinzel, Petr [Astronomical Institute, The Czech Academy of Sciences, Fričova 298, 25165 Ondřejov (Czech Republic)

    2017-03-10

    Continuum (“white-light,” WL) emission dominates the energetics of flares. Filter-based observations, such as the IRIS SJI 2832 filter, show WL-like brightenings during flares, but it is unclear whether the emission arises from real continuum emission or enhanced spectral lines, possibly turning into emission. The difficulty in filter-based observations, contrary to spectral observations, is to determine which processes contribute to the observed brightening during flares. Here we determine the contribution of the Balmer continuum and the spectral line emission to IRIS ’ SJI 2832 emission by analyzing the appropriate passband in simultaneous IRIS NUV spectra. We find that spectral line emission can contribute up to 100% to the observed slitjaw images (SJI) emission, that the relative contributions usually temporally vary, and that the highest SJI enhancements that are observed are most likely because of the Balmer continuum. We conclude that care should be taken when calling SJI 2832 a continuum filter during flares, because the influence of the lines on the emission can be significant.

  12. On the Origin of the Flare Emission in IRIS ’ SJI 2832 Filter:Balmer Continuum or Spectral Lines?

    International Nuclear Information System (INIS)

    Kleint, Lucia; Krucker, Säm; Heinzel, Petr

    2017-01-01

    Continuum (“white-light,” WL) emission dominates the energetics of flares. Filter-based observations, such as the IRIS SJI 2832 filter, show WL-like brightenings during flares, but it is unclear whether the emission arises from real continuum emission or enhanced spectral lines, possibly turning into emission. The difficulty in filter-based observations, contrary to spectral observations, is to determine which processes contribute to the observed brightening during flares. Here we determine the contribution of the Balmer continuum and the spectral line emission to IRIS ’ SJI 2832 emission by analyzing the appropriate passband in simultaneous IRIS NUV spectra. We find that spectral line emission can contribute up to 100% to the observed slitjaw images (SJI) emission, that the relative contributions usually temporally vary, and that the highest SJI enhancements that are observed are most likely because of the Balmer continuum. We conclude that care should be taken when calling SJI 2832 a continuum filter during flares, because the influence of the lines on the emission can be significant.

  13. RECEIVER OPERATING CHARACTERISTICS MEASURE FOR THE RECOGNITION OF STUTTERING DYSFLUENCIES USING LINE SPECTRAL FREQUENCIES

    Directory of Open Access Journals (Sweden)

    Nahrul Khair Alang Rashid

    2017-05-01

    Full Text Available Stuttering is a motor-speech disorder, having common features with other motor control disorders such as dystonia, Parkinson’s disease and Tourette’s syndrome. Stuttering results from complex interactions between factors such as motor, language, emotional and genetic. This study used Line Spectral Frequency (LSF for the feature extraction, while using three classifiers for the identification purpose, Multilayer Perceptron (MLP, Recurrent Neural Network (RNN and Radial Basis Function (RBF. The UCLASS (University College London Archive of Stuttered Speech release 1 was used as database in this research. These recordings were from people of ages 12y11m to 19y5m, who were referred to clinics in London for assessment of their stuttering. The performance metrics used for interpreting the results are sensitivity, accuracy, precision and misclassification rate. Only M1 and M2 had below 100% sensitivity for RBF. The sensitivity of M1 was found to be between 40 & 60%, therefore categorized as moderate, while that of M2 falls between 60 & 80%, classed as substantial. Overall, RBF outperforms the two other classifiers, MLP and RNN for all the performance metrics considered.

  14. Voigt equivalent widths and spectral-bin single-line transmittances: Exact expansions and the MODTRAN®5 implementation

    Science.gov (United States)

    Berk, Alexander

    2013-03-01

    Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.

  15. ON THE ANTI-CORRELATION BETWEEN SPECTRAL LINE BROADENING AND INTENSITY IN CORONAL STRUCTURES OBSERVED WITH EIS

    International Nuclear Information System (INIS)

    Scott, J. T.; Martens, P. C. H.

    2011-01-01

    The advance in spectral resolution of the Extreme Ultraviolet Imaging (EIS) spectrometer on board Hinode has allowed for more detailed analysis of coronal spectral lines. Large line broadening and blueshifted velocities have been found in the periphery of active region (AR) cores and near the footpoints of coronal loops. This line broadening is yet to be understood. We study the correlation of intensity and line width for entire ARs and sub-regions selected to include coronal features. The results show that although a slight positive correlation can be found when considering whole images, many sub-regions have a negative correlation between intensity and line width. Sections of a coronal loop display some of the largest anti-correlations found for this study with the increased line broadening occurring directly adjacent to the footpoint section of the loop structure, not at the footpoint itself. The broadened lines may be due to a second Doppler-shifted component that is separate from the main emitting feature such as a coronal loop, but related in their excitation. The small size of these features forces the considerations of investigator and instrumental effects. Preliminary analyses are shown that indicate the possibility of a point-spread function that is not azimuthally symmetric and may affect velocity and line profile measurements.

  16. On the influence of density and temperature fluctuations on the formation of spectral lines in stellar atmospheres

    International Nuclear Information System (INIS)

    Stahlberg, J.

    1985-01-01

    A method taking into account the influence of temperature and density fluctuations generated by the velocity field in stellar atmospheres on the formation of spectral lines is presented. The influenced line profile is derived by exchanging the values in a static atmosphere by a mean value and a fluctuating one. The correlations are calculated with the help of the well-know hydrodynamic eqs. It results, that in normal stellar atmospheres the visual lines are only very weakly influenced by such fluctuations due to the small values of the gradients of the pressure and density and of the velocity dispersion. (author)

  17. Generation of doublet spectral lines at self-seeded X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  18. Generation of doublet spectral lines at self-seeded X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-11-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  19. Experimental determination of the Stark broadening of Cu I spectral lines in a plasma of a capillary discharge

    International Nuclear Information System (INIS)

    Sandolache, G.; Zoita, V.; Bauchire, M.; Le Menn, E.; Gentils, F.; Fleurier, C.

    2001-01-01

    Copper lines are frequently observed in various types of plasma device and industrial plasmas and then it is desirable to develop methods of plasma diagnostics using the emission spectrum of copper lines. The aim of this work is to create a database for the neutral copper spectral lines directly usable for the diagnostic of plasmas with metal vapors. An experimental device has been developed to create a metal plasma having the required metrological properties to facilitate the spectroscopic measurements. A capillary discharge technique has been used to create a plasma jet representing a radially symmetric light source. The copper-hydrogen plasma jet was produced by the ablation of the capillary wall consisting of a copper-embedded elastomer. The plasma jet was observed side-on using the high-resolution spectrometers equipped with ICCD detectors. The 2D square matrix ICCD detectors have permitted the observation of cross sections of the plasma jet. The high-speed time resolved camera equipped with interference filters has been used to check the cylindrical shape and the homogeneity of the plasma jet. The electron density of the plasma jet was obtained by using the H α spectral line of the hydrogen component plasma. The temperature was determined by applying the relative intensity method to the measured intensities of the neutral copper spectral lines emitted by the plasma jet. The hydrogen and copper lines were broadened principally by the Stark effect. The measured temperatures were about 15,000 K and the electron density of about 2x10 17 cm -3 . The results of the Stark broadening of the neutral cooper concerned particularly the lines 453.9 nm, 465.1 nm, 515.3 nm and 529.2 nm. (authors)

  20. SUBMILLIMETER LIGHTCURVES OF ASTEROIDS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Submillimeter lightcurves of large asteroids Ceres, Davida, Io, Juno, Pallas, Vesta, and Victoria, observed at the Heinrich-Hertz Submillimeter Telescope from...

  1. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    Science.gov (United States)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  2. Solar Observations at Submillimeter Wavelengths

    Science.gov (United States)

    Kaufmann, P.

    We review earlier to recent observational evidences and theoretical motivations leading to a renewed interest to observe flares in the submillimeter (submm) - infrared (IR) range of wavelengths. We describe the new solar dedicated submillimeter wave telescope which began operations at El Leoncito in the Argentina Andes: the SST project. It consists of focal plane arrays of two 405 GHz and four 212 GHz radiometers placed in a 1.5-m radome-enclosed Cassegrain antenna, operating simultaneously with one millisecond time resolution. The first solar events analyzed exhibited the onset of rapid submm-wave spikes (100-300 ms), well associated to other flare manifestations, especially at X-rays. The spikes positions were found scattered over the flaring source by tens of arcseconds. For one event an excellent association was found between the gamma-ray emission time profile and the rate of occurrence of submm-wave rapid spikes. The preliminary results favour the idea that bulk burst emissions are a response to numerous fast energetic injections, discrete in time, produced at different spatial positions over the flaring region. Coronal mass ejections were associated to the events studied. Their trajectories extrapolated to the solar surface appear to correspond to the onset time of the submm-wave spikes, which might represent an early signature of the CME's initial acceleration process.

  3. Silhouette and spectral line profiles in the special modification of the Kerr black hole geometry generated by quintessential fields

    Energy Technology Data Exchange (ETDEWEB)

    Schee, Jan; Stuchlik, Zdenek [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre for Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2016-11-15

    We study optical effects in quintessential Kerr black hole spacetimes corresponding to the limiting case of the equation-of-state parameter ω{sub q} = -1/3 of the quintessence. In dependence on the dimensionless quintessential field parameter c, we determine the black hole silhouette and the spectral line profiles of Keplerian disks generated in this special quintessential Kerr geometry, representing an extension of the general modifications of the Kerr geometry introduced recently by Ghasemi-Nodehi and Bambi (Eur. Phys. J. C 56:290, 2016). We demonstrate that due to the influence of the parameter c, the silhouette is almost homogeneously enlarged, and the spectral line profiles are redshifted with almost conserved shape. (orig.)

  4. WHY IS NON-THERMAL LINE BROADENING OF SPECTRAL LINES IN THE LOWER TRANSITION REGION OF THE SUN INDEPENDENT OF SPATIAL RESOLUTION?

    International Nuclear Information System (INIS)

    De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.; Peter, H.; Pereira, T. M. D.

    2015-01-01

    Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s −1 ) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s −1 . This invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)

  5. On increasing the spectral efficiency and transmissivity in the data transmission channel on the spacecraft-ground tracking station line

    Science.gov (United States)

    Andrianov, M. N.; Kostenko, V. I.; Likhachev, S. F.

    2018-01-01

    The algorithms for achieving a practical increase in the rate of data transmission on the space-craft-ground tracking station line has been considered. This increase is achieved by applying spectral-effective modulation techniques, the technology of orthogonal frequency compression of signals using millimeterrange radio waves. The advantages and disadvantages of each of three algorithms have been revealed. A significant advantage of data transmission in the millimeter range has been indicated.

  6. Welcome to the 21st International Conference on Spectral Line Shapes

    Science.gov (United States)

    2012-12-01

    organizing committee of the conference has not forgotten about the cultural and tourism significance of the host city, with Hermitage and the Russian Museum, memorial museums of Pushkin and Dostoevsky, Mariinsky and Mikhailovsky Theaters being only a few of the many places to visit. Early June is the time of white nights, the best time to visit the environs of St. Petersburg with its many imperial palaces and parks, and attend multiple music and theater festivals. This is just the right time to take a break from physics overall and spectral line shapes in particular. On behalf of the Rector's Office let me wish the Conference every success, and do not forget to take some time out to enjoy your visit. Welcome! Professor N G Skvortsov Vice-Rector for Research St. Petersburg University

  7. IDEN2-A program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules

    Science.gov (United States)

    Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.

    2018-04-01

    The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.

  8. SOFIA MID-INFRARED IMAGING AND CSO SUBMILLIMETER POLARIMETRY OBSERVATIONS OF G034.43+00.24 MM1

    International Nuclear Information System (INIS)

    Jones, T. J.; Gordon, Michael; Shenoy, Dinesh; Gehrz, R. D.; Vaillancourt, John E.; Krejny, M.

    2016-01-01

    We present 11.1 to 37.1 μ m imaging observations of the very dense molecular cloud core MM1 in G034.43+00.24 using FORCAST on SOFIA and submillimeter (submm) polarimetry using SHARP on the Caltech Submillimeter Observatory. We find that at the spatial resolution of SOFIA, the point-spread function (PSF) of MM1 is consistent with being a single source, as expected based on millimeter (mm) and submm observations. The spectral energy distributions (SEDs) of MM1 and MM2 have a warm component at the shorter wavelengths not seen in mm and submm SEDs. Examination of H(1.65 μ m) stellar polarimetry from the Galactic Plane Infrared Polarization Survey shows that G034 is embedded in an external magnetic field aligned with the Galactic Plane. The SHARP polarimetry at 450 μ m shows a magnetic field geometry in the vicinity of MM1 that does not line up with either the Galactic Plane or the mean field direction inferred from the CARMA interferometric polarization map of the central cloud core, but is perpendicular to the long filament in which G034 is embedded. The CARMA polarimetry does show evidence for grain alignment in the central region of the cloud core, and thus does trace the magnetic field geometry near the embedded Class 0 YSO.

  9. The strongest spectral lines of stable elements with other interfering elements in compiled and plotted version

    International Nuclear Information System (INIS)

    Bauer, M.; Weitkamp, C.

    1977-01-01

    The strongest spectra lines of the 85 stable chemical elements have been compiled and plotted along with lines from other elements that may interfere in applications like spectroscopic multielement analysis. For each line a wavelength range of +- 0.25 A.U. around the line of interest has been considered. The tables contain the wavelength, intensity and assignment to an ionization state of the emitting atom, the plots visualize the lines with a doppler broadening corresponding to 8,000 K. (orig.) [de

  10. Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Mocuta, Anda; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Sorée, Bart [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium)

    2015-10-07

    Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In{sub 0.53}Ga{sub 0.47}As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET.

  11. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    Science.gov (United States)

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  12. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    International Nuclear Information System (INIS)

    Barklem, Paul S

    2012-01-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H ↔ X(n'l') + H and charge transfer processes X(nl) + H ↔ X + + H − have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  13. Spectral Analysis of a Quantum System with a Double Line Singular Interaction

    Czech Academy of Sciences Publication Activity Database

    Kondej, S.; Krejčiřík, David

    2013-01-01

    Roč. 49, č. 4 (2013), s. 831-859 ISSN 0034-5318 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrödinger operator * singular perturbation * spectral analysis * Hardy inequality * resonance Subject RIV: BE - Theoretical Physics Impact factor: 0.614, year: 2013

  14. Solar spectral irradiance variability of some chromospheric emission lines through the solar activity cycles 21-23

    Directory of Open Access Journals (Sweden)

    Göker Ü.D.

    2017-01-01

    Full Text Available A study of variations of solar spectral irradiance (SSI in the wave-length ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV spectral lines and international sunspot number (ISSN from interactive data centers such as SME (NSSDC, UARS (GDAAC, SORCE (LISIRD and SIDC, respectively. We reduced these data by using the MATLsoftware package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs, contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  15. Report of the submillimeter splinter group

    Science.gov (United States)

    Harris, A. I.; Lequeux, J.

    1992-12-01

    The aim of the submillimeter splinter group of the LIST (Lunar Interferometry Study Team) was to examine the scientific and technical aspects of a submillimeter interferometer with an emphasis on heterodyne detection. The main elements of the scientific logic that lead to the conclusions that a heterodyne submillimeter array should have a collecting area of at order 1000 sq m are summarized. This conclusion is based on sensitivity constraints and the following points: anything that can be done from the ground, will be; an instrument as complex and expensive as a large submillimeter interferometer must be capable of significant extragalactic observations; and no matter what the future scientific trends are, looking at the main coolants will always be important. It is clear that an instrument of this size is several steps past the next generation of spaceborne observatories.

  16. Testing of the method for water microleakage detection from OH hydroxyl spectral lines at the L-2M stellarator

    International Nuclear Information System (INIS)

    Voronov, G. S.; Berezhetskii, M. S.; Bondar’, Yu. F.; Vafin, I. Yu.; Vasil’kov, D. G.; Voronova, E. V.; Grebenshchikov, S. E.; Grishina, I. A.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Meshcheryakov, A. I.; Pleshkov, E. I.; Khol’nov, Yu. V.; Fedyanin, O. I.; Tsygankov, V. A.; Shchepetov, S. V.; Kurnaev, V. A.; Vizgalov, I. V.; Urusov, V. A.

    2013-01-01

    Results are presented from L-2M stellarator experiments on testing a possible method for detection of water microleakages in the cooling system of the first wall and vacuum chamber of ITER. The method consists in the spectroscopic detection of spectral lines of the OH hydroxyl, which forms via the dissociation of water molecules in plasma. Emission in the spectral band of 305–310 nm can be detected even at water leakage rates less than 10 −4 Pa m 3 /s. Chemical reactions between water and boron compounds on the vacuum chamber wall delay the detection of leakages up to ∼2000 s. A similar phenomenon can be expected when a leakage will occur in ITER, where the materials suggested for the first wall (Be, Li) can also chemically react with water.

  17. Spectral line shapes in linear absorption and two-dimensional spectroscopy with skewed frequency distributions

    NARCIS (Netherlands)

    Farag, Marwa H.; Hoenders, Bernhard J.; Knoester, Jasper; Jansen, Thomas L. C.

    2017-01-01

    The effect of Gaussian dynamics on the line shapes in linear absorption and two-dimensional correlation spectroscopy is well understood as the second-order cumulant expansion provides exact spectra. Gaussian solvent dynamics can be well analyzed using slope line analysis of two-dimensional

  18. Theoretical profiles of the spectral lines of the hydrogen atom; Profils theoriques des raies spectrales de l'atome d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H; Herman, L [Universite de la Sorbonne, Lab. de Recherche Physique, 75 - Paris (France); Drawin, H W [Commissariat a l' Energie Atomique, Fontenay-aux-Roses, Association Euratom-CEA, Groupe de Recherches sur la Fusion Controlee (France). Centre d' Etudes Nucleaires

    1965-07-01

    The line-broadening problem of the hydrogen lines has been formulated in the quasistatic approximation as far as the ions are concerned, and in the classical path approximation as far as the broadening due to collisions with electrons is concerned. These electrons interfere in different numerical results only by the self-correlation function of the fluctuating electrical field strength created at each point in the plasma. The Lewis correction has been applied, but using the whole velocity distribution function of the electrons. The formula which represents the usual impact profile, valid only for frequencies much smaller than the plasma frequency, has been extended using another formula which will be valid up to the neighbourhood of that spectral region where the quasi-static approximation begins to be valid also for the electrons. As an example, the line profile of Ly {alpha} is given by some graphs for T = 10{sup 4} deg. K and electron densities N = 10{sup 17} cm{sup -3} and N = 10{sup 18}cm{sup -3}. (authors) [French] Le probleme d'elargissement des raies de l'atome H est formule dans l'approximation quasi-statique en ce qui concerne les ions et dans l'approximation du chemin classique en ce qui concerne les electrons. Ceux-ci interviennent dans differents resultats uniquement par la fonction auto-correlation du champ electrique fluctuant qu'ils creent en chaque point du plasma. La correction de Lewis a ete appliquee mais en tenant compte de la distribution des vitesses electroniques. La formule donnant les profils d'impact habituels, valable seulement pour des frequences tres inferieures a la frequence du plasma, est ainsi prolongee de maniere continue par une autre formule, valable jusqu'au voisinage de la region spectrale ou l'approximation quasistatique commence a etre egalement justifiee pour les electrons. A titre d'illustration on represente graphiquement le profil de la raie Ly {alpha} pour T = 10{sup 4} deg. K et des densites electroniques de N = 10{sup

  19. Quantum Spectral Curve for a cusped Wilson line in N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Nikolay [King’s College London, Department of Mathematics, The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [King’s College London, Department of Mathematics, The Strand, London WC2R 2LS (United Kingdom)

    2016-04-20

    We show that the Quantum Spectral Curve (QSC) formalism, initially formulated for the spectrum of anomalous dimensions of all local single trace operators in N=4 SYM, can be extended to the generalized cusp anomalous dimension for all values of the parameters. We find that the large spectral parameter asymptotics and some analyticity properties have to be modified, but the functional relations are unchanged. As a demonstration, we find an all-loop analytic expression for the first two nontrivial terms in the small |ϕ±θ| expansion. We also present nonperturbative numerical results at generic angles which match perfectly 4-loop perturbation theory and the classical string prediction. The reformulation of the problem in terms of the QSC opens the possibility to explore many open questions. We attach to this paper several Mathematica notebooks which should facilitate future studies.

  20. Quantum Spectral Curve for a cusped Wilson line in N=4 SYM

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Levkovich-Maslyuk, Fedor

    2016-01-01

    We show that the Quantum Spectral Curve (QSC) formalism, initially formulated for the spectrum of anomalous dimensions of all local single trace operators in N=4 SYM, can be extended to the generalized cusp anomalous dimension for all values of the parameters. We find that the large spectral parameter asymptotics and some analyticity properties have to be modified, but the functional relations are unchanged. As a demonstration, we find an all-loop analytic expression for the first two nontrivial terms in the small |ϕ±θ| expansion. We also present nonperturbative numerical results at generic angles which match perfectly 4-loop perturbation theory and the classical string prediction. The reformulation of the problem in terms of the QSC opens the possibility to explore many open questions. We attach to this paper several Mathematica notebooks which should facilitate future studies.

  1. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    Science.gov (United States)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-03-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and

  2. Instrumental broadening of spectral line profiles due to discrete representation of a continuous physical quantity

    International Nuclear Information System (INIS)

    Dulov, E.N.; Khripunov, D.M.

    2008-01-01

    It is the usual situation in spectroscopy that a continuous physical quantity, which plays the role of a spectral function argument (i.e. the abscissa of a spectrum), is sampled electronically as discrete point clouds or channels. Each channel corresponds to the midpoint of a small interval of the continuous argument. The experimentally registered value of intensity in the channel describes the averaged spectral intensity in this interval. However, an approximation of spectra by a continuous theoretical model function often assumes that the interval is small enough, and tabulation of the theoretical model function may be used without appreciable disadvantages for the fitting results. At this point, a new type of approximation error appears, such as the error of midpoint approximation to a definite integral in the rectangle method of numeric integration. This paper aims at quantitative estimation of this error in the cases of a pure Lorentz lineshape and a generalized Voigt contour. It is shown that discrete representation of continuous spectral data leads to some non-physical broadening in comparison with the tabulated model function. As a first approximation it is normal broadening. We show that even in the case of a Lorentz true lineshape we must use the tabulated Voigt function measured in channels fixed Gauss linewidth rather than a tabulated Lorentzian. Application of the results of this paper is demonstrated on Moessbauer spectra

  3. Collision-induced stimulated photon echo generated at transition 0-1 on broad spectral line conditions

    Science.gov (United States)

    Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.

    2018-04-01

    For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb  +  Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.

  4. High spectral resolution observations of the H2 2.12 micron line in Herbig-Haro objects

    International Nuclear Information System (INIS)

    Zinnecker, H.; Mundt, R.; Geballe, T.R.; Zealey, W.J.

    1989-01-01

    High-spectral-resolution Fabry-Perot observations of the H 2 2.12-micron line emissions of several Herbig-Haro (HH) objects are discussed. It is shown that H 2 emission by the shock heating of external molecular gas in the wings of the bow shock associated with the working surface of a high-velocity jet may occur for HH objects associated with the jet's end. The shock heating of external molecular gas entrained in the flow by internal shocks occurring in the jet itself and/or in its boundary layer may be the H 2 emission mechanism for HH objects observed along the flow axis. 59 refs

  5. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    Science.gov (United States)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  6. Spectral line shape simulation for electron stark-broadening of ion emitters in plasmas

    International Nuclear Information System (INIS)

    Dufour, Emmanuelle; Calisti, Annette; Talin, Bernard; Gigosos, Marco A.; Gonzalez, Manuel A.; Dufty, Jim W.

    2002-01-01

    Electron broadening for ions in plasmas is investigated in the framework of a simplified semi-classical model involving an ionic emitter imbedded in an electron gas. A regularized Coulomb potential that removes the divergence at short distances is postulated for the ion-electron interaction. Line shape simulations based on Molecular Dynamics for the ion impurity and the electrons, accounting for all the correlations, are reported. Comparisons with line shapes obtained with a quasi-particle model show expected correlation effects. Through an analysis of the results with the line shape code PPP, it is inferred that the correlation effect results mainly from the microfield dynamic properties

  7. Collisional broadening of depolarized spectral lines of hydrogen gases at low temperatures

    International Nuclear Information System (INIS)

    Hout, K.D. van den.

    1978-01-01

    Experimental results are presented for the collisional broadening and shift of H 2 , D 2 and HD rotational Raman and depolarized Rayleigh lines at various temperatures between 25 K and 300 K. These are then discussed within the context of current theoretical concepts. For a few temperatures the line broadening cross sections are also reported as a function of the ortho-para composition for H 2 and D 2 . (C.F.)

  8. Surveying Low-Mass Star Formation with the Submillimeter Array

    Science.gov (United States)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  9. Spectral lines and coincidence tables for the determination of zirconium, niobium and tantalum with the ICP

    International Nuclear Information System (INIS)

    Wuensch, G.; Wennemer, A.

    1987-01-01

    Coincidence tables for ICP-AES are given for 20 Zr lines, 9 Nb lines and 7 Ta lines. They include 582 interferent lines of 49 elements. The specified interference data (IEC and CCR) hold for a bandwidth FWHM = 16 pm and an interferent concentration of 1,000 mg/l. For trace determinations of Zr, Nb, Ta in a matrix of Fe, Z, Zr, Nb, Ta the dependence of the interference on the matrix concentration is specified up to 10,000 mg/l. Interference data CCR calculated for the ICP from the NBS tables often differ from the measured data by several orders of magnitude. The spectrum of Zr measured at a high concentration shows many weak lines most of which are not even listed in the MIT tables. They give rise to a quasi-continuous background the intensity of which increases nearly linearly with the matrix concentration. Therefore, an increase of sample concentration will not lead to an improved detection limit. The line intensities found in our investigations match well with those listed in the Wohlers tables. (orig.)

  10. High-resolution measurements and multichannel quantum defect analysis of spectral line shapes of autoionizing Rydberg series

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    1997-01-01

    Spectral line shapes for autoionizing Rydberg series are briefly reviewed within the framework of multichannel quantum defect theory (MQDT). Recent high-resolution measurements and MQDT analysis for the spectra line shapes are reviewed for the mp 5 ( 2 P 1/2 )ns ' and nd ' J=1 odd spectra of the Ar, Kr, and Xe atoms (m=3,4,5 for Ar, Kr, and Xe) and the 3p 5 ( 2 P 1/2 )nd ' J=2 and 3 odd spectra of Ar*3p 5 4p excited atoms. Some results are also discussed for the Ca 4p( 2 P 1/2,3/2 )ns and nd J=1 odd spectrum and the Ba 5d( 2 P 5/2 )nd J=1 odd spectrum

  11. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  12. A variable-tune spatial heterodyne spectrometer for broadband spectral line studies in the visible and near-UV

    Science.gov (United States)

    Dawson, Olivia R.; Harris, Walter M.

    2017-11-01

    Reflective Spatial Heterodyne Spectroscopy (SHS) is an interferometric technique that combines high resolving power and a large input acceptance angle in a format that is compact enough for use at small telescope focal planes and in spacecraft observations of targets in the visible to far ultra-violet (FUV) spectral range. SHS instruments are well suited to the study of faint, extended emission line sources, particularly in the UV where stellar background continuum becomes weak. Their primary limitation comes from the limited spatial sampling of the output interference pattern generated by the incoming spectral source, which limits their use to narrow bandpass near the central tuning wavelength. We describe a the first light results from a broadband SHS that can be used to scan the tuning wavelength across a bandpass extending from 300 to 700 nm. The limitations on the bandpass are arbitrary and can easily be extended into the UV or near infrared. We discuss the results of these validation program and the potential improvements that could be used to expand and/or improve the broadband spectral response of the instrument.

  13. Diagnostics from three rising submillimeter bursts

    International Nuclear Information System (INIS)

    Zhou, Ai-Hua; Li, Jian-Ping; Wang, Xin-Dong

    2016-01-01

    In this paper we investigate three novel rising submillimeter (THz) bursts that occurred sequentially in Super Active Region NOAA 10486. The average rising rate of the flux density above 200 GHz is only 20 sfu GHz −1 (corresponding to spectral index α of 1.6) for the THz spectral components of the 2003 October 28 and November 4 bursts, but it attained values of 235 sfu GHz −1 (α = 4.8) in the 2003 November 2 burst. The steeply rising THz spectrum can be produced by a population of highly relativistic electrons with a low-energy cutoff of 1 MeV, but it only requires a low-energy cutoff of 30 keV for the two slowly rising THz bursts, via gyrosynchrotron (GS) radiation based on our numerical simulations of burst spectra in the magnetic dipole field case. The electron density variation is much larger in the THz source than in the microwave (MW) source. It is interesting that the THz source radius decreased by 20%–50% during the decay phase for the three events, but the MW source increased by 28% for the 2003 November 2 event. In the paper we will present a formula that can be used to calculate the energy released by ultrarelativistic electrons, taking the relativistic correction into account for the first time. We find that the energy released by energetic electrons in the THz source exceeds that in the MW source due to the strong GS radiation loss in the THz range, although the modeled THz source area is 3–4 orders smaller than the modeled MW source one. The total energies released by energetic electrons via the GS radiation in radio sources are estimated, respectively, to be 5.2 × 10 33 , 3.9 × 10 33 and 3.7 × 10 32 erg for the October 28, November 2 and 4 bursts, which are 131, 76 and 4 times as large as the thermal energies of 2.9 × 10 31 , 2.1 × 10 31 and 5.2 × 10 31 erg estimated from soft X-ray GOES observations. (paper)

  14. Convex relaxations of spectral sparsity for robust super-resolution and line spectrum estimation

    Science.gov (United States)

    Chi, Yuejie

    2017-08-01

    We consider recovering the amplitudes and locations of spikes in a point source signal from its low-pass spectrum that may suffer from missing data and arbitrary outliers. We first review and provide a unified view of several recently proposed convex relaxations that characterize and capitalize the spectral sparsity of the point source signal without discretization under the framework of atomic norms. Next we propose a new algorithm when the spikes are known a priori to be positive, motivated by applications such as neural spike sorting and fluorescence microscopy imaging. Numerical experiments are provided to demonstrate the effectiveness of the proposed approach.

  15. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2003-01-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D α line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior

  16. On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael

    2016-01-12

    A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.

  17. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. [Universite de Provence (PIIM), Centre de Saint-Jerome, 13 - Marseille (France); Capes, H.; Guirlet, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D{sub {alpha}} line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior.

  18. Second-Generation Design of Micro-Spec: A Medium-Resolution, Submillimeter-Wavelength Spectrometer-on-a-Chip

    Science.gov (United States)

    Cataldo, G.; Barrentine, E. M.; Bulcha, B. T.; Ehsan, N.; Hess, L. A.; Noroozian, O.; Stevenson, T. R.; U-Yen, K.; Wollack, E. J.; Moseley, S. H.

    2018-04-01

    Micro-Spec (µ-Spec) is a direct-detection spectrometer which integrates all the components of a diffraction-grating spectrometer onto a ˜ 10-cm^2 chip through the use of superconducting microstrip transmission lines on a single-crystal silicon substrate. A second-generation µ-Spec is being designed to operate with a spectral resolution of 512 in the submillimeter (500-1000 µm, 300-600 GHz) wavelength range, a band of interest for several spectroscopic applications in astrophysics. High-altitude balloon missions would provide the first test bed to demonstrate the µ-Spec technology in a space-like environment and would be an economically viable venue for multiple observation campaigns. This work reports on the current status of the instrument design and will provide a brief overview of each instrument subsystem. Particular emphasis will be given to the design of the spectrometer's two-dimensional diffractive region, through which the light of different wavelengths is focused on the detectors along the focal plane. An optimization process is employed to generate geometrical configurations of the diffractive region that satisfy specific requirements on spectrometer size, operating spectral range, and performance. An optical design optimized for balloon missions will be presented in terms of geometric layout, spectral purity, and efficiency.

  19. Shape of argon spectral lines emitted from an electric arc (P=760 Torr). Study and application of pressure broadening

    International Nuclear Information System (INIS)

    Kretzas, Dimitrios.

    1978-01-01

    We have studied the broadening and shift of argon spectral lines corresponding to 3p 5 5p-3p 5 4s and 3p 5 4p-3p 5 4s transitions emitted from an electric arc burning under atmospheric pressure. We have revealed the broadening due to neutral atoms pressure effect, distinguishing the transitions whose lower level is a metastable one (1s 3 and 1s 5 ) or a level of strong (1s 2 ) or feeble resonance (1s 4 ). In this study we have employed a mixture of argon (98%) and hydrogen (2%); hydrogen's feeble proportion does not perturb much the discharge and is very suitable for the measure of the electronic density. The important departure of L.T.E. has guided us to imagine and apply an original method to measure the temperature and the overpopulation of the neutral atoms in the fondamental state. Our method which is independent of the existence of L.T.E. is based on the different behavior of the spectral lines which are under the influence of the resonance or Van der Waals broadening. The measure of the broadening constants which in the resonance case are independent of the temperature and vary as Tsup(0,3) for V.d.W's broadening, give us a suitable tool to measure the density and the temperature of the neutral atoms [fr

  20. Micro-Spec: an Integrated, Direct-Detection Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  1. Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations

    International Nuclear Information System (INIS)

    Poquerusse, A.; Alexiou, S.

    1999-01-01

    In this work we review the status of the standard line broadening theory for plasmas and fill in the existing gap, i.e., the partially overlapping case for ions lines, by deriving expressions as well as fast and accurate numerical approximations for the relevant functions, namely the modified Bessel function of imaginary order and its derivative with respect to argument. These functions also arise in the context of the theory of Coulomb excitation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Experimental Line List of Water Vapor Absorption Lines in the Spectral Ranges 1850 - 2280 CM-1 and 2390-4000 CM-1

    Science.gov (United States)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2017-06-01

    A new experimental line parameter list of water vapor absorption lines in the spectral ranges 1850 - 2280 cm-1 and 2390 - 4000 cm-1 is presented. The line list is based on the analysis of several transmittance spectra measured using a Bruker IFS 125 HR high resolution Fourier transform spectrometer. A total of 54 measurements of pure water and water/air-mixtures at 296 K as well as water/air-mixtures at high and low temperatures were performed. A multispectrum fitting approach was used applying a quadratic speed-dependent hard collision line shape model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation in order to retrieve line positions, intensities, self- and air-broadening parameters, their speed-dependence, self- and air-shifts as well as line mixing and in some cases collisional narrowing parameters. Additionally, temperature dependence parameters for widths, shifts and in a few cases line mixing were retrieved. For every parameter an extensive error estimation calculation was performed identifying and specifying systematic error sources. The resulting parameters are compared to the databases HITRAN12 as well as experimental values. For intensities, a detailed comparison to results of recent ab initio calculations performed at University College London was done showing an agreement within 2 % for a majority of the data. However, for some bands there are systematic deviations attributed to ab initio calculation errors. .H. Ngo et al. JQSRT 129, 89-100 (2013) doi:10.1016/j.jqsrt.2013.05.034; JQSRT 134, 105 (2014) doi:10.1016/j.jqsrt.2013.10.016. H. Tran et al. JQSRT 129, 199-203 (2013) doi:10.1016/j.jqsrt.2013.06.015; JQSRT 134, 104 (2014) doi:10.1016/j.jqsrt.2013.10.015. L.S. Rothman et al. JQSRT 130, 4-50 (2013) doi:10.1016/j.jqsrt.2013.07.002. N. Jacquinet-Husson et al. JMS 112, 2395-2445 (2016) doi:10.1016/j.jms.2016.06.007.

  3. Spectral survey of helium lines in a linear plasma device for use in HELIOS imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ray, H. B., E-mail: rayhb@ornl.gov [University of Tennessee, Knoxville, Tennessee 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Biewer, T. M.; Fehling, D. T.; Isler, R. C.; Unterberg, E. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2016-11-15

    Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory’s Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine T{sub e} and n{sub e}. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent T{sub e} and n{sub e} localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional “images” of T{sub e} and n{sub e} in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique.

  4. Spectral survey of helium lines in a linear plasma device for use in HELIOS imaging

    Science.gov (United States)

    Ray, H. B.; Biewer, T. M.; Fehling, D. T.; Isler, R. C.; Unterberg, E. A.

    2016-11-01

    Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory's Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine Te and ne. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent Te and ne localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional "images" of Te and ne in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique.

  5. Combined pseudo-spectral / actuator line model for wind turbine applications

    DEFF Research Database (Denmark)

    Dag, Kaya Onur

    2017-01-01

    of the developed code is presented and verifications are carried out. In the second part, by using the new LES code, a comprehensive investigation is made for the well-known actuator line model (ALM), which is cost-efficient for investigation of the loading estimations on wind turbine blades. In ALM, the body...

  6. New submillimeter detectors and antenna arrays

    International Nuclear Information System (INIS)

    Fetterman, H.R.; Reible, S.A.; Sollner, G.; Parker, C.D.

    1982-01-01

    Preliminary investigation has been made into the use of SIS (superconductor--insulator--superconductor) diodes for possible roles in sub-millimeter imaging systems. That is, extremely low noise, millimeter wave detectors and mixers have recently been reported which depend on single-particle tunnelling between two superconducting films separated by a thin oxide layer. The combination of excellent low-frequency sensitivity and well-developed fabrication technology make the SIS mixers particularly attractive for the systems using antenna structures and arrays in millimeter and submillimeter regions. The SIS diodes of Nb-Nb 2 O 5 -Pb showed a strong video response to the radiation which could be differentiated from the regular Josephson effect since it was not affected by a magnetic field. In exploring the three-terminal devices for possible detector and source applications in submillimeter region, the authors first determined that millimeter and submillimeter radiation could be effectively coupled to and detected in high-frequency FETs. Video response was readily obtained at 800 GHz, and carcinotron radiation at 350 GHz was mixed with the 5th harmonic of a 70 GHz klystron, producing over 45 db signal-to-noise ratio in the intermediate frequency. Since FET can function as a three-terminal oscillator simultaneously detecting submillimeter radiation or optical beats, it has interesting possibility, such as self-oscillating mixers or subharmonic local oscillators. (Wakatsuki, Y.)

  7. Getting Your Peaks in Line: A Review of Alignment Methods for NMR Spectral Data

    Directory of Open Access Journals (Sweden)

    Trung Nghia Vu

    2013-04-01

    Full Text Available One of the most significant challenges in the comparative analysis of Nuclear Magnetic Resonance (NMR metabolome profiles is the occurrence of shifts between peaks across different spectra, for example caused by fluctuations in pH, temperature, instrument factors and ion content. Proper alignment of spectral peaks is therefore often a crucial preprocessing step prior to downstream quantitative analysis. Various alignment methods have been developed specifically for this purpose. Other methods were originally developed to align other data types (GC, LC, SELDI-MS, etc., but can also be applied to NMR data. This review discusses the available methods, as well as related problems such as reference determination or the evaluation of alignment quality. We present a generic alignment framework that allows for comparison and classification of different alignment approaches according to their algorithmic principles, and we discuss their performance.

  8. Focal plane optics in far-infrared and submillimeter astronomy

    Science.gov (United States)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  9. Focal plane optics in far-infrared and submillimeter astronomy

    Science.gov (United States)

    Hildebrand, R. H.

    1986-02-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  10. UV and X-ray spectral lines of Be-like Fe ion for plasma diagnostics

    International Nuclear Information System (INIS)

    Murakami, Izumi; Kato, Takako; Dubau, J.

    1996-04-01

    We have calculated X-ray and UV spectra of the Be-like Fe (FeXXIII) ion using collisional-radiative model including all fine-structure transitions among the 2s 2 , 2s2p, 2p 2 , 2snl, and 2pnl levels where n = 3 and 4, adopting data for the collision strengths by Zhang and Sampson (1992) and by Sampson, Goett, and Clark (1984). Some line intensity ratios can be used for the temperature diagnostic. We show 5 ratios in UV region and 9 ratios in X-ray region as functions of electron temperature and density at 0.3keV e e = 1-10 25 cm -3 . The effect of cascade in these line ratios is discussed. (author)

  11. A Modified Generalized Laguerre Spectral Method for Fractional Differential Equations on the Half Line

    Directory of Open Access Journals (Sweden)

    D. Baleanu

    2013-01-01

    fractional derivatives is based on modified generalized Laguerre polynomials Li(α,β(x with x∈Λ=(0,∞, α>−1, and β>0, and i is the polynomial degree. We implement and develop the modified generalized Laguerre collocation method based on the modified generalized Laguerre-Gauss points which is used as collocation nodes for solving nonlinear multiterm FDEs on the half line.

  12. A Spectral-line Analysis of the G8 III Standard ε VIR

    Energy Technology Data Exchange (ETDEWEB)

    Gray, David F., E-mail: dfgray@uwo.ca [Department of Physics and Astronomy University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)

    2017-08-10

    Eleven seasons of spectroscopic data comprised of 107 exposures for the stable G8 III standard star, ε Vir are analyzed for projected rotation rate and granulation parameters. A Fourier analysis of the line shapes yield v sin i = 3.06 ± 0.20 km s{sup −1} and a radial-tangential macroturbulence dispersion ζ {sub RT} = 5.16 ± 0.08 km s{sup −1}. The radial velocity over nine seasons is constant to 18 m s{sup −1}. The absolute radial velocity with granulation blueshifts (but not gravitational redshift) removed is −14120 ± 75 m s{sup −1}. Line-depth ratios show the temperature to be constant to 0.7 K over 11 years, although a small secular rise or cyclic variation ∼1 K cannot be ruled out. The third-signature plot shows that the star has granulation velocities 10% larger than the Sun's. Mapping the Fe i λ 6253 line bisector on to the third-signature plot indicates a normal-for-giants flux deficit area of 12.8%, indicating ∼134 K temperature difference between granules and lanes. Deficit velocities of GK giants are seen to shift to higher values with higher luminosity, ∼0.75 km s{sup −1} over Δ M {sub V} ∼ 1.5, indicating larger velocity differences between granules and lanes for giants higher in the HR diagram.

  13. Infrared Line Intensities for Formaldehyde from Simultaneous Measurements in the Infrared and Far Infrared Spectral Ranges

    Science.gov (United States)

    Fissiaux, L.; Földes, T.; Tchana, F. Kwabia; Daumont, L.; Lepère, M.; Vander Auwera, J.

    2011-06-01

    Formaldehyde (H_2CO) is an important intermediate compound in the degradation of the volatile organic compounds (VOCs), including methane, in the terrestrial troposphere. Its observation using optical remote sensing in the infrared range relies on the 3.6 and 5.7 μm absorption bands. Band and individual line intensities have been reported in both ranges. With the present work, we aim to also derive infrared line intensities for formaldehyde, however relying on pure rotation line intensities and the known electric dipole moment to determine the particle density. Indeed, because formaldehyde polymerizes or degrades easily, the gas phase may contain polymerization or degradation products. Spectra of H_2CO diluted in 10 hPa of N_2 were therefore simultaneously recorded in the 20-60 Cm-1 and 3.6 μm ranges, respectively using a Bruker IFS125HR Fourier transform spectrometer and a tunable diode laser. see A. Perrin, D. Jacquemart, F. Kwabia Tchana, N. Lacome, J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 700-716, and references therein

  14. Far-infrared and submillimeter spectroscopy of photodissociation regions

    International Nuclear Information System (INIS)

    Qaiyum, A.

    1993-12-01

    The physical properties of the galactic and extragalactic photodissociation regions, warm gas components molecular clouds are, generally, derived through the far-infrared (FIR) fine structure and submillimeter line emissions arising out of these regions. In the theoretical studies of these lines the model of Tielens and Hollenbach (herein after referred as TH) are usually employed in which all the opacity is assumed local in escape probability formalism and inward directed photons do not escape. These assumptions are contrary to the observational facts, where most of the lines are found optically thin except OI (63 μm) and low rotational transitions of CO and some other molecules. The optically thin medium will allow the radiation to escape through any face of the region. These observational evidences let us to assume finite parallel plane slab, instead of semi-infinite parallel slab, in which the photons are allowed to escape from both surfaces (back and front). In the present study an attempt has been made to incorporate the two sided escape of photons from the PDRs and to study its effect on the FIR and submillimeter line emission from the PDRs/molecular clouds. Further the present formalism is also employed to study the clumpy PDRs/molecular clouds. The preliminary results show that now serious consequences are found on the thermal and chemical structure of the regions but individual line emissions are modified by differing factors. Particularly at low density and low kinetic temperature the change is substantial but at density greater than the critical density of the line and temperature close to the excitation temperature its effect is almost negligible. An attempt has also been made to study the physical conditions of the M17 region employing the present formalism. (author). 49 refs, 8 figs, 1 tab

  15. Submillimeter Confocal Imaging Active Module

    Science.gov (United States)

    Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John

    2009-01-01

    The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams

  16. Analytical Chemical Sensing in the Submillimeter/terahertz Spectral Range

    Science.gov (United States)

    Moran, Benjamin L.; Fosnight, Alyssa M.; Medvedev, Ivan R.; Neese, Christopher F.

    2012-06-01

    Highly sensitive and selective Terahertz sensor utilized to quantitatively analyze a complex mixture of Volatile Organic Compounds is reported. To best demonstrate analytical capabilities of THz chemical sensors we chose to perform analytical quantitative analysis of a certified gas mixture using a novel prototype chemical sensor that couples a commercial preconcentration system (Entech 7100A) to a high resolution THz spectrometer. We selected Method TO-14A certified mixture of 39 volatile organic compounds (VOCs) diluted to 1 part per million (ppm) in nitrogen. 26 of the 39 chemicals were identified by us as suitable for THz spectroscopic detection. Entech 7100A system is designed and marketed as an inlet system for Gas Chromatography-Mass Spectrometry (GC-MS) instruments with a specific focus on TO-14 and TO-15 EPA sampling methods. Its preconcentration efficiency is high for the 39 chemicals in the mixture used for this study and our preliminary results confirm this. Here we present the results of this study which serves as basis for our ongoing research in environmental sensing and analysis of exhaled human breath.

  17. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    Science.gov (United States)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  18. Submillimeter wave ESR of copper-oxides

    International Nuclear Information System (INIS)

    Ohta, Hitoshi; Motokawa, Mitsuhiro

    1993-01-01

    Since the discovery of high T c superconductors the magnetism of various copper-oxides has attracted much interest. Especially the magnetism of strong spin correlation systems in various CuO 4 networks is of great interest because it is well known that the superconductivity is occurring in the CuO 2 plane of the high T c superconductors. Here the authors will show some of their work done on copper-oxides by submillimeter wave ESR. The submillimeter wave ESR can provide the frequency region of 90 ∼ 3,100 GHz and the pulse magnetic field up to 30T

  19. Spectral line profile analysis for evaluation of Gaussian and Lorentzian widths and collisional broadening coefficient

    International Nuclear Information System (INIS)

    Nakhate, S.G.; Ahmad, S.A.; Pushpa; Rao, M.; Saksena, G.D.

    1991-01-01

    Deconvolution of atomic line profiles, recorded on PC interfaced recording Fabry-Perot spectrometer, into its Lorentzian and Gaussian component has been carried out. Effect of various parameters of hollow cathode discharge lamp (light source) such as discharge current, bath temperature and gas pressure on Lorentzian and Gaussian width has been studied. The value of the self-broadening coefficient for neon-neon atomic interaction for the transition 2p 5 4P-2P 5 3s (λ=3472.571 A) has been determined. (author). 15 refs., 6 figs., 4 tabs

  20. Operation of Small Radio Telescope (SRT) recorded 21 cm spectral line of Hydrogen at VATLY Laboratory

    International Nuclear Information System (INIS)

    Pham Ngoc Dong; Pham Tuan Anh; Pham Ngoc Diep; Pham Thi Tuyet Nhung; Nguyen Van Hiep

    2013-01-01

    A small radio telescope (SRT) has been installed on the roof of the Hanoi astrophysics laboratory VATLY. It is equipped with a 2.6 m diameter mobile parabolic dish remotely controlled in elevation and azimuth and with super-heterodyne detection around the 21 cm hydrogen line. They demonstrate the high quality of the telescope performance and are used to evaluate lobe size, signal to noise ratios, anthropogenic interferences and measurement accuracies. Particular attention is given to the measurement of the pointing accuracy. First results of observations of the Sun and of the centre of the Milky Way are presented. (author)

  1. X-ray spectral models of Galactic bulge sources - the emission-line factor

    International Nuclear Information System (INIS)

    Vrtilek, S.D.; Swank, J.H.; Kallman, T.R.

    1988-01-01

    Current difficulties in finding unique and physically meaningful models for the X-ray spectra of Galactic bulge sources are exacerbated by the presence of strong, variable emission and absorption features that are not resolved by the instruments observing them. Nine Einstein solid state spectrometer (SSS) observations of five Galactic bulge sources are presented for which relatively high resolution objective grating spectrometer (OGS) data have been published. It is found that in every case the goodness of fit of simple models to SSS data is greatly improved by adding line features identified in the OGS that cannot be resolved by the SSS but nevertheless strongly influence the spectra observed by SSS. 32 references

  2. Some new ideas for the study of the complex spectral line profiles of hot emission stars and quasars

    Science.gov (United States)

    Danezis, E.

    2013-01-01

    Some Hot Emission Stars and AGNs present peculiar spectral line profiles which are due to DACs and SACs phenomena. The origin and the mechanisms which are responsible for the creation of DACs/SACs is an important problem that has been studied by many researchers. This paper is a review of our efforts to study the origin and the mechanisms of these phenomena. At first we present a theoretic ad hoc picture for the structure of the plasma that surrounds the specific category of hot emission stars that present DACs or SACs. Then we present the mathematical model that we constructed, which is based on the properties of the above ad hoc theoretical structure. Finally, we present some results from our statistical studies that prove the consistency of our model with the classical physical theory.

  3. Integrated flux-flow oscillators for submillimeter wave receivers

    International Nuclear Information System (INIS)

    Koshelets, V.P.; Shchukin, A.V.; Shitov, S.V.; Filippenko, L.V.; Fischer, G.M.; Mygind, J.

    1994-01-01

    A superconducting Flux-Flow Oscillator (FFO) integrated on the same chip with a small Josephson junction detector has been experimentally investigated in the frequency range 100 - 450 GHz. Both the emitted power and the frequency of the FFO can be varied by adjusting the dc bias current and/or the applied dc magnetic field. Microwave powers as high as 0.3 μW have been measured at 375 GHz. The spectral width of the FFO is about 1 MHz as estimated from harmonic mixing experiments. Also a fully integrated superconducting submillimeter wave receiver using the FFO as local oscillator has been successfully tested. The circuit included coupling transformers, a superconducting variable attenuator and a detector junction with tuned-out capacitance. (orig.)

  4. On-line database of the spectral properties of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Malloci, Giuliano; Joblin, Christine; Mulas, Giacomo

    2007-01-01

    We present an on-line database of computed molecular properties for a large sample of polycyclic aromatic hydrocarbons in four charge states: -1, 0, +1, and +2. At present our database includes 40 molecules ranging in size from naphthalene and azulene (C 10 H 8 ) up to circumovalene (C 66 H 20 ). We performed our calculations in the framework of the density functional theory (DFT) and the time-dependent DFT to obtain the most relevant molecular parameters needed for astrophysical applications. For each molecule in the sample, our database presents in a uniform way the energetic, rotational, vibrational, and electronic properties. It is freely accessible on the web at (http://astrochemistry.ca.astro.it/database/) and (http://www.cesr.fr/~joblin/database/)

  5. X-ray spectral line shapes for the excimer-laser-produced high density plasma diagnostics

    International Nuclear Information System (INIS)

    Magunov, A.; Faenov, A.; Skobelev, I.; Pikuz, T.; Batani, D.; Milani, M.; Conti, A.; Masini, A.; Costato, M.; Pozzi, A.; Turcu, E.; Allot, R.; Lisi, N.; Koenig, M.; Benuzzi, A.; Flora, F.; Letardi, T.; Palladino, L.; Reale, A.

    1997-01-01

    The time and space-integrated emission spectra measurements have been performed in plasma produced by 308 nm wavelength XeCl laser radiation (I L =(4-10)·10 12 W/cm 2 , τ=10 ns) and by 248 nm wavelength KrF laser pulse train radiation (I L =5·10 15 W/cm 2 , τ=7 ps, 16 pulses in train) on CF n plane target. The lines' shapes and intensities modeling of Lyman series and He-like ion resonance series of fluorine up to n=7 by fitting experimental data shows the considerable difference of plasma formation features for these two sets of the laser pulse parameters

  6. Python Radiative Transfer Emission code (PyRaTE): non-LTE spectral lines simulations

    Science.gov (United States)

    Tritsis, A.; Yorke, H.; Tassis, K.

    2018-05-01

    We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When computing the escape probability, the optical depth is calculated towards all directions with density, molecular abundance, temperature and velocity variations all taken into account. A very easy-to-use interface, capable of importing data from simulations outputs performed with all major astrophysical codes, is also developed. The code is written in PYTHON using an "embarrassingly parallel" strategy and can handle all geometries and projection angles. We benchmark the code by comparing our results with those from RADEX (van der Tak et al. 2007) and against analytical solutions and present case studies using hydrochemical simulations. The code will be released for public use.

  7. Spectral Line Shapes in the ν_3 Q Branch of ^{12}CH_4 Near 3.3 μm

    Science.gov (United States)

    Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Smith, Mary Ann H.; Sams, Robert L.

    2017-06-01

    Detailed knowledge of spectroscopic parameters for prominent Q branches of methane is necessary for interpretation and modeling of high resolution infrared spectra of terrestrial and planetary atmospheres. We have measured air-broadened line shape parameters in the Q branch of ^{12}CH_4 in the ν_3 fundamental band for a large number of transitions in the 3000 to 3023 cm^{-1} region by analyzing 13 room-temperature laboratory absorption spectra. Twelve of these spectra were recorded with 0.01 cm^{-1} resolution using the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory (NSO) on Kitt Peak, and one higher-resolution (˜0.0011 cm^{-1}) low pressure (˜1 Torr) spectrum of methane was obtained using the Bruker IFS 120HR FTS at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. The air-broadened spectra were recorded using various absorption cells with path lengths of 5, 20, 25, and 150 cm, total sample pressures between 50 and 500 Torr, and CH_4 volume mixing ratios of 0.01 or less. All 13 spectra were fit simultaneously covering the 3000-3023 cm^{-1} spectral region using a multispectrum nonlinear least squares technique to retrieve accurate line positions, absolute intensities, Lorentz air-broadened widths and pressure-shift coefficients. Line mixing using the off-diagonal relaxation matrix element formalism was measured for a number of pairs of transitions for the CH_4-air collisional system. The results will be compared to values reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.

  8. Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Golwala, Sunil R.; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Hollister, Matthew I.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Schlaerth, James A.; Siegel, Seth; Vayonakis, Anastasios K.; Wilson, Philip R.; Zmuidzinas, Jonas

    2012-09-01

    We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses broadband superconducting phased-array slot-dipole antennas to form beams, lumpedelement on-chip bandpass filters to define spectral bands, and microwave kinetic inductance detectors to sense incoming light. The focal plane is fabricated in 8 tiles consisting of 72 spatial pixels each. It is coupled to the telescope via an ambient-temperature ellipsoidal mirror and a cold reimaging lens. A cold Lyot stop sits at the image of the primary mirror formed by the ellipsoidal mirror. Dielectric and metal-mesh filters are used to block thermal infrared and out-ofband radiation. The instrument uses a pulse tube cooler and 3He/ 3He/4He closed-cycle cooler to cool the focal plane to below 250 mK. A multilayer shield attenuates Earth's magnetic field. Each focal plane tile is read out by a single pair of coaxes and a HEMT amplifier. The readout system consists of 16 copies of custom-designed ADC/DAC and IF boards coupled to the CASPER ROACH platform. We focus on recent updates on the instrument design and results from the commissioning of the full camera in 2012.

  9. Fast algorithm for spectral processing with application to on-line welding quality assurance

    Science.gov (United States)

    Mirapeix, J.; Cobo, A.; Jaúregui, C.; López-Higuera, J. M.

    2006-10-01

    A new technique is presented in this paper for the analysis of welding process emission spectra to accurately estimate in real-time the plasma electronic temperature. The estimation of the electronic temperature of the plasma, through the analysis of the emission lines from multiple atomic species, may be used to monitor possible perturbations during the welding process. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, sub-pixel algorithms are used to more accurately estimate the central wavelength of the peaks. Three different sub-pixel algorithms will be analysed and compared, and it will be shown that the LPO (linear phase operator) sub-pixel algorithm is a better solution within the proposed system. Experimental tests during TIG-welding using a fibre optic to capture the arc light, together with a low cost CCD-based spectrometer, show that some typical defects associated with perturbations in the electron temperature can be easily detected and identified with this technique. A typical processing time for multiple peak analysis is less than 20 ms running on a conventional PC.

  10. Molecular-cloud-scale Chemical Composition. II. Mapping Spectral Line Survey toward W3(OH) in the 3 mm Band

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yuri [Institute of Astronomy, The University of Tokyo, 2-21-1, Osawa, Mitaka, Tokyo 181-0015 (Japan); Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harada, Nanase [Academia Sinica Institute of Astronomy and Astrophysics, No.1, Sec. 4, Roosevelt Road, 10617 Taipei, Taiwan, R.O.C. (China); Shimonishi, Takashi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramakiazaaoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Sakai, Nami [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, Yuri [Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kawamura, Akiko [Chile Observatory, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2017-10-10

    To study a molecular-cloud-scale chemical composition, we conducted a mapping spectral line survey toward the Galactic molecular cloud W3(OH), which is one of the most active star-forming regions in the Perseus arm. We conducted our survey through the use of the Nobeyama Radio Observatory 45 m telescope, and observed the area of 16′ × 16′, which corresponds to 9.0 pc × 9.0 pc. The observed frequency ranges are 87–91, 96–103, and 108–112 GHz. We prepared the spectrum averaged over the observed area, in which eight molecular species (CCH, HCN, HCO{sup +}, HNC, CS, SO, C{sup 18}O, and {sup 13}CO) are identified. On the other hand, the spectrum of the W3(OH) hot core observed at a 0.17 pc resolution shows the lines of various molecules such as OCS, H{sub 2}CS CH{sub 3}CCH, and CH{sub 3}CN in addition to the above species. In the spatially averaged spectrum, emission of the species concentrated just around the star-forming core, such as CH{sub 3}OH and HC{sub 3}N, is fainter than in the hot core spectrum, whereas emission of the species widely extended over the cloud such as CCH is relatively brighter. We classified the observed area into five subregions according to the integrated intensity of {sup 13}CO, and evaluated the contribution to the averaged spectrum from each subregion. The CCH, HCN, HCO{sup +}, and CS lines can be seen even in the spectrum of the subregion with the lowest {sup 13}CO integrated intensity range (<10 K km s{sup −1}). Thus, the contributions of the spatially extended emission is confirmed to be dominant in the spatially averaged spectrum.

  11. Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D’Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Essig, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Inoue, Y.; Izaguirre, E.; Jogler, T.; Kamae, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Malyshev, D.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romani, R. W.; Sánchez-Conde, M.; Schulz, A.; Sgrò, C.; Siegal-Gaskins, J.; Siskind, E. J.; Snyder, A.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zaharijas, G.; Zimmer, S.

    2013-10-22

    Weakly interacting massive particles (WIMPs) are a theoretical class of particles that are excellent dark matter candidates. WIMP annihilation or decay may produce essentially monochromatic γ rays detectable by the Fermi Large Area Telescope (LAT) against the astrophysical γ -ray emission of the Galaxy. We have searched for spectral lines in the energy range 5–300 GeV using 3.7 years of data, reprocessed with updated instrument calibrations and an improved energy dispersion model compared to the previous Fermi-LAT Collaboration line searches. We searched in five regions selected to optimize sensitivity to different theoretically motivated dark matter density distributions. We did not find any globally significant lines in our a priori search regions and present 95% confidence limits for annihilation cross sections of self-conjugate WIMPs and decay lifetimes. Our most significant fit occurred at 133 GeV in our smallest search region and had a local significance of 3.3 standard deviations, which translates to a global significance of 1.5 standard deviations. We discuss potential systematic effects in this search, and examine the feature at 133 GeV in detail. We find that the use both of reprocessed data and of additional information in the energy dispersion model contributes to the reduction in significance of the linelike feature near 130 GeV relative to significances reported in other works. We also find that the feature is narrower than the LAT energy resolution at the level of 2 to 3 standard deviations, which somewhat disfavors the interpretation of the 133 GeV feature as a real WIMP signal.

  12. The application of the piecewise linear approximation to the spectral neighborhood of soil line for the analysis of the quality of normalization of remote sensing materials

    Science.gov (United States)

    Kulyanitsa, A. L.; Rukhovich, A. D.; Rukhovich, D. D.; Koroleva, P. V.; Rukhovich, D. I.; Simakova, M. S.

    2017-04-01

    The concept of soil line can be to describe the temporal distribution of spectral characteristics of the bare soil surface. In this case, the soil line can be referred to as the multi-temporal soil line, or simply temporal soil line (TSL). In order to create TSL for 8000 regular lattice points for the territory of three regions of Tula oblast, we used 34 Landsat images obtained in the period from 1985 to 2014 after their certain transformation. As Landsat images are the matrices of the values of spectral brightness, this transformation is the normalization of matrices. There are several methods of normalization that move, rotate, and scale the spectral plane. In our study, we applied the method of piecewise linear approximation to the spectral neighborhood of soil line in order to assess the quality of normalization mathematically. This approach allowed us to range normalization methods according to their quality as follows: classic normalization > successive application of the turn and shift > successive application of the atmospheric correction and shift > atmospheric correction > shift > turn > raw data. The normalized data allowed us to create the maps of the distribution of a and b coefficients of the TSL. The map of b coefficient is characterized by the high correlation with the ground-truth data obtained from 1899 soil pits described during the soil surveys performed by the local institute for land management (GIPROZEM).

  13. Chemistry in the final stages of stellar evolution: Millimeter and submillimeter observations of supergiants and planetary nebulae

    Science.gov (United States)

    Edwards, Jessica Louise

    High mass loss rates in evolved stars make them the major contributors to recycling processed material back into the interstellar medium. This mass loss creates large circumstellar shells, rich in molecular material. This dissertation presents millimeter and submillimeter studies of the end stages of low mass and high mass stars in order to probe their molecular content in more detail. In low mass stars, the molecular material is carried on into the planetary nebula (PN) stage. Observations of CS, HCO+, and CO in planetary nebulae (PNe) of various post-asymptotic giant branch ages have shown that molecular abundances in these objects do not significantly vary with age, as previously thought. More detailed observations of the slightly oxygen-rich PN NGC 6537 resulted in the detection of CN, HCN, HNC, CCH, CS, SO, H 2CO, HCO+ and N2H+, as well as numerous 13C isotopologues. Observations of the middle-aged PN M2-48 showed the presence of CN, HCN, HNC, CS, SO, SO2, SiO, HCO+, N2H+, and several 13C isotopologues. These observations represent the first detections of CS, SO, SO2, and SiO in any planetary nebula. The implications of these observations are discussed. A 1 mm spectral survey of the supergiant star NML Cygni has been carried out with the Arizona Radio Observatory Submillimeter Telescope resulting in the observation of 102 emission features arising from 17 different molecules and 4 unidentified features. The line profiles observed in this circumstellar shell are asymmetric and vary between different molecules, akin to what has been seen in another supergiant, VY Canis Majoris. The non-LTE radiative transfer code ESCAPADE has been used to model molecular abundances in the various asymmetric outflows of VY Canis Majoris, showing just how chemically and kinematically complex these supergiant circumstellar envelopes really are.

  14. Submillimeter molecular spectroscopy with the Texas millimeter wave observatory radio telescope

    International Nuclear Information System (INIS)

    Loren, R.B.; Wootten, A.; National Radio Astronomy Observatory, Charlottesville, VA)

    1986-01-01

    A large number of previously unreported molecular transitions have been detected in the submillimeter wavelength band toward OMC-1 and M17 SW using the Texas 4.9 m radio antenna. The emission components in OMC-1 that come from the unresolved plateau and hot core regions are stronger in these higher energy transitions than in the lower-energy, lower-frequency lines. Intense, probably thermalized high J SiO lines require a very hot core if they arise in a region the same size as that mapped in J = 2-1 SiO by interferometer measurements. Despite the high energy levels of the submillimeter lines of CN and CCH, there is no broad emission component evident, consistent with their greatly reduced abundance due to removal by chemical reactions. 33 references

  15. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); De Breuck, C.; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Holzapfel, W. L., E-mail: jspilker@as.arizona.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  16. Review of Langmuir-wave-caused dips and charge-exchange-caused dips in spectral lines from plasmas and their applications

    Czech Academy of Sciences Publication Activity Database

    Dalimier, E.; Oks, E.; Renner, Oldřich

    2014-01-01

    Roč. 2, č. 2 (2014), s. 178-194 ISSN 2218-2004 Grant - others:AVČR(CZ) M100101208 Institutional support: RVO:68378271 Keywords : Laser-matter interaction * spectral line profiles * Langmuir waves * plasma electron density * charge exchange rates Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Influence of Laser Radiation Power Density on the Intensity of Spectral Lines for Main Components in a Clay Laser-Induced Plasma

    Science.gov (United States)

    Anufrik, S. S.; Kurian, N. N.; Znosko, K. F.; Belkov, M. V.

    2018-05-01

    We have studied the intensity of the spectral lines for the main components in clay: Al I 309.4 nm, Al II 358.7 nm, Mg II 279.6 nm, Ti II 323.6 nm vs. the position of the object relative to the focus of the optical system when the samples are exposed to single laser pulses from a YAG:Nd3+ laser. We have determined the permissible ranges for positioning the object relative to the focus of the optical system (positive and negative defocusing) for which there is practically no change in the reproducibility of the intensity for the spectral lines for red and white clay samples. We show that the position of the object relative to the focus of the optical system should be within the range ΔZ ±1.5 mm for optimal laser pulse energies for the analyte spectral lines. We have calculated the radiation flux density for different laser pulse energies and different distances from the focus to the object. We have shown experimentally that reducing the radiation flux density leads to a decrease in the intensity of the analyte spectral lines.

  18. Using RADMC-3D to model the radiative transfer of spectral lines in protoplanetary disks and envelopes

    Science.gov (United States)

    DeVries, John; Terebey, Susan

    2018-06-01

    Protoplanetary disks are the birthplaces of planets in our universe. Observations of these disks with radio telescopes like the Atacama Large Millimeter Array (ALMA) offer great insight into the star and planet formation process. Comparing theories of formation with observations requires tracing the energy transfer via electromagnetic radiation, known as radiative transfer. To determine the temperature distribution of circumstellar material, a Monte Carlo code (Whitney et al. [1]) was used to to perform the radiative transfer through dust. The goal of this research is to utilize RADMC-3D [2] to handle the spectral line radiative transfer computations. An existing model of a rotating ring was expanded to include emission from the C18O isotopologue of carbon monoxide using data from the Leiden Atomic and Molecular Database (LAMDA). This feature of our model compliments ALMA's ability to measure C18O line emission, a proxy for disk rotation. In addition to modeling gas in the protoplanetary disk, dust also plays an important role. The generic description of absorption and scattering for dust provided by RADMC-3D was changed in favor of a more physically-realistic description with OH5 grains. This description is more appropriate in high-density regions of the envelope around a protostar. Further improvements, such as consideration for the finite resolution of observations, have been implemented. The task at present is to compare our model with observations of protoplanetary systems like L1527. Some results of these comparisons will be presented.[1] Whitney et al. 2013, ApJS, 207:30[2] RADMC-3D: http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/

  19. X-ray diffraction patterns and diffracted intensity of Kα spectral lines of He-like ions

    Science.gov (United States)

    Goyal, Arun; Khatri, Indu; Singh, A. K.; Sharma, Rinku; Mohan, Man

    2017-09-01

    In the present paper, we have calculated fine-structure energy levels related to the configurations 1s2s, 1s2p, 1s3s and 1s3p by employing GRASP2K code. We have also computed radiative data for transitions from 1s2p 1 P1o, 1s2p 3 P2o, 1s2p 3 P1o and 1s2s 3S1 to the ground state 1s2. We have made comparisons of our presented energy levels and transition wavelengths with available results compiled by NIST and good agreement is achieved. We have also provided X-ray diffraction (XRD) patterns of Kα spectral lines, namely w, x, y and z of Cu XXVIII, Kr XXXV and Mo with diffraction angle and maximum diffracted intensity which is not published elsewhere in the literature. We believe that our presented results may be beneficial in determination of the order parameter, X-ray crystallography, solid-state drug analysis, forensic science, geological and medical applications.

  20. Estimation of Signal Coherence Threshold and Concealed Spectral Lines Applied to Detection of Turbofan Engine Combustion Noise

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2010-01-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.

  1. Argus+: The Future of Wide-Field, Spectral-Line Imaging at 3-mm with the Green Bank Telescope

    Science.gov (United States)

    Maddalena, Ronald; Frayer, David; Lockman, Felix; O'Neil, Karen; White, Steven; Argus+ Collaboration

    2018-01-01

    The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. Observers also have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz, including CO, 13CO, C18O, SiO, HCN, HCO+, HNC, N2H+, and CS. The small number of pixels in Argus limits its ability to map many of the most interesting objects whose extent exceeds many arc-minutes. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. We present our plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5’x5’, and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects.

  2. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    Science.gov (United States)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  3. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto; Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas; Sayers, Jack; Bridge, Carrie; Benford, Dominic; Blain, Andrew; Petty, Sara; Lake, Sean; Bussmann, Shane; Comerford, Julia M.; Evans, Neal J. II; Lonsdale, Carol; Rho, Jeonghee; Stanford, S. Adam

    2012-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (∼1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 μm, yet are clearly detected at 12 and 22 μm. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 μm, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 μm, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10 13 L ☉ . These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  4. Submillimeter Follow-up of Wise-Selected Hyperluminous Galaxies

    Science.gov (United States)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2013-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approximately 1000 all-sky) population of galaxies at high redshift (peaks at zeta = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 micrometers, yet are clearly detected at 12 and 22 micrometers. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (zeta greater than 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 micrometers, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 micrometers, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) solar luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  5. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Sayers, Jack; Bridge, Carrie [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Petty, Sara; Lake, Sean [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Bussmann, Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS78, Cambridge, MA 02138 (United States); Comerford, Julia M.; Evans, Neal J. II [Department of Astronomy, University of Texas, Austin, TX 78731 (United States); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rho, Jeonghee [SETI Institute, 189 BERNARDO Avenue, Mountain View, CA 94043 (United States); Stanford, S. Adam, E-mail: jingwen.wu@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  6. SUBMILLIMETER-WAVE ROTATIONAL SPECTROSCOPY OF H2F+

    International Nuclear Information System (INIS)

    Fujimori, R.; Kawaguchi, K.; Amano, T.

    2011-01-01

    Five pure rotational transitions of H 2 F + generated by a discharge in an HF/H 2 /Ar mixture were observed in the range 473-774 GHz with a backward-wave oscillator based submillimeter-wave spectrometer. A simultaneous analysis of the rotational lines with 120 combination differences for the ground state derived from the infrared spectra was carried out to determine the precise molecular constants for the ground state. The rotational transition frequencies that lie below 2 THz were calculated, together with their estimated uncertainties, to facilitate future astronomical identifications. The chemistry for H 2 F + formation in interstellar space is discussed in comparison with a case for recently detected H 2 Cl + .

  7. Submillimeter and millimeter observations of solar system objects

    International Nuclear Information System (INIS)

    Muhleman, D.O.

    1988-01-01

    Planetary atmospheres and satellite surfaces are observed with the three element array at Caltech's Owens Valley Radio Observatory, Caltech's submillimeter telescope on Mauna Kea and at the 12-meter telescope at Kitt Peak. Researchers are primarily interested in spectroscopy of the atmospheres of Venus, Mars and Titan and the continuum structure of Saturn Rings, Galilean satellites, Neptune and Uranus. During the last year researchers completed a supersynthesis of the Saturn system at 2.8 mm with spatial resolution of 3 arc sec. They just completed a 4-confuguration synthesis of Venus in the CO absorption line. They hope to recover the wind patterns in the altitude range from 60 to 100 km where winds have never been measured. Two important questions are being investigated: (1) how high in the Venus atmosphere do 4-day winds extend, and (2) can we produce experiment proof (or disproof) of the subsolar-to-anti-solar flow (Dickenson winds) predicted by general circulation models

  8. A Deep Chandra ACIS Study of NGC 4151. III. The Line Emission and Spectral Analysis of the Ionization Cone

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-11-01

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L 0.3-2 keV ~ 1040 erg s-1) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] λ5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be lsim12% of the extended emission. Presence of both low- and high-ionization spectral components and extended emission in the X-ray image perpendicular to the bicone indicates leakage of nuclear ionization, likely filtered through warm absorbers, instead of being blocked by a continuous obscuring torus. The ratios of [O III]/soft X-ray flux are approximately constant (~15) for the 1.5 kpc radius spanned by these measurements, indicating similar relative contributions from the low- and high-ionization gas phases at different radial distances from the nucleus. If the [O III] and X-ray emission arise from a single photoionized medium, this further implies an outflow with a wind-like density profile. Using spatially resolved X-ray features, we estimate that the mass outflow rate in NGC 4151 is ~2 M ⊙ yr-1 at 130 pc and the kinematic power of the ionized outflow is 1.7 × 1041 erg s-1, approximately 0.3% of the bolometric luminosity of the active nucleus in NGC 4151.

  9. Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging

    Science.gov (United States)

    Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.

    2011-01-01

    Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter

  10. Plasma satellites of X-ray spectral lines of ions in a plasma of solid-state targets, heated by a picosecond laser pulse

    International Nuclear Information System (INIS)

    Belyaev, V.S.; Vinogradov, V.I.; Kurilov, A.S.; Matafonov, A.P.; Lisitsa, V.S.; Gavrilenko, V.P.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I.; Pikuz, S.A.

    2003-01-01

    The results of measuring the ions X-ray spectral lines by the interaction of the picosecond laser pulses with the solid-state target are presented. The spectra of the X-ray radiation were observed on the fluorine ion line. The spectral lines satellites, testifying to the availability, are identified. The position of the satellites and the distance between them make it possible to connect them with the intensive electrostatic oscillations with the amplitude, exceeding 10 8 V/cm, and the frequency close to 7 x 10 14 s -1 , substantially lower than the laser wave frequency. The experimental results are compared with the calculated data on the multicharge ions spectra [ru

  11. Influence of dust particles on the neon spectral line intensities at the uniform positive column of dc discharge at the space apparatus “Plasma Kristall-4”

    Science.gov (United States)

    Usachev, A. D.; Zobnin, A. V.; Shonenkov, A. V.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Pustyl'nik, M. Y.; Fink, M. A.; Thoma, M. A.; Thomas, H. M.; Padalka, G. I.

    2018-01-01

    Influence of the elongated dust cloud on the intensities of different neon spectral lines in visible and near ir spectral ranges in the uniform positive column has been experimentally investigated using the Russian-European space apparatus “Plasma Kristall-4” (SA PK-4) on board of the International Space Station (ISS). The investigation was performed in the low pressure (0.5 mbar) direct current (dc, 1 mA) gas discharge in neon. Microgravity allowed us to perform experiments with a large dust cloud in the steady-state regime. To avoid the dust cloud drift in the dc electric field a switching dc polarity discharge mode has been applied. During the experiment a dust cloud of 9 mm in diameter in the discharge tube of 30 mm in diameter with the length of about 100 mm has been observed in the steady-state regime. In this regard, the intensities of neon spectral lines corresponding to 3p → 3s electronic transitions have increased by a factor of 1.4 times, while the intensities of neon spectral lines corresponding to 3d → 3p electronic transitions have increased by a factor of 1.6 times. The observed phenomenon is explained on the basis of the Schottky approach by a self-consistent rising dc electric field in the dusty plasma cloud resulting in an increase of the electron temperature.

  12. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    International Nuclear Information System (INIS)

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E.; Aretxaga, I.; Auld, R.; Dariush, A.; Barton, E.; Cooke, J.; Cooray, A.; Beelen, A.; Bertoldi, F.; Bock, J. J.; Bradford, C. M.; Bonfield, D.; Buttiglione, S.; De Zotti, G.; Cava, A.; Clements, D. L.; Dannerbauer, H.; Dunne, L.

    2012-01-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z ∼ 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10 2–3 M ☉ yr –1 . Lower limits for the dust masses (∼ a few 10 8 M ☉ ) and spatial extents (∼1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures (∼< 100 K) and optical depths (τ ∼< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 → 3 to 10 → 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.

  13. Spectral line survey toward the spiral arm of M51 in the 3 and 2 mm bands

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshimasa; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sorai, Kazuo, E-mail: nabe@taurus.phys.s.u-tokyo.ac.jp [Department of Physics/Department of Cosmoscience, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan)

    2014-06-10

    We have conducted a spectral line survey in the 3 and 2 mm bands toward two positions in a spiral arm of M51 (NGC 5194) with the Institut de Radioastronomie Millimétrique 30 m telescope. In this survey, we have identified 13 molecular species, including CN, CCH, N{sub 2}H{sup +}, HNCO, and CH{sub 3}OH. Furthermore, six isotopologues of the major species have been detected. On the other hand, SiO, HC{sub 3}N, CH{sub 3}CN, and deuterated species such as DCN and DCO{sup +} were not detected. The deuterium fractionation ratios are evaluated to be less than 0.8% and 1.2% for DCN/HCN and DCO{sup +}/HCO{sup +}, respectively. By comparing the results of the two positions with different star formation activities, we have found that the observed chemical compositions do not strongly depend on star formation activities. They seem to reflect a chemical composition averaged over the 1 kpc scale region including many giant molecular clouds. Among the detected molecules CN, CCH, and CH{sub 3}OH are found to be abundant. High abundances of CN and CCH are consistent with the above picture of a widespread distribution of molecules because they can be produced by photodissociation. On the other hand, it seems likely that CH{sub 3}OH is liberated in the gas phase by shocks associated with large-scale phenomena such as cloud-cloud collisions and/or by nonthermal desorption processes such as photoevaporation due to cosmic-ray-induced UV photons. The present result demonstrates a characteristic chemical composition of a giant molecular cloud complex in the spiral arm, which can be used as a standard reference for studying chemistry in active galactic nuclei and starbursts.

  14. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    Science.gov (United States)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  15. Submillimeter vibrationally excited water emission from the peculiar red supergiant VY Canis Majoris

    Science.gov (United States)

    Menten, K. M.; Philipp, S. D.; Güsten, R.; Alcolea, J.; Polehampton, E. T.; Brünken, S.

    2006-08-01

    Context: .Vibrationally excited emission from the SiO and H2O molecules probes the innermost circumstellar envelopes of oxygen-rich red giant and supergiant stars. VY CMa is the most prolific known emission source in these molecules. Aims: .Observations were made to search for rotational lines in the lowest vibrationally excited state of H2O. Methods: .The APEX telescope was used for observations of H2O lines at frequencies around 300 GHz. Results: .Two vibrationally excited H2O lines were detected, a third one could not be found. In one of the lines we find evidence for weak maser action, similar to known (sub)millimeter ν2 = 1 lines. We find that the other line's intensity is consistent with thermal excitation by the circumstellar infrared radiation field. Several SiO lines were detected together with the H2O lines.

  16. Measured, calculated and predicted Stark widths of the singly ionized C, N, O, F, Ne, Si, P, S, Cl and Ar spectral lines

    Directory of Open Access Journals (Sweden)

    Djeniže S.

    2000-01-01

    Full Text Available In order to find reliable Stark width data, needed in plasma spectroscopy comparision between the existing measured, calculated and predicted Stark width values was performed for ten singly ionized emitters: C, N, O, F, Ne Si, P, S, Cl and Ar in the lower lying 3s - 3p, 3p - 3d and 4s - 4p transitions. These emitters are present in many cosmic light sources. On the basis of the agreement between mentioned values 17 spectral lines from six singly ionized spectra have been recommended, for the first time, for plasma spectroscopy as spectral lines with reliable Stark width data. Critical analysis of the existing Stark width data is also given.

  17. Theoretical Stark broadening parameters for spectral lines arising from the 2p5ns, 2p5np and 2p5nd electronic configurations of Mg III

    Science.gov (United States)

    Colón, C.; Moreno-Díaz, C.; Alonso-Medina, A.

    2013-10-01

    In the present work we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, corresponding to 237 spectral lines of Mg III. Data are presented for an electron density of 1017 cm-3 and temperatures T = 0.5-10.0 (104K). The matrix elements used in these calculations have been determined from 23 configurations of Mg III: 2s22p6, 2s22p53p, 2s22p54p, 2s22p54f and 2s22p55f for even parity and 2s22p5ns (n = 3-6), 2s22p5nd (n = 3-9), 2s22p55g and 2s2p6np (n = 3-8) for odd parity. For the intermediate coupling (IC) calculations, we use the standard method of least-squares fitting from experimental energy levels by means of the Cowan computer code. Also, in order to test the matrix elements used in our calculations, we present calculated values of 70 transition probabilities of Mg III spectral lines and 14 calculated values of radiative lifetimes of Mg III levels. There is good agreement between our calculations and experimental radiative lifetimes. Spectral lines of Mg III are relevant in astrophysics and also play an important role in the spectral analysis of laboratory plasma. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. No values of Stark parameters can be found in the bibliography.

  18. Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Yubero, C.; Dimitrijevic, M.S.; Garcia, M.C.; Calzada, M.D.

    2007-01-01

    The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure. However, under some experimental conditions, it is difficult to detect them. In order to overcome this difficulty and obtain the temperature, there are methods based on the relation between the gas temperature and the van der Waals broadening of argon atomic spectral lines with a Stark contribution negligible. In this work, we propose a method based on this relation but for lines with a Stark broadening comparable with the van der Waals one

  19. Modeling of the He-like magnesium spectral lines radiation from the plasma created by XeCl and Nd-glass lasers

    International Nuclear Information System (INIS)

    Stepanov, A. E.; Starostin, A. N.; Roerich, V. C.; Makhrov, V. A.; Faenov, A. Ya.; Magunov, A. I.; Pikuz, T. A.; Skobelev, I. Yu.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Lisi, N.; Letardi, T.; Palladino, L.; Reale, A.; Batani, D.; Bossi, S.; Bornadinelo, A.; Scafati, A.; Reale, L.

    1997-01-01

    Resonant and intercombination spectral lines formation of He-like magnesium is analyzed both experimentally and numerically. It is shown that in plasma created by XeCl laser at flux density 8·10 12 W/cm 2 the peak of electron temperature is placed downstream from the critical surface at density significantly smaller than critical, and radiation in both resonant and recombination lines is also produced by the plasma region with density below critical. Simulations also show significant line radiation at large distances (1-2 mm) from the target as it was observed in experiments. This secondary peak is produced by a compression wave forming near the plasma front. As opposite, radiation in these lines in plasma created by Nd-glass laser at flux density 5·10 13 W/cm 2 comes from the plasma region placed deeper than the critical surface and has no tail at large distances

  20. TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    Daddi, E.; Elbaz, D.; Mancini, C.; Dannerbauer, H.; Stern, D.; Dickinson, M.; Pope, A.; Morrison, G.; Giavalisco, M.; Spinrad, H.

    2009-01-01

    We present the serendipitous discovery of molecular gas CO emission lines with the IRAM Plateau de Bure interferometer coincident with two luminous submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey North (GOODS-N) field. The identification of the millimeter emission lines as CO[4-3] at z = 4.05 is based on the optical and near-IR photometric redshifts, radio-infrared photometric redshifts, and Keck+DEIMOS optical spectroscopy. These two galaxies include the brightest submillimeter source in the field (GN20; S 850μm = 20.3 mJy, z CO = 4.055 ± 0.001) and its companion (GN20.2; S 850μm = 9.9 mJy, z CO = 4.051 ± 0.003). These are among the most distant submillimeter-selected galaxies reliably identified through CO emission and also some of the most luminous known. GN20.2 has a possible additional counterpart and a luminous active galactic nucleus inside its primary counterpart revealed in the radio. Continuum emission of 0.3 mJy at 3.3 mm (0.65 mm in the rest frame) is detected at 5σ for GN20, the first dust continuum detection in an SMG at such long wavelength, unveiling a spectral energy distribution that is similar to local ultra luminous IR galaxies. In terms of CO to bolometric luminosities, stellar mass, and star formation rates (SFRs), these newly discovered z > 4 SMGs are similar to z ∼ 2-3 SMGs studied to date. These z ∼ 4 SMGs have much higher specific star formation rates than those of typical B-band dropout Lyman break galaxies at the same redshift. The stellar mass-SFR correlation for normal galaxies does not seem to evolve much further, between z ∼ 2 and z ∼ 4. A significant z = 4.05 spectroscopic redshift spike is observed in GOODS-N, and a strong spatial overdensity of B-band dropouts and IRAC selected z > 3.5 galaxies appears to be centered on the GN20 and GN20.2 galaxies. This suggests a protocluster structure with total mass ∼10 14 M sun . Using photometry at mid-IR (24 μm), submillimeter (850 μm), and

  1. Theoretical Stark widths and shifts of spectral lines of 2p5nf and 2p55g configurations of Mg III

    International Nuclear Information System (INIS)

    Moreno-Díaz, Cristina; Alonso-Medina, Aurelia; Colón, Cristóbal

    2014-01-01

    In this paper, we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, which corresponds to 111 spectral lines of Mg III. The values of these Stark broadening parameters of spectral lines that arise from levels of 2p 5 nf and 2p 5 5g configurations of Mg III are presented in the literature for the first time. The aim of this work is to provide values to estimate the electron density of plasma Mg III in astrophysics and industrial applications. The data are presented for the temperatures T = 0.5–10.0 (10 4 K) and for an electron density of 10 17 cm −3 . The matrix of elements used in these calculations has been determined from 23 configurations of Mg III: 2s 2 2p 6 , 2s 2 2p 5 3p, 2s 2 2p 5 4p, 2s 2 2p 5 4f and 2s 2 2p 5 5f for the even parity and 2s 2 2p 5 ns (n = 3–6), 2s 2 2p 5 nd (n = 3–9), 2s 2 2p 5 5g and 2s2p 6 np (n = 3–8) for the odd parity. For the intermediate coupling calculations, we use the standard method of least square fitting from experimental energy levels by means of Cowan’s computer code. Lines with wavelengths of 134.6460, 135.2800, 189.0380, 190.0043, 192.8424, 408.2939 and 409.4375 nm have high probabilities and also have high values of broadening. Therefore, these lines can be used in some applications. A common regularity for the Stark width of the 189.038 nm spectral line of Mg III is discussed. (paper)

  2. Submillimeter Spectroscopy of the R Coronae Australis Molecular Cloud Region

    Science.gov (United States)

    Dunn, Marina Madeline; Walker, Christopher K.; Pat, Terrance; Sirsi, Siddhartha; Swift, Brandon J.; Peters, William L.

    2018-01-01

    The Interstellar Medium is comprised of large amounts of gas and dust which coalesce to form stars. Observing in the Terahertz regime of the electromagnetic spectrum, approximately 0.3 -300 microns, allows astronomers to study the ISM in unprecedented detail. Using the high spectral resolution imaging system of the SuperCam receiver, a 64-pixel array previously installed on the Submillimeter Telescope on Mt. Graham, AZ, we have begun a 500 square degree survey of the galactic plane. This instrument was designed to do a complete survey of the Milky Way from the ground, with the main focus being to observe two specific transitions of the carbon monoxide molecule, 12CO(3-2) and 13CO(3-2), at 345 GHz. In this work, we present results from these observations for the R Coronae Australis (R Cr A) complex, a region in the southern hemisphere of the sky, using spectroscopic data from a portion of the survey to gain better insight into the life cycle of the ISM. The majority of stars being formed here are similar to the stellar class of the Sun, making it an excellent area of observing interest. Using these results, we attempt to better ascertain the large-scale structure and kinematics inside of the molecular cloud.

  3. Hyperfine Structure of Spectral Lines of 143Nd+, 145Nd+, 139La+, 141Pr+ and 137Ba+ Investigated by Collinear Laser Ion Beam Spectroscopy

    International Nuclear Information System (INIS)

    Anjum, N.

    2012-01-01

    In this research work the hyperfine structures of spectral lines of barium (Ba) and three lanthanides elements; praseodymium (Pr), lanthanum (La) and neodymium (Nd) have been investigated. The hyperfine splitting factors A and B of the involved levels have been determined with high accuracy and the data are compared with other published results. This research work is divided in four parts. In the 1st part, the hyperfine structures of the spectral lines of the singly ionized praseodymium (Pr II) are investigated by three different laser spectroscopic techniques; laser induced fluorescence (LIF) spectroscopy, inter-modulated saturation spectroscopy and collinear laser ion beam spectroscopy (CLIBS). The 2nd part is concerned with the a control-check of the Marburg mass separator (MARS-II), as it was shifted from the University of Marburg, Germany, to Graz University of Technology in 2002. The check is performed using a well known spectral line 5853.67 Å of the odd isotope of singly ionized barium (137Ba II). In the 3rd part of this work the hyperfine structure of spectral lines of lanthanum-139 ions (139La II) is investigated. The 4th part is devoted to the investigation of the hyperfine structure of spectral lines of two odd isotopes of singly ionized neodymium (143Nd II and 145Nd II) and the determination of the coupling constants A and B of the involved levels. To determine the hyperfine anomaly the ratios of the magnetic dipole constants, i.e A143/A145, and the electric quadrupole constants B143/B145 of the corresponding levels are also calculated. The last three parts of this research project are executed using the high resolution, Doppler reduced method of CLIBS. In CLIBS technique the ions are accelerated by applying a high potential difference (∼ 20 kV). Due to the accelerating cooling (kinematic compression) the spread in velocities in the direction of the flight is reduced several times, hence the Doppler width is reduced. The accelerated ion beam is mass

  4. FIRST LONG-TERM OPTICAL SPECTRAL MONITORING OF A BINARY BLACK HOLE CANDIDATE E1821+643. I. VARIABILITY OF SPECTRAL LINES AND CONTINUUM

    International Nuclear Information System (INIS)

    Shapovalova, A. I.; Burenkov, A. N.; Zhdanova, V. E.; Popović, L. Č.; Chavushyan, V. H.; Valdés, J. R.; Patiño-Álvarez, V.; León-Tavares, J.; Torrealba, J.; Ilić, D.; Kovačević, A.; Kollatschny, W.

    2016-01-01

    We report the results of the first long-term (1990–2014) optical spectrophotometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift, high-luminosity, radio-quiet quasar. In the monitored period, the continua and Hγ fluxes changed about two times, while the Hβ flux changed about 1.4 times. We found periodical variations in the photometric flux with periods of 1200, 1850, and 4000 days, and 4500-day periodicity in the spectroscopic variations. However, the periodicity of 4000–4500 days covers only one cycle of variation and should be confirmed with a longer monitoring campaign. There is an indication of the period around 1300 days in the spectroscopic light curves, buts with small significance level, while the 1850-day period could not be clearly identified in the spectroscopic light curves. The line profiles have not significantly changed, showing an important red asymmetry and broad line peak redshifted around +1000 km s −1 . However, Hβ shows a broader mean profile and has a larger time lag (τ ∼ 120 days) than Hγ (τ ∼ 60 days). We estimate that the mass of the black hole is ∼2.6 × 10 9 M ⊙ . The obtained results are discussed in the frame of the binary black hole hypothesis. To explain the periodicity in the flux variability and high redshift of the broad lines, we discuss a scenario where dense, gas-rich, cloudy-like structures are orbiting around a recoiling black hole

  5. Magnetic fields in proton solar flare of X17.2/4B class according to data of simultaneous measurements in a few spectral lines

    Science.gov (United States)

    Lozitsky, V.; Lozitska, N.

    2017-06-01

    Spectral-polarized magnetic field measurements in solar flare of 28 October 2003 of X17.2/4B class are compared in six FeI lines and in Hα line. Observations were carried out on Echelle spectrograph of horizontal solar telescope of Astronomical Observatory of Taras Shevchenko National University of Kyiv. Presented data relate to peak phase of flare and a place of photosphere outside sunspots where effective (average) magnetic field in FeI 6302.5 line was about 100 G and had S polarity. Measured splitting of emissive peaks in cores of strong FeI lines of 15th multiplet correspond to stronger fields, in range 550-700 G and S polarity too. Noticeablre splitting of emissive peaks (11-20 mÅ) were found also in Fe I 5434.527 line with effective Lande factor geff = -0.014. Value of this splitting and its sign indicate the existence of extremely strong fields of 25-50 kG of opposite (N) polarity which had negative Doppler velocities (lifting of plasma) on level of 1.7-2.2 km/sec. Magnetic field according to Hα line was 300 G and N polarity. Presented results indicate the essential inhomogeneity of magnetic field in flare volume which include the opposite polarities along the line of sight and wide range of effective magnetic fields.

  6. Spectral shapes of Ar-broadened HCl lines in the fundamental band by classical molecular dynamics simulations and comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tran, H., E-mail: ha.tran@lisa.u-pec.fr [Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace, 94010 Créteil Cedex (France); Domenech, J.-L. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, (IEM-CSIC), Serrano 123, 28006 Madrid (Spain)

    2014-08-14

    Spectral shapes of isolated lines of HCl perturbed by Ar are investigated for the first time using classical molecular dynamics simulations (CMDS). Using reliable intermolecular potentials taken from the literature, these CMDS provide the time evolution of the auto-correlation function of the dipole moment, whose Fourier-Laplace transform leads to the absorption spectrum. In order to test these calculations, room temperature spectra of various lines in the fundamental band of HCl diluted in Ar are measured, in a large pressure range, with a difference-frequency laser spectrometer. Comparisons between measured and calculated spectra show that the CMDS are able to predict the large Dicke narrowing effect on the shape of HCl lines and to satisfactorily reproduce the shapes of HCl spectra at different pressures and for various rotational quantum numbers.

  7. Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, J.A.; Bengoechea, J.; Aragon, C. E-mail: carlos.aragon@unavarra.es

    2003-02-03

    The curves of growth (COG) of five Fe I lines emitted from a laser-induced plasma, generated with Fe-Ni alloys in air at atmospheric pressure, have been investigated. Spectral lines with different energy levels and line widths, emitted with a broad range of optical depths, have been included in the study in order to check the validity of theoretical models proposed for COG generation, based in the radiative transfer within a plasma in local thermodynamic equilibrium. The COGs have been measured at time windows of 4-5 {mu}s and 15-18 {mu}s. The Stark widths of the Fe I lines have been obtained, and the line widths have been determined by measuring the plasma electron density at the time windows selected. It is shown that at a time window of 4-5 {mu}s, the inhomogeneity of the plasma magnitudes has an important influence on the COGs of intense lines. For this time window, a two-region model of the plasma has been used to generate theoretical COGs that describe satisfactorily the experimental curves of all the lines using a single set of plasma parameters. The results reveal the existence of considerable gradients between the inner and the outer plasma regions in the temperature (9400-7800 K) and in the density of Fe atoms (4x10{sup 16}-0.02x10{sup 16} cm{sup -3} for a sample with 100% Fe). On the contrary, at the time window 15-18 {mu}s, at which the plasma has suffered most of its expansion and cooling process, the COGs of all the lines may be described by a single-region model, corresponding to a plasma with uniform temperature (6700 K) and density of Fe atoms (0.06x10{sup 16} cm{sup -3} for a sample with 100% Fe). It is also shown that at initial times, the plasma inhomogeneity has an important effect in the line profiles of intense spectral lines, which are described by using the two-region model of the laser-induced plasma.

  8. Photon caliper to achieve submillimeter positioning accuracy

    Science.gov (United States)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  9. The Submillimeter Polarization of Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Daniel P [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Moran, James M [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Rao, Ramprasad [Inst. of Ast. and Astrophys., Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan (China)

    2006-12-15

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300-400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized 'blob' orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 {+-} 0.7) x 10{sup 5} rad m{sup 2}, with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167{sup 0}{+-}7{sup 0} and we detect variations of 31{sup +18}{sub -9} degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 x 10{sup -7} M o-dot yr{sup -1} to 2 x 10{sup -9} M o-dot yr{sup -1}, if the magnetic field is near equipartition and ordered.

  10. The Submillimeter Polarization of Sgr A*

    International Nuclear Information System (INIS)

    Marrone, Daniel P; Moran, James M; Zhao, Jun-Hui; Rao, Ramprasad

    2006-01-01

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300-400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized 'blob' orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 ± 0.7) x 10 5 rad m 2 , with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167 0 ±7 0 and we detect variations of 31 +18 -9 degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 x 10 -7 M o-dot yr -1 to 2 x 10 -9 M o-dot yr -1 , if the magnetic field is near equipartition and ordered

  11. The Submillimeter Polarization of Sgr A*

    Science.gov (United States)

    Marrone, Daniel P.; Moran, James M.; Zhao, Jun-Hui; Rao, Ramprasad

    2006-12-01

    We report on the submillimeter properties of Sgr A* derived from observations with the Submillimeter Array and its polarimeter. We ftid that the spectrum of Sgr A* between 230 and 690 GHz is slightly decreasing when measured simultaneously, indicating a transition to optically thin emission around 300 400 GHz. We also present very sensitive and well calibrated measurements of the polarization of Sgr A* at 230 and 345 GHz. With these data we are able to show for the frst time that the polarization of Sgr A* varies on hour timescales, as has been observed for the total intensity. On one night we fhd variability that may arise from a polarized "blob" orbiting the black hole. Finally, we use the ensemble of observations to determine the rotation measure. This represents the frst statistically significant rotation measure determination and the only one made without resorting to comparing position angles measured at separate epochs. We frid a rotation measure of (-5.6 ± 0.7) × 105 rad m2, with no evidence for variability on inter-day timescales at the level of the measurement error. The stability constrains interday flictuations in the accretion rate to 8%. The mean intrinsic polarization position angle is 167°±7° and we detect variations of 31+18-9 degrees. This separation of intrinsic polarization changes and possible rotation measure flictuations is now possible because of the frequency coverage and sensitivity of our data. The observable rotation measure restricts the accretion rate to the range 2 × 10-7 Mdot o yr-1 to 2 × 10-9 Mdot o yr-1, if the magnetic ffeld is near equipartition and ordered.

  12. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  13. Simulation study for the Stratospheric Inferred Wind (SIW) sub-millimeter limb sounder

    Science.gov (United States)

    Baron, Philippe; Murtagh, Donal; Eriksson, Patrick; Ochiai, Satoshi

    2017-04-01

    The Stratospheric Inferred Wind is a micro satellite mission studied within the Swedish Innosat program. The objective of the Innosat program is to launch a scientific satellite every two years [1]. SIW has been selected together with two other missions as a candidate for the 2nd launch planned in 2020. If realized, SIW will be the first sub-millimetre (SMM) satellite mission designed for measuring horizontal wind between 30-80 km. It has been shown that such systems can provide relevant wind information in this altitude range where other satellite techniques lack sensitivity [2,3]. The other objective of the mission will be to continue the stratospheric monitoring at a time in which the current observing systems will probably be ended. SIW is equipped with a small payload (40x40x44 cm3, 17 kg and power of 47 W) consisting of a radiometer cooled to 70 K, an auto-correlator spectrometer (8 GHz bandwidth, 1 MHz resolution), and an antenna of 30 cm. The atmospheric limb will be scanned from 10 to 80 km at two perpendicular directions in order to reconstruct the horizontal wind vectors from the measured line-of-sight winds. Those are obtained from the small Doppler shift of molecular lines contained in two spectral bands simultaneously measured with the double-side band radiometer. One of the bands is centred at 655 GHz to measure a cluster of strong O3 lines. It is the best spectral band for wind measurements [4]. The second band is centred near 625 GHz, and together with the first band, it will allow us to measure a large number of molecules relevant for studying the stratospheric dynamics and chemistry (N2O, H2O, ClO, HCl, BrO, NO, HNO3,...). The 655 GHz O3 lines also provide temperature between 10-80 km with similar performances as those obtained if an oxygen line would have been used instead. In this presentation we will introduce SIW and discuss the measurement performances derived from simulations studies. [1] http://www.ohb.de/press-releases-details/ohb-sweden

  14. THE AKARI 2.5-5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Ohyama, Youichi, E-mail: dohyeong@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2015-01-01

    We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  15. The Herschel/HIFI unbiased spectral survey of the solar-mass protostar IRAS16293

    Science.gov (United States)

    Bottinelli, S.; Caux, E.; Cecarelli, C.; Kahane, C.

    2012-03-01

    Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high-mass protostars, very little data exist on low-mass protostars, with only one such ground-based survey carried out towards this kind of object. However, since low-mass protostars are believed to resemble our own Sun's progenitor, the information provided by spectral surveys is crucial in order to uncover the birth mechanisms of low-mass stars and hence of our Sun. To help fill up this gap in our understanding, we carried out an almost complete spectral survey towards the solar-type protostar IRAS16293-2422 with the HIFI instrument onboard Herschel. The observations covered a range of about 700 GHz, in which a few hundreds lines were detected with more than 3σ confidence interval certainty and identified. All the detected lines which were free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Contrarily to what is observed in the millimeter range, no lines from complex organic molecules have been observed. In this work, we characterize the different components of IRAS16293-2422 (a known binary at least) by analyzing the numerous emission and absorption lines identified.

  16. Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    Science.gov (United States)

    Kulesa, C. A.; Walker, C. K.; Schein, M.; Golish, D.; Tothill, N.; Siegel, P.; Weinreb, S.; Jones, G.; Bardin, J.; Jacobs, K.; Martin, C. L.; Storey, J.; Ashley, M.; Lawrence, J.; Luong-Van, D.; Everett, J.; Wang, L.; Feng, L.; Zhu, Z.; Yan, J.; Yang, J.; Zhang, X.-G.; Cui, X.; Yuan, X.; Hu, J.; Xu, Z.; Jiang, Z.; Yang, H.; Li, Y.; Sun, B.; Qin, W.; Shang, Z.

    2008-07-01

    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the 13CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented.

  17. Measurements of radiation near an atomic spectral line from the interaction of a 30 GeV electron beam and a long plasma

    International Nuclear Information System (INIS)

    Catravas, P.E.; Chattopadhyay, S.; Esarey, E.; Leemans, W.P.; Assmann, R.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; Siemann, R.H.; Walz, D.; Whittum, D.; Blue, B.; Clayton, C; Joshi, C.; Marsh, K.A.; Mori, W.B.; Wang, S.; Katsouleas, T.; Lee, S.; Muggli, P.

    2000-01-01

    Emissions produced or initiated by a 30 GeV electron beam propagating through a ∼ 1 m long heat pipe oven containing neutral and partially ionized vapor have been measured near atomic spectral lines in a beam-plasma wakefield experiment. The Cerenkov spatial profile has been studied as a function of oven temperature and pressure, observation wavelength, and ionizing laser intensity and delay. The Cerenkov peak angle is affected by the creating of plasma, and estimates of neutral and plasma density have been extracted. Increases in visible background radiation, consistent with increased plasma recombination emissions due to dissipation of wakefields, were simultaneously measured

  18. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    Science.gov (United States)

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  19. SUBMILLIMETER-HCN DIAGRAM FOR ENERGY DIAGNOSTICS IN THE CENTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Takuma; Kohno, Kotaro [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Aalto, Susanne [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Observatory, SE-439 94 Onsala (Sweden); Espada, Daniel; Martín, Sergio; Nakanishi, Kouichiro [Joint ALMA Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355 (Chile); Fathi, Kambiz [Stockholm Observatory, Department of Astronomy, Stockholm University, AlbaNova Centre, SE-106 91 Stockholm (Sweden); Harada, Nanase; Hsieh, Pei-Ying; Matsushita, Satoki [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hatsukade, Bunyo; Imanishi, Masatoshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Krips, Melanie [Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire, F-38406 St. Martin d’Hères (France); Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Soccoro, NM 87801 (United States); Nakai, Naomasa [Department of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8571 (Japan); Schinnerer, Eva [Max Planck Institute for Astronomy, Königstuhl 17, Heidelberg D-69117 (Germany); Sheth, Kartik [NASA, 300 E Street SW, Washington, DC 20546 (United States); Terashima, Yuichi [Department of Physics, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Turner, Jean L., E-mail: takumaizumi@ioa.s.u-tokyo.ac.jp [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2016-02-10

    Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4–3)/HCO{sup +}(4–3) and/or HCN(4–3)/CS(7–6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO{sup +} and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even ≳10 are a plausible explanation for the submillimeter HCN enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral–neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.

  20. Spectrum and isotropy of the submillimeter background radiation

    International Nuclear Information System (INIS)

    Muehlner, D.

    1977-01-01

    Two great astronomical discoveries have most shaped our present concept of the Big Bang universe. Like the Hubble recession of the galaxies, the discovery of the 3 0 K background radiation by Penzias and Wilson in 1965 has given rise to a line of research which is still very active today. Penzias and Wilson's universal microwave background at 7 cm was immediately interpreted by R.H. Dicke's group at Princeton as coming from the primordial fireball of incandescent plasma which filled the universe for the million years or so after its explosive birth. This interpretation gives rise to two crucial predictions as to the nature of the background radiation. Its spectrum should be thermal even after having been red shifted by a factor of approximately 1000 by the expansion of the universe, and the radiation should be isotropic - assuming that the universe itself is isotropic. If the background radiation is indeed from the primordial fireball it affords us the only direct view at the very young universe. This paper deals with the spectrum and then the isotropy of the background radiation, with emphasis on high frequency or submillimeter measurements. Prospects for the future are discussed briefly. (Auth.)

  1. LOOKING INTO THE HEARTS OF BOK GLOBULES: MILLIMETER AND SUBMILLIMETER CONTINUUM IMAGES OF ISOLATED STAR-FORMING CORES

    International Nuclear Information System (INIS)

    Launhardt, R.; Henning, Th.; Khanzadyan, T.; Schmalzl, M.; Wolf, S.; Nutter, D.; Ward-Thompson, D.; Bourke, T. L.; Zylka, R.

    2010-01-01

    We present the results of a comprehensive infrared, submillimeter, and millimeter continuum emission study of isolated low-mass star-forming cores in 32 Bok globules, with the aim to investigate the process of star formation in these regions. The submillimeter and millimeter dust continuum emission maps together with the spectral energy distributions are used to model and derive the physical properties of the star-forming cores, such as luminosities, sizes, masses, densities, etc. Comparisons with ground-based near-infrared and space-based mid- and far-infrared images from Spitzer are used to reveal the stellar content of the Bok globules, association of embedded young stellar objects (YSOs) with the submillimeter dust cores, and the evolutionary stages of the individual sources. Submillimeter dust continuum emission was detected in 26 out of the 32 globule cores observed. For 18 globules with detected (sub)millimeter cores, we derive evolutionary stages and physical parameters of the embedded sources. We identify nine starless cores, most of which are presumably prestellar, nine Class 0 protostars, and twelve Class I YSOs. Specific source properties like bolometric temperature, core size, and central densities are discussed as a function of evolutionary stage. We find that at least two thirds (16 out of 24) of the star-forming globules studied here show evidence of forming multiple stars on scales between 1000 and 50,000 AU. However, we also find that most of these small prototstar and star groups are comprised of sources with different evolutionary stages, suggesting a picture of slow and sequential star formation in isolated globules.

  2. Pressure effects on some argon spectral lines belonging to the 3p54p-3p5nd (n=5-7) transitions

    International Nuclear Information System (INIS)

    Wolnikowski, J.; Wawrzynski, J.; Bielski, A.; Szudy, J.

    1987-01-01

    Low pressure broadening and shift of four spectral lines of argon: 518.7 nm (3p 5 4p-3p 5 5d'), 522.1 nm (3p 5 4p-3p 5 7d), 549.6 nm (3p 5 4p-3p 5 6d) and 603.2 nm (3p 5 4p-3p 5 5d) have been investigated by means of a Fabry-Perot interferometer. The values of the pressure broadening and shift coefficients for argon-argon, argon-neon and argon-helium interactions in the low-current glow discharge conditions are determined. For all lines in the pure argon a red shift and in the argon-neon and argon-helium mixtures a blue shift has been found. The results cannot be interpreted on the basis of the existing simple interaction potential models within the framework of the adiabatic impact broadening theory. (orig.)

  3. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    Science.gov (United States)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  4. EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING

    International Nuclear Information System (INIS)

    Brown, J. M.; Blake, G. A.; Qi, C.; Wilner, D. J.; Dullemond, C. P.; Williams, J. P.

    2009-01-01

    Mid-infrared spectrophotometric observations have revealed a small subclass of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model-dependent method of finding central holes. Imaging of protoplanetry disks provides an independent check of SED modeling. We present here the direct characterization of three 33-47 AU radii inner gaps, in the disks around LkHα 330, SR 21N, and HD 135344B, via 340 GHz (880 μm) dust continuum aperture synthesis observations obtained with the Submillimeter Array (SMA). The large gaps are fully resolved at ∼0.''3 by the SMA data and mostly empty of dust, with less than (1-7.5) x 10 -6 M sun of fine grained solids inside the holes. Gas (as traced by atomic accretion markers and CO 4.7 μm rovibrational emission) is still present in the inner regions of all three disks. For each, the inner hole exhibits a relatively steep rise in dust emission to the outer disk, a feature more likely to originate from the gravitational influence of a companion body than from a process expected to show a more shallow gradient like grain growth. Importantly, the good agreement between the spatially resolved data and spectrophotometry-based models lends confidence to current interpretations of SEDs, wherein the significant dust emission deficits arise from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.

  5. Mid-Infrared Interferometry on Spectral Lines. III. Ammonia and Silane around IRC +10216 and VY Canis Majoris

    Science.gov (United States)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    Using the University of California Berkeley Infrared Spatial Interferometer with a radio frequency (RF) filter bank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH3) and silane (SiH4) with very high spectral resolution (λ/Δλ~105) were made. Under the assumptions of spherical symmetry and uniform outflow, these new data permitted the molecular stratification around carbon star IRC +10216 and red supergiant VY CMa to be investigated. For IRC +10216, both ammonia and silane were found to form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones. Specifically, ammonia was found to form before silane in a region of decaying gas turbulence (>~20R*), while the silane is produced in a region of relatively smooth gas flow much farther from the star (>~80R*). The depletion of gas-phase SiS onto grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~40R*).

  6. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively-driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse; Kastner, Joel H.; Santander-García, Miguel; Montez, Rodolfo; Alcolea, Javier; Balick, Bruce; Bujarrabal, Valentín

    2018-01-01

    We report the results of a survey of mm-wave molecular line emission from nine nearby (Radioastronomie Millimétrique (IRAM) 30 m telescope. Our sample comprises molecule-rich PNe spanning a wide range of central star UV luminosities as well as central star and nebular X-ray emission properties. Nine molecular line frequencies were chosen to investigate the molecular chemistry of these nebulae. New detections of one or more of five molecules -- the molecular mass tracer 13CO and the chemically important trace species HCO+, CN, HCN, and HNC -- were made in at least one PN. We present analysis of emission line flux ratios that are potential diagnostics of the influence that ultraviolet and X-ray radiation have on the chemistry of residual molecular gas in PNe.

  7. Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7

    Science.gov (United States)

    Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.

    2012-12-01

    Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.

  8. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  9. Experimental transition probabilities for several spectral lines arising from the 5d10 6s{8s, 7p, 5f, 5g} electronic configurations of Pb III

    International Nuclear Information System (INIS)

    Alonso-Medina, A.

    2010-01-01

    Transition probabilities for 30 spectral lines, arising from the 5d 10 6s{8s, 7p, 5f, 5g} electronic configurations of Pb III (20 measured for the first time), have been experimentally determined from measurements of emission line intensities in a plasma lead induced by ablation with a Nd:YAG laser. The line intensities were obtained with the target placed in molecular argon at 6 Torr, recorded at a 400 ns delay from the laser pulse, which provides appropriate measurement conditions, and analysed between 200 and 700 nm. They are measured when the plasma reaches local thermodynamic equilibrium (LTE). The plasma under study had an electron temperature (T) of 21,400 K and an electron number density (N e ) of 7x10 16 cm -3 . The influence of self-absorption has been estimated for every line, and plasma homogeneity has been checked. The values obtained were compared with previous experimental values and theoretical estimates where possible.

  10. Black Holes and Sub-millimeter Dimensions

    CERN Document Server

    Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John

    1998-01-01

    Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...

  11. The HIFI spectral survey of AFGL 2591 (CHESS). II. Summary of the survey

    Science.gov (United States)

    Kaźmierczak-Barthel, M.; van der Tak, F. F. S.; Helmich, F. P.; Chavarría, L.; Wang, K.-S.; Ceccarelli, C.

    2014-07-01

    Aims: This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. Methods: As part of the Chemical Herschel Survey of Star Forming Regions (CHESS) key programme, AFGL 2591 was observed by the Herschel (HIFI) instrument. The spectral survey covered a frequency range from 480 to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO, HCl, NH3, OH, and [CII]). Rotational and population diagram methods were used to calculate column densities, excitation temperatures, and the emission extents of the observed molecules associated with AFGL 2591. The analysis was supplemented with several lines from ground-based JCMT spectra. Results: From the HIFI spectral survey analysis a total of 32 species were identified (including isotopologues). Although the lines are mostly quite weak (∫TmbdV ~ few K km s-1), 268 emission and 16 absorption lines were found (excluding blends). Molecular column densities range from 6 × 1011 to 1 × 1019 cm-2 and excitation temperatures from 19 to 175 K. Cold (e.g. HCN, H2S, and NH3 with temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar envelope can be distinguished. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org

  12. Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce II Lines in the H-band Spectral Window

    Science.gov (United States)

    Cunha, Katia; Smith, Verne V.; Hasselquist, Sten; Souto, Diogo; Shetrone, Matthew D.; Allende Prieto, Carlos; Bizyaev, Dmitry; Frinchaboy, Peter; García-Hernández, D. Anibal; Holtzman, Jon; Johnson, Jennifer A.; Jőnsson, Henrik; Majewski, Steven R.; Mészáros, Szabolcs; Nidever, David; Pinsonneault, Mark; Schiavon, Ricardo P.; Sobeck, Jennifer; Skrutskie, Michael F.; Zamora, Olga; Zasowski, Gail; Fernández-Trincado, J. G.

    2017-08-01

    Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between λ1.51 and 1.69 μm). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R=λ /δ λ ={{100,000}}) Fourier Transform Spectrometer (FTS) spectrum of α Boo and an APOGEE spectrum (R = 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using α Boo as a standard star, with the absolute cerium abundance in α Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N- and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.

  13. Spectral Filtering Criteria for U-Band Test Light for In-Service Line Monitoring in Optical Fiber Networks

    Science.gov (United States)

    Honda, Nazuki; Izumita, Hisashi; Nakamura, Minoru

    2006-06-01

    In the fiber-to-the-home era, thousands of optical fibers will have to be accommodated in the central offices of optical access networks. To reduce maintenance costs and improve the service reliability of optical fiber networks, the authors must develop an optical fiber line testing system with a function for in-service line monitoring that uses a test light with a wavelength different from the communication light wavelength. To monitor an in-service line in an optical network, the effective rejection ratio of the test light must be taken into account. This ratio depends on the spectrum of the test light from the optical time-domain reflectometer and the rejection band of the filter in front of the optical network unit. The dependence of the effective rejection ratio as a function of the sideband suppression ratio (SBSR) and of the ratio of the rejection band to the bandwidth of the sideband noise d/D is clarified. When d/D =0.1 and the target effective rejection ratio of the filter is -40 dB, the SBSR and the filter loss of the termination cable must be -70 and -43 dB, respectively, or the SBSR must be -80 dB. When d/D service line monitoring for a 10-Gb/s transmission using a 1650-nm test light with an SBSR of -80 dB is also demonstrated.

  14. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively Driven Heating and Chemistry of Molecular Gas

    Science.gov (United States)

    Bublitz, Jesse

    Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.

  15. Imaging of the CO snow line in a solar nebula analog.

    Science.gov (United States)

    Qi, Chunhua; Öberg, Karin I; Wilner, David J; D'Alessio, Paola; Bergin, Edwin; Andrews, Sean M; Blake, Geoffrey A; Hogerheijde, Michiel R; van Dishoeck, Ewine F

    2013-08-09

    Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out. The N2H(+) emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~30 astronomical units helps to assess models of the formation dynamics of the solar system, when combined with measurements of the bulk composition of planets and comets.

  16. A TALE OF TWO NARROW-LINE REGIONS: IONIZATION, KINEMATICS, AND SPECTRAL ENERGY DISTRIBUTIONS FOR A LOCAL PAIR OF MERGING OBSCURED ACTIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting; Carroll, Christopher M.; Jones, Mackenzie L.; Zervos, Alexandros S. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Goulding, Andrew D. [Department Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-05-20

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (∼23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirm the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton . These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”.

  17. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Science.gov (United States)

    Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.

    2015-01-01

    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually

  18. SUBMILLIMETER H{sub 2}O MEGAMASERS IN NGC 4945 AND THE CIRCINUS GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Pesce, D. W. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Braatz, J. A.; Impellizzeri, C. M. V., E-mail: dpesce@virginia.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2016-08-10

    We present 321 GHz observations of five active galactic nuclei (AGNs) from ALMA Cycle 0 archival data: NGC 5793, NGC 1068, NGC 1386, NGC 4945, and the Circinus galaxy. Submillimeter maser emission is detected for the first time toward NGC 4945, and we present a new analysis of the submillimeter maser system in Circinus. None of the other three galaxies show maser emission, although we have detected and imaged the continuum from every galaxy. Both NGC 4945 and Circinus are known to host strong (≳10 Jy) 22 GHz megamaser emission, and VLBI observations have shown that the masers reside in the innermost ∼1 pc of the galaxies. The peak flux densities of the 321 GHz masers in both systems are substantially weaker (by a factor of ∼100) than what is observed at 22 GHz, although the corresponding isotropic luminosities are more closely matched (within a factor of ∼10) between the two transitions. We compare the submillimeter spectra presented here to the known 22 GHz spectra in both galaxies, and we argue that while both transitions originate from the gaseous environment near the AGNs, not all sites are in common. In Circinus, the spectral structure of the 321 GHz masers indicates that they may trace the accretion disk at radii interior to the 22 GHz masers. The continuum emission in NGC 4945 and NGC 5793 shows a spatial distribution indicative of an origin in the galactic disks (likely thermal dust emission), while for the other three galaxies the emission is centrally concentrated and likely originates from the nucleus.

  19. Status of a Novel 4-Band Submm/mm Camera for the Caltech Submillimeter Observatory

    Science.gov (United States)

    Noroozian, Omid; Day, P.; Glenn, J.; Golwala, S.; Kumar, S.; LeDuc, H. G.; Mazin, B.; Nguyen, H. T.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Zmuidzinas, J.

    2007-12-01

    Submillimeter observations are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. To this end, we are undertaking the construction of a 4-band (750, 850, 1100, 1300 microns) 8-arcminute field of view camera for the Caltech Submillimeter Observatory. The focal plane will make use of three novel technologies: photolithographic phased array antennae, on-chip band-pass filters, and microwave kinetic inductance detectors (MKID). The phased array antenna design obviates beam-defining feed horns. On-chip band-pass filters eliminate band-defining metal-mesh filters. Together, the antennae and filters enable each spatial pixel to observe in all four bands simultaneously. MKIDs are highly multiplexable background-limited photon detectors. Readout of the MKID array will be done with software-defined radio (See poster by Max-Moerbeck et al.). This camera will provide an order-of-magnitude larger mapping speed than existing instruments and will be comparable to SCUBA 2 in terms of the detection rate for dusty sources, but complementary to SCUBA 2 in terms of wavelength coverage. We present results from an engineering run with a demonstration array, the baseline design for the science array, and the status of instrument design, construction, and testing. We anticipate the camera will be available at the CSO in 2010. This work has been supported by NASA ROSES APRA grants NNG06GG16G and NNG06GC71G, the NASA JPL Research and Technology Development Program, and the Gordon and Betty Moore Foundation.

  20. A DEEP CHANDRA ACIS STUDY OF NGC 4151. III. THE LINE EMISSION AND SPECTRAL ANALYSIS OF THE IONIZATION CONE

    International Nuclear Information System (INIS)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-01-01

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L 0.3-2 k eV ∼ 10 40 erg s –1 ) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] λ5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be ∼ ☉ yr –1 at 130 pc and the kinematic power of the ionized outflow is 1.7 × 10 41 erg s –1 , approximately 0.3% of the bolometric luminosity of the active nucleus in NGC 4151.

  1. GAS MOTION STUDY OF Lyα EMITTERS AT z ∼ 2 USING FUV AND OPTICAL SPECTRAL LINES ,

    International Nuclear Information System (INIS)

    Hashimoto, Takuya; Shimasaku, Kazuhiro; Nakajima, Kimihiko; Ouchi, Masami; Ono, Yoshiaki; Rauch, Michael; Janice Lee; Okamura, Sadanori

    2013-01-01

    We present the results of Magellan/MMIRS and Keck/NIRSPEC spectroscopy for five Lyα emitters (LAEs) at z ≅ 2.2 for which high-resolution FUV spectra from Magellan/MagE are available. We detect nebular emission lines including Hα on the individual basis and low-ionization interstellar (LIS) absorption lines in a stacked FUV spectrum, and measure average offset velocities of the Lyα line, Δv Lyα , and LIS absorption lines, Δv abs , with respect to the systemic velocity defined by the nebular lines. For a sample of eight z ∼ 2-3 LAEs without active galactic nucleus from our study and the literature, we obtain Δv Lyα = 175 ± 35 km s –1 , which is significantly smaller than that of Lyman-break Galaxies (LBGs), Δv Lyα ≅ 400 km s –1 . The stacked FUV spectrum gives Δv abs = –179 ± 73 km s –1 , comparable to that of LBGs. These positive Δv Lyα and negative Δv abs suggest that LAEs also have outflows. In contrast to LBGs, however, the LAEs' Δv Lyα is as small as |Δv abs |, suggesting low neutral hydrogen column densities. Such a low column density with a small number of resonant scattering may cause the observed strong Lyα emission of LAEs. We find an anti-correlation between Lyα equivalent width (EW) and Δv Lyα in a compilation of LAE and LBG samples. Although its physical origin is not clear, this anti-correlation result appears to challenge the hypothesis that a strong outflow, by means of a reduced number of resonant scattering, produces a large EW. If LAEs at z > 6 have similarly small Δv Lyα values, constraints on the reionization history derived from the Lyα transmissivity may need to be revised.

  2. GAS MOTION STUDY OF Ly{alpha} EMITTERS AT z {approx} 2 USING FUV AND OPTICAL SPECTRAL LINES {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takuya; Shimasaku, Kazuhiro; Nakajima, Kimihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Ouchi, Masami; Ono, Yoshiaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Rauch, Michael; Janice Lee [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Okamura, Sadanori, E-mail: thashimoto@astron.s.u-tokyo.ac.jp [Department of Advanced Sciences, Faculty of Science and Engineering, Hosei University, 3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584 (Japan)

    2013-03-01

    We present the results of Magellan/MMIRS and Keck/NIRSPEC spectroscopy for five Ly{alpha} emitters (LAEs) at z {approx_equal} 2.2 for which high-resolution FUV spectra from Magellan/MagE are available. We detect nebular emission lines including H{alpha} on the individual basis and low-ionization interstellar (LIS) absorption lines in a stacked FUV spectrum, and measure average offset velocities of the Ly{alpha} line, {Delta}v {sub Ly{alpha}}, and LIS absorption lines, {Delta}v {sub abs}, with respect to the systemic velocity defined by the nebular lines. For a sample of eight z {approx} 2-3 LAEs without active galactic nucleus from our study and the literature, we obtain {Delta}v {sub Ly{alpha}} = 175 {+-} 35 km s{sup -1}, which is significantly smaller than that of Lyman-break Galaxies (LBGs), {Delta}v {sub Ly{alpha}} {approx_equal} 400 km s{sup -1}. The stacked FUV spectrum gives {Delta}v {sub abs} = -179 {+-} 73 km s{sup -1}, comparable to that of LBGs. These positive {Delta}v {sub Ly{alpha}} and negative {Delta}v {sub abs} suggest that LAEs also have outflows. In contrast to LBGs, however, the LAEs' {Delta}v {sub Ly{alpha}} is as small as |{Delta}v {sub abs}|, suggesting low neutral hydrogen column densities. Such a low column density with a small number of resonant scattering may cause the observed strong Ly{alpha} emission of LAEs. We find an anti-correlation between Ly{alpha} equivalent width (EW) and {Delta}v {sub Ly{alpha}} in a compilation of LAE and LBG samples. Although its physical origin is not clear, this anti-correlation result appears to challenge the hypothesis that a strong outflow, by means of a reduced number of resonant scattering, produces a large EW. If LAEs at z > 6 have similarly small {Delta}v {sub Ly{alpha}} values, constraints on the reionization history derived from the Ly{alpha} transmissivity may need to be revised.

  3. Submillimeter medical imaging in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lang, C.; Thirolf, P.G. [LMU, Muenchen (Germany); Habs, D. [LMU, Muenchen (Germany); MPQ, Garching (Germany); Zoglauer, A. [SSL, Berkeley (United States)

    2012-07-01

    We present a nuclear medical imaging technique, capable to reach submillimeter spatial resolution in 3 dimensions with a short exposure time and a low radioactive dose compared to conventional PET. This '{gamma}-PET' technique takes advantage of specific e{sup +} sources which simultaneously with the {beta}{sup +} decay emit an additional photon. Exploiting the triple coincidence between the positron annihilation and the additional emitted {gamma}, it is possible to separate the reconstructed 'true' events from background. Thus the spatial uncertainty introduced by the motion of the e{sup +} or by Compton scattering within the patient can be strongly reduced in the direction normal to the annihilation. MC-simulations and image reconstruction studies have been performed using the library MEGAlib, which we modified to realize an event reconstruction using the {beta}{sup +}{gamma} coincidences. The simulated geometry consists of 4 LaBr{sub 3} scintillator crystals (5 x 5 x 3 cm{sup 3}) read out by a 2D-segmented photomultiplier (64 pixels, each 6 x 6 mm{sup 2}) and 4 double-sided silicon strip detectors (each with 2 x 128 strips, active area of 5 x 5 cm{sup 2}, thickness 0.5 mm), positioned around an H{sub 2}O sphere of 6 cm diameter. Inside are two {sup 22}Na point-like test sources, placed at a distance of 0.4 mm. The resolution results in 0.2 mm (FWHM) in each direction, surpassing the performance of conventional PET by about an order of magnitude.

  4. 3D Doppler Tomography of the X-Ray Binary System Cygnus X-1 from Spectral Observations in 2007 in the HeII λ 4686 Å Line

    Science.gov (United States)

    Agafonov, M. I.; Karitskaya, E. A.; Sharova, O. I.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar', A. V.; Sidorov, M. Yu.

    2018-02-01

    The results of a 3D Doppler tomography analysis for the X-ray binary system Cyg X-1 in the HeII λ 4686 Å line are presented. Information about the motions of gaseous flows outside the orbital plane has been obtained for the first time. Line profiles obtained in June 2007 on the 2-m telescope of the Terskol Branch of the Institute of Astronomy (Russia) and on the 2.1-m telescope of the National Astronomical Observatory of Mexico were used. A detailed analysis of these spectral data is presented: the distribution of the data in time, distribution of orbital phases for the projections, comparison of the line profile shapes for the data from two observatories. The geometry of the total transfer function obtained in the reconstruction is considered. The possibility of applying the profiles obtained to realize 3D tomography is justified. The resolution of the constructed 3D tomogram in velocity space is 60 × 60 × 40 km/s for V x , V y , V z . Fifteen cross sections for 15 different V z values perpendicular to the orbital plane are presented. The intensity distributions corresponding to the velocities of gaseous structures in the binary system are obtained. The reconstruction was realized using the radio-astronomical approach, developed for solving problems in tomography with a limited number of projections.

  5. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line

    International Nuclear Information System (INIS)

    Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto; Morisseau, Christophe; Hammock, Bruce D.; Safe, Stephen; Parrish, Alan R.; Burghardt, Robert C.

    2011-01-01

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted in the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.

  6. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    Science.gov (United States)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  7. Non-impact modeling of electron broadening of hydrogen spectral lines in dense but relatively cold plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Buescher, S.; Wrubel, Th.; Kunze, H.-J.; Calisti, A.; Stamm, R.; Talin, B.

    2001-01-01

    The standard static-ion/impact-electron theory of line broadening is assessed with calculations of hydrogen lines over a broad range of plasma conditions. In most cases, discrepancies between results from theory and experiments are explained by the neglect of ion-dynamics effects. Nevertheless, recent experiments involving high density but low temperature plasmas indicate that ion-dynamics/impact-electron models may seriously overestimate the broadening for such conditions. We show that the observed discrepancies are not due to the ion modeling but due to the impact approximation of the electrons in the Original Frequency Fluctuation Model (FFM). This situation arises for plasma conditions where the interactions with the electrons are a major broadening mechanism and quasi-static, i.e. non-binary, electron effects are important. An alternative approach to a binary collision operator is therefore proposed by means of the FFM code generalized to the two components (ions and electrons) of the plasma. Accurate simulations accounting for the electron plus ion field dynamics have been used to corroborate the FFM as applied to both ion and electron perturbers, and good agreement is found with recent experiments on H α and P α for dense but relatively cold plasmas

  8. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Seely, J. F., E-mail: seelyjf@gmail.com; Feldman, U. [Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042 (United States); Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Pereira, N. [Ecopulse Inc., P. O. Box 528, Springfield, Virginia 22152 (United States); Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Hui; Williams, G. J.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  9. Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon-helium microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Munoz, J.; Dimitrijevic, M.S.; Yubero, C.; Calzada, M.D.

    2009-01-01

    The applications of plasmas generated with gas mixtures have become increasingly common in different scientific and technological fields. In order to understand the advantages of these discharges, for instance in chemical analysis, it is necessary to know the gas temperature (T g , kinetic energy of the heavy particles) since it has a great influence on the atomization reactions of the molecules located in the discharge, along with the dependence of the reaction rate on this parameter. The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure although under some experimental conditions, these are difficult to detect. In such cases, the gas temperature can be determined from the van der Waals broadening of the emitted atomic spectral lines related to this parameter. The method proposed is based on the van der Waals broadening taking into account two perturbers

  10. ALMACAL I: FIRST DUAL-BAND NUMBER COUNTS FROM A DEEP AND WIDE ALMA SUBMILLIMETER SURVEY, FREE FROM COSMIC VARIANCE

    Energy Technology Data Exchange (ETDEWEB)

    Oteo, I.; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ UK (United Kingdom); Zwaan, M. A.; Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Smail, I., E-mail: ivanoteogomez@gmail.com [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE UK (United Kingdom)

    2016-05-01

    We have exploited ALMA calibration observations to carry out a novel, wide, and deep submillimeter (submm) survey, almacal. These calibration data comprise a large number of observations of calibrator fields in a variety of frequency bands and array configurations. By gathering together data acquired during multiple visits to many ALMA calibrators, it is possible to reach noise levels which allow the detection of faint, dusty, star-forming galaxies (DSFGs) over a significant area. In this paper, we outline our survey strategy and report the first results. We have analyzed data for 69 calibrators, reaching depths of ∼25 μ Jy beam{sup −1} at sub-arcsec resolution. Adopting a conservative approach based on ≥5 σ detections, we have found 8 and 11 DSFGs in ALMA bands 6 and 7, respectively, with flux densities S {sub 1.2} m {sub m} ≥ 0.2 mJy. The faintest galaxies would have been missed by even the deepest Herschel surveys. Our cumulative number counts have been determined independently at 870 μ m and 1.2 mm from a sparse sampling of the astronomical sky, and are thus relatively free of cosmic variance. The counts are lower than reported previously by a factor of at least 2×. Future analyses will yield large, secure samples of DSFGs with redshifts determined via the detection of submm spectral lines. Uniquely, our strategy then allows for morphological studies of very faint DSFGs—representative of more normal star-forming galaxies than conventional submm galaxies—in fields where self-calibration is feasible, yielding milliarcsecond spatial resolution.

  11. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NARCIS (Netherlands)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-01-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern

  12. Review of Langmuir-Wave-Caused Dips and Charge-Exchange-Caused Dips in Spectral Lines from Plasmas and their Applications

    Directory of Open Access Journals (Sweden)

    Elisabeth Dalimier

    2014-05-01

    Full Text Available We review studies of two kinds of dips in spectral line profiles emitted by plasmas—dips that have been predicted theoretically and observed experimentally: Langmuir-wave-caused dips (L-dips and charge-exchange-caused dips (X-dips. There is a principal difference with respect to positions of L-dips and X-dips relative to the unperturbed wavelength of a spectral line: positions of L-dips scale with the electron density Ne roughly as Ne1/2, while positions of X-dips are almost independent of Ne (the dependence is much weaker than for L-dips. L-dips and X-dips phenomena are important, both fundamentally and practically. The fundamental importance is due to a rich physics behind each of these phenomena. L-dips are a multi-frequency resonance phenomenon caused by a single-frequency (monochromatic electric field. X-dips are due to charge exchange at anticrossings of terms of a diatomic quasi-molecule, whose nuclei have different charges. As for important practical applications, they are as follows: observations of L-dips constitute a very accurate method to measure the electron density in plasmas—a method that does not require knowledge of the electron temperature. L-dips also allow measuring the amplitude of the electric field of Langmuir waves—the only spectroscopic method available for this purpose. Observations of X-dips provide an opportunity to determine rate coefficient of charge exchange between multi-charged ions. This is an important reference data, virtually inaccessible by other experimental methods. The rate coefficients of charge exchange are important for magnetic fusion in Tokamaks, for population inversion in the soft x-ray and VUV ranges, for ion storage devices, as well as for astrophysics (e.g., for the solar plasma and for determining the physical state of planetary nebulae.

  13. Broadband spectral study of the jet-disc emission in the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342

    Science.gov (United States)

    Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab

    2018-06-01

    We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.

  14. Quantum-mechanical vs. semi-classical spectral-line widths and shifts from the line core in the non-impact region for the Ar-perturbed/ K-radiator system

    International Nuclear Information System (INIS)

    Kreye, W.C.

    2007-01-01

    New quantum-mechanical (QM) and semi-classical (SC) shifts (d's) and widths (HWHM's, w's) were measured from the line core of computed full spectral-line shapes for the Ar-perturbed/K-radiator system (K/Ar). The initial state of our model was based on a 4p 2 P 3/2,1/2 pseudo-potential for the K/Ar system, and the final state on a zero potential. The Fourier transform of the line shape formed the basis for the computations. Excellent agreement was found between the QM and SC values of d and of w in a high-pressure (P) non-impact region, which was characterized by a √P dependence of w and a P dependence of d. These agreements were shown to be another example of a correspondence between classical (SC) quantities and QM quantities in the limit of large quantum numbers. Typically at P=1x10 6 Torr and T=400 K, w QM =448 cm -1 and w SC =479 cm -1 , where the deviation from the mean is ±3.3%. Also, d QM =-3815 cm -1 and d SC =-3716 cm -1 , where the deviation from the mean is ±1.3%. A new general method was formulated which yielded a definite pressure P 0 , which was defined as an upper limit to the low-pressure impact approximation and a lower limit to the non-impact region

  15. Spectral lines of methane measured up to 2.6 THz at sub-MHz accuracy with a CW-THz photomixing spectrometer: Line positions of rotational transitions induced by centrifugal distortion

    Science.gov (United States)

    Bray, C.; Cuisset, A.; Hindle, F.; Mouret, G.; Bocquet, R.; Boudon, V.

    2017-12-01

    Several Doppler-limited rotational transitions of methane induced by centrifugal distortion have been measured with an unprecedented frequency accuracy using a THz photomixing synthesizer based on a frequency comb. Compared to previous synchrotron based FT-Far-IR measurements of Boudon et al. (Ref. [1]), the accuracy of the line frequency measurements is improved by one order of magnitude; this yields a corresponding increase of two orders of magnitude to the weighting of these transitions in the global fit. The rotational transitions in the ν4 ←ν4 hot band are measured for the first time by the broad spectral coverage of the photomixing CW-THz spectrometer providing access up to R(5) transitions at 2.6 THz. The new global fit including the present lines has been used to update the methane line list of the HITRAN database. Some small, but significant variations of the parameter values are observed and are accompanied by a reduction of the 1-σ uncertainties on the rotational (B0) and centrifugal distortion (D0) constants.

  16. Stratospheric isotopic water profiles from a single submillimeter limb scan by TELIS

    Directory of Open Access Journals (Sweden)

    A. de Lange

    2009-08-01

    Full Text Available Around 490 GHz relatively strong HDO and H218O emission lines can be found in the submillimeter thermal-emission spectrum of the Earth's atmosphere, along with lines of the principal isotopologue of water vapour. These can be used for remote sensing of the rare/principal isotope ratio in the stratosphere. A sensitivity study has been performed for retrieval simulations of water isotopologues from balloon-borne measurements by the limb sounder TELIS (TErahertz and submillimeter LImb Sounder. The study demonstrates the capability of TELIS to determine, from a single limb scan, the profiles for H218O and HDO between 20 km and 37 km with a retrieval error of ≈3 and a spatial resolution of 1.5 km, as determined by the width of the averaging kernel. In addition HDO can be retrieved in the range of 10–20 km, albeit with a strongly deteriorated retrieval error. Expected uncertainties in instrumental parameters have only limited impact on the retrieval results.

  17. SUBMILLIMETER ARRAY OBSERVATIONS OF MAGNETIC FIELDS IN G240.31+0.07: AN HOURGLASS IN A MASSIVE CLUSTER-FORMING CORE

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Liu, Hauyu B.; Tang, Ya-Wen [Academia Sinica Institute of Astronomy and Astrophysics, P. O. Box 23-141, Taipei 106, Taiwan (China); Girart, Josep M., E-mail: kpqiu@nju.edu.cn [Institut de Ciències de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain)

    2014-10-10

    We report the first detection of an hourglass magnetic field aligned with a well-defined outflow rotation system in a high-mass, star-forming region. The observations were performed with the Submillimeter Array toward G240.31+0.07, which harbors a massive, flattened, and fragmenting molecular cloud core and a wide-angle bipolar outflow. The polarized dust emission at 0.88 mm reveals a clear hourglass-shaped magnetic field aligned within 20° of the outflow axis. Maps of high-density tracing spectral lines, e.g., H{sup 13}CO{sup +} (4-3), show that the core is rotating about its minor axis, which is also aligned with the magnetic field axis. Therefore, both the magnetic field and kinematic properties observed in this region are surprisingly consistent with the theoretical predictions of the classic paradigm of isolated low-mass star formation. The strength of the magnetic field in the plane of sky is estimated to be ∼1.1 mG, resulting in a mass-to-magnetic flux ratio of 1.4 times the critical value and a turbulent-to-ordered magnetic energy ratio of 0.4. We also find that the specific angular momentum almost linearly decreases from r ∼ 0.6 pc to 0.03 pc scales, which is most likely attributed to magnetic braking.

  18. SUBMILLIMETER ARRAY OBSERVATIONS OF MAGNETIC FIELDS IN G240.31+0.07: AN HOURGLASS IN A MASSIVE CLUSTER-FORMING CORE

    International Nuclear Information System (INIS)

    Qiu, Keping; Zhang, Qizhou; Menten, Karl M.; Liu, Hauyu B.; Tang, Ya-Wen; Girart, Josep M.

    2014-01-01

    We report the first detection of an hourglass magnetic field aligned with a well-defined outflow rotation system in a high-mass, star-forming region. The observations were performed with the Submillimeter Array toward G240.31+0.07, which harbors a massive, flattened, and fragmenting molecular cloud core and a wide-angle bipolar outflow. The polarized dust emission at 0.88 mm reveals a clear hourglass-shaped magnetic field aligned within 20° of the outflow axis. Maps of high-density tracing spectral lines, e.g., H 13 CO + (4-3), show that the core is rotating about its minor axis, which is also aligned with the magnetic field axis. Therefore, both the magnetic field and kinematic properties observed in this region are surprisingly consistent with the theoretical predictions of the classic paradigm of isolated low-mass star formation. The strength of the magnetic field in the plane of sky is estimated to be ∼1.1 mG, resulting in a mass-to-magnetic flux ratio of 1.4 times the critical value and a turbulent-to-ordered magnetic energy ratio of 0.4. We also find that the specific angular momentum almost linearly decreases from r ∼ 0.6 pc to 0.03 pc scales, which is most likely attributed to magnetic braking

  19. Model calculations for a 600 A laser based on photopumping of Mo6+ by a spectral line of Mo11+

    International Nuclear Information System (INIS)

    Klapisch, M.; Cohen, M.; Goldstein, W.H.; Feldman, U.

    1990-01-01

    We assess aspects of the feasibility of a recent proposal to use the coincidence between a Mo 11+ , 136.499 A, line and a 4p 6 -(4p 5 ) 1/2 6s, J=1, transition of Mo 6+ , to obtain amplified spontaneous emission around 600 A. A collisional-radiative model for the Mo 6+ ion, including resonant photoexcitation of the 4p 5 1/2 6s level, was constructed using the HULLAC atomic physics package. The model included the 4s 2 4p 6 ; 4p 5 4d, 4f; 4p 5 5s, 5p, 5d; 4p 5 6s, 6p, 6d; 4s4p 6 4d, 4f; 4p 6 4d 2 and 4s 2 4p 4 4d 2 configurations, amounting to 193 levels. All configuration interactions and collisional mixing were taken into account. A gain of 3 cm -1 is obtained for the 4p 5 6s(J = 1)-4p 5 5p(J = 2) transition at 645 A with T e = 5 eV, n e = 10 18 cm -3 , and an effective radiation temperature of T rad > 40 eV for the pump transition. Other transitions exhibit lower gains. (orig.)

  20. Submillimeter (Lambda < 1 mm) Continuum Imaging at CSO: A Retrospective

    Science.gov (United States)

    Dowell, C. Darren

    2009-01-01

    This contribution is submitted on behalf of all students, postdocs, and staff inspired and supported by Tom Phillips to build an instrument and then wait for low precipitable water vapor. Over the 20 plus years of its existence, the Caltech Submillimeter Observatory (CSO) has seen a succession of ever more powerful detectors to measure continuum emission in the shortest submillimeter bands available from Mauna Kea. These instruments have been trained on the nearest solar systems, the most distant galaxies, and objects in between. I show several images collected over the 5 plus year history of the SHARC II camera and anecdotal comparison with past work.

  1. [Study on the Effects and Compensation Effect of Recording Parameters Error on Imaging Performance of Holographic Grating in On-Line Spectral Diagnose].

    Science.gov (United States)

    Jiang, Yan-xiu; Bayanheshig; Yang, Shuo; Zhao, Xu-long; Wu, Na; Li, Wen-hao

    2016-03-01

    To making the high resolution grating, a numerical calculation was used to analyze the effect of recording parameters on groove density, focal curve and imaging performance of the grating and their compensation. Based on Fermat' s principle, light path function and aberration, the effect on imaging performance of the grating was analyzed. In the case of fixed using parameters, the error of the recording angle has a greater influence on imaging performance, therefore the gain of the weight of recording angle can improve the accuracy of the recording angle values in the optimization; recording distance has little influence on imaging performance; the relative errors of recording parameters cause the change of imaging performance of the grating; the results indicate that recording parameter errors can be compensated by adjusting its corresponding parameter. The study can give theoretical guidance to the fabrication for high resolution varied-line-space plane holographic grating in on-line spectral diagnostic and reduce the alignment difficulty by analyze the main error effect the imaging performance and propose the compensation method.

  2. High-resolution measurement, line identification, and spectral modeling of the Kβ spectrum of heliumlike argon emitted by a laser-produced plasma using a gas-puff target

    International Nuclear Information System (INIS)

    Skobelev, I.Y.; Faenov, A.Y.; Dyakin, V.M.; Fiedorowicz, H.; Bartnik, A.; Szczurek, M.; Beiersdorfer, P.; Nilsen, J.; Osterheld, A.L.

    1997-01-01

    We present an analysis of the spectrum of satellite transitions to the He-β line in ArXVII. High-resolution measurements of the spectra from laser-heated Ar-gas-puff targets are made with spectral resolution of 10000 and spatial resolution of better than 50 μm. These are compared with tokamak measurements. Several different lines are identified in the spectra and the spectral analysis is used to determine the plasma parameters in the gas-puff laser-produced plasma. The data complement those from tokamak measurements to provide more complete information on the satellite spectra. copyright 1997 The American Physical Society

  3. Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F

    International Nuclear Information System (INIS)

    Blumberg, W.A.M.; Fetterman, H.R.; Peck, D.D.; Goldsmith, P.F.

    1979-01-01

    Tunable submillimeter radiation, generated and detected using optically pumped lasers and Schottky diode mixers, has been used in an infrared-submillimeter double resonance investigation of CH 3 F. This technique permits the direct observation of the molecular rotational spectra and kinetics of excited vibrational states and is particularly important for those molecules which are candidates for optically pumped submillimeter lasers

  4. Optics for MUSIC: a new (sub)millimeter camera for the Caltech Submillimeter Observatory

    Science.gov (United States)

    Sayers, Jack; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Schlaerth, James A.; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    We will present the design and implementation, along with calculations and some measurements of the performance, of the room-temperature and cryogenic optics for MUSIC, a new (sub)millimeter camera we are developing for the Caltech Submm Observatory (CSO). The design consists of two focusing elements in addition to the CSO primary and secondary mirrors: a warm off-axis elliptical mirror and a cryogenic (4K) lens. These optics will provide a 14 arcmin field of view that is diffraction limited in all four of the MUSIC observing bands (2.00, 1.33, 1.02, and 0.86 mm). A cold (4K) Lyot stop will be used to define the primary mirror illumination, which will be maximized while keeping spillover at the sub 1% level. The MUSIC focal plane will be populated with broadband phased antenna arrays that efficiently couple to factor of (see manuscript) 3 in bandwidth,1, 2 and each pixel on the focal plane will be read out via a set of four lumped element filters that define the MUSIC observing bands (i.e., each pixel on the focal plane simultaneously observes in all four bands). Finally, a series of dielectric and metal-mesh low pass filters have been implemented to reduce the optical power load on the MUSIC cryogenic stages to a quasi-negligible level while maintaining good transmission in-band.

  5. 350 μm POLARIMETRY FROM THE CALTECH SUBMILLIMETER OBSERVATORY

    International Nuclear Information System (INIS)

    Dotson, Jessie L.; Vaillancourt, John E.; Kirby, Larry; Hildebrand, Roger H.; Dowell, C. Darren; Davidson, Jacqueline A.

    2010-01-01

    We present a summary of data obtained with the 350 μm polarimeter, Hertz, at the Caltech Submillimeter Observatory. We give tabulated results and maps showing polarization vectors and intensity contours. The summary includes over 4300 individual measurements in 56 Galactic sources and two galaxies. Of these measurements, 2153 have P ≥ 3σ p statistical significance. The median polarization of the entire data set is 1.46%.

  6. Submillimeter laboratory identification of CH{sup +} and CH{sub 2}D{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Amano, T. [Department of Chemistry and Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2015-01-22

    Laboratory identification of two basic and important interstellar molecular ions is presented. The J = 1 - 0 rotational transition of {sup 12}CH{sup +} together with those of {sup 13}CH{sup +} and {sup 12}CD{sup +} was observed in the laboratory. The newly obtained frequencies were found to be different from those reported previously. Various experimental evidences firmly support the new measurements. In addition, the Zeeman effect and the spin-rotation hyperfine interaction enforce the laboratory identification with no ambiguity. Rotational lines of CH{sub 2}D{sup +} were observed in the submillimeter-wave region. This laboratory observation is consistent with a recent tentative identification of CH{sub 2}D{sup +} toward Ori IRc2.

  7. The Spectral Energy Distributions of z ~ 8 Galaxies from the IRAC Ultra Deep Fields: Emission Lines, Stellar Masses, and Specific Star Formation Rates at 650 Myr

    Science.gov (United States)

    Labbé, I.; Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Magee, D.; González, V.; Carollo, C. M.; Franx, M.; Trenti, M.; van Dokkum, P. G.; Stiavelli, M.

    2013-11-01

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ~ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ~120h over the HUDF reaching depths of ~28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct >=3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at >=5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ~ 8 are markedly redder than those at z ~ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ~ 7 and z ~ 8 we estimate a rest-frame equivalent width of {W}_{[O\\,\\scriptsize{III}]\\ \\lambda \\lambda 4959,5007+H\\beta }=670^{+260}_{-170} Å contributing 0.56^{+0.16}_{-0.11} mag to the [4.5] filter at z ~ 8. The corresponding {W}_{H\\alpha }=430^{+160}_{-110} Å implies an average specific star formation rate of sSFR=11_{-5}^{+11} Gyr-1 and a stellar population age of 100_{-50}^{+100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ~3 ×, decreasing the integrated stellar mass density to \\rho ^*(z=8,M_{\\rm{UV}}Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #11563, 9797. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of

  8. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR

    Energy Technology Data Exchange (ETDEWEB)

    Labbé, I.; Bouwens, R. J.; Franx, M. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Oesch, P. A.; Illingworth, G. D.; Magee, D.; González, V. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Carollo, C. M. [Institute for Astronomy, ETH Zurich, 8092 Zurich (Switzerland); Trenti, M. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Van Dokkum, P. G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Stiavelli, M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-11-10

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ∼ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ∼120h over the HUDF reaching depths of ∼28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct ≥3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at ≥5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ∼ 8 are markedly redder than those at z ∼ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ∼ 7 and z ∼ 8 we estimate a rest-frame equivalent width of contributing 0.56{sup +0.16}{sub -0.11} mag to the [4.5] filter at z ∼ 8. The corresponding W{sub Hα}=430{sup +160}{sub -110} Å implies an average specific star formation rate of sSFR=11{sub -5}{sup +11} Gyr{sup –1} and a stellar population age of 100{sub -50}{sup +100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ∼3 ×, decreasing the integrated stellar mass density to ρ{sup *}(z=8,M{sub UV}<-18)=0.6{sup +0.4}{sub -0.3}×10{sup 6} M{sub sun} Mpc{sup –3}.

  9. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chul [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of); Lee, Gwang-Ho, E-mail: jclee@kasi.re.kr [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-12-20

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S{sub 350μm} = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10{sup 7} M {sub ⊙} and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  10. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    Science.gov (United States)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  11. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2016-01-01

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S 350μm = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10 7 M ⊙ and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  12. New development of solid state sub-millimeter sources

    International Nuclear Information System (INIS)

    Nishizawa, Jun-ichi

    1982-01-01

    The TUNNETT (tunnel injection transit time negative resistance) diode was proposed by the author in the analysis of avalanching negative resistance diodes and seemed to be the most promising semiconductor source in the frequency range from 100 to 1000 GHz. The first TUNNETT oscillation was realized experimentally in 1968 from a GaAs p + n diode. Recently, several types of GaAs TUNNETT diodes have been fabricated by the use of the author's new liquid phase epitaxial method, which is named the temperature difference method under controlled vapour pressure. The oscillation characteristics of p + - n - n + diodes are shown. On the other hand, the static induction transistor (SIT) shows the excellent performance for high power use in microwave region. The static induced tunnel transit time transistor (SIT 4 ) is a kind of SIT in which the injection source region is replaced by the tunnel injection for use in submillimeter region. In SIT 4 , the gate voltage controls the field of the tunnelling region, and the tunnelling electrons transit to the drain without reaching the gate. The SIT's using tunnelling and ideal (ballistic) SIT are promising devices in submillimeter region. The author suggested the generation of electromagnetic waves by using phonons in semiconductors from submillimeter to infared. Above 1000 GHz up to 100 THz of the field of conventional semiconductors, semiconductor Raman and Brillouin lasers are expected to be the most useful devices in the future. (Wakatsuki, Y.)

  13. The CCAT-prime Extreme Field-of-View Submillimeter Telescope on Cerro Chajnantor

    Science.gov (United States)

    Koopman, Brian; Bertoldi, Frank; Chapman, Scott; Fich, Michel; Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry L.; Murray, Norman W.; Niemack, Michael D.; Riechers, Dominik; Schilke, Peter; Stacey, Gordon J.; Stutzki, Juergen; CCAT-prime Collaboration

    2017-01-01

    CCAT-prime is a six meter aperture off-axis submillimeter telescope that we plan to build at 5600m elevation on Cerro Chajnantor in Chile. The CCAT-prime optics are based on a cross-Dragone design with high throughput and a wide field-of-view optimized to increase the mapping speed of next generation cosmic microwave background (CMB) observations. These characteristics make CCAT-prime an excellent platform for a wide range of next generation millimeter and submillimeter science goals, and a potential platform for CMB stage-IV measurements. Here we present the telescope design for CCAT-prime and review the science goals.Taking advantage of the high elevation site, the first generation instrument for CCAT-prime will measure seven different frequency bands from 350um to 3mm. These seven bands will enable precise measurements of the Sunyaev-Zel’dovich effects (SZE) by separating contributions from CMB, thermal SZE, kinetic SZE, bright submm galaxies, and radio sources with a goal of extracting the peculiar velocities from a large number of galaxy clusters. Additional science priorities for CCAT-prime include: Galactic Ecology studies of the dynamic intersteller medium by mapping the fine structure lines [CI], [CII] and [NII] as well as high-excitation CO lines at the shortest wavelength bands; high redshift intensity mapping of [CII] emission from star-forming galaxies that likely dominates cosmic reionization at z~5-9 to probe the Epoch of Reionization; and next generation CMB polarization measurements to constrain inflation and cosmological models. The CCAT-prime facility will further our understanding of astrophysical processes from moments after the Big Bang to the present-day evolution of the Milky Way.

  14. Deep Submillimeter and Radio Observations in the SSA22 Field. I. Powering Sources and the Lyα Escape Fraction of Lyα Blobs

    Science.gov (United States)

    Ao, Y.; Matsuda, Y.; Henkel, C.; Iono, D.; Alexander, D. M.; Chapman, S. C.; Geach, J.; Hatsukade, B.; Hayes, M.; Hine, N. K.; Kato, Y.; Kawabe, R.; Kohno, K.; Kubo, M.; Lehnert, M.; Malkan, M.; Menten, K. M.; Nagao, T.; Norris, R. P.; Ouchi, M.; Saito, T.; Tamura, Y.; Taniguchi, Y.; Umehata, H.; Weiss, A.

    2017-12-01

    We study the heating mechanisms and Lyα escape fractions of 35 Lyα blobs (LABs) at z ≈ 3.1 in the SSA22 field. Dust continuum sources have been identified in 11 of the 35 LABs, all with star formation rates (SFRs) above 100 M ⊙ yr-1. Likely radio counterparts are detected in 9 out of 29 investigated LABs. The detection of submillimeter dust emission is more linked to the physical size of the Lyα emission than to the Lyα luminosities of the LABs. A radio excess in the submillimeter/radio-detected LABs is common, hinting at the presence of active galactic nuclei. Most radio sources without X-ray counterparts are located at the centers of the LABs. However, all X-ray counterparts avoid the central regions. This may be explained by absorption due to exceptionally large column densities along the line-of-sight or by LAB morphologies, which are highly orientation dependent. The median Lyα escape fraction is about 3% among the submillimeter-detected LABs, which is lower than a lower limit of 11% for the submillimeter-undetected LABs. We suspect that the large difference is due to the high dust attenuation supported by the large SFRs, the dense large-scale environment as well as large uncertainties in the extinction corrections required to apply when interpreting optical data.

  15. PHYSICAL PROPERTIES AND MORPHOLOGY OF A NEWLY IDENTIFIED COMPACT z = 4.04 LENSED SUBMILLIMETER GALAXY IN ABELL 2218

    International Nuclear Information System (INIS)

    Knudsen, Kirsten K.; Kneib, Jean-Paul; Richard, Johan; Petitpas, Glen; Egami, Eiichi

    2010-01-01

    We present the identification of a bright submillimeter (submm) source, SMM J163555.5+661300, detected in the lensing cluster Abell 2218, for which we have accurately determined the position using observations from the Submillimeter Array (SMA). The identified optical counterpart has a spectroscopic redshift of z = 4.044 ± 0.001 if we attribute the single emission line detected at λ = 6140 A to Lyα. This redshift identification is in good agreement with the optical/near-infrared photometric redshift as well as the submm flux ratio S 450 /S 850 ∼ 1.6, the radio-submm flux ratio S 1.4 /S 850 24 /S 850 12 L sun , which implies a star formation rate (SFR) of 230 M sun yr -1 . This makes it the lowest-luminosity submillimeter galaxy (SMG) known at z>4 to date. Previous CO(4-3) emission line observations yielded a non-detection, for which we derived an upper limit of the CO line luminosity of L CO ' = 0.3x10 10 K km s -1 pc -2 , which is not inconsistent with the L ' CO -L FIR relation for starburst galaxies. The best-fit model to the optical and near-infrared photometry give a stellar population with an age of 1.4 Gyr and a stellar mass of 1.6 x 10 10 M sun . The optical morphology is compact and in the source plane the galaxy has an extent of ∼6 x 3 kpc with individual star-forming knots of sun yr -1 kpc 2 . The redshift of J163556 extends the redshift distribution of faint, lensed SMGs, and we find no evidence that these have a different redshift distribution than bright SMGs.

  16. Analysis of the Herschel/Hexos Spectral Survey Toward Orion South: A Massive Protostellar Envelope with Strong External Irradiation

    NARCIS (Netherlands)

    Tahani, K.; Plume, R.; Bergin, E. A.; Tolls, V.; Phillips, T. G.; Caux, E.; Cabrit, S.; Goicoechea, J. R.; Goldsmith, P. F.; Johnstone, D.; Lis, D. C.; Pagani, L.; Menten, K. M.; Müller, H. S. P.; Ossenkopf-Okada, V.; Pearson, J. C.; van der Tak, F. F. S.

    2016-01-01

    We present results from a comprehensive submillimeter spectral survey toward the source Orion South, based on data obtained with the Heterodyne Instrument for the Far-Infrared instrument on board the Herschel Space Observatory, covering the frequency range of 480 to 1900 GHz. We detect 685 spectral

  17. Collision induced broadening of ν1 band and ground state spectral lines of sulfur dioxide perturbed by N2 and O2

    Science.gov (United States)

    Ceselin, Giorgia; Tasinato, Nicola; Puzzarini, Cristina; Charmet, Andrea Pietropolli; Stoppa, Paolo; Giorgianni, Santi

    2017-09-01

    To monitor the constituents and trace pollutants of Earth atmosphere and understand its evolution, accurate spectroscopic parameters are fundamental information. SO2 is produced by both natural and anthropogenic sources and it is one of the principal causes of acid rains as well as an important component of fine aerosol particles, once oxidized to sulfate. The present work aims at determining SO2 broadening parameters using N2 and O2 as atmospherically relevant damping gases. Measurements are carried out in the infrared (IR) and mm-/sub-mm wave regions, around 8.8 μm and in the 104 GHz-1.1 THz interval, respectively. IR ro-vibrational transitions are recorded by using a tunable diode laser spectrometer, whereas the microwave spectra are recorded by using a frequency-modulated millimeter-/submillimeter-wave spectrometer. SO2-N2 and SO2-O2 collisional cross sections are retrieved for several ν1 band ro-vibrational transitions of 32S16O2, for some transitions belonging to either ν1 + ν2 - ν2 of 32S16O2 or ν1 of 34S16O2 as well as for about 20 pure rotational transitions in the vibrational ground state of the main isotopic species. From N2- and O2- broadening coefficients the broadening parameters of SO2 in air are derived. The work is completed with the study of the dependence of foreign broadening coefficients on the rotational quantum numbers.

  18. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  19. Discovery of a Lensed Ultrabright Submillimeter Galaxy at z = 2.0439

    Science.gov (United States)

    Díaz-Sánchez, A.; Iglesias-Groth, S.; Rebolo, R.; Dannerbauer, H.

    2017-07-01

    We report an ultrabright lensed submillimeter galaxy (SMG) at z = 2.0439, WISE J132934.18+224327.3, identified as a result of a full-sky cross-correlation of the AllWISE and Planck compact source catalogs aimed to search for bright analogs of the SMG SMM J2135, the Cosmic Eyelash. Inspection of archival SCUBA-2 observations of the candidates revealed a source with fluxes ({S}850μ {{m}}=130 mJy) consistent with the Planck measurements. The centroid of the SCUBA-2 source coincides within 1 arcsec with the position of the AllWISE mid-IR source, and, remarkably, with an arc-shaped lensed galaxy in HST images at visible wavelengths. Low-resolution rest-frame UV-optical spectroscopy of this lensed galaxy obtained with 10.4 m GTC reveals the typical absorption lines of a starburst galaxy. Gemini-N near-IR spectroscopy provided a clear detection of {{{H}}}α emission. The lensed source appears to be gravitationally magnified by a massive foreground galaxy cluster lens at z = 0.44 modeling with Lenstool indicates a lensing amplification factor of 11 ± 2. We determine an intrinsic rest-frame 8-1000 μm luminosity, {L}{IR}, of (1.3+/- 0.1)× {10}13 {L}⊙ , and a likely star formation rate (SFR) of ˜ 500{--}2000 {M}⊙ {{yr}}-1. The SED shows a remarkable similarity with the Cosmic Eyelash from optical-mid/IR to submillimeter/radio, albeit at higher fluxes.

  20. Investigation of imaging properties for submillimeter rectangular pinholes

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Dan, E-mail: dxia@uchicago.edu [The Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Moore, Stephen C., E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Park, Mi-Ae, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Cervo, Morgan, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu [Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Metzler, Scott D., E-mail: metzler@upenn.edu [The Department of Radiology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-12-15

    Purpose: Recently, a multipinhole collimator with inserts that have both rectangular apertures and rectangular fields of view (FOVs) has been proposed for SPECT imaging since it can tile the projection onto the detector efficiently and the FOVs in transverse and axial directions become separable. The purpose of this study is to investigate the image properties of rectangular-aperture pinholes with submillimeter apertures sizes. Methods: In this work, the authors have conducted sensitivity and FOV experiments for 18 replicates of a prototype insert fabricated in platinum/iridium (Pt/Ir) alloy with submillimeter square-apertures. A sin{sup q}θ fit to the experimental sensitivity has been performed for these inserts. For the FOV measurement, the authors have proposed a new formula to calculate the projection intensity of a flood image on the detector, taking into account the penumbra effect. By fitting this formula to the measured projection data, the authors obtained the acceptance angles. Results: The mean (standard deviation) of fitted sensitivity exponents q and effective edge lengths w{sub e} were, respectively, 10.8 (1.8) and 0.38 mm (0.02 mm), which were close to the values, 7.84 and 0.396 mm, obtained from Monte Carlo calculations using the parameters of the designed inserts. For the FOV measurement, the mean (standard deviation) of the transverse and axial acceptances were 35.0° (1.2°) and 30.5° (1.6°), which are in good agreement with the designed values (34.3° and 29.9°). Conclusions: These results showed that the physical properties of the fabricated inserts with submillimeter aperture size matched our design well.

  1. CLUMPY AND EXTENDED STARBURSTS IN THE BRIGHTEST UNLENSED SUBMILLIMETER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Iono, Daisuke; Hatsukade, Bunyo; Kawabe, Ryohei; Matsuda, Yuichi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Yun, Min S.; Wilson, Grant [University of Massachusetts, Department of Astronomy, 710 North Pleasant Street, Amherst, MA 01003 (United States); Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Ikarashi, Soh [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700AV Groningen (Netherlands); Izumi, Takuma; Kohno, Kotaro; Tamura, Yoichi; Umehata, Hideki [Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Lee, Minju; Saito, Toshiki [Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Ueda, Junko [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Michiyama, Tomonari; Ando, Misaki, E-mail: d.iono@nao.ac.jp [SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-09-20

    The central structure in three of the brightest unlensed z = 3–4 submillimeter galaxies is investigated through 0.″015–0.″05 (120–360 pc) 860 μ m continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kiloparsec in AzTEC1 and AzTEC8 is extremely complex, and they are composed of multiple ∼200 pc clumps. AzTEC4 consists of two sources that are separated by ∼1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ∼300–3000 M {sub ⊙} yr{sup −1} kpc{sup −2}, suggesting regions with extreme star formation near the Eddington limit. By comparing the flux obtained by ALMA and Submillimeter Array, we find that 68%–90% of the emission is extended (≳1 kpc) in AzTEC4 and 8. For AzTEC1, we identify at least 11 additional compact (∼200 pc) clumps in the extended 3–4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at ≲150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10% and 30% of the 860 μ m continuum is concentrated in clumpy structures in the central kiloparsec, while the remaining flux is distributed over ≳1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.

  2. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  3. CONTINUUM OBSERVATIONS AT 350 MICRONS OF HIGH-REDSHIFT MOLECULAR EMISSION LINE GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Evans, Neal J.; Dunham, Michael M.; Vanden Bout, Paul A.

    2009-01-01

    We report observations of 15 high-redshift (z = 1 - 5) galaxies at 350 μm using the Caltech Submillimeter Observatory and Submillimeter High Angular Resolution Camera II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates (SFRs), total dust masses, and minimum source size estimates are derived. These galaxies have SFRs and star formation efficiencies comparable to other high-redshift molecular emission line galaxies. The results are used to test the idea that star formation in these galaxies occurs in a large number of basic units, the units being similar to star-forming clumps in the Milky Way. The luminosity of these extreme galaxies can be reproduced in a simple model with (0.9-30)x10 6 dense clumps, each with a luminosity of 5 x 10 5 L sun , the mean value for such clumps in the Milky Way. Radiative transfer models of such clumps can provide reasonable matches to the overall spectral energy distributions (SEDs) of the galaxies. They indicate that the individual clumps are quite opaque in the far-infrared. Luminosity-to-mass ratios vary over two orders of magnitude, correlating strongly with the dust temperature derived from simple fits to the SED. The gas masses derived from the dust modeling are in remarkable agreement with those from CO luminosities, suggesting that the assumptions going into both calculations are reasonable.

  4. Josephson frequency meter for millimeter and submillimeter wavelengths

    International Nuclear Information System (INIS)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.

    1994-01-01

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process

  5. Josephson frequency meter for millimeter and submillimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I. [State Research Center, Kiev (Ukraine)] [and others

    1994-12-31

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.

  6. Development of a Submillimeter-Wavelength Immersion Grating Spectrometer

    Science.gov (United States)

    Phillips, T. G.

    2001-01-01

    The broad goal of this project was to develop a broadband, moderate-resolution spectrometer for submillimeter wavelengths. Our original approach was to build an immersion grating spectrometer, and as such, the first step was to identify the best material (lowest loss, highest index) for the grating medium, and to characterize its properties at the foreseen optical-bench operating temperature of 1.5 K. To this end, we put our initial efforts into upgrading an existing laboratory submillimeter Fourier transform spectrometer, which allowed us to carry out the requisite materials measurements. The associated cryogenic detector dewar was also redesigned and rebuilt to carry out this work. This dewar houses the 1.5 K detector and the filter wheel used in the materials characterization. Our goal was to have the beam propagate through the samples as uniformly as possible, so the optics were redesigned to allow for the samples to be traversed by a well-defined collimated beam. The optics redesign also placed the samples at an image of the aperture stop located within the FTS. After the rebuild, we moved into the testing phase.

  7. Bolometric kinetic inductance detector technology for sub-millimeter radiometric imaging

    Science.gov (United States)

    Hassel, Juha; Timofeev, Andrey V.; Vesterinen, Visa; Sipola, Hannu; Helistö, Panu; Aikio, Mika; Mäyrä, Aki; Grönberg, Leif; Luukanen, Arttu

    2015-10-01

    Radiometric sub-millimeter imaging is a candidate technology especially in security screening applications utilizing the property of radiation in the band of 0.2 - 1.0 THz to penetrate through dielectric substances such as clothing. The challenge of the passive technology is the fact that the irradiance corresponding to the blackbody radiation is very weak in this spectral band: about two orders of magnitude below that of the infrared band. Therefore the role of the detector technology is of ultimate importance to achieve sufficient sensitivity. In this paper we present results related to our technology relying on superconducting kinetic inductance detectors operating in a thermal (bolometric) mode. The detector technology is motivated by the fact that it is naturally suitable for scalable multiplexed readout systems, and operates with relatively simple cryogenics. We will review the basic concepts of the detectors, and provide experimental figures of merit. Furthermore, we will discuss the issues related to the scale-up of our detector technology into large 2D focal plane arrays.

  8. Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project

    Science.gov (United States)

    Camps, Peter; Trčka, Ana; Trayford, James; Baes, Maarten; Theuns, Tom; Crain, Robert A.; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop

    2018-02-01

    We present dust-attenuated and dust emission fluxes for sufficiently resolved galaxies in the EAGLE suite of cosmological hydrodynamical simulations, calculated with the SKIRT radiative transfer code. The post-processing procedure includes specific components for star formation regions, stellar sources, and diffuse dust and takes into account stochastic heating of dust grains to obtain realistic broadband fluxes in the wavelength range from ultraviolet to submillimeter. The mock survey includes nearly half a million simulated galaxies with stellar masses above {10}8.5 {M}ȯ across six EAGLE models. About two-thirds of these galaxies, residing in 23 redshift bins up to z = 6, have a sufficiently resolved metallic gas distribution to derive meaningful dust attenuation and emission, with the important caveat that the same dust properties were used at all redshifts. These newly released data complement the already publicly available information about the EAGLE galaxies, which includes intrinsic properties derived by aggregating the properties of the smoothed particles representing matter in the simulation. We further provide an open-source framework of Python procedures for post-processing simulated galaxies with the radiative transfer code SKIRT. The framework allows any third party to calculate synthetic images, spectral energy distributions, and broadband fluxes for EAGLE galaxies, taking into account the effects of dust attenuation and emission.

  9. DETECTION OF AN ULTRA-BRIGHT SUBMILLIMETER GALAXY BEHIND THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo; Habe, Asao [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Tamura, Yoichi; Kohno, Kotaro [Institute of Astronomy, University of Tokyo, Osawa, Mitaka, Tokyo 181-0015 (Japan); Oogi, Taira [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Ezawa, Hajime; Komugi, Shinya; Mizuno, Norikazu; Muller, Erik; Kawamura, Akiko [Chile Observatory, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Oshima, Tai [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Scott, Kimberly S. [North American ALMA Science Center, National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Austermann, Jason E. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Tosaki, Tomoka [Joetsu University of Education, Joetsu, Niigata 943-8512 (Japan); Onishi, Toshikazu [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, 599-8531 Osaka (Japan); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Matsuo, Hiroshi [Advanced Technology Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Aretxaga, Itziar [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), 72000 Puebla (Mexico); and others

    2013-09-10

    We report the discovery of a new ultra-bright submillimeter galaxy (SMG) behind the Small Magellanic Cloud (SMC). This SMG is detected as a 43.3 {+-} 8.4 mJy point source (MM J01071-7302, hereafter MMJ0107) in the 1.1 mm continuum survey of the SMC by AzTEC on the ASTE telescope. MMJ0107 is also detected in the radio (843 MHz), Herschel/SPIRE, Spitzer MIPS 24 {mu}m, all IRAC bands, Wide-field Infrared Survey Explorer, and near-infrared (J, H, K{sub S} ). We find an optical (U, B, V) source, which might be the lensing object, at a distance of 1.''4 from near-infrared and IRAC sources. Photometric redshift estimates for the SMG using representative spectral energy distribution templates show the redshifts of 1.4-3.9. We estimate total far-infrared luminosity of (0.3-2.2) Multiplication-Sign 10{sup 14} {mu}{sup -1} L{sub Sun} and a star formation rate of 5600-39, 000 {mu}{sup -1} M{sub Sun} yr{sup -1}, where {mu} is the gravitational magnification factor. This apparent extreme star formation activity is likely explained by a highly magnified gravitational lens system.

  10. Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions

    Science.gov (United States)

    Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.

    2012-06-01

    We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.

  11. Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics

    Science.gov (United States)

    Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily

    2014-01-01

    The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The

  12. The Arizona Radio Observatory 1 mm Spectral Survey of IRC (plus)10216 and VY Canis Majoris (215-285 GHz)

    Science.gov (United States)

    Tenenbaum, E. D.; Dodd, J. L.; Milam, S. N.; Woolf, N. J.; Ziurys, L. M.

    2010-01-01

    A low noise (1(sigma) rms approx. 3 mK) 1. nun spectral survey (214.5-285.5 GHz) of the oxygen-rich supergiant VY Canis Majoris and the carbon-rich asymptotic giant branch star IRC +10216 has been conducted using the Arizona Radio Observatory's 10 m Submillimeter Telescope. Here the complete data set is presented. This study, carried out with a new ALMA-type receiver, marks the first continuous band scan of an O-rich circumstellar envelope, and the most sensitive survey to date of IRC +10216. In VY CMa, 130 distinct molecular lines were detected, 14 of which cannot be identified; in IRC +10216, 717 lines were observed, with 126 features remaining unidentified. In the 1 mm bands of VY CMa and IRC +10216, emission is present from 18 and 32 different chemical compounds, respectively, with 10 species common to both sources. Many narrow emission lines were observed in both circumstellar shells, arising from vibrationally excited molecules and from refractory-containing species. Line profiles in VY CMa also exhibit a variety of different shapes, caused by the complex, asymmetric outflow of this object. The survey highlights the fact that C-rich and O-rich circumstellar envelopes are chemically interesting, and both are sources of new interstellar molecules. The high number of unidentified lines and the unreliable, rest frequencies for known species such as NaCN indicate the need for additional laboratory spectroscopy studies.

  13. The Arizona Radio Observatory 1 mm Spectral Survey of IRC +10216 and VY Canis Majoris (215-285 GHz)

    Science.gov (United States)

    Tenenbaum, E. D.; Dodd, J. L.; Milam, S. N.; Woolf, N. J.; Ziurys, L. M.

    2010-10-01

    A low noise (1σ rms ~ 3 mK) 1 mm spectral survey (214.5-285.5 GHz) of the oxygen-rich supergiant VY Canis Majoris and the carbon-rich asymptotic giant branch star IRC +10216 has been conducted using the Arizona Radio Observatory's 10 m Submillimeter Telescope. Here the complete data set is presented. This study, carried out with a new ALMA-type receiver, marks the first continuous band scan of an O-rich circumstellar envelope, and the most sensitive survey to date of IRC +10216. In VY CMa, 130 distinct molecular lines were detected, 14 of which cannot be identified; in IRC +10216, 717 lines were observed, with 126 features remaining unidentified. In the 1 mm bands of VY CMa and IRC +10216, emission is present from 18 and 32 different chemical compounds, respectively, with 10 species common to both sources. Many narrow emission lines were observed in both circumstellar shells, arising from vibrationally excited molecules and from refractory-containing species. Line profiles in VY CMa also exhibit a variety of different shapes, caused by the complex, asymmetric outflow of this object. The survey highlights the fact that C-rich and O-rich circumstellar envelopes are chemically interesting, and both are sources of new interstellar molecules. The high number of unidentified lines and the unreliable rest frequencies for known species such as NaCN indicate the need for additional laboratory spectroscopy studies.

  14. THE ARIZONA RADIO OBSERVATORY 1 mm SPECTRAL SURVEY OF IRC +10216 AND VY CANIS MAJORIS (215-285 GHz)

    International Nuclear Information System (INIS)

    Tenenbaum, E. D.; Dodd, J. L.; Woolf, N. J.; Ziurys, L. M.; Milam, S. N.

    2010-01-01

    A low noise (1σ rms ∼ 3 mK) 1 mm spectral survey (214.5-285.5 GHz) of the oxygen-rich supergiant VY Canis Majoris and the carbon-rich asymptotic giant branch star IRC +10216 has been conducted using the Arizona Radio Observatory's 10 m Submillimeter Telescope. Here the complete data set is presented. This study, carried out with a new ALMA-type receiver, marks the first continuous band scan of an O-rich circumstellar envelope, and the most sensitive survey to date of IRC +10216. In VY CMa, 130 distinct molecular lines were detected, 14 of which cannot be identified; in IRC +10216, 717 lines were observed, with 126 features remaining unidentified. In the 1 mm bands of VY CMa and IRC +10216, emission is present from 18 and 32 different chemical compounds, respectively, with 10 species common to both sources. Many narrow emission lines were observed in both circumstellar shells, arising from vibrationally excited molecules and from refractory-containing species. Line profiles in VY CMa also exhibit a variety of different shapes, caused by the complex, asymmetric outflow of this object. The survey highlights the fact that C-rich and O-rich circumstellar envelopes are chemically interesting, and both are sources of new interstellar molecules. The high number of unidentified lines and the unreliable rest frequencies for known species such as NaCN indicate the need for additional laboratory spectroscopy studies.

  15. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    Science.gov (United States)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  16. The next generation balloon-borne large aperture submillimeter telescope (BLAST-TNG)

    Science.gov (United States)

    Dober, Bradley Jerald

    Large areas of astrophysics, such as precision cosmology, have benefited greatly from large maps and datasets, yielded by telescopes of ever-increasing number and ability. However, due to the unique challenges posed by submillimeter polarimetry, the study of molecular cloud dynamics and star formation remain stunted. Previously, polarimetry data was limited to a few vectors on only the brightest areas of molecular clouds. This made drawing statistically-driven conclusions a daunting task. However, the successful flight of the Balloon-born Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) generated maps with thousands of independent polarization measurements of molecular clouds, and ushered in a new era of empirical modeling of molecular cloud dynamics. Now that the potential benefits from large-scale maps of magnetic fields in molecular clouds had been identified, a successor that would truly unlock the secrets must be born. The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG), the successor to BLASTPol, has the ability to make larger and more detailed maps of magnetic fields in molecular clouds. It will push the field of star formation into a statistics-driven, empirical realm. With these large, detailed datasets, astronomers will be able to find new relationships between the dust dynamics and the magnetic fields. The field will surge to a new level of understanding. One of the key enabling technologies of BLAST-TNG is its three arrays of polarization-sensitive Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting RLC circuits with a resonant frequency that shifts proportionally to the amount of incident radiation. The key feature of MKIDs is that thousands of detectors, each with their own unique resonant frequency, can be coupled to the same readout line. This technology will be able to drive the production of large-scale monolithic arrays, containing tens or hundreds of thousands of detectors

  17. Compact Receiver Front Ends for Submillimeter-Wave Applications

    Science.gov (United States)

    Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.

    2012-01-01

    The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.

  18. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  19. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    Science.gov (United States)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  20. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  1. SUBMILLIMETER POLARIZATION SPECTRUM IN THE VELA C MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Ade, Peter A. R.; Pascale, Enzo [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Dober, Bradley; Galitzki, Nicholas; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Ashton, Peter; Fissel, Laura M.; Matthews, Tristan G.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Benton, Steven J. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Fukui, Yasuo [Department of Physics and Astrophysics, Nagoya University, Nagoya 464-8602 (Japan); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI, 02912 (United States); Li, Zhi-Yun [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Martin, Peter G. [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Moncelsi, Lorenzo [California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Netterfield, Calvin B., E-mail: ngandil1@jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, Maryland (United States); and others

    2016-06-20

    Polarization maps of the Vela C molecular cloud were obtained at 250, 350, and 500 μ m during the 2012 flight of the balloon-borne telescope BLASTPol. These measurements are used in conjunction with 850 μ m data from Planck to study the submillimeter spectrum of the polarization fraction for this cloud. The spectrum is relatively flat and does not exhibit a pronounced minimum at λ ∼ 350 μ m as suggested by previous measurements of other molecular clouds. The shape of the spectrum does not depend strongly on the radiative environment of the dust, as quantified by the column density or the dust temperature obtained from Herschel data. The polarization ratios observed in Vela C are consistent with a model of a porous clumpy molecular cloud being uniformly heated by the interstellar radiation field.

  2. Cryogenic readout integrated circuits for submillimeter-wave camera

    International Nuclear Information System (INIS)

    Nagata, H.; Kobayashi, J.; Matsuo, H.; Akiba, M.; Fujiwara, M.

    2006-01-01

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6μV/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit

  3. Cryogenic readout integrated circuits for submillimeter-wave camera

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan) and National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)]. E-mail: hirohisa.nagata@nao.ac.jp; Kobayashi, J. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Matsuo, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Akiba, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan); Fujiwara, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan)

    2006-04-15

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6{mu}V/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit.

  4. Stimulated Raman scattering of sub-millimeter waves in bismuth

    Science.gov (United States)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  5. A submillimeter galaxy illuminating its circumgalactic medium: Lyα scattering in a cold, clumpy outflow

    Energy Technology Data Exchange (ETDEWEB)

    Geach, J. E.; Coppin, K. E. K.; Smith, D. J. B. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Bower, R. G.; Alexander, D. M.; Swinbank, A. M. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Bremer, M. N. [School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Chapin, E. L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canada, Madrid (Spain); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University Halifax, NS B3H 3J5 (Canada); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Dunlop, J. S.; Koprowski, M. P.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Farrah, D. [Virginia Polytechnic Institute and State University Department of Physics, MC 0435, 910 Drillfield Drive, Blacksburg, VA 24061 (United States); Jenness, T. [Joint Astronomy Centre, 660 North A' ohoku Place University Park, Hilo, HI 96720 (United States); Robson, E. I. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Spaans, M. [Kapteyn Institute, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Van der Werf, P., E-mail: j.geach@herts.ac.uk [Leiden Observatory, Leiden University, PO box 9513, 2300 RA Leiden (Netherlands)

    2014-09-20

    We report the detection at 850 μm of the central source in SSA22-LAB1, the archetypal 'Lyman-α Blob' (LAB), a 100 kpc scale radio-quiet emission-line nebula at z = 3.1. The flux density of the source, S {sub 850} = 4.6 ± 1.1 mJy, implies the presence of a galaxy or group of galaxies with a total luminosity of L {sub IR} ≈ 10{sup 12} L {sub ☉}. The position of an active source at the center of a ∼50 kpc radius ring of linearly polarized Lyα emission detected by Hayes et al. suggests that the central source is leaking Lyα photons preferentially in the plane of the sky, which undergo scattering in H I clouds at a large galactocentric radius. The Lyα morphology around the submillimeter detection is reminiscent of a biconical outflow, and the average Lyα line profiles of the two 'lobes' are dominated by a red peak, which is expected for a resonant line emerging from a medium with a bulk velocity gradient that is outflowing relative to the line center. Taken together, these observations provide compelling evidence that the central active galaxy (or galaxies) is responsible for a large fraction of the extended Lyα emission and morphology. Less clear is the history of the cold gas in the circumgalactic medium being traced by Lyα: is it mainly pristine material accreting into the halo that has not yet been processed through an interstellar medium (ISM), now being blown back as it encounters an outflow, or does it mainly comprise gas that has been swept-up within the ISM and expelled from the galaxy?.

  6. Temperature Dependences of the Quantum-Mechanical and Semi-Classical Spectral-Line Widths and the Separation 0 of the Impact and Non-Impact Regions for an Ar-Perturbed/K-Radiator System

    Directory of Open Access Journals (Sweden)

    W. C. Kreye

    2010-01-01

    Full Text Available Quantum-mechanical and semi-classical spectral-line shapes are computed at =400, 800, and 1000 K for the line core of the 5802 Å line of the Ar-Perturbed/K-Radiator system. HWHMs ('s are measured from computed full spectral-line shapes. The final-state pseudopotential is for the 721/2 state, and the initial-state potential is for the 423/2,3/2 state. Three high-pressure (P log(—versus—log( curves, corresponding to the non-impact region, intersect a similar set of low-P, impact-region curves at intersections, 0's. Similarly, for two sets of log(—versus—log( curves, which yield intersections, 0's, where is the perturber density. These 0's and 0's separate the two regions and represent the upper limits of the impact regions. A specific validity condition for the impact region is given by the equation ≤0. From an earlier spectroscopic, Fabry-Perot paper, expt=0.021 cm−1 at =400 K and =10 torr. Two theoretical values, theor=0.025 and 0.062 cm−1 corresponding to two different pseudo-potentials, are reported. Two -dependent figures are given, in which the first shows an increase in the impact region with , based on as the basic parameter, and the second which shows a decrease in the impact region with , based on as the basic parameter.

  7. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Science.gov (United States)

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  8. Simultaneous measure of a spectral line profile and the apparatus function of a Fabry-Perot spectrometer when continuous background is present

    International Nuclear Information System (INIS)

    Moreno, J.M.; Quintanilla, M.; Mar, S.

    1978-01-01

    A deconvolution method of registered profile on a Fabry-Perot spectrometer is developed, when the actual profile of the source is a Voigt pattern together with a continuous background. The reliability and accuracy of the method is tested with theoreticaly simulated profiles. The method is applied both to measure the real line profiles and to find the Fabry-Perot parameters, as a test of its validity on studies of experimental profiles. Both measure types -source profile and apparatus function- are made simultaneously by means of analysis of the variations of registered profile, at 6438.5A Cd line and 6328A He-Ne laser line, varying the optical path between interferometer mirrors. (author) [es

  9. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    Science.gov (United States)

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  10. Micro-Spec: An Ultracompact, High-sensitivity Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (micron-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of (is) approximately 90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  11. The SOFIA/SAFIRE Far-Infrared Spectrometer: Highlighting Submillimeter Astrophysics and Technology

    Science.gov (United States)

    Benford, Dominic J.

    2009-01-01

    The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.

  12. Multi-imaging adaptive concept for IR and submillimeter space telescopes

    Science.gov (United States)

    Vasilyev, Victor P.

    1995-06-01

    Nontraditional IR and submillimeter spaceborne telescope concept basing on blind-type parabolic multi-ring mirror is proposed and discussed. Preliminary results for optimization of mirror parameters by means of computer simulation are presented.

  13. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  14. Status of the USA program on the development of submillimeter lasers to measure ion temperatures

    International Nuclear Information System (INIS)

    Barnett, C.F.; Hutchinson, D.P.; Vander Sluis, K.; Staats, P.A.

    1977-01-01

    The concept of ion laser scattering is outlined briefly and the parameters of the required submillimeter laser system are described. The current state of the development of lasers, laser and viewing dumps, and detectors is reviewed

  15. Development of on-line sorting system for detection of infected seed potatoes using visible near-infrared transmittance spectral technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Cho, Byoung Kwan [Dept. of Biosystems Engineering, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeun [Rural Development Administration, National Institute of Agricultural Engineering, Jeonju (Korea, Republic of); Kang, Jun Soon [Dept. of Horticultural Bioscience, Pusan National University, Pusan (Korea, Republic of)

    2015-02-15

    In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination(R{sup 2}{sub p}) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.

  16. Superconducting Hot-Electron Submillimeter-Wave Detector

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in

  17. PORTA: A three-dimensional multilevel radiative transfer code for modeling the intensity and polarization of spectral lines with massively parallel computers

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.

    2013-01-01

    Roč. 557, September (2013), A143/1-A143/15 ISSN 0004-6361 R&D Projects: GA ČR GPP209/12/P741 Grant - others:EU(XE) COST action MP1104 Institutional support: RVO:67985815 Keywords : line formation * magnetic fields * numerical methods Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  18. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  19. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Hashimoto, Jun [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji [National Astronomical Observatory Japan (NAOJ), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Abe, Lyu [Lboratoire Lagrange (UMR 7293), Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto, Ontario (Canada); Egner, Sebastian E.; Guyon, Olivier [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Goto, Miwa [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Grady, Carol, E-mail: ttsuka@mx.ibaraki.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  20. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas, E-mail: xuepeng.chen@yale.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  1. Millimeter and submillimeter wave spectroscopy: molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Plummer, G.M.

    1985-01-01

    Species of three general types of molecular ions were studied by means of millimeter-submillimeter (mm/sub-mm) wave spectroscopy. Because of their highly reactive nature, it has been possible to study ionic species in the microwave region for only the past ten is presented here. A new method is presented here for production of such molecular ions in concentrations greater by one to two orders of magnitude than possible with previous techniques, and the subsequent first mm/sub/mm/ detections of two isotopic forms of HCO + , three isotopic forms of ArD + , and the molecular ion H 3 O + . Simple neutral species, which are generally less reactive than ions, are also present in relatively large concentrations in the interstellar medium and in the atmospheres of cool stars themselves. Presented here is the first laboratory microwave detection of two isotopic species of LiH 2 , a solid at normal temperatures and pressures. In addition, a combined analysis of these data, additional data collected on the related species LiD, and existing data on LiD is presented. Finally, a large fraction of the mm/sub/mm/ emissions observed toward the interstellar medium were shown to belong to a small number of relatively heavy, stable, but spectroscopically complicated molecules, many of them internal rotors

  2. Progress in passive submillimeter-wave video imaging

    Science.gov (United States)

    Heinz, Erik; May, Torsten; Born, Detlef; Zieger, Gabriel; Peiselt, Katja; Zakosarenko, Vyacheslav; Krause, Torsten; Krüger, André; Schulz, Marco; Bauer, Frank; Meyer, Hans-Georg

    2014-06-01

    Since 2007 we are developing passive submillimeter-wave video cameras for personal security screening. In contradiction to established portal-based millimeter-wave scanning techniques, these are suitable for stand-off or stealth operation. The cameras operate in the 350GHz band and use arrays of superconducting transition-edge sensors (TES), reflector optics, and opto-mechanical scanners. Whereas the basic principle of these devices remains unchanged, there has been a continuous development of the technical details, as the detector array, the scanning scheme, and the readout, as well as system integration and performance. The latest prototype of this camera development features a linear array of 128 detectors and a linear scanner capable of 25Hz frame rate. Using different types of reflector optics, a field of view of 1×2m2 and a spatial resolution of 1-2 cm is provided at object distances of about 5-25m. We present the concept of this camera and give details on system design and performance. Demonstration videos show its capability for hidden threat detection and illustrate possible application scenarios.

  3. AzTEC on ASTE Survey of Submillimeter Galaxies

    Science.gov (United States)

    Kohno, K.; Tamura, Y.; Hatsukade, B.; Nakanishi, K.; Iono, D.; Takata, T.; Wilson, G. W.; Yun, M. S.; Perera, T.; Austermann, J. E.; Scott, K. S.; Hughes, H.; Aretxaga, I.; Tanaka, K.; Oshima, T.; Yamaguchi, N.; Matsuo, H.; Ezawa, H.; Kawabe, R.

    2008-10-01

    We have conducted an unprecedented survey of submillimeter galaxies (SMGs) using the 144 pixel bolometer camera AzTEC mounted on the ASTE 10-m dish in Chile. We have already obtained many (>20) wide (typically 12' × 12' or wider) and deep (1 σ sensitivity of 0.5-1.0 mJy) 1.1 mm continuum images of known blank fields and over-density regions/protoclusters across a wide range of redshifts with a spatial resolution of ˜ 30''. It has resulted in the numerous (˜ a few 100, almost equivalent to the total number of the previously known SMGs) new and secure detections of SMGs. In this paper, we present initial results of two selected fields, SSA 22 and AKARI Deep Field South (ADF-S). A significnat clustering of bright SMGs toward the density peak of LAEs is found in SSA 22. We derived the differential and cumulative number counts from the detected sources in ADF-S, which probe the faintest flux densities (down to ˜1 mJy) among 1-mm blank field surveys to date.

  4. Submillimeter-wave measurements of the pressure broadening of BrO

    International Nuclear Information System (INIS)

    Yamada, M.M.; Kobayashi, M.; Habara, H.; Amano, T.; Drouin, B.J.

    2003-01-01

    The N 2 and O 2 pressure broadening coefficients of the J=23.5 ↔ 22.5 and J=25.5 ↔ 24.5 rotational transitions in the ground vibronic state X 2 Π 3/2 of 81 BrO at 624.768 and 650.178 GHz have been independently measured at Ibaraki University and Jet Propulsion Laboratory. These lines are expected to be monitored by the superconducting submillimeter-wave limb emission sounder in the Japanese Experiment Module on the International Space Station (JEM/SMILES) as well as the earth observing system microwave limb sounder (EOS-MLS). This work provides temperature-dependent pressure broadening parameters of BrO needed by the space station and satellite based observations. The BrO pressure broadening coefficients and their 1σ uncertainties are: γ 0 (N 2 )=3.24±0.05 MHz/Torr and γ 0 (O 2 )=2.33±0.06 MHz/Torr for the 624.768 GHz transition at room temperature (296 K). For the 650.178 GHz line, the results are: γ 0 (N 2 )=3.20±0.07 MHz/Torr and γ 0 (O 2 )=2.41±0.06 MHz/Torr. The temperature dependence exponents and their 1σ error are determined to be: n(N 2 )=-0.76±0.05 and n(O 2 )=-0.93±0.07 for the 624.768 GHz transition, and n(N 2 )=-0.84±0.07 and n(O 2 )=-0.70±0.07 for the 650.178 GHz transition

  5. Models of Emission-Line Profiles and Spectral Energy Distributions to Characterize the Multi-Frequency Properties of Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Giovanni La Mura

    2017-11-01

    Full Text Available The spectra of active galactic nuclei (AGNs are often characterized by a wealth of emission lines with different profiles and intensity ratios that lead to a complicated classification. Their electromagnetic radiation spans more than 10 orders of magnitude in frequency. In spite of the differences between various classes, the origin of their activity is attributed to a combination of emitting components, surrounding an accreting supermassive black hole (SMBH, in the unified model. Currently, the execution of sky surveys, with instruments operating at various frequencies, provides the possibility to detect and to investigate the properties of AGNs on very large statistical samples. As a result of the spectroscopic surveys that allow the investigation of many objects, we have the opportunity to place new constraints on the nature and evolution of AGNs. In this contribution, we present the results obtained by working on multi-frequency data, and we discuss their relations with the available optical spectra. We compare our findings with the AGN unified model predictions, and we present a revised technique to select AGNs of different types from other line-emitting objects. We discuss the multi-frequency properties in terms of the innermost structures of the sources.

  6. Importance of Cross-redistribution in Scattering Polarization of Spectral Lines: The Cases of {sup 3}P−{sup 3}S Triplets of Mg i and Ca i

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-04-01

    Scattering on a multi-level atomic system has dominant contributions from resonance and Raman scattering. While initial and final levels are the same for resonance scattering, they are different for Raman scattering. The frequency redistribution for resonance scattering is described by the usual partial frequency redistribution functions of Hummer, while that for Raman scattering is described by cross-redistribution (XRD) function. In the present paper, we investigate the importance of XRD on linear polarization profiles of {sup 3}P−{sup 3}S triplets of Mg i and Ca i formed in an isothermal one-dimensional atmosphere. We show that XRD produces significant effects on the linear polarization profiles when the wavelength separations between the line components of the multiplet are small, like in the cases of Mg i b and Ca i triplets.

  7. The complete far-infrared and submillimeter spectrum of the Class 0 protostar Serpens SMM1 obtained with Herschel

    DEFF Research Database (Denmark)

    R. Goicoechea, Javier; Cernicharo, J.; Karska, A.

    2012-01-01

    We present the first complete 55-671 um spectral scan of a low-mass Class 0 protostar (Serpens SMM1) taken with the PACS and SPIRE spectrometers on board Herschel. More than 145 lines have been detected, most of them rotationally excited lines of 12CO (full ladder from J=4-3 to 42-41), H2O, OH, 13...

  8. The STARK-B database VAMDC node: a repository for spectral line broadening and shifts due to collisions with charged particles

    Science.gov (United States)

    Sahal-Bréchot, S.; Dimitrijević, M. S.; Moreau, N.; Ben Nessib, N.

    2015-05-01

    Accurate spectroscopic diagnostics and modeling require the knowledge of numerous collisional line profiles. Access to such data via an online database has become indispensable. The STARK-B database is aimed at meeting these needs for widths and shifts of isolated lines of neutral and ionized elements due to electron and ion impacts. This database of the Paris Observatory is a result of scientific cooperation between S Sahal-Bréchot (LERMA) and M S Dimitrijević (AOB). Access to it is free, and it was opened online at the end of 2008. STARK-B is a node of the Virtual Atomic and Molecular Data Centre (VAMDC) and thus complies with VAMDC and Virtual Observatory standards. VAMDC is a European Union-funded collaboration among groups involved in the generation and use of interoperable atomic and molecular data. STARK-B now contains all our semiclassical-perturbation (SCP) calculated data for more than 123 neutral or ionized elements as published in international refereed journals. It is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes, laboratory plasmas, laser equipment, and technological plasmas. Hence, the range of temperatures and densities covered by the tables is broad and depends on the ionization degree of the radiating atom. The modified semiempirical (MSE) results of calculations have begun to be implemented. In this paper, we highlight the key points of the method and the assumptions used in the calculations, which have lately been revisited. Then we present the database and its recent developments, as well as our ongoing work and our plans for the future.

  9. The STARK-B database VAMDC node: a repository for spectral line broadening and shifts due to collisions with charged particles

    International Nuclear Information System (INIS)

    Sahal-Bréchot, S; Moreau, N; Dimitrijević, M S; Nessib, N Ben

    2015-01-01

    Accurate spectroscopic diagnostics and modeling require the knowledge of numerous collisional line profiles. Access to such data via an online database has become indispensable. The STARK-B database is aimed at meeting these needs for widths and shifts of isolated lines of neutral and ionized elements due to electron and ion impacts. This database of the Paris Observatory is a result of scientific cooperation between S Sahal-Bréchot (LERMA) and M S Dimitrijević (AOB). Access to it is free, and it was opened online at the end of 2008. STARK-B is a node of the Virtual Atomic and Molecular Data Centre (VAMDC) and thus complies with VAMDC and Virtual Observatory standards. VAMDC is a European Union-funded collaboration among groups involved in the generation and use of interoperable atomic and molecular data. STARK-B now contains all our semiclassical-perturbation (SCP) calculated data for more than 123 neutral or ionized elements as published in international refereed journals. It is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes, laboratory plasmas, laser equipment, and technological plasmas. Hence, the range of temperatures and densities covered by the tables is broad and depends on the ionization degree of the radiating atom. The modified semiempirical (MSE) results of calculations have begun to be implemented. In this paper, we highlight the key points of the method and the assumptions used in the calculations, which have lately been revisited. Then we present the database and its recent developments, as well as our ongoing work and our plans for the future. (paper)

  10. CO J = 1-0 SPECTROSCOPY OF FOUR SUBMILLIMETER GALAXIES WITH THE ZPECTROMETER ON THE GREEN BANK TELESCOPE

    International Nuclear Information System (INIS)

    Harris, A. I.; Zonak, S. G.; Rauch, K.; Baker, A. J.; Sharon, C. E.; Genzel, R.; Watts, G.; Creager, R.

    2010-01-01

    We report detections of three z ∼ 2.5 submillimeter-selected galaxies (SMGs; SMM J14011+0252, SMM J14009+0252, SMM J04431+0210) in the lowest rotational transition of the carbon monoxide molecule (CO J = 1-0) and one nondetection (SMM J04433+0210). For the three galaxies we detected, we find a line-integrated brightness temperature ratio of the J = 3-2 and 1-0 lines of 0.68 ± 0.08; the 1-0 line is stronger than predicted by the frequent assumption of equal brightnesses in the two lines and by most single-component models. The observed ratio suggests that mass estimates for SMGs based on J = 3-2 observations and J = 1-0 column density or mass conversion factors are low by a factor of 1.5. Comparison of the 1-0 line intensities with intensities of higher-J transitions indicates that single-component models for the interstellar media in SMGs are incomplete. The small dispersion in the ratio, along with published detections of CO lines with J upper >3 in most of the sources, indicates that the emission is from multi-component interstellar media with physical structures common to many classes of galaxies. This result tends to rule out the lowest scaling factors between CO luminosity and molecular gas mass, and further increases molecular mass estimates calibrated against observations of galaxies in the local universe. We also describe and demonstrate a statistically sound method for finding weak lines in broadband spectra that will find application in searches for molecular lines from sources at unknown redshifts.

  11. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines

    Directory of Open Access Journals (Sweden)

    Andries B. Potgieter

    2017-09-01

    Full Text Available Genetic improvement in sorghum breeding programs requires the assessment of adaptation traits in small-plot breeding trials across multiple environments. Many of these phenotypic assessments are made by manual measurement or visual scoring, both of which are time consuming and expensive. This limits trial size and the potential for genetic gain. In addition, these methods are typically restricted to point estimates of particular traits, such as leaf senescence or flowering and do not capture the dynamic nature of crop growth. In water-limited environments in particular, information on leaf area development over time would provide valuable insight into water use and adaptation to water scarcity during specific phenological stages of crop development. Current methods to estimate plant leaf area index (LAI involve destructive sampling and are not practical in breeding. Unmanned aerial vehicles (UAV and proximal-sensing technologies open new opportunities to assess these traits multiple times in large small-plot trials. We analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes randomized within 3 blocks. Due to variable emergence we were able to assess the utility of these vegetation indices to estimate canopy cover and LAI over a large range of plant densities. We found good correlations between the Normalized Difference Vegetation Index (NDVI and the Enhanced Vegetation Index (EVI with plant number per plot, canopy cover and LAI both during the vegetative growth phase (pre-anthesis and at maximum canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data to assess the senescence pattern of sorghum genotypes known as fast (senescent or slow senescing (stay-green types. The Normalized Difference Red Edge (NDRE index which estimates leaf chlorophyll content was most useful in characterizing the leaf area

  12. SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Fukagawa, Misato [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Shibai, Hiroshi [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Hanawa, Tomoyuki [Center for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522 (Japan); Murakawa, Koji, E-mail: kataoka@uni-heidelberg.de [College of General Education, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka 574-8530 (Japan)

    2016-11-10

    We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. The polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.

  13. The Digital Motion Control System for the Submillimeter Array Antennas

    Science.gov (United States)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  14. SPATIALLY RESOLVED SPECTROSCOPY OF SUBMILLIMETER GALAXIES AT z ≃ 2

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, V.; Treister, E.; Privon, G. C.; Nagar, N. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Alaghband-Zadeh, S.; Chapman, S. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA UK (United Kingdom); Casey, Caitlin M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Schawinski, K. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Kurczynski, P.; Gawiser, E. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Sanders, D. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States)

    2016-08-10

    We present near-infrared integral-field spectroscopic observations targeting H α in eight submillimeter galaxies (SMGs) at z = 1.3–2.5 using the Very Large Telescope/Spectrograph for Integral Field Observations in the Near Infrared, obtaining significant detections for six of them. The star formation rates derived from the H α emission are ∼100 M {sub ⊙} yr{sup −1}, which account for only ∼20%–30% of the infrared-derived values, thus suggesting that these systems are very dusty. Two of these systems present [N ii]/H α ratios indicative of the presence of an active galactic nucleus. We mapped the spatial distribution and kinematics of the star-forming regions in these galaxies on kiloparsec scales. In general, the H α morphologies tend to be highly irregular and/or clumpy, showing spatial extents of ∼3–11 kpc. We find evidence for significant spatial offsets, of ∼0.″1–0.″4 or 1.2–3.4 kpc, between the H α and the continuum emission in three of the sources. Performing a kinemetry analysis, we conclude that the majority of the sample is not consistent with disk-like rotation-dominated kinematics. Instead, they tend to show irregular and/or clumpy and turbulent velocity and velocity dispersion fields. This can be interpreted as evidence for a scenario in which these extreme star formation episodes are triggered by galaxy–galaxy interactions and major mergers. In contrast to recent results for SMGs, these sources appear to follow the same relations between gas and star-forming rate densities as less luminous and/or normal star-forming galaxies.

  15. ALMA OBSERVATIONS OF THE SUBMILLIMETER DENSE MOLECULAR GAS TRACERS IN THE LUMINOUS TYPE-1 ACTIVE NUCLEUS OF NGC 7469

    International Nuclear Information System (INIS)

    Izumi, Takuma; Kohno, Kotaro; Ikarashi, Soh; Aalto, Susanne; Doi, Akihiro; Espada, Daniel; Fathi, Kambiz; Harada, Nanase; Hsieh, Pei-Ying; Matsushita, Satoki; Hatsukade, Bunyo; Hattori, Takashi; Imanishi, Masatoshi; Iono, Daisuke; Ishizuki, Sumio; Nagai, Hiroshi; Krips, Melanie; Martín, Sergio; Meier, David S.; Nakai, Naomasa

    2015-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 1 observations of the central kiloparsec region of the luminous type 1 Seyfert galaxy NGC 7469 with unprecedented high resolution (0.″5 ×0.″4 = 165 × 132 pc) at submillimeter wavelengths. Utilizing the wide bandwidth of ALMA, we simultaneously obtained HCN(4–3), HCO + (4–3), CS(7–6), and partially CO(3–2) line maps, as well as the 860 μm continuum. The region consists of the central ∼1″ component and the surrounding starburst ring with a radius of ∼1.″5–2.″5. Several structures connect these components. Except for CO(3–2), these dense gas tracers are significantly concentrated toward the central ∼1″, suggesting their suitability to probe the nuclear regions of galaxies. Their spatial distribution resembles well those of centimeter and mid-infrared continuum emissions, but it is anticorrelated with the optical one, indicating the existence of dust-obscured star formation. The integrated intensity ratios of HCN(4–3)/HCO + (4–3) and HCN(4–3)/CS(7–6) are higher at the active galactic nucleus (AGN) position than at the starburst ring, which is consistent with our previous findings (submillimeter-HCN enhancement). However, the HCN(4–3)/HCO + (4–3) ratio at the AGN position of NGC 7469 (1.11 ± 0.06) is almost half of the corresponding value of the low-luminosity type 1 Seyfert galaxy NGC 1097 (2.0 ± 0.2), despite the more than two orders of magnitude higher X-ray luminosity of NGC 7469. But the ratio is comparable to that of the close vicinity of the AGN of NGC 1068 (∼1.5). Based on these results, we speculate that some heating mechanisms other than X-ray (e.g., mechanical heating due to an AGN jet) can contribute significantly for shaping the chemical composition in NGC 1097

  16. ALMA OBSERVATIONS OF THE SUBMILLIMETER DENSE MOLECULAR GAS TRACERS IN THE LUMINOUS TYPE-1 ACTIVE NUCLEUS OF NGC 7469

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Takuma; Kohno, Kotaro; Ikarashi, Soh [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Aalto, Susanne [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Observatory, SE-439 94 Onsala (Sweden); Doi, Akihiro [Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara 252-5210 (Japan); Espada, Daniel [Joint ALMA Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355 (Chile); Fathi, Kambiz [Stockholm Observatory, Department of Astronomy, Stockholm University, AlbaNova Centre, SE-106 91 Stockholm (Sweden); Harada, Nanase; Hsieh, Pei-Ying; Matsushita, Satoki [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hatsukade, Bunyo; Hattori, Takashi; Imanishi, Masatoshi; Iono, Daisuke; Ishizuki, Sumio; Nagai, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Krips, Melanie; Martín, Sergio [Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire, F-38406 St. Martin d’Hères (France); Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Soccoro, NM 87801 (United States); Nakai, Naomasa, E-mail: takumaizumi@ioa.s.u-tokyo.ac.jp [Department of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8571 (Japan); and others

    2015-09-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 1 observations of the central kiloparsec region of the luminous type 1 Seyfert galaxy NGC 7469 with unprecedented high resolution (0.″5 ×0.″4 = 165 × 132 pc) at submillimeter wavelengths. Utilizing the wide bandwidth of ALMA, we simultaneously obtained HCN(4–3), HCO{sup +}(4–3), CS(7–6), and partially CO(3–2) line maps, as well as the 860 μm continuum. The region consists of the central ∼1″ component and the surrounding starburst ring with a radius of ∼1.″5–2.″5. Several structures connect these components. Except for CO(3–2), these dense gas tracers are significantly concentrated toward the central ∼1″, suggesting their suitability to probe the nuclear regions of galaxies. Their spatial distribution resembles well those of centimeter and mid-infrared continuum emissions, but it is anticorrelated with the optical one, indicating the existence of dust-obscured star formation. The integrated intensity ratios of HCN(4–3)/HCO{sup +}(4–3) and HCN(4–3)/CS(7–6) are higher at the active galactic nucleus (AGN) position than at the starburst ring, which is consistent with our previous findings (submillimeter-HCN enhancement). However, the HCN(4–3)/HCO{sup +}(4–3) ratio at the AGN position of NGC 7469 (1.11 ± 0.06) is almost half of the corresponding value of the low-luminosity type 1 Seyfert galaxy NGC 1097 (2.0 ± 0.2), despite the more than two orders of magnitude higher X-ray luminosity of NGC 7469. But the ratio is comparable to that of the close vicinity of the AGN of NGC 1068 (∼1.5). Based on these results, we speculate that some heating mechanisms other than X-ray (e.g., mechanical heating due to an AGN jet) can contribute significantly for shaping the chemical composition in NGC 1097.

  17. The matrix effect study in the spectrographic analysis of rare earth elements. Pt. 1. The influence of Sn, Pb, Sb, Bi, Cu, Ag, Zn and Cd on the spectral lines intensity of Y, La, Ce, Pr, Nd and Sm in the current arc exciting between C-electrodes

    International Nuclear Information System (INIS)

    Wysocka-Lisek, J.; Paszkowska, B.; Mularczyk, K.

    1976-01-01

    In the beginning the influence of Sn, Pb, Sb, Bi, Cu, Ag, Zn and Cd on the light rare earth spectral lines using Ni as the internal standard, during the intermittent current arc excitation between C-electrodes was studied. On the basis of the spectral lines intensity measurements, it was stated that one may apply the addition of Ni as the internal standard by the quantitative determination of Sn, Pb, Sb, Bi, Zn and Cd in the light rare earth mixtures with one of the above. Also a great influence of the presence of the individually studied metal was observed on the spectral line intensity of rare earth elements and nickel. The differences of the thermo-chemical reactions nature between excited elements and the carbon of the electrodes may cause that influence. (author)

  18. Experimental study of population inversion and spectral line broadening in a plasma containing a mixture of high Z and low Z ions

    International Nuclear Information System (INIS)

    Griem, H.R.

    1988-10-01

    In our work this past year at the University of Rochester's Laboratory for Laser Energetics we have studied laser-produced plasmas using spherical targets continuing layers of high Z and low Z materials. Our emphasis was on quantitative spectroscopy of ions in a very dense, recombining plasma. The targets used consisted of carbon-copper, carbon-gold, and aluminum-gold mixtures, instead of the originally proposed Fe or Mo mixtures with carbon. The thickness of the Cu and the Au layers were varied in order to study the effect of higher Z ions cooling the plasma. Indeed a pronounced cooling effect was observed by increasing the thickness of the Au layer in targets with Al-Au layers. Electron temperatures were studied by measuring the 1s-2p/1s 2 -1s2p line ratio of Al XIII to Al XII. Our experimental measurements, together with a collisional-radiative model and a 1-D hydrodynamic code, indicate that the electron temperature falls from 1500 eV with no gold to 950 eV with a 500 angstrom layer of gold. A detailed discussion of our results with Al-Au targets can be found in the enclosed preprint entitled Radiation Cooling in Laser-Produced Plasmas Due to High-Z Layers

  19. and its Isotopic mm/Submillimeter Lines from Dark Cloud Lynds 183 ...

    Indian Academy of Sciences (India)

    2010-02-19

    . 75014 Paris, France. ∗ ... The model results accord with the observed data and shows a temperature difference of ∼7K ... and in general a single Gaussian fit, gave good fits for almost all the observations. The various offset ...

  20. Detection of Submillimeter-wave [C i] Emission in Gaseous Debris Disks of 49 Ceti and β Pictoris

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Aya E.; Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Sato, Aki; Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Iwasaki, Kazunari [Department of Environmental Systems Science, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe City, Kyoto 610-0394 (Japan); Kobayashi, Hiroshi; Ishihara, Daisuke; Watanabe, Sakae; Kaneda, Hidehiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Yamamoto, Satoshi, E-mail: aya.higuchi@riken.jp [Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    We have detected [C i] {sup 3} P {sub 1}–{sup 3} P {sub 0} emissions in the gaseous debris disks of 49 Ceti and β Pictoris with the 10 m telescope of the Atacama Submillimeter Telescope Experiment, which is the first detection of such emissions. The line profiles of [C i] are found to resemble those of CO( J = 3–2) observed with the same telescope and the Atacama Large Millimeter/submillimeter Array. This result suggests that atomic carbon (C) coexists with CO in the debris disks and is likely formed by the photodissociation of CO. Assuming an optically thin [C i] emission with the excitation temperature ranging from 30 to 100 K, the column density of C is evaluated to be (2.2 ± 0.2) × 10{sup 17} and (2.5 ± 0.7) × 10{sup 16} cm{sup −2} for 49 Ceti and β Pictoris, respectively. The C/CO column density ratio is thus derived to be 54 ± 19 and 69 ± 42 for 49 Ceti and β Pictoris, respectively. These ratios are higher than those of molecular clouds and diffuse clouds by an order of magnitude. The unusually high ratios of C to CO are likely attributed to a lack of H{sub 2} molecules needed to reproduce CO molecules efficiently from C. This result implies a small number of H{sub 2} molecules in the gas disk, i.e., there is an appreciable contribution of secondary gas from dust grains.

  1. THE CIRCUMGALACTIC MEDIUM OF SUBMILLIMETER GALAXIES. I. FIRST RESULTS FROM A RADIO-IDENTIFIED SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Hai; Mutel, R.; Isbell, J.; Lang, C.; McGinnis, D. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Hennawi, J. F. [Max-Planck-Institut fur Astronomie, Heidelberg (Germany); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Casey, C. [Department of Astronomy, the University of Texas at Austin, 2515 Speedway Blvd, Stop C1400, Austin, TX 78712 (United States); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Kereš, D. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Zhang, Z.-Y.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Clements, D. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Mooley, K. [Oxford Centre For Astrophysical Surveys, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United States); Perley, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Stockton, A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Thompson, D. [Large Binocular Telescope Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States)

    2016-11-20

    We present the first results from an ongoing survey to characterize the circumgalactic medium (CGM) of massive high-redshift galaxies detected as submillimeter galaxies (SMGs). We constructed a parent sample of 163 SMG–QSO pairs with separations less than ∼36″ by cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed QSOs. The Herschel sources were selected to match the properties of the SMGs. We determined the sub-arcsecond positions of six Herschel sources with the Very Large Array and obtained secure redshift identification for three of those with near-infrared spectroscopy. The QSO sightlines probe transverse proper distances of 112, 157, and 198 kpc at foreground redshifts of 2.043, 2.515, and 2.184, respectively, which are comparable to the virial radius of the ∼10{sup 13} M {sub ⊙} halos expected to host SMGs. High-quality absorption-line spectroscopy of the QSOs reveals systematically strong H i Ly α absorption around all three SMGs, with rest-frame equivalent widths of ∼2–3 Å. However, none of the three absorbers exhibit compelling evidence for optically thick H i gas or metal absorption, in contrast to the dominance of strong neutral absorbers in the CGM of luminous z ∼ 2 QSOs. The low covering factor of optically thick H i gas around SMGs tentatively indicates that SMGs may not have as prominent cool gas reservoirs in their halos as the coeval QSOs and that they may inhabit less massive halos than previously thought.

  2. SUBMILLIMETER ARRAY OBSERVATIONS TOWARD THE MASSIVE STAR-FORMING CORE MM1 OF W75N

    International Nuclear Information System (INIS)

    Minh, Y. C.; Su, Y.-N.; Liu, S.-Y.; Yan, C.-H.; Chen, H.-R.; Kim, S.-J.

    2010-01-01

    The massive star-forming core MM1 of W75N was observed using the Submillimeter Array with ∼1'' and 2'' spatial resolutions at 217 and 347 GHz, respectively. From the 217 GHz continuum we found that the MM1 core consists of two sources, separated by about 1'': MM1a (∼0.6 M sun ) and MM1b (∼1.4 M sun ), located near the radio continuum sources VLA 2/VLA 3 and VLA 1, respectively. Within MM1b, two gas clumps were found to be expanding away from VLA 1 at about ±3 km s -1 , as a result of the most recent star formation activity in the region. Observed molecular lines show emission peaks at two positions, MM1a and MM1b: sulfur-bearing species have emission peaks toward MM1a, but methanol and saturated species at MM1b. We identified high-temperature (∼200 K) gas toward MM1a and the hot core in MM1b. This segregation may result from the evolution of the massive star-forming core. In the very early phase of star formation, the hot core is seen through the evaporation of dust ice-mantle species. As the mantle species are consumed via evaporation the high-temperature gas species (such as the sulfur-bearing molecules) become bright. The SiO molecule is unique in having an emission peak exactly at the VLA 2 position, probably tracing a shock powered by VLA 2. The observed sulfur-bearing species show similar abundances both in MM1a and MM1b, whereas the methanol and saturated species show significant abundance enhancement toward MM1b, by about an order of magnitude, compared to MM1a.

  3. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  4. Millimeter and submillimeter observations from the Atacama plateau and high altitude balloons

    Science.gov (United States)

    Devlin, Mark

    2002-05-01

    A new generation of ground-based and sub-orbital platforms will be operational in the next few years. These telescopes will operate from high sites in Chile and Antarctica, and airborne platforms where the atmosphere is transparent enough to allow sensitive measurements in the millimeter and submillimeter bands. The telescopes will employ state-of-the-art instrumentation including large format bolometer arrays and spectrometers. I will discuss the results of our observations in the Atacama region of Chile (MAT/TOCO), our future observations on the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) now under construction, and our proposed Atacama Cosmology Telescope (ACT). .

  5. Thin-film VO2 submillimeter-wave modulators and polarizers

    International Nuclear Information System (INIS)

    Fan, J.C.C.; Fetterman, H.R.; Bachner, F.J.; Zavracky, P.M.; Parker, C.D.

    1977-01-01

    Submillimeter-wave modulators and switchable polarizers have been fabricated from VO 2 thin films deposited on sapphire substrates. By passing electric current pulses through elements made from these films, the films can be thermally cycled through the insulator-to-metal transition that occurs in VO 2 at about 65 degreeC. In the insulating state, the films are found to have negligible effect on the transmission at submillimeter wavelengths, while above the phase transition the transmission is strongly reduced by the free-electron effects characteristic of a metal. Other possible applications of such switchable VO 2 elements include variable bandpass filters and diffraction grating beam-steering devices

  6. The Atacama Large Millimeter/submillimeter Array (alma): Early Results

    Science.gov (United States)

    Wootten, Alwyn

    2012-06-01

    New radioastronomical instruments, such as ALMA or the Jansky VLA, have increased spectral throughput by orders of magnitude over previously available capabilities. ALMA brings orders of magnitude increases in spectral sensitivity and spatial resolution over what has previously been available. These increased capabilities open new possibilities for studies of complex molecules in the interstellar medium. Complex interstellar molecules may form on the surfaces of interstellar grains, after which they may be liberated into the gas phase by shocks, radiation, or other external influences. Emission from complex molecules may be diluted owing to the large number of transitions large molecules may undergo, particularly in warm regions of interstellar clouds. High sensitivity and spatial resolution are necessary to explore the distributions and relationships of these molecules. Of particular interest are the distributions of large organic molecules. Observations which establish the relationships between various large molecules are now emerging from these new instruments and will be discussed.

  7. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    Science.gov (United States)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  8. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  9. TU-H-CAMPUS-TeP2-03: High Sensitivity and High Resolution Fiber Based Micro-Detector for Sub-Millimeter Preclinical Dosimetry

    International Nuclear Information System (INIS)

    Izaguirre, E; Pokhrel, S; Knewtson, T; Hedrick, S

    2016-01-01

    Purpose: Current precision of small animal and cell micro-irradiators has continuously increased during the past years. Currently, preclinical irradiators can deliver sub-millimeter fields with micrometric precision but there are no water equivalent dosimeters to determine small field profiles and dose in the orthovoltage range of energies with micrometric resolution and precision. We have developed a fiber based micro-dosimeter with the resolution and dosimetric accuracy required for radiobiological research. Methods: We constructed two prototypes of micro-dosimeters based on different compositions of fiber scintillators to study the spatial resolution and dosimetric precision of small animal and cell micro-irradiators. The first has green output and the second has blue output. The blue output dosimeter has the highest sensitivity because it matches the spectral sensitivity of silicon photomultipliers. A blue detector with 500um cross section was built and tested respect to a CC01 ion chamber, film, and the 1500um green output detector. Orthovoltage fields from 1×1mm2 to 5×5mm2 were used for detector characteristics comparison. Results: The blue fiber dosimeter shows great agreement with films and matches dose measurements with the gold-standard ion chamber for 5×5mm2 fields. The detector has the appropriate sensitivity to measure fields from 1×1mm2 to larger sizes with a 1% dosimetric accuracy. The spatial resolution is in the sub-millimeter range and the spectral matching with the photomultiplier allows reducing the sensor cross section even further than the presented prototype. These results suggest that scintillating fibers combined with silicon photomultipliers is the appropriate technology to pursue micro-dosimetry for small animals and disperse cell samples. Conclusion: The constructed detectors establish a new landmark for the resolution and sensitivity of fiber based microdetectors. The validation of the detector in our small animal and cell

  10. HIGH-n HYDROGEN RECOMBINATION LINES FROM THE FIRST GALAXIES

    International Nuclear Information System (INIS)

    Rule, E.; Loeb, A.; Strelnitski, V. S.

    2013-01-01

    We investigate the prospects of blind and targeted searches in the radio domain (10 MHz to 1 THz) for high-n hydrogen recombination lines from the first generation of galaxies, at z ∼ 4 km s –1 , allow us to assess the blind search time necessary for detection by a given facility. We show that the chances for detection are the highest in the millimeter and submillimeter domains, but finding spontaneous emission in a blind search, especially from redshifts z >> 1, is a challenge even with powerful facilities, such as the Actama Large Millimeter/Submillimeter Array and Square Kilometre Array. The probability of success is higher for a targeted search of lines with principal quantum number n ∼ 10 in Lyman-break galaxies amplified by gravitational lensing. Detection of more than one hydrogen line in such a galaxy will allow for line identification and a precise determination of the galaxy's redshift

  11. Microwave spectral lines in galactic dust globules

    International Nuclear Information System (INIS)

    Martin, R.N.; Barrett, A.H.

    1978-01-01

    In order to better understand galactic dust globules, a program of mapping several molecular transitions in these clouds has been undertaken. The results of observations of the J=1→0 rotational transitions of CO, 13 CO, C 18 O, and CS, the J=2→1rotational transitions of CS and C 34 S, the J, K=1, 1 and J, K=2, 2 inversion transitions of NH 3 , the J/sub KKprime/=1 11 →1 10 and J/sub KKprime/=2 12 →2 11 transitions of H 2 CO, and the OH 2 Pi/sub 3/2/F=2→2 and F=1→1 transitions are reported here. Twelve globules have been selected for observation; seven of these were studied in detail and the remainder observed only sparsely. A strong positive correlation appears to exist between the spatial extent of the molecular emission (or absorption) and the optical features of the globule. Even the main isotope of CO shows this correlation between dust extinction and molecular emission. Close examination of the Palomar prints reveals dust wherever CO is observed, and CO is probably a good tracer of dust extinction.The simultaneous observation of many molecular transitions has proven useful in obtaining reliable physical parameters for the dust globules. For example, CO and NH 3 are reliable thermometers of the kinetic temperature, and CS and NH 3 are indicators of the total gas density. The kinetic temperatures of the globules are almost always approx.10 K, and the derived H 2 densities are 10/sup 3.4/-10/sup 4.5/ cm -3 . The density in the core of the globules could well be larger than these value, which represent an average for the entire cloud. The kinetic temperature appears uniform across each cloud (within a few kelvins), in agreement with theoretical predictions. All of the globules studied in detail appear to be gravitationally bound and collapsing objects. Rotation has been observed in at least two globules (B163 and B163 SW). The projected axis of rotation is in a direction opposite to that of the Galaxy

  12. COMPACT STARBURSTS IN z similar to 3-6 SUBMILLIMETER GALAXIES REVEALED BY ALMA

    NARCIS (Netherlands)

    Ikarashi, Soh; Ivison, R. J.; Caputi, Karina I.; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David H.; Iono, Daisuke; Izumi, Takuma; Kawabe, Ryohei; Kohno, Kotaro; Lagos, Claudia D. P.; Motohara, Kentaro; Nakanishi, Kouichiro; Ohta, Kouji; Tamura, Yoichi; Umehata, Hideki; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2015-01-01

    We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at z(phot) similar to 3-6. Their infrared luminosities and star formation rates (SFRs) are L-IR similar to, 2-6 x 10(12) L-circle dot and similar

  13. QUANTUM ELECTRONIC DEVICES: Superconducting Nb3Sn point contact in the submillimeter range of electromagnetic radiation

    Science.gov (United States)

    Belenov, É. M.; Danileĭko, M. V.; Derkach, V. E.; Romanenko, V. I.; Uskov, A. V.

    1988-05-01

    An investigation was made of the influence of submillimeter radiation emitted by an HCN laser operating at a frequency νl = 891 GHz on a superconducting point contact made of Nb3Sn. Three steps of the electric current were recorded. The experimental results indicated that such a contact could be used for frequency multiplication up to 3 THz.

  14. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  15. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NARCIS (Netherlands)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into

  16. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model

    Science.gov (United States)

    Cutiongco, Marie F. A.; Kukumberg, Marek; Peneyra, Jonnathan L.; Yeo, Matthew S.; Yao, Jia Y.; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K. F.

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  17. Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz

    Science.gov (United States)

    Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd; hide

    2010-01-01

    In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems

  18. Spectral Ly{alpha}, Ly{beta}, and H{alpha} line shapes for the H atom in the presence of a magnetic field in a plasma; Profils des raies spectrales Ly{alpha}, Ly{beta}, et H{alpha} de l'atome H en presence d'un champ magnetique dans un plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H; Herman, L [Laboratoire de Recherches Physiques, Faculte des sciences, 9 Quai Saint Bernard, 75 - Paris (France); Drawin, H W [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-02-15

    This report contains numerical data of the line shapes of Ly{alpha}, Ly{beta}, and H{alpha} for the following parameters: 1. 10{sup 2} {<=} H [gauss] {<=} 1.2. 10{sup 5} 1. 10{sup 15}{<=} N [cm{sup -3}] {<=} 1. 10{sup 18} cm{sup -3} 1. 10{sup 4} {<=} T [deg. K] {<=} 4. 10{sup 4} where H = magnetic field strength, K = density of plasma ions, T = electron temperature. (authors) [French] Dans ce rapport, on donne les valeurs numeriques des contours des raies spectrales Ly{alpha}, Ly{beta}, et H{alpha} pour les valeurs suivantes des parametres H, N et T 1. 10{sup 2} {<=} H [gauss] {<=} 1.2. 10{sup 5} 1. 10{sup 15}{<=} N [cm{sup -3}] {<=} 1. 10{sup 18} cm{sup -3} 1. 10{sup 4} {<=} T [deg. K] {<=} 4. 10{sup 4} ou H intensite du champ magnetique, N = densite des ions, T = temperature electronique. (auteurs)

  19. Spectral Compressive Sensing with Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

    2013-01-01

    . In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

  20. Application of the Spectral Neighborhood of Soil Line Technique to Analyze the Intensity of Soil Use in 1985-2014 (by the Example of Three Districts of Tula Oblast)

    Science.gov (United States)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Koroleva, P. V.

    2018-03-01

    The technique of separation of the spectral neighborhood of soil line (SNSL) makes it possible to perform quantitative estimates of the intensity of agricultural land use. This is achieved via calculation of the frequency of occurrence of bare soil surface (BSS). It is shown that the frequency of occurrence of BSS in 1984-1994 was linearly related to the soil type within the sequence of soddy strongly podzolic, soddy moderately podzolic, soddy slightly podzolic (Eutric Albic Glossic Retisols (Loamic, Aric, Cutanic, Differentic, Ochric)); light gray forest (Eutric Retisols (Loamic, Aric, Cutanic, Differentic, Ochric)), gray forest (Eutric Retisols (Loamic, Aric, Cutanic, Ochric)), and dark gray forest soils (Luvic Retic Greyzemic Phaeozems (Loamic, Aric)); podzolized chernozems (Luvic Greyzemic Chernic Phaeozems (Loamic, Aric, Pachic)) and leached chernozems (Luvic Chernic Phaeozems (Loamic, Aric, Pachic)). The intensity of exploitation of the least and most fertile soils in this sequence comprised 28 and 48%, respectively. In the next decade (1995-2004) the relationship between the type of soil and the intensity of its exploitation drastically changed; the intensity of exploitation of the leas and most fertile soils comprised 14 and 43%, respectively. Nearly a half of agricultural lands in the zones of soddy-podzolic and gray forest soils were abandoned, because the cultivation of the soils with the natural fertility below that in the podzolized chernozems became economically unfeasible under conditions of the economic crisis of the 1990s. The spatiotemporal relationships between the character of the soil cover and the intensity of exploitation of the agricultural lands manifest themselves by the decreasing frequency of occurrence of BSS from leached chernozems to soddy strongly podzolic soils and from 1985 to 2014.

  1. Analysis of 3D Doppler Tomography of the X-ray Binary System Cygnus X-1 from Spectral Observations in 2007 in the HeII λ 4686 Å Line

    Science.gov (United States)

    Agafonov, M. I.; Karitskaya, E. A.; Sharova, O. I.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar', A. V.; Bubukin, I. T.

    2018-03-01

    This is the second paper in a series dedicated to studies of the X-ray binary Cyg X-1 in the HeII λ 4686 Å line using 3D Doppler tomography. A detailed analysis of the tomogram constructed has made it possible for the first time to obtain information about the motions of gaseous flows including all three velocity components. The observations were obtained in June 2007 at the Terskol Branch of the Institute of Astronomy (Russia) and the National Astronomical Observatory of Mexico. The correctness of the tomographic results and their discussion is analyzed. The results are compared with a 2D Doppler tomogram reconstruction. Model-atmosphere computations of HeII λ 4686 Å line profiles are used to estimate the influence of absorption features of the Osupergiant on the emission structure in the tomogram. The correctness of the 3D solutions is confirmed by the good agreement between the original sequence of spectral data and a control data set computed using the constructed 3D Doppler tomogram. Tomograms constructed using the data of each of the two observatories are compared. The results of the reconstruction for inclinations of the system of 40° and 45° essentially coincide. The maximum absorption (corresponding to the O supergiant) and emission structural features in the 3D tomogram are located in its central ( V x , V y ) section, where the velocity component perpendicular to the orbital plane V z is zero. The emission is generated mainly in the outer part of the accretion structure, close to the supergiant. A gaseous stream from the Lagrangian point L1 with its motion close to the orbital plane can be distinguished. Its maximum velocity reaches 800 km/s. The identification of an emission structure with V z 300 km/s and with V x , V y in the velocity interval corresponding to the donor star was unexpected. Its presence may indicate, for example, an outflow of matter from a magnetic pole of the supergiant.

  2. Micro-Spec: An Ultra-Compact, High-Sensitivity Spectrometer for Far-Infrared and Sub-Millimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2013-01-01

    High-performance, integrated spectrometers operating in the far-infrared and sub-millimeter promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a four-inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (mu-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of approx. 90% has been developed for initial demonstration, and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  3. Determination of radial peculiar velocities of galaxy clusters by means of the submillimeter spectrophotometry

    International Nuclear Information System (INIS)

    Sholomitskij, G.B.

    1984-01-01

    The possibility is considered to obtain from the extraatmospheric submillimeter spectrophotometry of galaxy clusters the ratios vsub(r)/Tsub(e) for clusters intergalactic gas that permits, together with the X-ray measurements of electronic temperature Tsub(e) in the case of hot scattering gas to determine absolute radial peculiar velocities vsub(r) of galaxy clusters relative to the relic radiation. By simulating such peculiar velocities as an example for the system of bandpass filters in the wavelength range 300 μm - 2 mm the accuracy of vsub(r) estimates is proved to be about 300 km/s (not taking into account the errors in Tsub(e)) the sensitivity of deeply cooled submillimeter bolometers being 1x10 -15 W/Hzsup(1/2)

  4. The Status of MUSIC: A Multicolor Sub/millimeter MKID Instrument

    Science.gov (United States)

    Schlaerth, J. A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Nguyen, H. T.; Noroozian, O.; Sayers, J.; Siegel, S.; Zmuidzinas, J.

    2012-05-01

    We report on the recent progress of the Multicolor Submillimeter (kinetic) Inductance Camera, or MUSIC. MUSIC will use antenna-coupled Microwave Kinetic Inductance Detectors to observe in four colors (150 GHz, 230 GHz, 290 GHz and 350 GHz) with 2304 detectors, 576 per band, at the Caltech Submillimeter Observatory. It will deploy in 2012. Here we provide an overview of the instrument, focusing on the array design. We have also used a pathfinder demonstration instrument, DemoCam, to identify problems in advance of the deployment of MUSIC. In particular, we identified two major limiters of our sensitivity: out-of-band light directly coupling to the detectors (i.e. not through the antenna), effectively an excess load, and a large 1/f contribution from our amplifiers and electronics. We discuss the steps taken to mitigate these effects to reach background-limited performance (BLIP) in observation.

  5. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    Science.gov (United States)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  6. Interferometric investigation methods of plasma spatial characteristics on stellarators and tokamaks in submillimeter region

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.; Kononenko, V.I.; Epishin, V.A.; Topkov, A.N.

    1992-01-01

    The review of interferometric methods of plasma investigation in the wave submillimeter range is given. The diagnostic schemes in stellarators and tokamaks designed for experienced thermonuclear reactors and also the perspective ones, which are still out of practice, are shown. The methods of these diagnostics, their physical principles, the main possibilities and restrictions at changes of electron density, magnetic fields (currents) and their spatial distributions are described. 105 refs.; 9 figs.; 2 tables. (author)

  7. Generation of a strong core-centering force in a submillimeter compound droplet system

    International Nuclear Information System (INIS)

    Lee, M.C.; Feng, I.; Elleman, D.D.; Wang, T.G.; Young, A.T.

    1981-01-01

    By amplitude-modulating the driving voltage of an acoustic levitating apparatus, a strong core-centering force can be generated in a submillimeter compound droplet system suspended by the radiation pressure in a gaseous medium. Depending on the acoustic characteristics of the droplet system, it has been found that the technique can be utilized advantageously in the multiple-layer coating of an inertial-confinement-fusion pellet

  8. Development of a submillimeter free electron laser using a compact electro-static accelerator

    International Nuclear Information System (INIS)

    Kawamura, Y.; Shu, S.H.; Tanabe, T.; Li, D.J.; Toyoda, K.

    1995-01-01

    An experimental facilities for the studies on submillimeter wavelength free electron laser (FEL) are now under construction in our group. In this paper the possibilities for the two kinds of operation modes, which are expected to be obtained, such as the self mode-locked operations in a small net-gain region and the evolution of CW radiation in a large net-gain region, are analized. (author)

  9. Toward the comprehension of the infrared to submillimeter view of the interstellar medium of nearby galaxies

    International Nuclear Information System (INIS)

    Galametz, Maud

    2010-01-01

    This thesis aims to study the interstellar medium (ISM) of nearby galaxies to characterize the physical properties of the gas and dust. We especially focused our study on low-metallicity galaxies of the Local Universe, ideal candidates to study the influence of metal enrichment on the ISM properties of galaxies. Previous studies have shown that the Spectral Energy Distributions (SEDs) of low metallicity galaxies differ significantly from those of massive galaxies and that the dust-to-gas mass ratio (D/G) of the galaxy could be dependent of the metallicity. Observations of low-metallicity galaxies also often led to the detection of an excess at submillimeter (sub-mm) wavelengths not always accounted for in usual SED models. Further studies and observations had to be performed to better cover the far-IR to sub-mm range and probe the coldest phase of dust. We adopt a multi-wavelength approach to model and analyse the SEDs of 4 low-metallicity galaxies observed with LABOCA at 870 μm. We estimated the fraction of cool dust to be significant compared to the total dust mass of the galaxies. Some D/Gs are incoherent compared to what is expected from the current chemical evolution model, revealing possible reservoirs of gas not detected by current HI or CO observations. I enlarged the first sample to a wider range of metallicities and showed that sub-mm measurements significantly affect the dust mass estimates of galaxies. For dustier galaxies for which the SED usually peaks at longer wavelengths, sub-mm fluxes are crucial to position the peak and the Rayleigh-Jeans slope of their SED. For low-metallicity galaxies, the sub-mm wavelength domain harbours an excess that may imply a large amount of very cold dust. Our results confirm that low-metallicity galaxies can exhibit a sub-mm excess when observed at longer wavelengths. Obtaining a more precise inventory of the cold dust and resolve the main actors of dust evolution in massive star forming regions and molecular clouds

  10. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  11. The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993

    Science.gov (United States)

    Wu, Qingwen; Feng, Jianchao; Fan, Xuliang

    2018-03-01

    NGC 4993, as a host galaxy of the electromagnetic counterpart of the first gravitational-wave detection of a binary neutron-star merger, was observed by many powerful telescopes from radio to γ-ray wavebands. The weak nuclear activities of NGC 4993 suggest that it is a low-luminosity active galactic nuclei (LLAGNs). We build the multiwaveband spectral energy distributions (SEDs) of NGC 4993 from the literature. We find that the radio spectrum at ∼100–300 GHz is much steeper than that of the low-frequency waveband (e.g., 6–100 GHz), where this break was also found in the supermassive black holes (SMBHs) in our galaxy center (Sgr A*), and in some other nearby AGNs. The radio emission above and below this break may have different physical origins, which provide an opportunity to probe the accretion and jet properties. We model the multiwaveband SEDs of NGC 4993 with an advection-dominated accretion flow (ADAF) jet model. We find that the high-frequency steep radio emission at the millimeter waveband is consistent with the prediction of the ADAF, while the low-frequency flat radio spectrum is better fitted by the jet. Furthermore, the X-ray emission can also be simultaneously explained by the ADAF model. From the model fits, we estimate important parameters of the central engine (e.g., the accretion rate near the horizon of the black hole and the mass-loss rate in the jet) for NGC 4993. This result strengthens the theory that the millimeter, submillimeter, and deep X-ray observations are crucial to understanding the weak or quiescent activities in SMBH systems. Further simultaneous millimeter and X-ray monitoring of this kind of LLAGN will help us to better understand the physical origin of multiwaveband emission.

  12. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  13. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  14. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  15. A new mathematical formulation of the line-by-line method in case of weak line overlapping

    Science.gov (United States)

    Ishov, Alexander G.; Krymova, Natalie V.

    1994-01-01

    A rigorous mathematical proof is presented for multiline representation on the equivalent width of a molecular band which consists in the general case of n overlapping spectral lines. The multiline representation includes a principal term and terms of minor significance. The principal term is the equivalent width of the molecular band consisting of the same n nonoverlapping spectral lines. The terms of minor significance take into consideration the overlapping of two, three and more spectral lines. They are small in case of the weak overlapping of spectral lines in the molecular band. The multiline representation can be easily generalized for optically inhomogeneous gas media and holds true for combinations of molecular bands. If the band lines overlap weakly the standard formulation of line-by-line method becomes too labor-consuming. In this case the multiline representation permits line-by-line calculations to be performed more effectively. Other useful properties of the multiline representation are pointed out.

  16. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, MR; Martin-Hernandez, NL; Lenorzer, A; de Koter, A; Tielens, AGGA

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of 0 main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  17. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, M.R.; Martín-Hernández, N.L.; Lenorzer, A.; de Koter, A.; Tielens, A.G.G.M.

    2004-01-01

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  18. ANALYSIS OF THE HERSCHEL /HEXOS SPECTRAL SURVEY TOWARD ORION SOUTH: A MASSIVE PROTOSTELLAR ENVELOPE WITH STRONG EXTERNAL IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Tahani, K.; Plume, R. [Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4 (Canada); Bergin, E. A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Tolls, V. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Phillips, T. G.; Lis, D. C. [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States); Caux, E. [Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse (France); Cabrit, S.; Pagani, L. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014, Paris (France); Goicoechea, J. R. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC). Sor Juana Ines de la Cruz 3, E-28049 Cantoblanco, Madrid (Spain); Goldsmith, P. F.; Pearson, J. C. [Jet Propulsion Laboratory, Caltech, Pasadena, CA 91109 (United States); Johnstone, D. [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Menten, K. M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Müller, H. S. P.; Ossenkopf-Okada, V. [I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln (Germany); Tak, F. F. S. van der, E-mail: ktahani@ucalgary.ca [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands)

    2016-11-20

    We present results from a comprehensive submillimeter spectral survey toward the source Orion South, based on data obtained with the Heterodyne Instrument for the Far-Infrared instrument on board the Herschel Space Observatory , covering the frequency range of 480 to 1900 GHz. We detect 685 spectral lines with signal-to-noise ratios (S/Ns) > 3 σ , originating from 52 different molecular and atomic species. We model each of the detected species assuming conditions of Local Thermodynamic Equilibrium. This analysis provides an estimate of the physical conditions of Orion South (column density, temperature, source size, and V {sub LSR}). We find evidence for three different cloud components: a cool ( T {sub ex} ∼ 20–40 K), spatially extended (>60″), and quiescent (Δ V {sub FWHM} ∼ 4 km s{sup -1}) component; a warmer ( T {sub ex} ∼ 80–100 K), less spatially extended (∼30″), and dynamic (Δ V {sub FWHM} ∼ 8 km s{sup -1}) component, which is likely affected by embedded outflows; and a kinematically distinct region ( T {sub ex} > 100 K; V {sub LSR} ∼ 8 km s{sup -1}), dominated by emission from species that trace ultraviolet irradiation, likely at the surface of the cloud. We find little evidence for the existence of a chemically distinct “hot-core” component, likely due to the small filling factor of the hot core or hot cores within the Herschel beam. We find that the chemical composition of the gas in the cooler, quiescent component of Orion South more closely resembles that of the quiescent ridge in Orion-KL. The gas in the warmer, dynamic component, however, more closely resembles that of the Compact Ridge and Plateau regions of Orion-KL, suggesting that higher temperatures and shocks also have an influence on the overall chemistry of Orion South.

  19. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  20. Herschel observations of extraordinary sources: Analysis of the HIFI 1.2 THz wide spectral survey toward orion KL. I. method

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.; Favre, Cécile [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Schilke, Peter [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Lis, Dariusz C.; Emprechtinger, Martin; Phillips, Thomas G. [Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Bell, Tom A.; Cernicharo, José; Esplugues, Gisela B. [Centro de Astrobiología (CSIC/INTA), Laboratiorio de Astrofísica Molecular, Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Blake, Geoffrey; Kleshcheva, Maria [Division of Geological and Planetary Sciences, California Institute of Technology, MS 150-21, Pasadena, CA 91125 (United States); Gupta, Harshal; Pearson, John [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lord, Steven [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Marcelino, Nuria [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); McGuire, Brett A. [Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125 (United States); Plume, Rene [Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 (Canada); Van der Tak, Floris [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV Groningen (Netherlands); and others

    2014-06-01

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the submillimeter with high spectral resolution and include frequencies >1 THz, where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this data set with ground-based millimeter spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the millimeter to the far-IR using the XCLASS program, which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced χ{sup 2} analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high (>10{sup 6} cm{sup –3}) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H{sub 2} column densities also derived from the HIFI survey. The distribution of rotation temperatures, T {sub rot}, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge T {sub rot} distributions, indicating the hot core has the most complex thermal structure.

  1. THE SCUBA-2 COSMOLOGY LEGACY SURVEY: ALMA RESOLVES THE REST-FRAME FAR-INFRARED EMISSION OF SUB-MILLIMETER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Chen, Chian-Chou; Danielson, A. L. R.; Edge, A. C.; Ma, C.-J. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Almaini, O.; Conselice, C.; Hartley, W. G.; Lani, C. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Bremer, M. N.; Coppin, K. E. K. [School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Dunlop, J. S.; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford HIll, Edinburgh EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Geach, J. E. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Karim, A., E-mail: j.m.simpson@dur.ac.uk [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2015-01-20

    We present high-resolution (0.''3) Atacama Large Millimeter Array 870 μm imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey field to investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2-10 kpc scales. We derive a median intrinsic angular size of FWHM = 0.''30 ± 0.''04 for the 23 SMGs in the sample detected at a signal-to-noise ratio (S/N) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4 ± 0.2 kpc. A stacking analysis of the SMGs detected at S/N <10 shows they have sizes consistent with the 870 μm bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ∼250 μm sizes of SMGs are consistent with studies of resolved {sup 12}CO (J = 3-2 to 7-6) emission lines, but that sizes derived from 1.4 GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kiloparsecs in extent, with a median star formation rate surface density of 90 ± 30 M {sub ☉} yr{sup –1} kpc{sup –2}, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.

  2. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  3. Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies

    Science.gov (United States)

    Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.

    2011-01-01

    Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.

  4. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  5. Herschel observations of extraordinary sources: Analysis of the full Herschel/HIFI molecular line survey of sagittarius B2(N)

    Energy Technology Data Exchange (ETDEWEB)

    Neill, Justin L.; Bergin, Edwin A.; Crockett, Nathan R.; Favre, Cécile; Anderson, Dana E.; Burkhardt, Andrew M.; McNeill, Trevor D. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Lis, Dariusz C.; Emprechtinger, Martin; Monje, Raquel R.; Phillips, Thomas G. [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States); Schilke, Peter; Comito, Claudia; Qin, Sheng-Li [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Chen, Jo-Hsin [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Harris, Brent J.; Steber, Amanda L.; Vasyunina, Tatiana [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Lord, Steven D. [National Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); McGuire, Brett A., E-mail: jneill@umich.edu, E-mail: ebergin@umich.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-07-01

    A sensitive broadband molecular line survey of the Sagittarius B2(N) star-forming region has been obtained with the Heterodyne Instrument for the Far-Infrared (HIFI) instrument on the Herschel Space Observatory, offering the first high spectral resolution look at this well-studied source in a wavelength region largely inaccessible from the ground (625-157 μm). From the roughly 8000 spectral features in the survey, a total of 72 isotopologues arising from 44 different molecules have been identified, ranging from light hydrides to complex organics, and arising from a variety of environments from cold and diffuse to hot and dense gas. We present a local thermodynamic equilibrium (LTE) model to the spectral signatures of each molecule, constraining the source sizes for hot core species with complementary Submillimeter Array interferometric observations and assuming that molecules with related functional group composition are cospatial. For each molecule, a single model is given to fit all of the emission and absorption features of that species across the entire 480-1910 GHz spectral range, accounting for multiple temperature and velocity components when needed to describe the spectrum. As with other HIFI surveys toward massive star-forming regions, methanol is found to contribute more integrated line intensity to the spectrum than any other species. We discuss the molecular abundances derived for the hot core where the LTE approximation is generally found to describe the spectrum well, in comparison to abundances derived for the same molecules in the Orion KL region from a similar HIFI survey. Notably, we find significantly higher abundances of amine- and amide-bearing molecules (CH{sub 3}NH{sub 2}, CH{sub 2}NH, and NH{sub 2}CHO) toward Sgr B2(N) than Orion KL and lower abundances of some complex oxygen-bearing molecules (CH{sub 3}OCHO in particular). In addition to information on the chemical composition of the hot core, the strong far-infrared dust continuum allows

  6. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  7. A Multiwavelength Study of the Intracluster Medium and the Characterization of the Multiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Siegel, Seth Robert

    -arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the

  8. Micro combustion in sub-millimeter channels for novel modular thermophotovoltaic power generators

    International Nuclear Information System (INIS)

    Pan, J F; Tang, A K; Duan, L; Li, X C; Yang, W M; Chou, S K; Xue, H

    2010-01-01

    The performance of micro combustion-driven power systems is strongly influenced by the combustor structure. A novel modular thermophotovoltaic (TPV) power generator is presented, which is based on the sub-millimeter parallel plate combustor. It has the potential to achieve a high power density because of the high radiation energy per unit volume due to the high surface-to-volume ratio of the micro-combustor. The work experimentally investigated the ignition limitation for two micro-combustors. It also studied the effects of three major parameters on a sub-millimeter combustor, namely hydrogen to oxygen mixing ratio, hydrogen volumetric flow rate and nozzle geometry. The results show that the combustion efficiency decreases with the increase of the hydrogen flow rate, which is caused by reduced residence time. The average wall temperature with the rectangular nozzle is 25 K higher than that with the circle nozzle. The output electrical power and power density of the modular TPV power generator are projected to be 0.175 W and 0.0722 W cm −3 respectively. We experimentally achieve 0.166 W of electrical power, which is in good agreement with the model prediction

  9. Centralized operations and maintenance planning at the Atacama Large Millimeter/submillimeter Array (ALMA)

    Science.gov (United States)

    Lopez, Bernhard; Whyborn, Nicholas D.; Guniat, Serge; Hernandez, Octavio; Gairing, Stefan

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA consists of 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. Since the inauguration of the observatory back in March 2013 there has been a continuous effort to establish solid operations processes for effective and efficient management of technical and administrative tasks on site. Here a key aspect had been the centralized maintenance and operations planning: input is collected from science stakeholders, the computerized maintenance management system (CMMS) and from the technical teams spread around the world, then this information is analyzed and consolidated based on the established maintenance strategy, the observatory long-term plan and the short-term priorities definitions. This paper presents the high-level process that has been developed for the planning and scheduling of planned- and unplanned maintenance tasks, and for site operations like the telescope array reconfiguration campaigns. We focus on the centralized planning approach by presenting its genesis, its current implementation for the observatory operations including related planning products, and we explore the necessary next steps in order to fully achieve a comprehensive centralized planning approach for ALMA in steady-state operations.

  10. Development Of A Multicolor Sub/millimeter Camera Using Microwave Kinetic Inductance Detectors

    Science.gov (United States)

    Schlaerth, James A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Noroozian, O.; Sayers, J.; Siegel, S.; Vayonakis, A.; Zmuidzinas, J.

    2011-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting resonators useful for detecting light from the millimeter-wave to the X-ray. These detectors are easily multiplexed, as the resonances can be tuned to slightly different frequencies, allowing hundreds of detectors to be read out simultaneously using a single feedline. The Multicolor Submillimeter Inductance Camera, MUSIC, will use 2304 antenna-coupled MKIDs in multicolor operation, with bands centered at wavelengths of 0.85, 1.1, 1.3 and 2.0 mm, beginning in 2011. Here we present the results of our demonstration instrument, DemoCam, containing a single 3-color array with 72 detectors and optics similar to MUSIC. We present sensitivities achieved at the telescope, and compare to those expected based upon laboratory tests. We explore the factors that limit the sensitivity, in particular electronics noise, antenna efficiency, and excess loading. We discuss