WorldWideScience

Sample records for submillimeter pnipam solid

  1. Tunable Friction by Employment of Co-Non-Solvency of PNIPAM Brushes

    NARCIS (Netherlands)

    Yu, Yunlong; Cirelli, Marco; Kieviet, B.D.; Kooij, Ernst S.; Vancso, Gyula J.; de Beer, Sissi

    2016-01-01

    We present a simple method to control the tribological properties of contacts between polymer brushes and a solid counter surface. We show, using atomic force microscopy (AFM) experiments, that the friction force, upon relative sliding of a poly(N-isopropyl acrylamide) (PNIPAM) brush and a gold

  2. Ocular Biocompatibility of Poly-N-Isopropylacrylamide (pNIPAM

    Directory of Open Access Journals (Sweden)

    Luiz H. Lima

    2016-01-01

    Full Text Available Purpose. To study the safety of intravitreal injections of poly-N-isopropylacrylamide (pNIPAM tissue adhesive in rabbit eyes. Methods. Twelve study rabbits received an intravitreal injection of 0.1 mL 50% pNIPAM in the right eye. Follow-up examinations included color fundus photography, fundus fluorescein angiography (FA, optical coherence tomography (OCT, and electroretinography (ERG. Subsequent to the last follow-up assessment, the rabbits were sacrificed and histopathological study on the scleral incision sites was performed. Results. All study animals developed mild to moderate levels of inflammatory reaction in the conjunctiva, anterior chamber, and the anterior vitreous during the first month of follow-up. After this period, the level of the inflammatory reaction progressively decreased and completely disappeared after the third month of follow-up. The lens and cornea remained clear during the entire follow-up period. OCT and FA did not show areas of retinal damage or neovascularization. Histological and ERG studies of eyes injected with pNIPAM demonstrated absence of retinal toxicity. Conclusion. Intravitreal injections of pNIPAM were nontoxic in this animal study, and pNIPAM may be safe to be used as a bioadhesive in certain retinal diseases.

  3. A submillimeter VLBI array

    Energy Technology Data Exchange (ETDEWEB)

    Weintroub, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)], E-mail: jweintroub@cfa.harvard.edu

    2008-10-15

    A VLBI array operating at {lambda} 1.3 mm and 0.8 mm is being designed using existing submillimeter telescopes as ad-hoc stations. Initial three station {lambda} = 1.3 mm observations of SgrA* and other AGN have produced remarkable results, which are reported by Doeleman elsewhere in this proceedings. Future observations are planned with an enhanced array which has longer baselines, more stations, and greater sensitivity. At {lambda} = 0.8 mm and on the long baselines, the array will have about a 20 {mu}as angular resolution which equals the diameter of the event horizon of the massive black hole in SgrA*. Candidate single dish facilities include the Arizona Radio Observatory Submillimeter Telescope (SMT) in Arizona, the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell telescope (JCMT) in Hawaii, the Large Millimeter Telescope (LMT) in Mexico, ASTE and APEX in Chile, and the IRAM 30 m in Spain; interferometers include the Submillimeter Array (SMA) in Hawaii, the Combined Array for Research in Millimeter-wave Astronomy (CARMA) in California, IRAM PdB Interferometer in France, and the Atacama Large Millimeter Array (ALMA) in Chile. I will discuss the techniques we have developed for phasing interferometric arrays to act as single VLBI station. A strategy for detection of short (10s) time-scale source variability using VLBI closure phase will be described.

  4. Submillimeter Continuum Observations of Comets

    Science.gov (United States)

    Jewitt, David

    1998-01-01

    The aim of this proposal was to study the submillimeter continuum emission from comets. The study was based mainly on the exploitation of the world's leading submillimeter telescope, the JCMT (James Clerk Maxwell Telescope) on Mauna Kea. Submillimeter wavelengths provide a unique view of cometary physics for one main reason. The cometary size distribution is such that the scattering cross-section is dominated by small dust grains, while the mass is dominated by the largest particles. Submillimeter continuum radiation samples cometary particles much larger than those sampled by more common observations at shorter (optical and infrared) wavelengths and therefore provides a nearly direct measure of the cometary dust mass.

  5. HERTZ, A Submillimeter Polarimeter

    Science.gov (United States)

    Schleuning, D. A.; Dowell, C. D.; Hildebrand, R. H.; Platt, S. R.; Novak, G.

    1997-03-01

    We describe a 32 pixel polarimeter, Hertz, for use at the Caltech Submillimeter Observatory. We present polarization maps of the Orion molecular cloud (OMC-1) at 350 \\mum (46 detections) and 450 \\mum (19 detections) with 3\\sigma or better statistical significance. The 350 \\mum polarization ranges from 1.4 to 6.8% with a median value of 3.3%. The position angles are fairly uniform across the souce at an angle of \\sim30 degrees (east of north). We describe the design and performance characteristics of the polarimeter and discuss systematic effects due to telescope and instrumental polarization, atmospheric fluctuations, and reference beam flux. (SECTION: Astronomical Instrumentation)

  6. Thermosensitive Cu 2 O–PNIPAM core–shell nanoreactors with tunable photocatalytic activity

    OpenAIRE

    Jia, H.; Roa, R.; Bf Angioletti-Uberti, S; Henzler, K.; Ott, A; Lin, X; M??ser, J; Kochovski, Z; Schnegg, A.; Dzubiella, J.; Others

    2016-01-01

    We report a facile and novel method for the fabrication of Cu2O@PNIPAM core???shell nanoreactors using Cu2O nanocubes as the core. The PNIPAM shell not only effectively protects the Cu2O nanocubes from oxidation, but also improves the colloidal stability of the system. The Cu2O@PNIPAM core???shell microgels can work efficiently as a photocatalyst for the decomposition of methyl orange under visible light. A significant enhancement in the catalytic activity has been observed for the core???she...

  7. Thermosensitive Cu2O-PNIPAM core-shell nanoreactors with tunable photocatalytic activity

    CERN Document Server

    Jia, He; Angioletti-Uberti, Stefano; Henzler, Katja; Ott, Andreas; Lin, Xianzhong; Möser, Jannik; Kochovski, Zdravko; Schnegg, Alexander; Dzubiella, Joachim; Ballauff, Matthias; Lu, Yan

    2016-01-01

    We report a facile and novel method for the fabrication of Cu2O@PNIPAM core-shell nanoreactors using Cu2O nanocubes as the core. The PNIPAM shell not only effectively protects the Cu2O nanocubes from oxidation, but also improves the colloidal stability of the system. The Cu2O@PNIPAM core-shell microgels can work efficiently as photocatalyst for the decomposition of methyl orange under visible light. A significant enhancement in the catalytic activity has been observed for the core-shell microgels compared with the pure Cu2O nanocubes. Most importantly, the photocatalytic activity of the Cu2O nanocubes can be further tuned by the thermosensitive PNIPAM shell, as rationalized by our recent theory.

  8. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.

    Science.gov (United States)

    Pica, Andrea; Graziano, Giuseppe

    2017-12-01

    When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A novel thermal and pH responsive drug delivery system based on ZnO@PNIPAM hybrid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Licheng; Liu, Jian; Zhou, Weihua [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Wei, Junchao, E-mail: weijunchao@ncu.edu.cn [Department of Chemistry, Nanchang University, Nanchang 330031 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Peng, Zhiping [Department of Chemistry, Nanchang University, Nanchang 330031 (China)

    2014-12-01

    A smart ZnO@PNIPAM hybrid was prepared by grafting thermal responsive poly(N-isopropylacrylamide) (PNIPAM) on zinc oxide (ZnO) nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). The thermal gravimetric analysis (TGA) shows that the grafting amount of PNIPAM was about 38%, and the SEM images show that the PNIPAM chains can prevent the aggregation of ZnO nanoparticles. The responsive properties of ZnO@PNIPAM were measured by photoluminescence spectra, and the results demonstrate that the PNIPAM chains grafted on ZnO surfaces can realize reversible thermal responsive and photoluminescence properties. An anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the hybrid nanoparticles, and an in vitro drug release test implied that ZnO@PNIPAM could work as a thermal responsive drug delivery system. Furthermore, pH sensitive drug releases were carried out in acetate buffer at pH 5.0 and pH 6.0 and in water at pH 7.0, and the results showed evident pH dependency, showing its pH responsive properties. - Graphical abstract: In this manuscript, thermal responsive poly(N-isopropylacrylamide) (PNIPAM) was grafted on the surface of ZnO nanoparticles. The obtained ZnO@PNIPAM hybrid showed reversible thermal responsive photoluminescent properties, and can also work as a thermal and pH responsive drug delivery system. - Highlights: • The ZnO@PNIPAM hybrid was prepared via ATRP. • The ZnO@PNIPAM hybrid showed thermal responsive properties. • The ZnO@PNIPAM hybrid can work as a thermal and pH responsive drug delivery system.

  10. Pick up, move and release of nanoparticles utilizing co-non-solvency of PNIPAM brushes.

    Science.gov (United States)

    Yu, Yunlong; Lopez de la Cruz, Ricardo A; Kieviet, Bernard D; Gojzewski, Hubert; Pons, Adeline; Julius Vancso, G; de Beer, Sissi

    2017-01-26

    A critical complication in handling nanoparticles is the formation of large aggregates when particles are dried e.g. when they need to be transferred from one liquid to another. The particles in these aggregates need to disperse into the destined liquid medium, which has been proven difficult due to the relatively large interfacial interaction forces between nanoparticles. We present a simple method to capture, move and release nanoparticles without the formation of large aggregates. To do so, we employ the co-non-solvency effect of poly(N-isopropylacrylamide) (PNIPAM) brushes in water-ethanol mixtures. In pure water or ethanol, the densely end-anchored macromolecules in the PNIPAM brush stretch and absorb the solvent. We show that under these conditions, the adherence between the PNIPAM brush and a silicon oxide, gold, polystyrene or poly(methyl methacrylate) colloid attached to an atomic force microscopy cantilever is low. In contrast, when the PNIPAM brushes are in a collapsed state in a 30-70 vol% ethanol-water mixture, the adhesion between the brush and the different counter surfaces is high. For potential application, we demonstrate that this difference in adhesion can be utilized to pick up, move and release 900 silicon oxide nanoparticles of diameter 80 nm using only 10 × 10 μm(2) PNIPAM brush.

  11. PNIPAm grafted amino-functionalized mesoporous silica for thermo-responsive chromium elimination

    Science.gov (United States)

    Chang, Jeong Ho; Kim, Jinwon; Lee, Hyesun

    2017-12-01

    In this study, the effective elimination of Cr(VI) was achieved by thermo-responsive polymer-grafted amino-functionalized mesoporous silica (MS@APTES@PNIPAm) in aqueous solution. The MS@APTES@PNIPAm was successfully synthesized by the coupling of 3-MOP and N-isopropyl acrylamide (NIPAm) in 3-aminoproyltriethoxysilane (APTES) grafted mesoporous silica surface. The thermo-responsive elimination of Cr(VI) was demonstrated at various pH levels and at room temperature and 40 °C, respectively. The characterization of the synthesized materials was achieved by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and nitrogen (N2) adsorption-desorption. The maximum adsorption of hexavalent chromium on MS@APTES@PNIPAm in aqueous solution was 123.8 mg g-1 at 40 °C in pH 2.5. Furthermore, the results of isotherm and kinetic experiments demonstrated that the adsorption behavior of Cr(VI) on MS@APTES@PNIPAm was well fitted to a Langmuir plot with a pseudo-second-order and intra-particle diffusion model.

  12. Filters for Submillimeter Electromagnetic Waves

    Science.gov (United States)

    Berdahl, C. M.

    1986-01-01

    New manufacturing process produces filters strong, yet have small, precise dimensions and smooth surface finish essential for dichroic filtering at submillimeter wavelengths. Many filters, each one essentially wafer containing fine metal grid made at same time. Stacked square wires plated, fused, and etched to form arrays of holes. Grid of nickel and tin held in brass ring. Wall thickness, thickness of filter (hole depth) and lateral hole dimensions all depend upon operating frequency and filter characteristics.

  13. Comparative Investigation of the Thermoresponsive Behavior of Two Diblock Copolymers Comprising PNIPAM and PMDEGA Blocks.

    Science.gov (United States)

    Aravopoulou, Dionysia; Kyriakos, Konstantinos; Miasnikova, Anna; Laschewsky, André; Papadakis, Christine M; Kyritsis, Apostolos

    2018-02-21

    The thermoresponsive behavior of two diblock copolymers PS-b-PNIPAM and PS-b-PMDEGA, which both comprise a hydrophobic polystyrene (PS) block but different thermoresponsive blocks, also differing in length, poly(N-isopropylacrylamide) (PNIPAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA), respectively, was comparatively investigated in a wide temperature range. Concentrated aqueous solutions containing 25 wt % polymer were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS). DSC measurements show that, during the demixing phase transition, the hydration number per oligo(ethylene glycol) side chain in the PS-b-PMDEGA solution decreases rather gradually, even up to 20 °C above the onset of the transition, i.e., the cloud point (CP). In contrast, the PS-b-PNIPAM solution exhibits an abrupt, stepwise dehydration behavior at its CP, indicated by the sharp, narrow endothermic peak. BDS measurements suggest that the organization of the expelled water during the phase transition and the subsequent evolution of the micellar aggregates are different for the two copolymers. In the PS-b-PMDEGA solution, the long-range charge transport process changes significantly at its CP and strong interfacial polarization processes appear, probably due to charge accumulation at the interfaces between the micellar aggregates and the aqueous medium. On the contrary, in the PS-b-PNIPAM solution, the phase transition has only a marginal effect on the long-range conduction process and is accompanied by a reduction in the high-frequency (1 MHz) dielectric permittivity, ε'. The latter effect is attributed to the reduced polarization strength of local chain modes due to an enhancement of intra- and interchain hydrogen bonds (HBs) in the polymer-rich phase during the water detaching process. Surprisingly, our BDS measurements indicate that prior to both the demixing and remixing processes the local chain

  14. Thermo-responsive PNIPAM-metal hybrids: An efficient nanocatalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Satapathy, Smith Sagar; Bhol, Prachi; Chakkarambath, Aswathy; Mohanta, Jagdeep; Samantaray, Kunal; Bhat, Suresh K.; Panda, Subhendu K.; Mohanty, Priti S.; Si, Satyabrata

    2017-10-01

    Micron size thermoresponsive cross-linked polymeric microgels of poly(N-isopropylacrylamide) (PNIPAM) are used as ;microreactor; for embedding metal nanoparticles of different shapes. Using a simple and robust method, we have synthesized various polymer-metal hybrid nanostructures incorporated with Au nanorods (AuNR), Au nanospheres (AuNS) and Ag nanospheres (AgNS). These hybrid nanostructures have been characterized by transmission electron microscope (TEM), UV-vis spectroscopy, dynamic light scattering (DLS) and static light scattering (SLS) followed by their catalytic activity. TEM studies directly confirmed the mondispersity of synthesized hybrid microgels and stability of the embedded metal nanoparticles within the microgels. Optical studies confirmed the presence of respective absorption bands that correspond to AuNS, AgNS and AuNR respectively. Extensive DLS studies demonstrated that although these hybrid microgels preserve their thermoresponsive properties, i.e their hydrodynamic radius decreased with increasing temperature, their thermosensitivity were comparatively lesser than pure PNIPAM microgels. Combining with studies using static light scattering, we further found that AuNS and AgNS were inhomogeneously distributed within microgels where the majority of the nanoparticles present within the loosely cross-linked shell. On the other hand AuNR were distributed more homogeneously within the microgels. Catalytic performance of various nanostructures loaded onto PNIPAM microgel beads were evaluated by studying the catalytic reduction of 4-nitrophenol. Complete catalytic conversion using AgNS occurred in ∼30 min with a first-order rate constant of 0.159 min-1 having a 7 min induction period. On the other hand no induction period was observed for AuNS and AuNR and the reaction completed in 3-4 min with a first-order rate constant of 1.607 min-1 and 1.627 min-1 respectively. Further, PNIPAM-AuNS and PNIPAM-AuNR possess better catalytic activity as well as

  15. SUBMILLIMETER LIGHTCURVES OF ASTEROIDS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Submillimeter lightcurves of large asteroids Ceres, Davida, Io, Juno, Pallas, Vesta, and Victoria, observed at the Heinrich-Hertz Submillimeter Telescope from...

  16. Thermosensitive block copolymer [(PNIPAM)-b-(Glycine)] thin film as protective layer for drug loaded mesoporous silica nanoparticles

    Science.gov (United States)

    Amgoth, Chander; Joshi, Suman

    2017-10-01

    Synthesis and characterization of [(PNIPAM)-b-(Gly)] and mesoporous silica nanoparticles (MP-SiO2 NPs) were carried out separately and used to develop [(PNIPAM)-b-(Gly)]-(MP-SiO2 NPs). The synthesized MP-SiO2 NPs were meso porous in nature. The size of SiO2 NPs is in the range of ~180–250 nm (in diameter) with an average pore size of 2.8 nm within the particles. Interestingly, these mesoporous SiO2 NPs were loaded with anticancer drug (ITM-imatinib mesylate) fallow by the incubation for 24 h at RT. However, ITM loaded MP-SiO2 NPs were capped or covered with synthesized [(PNIPAM)-b-(Gly)] thin film. Here, thin film acts as protective layer for drug loaded MP-SiO2 NPs, with that leakage of drug molecules throughout its transport pathway can be avoided. Significantly, thermosensitive [(PNIPAM)-b-(Gly)] polymer thin film depletes at body temperature (~37 °C) and drug molecules come out from the pores of SiO2 NPs. However, developed [(PNIPAM)-b-(Gly)]-(MP-SiO2 NPs) is compatible and used for cell inhibition studies. After 24 h treatment, drug ITM released from [(PNIPAM)-b-(Gly)]-(MP-SiO2 NPs) shows significant (>90%) inhibition on leukemia blood cancer (K562) cells.

  17. Active Millimeter and Submillimeter Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The workshop will have three main objectives. The first will be to inventory the signatures and measurements that are desirable to make using submillimeter active...

  18. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: towards the high detection limit and Raman quantitative measurements.

    Science.gov (United States)

    Elashnikov, R; Mares, D; Podzimek, T; Švorčík, V; Lyutakov, O

    2017-08-07

    A smart plasmonic sensor, comprising a layer of a stimuli-responsive polymer sandwiched between two gold layers, is reported. As a stimuli-responsive material, a monolayer of poly(N-isopropylacrylamide) (PNIPAm) crosslinked globules is used. A quasi-periodic structure of the top gold layer facilitates efficient excitation and serves as a support for plasmon excitation and propagation. The intermediate layer of PNIPAm efficiently entraps targeted molecules from solutions. The sensor structure was optimized for efficient light focusing in the "active" PNIPAm layer. The optimization was based on the time-resolved finite-element simulations, which take into account the thickness of gold layers, size of PNIPAm globules and Raman excitation wavelength (780 nm). The prepared structures were characterized using SEM, AFM, UV-Vis refractometry and goniometry. Additional AFM scans were performed in water at two temperatures corresponding to the collapsed and swollen PNIPAm states. The Raman measurements demonstrate a high detection limit and perfect reproducibility of the Raman scattering signal for the prepared sensor. In addition, the use of created SERS structures for the detection of relevant molecules in the medical, biological and safety fields was demonstrated.

  19. Internal rupture and rapid bouncing of impacting drops induced by submillimeter-scale textures

    Science.gov (United States)

    Zhang, Rui; Zhang, Xiwen; Hao, Pengfei; He, Feng

    2017-06-01

    We demonstrate an internal breakup mechanism for high Weber number drop impact on superhydrophobic surfaces uniformly patterned with submillimeter-scale textures, in which the liquid film ruptures from both interior and rim. The employment of submillimeter-scale posts could help decrease the critical Weber number of internal rupture, due to the small solid fraction and the large dimension ratio between primary structures and droplets. The internal rupture is found to promote more rapid drop bouncing than conventional rebound and rim breakup on superhydrophobic surfaces with small roughness, with a 10%-50% reduction of contact time. The internal rupture results from the film instability inside and the jet instability outside.

  20. Internal rupture and rapid bouncing of impacting drops induced by submillimeter-scale textures.

    Science.gov (United States)

    Zhang, Rui; Zhang, Xiwen; Hao, Pengfei; He, Feng

    2017-06-01

    We demonstrate an internal breakup mechanism for high Weber number drop impact on superhydrophobic surfaces uniformly patterned with submillimeter-scale textures, in which the liquid film ruptures from both interior and rim. The employment of submillimeter-scale posts could help decrease the critical Weber number of internal rupture, due to the small solid fraction and the large dimension ratio between primary structures and droplets. The internal rupture is found to promote more rapid drop bouncing than conventional rebound and rim breakup on superhydrophobic surfaces with small roughness, with a 10%-50% reduction of contact time. The internal rupture results from the film instability inside and the jet instability outside.

  1. Phase transition of pNIPAM grafted on plasma-activated PEO monitored in-situ by quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, P; Bretagnol, F; Mannelli, I; Gillil, D; Rauscher, H; Rossi, F [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Vatican City State, Holy See,) (Italy)], E-mail: hubert.rauscher@jrc.it

    2008-03-15

    Thermoresponsive poly(N-isopropylacrylamide) layers were grafted on plasma-activated poly(ethylene oxide)-like substrate. Analysis by ToF-SIMS confirmed the presence of a pNIPAM film, which shows a phase transition temperature at 28 - 32 deg. C with hysteresis, as determined in-situ by quartz crystal microbalance. During the transition, the frequency of the pNIPAM coated quartz sensor exhibits a pronounced and unexpected minimum while the dissipation changes monotonously. This peculiar behaviour is explained by temporary formation of water-rich regions, which may cause delayed release and uptake of water during the collapse and re-swelling of the layer.

  2. Faint Submillimeter Galaxies Behind Lensing Clusters

    Science.gov (United States)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  3. Thermoresponsive behavior of block copolymers of PEO and PNIPAm with different architecture in aqueous solutions: a study by NMR, FTIR, DSC and quantum-chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Konefal, Rafal; Dybal, Jiří; Čadová, Eva; Kovářová, Jana

    2017-01-01

    Roč. 94, September (2017), s. 471-483 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA15-13853S Institutional support: RVO:61389013 Keywords : thermoresponsive polymer * diblock copolymer PEO-b-PNIPAm * y-shape triblock copolymer PEO-b-(PNIPAm)2 Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  4. Submillimeter solar images from the JCMT

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, G.; Lindsey, C.

    1992-01-01

    We present nearly full-disk, diffraction-limited solar images made at 350 and 850 [mu]m and at 1.3 mm from the 15 m James Clerk Maxwell Telescope on Mauna Kea. These wavelengths sample the thermal structure of the solar chromosphere at altitude from 500 to about 1500 km, providing a height-dependent diagnostic of the atmosphere. Filament channels and neutral lines are apparent in the submillimeter images, although filaments themselves are not clearly visible. The submillimeter images show plage approximately 20% brigher than the surrounding quiet Sun, while sunspot intensities are comparable to the quiet Sun. Circumfacules,' dark are similar to those seen in Ca 8542; comparison with Ca H and K may give estimates of the temperature and filing factor of the hot gas present in these probably bifurcated regions.

  5. The millimeter and submillimeter spectrum of CF(+)

    Science.gov (United States)

    Plummer, G. M.; Anderson, T.; Herbst, E.; De Lucia, F. C.

    1986-01-01

    The application of a recently described technique for producing significantly enhanced concentrations of molecular ions for spectroscopic study to the detection and measurement of the millimeter and submillimeter wave spectrum of CF(+) is reported. The experimental procedure is discussed, and the measured absorption frequencies are shown and compared with those calculated from spectral constants. These constants are given together with those from the infrared spectrum by Kawaguchi and Hirota (1985).

  6. Upconverting PAAm/PNIPAM/NaYF{sub 4}:Yb:Er hydrogel with enhanced luminescence temperature sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiachang; He, Benzhao; Cheng, Zehong; Zhou, Li, E-mail: zhouli@glut.edu.cn

    2015-04-15

    We present a one-step approach to combine the functional features of upconverting NaYF{sub 4}:Yb:Er nanoparticles and thermosensitive poly(N-isopropylacrylamide) (PNIPAM) for luminescence thermometry. Dual-functional hydrogel that simultaneously possesses strong upconversion luminescence (UL) and temperature responsibility was fabricated based on the crosslinking of poly(acrylamide) in the presence of PNIPAM and NaYF{sub 4}:Yb:Er nanoparticles. The obtained hydrogel exhibited reversibly temperature-dependent UL and highly enhanced sensibility. The luminescence temperature sensitivity reached 1.9% per °C and 0.7% per °C in the range of 27–33 °C and 35–45 °C, respectively. The maximum sensitivity could even reach 26.5% per °C in the range of 33–35 °C. Considering the facile fabrication process and fine luminescence thermometry performance, this study thus opens up new opportunities for preparing highly sensitive temperature sensors. - Highlights: • One-step fabrication of upconverting and thermosensitve PAAm/PNIPAM/NaYF{sub 4}:Yb:Er hydrogel is reported. • The combination of functional features of NaYF{sub 4}:Yb:Er upconversion nanoparticles (UCNPs) and thermosensitve PNIPAM can efficiently enhance the luminescence temperature sensitivity of UCNPs. • The luminescence temperature sensitivity of hydrogel can respectively reach 1.9% per °C and 0.7% per °C in the range of 27–33 °C and 35–45 °C. • The maximum sensitivity can even reach 26.5% per °C in range of 33–35 °C.

  7. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  8. Nature-inspired multifunctional membrane fabricated by adaptive hybridization of PNIPAm and PPy

    Science.gov (United States)

    Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon

    2017-11-01

    Specialized plant organs, such as guard cells of stomata, consist of soft materials with deformability and electrochemical properties in response to various environmental stimuli. Stimulus-responsive hydrogels with electrochemical properties are good candidates for imitating such functionalities having great potential in a wide range of applications. However, conductive hydrogels are usually mechanically rigid and the fabrication technology of structured hydrogels has low reproducibility. Here, inspired by stimulus-responsive functionalities of plants, a thermo-responsive multifunctional hybrid membrane (HM) is synthesized through the in situ hybridization of conductive poly(pyrrole)(PPy) on a photopolymerized poly(N-isopropylacrylamide)(PNIPAm) membrane. The various properties of the HM are investigated to characterize its multiple functions. In terms of morphology, the HM can be easily fabricated into various structures, and exhibits thermo-responsive deformability. In terms of functionality, it exhibits various electrical and charge responses to thermal stimuli. This simple and efficient fabrication method can be used as a promising platform for fabricating a variety of functional devices, such as actuators, biosensors, and filtration membranes. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (No. 2017R1A2B3005415).

  9. Adaptable radiative transfer innovations for submillimeter telescopes (ARTIST)

    DEFF Research Database (Denmark)

    Padovani, Marco; Jørgensen, Jes Kristian; Bertoldi, Frank

    2011-01-01

    Submillimeter observations are a key for answering many of the big questions in modern-day astrophysics, such as how stars and planets form, how galaxies evolve, and how material cycles through stars and the interstellar medium. With the upcoming large submillimeter facilities ALMA and Herschel...

  10. Probing Galaxy Formation and Submillimeter Surveys

    Science.gov (United States)

    Dwek, Eli; Arendt, Richard G.; Benford, Dominic J.; Moseley, Harvey S.; Shafer, Richard A.; Staguhn, Johannes G.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    Multiwavelength observations of galaxies have revealed that a significant fraction of the their stellar or accretion luminosity is absorbed and reradiated by dust at far-infrared (FIR) and submillimeter (submm) wavelengths. Submillimeter (850 micron) surveys conducted by the SCUBA instrument on the JCMT have detected a population of high redshift (z approximately equal to 1-4) ultraluminous infrared galaxies, that dominate the luminosity densities at those redshifts. Their cumulative contribution to the cosmic infrared background (CIB) detected by the COBE satellite is comparable to the observations, suggesting that at 850 microns the CIB is resolved into its constituent sources. This suggests that the early universe was much more dust enshrouded than the present one. FIR and submm surveys can therefore address fundamental questions regarding the early processes of galaxy formation and their evolution in number and luminosity over cosmic history. The scientific information that can be obtained from such surveys depend on a number of parameters, the most important of which are the diameter of the telescope and the wavelengths of the survey. We summarize the effect of these parameters on the scientific return from such surveys.

  11. Millimeter and submillimeter spectrum of propylene oxide

    Science.gov (United States)

    Mesko, A. J.; Zou, Luyao; Carroll, P. Brandon; Widicus Weaver, Susanna L.

    2017-05-01

    The spectrum of propylene oxide was collected from 70 GHz to 1 THz using direct absorption millimeter and submillimeter spectroscopy. Analysis of the spectrum was performed using the SPFIT/SPCAT programs for the A state. A full internal rotor analysis was performed using the XIAM program. The barrier to internal rotation of the methyl group was determined to be 893 cm-1. The precision of the rotation constants, centrifugal distortion constants, and internal rotor parameters was increased over the results reported by previous low-frequency studies. The results of this laboratory study and the associated analysis, as well as a spectral prediction for the ground vibrational state of propylene oxide, are presented.

  12. Millimeter and Submillimeter Observations of Ceres

    Science.gov (United States)

    Kuan, Yi-Jehng; Chuang, Yo-Ling; Tseng, Wei-Ling; Coulson, Iain M.; Chung, Ming-Chi

    2016-07-01

    1 Ceres is the largest celestial body in the Main Asteroid Belt and is also the sole dwarf planet in the inner solar system. Water vapor from small icy solar-system bodies, including Ceres and Europa, was detected by Herschel infrared space telescope recently. Data taken from Dawn spacecraft suggest that a subsurface layer of briny water ice, together with ammonia-rich clays, may exist on Ceres. We hence observed Ceres using the 15-m James Clerk Maxwell Telescope (JCMT) to search for other atmospheric molecules besides H _{2}O. Submillimeter continuum observations employing SCUBA-2 were also carried out. Here we report the tentative detection of hydrogen cyanide in the atmosphere of Ceres. If confirmed, our finding could imply that Ceres may have a comet-like chemical composition. However, further observational confirmation and more detailed analysis is needed.

  13. Photon caliper to achieve submillimeter positioning accuracy

    Science.gov (United States)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  14. Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams

    Directory of Open Access Journals (Sweden)

    Vidya Ramanathan

    2010-10-01

    Full Text Available We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100  MeV was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution.

  15. Submillimeter-Resolution Radiography of Shielded Structures with Laser-Accelerated Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Vidya [University of Nebraska, Lincoln; Banerjee, Sudeep [University of Nebraska, Lincoln; Powell, Nathan [University of Nebraska, Lincoln; Cummingham, N. J. [University of Nebraska, Lincoln; Chandler-Smith, Nate [University of Nebraska, Lincoln; Zhao, Kun [University of Nebraska, Lincoln; Brown, Kevin [University of Nebraska, Lincoln; Umstadter, Donald [University of Nebraska, Lincoln; Clarke, Shaun [University of Michigan; Pozzi, Sara [University of Michigan; Beene, James R [ORNL; Vane, C Randy [ORNL; Schultz, David Robert [ORNL

    2010-10-01

    We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100 MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution.

  16. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  17. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties

    NARCIS (Netherlands)

    Feng, Xueling; Zhang, Kaihuan; Chen, Peng; Sui, Xiaofeng; Hempenius, Mark A.; Liedberg, Bo; Vancso, Gyula J.

    2016-01-01

    Highly swellable, dual-responsive hydrogels, consisting of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and redox-responsive poly(ferrocenylsilane) (PFS) based poly(ionic liquid)s (PILs) are formed by photo-polymerization. PFS chains bearing cross-linkable vinylimidazolium (VIm) side

  18. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s : Synthesis, Structure, and Properties

    NARCIS (Netherlands)

    Feng, Xueling; Zhang, Kaihuan; Chen, Peng; Sui, Xiaofeng; Hempenius, Mark A.; Liedberg, Bo; Vancso, Gyula J.

    2016-01-01

    Highly swellable, dual-responsive hydrogels, consisting of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) and redox-responsive poly(ferrocenylsilane) (PFS) based poly(ionic liquid)s (PILs) are formed by photo-polymerization. PFS chains bearing cross-linkable vinylimidazolium (VIm) side

  19. A Submillimeter HCN Laser in IRC +10216.

    Science.gov (United States)

    Schilke; Mehringer; Menten

    2000-01-01

    We report the detection of a strong submillimeter-wavelength HCN laser line at a frequency near 805 GHz toward the carbon star IRC +10216. This line, the J=9-8 rotational transition within the (0400) vibrationally excited state, is one of a series of HCN laser lines that were first detected in the laboratory in the early days of laser spectroscopy. Since its lower energy level is 4200 K above the ground state, the laser emission must arise from the innermost part of IRC +10216's circumstellar envelope. To better characterize this environment, we observed other, thermally emitting, vibrationally excited HCN lines and found that they, like the laser line, arise in a region of temperature approximately 1000 K that is located within the dust formation radius; this conclusion is supported by the line width of the laser. The (0400), J=9-8 laser might be chemically pumped and may be the only known laser (or maser) that is excited both in the laboratory and in space by a similar mechanism.

  20. Black Holes and Sub-millimeter Dimensions

    CERN Document Server

    Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John

    1998-01-01

    Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...

  1. Infrared/submillimeter optical properties data base

    Science.gov (United States)

    Alley, Phillip W.

    1989-01-01

    The general goal was to build a data base containing optical properties, such as reflectance, transmittance, refractive index, in the far infrared to submillimeter wavelength region. This data base would be limited to selected crystalline materials and temperature between 300 and 2 K. The selected materials were: lithium, lead, and strontium; the bromides of potassium and thallium; the carbides of silicone and tungsten; and the materials of KRS5, KRS6, diamond, and sapphire. Last summer, barium fluoride was selected as prototype material for building the data base. This summer the literature search, preparation of the data for barium fluoride was completed. In addition the literature search for data related to the compounds mentioned was completed. The current status is that barium fluoride is in a form suitable for a NASA internal publication. The papers containing the data on the other materials were xeroxed and they are ready to be reduced. On the reverse side, the top figure is a sample combination of data for the index of refraction at 300 K. The lower figure shows the transmittance vs wavelength at 300 and 80 K. These figures are a sample of many which were developed. Since barium fluoride was studied more than most of the materials listed above, it is clear that additional measurements should be made to fill in the gaps present on both temperature and wavelength data.

  2. An Approach to Modeling Drug Release from Polymersome Nanoparticles Based on PNIPAM-g-PEO Graft Copolymer

    Directory of Open Access Journals (Sweden)

    Rumiana Blagoeva

    2017-06-01

    Full Text Available The recently proposed by the authors numerical approach to modelling of drug release from polymersome nanoparticles based on PNIPAM-g-PEO graft copolymer is generalized on the basis of different model dependent methods. It takes into account the specific features of the experimental procedure and equipment used during the experimental study of the drug release kinetics. The rate parameters are numerically evaluated when fitting each model curve to the available experimental data for indomethacin. Numerical simulation of drug release for 5% and 20% ethanol content is performed and the reliability of the used approach is discussed. It is established that the drug release rate is strongly influenced by the ethanol content. The considered numerical approach enables modeling of different drugs release under the same experimental equipment as well as inclusion of some new model functions describing other mechanisms controlling the release kinetics.

  3. Evidence for Dust Clearing Through Resolved Submillimeter Imaging

    Science.gov (United States)

    Brown, J. M.; Blake, G. A.; Qi, C.; Dullemond, C. P.; Wilner, D. J.; Williams, J. P.

    2009-10-01

    Mid-infrared spectrophotometric observations have revealed a small subclass of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model-dependent method of finding central holes. Imaging of protoplanetry disks provides an independent check of SED modeling. We present here the direct characterization of three 33-47 AU radii inner gaps, in the disks around LkHα 330, SR 21N, and HD 135344B, via 340 GHz (880 μm) dust continuum aperture synthesis observations obtained with the Submillimeter Array (SMA). The large gaps are fully resolved at ~0farcs3 by the SMA data and mostly empty of dust, with less than (1-7.5) × 10-6 M sun of fine grained solids inside the holes. Gas (as traced by atomic accretion markers and CO 4.7 μm rovibrational emission) is still present in the inner regions of all three disks. For each, the inner hole exhibits a relatively steep rise in dust emission to the outer disk, a feature more likely to originate from the gravitational influence of a companion body than from a process expected to show a more shallow gradient like grain growth. Importantly, the good agreement between the spatially resolved data and spectrophotometry-based models lends confidence to current interpretations of SEDs, wherein the significant dust emission deficits arise from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.

  4. Arrays of Bolometers for Far-infrared and Submillimeter Astronomy

    Science.gov (United States)

    Chuss, D. T.; Allen, C. A.; Babu, S.; Benford, D. J.; Dotson, J. L.; Dowell, C. D.; Jhabvala, M.; Harper, D. A.; Moseley, S. Harvey; Silverberg, R. F.; Staguhn, J. G.; Voellmer, G.; Wollack, E. J.

    We describe 12 x 32 arrays of semiconducting cryogenic bolometers designed for use in far-infrared and submillimeter cameras. These 12 x 32 arrays are constructed from 1 x 32 monolithic pop-up detectors developed at NASA Goddard Space Flight Center. The pop-up technology allows the construction of large arrays with high filling factors that provide efficient use of space in the focal planes of far-infrared and submillimeter astronomical instruments. This directly leads to a significant decrease in integration time. The prototype array is currently operating in the second generation Submillimeter High Angular Resolution Camera (SHARC II), a facility instrument in use at the Caltech Submillimeter Observatory (CSO). The elements of this array employ a bismuth absorber coating and quarter wave backshort to optimize the bolometer absorption for passbands centered at 350 and 450 microns. A second array is to be installed in the High-resolution Airborne Widebandwidth Camera (HAWC), a far-infrared imaging camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). This array has been completed and is now awaiting integration into the HAWC test cryostat. HAWC is scheduled for commissioning in 2005. The HAWC array employs titanium-gold absorbers and is optimized for uniform absorption from 40 to 300 microns to accommodate all four of its far-infrared passbands. We describe the details of the HAWC array construction including the mechanical design and electrical characterization of the constituent linear arrays.

  5. Two bolometer arrays for far-infrared and submillimeter astronomy

    Science.gov (United States)

    Silverberg, Robert F.; Allen, Christine A.; Babu, Sachidananda R.; Benford, Dominic J.; Chuss, David T.; Dotson, Jessie L.; Dowell, Charles D.; Harper, Doyle A.; Jhabvala, Murzy D.; Loewenstein, Robert F.; Moseley, S. H., Jr.; Staguhn, Johannes G.; Voellmer, George M.; Wollack, Edward J.

    2004-10-01

    We describe the development, construction, and testing of two 384 element arrays of ion-implanted semiconducting cryogenic bolometers designed for use in far-infrared and submillimeter cameras. These two dimensional arrays are assembled from a number of 32 element linear arrays of monolithic Pop-Up bolometer Detectors (PUD) developed at NASA/Goddard Space Flight Center. PUD technology allows the construction of large, high filling factor, arrays that make efficient use of available focal plane area in far-infrared and submillimeter astronomical instruments. Such arrays can be used to provide a significant increase in mapping speed over smaller arrays. A prototype array has been delivered and integrated into a ground-based camera, the Submillimeter High Angular Resolution Camera (SHARC II), a facility instrument at the Caltech Submillimeter Observatory (CSO). A second array has recently been delivered for integration into the High-resolution Airborne Widebandwidth Camera (HAWC), a far-infrared imaging camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). HAWC is scheduled for commissioning in 2005.

  6. Submillimeter Wave Antenna With Slow Wave Feed Line

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Kotiranta, Mikko

    2009-01-01

    Submillimeter wave radiation, which is also referred to as terahertz radiation, has not been extensively explored until recently due to a lack of reliable components and devices in this frequency range. Current advances in technology have made it possible to explore this portion of the electromag...

  7. Comb-Type Grafted Hydrogels of PNIPAM and PDMAEMA with Reversed Network-Graft Architectures from Controlled Radical Polymerizations

    Directory of Open Access Journals (Sweden)

    Sheng-Qi Chen

    2016-02-01

    Full Text Available Dual thermo- and pH-responsive comb-type grafted hydrogels of poly(N,N-dimethylaminoethyl methacrylate (PDMAEMA and poly(N-isopropylacrylamide (PNIPAM with reversed network-graft architectures were synthesized by the combination of atom transfer radical polymerization (ATRP, reversible addition-fragmentation chain transfer (RAFT polymerization and click chemistry. Two kinds of macro-cross-linkers with two azido groups at one chain-end and different chain length [PNIPAM–(N32 and PDMAEMA–(N32] were prepared with N,N-di(β-azidoethyl 2-halocarboxylamide as the ATRP initiator. Through RAFT copolymerization of DMAEMA or NIPAM with propargyl acrylate (ProA using dibenzyltrithiocarbonate as a chain transfer agent, two network precursors with different content of alkynyl side-groups [P(DMAEMA-co-ProA and P(NIPAM-co-ProA] were obtained. The subsequent azido-alkynyl click reaction of macro-cross-linkers and network precursors led to the formation of the network-graft hydrogels. These dual stimulus-sensitive hydrogels exhibited rapid response, high swelling ratio and reproducible swelling/de-swelling cycles under different temperatures and pH values. The influences of cross-linkage density and network-graft architecture on the properties of the hydrogels were investigated. The release of ceftriaxone sodium from these hydrogels showed both thermal- and pH-dependence, suggesting the feasibility of these hydrogels as thermo- and pH-dependent drug release devices.

  8. Interfacial arrangement and phase transitions of PNiPAm microgels with different crosslinking densities.

    Science.gov (United States)

    Rey, Marcel; Hou, Xunan; Tang, Jo Sing Julia; Vogel, Nicolas

    2017-11-29

    Microgels are colloidal hydrogel particles that exhibit a pronounced softness, which arises from the swollen nature of the constituent polymer network. This softness leads to a substantial deformability of such particles at liquid interfaces, which, in turn translates into a complex phase behaviour that can exhibit a phase transition between a non-close packed and a close packed arrangement. Here, we explore how the degree of swellability and deformability - and therefore the softness of the particles - affects the phase behaviour of microgels at the air/water interface upon compression. We use precipitation polymerization to synthesize poly(N-isopropylacrylamide) microgels with similar hydrodynamic radii in the collapsed state and systematically vary the degree of swellability by changing the crosslinking density. We spread these microgels onto the air/water interface of a Langmuir trough and characterize their interfacial properties by surface pressure - area isotherms. Furthermore, we continuously transfer the interfacial microgel monolayer during compression onto a solid substrate, thus encoding the complete phase diagram of the microgels with increasing particle density as a function of the position on the solid substrate. We investigate the microgel arrangement by atomic force microscopy and scanning electron microscopy and use image analysis to extract quantitative information on the interparticle distance and degree of order. We find that the phase transition is very sensitive to the crosslinking density and occurs at much lower surface pressures for less deformable particles. The softest microgels do not undergo any phase transition. Instead, the system exhibits pronounced local conformation changes around point defects with local five- and sevenfold symmetries, indicating that the geometry of the assembled structure effectively controls the local pressure experienced by the microgels.

  9. Linewidth of submillimeter wave flux-flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.

    1996-01-01

    A reliable technique for wide band measurements of the spectral linewidth of superconducting oscillators integrated on-chip with superconductor-insulator-superconductor (SIS) detectors has been, developed, The spectral linewidth of flux-flow oscillators (FFO) based on the unidirectional and visco...... reference source has been demonstrated. The proposed technique may improve the sensitivity, frequency resolution, and stability of the fully superconducting integrated submillimeter wave receiver. (C) 1996 American Institute of Physics....

  10. Passive magnetic shielding for the submillimeter and far infrared experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Koji; Warner, B.A.; Di Pirro, M.J.; Numazawa, Takenori

    2003-05-01

    Goddard Space Flight Center is developing the submillimeter and far infrared experiment (SAFIRE). SAFIRE will use SQUIDs as amplifiers for detectors, which must be shielded from the magnet cooling system, an adiabatic demagnetization refrigerator (ADR). The magnetic field at the detector package must remain at or below the 10{sup -7} tesla level while the detectors are operating. We discuss laboratory tests of the passive shielding and simulations.

  11. Analysis of the Sub-Millimeter Rotational Spectrum of Urea

    Science.gov (United States)

    Thomas, Jessica R.; Fosnight, Alyssa M.; Medvedev, Ivan R.

    2013-06-01

    Urea, ((NH_{2})_{2}CO), has broad presence in biological species. As a byproduct of human metabolism, this molecule is commonly tested for in blood to diagnose different pathologies. Furthermore, urea is seen in interstellar medium and its detection could yield valuable insight into the mechanisms governing star formation. Despite the prevalence of urea, an absence exists in recorded frequencies of this molecule. The new generation of the sub-millimeter telescopes, such as ALMA, HERSCHEL, and SOFIA, allows detection of interstellar molecular spectra at unprecedented spatial and spectral resolutions. The knowledge of the precise frequencies of spectra transitions present in interstellar molecular clouds would alleviate the problem of spectral congestion and aid in molecular identification. This paper reports the most recent investigation of the submillimeter/terahertz gas phase spectrum of urea. Up until now, only the microwave laboratory spectrum of urea's vibrational ground state has been available. This paper reports the high-resolution spectra of urea in the sub-millimeter range, and extends the spectroscopic assignment of the rotational transitions in the vibrational ground state. Additionally, the assignment of the first vibrational state and tentative assignments of two additional vibrational states have been made.

  12. Submillimeter Array reveals molecular complexity of dying stars

    Science.gov (United States)

    Tomasz

    2018-01-01

    The unique capabilities of the Submillimeter Array (SMA) have allowed unprecedented studies of cool evolved stars at submillimeter wavelengths. In particular, the SMA now offers the possibility to image multiple molecular transitions at once, owing to the 32-GHz wide instantaneous bandwidth of SWARM, the SMA’s new correlator. Molecular gas located far and very close to the photosphere of an asymptotic-giant branch (AGB) star, a red supergiant, or a pre-planetary nebula can now be examined in transitions observed simultaneously from a wide range of energy levels. This allows a very detailed quantitative investigation of physical and chemical conditions around these variable objects. Several imaging line surveys have been obtained with the SMA to reveal the beautiful complexity of these evolved systems. The surveys resulted in first submillimeter-wave identifications of molecules of prime astrophysical interest, e.g. of TiO, TiO2, and of rotational transitions at excited vibrational states of CO. An overview of recent SMA observations of cool evolved stars will be given with an emphasize on the interferometric line surveys. We will demonstrate their importance in unraveling the mass-loss phenomena, propagation of shocks in the circumstellar medium, and production of dust at elevated temperatures. The SMA studies of these molecular factories have a direct impact on our understanding of the chemical evolution of the Galaxy and stellar evolution at low and high masses.

  13. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chul [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of); Lee, Gwang-Ho, E-mail: jclee@kasi.re.kr [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-12-20

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S{sub 350μm} = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10{sup 7} M {sub ⊙} and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  14. Research Status and Action of Sub-millimeter Debris Impact Damage on Spacecraft Structure

    OpenAIRE

    Higashide, Masumi; Kurosaki, Hirohisa; Hasegawa, Sunao; 東出, 真澄; 黒崎, 裕久; 長谷川, 直

    2015-01-01

    To assess debris impact risk for the satellite, submillimeter debris impact damage has not been investigated enough to conduct satellite protective designing. JAXA is researching vulnerability of satellite structure materials against submillimeter debris impact, and proposing shielding methods. This report shows summary of submillimeter impact damages of honeycomb sandwich panels. The damage of the panel was investigated by hypervelocity impact experiments with the two-stage light gas gun in ...

  15. Advanced Amplifier Based Receiver Front Ends for Submillimeter-Wave-Sounders Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop high electron mobility transistor (HEMT) amplifier based heterodyne radiometers to provide high sensitivity at millimeter and submillimeter wavelengths with...

  16. Molecular versus macroscopic perspective on the demixing transition of aqueous PNIPAM solutions by studying the dual character of the refractive index.

    Science.gov (United States)

    Philipp, Martine; Aleksandrova, Ralitsa; Müller, Ulrich; Ostermeyer, Martin; Sanctuary, Roland; Müller-Buschbaum, Peter; Krüger, Jan K

    2014-10-07

    The phase separation of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions is known to strongly affect their volume expansion behaviour and the elastic moduli, as the latter are strongly coupled to the macroscopic order parameter. On the molecular scale, considerable changes in H-bonding and hydrophobic interactions, as well as in the structure govern the demixing process. However, the relationship between the molecular and macroscopic order parameters is unclear for such complex phase-separating solutions. We contribute to the clarification of this problem by relating optical to volumetric properties across the demixing transition of dilute to concentrated aqueous PNIPAM solutions. Far from the demixing temperature, the temperature dependence of the refractive index is predominantly determined by thermal expansion. In the course of phase separation, the refractive index is dominated by the anomalous behaviour of the specific refractivity, which reflects the spatio-temporally averaged changes in molecular interactions and the structural reorganization of the demixing solutions. Moreover, the presence of relaxation processes is studied by the complex expansion coefficient using the novel technique of temperature modulated optical refractometry.

  17. CLUMPY AND EXTENDED STARBURSTS IN THE BRIGHTEST UNLENSED SUBMILLIMETER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Iono, Daisuke; Hatsukade, Bunyo; Kawabe, Ryohei; Matsuda, Yuichi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Yun, Min S.; Wilson, Grant [University of Massachusetts, Department of Astronomy, 710 North Pleasant Street, Amherst, MA 01003 (United States); Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Ikarashi, Soh [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700AV Groningen (Netherlands); Izumi, Takuma; Kohno, Kotaro; Tamura, Yoichi; Umehata, Hideki [Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Lee, Minju; Saito, Toshiki [Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Ueda, Junko [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Michiyama, Tomonari; Ando, Misaki, E-mail: d.iono@nao.ac.jp [SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-09-20

    The central structure in three of the brightest unlensed z = 3–4 submillimeter galaxies is investigated through 0.″015–0.″05 (120–360 pc) 860 μ m continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kiloparsec in AzTEC1 and AzTEC8 is extremely complex, and they are composed of multiple ∼200 pc clumps. AzTEC4 consists of two sources that are separated by ∼1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ∼300–3000 M {sub ⊙} yr{sup −1} kpc{sup −2}, suggesting regions with extreme star formation near the Eddington limit. By comparing the flux obtained by ALMA and Submillimeter Array, we find that 68%–90% of the emission is extended (≳1 kpc) in AzTEC4 and 8. For AzTEC1, we identify at least 11 additional compact (∼200 pc) clumps in the extended 3–4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at ≲150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10% and 30% of the 860 μ m continuum is concentrated in clumpy structures in the central kiloparsec, while the remaining flux is distributed over ≳1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.

  18. Detection of Circular Polarization from Sagittarius A* at Submillimeter Wavelengths

    Science.gov (United States)

    Munoz, Diego; Marrone, D.; Moran, J.

    2009-05-01

    We report the detection of circularly polarized (CP) emission from the compact radio source Sagittarius A* at a level of 1.5% at a frequency of 235 GHz (1.4 mm). Sgr A* is associated with the supermassive black hole (SMBH) in the Galactic Center. The observations, taken with the Submillimeter Array (SMA) on 03/31/2007, also show a linearly polarized (LP) component of 7%. The snr of our detection of CP is about 14. Before our measurements, CP had only been detected at frequencies between 1.4 and 15 GHz (21 and 2 cm) at levels Faraday rotation in the stationary screen (constant RM)acts on a time variable background source. A cold, optically thin plasma screen cannot be responsible for both a constant RM and Faraday conversion from LP to CP, therefore the observed amounts of CP are likely to be originated close to the central source. Sgr A* shows a flat-to-inverted radio spectrum and a submillimeter excess referred to as the "submillimeter bump". This excess it thought to come from the closest regions to the SMBH. In such a scenario, millimeter wavelength data is associated with regions in which the material is likely to be relativistic and the magnetic field ordered. We have carried out polarized radiative transfer calculations exploring different combinations of ordered and stochastic magnetic fields looking for a favored scenario that can explain the apparent constant increase of CP with frequency as well as the sudden jump in LP between 40 and 80 GHz.

  19. Superconductor Semiconductor Research for NASA's Submillimeter Wavelength Missions

    Science.gov (United States)

    Crowe, Thomas W.

    1997-01-01

    Wideband, coherent submillimeter wavelength detectors of the highest sensitivity are essential for the success of NASA's future radio astronomical and atmospheric space missions. The critical receiver components which need to be developed are ultra- wideband mixers and suitable local oscillator sources. This research is focused on two topics, (1) the development of reliable varactor diodes that will generate the required output power for NASA missions in the frequency range from 300 GHZ through 2.5 THz, and (2) the development of wideband superconductive mixer elements for the same frequency range.

  20. Properties of Submillimeter Galaxies in the CANDELS GOODS-South Field

    NARCIS (Netherlands)

    Wiklind, Tommy; Conselice, Christopher J.; Dahlen, Tomas; Dickinson, Mark E.; Ferguson, Henry C.; Grogin, Norman A.; Guo, Yicheng; Koekemoer, Anton M.; Mobasher, Bahram; Mortlock, Alice; Fontana, Adriano; Davé, Romeel; Yan, Haojing; Acquaviva, Viviana; Ashby, Matthew L. N.; Barro, Guillermo; Caputi, Karina I.; Castellano, Marco; Dekel, Avishai; Donley, Jennifer L.; Fazio, Giovanni G.; Giavalisco, Mauro; Grazian, Andrea; Hathi, Nimish P.; Kurczynski, Peter; Lu, Yu; McGrath, Elizabeth J.; de Mello, Duilia F.; Peth, Michael; Safarzadeh, Mohammad; Stefanon, Mauro; Targett, Thomas

    We derive physical properties of 10 submillimeter galaxies located in the CANDELS coverage of the GOODS-S field. The galaxies were first identified as submillimeter sources with the LABOCA bolometer and subsequently targeted for 870 μm continuum observation with ALMA. The high angular resolution of

  1. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  2. A Black Hole Mass-Variability Timescale Correlation at Submillimeter Wavelengths

    NARCIS (Netherlands)

    Bower, G.C.; Dexter, J.; Markoff, S.; Gurwell, M.A.; Rao, R.; McHardy, I.

    2015-01-01

    We analyze the light curves of 413 radio sources at submillimeter wavelengths using data from the Submillimeter Array calibrator database. The database includes more than 20,000 observations at 1.3 and 0.8 mm that span 13 years. We model the light curves as a damped random walk and determine a

  3. Josephson frequency meter for millimeter and submillimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I. [State Research Center, Kiev (Ukraine)] [and others

    1994-12-31

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.

  4. A Sub-millimeter, Inductively Powered Neural Stimulator

    Directory of Open Access Journals (Sweden)

    Daniel K. Freeman

    2017-11-01

    Full Text Available Wireless neural stimulators are being developed to address problems associated with traditional lead-based implants. However, designing wireless stimulators on the sub-millimeter scale (<1 mm3 is challenging. As device size shrinks, it becomes difficult to deliver sufficient wireless power to operate the device. Here, we present a sub-millimeter, inductively powered neural stimulator consisting only of a coil to receive power, a capacitor to tune the resonant frequency of the receiver, and a diode to rectify the radio-frequency signal to produce neural excitation. By replacing any complex receiver circuitry with a simple rectifier, we have reduced the required voltage levels that are needed to operate the device from 0.5 to 1 V (e.g., for CMOS to ~0.25–0.5 V. This reduced voltage allows the use of smaller receive antennas for power, resulting in a device volume of 0.3–0.5 mm3. The device was encapsulated in epoxy, and successfully passed accelerated lifetime tests in 80°C saline for 2 weeks. We demonstrate a basic proof-of-concept using stimulation with tens of microamps of current delivered to the sciatic nerve in rat to produce a motor response.

  5. Structured Antireflective Coating for Silicon at Submillimeter Frequencies

    Science.gov (United States)

    Padilla, Estefania

    2018-01-01

    Observations at millimeter and submillimeter wavelengths are useful for many astronomical studies, such as the polarization of the cosmic microwave background or the formation and evolution of galaxy clusters. In order to allow observations over a broad spectral bandwidth (approximatively from 70 to 420 GHz), innovative broadband anti-reflective (AR) optics must be utilized in submillimeter telescopes. Due to its low loss and high refractive index, silicon is a fine optical material at these frequencies, but an AR coating with multiple layers is required to maximize its transmission over a wide bandwidth. Structured multilayer AR coatings for silicon are currently being developed at Caltech and JPL. The development process includes the design of the structured layers with commercial electromagnetic simulation software, the fabrication by using deep reactive ion etching, and the test of the transmission and reflection of the patterned wafers. Geometrical 3D patterns have successfully been etched at the surface of the silicon wafers creating up to 2 layers with different effective refractive indices. The transmission and reflection of single AR layer wafers, measured between 75 and 330 GHz, are close to the simulation predictions. These results allow the development of new designs with 5 or 6 AR layers in order to improve the bandwidth and transmission of the silicon AR coatings.

  6. Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging

    Science.gov (United States)

    Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.

    2011-01-01

    Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter

  7. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South : Source Catalog and Multiplicity

    NARCIS (Netherlands)

    Hodge, J.; Karim, A.; Smail, I.; Swinbank, A.; Walter, F.; Biggs, A.; Ivison, R.; Weiss, A.; Alexander, D.; Bertoldi, F.; Brandt, W.; Chapman, S.; Coppin, K.; Cox, P.; Danielson, A.; Dannerbauer, H.; De, Breuck C.; Decarli, R.; Edge, A.; Greve, T.; Knudsen, K.; Menten, K.; Rix, H.; Schinnerer, E.; Simpson, J.; Wardlow, J.; Werf, van der P.P.

    2013-01-01

    We present an Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 survey of 126 submillimeter sources from the LABOCA ECDFS Submillimeter Survey (LESS). Our 870 {$μ$}m survey with ALMA (ALESS) has produced maps ~{}3{ imes} deeper and with a beam area ~{}200{ imes} smaller than the original

  8. Compact Receiver Front Ends for Submillimeter-Wave Applications

    Science.gov (United States)

    Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.

    2012-01-01

    The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.

  9. Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: effect of hydrophilic chain length and camptothecin release behavior.

    Science.gov (United States)

    Yang, Xiao-Li; Luo, Yan-Ling; Xu, Feng; Chen, Ya-Shao

    2014-02-01

    Block copolymer micelles are extensively used as drug controlled release carriers, showing promising application prospects. The comb or brush copolymers are especially of great interest, whose densely-grafted side chains may be important for tuning the physicochemical properties and conformation in selective solvents, even in vitro drug release. The purpose of this work was to synthesize novel block copolymer combs via atom transfer radical polymerization, to evaluate its physicochemical features in solution, to improve drug release behavior and to enhance the bioavailablity, and to decrease cytotoxicity. The physicochemical properties of the copolymer micelles were examined by modulating the composition and the molecular weights of the building blocks. A dialysis method was used to load hydrophobic camptothecin (CPT), and the CPT release and stability were detected by UV-vis spectroscopy and high-performance liquid chromatography, and the cytotoxicity was evaluated by MTT assays. The copolymers could self-assemble into well-defined spherical core-shell micelle aggregates in aqueous solution, and showed thermo-induced micellization behavior, and the critical micelle concentration was 2.96-27.64 mg L(-1). The micelles were narrow-size-distribution, with hydrodynamic diameters about 128-193 nm, depending on the chain length of methoxy polyethylene glycol (mPEG) blocks and poly(N-isopropylacrylamide) (PNIPAM) graft chains or/and compositional ratios of mPEG to PNIPAM. The copolymer micelles could stably and effectively load CPT but avoid toxicity and side-effects, and exhibited thermo-dependent controlled and targeted drug release behavior. The copolymer micelles were safe, stable and effective, and could potentially be employed as CPT controlled release carriers.

  10. Multipass millimeter/submillimeter spectrometer to probe dissociative reaction dynamics.

    Science.gov (United States)

    Laas, Jacob C; Hays, Brian M; Widicus Weaver, Susanna L

    2013-10-03

    We present here the instrument design and first experimental results from a multipass millimeter/submillimeter spectrometer designed to probe dissociative reaction dynamics. This work focuses on benchmarking the instrument performance through detection of the CH3O and H2CO products from methanol dissociation induced by a high-voltage plasma discharge. Multiple rotational lines from CH3O and H2CO were observed when this plasma discharge was applied to a sample of methanol vapor seeded in an argon supersonic expansion. The rotational temperature of the dissociation products and their abundance with respect to methanol were determined using a Boltzmann analysis. The minimum detectable absorption coefficient for this instrument was determined to be αmin ≤ 5 × 10(-9) cm(-1). We discuss these results in the context of future applications of this instrument to the study of photodissociation branching ratios for small organic molecules that are important in complex interstellar chemistry.

  11. The role of THz and submillimeter wave technology in DHS

    Science.gov (United States)

    Coty, Thomas; Fuller-Tedeschi, Anna

    2011-06-01

    THz and submillimeter wave technology is of great interest to DHS S&T due to the non-ionizing and clothing penetrating properties of the spectral region. Imaging in the region allows for standoff imaging of concealed threats such as Improvised Explosive Devices (IED) at operationally relevant distances. DHS S&T is investing in this area with the development of components such as detectors and sources for active imaging as well as full sensor systems in the future. The fundamental characterization of the region is also being explored with DHS funding by imaging well-characterized rough surface scattering targets. Analysis of these images will yield data to be used in evaluating assumptions currently made in current performance models. This along with the relevant field applications will be addressed.

  12. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  13. Demonstration of a phase-lockable microwave to submillimeter wave sweeper

    Science.gov (United States)

    Waltman, Steve B.; Hollberg, Leo W.; McIntosh, Alexander K.; Brown, Elliott R.

    1996-12-01

    The development of low-temperature-grown GaAs photomixers enables the construction of a microwave to submillimeter- wave source capable of large frequency sweeps. By utilizing semiconductor diode lasers to drive the photomixer, this source is all solid-state and compact, and has small power consumption. Frequency stabilization of the semiconductor diode lasers allows this source to be phase-locked to an external microwave reference. Two 805 nm extended-cavity- diode lasers are mixed in a low-temperature-grown GaAs photoconductive photomixer. The difference-frequency mixing product is radiated by a planar spiral antenna and collimated by a Si lens. This output is phase-locked to a microwave reference by downconverting it in a whisker- contacted Schottky-barrier diode harmonic mixer and using the output to offset-phase-lock one laser to the other. The photomixer output power is 300 nW at 200 GHz and 10 nW at 1.6 THz, as measured by a 4 K InSb bolometer calibrated with a methanol laser and a power meter at 526 and 812 GHz.

  14. Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Golwala, Sunil R.; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Hollister, Matthew I.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Schlaerth, James A.; Siegel, Seth; Vayonakis, Anastasios K.; Wilson, Philip R.; Zmuidzinas, Jonas

    2012-09-01

    We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses broadband superconducting phased-array slot-dipole antennas to form beams, lumpedelement on-chip bandpass filters to define spectral bands, and microwave kinetic inductance detectors to sense incoming light. The focal plane is fabricated in 8 tiles consisting of 72 spatial pixels each. It is coupled to the telescope via an ambient-temperature ellipsoidal mirror and a cold reimaging lens. A cold Lyot stop sits at the image of the primary mirror formed by the ellipsoidal mirror. Dielectric and metal-mesh filters are used to block thermal infrared and out-ofband radiation. The instrument uses a pulse tube cooler and 3He/ 3He/4He closed-cycle cooler to cool the focal plane to below 250 mK. A multilayer shield attenuates Earth's magnetic field. Each focal plane tile is read out by a single pair of coaxes and a HEMT amplifier. The readout system consists of 16 copies of custom-designed ADC/DAC and IF boards coupled to the CASPER ROACH platform. We focus on recent updates on the instrument design and results from the commissioning of the full camera in 2012.

  15. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Sayers, Jack; Bridge, Carrie [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Petty, Sara; Lake, Sean [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Bussmann, Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS78, Cambridge, MA 02138 (United States); Comerford, Julia M.; Evans, Neal J. II [Department of Astronomy, University of Texas, Austin, TX 78731 (United States); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rho, Jeonghee [SETI Institute, 189 BERNARDO Avenue, Mountain View, CA 94043 (United States); Stanford, S. Adam, E-mail: jingwen.wu@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  16. Submillimeter observations of the sun from the James Clerk Maxwell Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.A.; Yee, S.; Roellig, T.L.; Hills, R.; Brock, D. (Hawaii Univ., Honolulu (USA) NASA, Ames Research Center, Moffett Field, CA (USA) Mullard Radio Astronomy Observatory, Cambridge (England) Joint Astronomy Centre, Hilo, HI (USA))

    1990-04-01

    The first submillimeter solar observations from the 15 m James Clerk Maxwell Telescope (JCMT) on Mauna Kea are reported. The JCMT submillimeter heterodyne receiver is used to observe the sun in 850 micron radiation. These are the first submillimeter observations of features on the size scale of the chromospheric supergranular network and of sunspots. A comparison is made between 850 micron images and calcium K line images of the chromospheric supergranular network in the quiet sun and in plage. Images of sunspots are given, noting that their 850 micron brightness is comparable to, or somewhat greater than, that of the quiet sun. 7 refs.

  17. Submillimeter observations of the sun from the James Clerk Maxwell Telescope

    Science.gov (United States)

    Lindsey, Charles A.; Yee, Selwyn; Roellig, Thomas L.; Hills, Richard; Brock, David

    1990-01-01

    The first submillimeter solar observations from the 15 m James Clerk Maxwell Telescope (JCMT) on Mauna Kea are reported. The JCMT submillimeter heterodyne receiver is used to observe the sun in 850 micron radiation. These are the first submillimeter observations of features on the size scale of the chromospheric supergranular network and of sunspots. A comparison is made between 850 micron images and calcium K line images of the chromospheric supergranular network in the quiet sun and in plage. Images of sunspots are given, noting that their 850 micron brightness is comparable to, or somewhat greater than, that of the quiet sun.

  18. Superconducting Resonator Spectrometer for Millimeter- and Submillimeter-Wave Astrophysics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose to develop a novel ultra-compact spectrograph-on-a-chip for the submillimeter and millimeter waveband. SuperSpec uses planar lithographed superconducting...

  19. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  20. EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Peter G.; Roy, Arabindo; Miville-Deschenes, Marc-Antoine [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Bontemps, Sylvain [Observatoire de Bordeaux, BP 89, F-33270 Floirac (France); Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip [Department of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA (United Kingdom); Bock, James J. [Jet Propulsion Laboratory, Pasadena, CA 91109-8099 (United States); Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Carol Gables, FL 33146 (United States); Hughes, David H. [Instituto Nacional de Astrofisica Optica y Electronica (INAOE), Aptdo. Postal 51 y 72000 Puebla (Mexico); Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Olmi, Luca [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 (Italy); Patanchon, Guillaume [Laboratoire APC, 10, rue Alice Domon et Leonie Duquet F-75205 Paris (France); and others

    2012-05-20

    The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 {mu}m and one IRAS band at 100 {mu}m. The proxy is the near-infrared color excess, E(J - K{sub s}), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity {sigma}{sub e}(1200) at 1200 GHz or 250 {mu}m can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N{sub H} > 10{sup 22} cm{sup -2}) and small enough to ensure a uniform dust temperature. We find {sigma}{sub e}(1200) is typically (2-4) Multiplication-Sign 10{sup -25} cm{sup 2} H{sup -1} and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing {sigma}{sub e}(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity

  1. Deciphering Debris Disk Structure with the Submillimeter Array

    Science.gov (United States)

    MacGregor, Meredith Ann

    2018-01-01

    More than 20% of nearby main sequence stars are surrounded by dusty disks continually replenished via the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies such as planets in the system. As a result, the locations, morphologies, and physical properties of dust in these disks provide important probes of the processes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since they are dominated by larger grains that do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The Submillimeter Array (SMA) plays a key role in advancing our understanding of debris disks by providing sensitivity at the short baselines required to determine the structure of wide-field disks, such as the HR 8799 debris disk. Many of these wide-field disks are among the closest systems to us, and will serve as cornerstone templates for the interpretation of more distant, less accessible systems.

  2. Submillimeter Imaging of Dust Around Main Sequence Stars

    Science.gov (United States)

    Jewitt, David

    1998-01-01

    This grant was to image circumstellar dust disks surrounding main-sequence stars. The delivery of the SCUBA detector we had planned to use for this work was delayed repeatedly, leading us to undertake a majority of the observations with the UKT14 submillimeter detector at the JCMT (James Clerk Maxwell Telescope) and optical imagers and a coronagraph at the University of Hawaii 2.2-m telescope. Major findings under this grant include: (1) We discovered 5 asymmetries in the beta Pictoris regenerated dust disk. The discovery of these asymmetries was a surprise, since smearing due to Keplerian shear should eliminate most such features on timescales of a few thousand years. One exception is the "wing tilt" asymmetry, which we interpret as due to the scattering phase function of dust disk particles. From the wing tilt and a model of the phase function, we find a disk plane inclination to the line of sight of JCMT). It is possible, for instance, that the main 850 micro-m blob is merely a galaxy or other high-z source projected onto the beta Pic mid-plane.

  3. Extending the Millimeter-Submillimeter Spectrum of Protonated Formaldehyde

    Science.gov (United States)

    Roenitz, Kevin; Zou, Luyao; Widicus Weaver, Susanna L.

    2017-06-01

    Protonated formaldehyde has been detected in the interstellar medium, where it participates in the formation and destruction of methanol. The rotational spectrum for protonated formaldehyde has been previously recorded by Amano and coworkers from 120-385 GHz using a hollow cathode discharge source for ion production. Additionally, protonated formaldehyde was produced in a supersonic expansion discharge source by Duncan and coworkers, but it was detected using time-of-flight mass spectrometry. Higher frequency spectra would help to guide additional observational studies of protonated formaldehyde using instruments such as the ALMA and SOFIA observatories. As such, we have used a supersonic expansion discharge source to produce protonated formaldehyde, and recorded its spectrum using millimeter-submillimeter direct absorption spectroscopy. The rotational spectrum was recorded from 350-1000 GHz. Here we will present the experimental design, specifically focusing on the optimization of the source for production of organic ions. We will also present the spectroscopic results for protonated formaldehyde and a spectral analysis with associated prediction that can be extended to frequencies above 1 THz.

  4. Submillimeter Spectroscopy of the R Coronae Australis Molecular Cloud Region

    Science.gov (United States)

    Dunn, Marina Madeline; Walker, Christopher K.; Pat, Terrance; Sirsi, Siddhartha; Swift, Brandon J.; Peters, William L.

    2018-01-01

    The Interstellar Medium is comprised of large amounts of gas and dust which coalesce to form stars. Observing in the Terahertz regime of the electromagnetic spectrum, approximately 0.3 -300 microns, allows astronomers to study the ISM in unprecedented detail. Using the high spectral resolution imaging system of the SuperCam receiver, a 64-pixel array previously installed on the Submillimeter Telescope on Mt. Graham, AZ, we have begun a 500 square degree survey of the galactic plane. This instrument was designed to do a complete survey of the Milky Way from the ground, with the main focus being to observe two specific transitions of the carbon monoxide molecule, 12CO(3-2) and 13CO(3-2), at 345 GHz. In this work, we present results from these observations for the R Coronae Australis (R Cr A) complex, a region in the southern hemisphere of the sky, using spectroscopic data from a portion of the survey to gain better insight into the life cycle of the ISM. The majority of stars being formed here are similar to the stellar class of the Sun, making it an excellent area of observing interest. Using these results, we attempt to better ascertain the large-scale structure and kinematics inside of the molecular cloud.

  5. Faint submillimeter galaxies revealed by multifield deep ALMA observations: number counts, spatial clustering, and a dark submillimeter line emitter

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yoshiaki; Ouchi, Masami; Momose, Rieko [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Kurono, Yasutaka, E-mail: ono@icrr.u-tokyo.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile)

    2014-11-01

    We present the statistics of faint submillimeter/millimeter galaxies (SMGs) and serendipitous detections of a submillimeter/millimeter line emitter (SLE) with no multi-wavelength continuum counterpart revealed by the deep ALMA observations. We identify faint SMGs with flux densities of 0.1-1.0 mJy in the deep Band-6 and Band-7 maps of 10 independent fields that reduce cosmic variance effects. The differential number counts at 1.2 mm are found to increase with decreasing flux density down to 0.1 mJy. Our number counts indicate that the faint (0.1-1.0 mJy, or SFR{sub IR} ∼ 30-300 M {sub ☉} yr{sup –1}) SMGs contribute nearly a half of the extragalactic background light (EBL), while the remaining half of the EBL is mostly contributed by very faint sources with flux densities of <0.1 mJy (SFR{sub IR} ≲ 30 M {sub ☉} yr{sup –1}). We conduct counts-in-cells analysis with multifield ALMA data for the faint SMGs, and obtain a coarse estimate of galaxy bias, b {sub g} < 4. The galaxy bias suggests that the dark halo masses of the faint SMGs are ≲ 7 × 10{sup 12} M {sub ☉}, which is smaller than those of bright (>1 mJy) SMGs, but consistent with abundant high-z star-forming populations, such as sBzKs, LBGs, and LAEs. Finally, we report the serendipitous detection of SLE-1, which has no continuum counterparts in our 1.2 mm-band or multi-wavelength images, including ultra deep HST/WFC3 and Spitzer data. The SLE has a significant line at 249.9 GHz with a signal-to-noise ratio of 7.1. If the SLE is not a spurious source made by the unknown systematic noise of ALMA, the strong upper limits of our multi-wavelength data suggest that the SLE would be a faint galaxy at z ≳ 6.

  6. An alma survey of submillimeter galaxies in the extended Chandra deep field-south: The agn fraction and X-ray properties of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. X.; Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Smail, I.; Alexander, D. M.; Danielson, A. L. R.; Karim, A.; Simpson, J. M.; Swinbank, A. M. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hodge, J. A.; Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Wardlow, J. L. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Xue, Y. Q. [Key Laboratory for Research in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Coppin, K. E. K. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dannerbauer, H. [Universität Wien, Institute für Astrophysik, Türkenschanzstraße 17, 1180 Wien (Austria); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße 2, D-85748 Garching (Germany); Menten, K. M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Van der Werf, P., E-mail: xxw131@psu.edu, E-mail: niel@astro.psu.edu [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands)

    2013-12-01

    The large gas and dust reservoirs of submillimeter galaxies (SMGs) could potentially provide ample fuel to trigger an active galactic nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with Atacama Large Millimeter/submillimeter Array (ALMA) and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submillimeter-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey. We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which eight were identified as AGNs using several techniques that enable cross-checking. The other two X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by their star formation activity. Six of the eight SMG-AGNs are moderately/highly absorbed, with N {sub H} > 10{sup 23} cm{sup –2}. An analysis of the AGN fraction, taking into account the spatial variation of X-ray sensitivity, yields an AGN fraction of 17{sub −6}{sup +16}% for AGNs with rest-frame 0.5-8 keV absorption-corrected luminosity ≥7.8 × 10{sup 42} erg s{sup –1}; we provide estimated AGN fractions as a function of X-ray flux and luminosity. ALMA's high angular resolution also enables direct X-ray stacking at the precise positions of SMGs for the first time, and we found four potential SMG-AGNs in our stacking sample.

  7. Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers

    Science.gov (United States)

    Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work

  8. Solar Observations with the Atacama Large Millimeter/submillimeter Array

    Science.gov (United States)

    Wedemeyer, Sven

    2015-08-01

    The interferometric Atacama Large Millimeter/submillimeter Array (ALMA) has already demonstrated its impressive capabilities by observing a large variety of targets ranging from protoplanetary disks to galactic nuclei. ALMA is also capable of observing the Sun and has been used for five solar test campaigns so far. The technically challenging solar observing modes are currently under development and regular observations are expected to begin in late 2016.ALMA consists of 66 antennas located in the Chilean Andes at an altitude of 5000 m and is a true leap forward in terms of spatial resolution at millimeter wavelengths. The resolution of reconstructed interferometric images of the Sun is anticipated to be close to what current optical solar telescopes can achieve. In combination with the high temporal and spectral resolution, these new capabilities open up new parameter spaces for solar millimeter observations.The solar radiation at wavelengths observed by ALMA originates from the chromosphere, where the height of the sampled layer increases with selected wavelength. The continuum intensity is linearly correlated to the local gas temperature in the probed layer, which makes ALMA essentially a linear thermometer. During flares, ALMA can detect additional non-thermal emission contributions. Measurements of the polarization state facilitate the valuable determination of the chromospheric magnetic field. In addition, spectrally resolved observations of radio recombination and molecular lines may yield great diagnostic potential, which has yet to be investigated and developed.Many different scientific applications for a large range of targets from quiet Sun to active regions and prominences are possible, ranging from ultra-high cadence wave studies to flare observations. ALMA, in particular in combination with other ground-based and space-borne instruments, will certainly lead to fascinating new findings, which will advance our understanding of the atmosphere of our Sun

  9. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    Science.gov (United States)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  10. Submillimeter galaxies as progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Toft, S.; Zirm, A.; Krogager, J.-K.; Man, A. W. S. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Mariesvej 30, DK-2100 Copenhagen (Denmark); Smolčić, V.; Krpan, J. [Physics Department, University of Zagreb, Bijenička cesta 32, 10002 Zagreb (Croatia); Magnelli, B.; Karim, A. [Argelander Institute for Astronomy, Auf dem Hügel 71, Bonn, D-53121 (Germany); Michalowski, M. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Capak, P. [Spitzer Science Center, 314-6 Caltech, 1201 East California Boulevard, Pasadena, CA 91125 (United States); Sheth, K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Schawinski, K. [ETH Zurich, Institute for Astronomy, Department of Physics, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Wuyts, S.; Lutz, D.; Staguhn, J.; Berta, S. [MPE, Postfach 1312, D-85741 Garching (Germany); Sanders, D. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Mccracken, H. [Institut dAstrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Riechers, D., E-mail: sune@dark-cosmology.dk [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States)

    2014-02-20

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42{sub −29}{sup +40} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  11. Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments.

    Science.gov (United States)

    GhavamiNejad, Amin; Hashmi, Saud; Joh, Han-Ik; Lee, Sungho; Lee, Youn-Sik; Vatankhah-Varnoosfaderani, Mohammad; Stadler, Florian J

    2014-05-14

    Poly N-isopropyl acrylamide (PNI) radically polymerized in aqueous solution in the presence of graphene oxide (GO) can significantly change the properties of the resulting solution from a regular polymer solution to a soft solid with a GO content of only 0.176 wt% (3 wt% with respect to PNI). However, these properties require the presence of both grafting and supramolecular interactions between polymer chains and hydrophilic groups on GO (-OH, -COOH), proven by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction and spectroscopy (XRD) and Raman spectra. While very low GO-contents (below 0.05 wt%) only lead to a labile structure, which can be disassembled by shear, higher contents yield composites with solid-like characteristics. This is clearly evident from the rheological behaviour, which changes significantly at a GO content around 0.15 wt%. Intensive shearing destroys the weak network, which cannot reform quickly at lower GO-concentrations, while at intermediate concentrations, restructuring is fast. GO-contents of 0.176 wt% lead to a material behaviour, which almost perfectly recovers from small deformations (creep and creep recovery compliance almost match) but larger deformations lead to permanent damage to the sample.

  12. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  13. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  14. SMA Submillimeter Observations of HL Tau: Revealing a Compact Molecular Outflow

    Science.gov (United States)

    Lumbreras, Alba M.; Zapata, Luis A.

    2014-04-01

    We present archival high angular resolution (~2'') 12CO(3-2) line and continuum submillimeter observations of the young stellar object HL Tau made with the Submillimeter Array. The 12CO(3-2) line observations reveal the presence of a compact and wide opening angle bipolar outflow with a northeast to southwest orientation (P.A. = 50°) that is associated with the optical and infrared jet emanating from HL Tau with a similar orientation. On the other hand, the 850 μm continuum emission observations exhibit a strong and compact source in the position of HL Tau that has a spatial size of ~200 × 70 AU with a P.A. = 145° and a dust mass of around 0.1 M ⊙. These physical parameters are in agreement with values obtained recently from millimeter observations. This submillimeter source is therefore related to the disk surrounding HL Tau.

  15. SMA submillimeter observations of HL Tau: revealing a compact molecular outflow

    Energy Technology Data Exchange (ETDEWEB)

    Lumbreras, Alba M.; Zapata, Luis A. [Centro de Radioastronomía y Astrofísica, UNAM, Morelia (Mexico)

    2014-04-01

    We present archival high angular resolution (∼2'') {sup 12}CO(3-2) line and continuum submillimeter observations of the young stellar object HL Tau made with the Submillimeter Array. The {sup 12}CO(3-2) line observations reveal the presence of a compact and wide opening angle bipolar outflow with a northeast to southwest orientation (P.A. = 50°) that is associated with the optical and infrared jet emanating from HL Tau with a similar orientation. On the other hand, the 850 μm continuum emission observations exhibit a strong and compact source in the position of HL Tau that has a spatial size of ∼200 × 70 AU with a P.A. = 145° and a dust mass of around 0.1 M {sub ☉}. These physical parameters are in agreement with values obtained recently from millimeter observations. This submillimeter source is therefore related to the disk surrounding HL Tau.

  16. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  17. The SCUBA-2 Cosmology Legacy Survey: Multi-wavelength Properties of ALMA-identified Submillimeter Galaxies in UKIDSS UDS

    NARCIS (Netherlands)

    Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Ivison, R. J.; Dunlop, J. S.; Geach, J. E.; Almaini, O.; Arumugam, V.; Bremer, M. N.; Chen, Chian-Chou; Conselice, C.; Coppin, K. E. K.; Farrah, D.; Ibar, E.; Hartley, W. G.; Ma, C. J.; Michałowski, M. J.; Scott, D.; Spaans, M.; Thomson, A. P.; van der Werf, P. P.

    2017-01-01

    We present a multi-wavelength analysis of 52 submillimeter galaxies (SMGs), identified using ALMA 870 μm continuum imaging in a pilot program to precisely locate bright SCUBA-2-selected submillimeter sources in the UKIDSS Ultra Deep Survey (UDS) field. Using the available deep (especially

  18. An alma survey of sub-millimeter galaxies in the extended Chandra deep field south: Sub-millimeter properties of color-selected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Decarli, R.; Walter, F.; Hodge, J. A.; Rix, H.-W.; Schinnerer, E. [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Smail, I.; Swinbank, A. M.; Karim, A.; Simpson, J. M. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Chapman, S. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Coppin, K. E. K. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Cox, P. [IRAM, 300 rue de la piscine, F-38406 Saint-Martin d' Hères (France); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türenschanzstrasse 17, A-1180 Wien (Austria); Greve, T. R. [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K.; Lindroos, L. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, Onsala SE-439 92 (Sweden); Van der Werf, P. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Weiß, A., E-mail: decarli@mpia.de [Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    We study the sub-millimeter properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-millimeter wavelengths. We base our study on 344 GHz ALMA continuum observations of ∼20''-wide fields centered on 86 sub-millimeter sources detected in the LABOCA Extended Chandra Deep Field South (ECDFS) Sub-millimeter Survey. We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects, and distant red galaxies) according to their optical/near-infrared fluxes. We find clear, >10σ detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust spectral energy distribution of these galaxies. We find that their dust emission is well described by a modified blackbody with T {sub dust} ≈ 30 K and β = 1.6 and infrared luminosities of (5-11) × 10{sup 11} L {sub ☉} or implied star formation rates of 75-140 M {sub ☉} yr{sup –1}. We compare our results with those of previous studies based on single-dish observations at 870 μm and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4 GHz observations of the whole ECDFS. Hence, we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.

  19. COMPACT STARBURSTS IN z similar to 3-6 SUBMILLIMETER GALAXIES REVEALED BY ALMA

    NARCIS (Netherlands)

    Ikarashi, Soh; Ivison, R. J.; Caputi, Karina I.; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David H.; Iono, Daisuke; Izumi, Takuma; Kawabe, Ryohei; Kohno, Kotaro; Lagos, Claudia D. P.; Motohara, Kentaro; Nakanishi, Kouichiro; Ohta, Kouji; Tamura, Yoichi; Umehata, Hideki; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2015-01-01

    We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at z(phot) similar to 3-6. Their infrared luminosities and star formation rates (SFRs) are L-IR similar to, 2-6 x 10(12) L-circle dot and similar

  20. VizieR Online Data Catalog: Sub-millimeter spectra of 2-hydroxyacetonitrile (Margules+, 2017)

    Science.gov (United States)

    Margules, L.; McGuire, B. A.; Senent, M. L.; Motiyenko, R. A.; Remijan, A.; Guillemin, J. C.

    2017-02-01

    Measured frequencies and residuals from the global fit of the submillimeter-wave data for 2-hydroxyacetonitrile and files used for SPFIT. Detailled explanations on SPFIT could be found at https://www.astro.uni-koeln.de/cdms/pickett (4 data files).

  1. Kilovoltage beam Monte Carlo dose calculations in submillimeter voxels for small animal radiotherapy.

    Science.gov (United States)

    Bazalova, Magdalena; Zhou, Hu; Keall, Paul J; Graves, Edward E

    2009-11-01

    Small animal conformal radiotherapy (RT) is essential for preclinical cancer research studies and therefore various microRT systems have been recently designed. The aim of this paper is to efficiently calculate the dose delivered using our microRT system based on a microCT scanner with the Monte Carlo (MC) method and to compare the MC calculations to film measurements. Doses from 2-30 mm diameter 120 kVp photon beams deposited in a solid water phantom with 0.2 x 0.2 x 0.2 mm3 voxels are calculated using the latest versions of the EGSnrc codes BEAMNRC and DOSXYZNRC. Two dose calculation approaches are studied: a two-step approach using phase-space files and direct dose calculation with BEAMNRC simulation sources. Due to the small beam size and submillimeter voxel size resulting in long calculation times, variance reduction techniques are studied. The optimum bremsstrahlung splitting number (NBRSPL in BEAMNRC) and the optimum DOSXYZNRC photon splitting (Nsplit) number are examined for both calculation approaches and various beam sizes. The dose calculation efficiencies and the required number of histories to achieve 1% statistical uncertainty--with no particle recycling--are evaluated for 2-30 mm beams. As a final step, film dose measurements are compared to MC calculated dose distributions. The optimum NBRSPL is approximately 1 x 10(6) for both dose calculation approaches. For the dose calculations with phase-space files, Nsplit varies only slightly for 2-30 mm beams and is established to be 300. Nsplit for the DOSXYZNRC calculation with the BEAMNRC source ranges from 300 for the 30 mm beam to 4000 for the 2 mm beam. The calculation time significantly increases for small beam sizes when the BEAMNRC simulation source is used compared to the simulations with phase-space files. For the 2 and 30 mm beams, the dose calculations with phase-space files are more efficient than the dose calculations with BEAMNRC sources by factors of 54 and 1.6, respectively. The dose

  2. Quantification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin in rodent brain by UHPLC/ESI-Q-TOF-MS/MS after intra-nasal administration of curcuminoids loaded PNIPAM nanoparticles.

    Science.gov (United States)

    Ahmad, Niyaz; Warsi, Musarrat Husain; Iqbal, Zeenat; Samim, Mohd; Ahmad, Farhan Jalees

    2014-03-01

    An ultra high performance liquid chromatography-electrospray ionization-synapt mass spectrometric method (UHPLC/ESI-QTOF-MS/MS) for the analysis of curcumin (Cur), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC) in Wistar rat brain homogenate was developed and validated. The chromatographic separation was achieved on a Waters ACQUITY UPLC™ BEH C18 (2.1mm × 100 mm; 1.7μm) column using isocratic mobile phase, consisting of acetonitrile: 10mM ammonium formate: formic acid (90:10:0.05v/v/v), at a flow rate of 0.2 ml min(-1) . The transitions occurred at m/z 367.0694/217.0598, 337.0717/173.0910, 307.0760/187.0844 for Cur, DMC, BDMC and m/z 307.0344/229.0677 for the IS (Nimesulide) respectively. The recovery of the analytes from Wistar rat brain homogenate was optimized using liquid-liquid extraction technique (LLE) in (ethyl acetate: chloform) mixture. The total run time was 3.0 min and the elution of Cur, DMC, BDMC occurred at 1.6, 1.75, 1.70 min, and for the IS 1.87 min, respectively. The linear dynamic range was established over the concentration range of 1.00 ng mL(-1) to 1000.0 ng mL(-1) (r(2) ; 0.9909 ± 0.0011, 0.9911 ± 0.003, and 0.9919 ± 0.0013) for Cur, DMC, and BDMC, respectively. The intra and inter-assay accuracy in terms of % CV for Cur, DMC, and BDMC was in the range 0.47-2.20, 0.47-1.65, and0.44-2.70, respectively. The lower limit of detection (LOD) and quantitation (LOQ) for Cur, DMC, and BDMC were 0.46, 0.05, 0.16 ng mL(-1) and 0.153, 0.015, 0.052 ng mL(-1) , respectively. Analytes were stable and the method proved to be accurate (recovery, >85%), specific and was applied to evaluate the Cur, DMC, BDMC loaded PNIPAM NPs as vehicles for nose to brain drug delivery. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Direct measurement of additional Ar-H2O vibration-rotation-tunneling bands in the millimeter-submillimeter range

    Science.gov (United States)

    Zou, Luyao; Widicus Weaver, Susanna L.

    2016-06-01

    Three new weak bands of the Ar-H2O vibration-rotation-tunneling spectrum have been measured in the millimeter wavelength range. These bands were predicted from combination differences based on previously measured bands in the submillimeter region. Two previously reported submillimeter bands were also remeasured with higher frequency resolution. These new measurements allow us to obtain accurate information on the Coriolis interaction between the 101 and 110 states. Here we report these results and the associated improved molecular constants.

  4. Ground-Based Submillimeter Spectroscopic Cosmological Surveys and Synergies with Space FIR Surveys

    Science.gov (United States)

    Spinoglio, Luigi

    2018-01-01

    To study the dust obscured processes of both star formation and black hole accretion during galaxy evolution and establish their role, as well as their mutual feedback processes, rest frame IR to submillimeter spectroscopy is needed. At these frequencies dust extinction is at its minimum and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. A large ground based submillimeter telescope with a large field of view and high sensitivity in the TeraHertz domain will pave the way of future FIR space telescope missions, such as SPICA in the late 2020's and the Origins Telescope later. I will present predictions demonstrating the synergies of such instruments to fully understand galaxy evolution, during its obscured phase, which has built most of the stellar populations in galaxies.

  5. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    Science.gov (United States)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  6. The Status of MUSIC: A Multicolor Sub/millimeter MKID Instrument

    Science.gov (United States)

    Schlaerth, J. A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Nguyen, H. T.; Noroozian, O.; Sayers, J.; Siegel, S.; Zmuidzinas, J.

    2012-05-01

    We report on the recent progress of the Multicolor Submillimeter (kinetic) Inductance Camera, or MUSIC. MUSIC will use antenna-coupled Microwave Kinetic Inductance Detectors to observe in four colors (150 GHz, 230 GHz, 290 GHz and 350 GHz) with 2304 detectors, 576 per band, at the Caltech Submillimeter Observatory. It will deploy in 2012. Here we provide an overview of the instrument, focusing on the array design. We have also used a pathfinder demonstration instrument, DemoCam, to identify problems in advance of the deployment of MUSIC. In particular, we identified two major limiters of our sensitivity: out-of-band light directly coupling to the detectors (i.e. not through the antenna), effectively an excess load, and a large 1/f contribution from our amplifiers and electronics. We discuss the steps taken to mitigate these effects to reach background-limited performance (BLIP) in observation.

  7. The Hawaii SCUBA-2 Lensing Cluster Survey: Are Low-luminosity Submillimeter Galaxies Detected in the Rest-frame UV?

    Science.gov (United States)

    Hsu, Li-Yen; Cowie, Lennox L.; Barger, Amy J.; Wang, Wei-Hao

    2017-12-01

    In this third paper of the Hawaii SCUBA-2 Lensing Cluster Survey series, we present Submillimeter Array (SMA) detections of six intrinsically faint 850 μm sources detected in SCUBA-2 images of the lensing cluster fields, A1689, A2390, A370, MACS J0717.5+3745, and MACS J1423.8+2404. Two of the SCUBA-2 sources split into doublets, yielding a total of eight SMA detections. The intrinsic 870 μm flux densities of these submillimeter galaxies (SMGs) are ∼1 mJy. Five of the eight SMGs are not detected in optical or near-infrared (NIR) images. The NIR-to-submillimeter flux ratios of these faint SMGs suggest that most of them are extremely dusty and/or are at very high redshifts. By combining these SMGs and several other samples from the literature, we find a bimodal distribution for the faint sources in the space of submillimeter flux versus NIR-to-submillimeter flux ratio. While most of the SMA-detected lensed sources are very obscured, the other SMGs with similar flux densities are mostly bright in the NIR. Future Atacama Large Millimeter/submillimeter Array observations of a large sample of SCUBA-2 sources in cluster fields will allow us to decide whether or not the bimodality we observe here really exists.

  8. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    Science.gov (United States)

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)). Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Gravitational lens models based on submillimeter array imaging of Herschel -selected strongly lensed sub-millimeter galaxies at z > 1.5

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pérez-Fournon, I. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Amber, S. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Calanog, J.; De Bernardis, F.; Wardlow, J. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Fu, Hai [Department of Physics and Astronomy, The University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242 (United States); Harris, A. I. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Krips, M. [Institut de RadioAstronomie Millimétrique, 300 Rue de la Piscine, Domaine Universitaire, 38406 Saint Martin d' Hères (France); Lapi, A. [Department Fisica, Univ. Tor Vergata, Via Ricerca Scientifica 1, 00133 Rome, Italy and SISSA, Via Bonomea 265, 34136 Trieste (Italy); Maiolino, R. [Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Ave., Cambridge CB3 OHE (United Kingdom); Omont, A. [Institut d' Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris 06, 98bis boulevard Arago, F-75014 Paris (France); Riechers, D. [Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY 14853-6801 (United States); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Birkinshaw, M. [HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Bock, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); and others

    2013-12-10

    Strong gravitational lenses are now being routinely discovered in wide-field surveys at (sub-)millimeter wavelengths. We present Submillimeter Array (SMA) high-spatial resolution imaging and Gemini-South and Multiple Mirror Telescope optical spectroscopy of strong lens candidates discovered in the two widest extragalactic surveys conducted by the Herschel Space Observatory: the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). From a sample of 30 Herschel sources with S {sub 500} > 100 mJy, 21 are strongly lensed (i.e., multiply imaged), 4 are moderately lensed (i.e., singly imaged), and the remainder require additional data to determine their lensing status. We apply a visibility-plane lens modeling technique to the SMA data to recover information about the masses of the lenses as well as the intrinsic (i.e., unlensed) sizes (r {sub half}) and far-infrared luminosities (L {sub FIR}) of the lensed submillimeter galaxies (SMGs). The sample of lenses comprises primarily isolated massive galaxies, but includes some groups and clusters as well. Several of the lenses are located at z {sub lens} > 0.7, a redshift regime that is inaccessible to lens searches based on Sloan Digital Sky Survey spectroscopy. The lensed SMGs are amplified by factors that are significantly below statistical model predictions given the 500 μm flux densities of our sample. We speculate that this may reflect a deficiency in our understanding of the intrinsic sizes and luminosities of the brightest SMGs. The lensed SMGs span nearly one decade in L {sub FIR} (median L {sub FIR} = 7.9 × 10{sup 12} L {sub ☉}) and two decades in FIR luminosity surface density (median Σ{sub FIR} = 6.0 × 10{sup 11} L {sub ☉} kpc{sup –2}). The strong lenses in this sample and others identified via (sub-)mm surveys will provide a wealth of information regarding the astrophysics of galaxy formation and evolution over a wide range in redshift.

  10. Observational Approach to Molecular Cloud Evolutation with the Submillimeter-Wave CI Lines

    Science.gov (United States)

    Oka, T.; Yamamoto, S.

    Neutral carbon atoms (CI) play important roles both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to obtain information on formation processes and thermal balance of molecular clouds. However, observations of the submillimeter-wave CI lines have been limited to small areas around some representative objects. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter-wave CI lines, 3 P1 -3 P0 (492GHz) and 3 P2 -3 P1 (809 GHz), of atomic carbon. A superconductor-insulator-superconductor (SIS) mixer receiver was equipped on the Nasmyth focus of the telescope. The receiver noise temperatures [Trx(DSB)] are 300 K and 1000 K for the 492 GHz and the 809 GHz mixers, respectively. The intermediate frequency is centered at 2 GHz, having a 700 MHz bandwidth. An acousto-optical spectrometer (AOS) with 1024 channel outputs is used as a receiver backend. The telescope was installed at Nishi-yasugawara (alt. 3725 m), which is 200 m north of the highest peak, Kengamine (3776 m), in July 1998. It has b en operatede successfully during 4 observing seasons in a remote way from the Hongo campus of the University of Tokyo. We have already observed more than 40 square degrees of the sky with the CI 492 GHz line. The distribution of CI emission is found to be different from those of the 13 CO or C1 8 O emission in some clouds. These differences are discussed in relation to formation processes of molecular clouds.

  11. Sensitivity Study of Ice Crystal Optical Properties in the 874 GHz Submillimeter Band

    Science.gov (United States)

    Tang, Guanglin; Yang, Ping; Wu, Dong L.

    2015-01-01

    Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50200 m.

  12. cluster-in-a-box: Statistical model of sub-millimeter emission from embedded protostellar clusters

    Science.gov (United States)

    Kristensen, Lars E.; Bergin, Edwin A.

    2016-10-01

    Cluster-in-a-box provides a statistical model of sub-millimeter emission from embedded protostellar clusters and consists of three modules grouped in two scripts. The first (cluster_distribution) generates the cluster based on the number of stars, input initial mass function, spatial distribution and age distribution. The second (cluster_emission) takes an input file of observations, determines the mass-intensity correlation and generates outflow emission for all low-mass Class 0 and I sources. The output is stored as a FITS image where the flux density is determined by the desired resolution, pixel scale and cluster distance.

  13. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  14. Wavefront Sensing and Control Technology for Submillimeter and Far-Infrared Space Telescopes

    Science.gov (United States)

    Redding, Dave

    2004-01-01

    The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.

  15. A deeply embedded young protoplanetary disk around L1489 IRS observed by the Submillimeter Array

    DEFF Research Database (Denmark)

    Brinch, C.; Crapsi, A.; Jørgensen, J. K.

    2007-01-01

    aim to identify whether an embedded Keplerian protoplanetary disk resides in the L1489 IRS system. Given the amount of envelope material still present, such a disk would respresent a very young example of a protoplanetary disk. Methods. Using the Submillimeter Array we have observed the HCO + J = 3......-2 line with a resolution of about 1". At this resolution a protoplanetary disk with a radius of a few hundred AUs should be detectable, if present. Radiative transfer tools are used to model the emission from both continuum and line data. Results. We find that these data are consistent with theoretical...

  16. Study of optical output couplers for submillimeter wavelength backward-wave oscillators (BWO's)

    Science.gov (United States)

    Cook, Jerry D.; Stankiewicz, Norbert; Podany, Mark

    1989-01-01

    Several scaled experiments of optical output couplers for submillimeter backward-wave oscillators (BWOs). Various designs of planar antennas (Vivaldi horns) lens-feed systems (hyperhemispherical lens) were constructed and tested between 20 and 100 GHz using a spectrum analyzer. The lens system was also tested at 337 GHz using a CO2 pumped FIR laser. It is found that Vivaldi horns have unsatisfactory resonances, perhaps because the horns studied were relatively short. Several techniques to maximize and flatten the frequency response of these horns are presented. The results suggest that alternate coupling schemes are superior to Vivaldi horns.

  17. Studying Star and Planet Formation with the Submillimeter Probe of the Evolution of Cosmic Structure

    Science.gov (United States)

    Rinehart, Stephen A.

    2005-01-01

    The Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) is a far- infrared/submillimeter (40-640 micrometers) spaceborne interferometry concept, studied through the NASA Vision Missions program. SPECS is envisioned as a 1-km baseline Michelson interferometer with two 4- meter collecting mirrors. To maximize science return, SPECS will have three operational modes: a photometric imaging mode, an intermediate spectral resolution mode (R approximately equal to 1000-3000), and a high spectral resolution mode (R approximately equal to 3 x 10(exp 5)). The first two of these modes will provide information on all sources within a 1 arcminute field-of-view (FOV), while the the third will include sources in a small (approximately equal to 5 arcsec) FOV. With this design, SPECS will have angular resolution comparable to the Hubble Space Telescope (50 mas) and sensitivity more than two orders of magnitude better than Spitzer (5sigma in 10ks of approximately equal to 3 x 10(exp 7) Jy Hz). We present here some of the results of the recently-completed Vision Mission Study for SPECS, and discuss the application of this mission to future studies of star and planet formation.

  18. Taiwanese antennas for the Sub-Millimeter Array: a progress report

    Science.gov (United States)

    Raffin, Phillippe A.; Liu, Ching-Tang; Cervera, Mathieu; Chang, Chi-Ling; Chen, Ming-Tang; Lee, Cheng-Ching; Lee, Typhoon; Lo, Kwok-Yung; Ma, Rwei-Ping; Martin, Robert N.; Martin-Cocher, Pierre; Ong, Ching-Long; Park, Yong-Sun; Tsai, Rong-Den; Wu, Enboa; Yang, Shun-Cheng; Yang, Tien-Szu

    2000-07-01

    The Academia Sinica, Institute for Astronomy and Astrophysics (ASIAA) is building two antennas to be added to the six antennas of the Sub-Millimeter Array (SMA) of the Smithsonian Astrophysical Observatory (SAO). The antennas have been designed at SAO and are currently under construction at Mauna Kea. ASIAA's two antennas are made in Taiwan from parts manufactured locally and imported from Europe and from the USA. This report will focus on the manufacturing and testing of 2 major components: the alidade and the reflector. We will emphasize the work done on the composite parts used in the 6- meter reflectors, namely the carbon fiber tubes for the backup structure, the carbon fiber legs of the quadrupod and the composite central hub. We will discuss the modal testing and pointing tests of the antennas. Finally this report will show how the Taiwanese industry was able to respond to the high manufacturing standards required to build sub-millimeter antennas. The design and manufacturing capabilities of the Aeronautical Research Laboratories and China Shipbuilding Corporation have made possible the construction of the telescopes in Taiwan.

  19. A Submillimeter Resolution PET Prototype Evaluated With an 18F Inkjet Printed Phantom

    Science.gov (United States)

    Schneider, Florian R.; Hohberg, Melanie; Mann, Alexander B.; Paul, Stephan; Ziegler, Sibylle I.

    2015-10-01

    This work presents a submillimeter resolution PET (Positron Emission Tomography) scanner prototype based on SiPM/MPPC arrays (Silicon Photomultiplier/Multi Pixel Photon Counter). Onto each active area a 1 ×1 ×20 mm3 LYSO (Lutetium-Yttrium-Oxyorthosilicate) scintillator crystal is coupled one-to-one. Two detector modules facing each other in a distance of 10.0 cm have been set up with in total 64 channels that are digitized by SADCs (Sampling Analog to Digital Converters) with 80 MHz, 10 bit resolution and FPGA (Field Programmable Gate Array) based extraction of energy and time information. Since standard phantoms are not sufficient for testing submillimeter resolution at which positron range is an issue, a 18F inkjet printed phantom has been used to explore the limit in spatial resolution. The phantom could be successfully reconstructed with an iterative MLEM (Maximum Likelihood Expectation Maximization) and an analytically calculated system matrix based on the DRF (Detector Response Function) model. The system yields a coincidence time resolution of 4.8 ns FWHM, an energy resolution of 20%-30% FWHM and a spatial resolution of 0.8 mm.

  20. Extending the LHC reach for new physics with sub-millimeter displaced vertices

    Science.gov (United States)

    Ito, Hayato; Jinnouchi, Osamu; Moroi, Takeo; Nagata, Natsumi; Otono, Hidetoshi

    2017-08-01

    Particles with a sub-millimeter decay length appear in many models of physics beyond the Standard Model. However, their longevity has been often ignored in their LHC searches and they have been regarded as promptly-decaying particles. In this letter, we show that, by requiring displaced vertices on top of the event selection criteria used in the ordinary search strategies for promptly-decaying particles, we can considerably extend the LHC reach for particles with a decay length of ≳ 100 μm. We discuss a way of reconstructing sub-millimeter displaced vertices by exploiting the same technique used for the primary vertex reconstruction on the assumption that the metastable particles are always pair-produced and their decay products contain high-pT jets. We show that, by applying a cut based on displaced vertices on top of standard kinematical cuts for the search of new particles, the LHC reach can be significantly extended if the decay length is ≳ 100 μm. In addition, we may measure the lifetime of the target particle through the reconstruction of displaced vertices, which plays an important role in understanding the new physics behind the metastable particles.

  1. The status of MUSIC: the multiwavelength sub-millimeter inductance camera

    Science.gov (United States)

    Sayers, Jack; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Golwala, Sunil R.; Hollister, Matthew I.; Lam, Albert; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David A.; Mroczkowski, Anthony K.; Noroozian, Omid; Nguyen, Hien Trong; Schlaerth, James A.; Siegel, Seth R.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2014-08-01

    The Multiwavelength Sub/millimeter Inductance Camera (MUSIC) is a four-band photometric imaging camera operating from the Caltech Submillimeter Observatory (CSO). MUSIC is designed to utilize 2304 microwave kinetic inductance detectors (MKIDs), with 576 MKIDs for each observing band centered on 150, 230, 290, and 350 GHz. MUSIC's field of view (FOV) is 14' square, and the point-spread functions (PSFs) in the four observing bands have 45'', 31'', 25'', and 22'' full-widths at half maximum (FWHM). The camera was installed in April 2012 with 25% of its nominal detector count in each band, and has subsequently completed three short sets of engineering observations and one longer duration set of early science observations. Recent results from on-sky characterization of the instrument during these observing runs are presented, including achieved map- based sensitivities from deep integrations, along with results from lab-based measurements made during the same period. In addition, recent upgrades to MUSIC, which are expected to significantly improve the sensitivity of the camera, are described.

  2. Development Of A Multicolor Sub/millimeter Camera Using Microwave Kinetic Inductance Detectors

    Science.gov (United States)

    Schlaerth, James A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Noroozian, O.; Sayers, J.; Siegel, S.; Vayonakis, A.; Zmuidzinas, J.

    2011-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting resonators useful for detecting light from the millimeter-wave to the X-ray. These detectors are easily multiplexed, as the resonances can be tuned to slightly different frequencies, allowing hundreds of detectors to be read out simultaneously using a single feedline. The Multicolor Submillimeter Inductance Camera, MUSIC, will use 2304 antenna-coupled MKIDs in multicolor operation, with bands centered at wavelengths of 0.85, 1.1, 1.3 and 2.0 mm, beginning in 2011. Here we present the results of our demonstration instrument, DemoCam, containing a single 3-color array with 72 detectors and optics similar to MUSIC. We present sensitivities achieved at the telescope, and compare to those expected based upon laboratory tests. We explore the factors that limit the sensitivity, in particular electronics noise, antenna efficiency, and excess loading. We discuss mitigation of these factors, and how we plan to improve sensitivity to the level of background-limited performance for the scientific operation of MUSIC. Finally, we note the expected mapping speed and contributions of MUSIC to astrophysics, and in particular to the study of submillimeter galaxies. This research has been funded by grants from the National Science Foundation, the Gordon and Betty Moore Foundation, and the NASA Graduate Student Researchers Program.

  3. Stratospheric isotopic water profiles from a single submillimeter limb scan by TELIS

    Directory of Open Access Journals (Sweden)

    A. de Lange

    2009-08-01

    Full Text Available Around 490 GHz relatively strong HDO and H218O emission lines can be found in the submillimeter thermal-emission spectrum of the Earth's atmosphere, along with lines of the principal isotopologue of water vapour. These can be used for remote sensing of the rare/principal isotope ratio in the stratosphere. A sensitivity study has been performed for retrieval simulations of water isotopologues from balloon-borne measurements by the limb sounder TELIS (TErahertz and submillimeter LImb Sounder. The study demonstrates the capability of TELIS to determine, from a single limb scan, the profiles for H218O and HDO between 20 km and 37 km with a retrieval error of ≈3 and a spatial resolution of 1.5 km, as determined by the width of the averaging kernel. In addition HDO can be retrieved in the range of 10–20 km, albeit with a strongly deteriorated retrieval error. Expected uncertainties in instrumental parameters have only limited impact on the retrieval results.

  4. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Smith, D. J. B.; Bonfield, D.; Dunne, L. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Dye, S.; Eales, S. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Auld, R. [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; Fritz, J. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L.; Dariush, A. [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Coppin, K. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Dannerbauer, H. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, 1180 Wien, Oesterreich (Austria); De Zotti, G. [Universita di Padova, Dipto di Astronomia, Vicolo dell' Osservatorio 2, IT 35122, Padova (Italy); Hopwood, R., E-mail: rbussmann@cfa.harvard.edu [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies

  5. The SCUBA-2 Cosmology Legacy Survey: ALMA Resolves the Bright-end of the Sub-millimeter Number Counts

    NARCIS (Netherlands)

    Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Chapman, S. C.; Geach, J. E.; Ivison, R. J.; Thomson, A. P.; Aretxaga, I.; Blain, A. W.; Cowley, W. I.; Chen, Chian-Chou; Coppin, K. E. K.; Dunlop, J. S.; Edge, A. C.; Farrah, D.; Ibar, E.; Karim, A.; Knudsen, K. K.; Meijerink, R.; Michałowski, M. J.; Scott, D.; Spaans, M.; van der Werf, P. P.

    We present high-resolution 870 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) continuum maps of 30 bright sub-millimeter sources in the UKIDSS UDS field. These sources are selected from deep, 1 degree2 850 μm maps from the SCUBA-2 Cosmology Legacy Survey, and are representative of the

  6. The JCMT Transient Survey: Detection of Submillimeter Variability in a Class I Protostar EC 53 in Serpens Main

    Science.gov (United States)

    Yoo, Hyunju; Lee, Jeong-Eun; Mairs, Steve; Johnstone, Doug; Herczeg, Gregory J.; Kang, Sung-ju; Kang, Miju; Cho, Jungyeon; The JCMT Transient Team

    2017-11-01

    During the protostellar phase of stellar evolution, accretion onto the star is expected to be variable, but this suspected variability has been difficult to detect because protostars are deeply embedded. In this paper, we describe a submillimeter luminosity burst of the Class I protostar EC 53 in Serpens Main, the first variable found during our dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions. EC 53 remained quiescent for the first six months of our survey, from 2016 February to August. The submillimeter emission began to brighten in 2016 September, reached a peak brightness of 1.5 times the faint state, and has been decaying slowly since 2017 February. The change in submillimeter brightness is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar of a factor of ≥4. The 850 μm light curve resembles the historical K-band light curve, which varies by a factor of ˜6 with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. The predictable detections of accretion variability observed at both near-infrared and submillimeter wavelengths make the system a unique test-bed, enabling us to capture the moment of the accretion burst and to study the consequences of the outburst on the protostellar disk and envelope.

  7. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8

    Directory of Open Access Journals (Sweden)

    S. A. Buehler

    2012-07-01

    Full Text Available Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8, which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.

  8. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    Science.gov (United States)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    The design of a complete vector measurement system being tested over 560-635 GHz is presented. The topics include: 1) Current State-of-the-Art in Vector Measurements; 2) Submillimeter Active Imaging Requirements; 3) 600 GHz Vector Measurement System; 4) 450 MHz IF Signal; 5) 450 MHz IF signal @ 1 kHz Res. BW; 6) 450 MHz IF Signal Mixed with Shifted 450 MHz Reference Signal; 7) Reference Signal Offset Generator; 8) Cavity Bandpass Filter; 9) Miniature Multistage Helical Filter; 10) X36 450 MHz Multiplier; 11) 600 GHz Test Setup; 12) 600 GHz Transmit Module; 13) 600 GHz Receive Module; 14) Performance Tests: Amplitude Stability & Dynamic Range; 15) Performance Tests: Phase Stability; 16) Stability at Imaging Bandwidths; 17) Phase Measurement Verification; and 18) The Next Step: Imaging.

  9. The Atacama Large Millimeter/submillimeter Array - from Early Science to Full Operations.

    Science.gov (United States)

    Remijan, Anthony

    2017-06-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is now entering its 6th cycle of scientific observations. Starting with Cycle 3, science observations were no longer considered "Early Science" or "best efforts". Cycle 5 is now the third cycle of "steady state" observations and Cycle 7 is advertised to begin ALMA "full science" operations. ALMA Full Science Operations will include all the capabilities that were agreed upon by the international consortium after the ALMA re-baselining effort. In this talk, I will detail the upcoming ALMA Cycle 5 observing capabilities, describe the process of selecting new observing modes for upcoming cycles and provide an update on the status of the ALMA Full Science capabilities.

  10. Infrared and submillimeter space missions in the coming decade programmes, programmatics, and technology

    CERN Document Server

    Sauvage, Marc; Gallais, Pascal; Vigroux, Laurent

    1996-01-01

    A revolution similar to that brought by CCDs to visible astronomy is still ahead in IR and submillimeter astronomy. There is certainly no wavelength range which has, over the past several years, seen such impressive advances in technology: large-scale detector arrays, new designs for cooling in space, lightweight mirror technologies. Scientific cases for observing the cold universe are outstanding. Observations in the FIR/Submm range will provide answers to such fundamental questions as: What is the spectrum of the primordial fluctuations? How do primeval galaxies look? What are the first stages of star formation? Most of the international space missions that have been triggered by these questions are presented in detail here. Technological issues raised by these missions are reviewed, as are the most recent achievements in cooling and detector technologies.

  11. Estimation of physiological sub-millimeter displacement with CW Doppler radar.

    Science.gov (United States)

    Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga

    2015-01-01

    Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.

  12. Metal-mesh achromatic half-wave plate for use at submillimeter wavelengths.

    Science.gov (United States)

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic

    2008-11-20

    A metal-mesh achromatic half-wave plate (HWP) has been designed, manufactured, and tested for potential use in millimeter and submillimeter astronomical instruments. The prototype device presented here is based on a 12-grid Shatrow [IEEE Trans. Antennas Propag. 43, 109 (1995)] recipe to operate over the frequency range of 120-180 GHz. Transmission line modeling and finite-element analysis [Ansoft HFSS website: http://www.ansoft.com/hfss/] were used to optimize the design geometrical parameters in terms of the device transmission, reflection, absorption, phase-shift, and cross-polarization as a function of frequency. The resulting prototype device was constructed and characterized using incoherent radiation from a polarizing Fourier transform spectrometer to explore its frequency and polarization behavior. These measurements are shown to be in excellent agreement with the models. Lists of the achieved HWP performance characteristics are reported.

  13. EPR and AFMR of Bi2CuO4 in Submillimeter Wave Region

    Science.gov (United States)

    Ohta, Hitoshi; Yoshida, Kazuhiro; Matsuya, Takashi; Nanba, Takao; Motokawa, Mitsuhiro; Yamada, Kazuyoshi; Endoh, Yasuo; Hosoya, Shoichi

    1992-08-01

    Paramagnetic and antiferromagnetic resonance have been observed in single crystals of Bi2CuO4 in submillimeter wave region using pulsed magnetic fields at temperatures from 4.2 K to 265 K. At the paramagnetic state, g-values have been determined to be g//{=}2.26± 0.01 and g\\bot{=}2.04± 0.01. The angular independent line-widths are 0.37± 0.03 T which is quantitatively explained by the dipole interaction and anisotropic exchange interaction. An antiferromagnetic resonance mode of planer type antiferromagnet has been observed below the Néel temperature and explained by the conventional antiferromagnetic theory.

  14. Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron

    Science.gov (United States)

    Lehrack, Sebastian; Assmann, Walter; Bertrand, Damien; Henrotin, Sebastien; Herault, Joel; Heymans, Vincent; Vander Stappen, Francois; Thirolf, Peter G.; Vidal, Marie; Van de Walle, Jarno; Parodi, Katia

    2017-09-01

    Proton ranges in water between 145 MeV to 227 MeV initial energy have been measured at a clinical superconducting synchrocyclotron using the acoustic signal induced by the ion dose deposition (ionoacoustic effect). Detection of ultrasound waves was performed by a very sensitive hydrophone and signals were stored in a digital oscilloscope triggered by secondary prompt gammas. The ionoacoustic range measurements were compared to existing range data from a calibrated range detector setup on-site and agreement of better than 1 mm was found at a Bragg peak dose of about 10 Gy for 220 MeV initial proton energy, compatible with the experimental errors. Ionoacoustics has thus the potential to measure the Bragg peak position with submillimeter accuracy during proton therapy, possibly correlated with ultrasound tissue imaging.

  15. A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode

    Science.gov (United States)

    Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-10-01

    In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1-10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.

  16. Observational Approach to Molecular Cloud Evolution with the Submillimeter CI Lines

    Science.gov (United States)

    Oka, T.; Yamamoto, S.; Mt. Fuji Submillimeter-Wave Telescope Group

    Neutral carbon atoms (CI) play important role both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to investigate formation processes and thermal balance of molecular clouds. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter CI lines, 3P1--3P0 (492 GHz) and 3P2--3P1 (809 GHz), of atomic carbon. It has been operated successfully during 4 observing seasons since July 1998 in a remote way from the Hongo campus of the University of Tokyo. We have already revealed large-scale CI 492 GHz distributions of many giant molecular clouds, including Orion MC, Taurus MC, DR15, DR21, NGC2264, M17, W3, W44, W51, Rosette MC, covering more than 40 square degrees of the sky. The distribution of CI 492 GHz emission is found to be different from those of the 13CO or C18O emission in some clouds. We found the spatial order of C+/CO/C from UV sources. This is the general property of the cloud illuminated by intense UV radiation, whereas it is apparently inconsistent with the standard photodissociation region (PDR) picture. We also found CI-rich areas (C/CO˜1) in several dark clouds without strong UV sources. These results are discussed in relation to formation processes of molecular clouds and dense cloud cores.

  17. CORRELATIONS IN THE (SUB)MILLIMETER BACKGROUND FROM ACT Multiplication-Sign BLAST

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, Amir; Battaglia, Nick; Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Viero, Marco P.; Bock, James J. [California Institute of Technology, Pasadena, CA 91125 (United States); Addison, Graeme [Department of Astrophysics, Oxford University, Oxford, OX1 3RH (United Kingdom); Aguirre, Paula [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica, Casilla 306, Santiago 22 (Chile); Appel, John William; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Das, Sudeep; Dunkley, Joanna [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hasselfield, Matthew [Laboratoire APC, Universite Paris Diderot, 75205 Paris (France); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); and others

    2012-01-01

    We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at 250, 350, and 500 {mu}m (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope (BLAST); and at 1380 and 2030 {mu}m (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope (ACT). The overlapping observations cover 8.6 deg{sup 2} in an area relatively free of Galactic dust near the south ecliptic pole. The ACT bands are sensitive to radiation from the cosmic microwave background, to the Sunyaev-Zel'dovich effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline and also detect correlations between the ACT and BLAST maps at over 25{sigma} significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at 4{sigma}, and using a model for the DSFG evolution and number counts, we successfully fit all of our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models.

  18. Imaging the environment of a z = 6.3 submillimeter galaxy with SCUBA-2

    Energy Technology Data Exchange (ETDEWEB)

    Robson, E. I.; Holland, W. S. [United Kingdom Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Ivison, R. J. [European Space Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Geach, J. E. [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Gibb, A. G. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Riechers, D. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Ade, P. A. R. [Astronomy and Instrumentation Group, Cardiff University, Cardiff, Wales CF10 3XQ (United Kingdom); Bintley, D. [Joint Astronomy Centre, 660 North Ahoku Place, University Park, Hilo, HI 96720 (United States); Bock, J. [Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA 91109 (United States); Chapin, E. L. [XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 79, E-28691 Villaneueva de la Canada, Madrid (Spain); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Coburg Road, Halifax B3H 1A6 (Canada); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Farrah, D., E-mail: rob.ivison@gmail.com [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); and others

    2014-09-20

    We describe a search for submillimeter emission in the vicinity of one of the most distant, luminous galaxies known, HerMES FLS3, at z = 6.34, exploiting it as a signpost to a potentially biased region of the early universe, as might be expected in hierarchical structure formation models. Imaging to the confusion limit with the innovative, wide-field submillimeter bolometer camera, SCUBA-2, we are sensitive to colder and/or less luminous galaxies in the surroundings of HFLS3. We use the Millennium Simulation to illustrate that HFLS3 may be expected to have companions if it is as massive as claimed, but find no significant evidence from the surface density of SCUBA-2 galaxies in its vicinity, or their colors, that HFLS3 marks an overdensity of dusty, star-forming galaxies. We cannot rule out the presence of dusty neighbors with confidence, but deeper 450 μm imaging has the potential to more tightly constrain the redshifts of nearby galaxies, at least one of which likely lies at z ≳ 5. If associations with HFLS3 can be ruled out, this could be taken as evidence that HFLS3 is less biased than a simple extrapolation of the Millennium Simulation may imply. This could suggest either that it represents a rare short-lived, but highly luminous, phase in the evolution of an otherwise typical galaxy, or that this system has suffered amplification due to a foreground gravitational lens and so is not as intrinsically luminous as claimed.

  19. Diffusion in and around alginate and chitosan films with embedded sub-millimeter voids

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Subhajit; Bal, Dharmendra Kumar; Ganguly, Somenath, E-mail: snganguly@che.iitkgp.ernet.in

    2016-02-01

    Hydrogel scaffolds from biopolymers have potential use in the controlled release of drugs, and as 3-D structure for the formation of tissue matrix. This article describes the solute release behavior of alginate and chitosan films with embedded voids of sub-millimeter dimensions. Nitrogen gas was bubbled in a fluidic arrangement to generate bubbles, prior to the crosslinking. The crosslinked gel was dried in a vacuum oven, and subsequently, soaked in Vitamin B-12 solution. The dimensions of the voids immediately after the cross-linking of gel, and also after complete drying were obtained using a digital microscope and scanning electron microscope respectively. The porosity of the gel was measured gravimetrically. The release of Vitamin B-12 in PBS buffer on a shaker was studied. The release experiments were repeated at an elevated temperature of 37 °C in the presence of lysozyme. The diffusion coefficient within the gel layer and the mass transfer coefficient at the interface with the bulk-liquid were estimated using a mathematical model. For comparison, the experiment was repeated with a film that does not have any embedded void. The enhancement in diffusion coefficient due to the presence of voids is discussed in this article. - Highlights: • Formation of sub-millimeter voids in biopolymer films using fluidic arrangement • The retention of self-assembled bubbles in films after crosslinking, and drying • The enhancement observed in release of model drug with introduction of voids • The diffusion coefficients in and around biopolymer films from model regression • Use of classical model in explaining release profiles from dual porosity media.

  20. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Bertoldi, F.; Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße, D-85748 Garching bei München (Germany); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Da Cunha, E.; Hodge, J. A.; Schinnerer, E. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K. [Department of Earth and Space Science, Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden); Poggianti, B. M., E-mail: j.m.simpson@dur.ac.uk [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  1. Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions

    Science.gov (United States)

    Kaufman, Michael J.; Wolfire, Mark G.; Hollenbach, David J.; Luhman, Michael L.

    1999-12-01

    Photodissociation region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates, which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=101-107 cm-3 and for incident far-ultraviolet radiation fields over the range G0=10-0.5-106.5 (where G0 is the far-ultravioliet [FUV] flux in units of the local interstellar value), for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 μm, [O I] 63 μm and 145 μm, [C I] 370 μm and 609 μm, CO J=1-0, J=2-1, J=3-2, J=6-5, and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far-infrared and submillimeter spectra observable with the Infrared Space Observatory (ISO), the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Wave Astronomy Satellite, the Far Infrared and Submillimeter Telescope, and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground-based observations of M82, NGC 278, and the Large Magellanic Cloud. Our comparison of the conditions in M82 and NGC 278 show that both the gas density and FUV flux are enhanced in the starburst nucleus of M82 compared with those in the normal spiral NGC 278. We model the high [C II]/CO ratio observed in the 30 Doradus region of the LMC and find that it can be

  2. Submillimeter residual losses in high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David [Univ. of California, Berkeley, CA (United States)

    1993-09-01

    Bolometry was used obtain accurate submillimeter residual loss data for epitaxial films of YBa2Cu3O7 (YBCO), Tl2Ca2Ba2Cu3O10, Tl2CaBa2Cu2O8 (TCBCO), and Ba0.6K0.4BiO3 (BKBO). We were able to fit the absorptivity measured for Nb films to an Eliashberg strong coupling calculation; excellent agreement resulted between parameters from best fits and measured Residual Resistivity Ratio. Microwave surface resistance measurements made on the same YBCO and TCBCO films are in excellent agreement with submillimeter measurements. Absorptivities for all YBCO films studied are qualitatively similar, increasing smoothly with frequency, with no gap-like features below the well known absorption edge at 450 cm-1. Losses in YBCO films were fit to a weakly coupled grain model for the a-b plane conductivity. Strong phonon structure was observed in TCBCO films between 60 and 700 cm-1 (2 THz and 23 THz); these losses could not be fitted to the simple weakly coupled grain model, in contrast to the case for other high-Tc superconductors where phonon structure observed in ceramics are is absent in epitaxial oriented films and crystals because of electronic screening due to high conductivity of a-b planes. Absorptivity data for the BKBO films all show a strong absorption onset near the BCS tunneling gap of 3.5 kBTc. Comparison with strong coupling Eliashberg predictions and of a Kramers-Kronig analysis indicate that the absorption onset is consistent with a superconducting energy gap. Effects of magnetic field on residual losses in YBCO films show a resonant absorption feature in vicinity of predicted

  3. Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics

    Science.gov (United States)

    Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily

    2014-01-01

    The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The

  4. Comparing Submillimeter Polarized Emission with Near-infrared Polarization of Background Stars for the Vela C Molecular Cloud

    Science.gov (United States)

    Santos, Fabio P.; Ade, Peter A. R.; Angilè, Francesco E.; Ashton, Peter; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Diego Soler, Juan; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2017-03-01

    We present a large-scale combination of near-infrared (near-IR) interstellar polarization data from background starlight with polarized emission data at submillimeter wavelengths for the Vela C molecular cloud. The near-IR data consist of more than 6700 detections probing a range of visual extinctions between 2 and 20 {mag} in and around the cloud. The submillimeter data were collected in Antarctica by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. This is the first direct combination of near-IR and submillimeter polarization data for a molecular cloud aimed at measuring the “polarization efficiency ratio” ({R}{eff}), a quantity that is expected to depend only on grain-intrinsic physical properties. It is defined as {p}500/({p}I/{τ }V), where p 500 and p I are polarization fractions at 500 μ {{m}} and the I band, respectively, and {τ }V is the optical depth. To ensure that the same column density of material is producing both polarization from emission and from extinction, we conducted a careful selection of near-background stars using 2MASS, Herschel, and Planck data. This selection excludes objects contaminated by the Galactic diffuse background material as well as objects located in the foreground. Accounting for statistical and systematic uncertainties, we estimate an average {R}{eff} value of 2.4 ± 0.8, which can be used to test the predictions of dust grain models designed for molecular clouds when such predictions become available. The ratio {R}{eff} appears to be relatively flat as a function of the cloud depth for the range of visual extinctions probed.

  5. A Submillimeter Perspective on the Goods Fields. II. The High Radio Power Population in the Goods-N

    Science.gov (United States)

    Barger, A. J.; Cowie, L. L.; Owen, F. N.; Hsu, L.-Y.; Wang, W.-H.

    2017-01-01

    We use ultradeep 20 cm data from the Karl G. Jansky Very Large Array and 850 μm data from SCUBA-2 and the Submillimeter Array of an 124 arcmin2 region of the Chandra Deep Field-north to analyze the high radio power ({P}20{cm}> {10}31 erg s-1 Hz-1) population. We find that 20 (42 ± 9%) of the spectroscopically identified z> 0.8 sources have consistent star formation rates (SFRs) inferred from both submillimeter and radio observations, while the remaining sources have lower (mostly undetected) submillimeter fluxes, suggesting that active galactic nucleus (AGN) activity dominates the radio power in these sources. We develop a classification scheme based on the ratio of submillimeter flux to radio power versus radio power and find that it agrees with AGN and star-forming galaxy classifications from Very Long Baseline Interferometry. Our results provide support for an extremely rapid drop in the number of high SFR galaxies above about a thousand solar masses per year (Kroupa initial mass function) and for the locally determined relation between X-ray luminosity and radio power for star-forming galaxies applying at high redshifts and high radio powers. We measure far-infrared (FIR) luminosities and find that some AGNs lie on the FIR-radio correlation, while others scatter below. The AGNs that lie on the correlation appear to do so based on their emission from the AGN torus. We measure a median radio size of 1.″0 ± 0.3 for the star-forming galaxies. The radio sizes of the star-forming galaxies are generally larger than those of the AGNs. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  6. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): High-Resolution Interferometric Imaging

    Science.gov (United States)

    Shimojo, M.; Bastian, T. S.; Hales, A. S.; White, S. M.; Iwai, K.; Hills, R. E.; Hirota, A.; Phillips, N. M.; Sawada, T.; Yagoubov, P.; Siringo, G.; Asayama, S.; Sugimoto, M.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; de Gregorio-Monsalvo, I.; Corder, S. A.; Hudson, H. S.; Wedemeyer, S.; Gary, D. E.; De Pontieu, B.; Loukitcheva, M.; Fleishman, G. D.; Chen, B.; Kobelski, A.; Yan, Y.

    2017-07-01

    Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low-contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3-mm band (Band 3) and the 1.25-mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar-commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.

  7. The Hawaii SCUBA-2 Lensing Cluster Survey: Radio-detected Submillimeter Galaxies in the HST Frontier Fields

    Science.gov (United States)

    Hsu, Li-Yen; Desai, Vandana; Murphy, Eric J.; Cowie, Lennox L.; Heywood, Ian; Momjian, Emmanuel; Barger, Amy J.; Smail, Ian

    2017-05-01

    In this second paper of the Hawaii SCUBA-2 Lensing Cluster Survey series, we cross-match SCUBA-2 maps with 3 and 6 GHz images from the Janksy-VLA Frontier Fields Legacy Survey for three cluster fields, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.5+2223. Within the HST coverage, 14 out of 44 850 μm sources have 3 GHz counterparts, five of which are also detected at 6 GHz. The 850 μm flux densities of these detected sources span from 0.7 to 4.4 mJy after correcting for lensing amplification. The median redshift of the sample is z={1.28}-0.09+0.07, much lower than the typical redshifts (z = 2-3) of brighter submillimeter galaxies (SMGs) in the literature. In addition, we find that our sources have lower dust temperatures than those of the brighter SMGs. This is also confirmed by an analysis of the ratio between infrared star-formation rate and 850 μm flux density. However, these 14 sources may not represent the general submillimeter population at the same flux range, given that the SCUBA-2 sources without radio counterparts are likely at higher redshifts. Detection of these sources would require deeper radio images or submillimeter interferometry.

  8. Submillimeter Detection of the van der Waals Stretching Vibration of the Ar-CO Complex

    Science.gov (United States)

    Gendriesch, R.; Pak, I.; Lewen, F.; Surin, L.; Roth, D. A.; Winnewisser, G.

    1999-07-01

    With the Cologne submillimeter-wave supersonic jet spectrometer, we extended molecular jet spectroscopy with backward wave oscillators up to frequencies of about 600 GHz. For the first time, the van der Waals stretching vibration of the Ar-CO molecular complex was detected in direct absorption. We measured 13 ro-vibrational transitions (Kvstretch = 1 ← 0, Ka = 0 ← 0) in the frequency range from 528 to 600 GHz and additionally the two R(3) K doublet (Ka = 4 ← 3) pure rotational transitions at 447 GHz with an accuracy of about 200 kHz. The ro-vibrational transitions were assigned and fitted within experimental accuracy to a simple Hamiltonian taking into account the Coriolis interaction between the stretching and bending states, i.e., between vstretch = 1, Ka = 0, and vbend = 1, Ka = 1. The intensity of the transitions in the van der Waals stretching mode was estimated to be a factor of 5-10 less than that in the bending mode of Ar-CO.

  9. Micro-Spec: An Ultracompact, High-sensitivity Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2014-01-01

    High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (micron-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of (is) approximately 90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  10. T-shaped emitter metal heterojunction bipolar transistors for submillimeter wave applications

    Science.gov (United States)

    Fung, Andy; Samoska, Lorene; Velebir, Jim; Siege, Peter; Rodwell, Mark; Paidi, Vamsi; Griffth, Zach; Urteaga, Miguel; Malik, Roger

    2004-01-01

    We report on the development of submillimeter wave transistors at JPL. The goal of the effort is to produce advance-reliable high frequency and high power amplifiers, voltage controlled oscillators, active multipliers, and high-speed mixed-signal circuits for space borne applications. The technology in development to achieve this is based on the Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT). The HBT is well suited for high speed, high power and uniform (across wafer) performance, due to the ability to tailor the material structure that electrons traverse through by well-controlled epitaxial growth methods. InP with its compatible lattice matched alloys such as indium gallium arsenide (InGaAs) and indium aluminium arsenide (InAlAs) provides for high electron velocities and high voltage breakdown capabilities. The epitaxial methods for this material system are fairly mature, however the implementation of high performance and reliable transistors are still under development by many laboratories. Our most recently fabricated, second generation mesa HBTs at JPL have extrapolated current gain cutoff frequency (FJ of 142GHz and power gain cutoff frequency (Fm,) of approximately 160GHz. This represents a 13% and 33% improvement of Ft and F, respectively, compared to the first generation mesa HBTs [l]. Analysis based on the University of California, Santa Barbara (UCSB) device model, RF device characteristics can be significantly improved by reducing base contact resistance and base metal contact width. We will describe our effort towards increasing transistor performance and yield.

  11. Velocity-resolved Hot Water Emission Detected toward HL Tau with the Submillimeter Array

    Science.gov (United States)

    Kristensen, Lars E.; Brown, Joanna M.; Wilner, David; Salyk, Colette

    2016-05-01

    Using the Submillimeter Array (SMA) on Mauna Kea, the {{{H}}}216{{O}} {10}{2,9}-9{}{3,6} transition ({E}{{up}} = 1863 K) at 321.2 GHz has been detected toward the embedded low-mass protostar HL Tau. The line centroid is blueshifted by 20 km s-1 with respect to the source velocity, and it has a FWHM of 25 km s-1. The emission is tentatively resolved and extends ˜3″-4″ over the sky (˜2 beams), or ˜500 au at the distance of Taurus. The velocity offset, and to a lesser degree the spatial extent of the emission, show that the line originates in the protostellar jet or wind. This result suggests that at least some water emission observed with Herschel and Spitzer toward embedded sources, and perhaps also disk sources, contains a wind or jet component, which is crucial for interpreting these data. These pathfinder observations done with the SMA open a new window into studying the origin of water emission with e.g., ALMA, thus providing new insights into where water is in protostellar systems.

  12. Controlled production of sub-millimeter liquid core hydrogel capsules for parallelized 3D cell culture.

    Science.gov (United States)

    Doméjean, Hugo; de la Motte Saint Pierre, Mathieu; Funfak, Anette; Atrux-Tallau, Nicolas; Alessandri, Kevin; Nassoy, Pierre; Bibette, Jérôme; Bremond, Nicolas

    2016-12-20

    Liquid core capsules having a hydrogel membrane are becoming a versatile tool for three-dimensional culture of micro-organisms and mammalian cells. Making sub-millimeter capsules at a high rate, via the breakup of a compound jet in air, opens the way to high-throughput screening applications. However, control of the capsule size monodispersity, especially required for quantitative bioassays, was still lacking. Here, we report how the understanding of the underlying hydrodynamic instabilities that occur during the process can lead to calibrated core-shell bioreactors. The requirements are: i) damping the shear layer instability that develops inside the injector arising from the co-annular flow configuration of liquid phases having contrasting viscoelastic properties; ii) controlling the capillary instability of the compound jet by superposing a harmonic perturbation onto the shell flow; iii) avoiding coalescence of drops during jet fragmentation as well as during drop flight towards the gelling bath; iv) ensuring proper engulfment of the compound drops into the gelling bath for building a closed hydrogel shell. We end up with the creation of numerous identical compartments in which cells are able to form multicellular aggregates, namely spheroids. In addition, we implement an intermediate composite hydrogel layer, composed of alginate and collagen, allowing cell adhesion and thus the formation of epithelia or monolayers of cells.

  13. Simultaneous retrievals of temperature and volume mixing ratio constituents from nonoxygen odin submillimeter radiometer bands.

    Science.gov (United States)

    Baron, P; Merino, F; Murtagh, D

    2001-11-20

    We present the retrieval of temperature and O(3) volume mixing ratio profiles in the middle atmosphere from a single strong O(3) line. We performed the study using simulated limb-sounding measurements in the frame of the submillimeter radiometer (SMR) instrument that will be carried by the Odin satellite that is due to be launched in early 2001. This study is interesting for the Odin SMR data analysis because we first provide additional temperature measurements, and second reduce significantly the O(3) retrieval error that is due to the temperature and pressure uncertainties. Nonlinear retrievals are performed to retrieve the O(3), CO, H(2)O, and temperature profiles simultaneously from the spectral band 576.27-576.67 GHz. The pressure profile is deduced from the hydrostatic equilibrium equation after each iteration. Temperature and O(3) can be retrieved throughout the stratosphere from 15-50 and 20-50 km, respectively, with a vertical resolution of 3 km. The altitude domain corresponds to the parts of the atmosphere where the signal intensity saturates in some spectrometer channels. A total error of 4-6 K has been found in the temperature profile, mainly because of the instrumental thermal noise and to a lesser extent the calibration. The total error in the O(3) profile is 5-10% and is dominated by the O(3) line-broadening parameter. The total error on the retrieved pressure profile is 2-10% because of the errors in calibration and reference pressure.

  14. Laboratory and observational studies of transient molecules at microwave and millimeter/submillimeter wavelengths

    Science.gov (United States)

    Zack, Lindsay Nicole

    In this dissertation, techniques of high-resolution rotational spectroscopy have been used to measure the spectra of molecules in both laboratory and astronomical settings. In the laboratory, small metal-bearing molecules containing zinc, iron, nickel, titanium, yttrium, and scandium have been studied at microwave and millimeter/submillimeter wavelengths in order to determine their rotational, fine, and hyperfine constants. These molecules were synthesized in situ in direct-absorption and Fourier-transform microwave spectrometers using Broida-type ovens and laser ablation methods. From the spectroscopic parameters, information about fundamental physical properties and electronic character could be obtained. Radio telescopes were used to measure the spectra of molecules in different interstellar environments. A new molecule, FeCN, was detected toward the circumstellar envelope of the carbon-rich asymtotic giant branch star, IRC+10216, marking the first iron-bearing molecule detected in the interstellar medium. The telescopes were also used to conduct a study of the evolved planetary nebula, NGC 7293, or the Helix Nebula. In the Helix, CO, HCO+, and H2CO were observed at several positions offset from the central star to obtain densities and kinetic temperatures throughout the Helix. A map of the HCO+ J = 1→ 0 transition was also constructed, showing that HCO+ is widespread throughout the Helix, instead of being photodissociated and destroyed, as theoretical models of planetary nebulae predict.

  15. Submillimeter Measurements of Photolysis Products in Interstellar Ice Analogs: A New Experimental Technique

    Science.gov (United States)

    Milam, Stefanie N.; Weaver, Susanna Widicus

    2012-01-01

    Over 150 molecular species have been confirmed in space, primarily by their rotational spectra at millimeter/submillimeter wavelengths, which yield an unambiguous identification. Many of the known interstellar organic molecules cannot be explained by gas-phase chemistry. It is now presumed that they are produced by surface reactions of the simple ices and/or grains observed and released into the gas phase by sublimation, sputtering, etc. Additionally, the chemical complexity found in meteorites and samples returned from comets far surpasses that of the remote detections for the interstellar medium (ISM), comets, and planetary atmospheres. Laboratory simulations of interstellar/cometary ices have found, from the analysis of the remnant residue of the warmed laboratory sample, that such molecules are readily formed; however, it has yet to be determined if they are formed during the warm phase or within the ice during processing. Most analysis of the ice during processing reveals molecular changes, though the exact quantities and species formed are highly uncertain with current techniques due to overwhelming features of simple ices. Remote sensing with high resolution spectroscopy is currently the only method to detect trace species in the ISM and the primary method for comets and icy bodies in the Solar System due to limitations of sample return. We have recently designed an experiment to simulate interstellar/cometary/planetary ices and detect trace species employing the same techniques used for remote observations. Preliminary results will be presented.

  16. Probing Galaxy Formation and Evolution with Space Born Sub-Millimeter Telescopes

    Science.gov (United States)

    Dwek, Eli; Arendt, Richard G.; Moseley, Harvey; Benford, Dominic; Shafer, Richard; Mather, John; Oegerle, William (Technical Monitor)

    2002-01-01

    A major unresolved question in cosmology is how the complex system of galaxies we see in the present universe evolved from an almost perfectly smooth beginning. Multiwavelength observations of galaxies have revealed that a significant fraction of their UV-visible starlight is absorbed and reradiated by dust at infrared JR) and submillimeter wavelengths. The cumulative IR-submm. emission from galaxies since the epoch of recombination, the cosmic IR background, has recently been recorded by the COBE satellite. The COBE observations in combination with recent submm surveys conducted with the SCUBA on the 15 m JCMT have shown that most of the radiation from star formation that has taken place in the early stages of galaxy evolution is reradiated by dust at submm wavelengths. Therefore, submm telescopes offer a unique probe of the early stages of galaxy formation and evolution. This talk will: (1) consider the impact of telescope diameter on the depth of the survey (what redshift can be probed) at different wavelengths; (2) discuss the relative scientific merits of high-resolution narrow-field surveys versus lower resolution deep surveys; and (3) show how both strategies offer complementary information crucial to our understanding of the structure and evolution of galaxies in the universe.

  17. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution

    Science.gov (United States)

    Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed

    2014-11-01

    Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C/mm) and temporal (up to 1°C/s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor/cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.

  18. The SOFIA/SAFIRE Far-Infrared Spectrometer: Highlighting Submillimeter Astrophysics and Technology

    Science.gov (United States)

    Benford, Dominic J.

    2009-01-01

    The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.

  19. A New Era of Submillimeter GRB Afterglow Follow-Ups with the Greenland Telescope

    Directory of Open Access Journals (Sweden)

    Yuji Urata

    2015-01-01

    Full Text Available Planned rapid submillimeter (submm gamma-ray-bursts (GRBs follow-up observations conducted using the Greenland Telescope (GLT are presented. The GLT is a 12-m submm telescope to be located at the top of the Greenland ice sheet, where the high altitude and dry weather porvide excellent conditions for observations at submm wavelengths. With its combination of wavelength window and rapid responding system, the GLT will explore new insights on GRBs. Summarizing the current achievements of submm GRB follow-ups, we identify the following three scientific goals regarding GRBs: (1 systematic detection of bright submm emissions originating from reverse shock (RS in the early afterglow phase, (2 characterization of forward shock and RS emissions by capturing their peak flux and frequencies and performing continuous monitoring, and (3 detections of GRBs at a high redshift as a result of the explosion of first generation stars through systematic rapid follow-ups. The light curves and spectra calculated by available theoretical models clearly show that the GLT could play a crucial role in these studies.

  20. Submillimeter Array 12CO (2-1) Imaging of the NGC 6946 Giant Molecular Clouds

    Science.gov (United States)

    Wu, Ya-Lin; Sakamoto, Kazushi; Pan, Hsi-An

    2017-04-01

    We present a 12CO (2-1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30 m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc are generally more luminous and turbulent, some of which have luminosities >106 K km s-1 pc2 and velocity dispersions >10 km s-1. Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the Milky Way and other disk galaxies, GMC mass function of NGC 6946 has a shallower slope (index > -2) in the inner region, and a steeper slope (index outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those in M33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.

  1. Rapid Asymmetric Inflation and Early Cosmology in Theories with Sub-Millimeter Dimensions

    CERN Document Server

    Arkani-Hamed, N; Kaloper, Nemanja; March-Russell, John David; Arkani-Hamed, Nima; Dimopoulos, Savas; Kaloper, Nemanja; March-Russell, John

    2000-01-01

    It was recently pointed out that the fundamental Planck mass could be close to the TeV scale with the observed weakness of gravity at long distances being due the existence of new sub-millimeter spatial dimensions. In this picture the standard model fields are localized to a $(3+1)$-dimensional wall or ``3-brane''. We show that in such theories there exist attractive models of inflation that occur while the size of the new dimensions are still small. We show that it is easy to produce the required number of efoldings, and further that the density perturbations $\\delta\\rho/\\rho$ as measured by COBE can be easily reproduced, both in overall magnitude and in their approximately scale-invariant spectrum. In the minimal approach, the inflaton field is just the moduli describing the size of the internal dimensions, the role of the inflationary potential being played by the stabilizing potential of the internal space. We show that under quite general conditions, the inflationary era is followed by an epoch of contra...

  2. DETECTION OF AN ULTRA-BRIGHT SUBMILLIMETER GALAXY BEHIND THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo; Habe, Asao [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Tamura, Yoichi; Kohno, Kotaro [Institute of Astronomy, University of Tokyo, Osawa, Mitaka, Tokyo 181-0015 (Japan); Oogi, Taira [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Ezawa, Hajime; Komugi, Shinya; Mizuno, Norikazu; Muller, Erik; Kawamura, Akiko [Chile Observatory, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Oshima, Tai [Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Scott, Kimberly S. [North American ALMA Science Center, National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Austermann, Jason E. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Tosaki, Tomoka [Joetsu University of Education, Joetsu, Niigata 943-8512 (Japan); Onishi, Toshikazu [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, 599-8531 Osaka (Japan); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Matsuo, Hiroshi [Advanced Technology Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Aretxaga, Itziar [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), 72000 Puebla (Mexico); and others

    2013-09-10

    We report the discovery of a new ultra-bright submillimeter galaxy (SMG) behind the Small Magellanic Cloud (SMC). This SMG is detected as a 43.3 {+-} 8.4 mJy point source (MM J01071-7302, hereafter MMJ0107) in the 1.1 mm continuum survey of the SMC by AzTEC on the ASTE telescope. MMJ0107 is also detected in the radio (843 MHz), Herschel/SPIRE, Spitzer MIPS 24 {mu}m, all IRAC bands, Wide-field Infrared Survey Explorer, and near-infrared (J, H, K{sub S} ). We find an optical (U, B, V) source, which might be the lensing object, at a distance of 1.''4 from near-infrared and IRAC sources. Photometric redshift estimates for the SMG using representative spectral energy distribution templates show the redshifts of 1.4-3.9. We estimate total far-infrared luminosity of (0.3-2.2) Multiplication-Sign 10{sup 14} {mu}{sup -1} L{sub Sun} and a star formation rate of 5600-39, 000 {mu}{sup -1} M{sub Sun} yr{sup -1}, where {mu} is the gravitational magnification factor. This apparent extreme star formation activity is likely explained by a highly magnified gravitational lens system.

  3. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  4. Micro-Spec: an Integrated, Direct-Detection Spectrometer for Far-Infrared and Submillimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe

    2014-01-01

    The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.

  5. SHARC II: A Caltech Submillimeter Observatory Facility Camera with 384 Pixels

    Science.gov (United States)

    Dowell, C. Darren; Allen, Christine A.; Babu, Sachidananda; Freund, Minoru; Gardner, Matthew B.; Groseth, Jeffrey; Jhabvala, Murzy; Kovacs, Attila; Lis, Dariusz C.; Moseley, S. Harvey, Jr.

    2002-01-01

    SHARC II is a background-limited 350 micron and 450 micron facility camera for the Caltech Submillimeter Observatory undergoing commissioning in 2002. The key component of SHARC II is a 12 x 32 array of doped silicon 'pop-up' bolometers developed at NASA/Goddard. Each 1 mm x 1 mm pixel is coated with a 400 Omega/square bismuth film and located lambda/4 above a reflective backshort to achieve greater than 75% absorption efficiency. The pixels cover the focal plane with greater than 90% filling factor. At 350 microns, the SHARC II pixels are separated by 0.65 lambda/D. In contrast to the silicon bolometers in the predecessor of SHARC II, each doped thermistor occupies nearly the full area of the pixel, which lowers the 1/f knee of tile detector noise to less than 0.03 Hz, under load, at tile bath temperature of 0.36 K. The bolometers are AC-biased and read in 'total power' mode to take advantage of the improved stability. Each bolometer is biased through a custom approx. 130 MOmega CrSi load resistor at 7 K and read with a commercial JFET at 120 K. The JFETs and load resistors are integrated with the detectors into a single assembly to minimize microphonic noise. Electrical connection across the 0.36 K to 4 K and 4 K to 120 K temperature interfaces is accomplished with lithographed metal wires on dielectric substrates. In the best 25% of winter nights on Mauna Kea, SHARC II is expected to have an NEFD at 350 micron of 1 Jy Hz(sup -1/2) or better. The new camera should be at least 4 times faster at detecting known point sources and 30 times faster at mapping large areas compared to the prior instrument.

  6. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas, E-mail: xuepeng.chen@yale.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  7. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts

    Science.gov (United States)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; de Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiß, A.; van der Werf, P.

    2017-05-01

    We present spectroscopic redshifts of {\\text{}}{S}870μ {{m}} ≳ 2 mJy submillimeter galaxies (SMGs), which have been identified from the ALMA follow-up observations of 870 μm detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z = 2.4 ± 0.1. However, the distribution features a high-redshift tail, with ˜23% of the SMGs at z≥slant 3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets of up to 2000 km s-1. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimized spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of {M}\\star = (6 ± 1)× 1010 M {}⊙ for our SMGs with spectroscopic redshift. By combining these stellar masses with the star formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor of ˜5 above the so-called “main sequence” at z˜ 2. We provide this library of 52 template fits with robust and uniquely well-sampled SEDs as a resource for future studies of SMGs, and also release the spectroscopic catalog of ˜2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.

  8. A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer

    Science.gov (United States)

    Liu, Yuli; Buehler, Stefan; Liu, Heguang

    2017-04-01

    Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.

  9. A submillimeter galaxy illuminating its circumgalactic medium: Lyα scattering in a cold, clumpy outflow

    Energy Technology Data Exchange (ETDEWEB)

    Geach, J. E.; Coppin, K. E. K.; Smith, D. J. B. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Bower, R. G.; Alexander, D. M.; Swinbank, A. M. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Bremer, M. N. [School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Chapin, E. L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canada, Madrid (Spain); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University Halifax, NS B3H 3J5 (Canada); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Dunlop, J. S.; Koprowski, M. P.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Farrah, D. [Virginia Polytechnic Institute and State University Department of Physics, MC 0435, 910 Drillfield Drive, Blacksburg, VA 24061 (United States); Jenness, T. [Joint Astronomy Centre, 660 North A' ohoku Place University Park, Hilo, HI 96720 (United States); Robson, E. I. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Spaans, M. [Kapteyn Institute, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Van der Werf, P., E-mail: j.geach@herts.ac.uk [Leiden Observatory, Leiden University, PO box 9513, 2300 RA Leiden (Netherlands)

    2014-09-20

    We report the detection at 850 μm of the central source in SSA22-LAB1, the archetypal 'Lyman-α Blob' (LAB), a 100 kpc scale radio-quiet emission-line nebula at z = 3.1. The flux density of the source, S {sub 850} = 4.6 ± 1.1 mJy, implies the presence of a galaxy or group of galaxies with a total luminosity of L {sub IR} ≈ 10{sup 12} L {sub ☉}. The position of an active source at the center of a ∼50 kpc radius ring of linearly polarized Lyα emission detected by Hayes et al. suggests that the central source is leaking Lyα photons preferentially in the plane of the sky, which undergo scattering in H I clouds at a large galactocentric radius. The Lyα morphology around the submillimeter detection is reminiscent of a biconical outflow, and the average Lyα line profiles of the two 'lobes' are dominated by a red peak, which is expected for a resonant line emerging from a medium with a bulk velocity gradient that is outflowing relative to the line center. Taken together, these observations provide compelling evidence that the central active galaxy (or galaxies) is responsible for a large fraction of the extended Lyα emission and morphology. Less clear is the history of the cold gas in the circumgalactic medium being traced by Lyα: is it mainly pristine material accreting into the halo that has not yet been processed through an interstellar medium (ISM), now being blown back as it encounters an outflow, or does it mainly comprise gas that has been swept-up within the ISM and expelled from the galaxy?.

  10. Improved wedge method for the measurement of sub-millimeter slice thicknesses in magnetic resonance imaging.

    Science.gov (United States)

    Kanazawa, Tsutomu; Ohkubo, Masaki; Kondo, Tatsuya; Miyazawa, Takayuki; Inagawa, Shoichi

    2017-12-01

    The standard method for measuring the slice thickness of magnetic resonance images uses the inclined surface of a wedge (wedge method); it is sensitive to small increases in noise because of the differentiation of the edge response function (ERF) required. The purpose of this study was to improve the wedge method by fitting a curve to the ERF. The curve-fit function was obtained by convolving an ideal ERF (a ramp function) with a Gaussian function to represent ERF blurring. Measurements of 5- and 3-mm slice thicknesses were performed on a 3T scanner using the conventional wedge method, the improved wedge method, and another standard method using an inclined slab (slab method). Subsequently, 0.5- and 0.25-mm slice thicknesses from multiple slices acquired using a three-dimensional sequence were measured using the improved wedge method. When measuring 5-mm slices, the differences in measurements obtained using the improved wedge method and the conventional slab and wedge methods were very small: <0.6% of the 5-mm slice thickness. The difference was ≤1.7% for 3-mm slices. For 0.5- and 0.25-mm slices, the mean values obtained using the improved wedge method were 0.543 ± 0.007 mm and 0.247 ± 0.015 mm, with a 1.2 and 5.9% coefficient of variation across slices, respectively. The improved wedge method is valid and potentially applicable to the measurement of sub-millimeter slice thicknesses.

  11. A sub-millimeter resolution detector module for small-animal PET applications

    Science.gov (United States)

    Sacco, I.; Dohle, R.; Fischer, P.; Gola, A.; Piemonte, C.; Ritzert, M.

    2017-01-01

    We present a gamma detection module optimized for very high resolution PET applications, able to resolve arrays of scintillating crystals with sub-millimeter pitch. The detector is composed of a single ceramic substrate (LTCC): it hosts four flip-chip mounted PETA5 ASICs on the bottom side and an array of SiPM sensors on the top surface, fabricated in HD-RGB technology by FBK. Each chip has 36 channels, for a maximum of 144 readout channels on a sensitive area of about 32 mm × 32 mm. The module is MR-compatible. The thermal decoupling of the readout electronics from the photon sensors is obtained with an efficient internal liquid channel, integrated within the ceramic substrate. Two modules have been designed, based on different SiPM topologies: • Light spreader-based: an array of 12 × 12 SiPMs, with an overall pitch of 2.5 mm, is coupled with a scintillators array using a 1 mm thick glass plate. The light from one crystal is spread over a group of SiPMs, which are read out in parallel using PETA5 internal neighbor logic. • Interpolating SiPM-based: ISiPMs are intrinsic position-sensitive sensors. The photon diodes in the array are connected to one of the four available outputs so that the center of gravity of any bunch of detected photons can be reconstructed using a proper weight function of the read out amplitudes. An array of ISiPMs, each 7.5 mm× 5 mm sized, is directly coupled with the scintillating crystals. Both modules can clearly resolve LYSO arrays with a pitch of only 0.833 mm. The detector can be adjusted for clinical PET, where it has already shown ToF resolution of about 230 ps CRT at FWHM. The module designs, their features and results are described.

  12. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); De Breuck, C.; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Holzapfel, W. L., E-mail: jspilker@as.arizona.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  13. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Hashimoto, Jun [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji [National Astronomical Observatory Japan (NAOJ), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Abe, Lyu [Lboratoire Lagrange (UMR 7293), Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto, Ontario (Canada); Egner, Sebastian E.; Guyon, Olivier [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Goto, Miwa [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Grady, Carol, E-mail: ttsuka@mx.ibaraki.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  14. Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope

    Science.gov (United States)

    Abramovici, Alex; Bartman, Randall K.

    2011-01-01

    The position of the secondary mirror of a submillimeter telescope with respect to the primary mirror needs to be known .0.03 mm in three dimensions. At the time of this reporting, no convenient, reasonably priced arrangement that offers this capability exists. The solution proposed here relies on measurement devices developed and deployed for the GeoSAR mission, and later adapted for the ISAT (Innovative Space Based Radar Antenna Technology) demonstration. The measurement arrangement consists of four metrology heads, located on an optical bench, attached to the secondary mirror. Each metrology head has a dedicated target located at the edge of the primary mirror. One laser beam, launched from the head and returned by the target, is used to measure distance. Another beam, launched from a beacon on the target, is monitored by the metrology head and generates a measurement of the target position in the plane perpendicular to the laser beam. A 100-MHz modulation is carried by a collimated laser beam. The relevant wavelength is the RF one, 3 m, divided by two, because the light carries it to the target and back. The phase change due to travel to the target and back is measured by timing the zero-crossing of the RF modulation, using a 100-MHz clock. In order to obtain good resolution, the 100-MHz modulation signal is down-converted to 1 kHz. Then, the phase change corresponding to the round-trip to the target is carried by a 1-kHz signal. Since the 100-MHz clock beats 100,000 times during one period of the 1-kHz signal, the least-significant-bit (LSB) resolution is LSB = 0.015 mm.

  15. The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory

    Science.gov (United States)

    Hollister, Matthew I.; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; Nguyen, Hien Trong; Noroozian, Omid; Sayers, Jack; Schlaerth, James; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip; Zmuidzinas, Jonas

    2010-07-01

    MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed.

  16. Signal to Noise Ratio Maximization in Quiet Zone Acquisitions for Range Assessment at Sub-millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    A. Muñoz-Acevedo

    2012-06-01

    Full Text Available This paper proposes a quiet zone probing approach which deals with low dynamic range quiet zone acquisitions. Lack of dynamic range is a feature of millimeter and sub-millimeter wavelength technologies. It is consequence of the gradually smaller power generated by the instrumentation, that follows a f^α law with frequency, being α≥1 variable depending on the signal source’s technology. The proposed approach is based on an optimal data reduction scenario which redounds in a maximum signal to noise ratio increase for the signal pattern, with minimum information losses. After theoretical formulation, practical applications of the technique are proposed.

  17. Fast computation of the Narcissus reflection coefficient for the Herschel far-infrared/submillimeter-wave Cassegrain telescope

    Science.gov (United States)

    Lucke, Robert L.; Fischer, Jacqueline; Polegre, Arturo M.; Beintema, Douwe A.

    2005-10-01

    Placement of a scatter cone at the center of the secondary of a Cassegrain telescope greatly reduces Narcissus reflection. To calculate the remaining Narcissus reflection, a time-consuming physical optics code such as GRASP8 is often used to model the effects of reflection and diffraction. Fortunately, the Cassegrain geometry is sufficiently simple that a combination of theoretical analysis and Fourier propagation can yield rapid, accurate results at submillimeter wavelengths. We compare these results with those from GRASP8 for the heterodyne instrument for the far-infrared on the Herschel Space Observatory and confirm the effectiveness of the chosen scatter cone design.

  18. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  19. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    Science.gov (United States)

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B.; Tai, Yuan-Chuan

    2010-05-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  20. The Interstellar Medium in High-redshift Submillimeter Galaxies as Probed by Infrared Spectroscopy*

    Science.gov (United States)

    Wardlow, Julie L.; Cooray, Asantha; Osage, Willow; Bourne, Nathan; Clements, David; Dannerbauer, Helmut; Dunne, Loretta; Dye, Simon; Eales, Steve; Farrah, Duncan; Furlanetto, Cristina; Ibar, Edo; Ivison, Rob; Maddox, Steve; Michałowski, Michał M.; Riechers, Dominik; Rigopoulou, Dimitra; Scott, Douglas; Smith, Matthew W. L.; Wang, Lingyu; van der Werf, Paul; Valiante, Elisabetta; Valtchanov, Ivan; Verma, Aprajita

    2017-03-01

    Submillimeter galaxies (SMGs) at z≳ 1 are luminous in the far-infrared, and have star formation rates, SFR, of hundreds to thousands of solar masses per year. However, it is unclear whether they are true analogs of local ULIRGs or whether the mode of their star formation is more similar to that in local disk galaxies. We target these questions by using Herschel-PACS to examine the conditions in the interstellar medium (ISM) in far-infrared luminous SMGs at z˜ 1-4. We present 70-160 μm photometry and spectroscopy of the [O IV]26 μm, [Fe II]26 μm, [S III]33 μm, [Si II]34 μm, [O III]52 μm, [N III]57 μm, and [O I]63 μm fine-structure lines and the S(0) and S(1) hydrogen rotational lines in 13 lensed SMGs identified by their brightness in early Herschel data. Most of the 13 targets are not individually spectroscopically detected; we instead focus on stacking these spectra with observations of an additional 32 SMGs from the Herschel archive—representing a complete compilation of PACS spectroscopy of SMGs. We detect [O I]63 μm, [Si II]34 μm, and [N III]57 μm at ≥slant 3σ in the stacked spectra, determining that the average strengths of these lines relative to the far-IR continuum are (0.36+/- 0.12)× {10}-3, (0.84+/- 0.17)× {10}-3, and (0.27+/- 0.10)× {10}-3, respectively. Using the [O III]52 μm/[N III]57 μm emission line ratio, we show that SMGs have average gas-phase metallicities ≳ {Z}⊙ . By using PDR modeling and combining the new spectral measurements with integrated far-infrared fluxes and existing [C II]158 μm data, we show that SMGs have average gas densities, n, of ˜ {10}1-3 {{cm}}-3 and FUV field strengths, {G}0˜ {10}2.2-4.5 (in Habing units: 1.6× {10}-3 {erg} {{cm}}-2 {{{s}}}-1), consistent with both local ULIRGs and lower luminosity star-forming galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia, and important participation from NASA.

  1. Mapping the thermal structure and minor species of Venus mesosphere with ALMA submillimeter observations

    Science.gov (United States)

    Piccialli, A.; Moreno, R.; Encrenaz, T.; Fouchet, T.; Lellouch, E.; Widemann, T.

    2017-10-01

    Context. Water vapor and sulfur compounds are key species in the photochemistry of Venus mesosphere. These species, together with mesospheric temperatures, exhibit drastic temporal variations, both on short timescales (diurnal and day-to-day) as well on long timescales, far from being understood. Aims: We targeted CO, SO, HDO and SO2 transitions in the submillimeter range using the Atacama Large Millimeter Array (ALMA) to study their spatial and temporal variations. Methods: Four sets of observations were acquired on different dates in November 2011 during the first ALMA Early Science observation Cycle 0. Venus angular diameter was about 11'' with an illumination factor of 92%, so that mostly the day side of the planet was mapped. Assuming a nominal CO abundance profile, we retrieved vertical temperature profiles over the entire disk as a function of latitude and local time. Temperature profiles were later used to retrieve SO, SO2, and H2O. We used HDO as a tracer for water assuming a D/H enrichment of 200 times the terrestrial value. Results: We derived 3D maps of mesospheric temperatures in the altitude range 70-105 km. SO, SO2, and H2O are characterized by a negligible abundance below 85 km followed by an increase with altitude in the upper mesosphere. Disk-averaged SO abundances present a maximum mixing ratio of 15.0 ± 3.1 ppb on November 26 followed the next day by a minimum value of 9.9 ± 1.2 ppb. Due to a very low S/N, SO2 could only be derived from the disk-averaged spectrum on the first day of observation revealing an abundance of 16.5 ± 4.6 ppb. We found a SO2/SO ratio of 1.5 ± 0.4. Global maps of SO reveal strong variations both with latitude and local time and from day to day with abundance ranging from < 1 to 15 ppb. H2O disk-averages retrievals reveal a steady decrease from November 14 to 27, with the abundance varying from 3.6 ± 0.6 ppm on the first day to 2.9 ± 0.7 ppm on the last day. H2O maps reveal a slightly higher abundance on the evening

  2. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

    Science.gov (United States)

    Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.

    2018-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.

  3. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N. [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Akiyama, K. [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  4. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  5. Solar Science with the Atacama Large Millimeter/Submillimeter Array—A New View of Our Sun

    Science.gov (United States)

    Wedemeyer, S.; Bastian, T.; Brajša, R.; Hudson, H.; Fleishman, G.; Loukitcheva, M.; Fleck, B.; Kontar, E. P.; De Pontieu, B.; Yagoubov, P.; Tiwari, S. K.; Soler, R.; Black, J. H.; Antolin, P.; Scullion, E.; Gunár, S.; Labrosse, N.; Ludwig, H.-G.; Benz, A. O.; White, S. M.; Hauschildt, P.; Doyle, J. G.; Nakariakov, V. M.; Ayres, T.; Heinzel, P.; Karlicky, M.; Van Doorsselaere, T.; Gary, D.; Alissandrakis, C. E.; Nindos, A.; Solanki, S. K.; Rouppe van der Voort, L.; Shimojo, M.; Kato, Y.; Zaqarashvili, T.; Perez, E.; Selhorst, C. L.; Barta, M.

    2016-04-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere—a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA's scientific potential for studying the Sun for a large range of science cases.

  6. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  7. SUB-MILLIMETER TELESCOPE CO (2-1) OBSERVATIONS OF NEARBY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xue-Jian; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Zhong [Harvard-Smithsonian Center for Astrophysics, MS 66, 60 Garden Street, Cambridge, MA 02138 (United States); Wang, Junzhi [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhi-Yu, E-mail: xjjiang@nju.edu.cn [The UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2015-01-20

    We present CO J = 2-1 observations toward 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and Wide-field Infrared Survey Explorer (WISE) catalogs, using the Sub-millimeter Telescope (SMT). Our sample is selected to be dominated by intermediate-M {sub *} galaxies. The scaling relations between molecular gas, atomic gas, and galactic properties (stellar mass, NUV – r, and WISE color W3 – W2) are examined and discussed. Our results show the following. (1) In the galaxies with stellar mass M {sub *} ≤10{sup 10} M {sub ☉}, the H I fraction (f {sub H} {sub I} ≡ M {sub H} {sub I}/M {sub *}) is significantly higher than that of more massive galaxies, while the H{sub 2} gas fraction (f{sub H{sub 2}} ≡ M{sub H{sub 2}}/M {sub *}) remains nearly unchanged. (2) Compared to f{sub H{sub 2}}, f {sub H} {sub I} correlates better with both M {sub *} and NUV – r. (3) A new parameter, WISE color W3 – W2 (12-4.6 μm), is introduced, which is similar to NUV – r in tracing star formation activity, and we find that W3 – W2 has a tighter anti-correlation with log f{sub H{sub 2}} than the anti-correlation of (NUV – r)-f {sub H} {sub I}, (NUV – r)-f{sub H{sub 2}}, and (W3 – W2)-f {sub H} {sub I}. This indicates that W3 – W2 can trace the H{sub 2} fraction in galaxies. For the gas ratio M{sub H{sub 2}}/M {sub H} {sub I} , only in the intermediate-M {sub *} galaxies it appears to depend on M {sub *} and NUV – r. We find a tight correlation between the molecular gas mass M{sub H{sub 2}} and 12 μm (W3) luminosities (L {sub 12} {sub μm}), and the slope is close to unity (1.03 ± 0.06) for the SMT sample. This correlation may reflect that the cold gas and dust are well mixed on a global galactic scale. Using the all-sky 12 μm (W3) data available in WISE, this correlation can be used to estimate CO flux for molecular gas observations and can even predict H{sub 2} mass for star-forming galaxies.

  8. Simulation study for the Stratospheric Inferred Wind (SIW) sub-millimeter limb sounder

    Science.gov (United States)

    Baron, Philippe; Murtagh, Donal; Eriksson, Patrick; Ochiai, Satoshi

    2017-04-01

    -and-aac-microtec-to-develop-the-innosat-platform-and-implement-its-first-mission-named-mats.html [2] Wu D., et al.: Mesospheric Doppler wind measurements from Aura Microwave Limb Sounder (MLS), Advanced in Space Research, 42, 1246-1252, 2008 [3] Baron P., et al.: Observation of horizontal winds in the middle-atmosphere between 30S and 55N during the northern winter 2009-2010, Atmospheric Chemistry and Physics 13(13), 6049-6064, 2013, doi:10.5194/acp-13-6049-2013 [4] Baron P., et al.: Definition of an uncooled submillimeter/terahertz limb sounder for measuring middle atmospheric winds, Proceedings of ESA Living Planet Symposium, Edinburgh, UK, 9-13 September 2013, (ESA SP-722, December 2013)

  9. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NARCIS (Netherlands)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-01-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern

  10. THE SCUBA-2 COSMOLOGY LEGACY SURVEY: MULTIWAVELENGTH COUNTERPARTS TO 10{sup 3} SUBMILLIMETER GALAXIES IN THE UKIDSS-UDS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chian-Chou; Smail, Ian; Ma, Cheng-Jiun; Simpson, James M.; Swinbank, A. Mark [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Ivison, Rob J.; Arumugam, Vinodiran; Mortlock, Alice; Dunlop, James S.; Michałowski, Michał J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Almaini, Omar; Conselice, Christopher J.; Hartley, Will G. [University of Nottingham, School of Physics and Astronomy, Nottingham, NG7 2RD (United Kingdom); Geach, James E. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Simpson, Chris [Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Blain, Andrew [Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2 (Canada); Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2016-04-01

    We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850 μm in the SCUBA-2 Cosmology Legacy Survey study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical–near-infrared (OIR) data available in this field, we develop a novel technique, Optical–IR Triple Color (OIRTC), using z − K, K − [3.6], [3.6] − [4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates for 80% of the Class = 1 ≥ 4σ SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82% ± 20%, with a completeness of 69% ± 16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850 μm sources, and we argue that for follow-up observations sensitive to SMGs with S{sub 850} ≳ 1 mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S{sub 850} ≳ 4 mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z = 2.3 ± 0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z = 2.6 ± 0.1 for SMGs with S{sub 850} > 1 mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.

  11. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. I. DUST PROPERTIES AND INSIGHTS INTO THE ORIGIN OF THE SUBMILLIMETER EXCESS EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Karl D.; Roman-Duval, Julia; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bot, Caroline [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l Université, F-67000 Strasbourg (France); Babler, Brian [Department of Astronomy, 475 North Charter Street, University of Wisconsin, Madison, WI 53706 (United States); Bernard, Jean-Philippe [CESR, Université de Toulouse, UPS, 9 Avenue du Colonel Roche, F-31028 Toulouse, Cedex 4 (France); Bolatto, Alberto; Jameson, Katherine [Department of Astronomy, Lab for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, 233-A Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Engelbracht, Charles [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Fukui, Yasuo [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Galametz, Maud [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-Mnchen (Germany); Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hughes, Annie [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Indebetouw, Remy [Department of Astronomy, University of Virginia, and National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Israel, Frank P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Kawamura, Akiko [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan); and others

    2014-12-20

    The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 μm. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 μm. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 μm submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 10{sup 5} and (8.3 ± 2.1) × 10{sup 4} M {sub ☉} for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  12. Dust and Gas in the Magellanic Clouds from the Heritage Herschel Key Project. I. Dust Properties and Insights into the Origin of the Submm (Submillimeter) Excess Emission

    Science.gov (United States)

    Gordon, Karl D.; Roman-Duval, Julia; Bot, Caroline; Meixner, Margaret; Babler, Brian; Bernard, Jean-Philippe; Bolatto, Alberto; Boyer, Martha L.; Clayton, Geoffrey C.; Engelbracht, Charles; hide

    2014-01-01

    The dust properties in the Large and Small Magellanic Clouds are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 micromillimeters. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a powerlaw emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models we investigate the origin of the submillimeter excess; defined as the submillimeter (submm) emission above that expected from SMBB models fit to observations < 200 micromillimeters. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 micromillimeters submillimeter excesses of 27% and 43% for the Large and Small Magellanic Clouds, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 plus or minus 1.7) x 10 (sup 5) and (8.3 plus or minus 2.1) x 10 (sup 4) solar masses for the Large and Small Magellanic Clouds, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  13. EXPLORING THE RELATION BETWEEN (SUB-)MILLIMETER RADIATION AND {gamma}-RAY EMISSION IN BLAZARS WITH PLANCK AND FERMI

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Tavares, J.; Tornikoski, M.; Laehteenmaeki, A. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FIN-02540 Kylmaelae (Finland); Valtaoja, E. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 20100 Turku (Finland); Giommi, P.; Polenta, G.; Gasparrini, D.; Cutini, S., E-mail: leon@kurp.hut.fi [ASI Science Data Center, ASDC c/o ESRIN, via G. Galilei, 00044 Frascati (Italy)

    2012-07-20

    The coexistence of Planck and Fermi satellites in orbit has enabled the exploration of the connection between the (sub-)millimeter and {gamma}-ray emission in a large sample of blazars. We find that the {gamma}-ray emission and the (sub-)mm luminosities are correlated over five orders of magnitude, L{sub {gamma}}{proportional_to}L{sub (sub-)mm}. However, this correlation is not significant at some frequency bands when simultaneous observations are considered. The most significant statistical correlations, on the other hand, arise when observations are quasi-simultaneous within two months. Moreover, we find that sources with an approximate spectral turnover in the middle of the mm-wave regime are more likely to be strong {gamma}-ray emitters. These results suggest a physical relation between the newly injected plasma components in the jet and the high levels of {gamma}-ray emission.

  14. Fabrication of an absorber-coupled MKID detector and readout for sub-millimeter and far-infrared astronomy

    Science.gov (United States)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-07-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of λ/2 stepped impedance resonators, a 1.5μm thick silicon membrane, and 380μm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  15. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    Science.gov (United States)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  16. Hacking for astronomy: can 3D printers and open-hardware enable low-cost sub-/millimeter instrumentation?

    Science.gov (United States)

    Ferkinhoff, Carl

    2014-07-01

    There have been several exciting developments in the technologies commonly used n in the hardware hacking community. Advances in low cost additive-manufacturing processes (i.e. 3D-printers) and the development of openhardware projects, which have produced inexpensive and easily programmable micro-controllers and micro-computers (i.e. Arduino and Raspberry Pi) have opened a new door for individuals seeking to make their own devices. Here we describe the potential for these technologies to reduce costs in construction and development of submillimeter/millimeter astronomical instrumentation. Specifically we have begun a program to measure the optical properties of the custom plastics used in 3D-printers as well as the printer accuracy and resolution to assess the feasibility of directly printing sub- /millimeter transmissive optics. We will also discuss low cost designs for cryogenic temperature measurement and control utilizing Arduino and Raspberry Pi.

  17. Detection of Submillimeter-wave [C i] Emission in Gaseous Debris Disks of 49 Ceti and β Pictoris

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Aya E.; Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Sato, Aki; Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Iwasaki, Kazunari [Department of Environmental Systems Science, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe City, Kyoto 610-0394 (Japan); Kobayashi, Hiroshi; Ishihara, Daisuke; Watanabe, Sakae; Kaneda, Hidehiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Yamamoto, Satoshi, E-mail: aya.higuchi@riken.jp [Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    We have detected [C i] {sup 3} P {sub 1}–{sup 3} P {sub 0} emissions in the gaseous debris disks of 49 Ceti and β Pictoris with the 10 m telescope of the Atacama Submillimeter Telescope Experiment, which is the first detection of such emissions. The line profiles of [C i] are found to resemble those of CO( J = 3–2) observed with the same telescope and the Atacama Large Millimeter/submillimeter Array. This result suggests that atomic carbon (C) coexists with CO in the debris disks and is likely formed by the photodissociation of CO. Assuming an optically thin [C i] emission with the excitation temperature ranging from 30 to 100 K, the column density of C is evaluated to be (2.2 ± 0.2) × 10{sup 17} and (2.5 ± 0.7) × 10{sup 16} cm{sup −2} for 49 Ceti and β Pictoris, respectively. The C/CO column density ratio is thus derived to be 54 ± 19 and 69 ± 42 for 49 Ceti and β Pictoris, respectively. These ratios are higher than those of molecular clouds and diffuse clouds by an order of magnitude. The unusually high ratios of C to CO are likely attributed to a lack of H{sub 2} molecules needed to reproduce CO molecules efficiently from C. This result implies a small number of H{sub 2} molecules in the gas disk, i.e., there is an appreciable contribution of secondary gas from dust grains.

  18. Millimeter and Submillimeter Observations of Comet 67P's Nucleus, Gas, and Dust with the Rosetta/MIRO Instrument

    Science.gov (United States)

    Hofstadter, Mark

    2016-04-01

    The Microwave Instrument for the Rosetta Orbiter (MIRO) has been making measurements of comet 67P/C-G since June 2014, when the comet was 3.92 AU from the Sun and Rosetta was approximately 400,000 km from the nucleus. Those first observations were spatially unresolved measurements of the 556 GHz water line, used to infer the abundance and velocity of water vapor in the coma (Gulkis et al. 2015, Science 347). In the almost two years since that time, as the spacecraft has moved closer to the nucleus and the comet has become more active (perihelion at 1.2 AU from the Sun occurred in August 2015), MIRO's submillimeter spectrometer (working at frequencies near 550 GHz, or wavelengths near 0.5 mm) has been used to determine the velocity, abundance, and spatial distribution of H216O, H217O, H218O, CH3OH, NH3, and CO in the coma as a function of time (e.g. water is discussed by Biver et al. 2015 and Lee et al. 2015, Astron. and Astrophys. 583). In addition to its submillimeter spectrometer, MIRO has two broad band continuum channels operating at wavelengths near 0.5 and 1.6 millimeter. These channels are designed to probe the nucleus ˜1 millimeter to 10 cm below the surface. Data have been used to infer properties such as thermal inertia, porosity, and ice content as functions of location, depth, and time (e.g. Schloerb et al. 2015 and Choukroun et al. 2015, Astron. and Astrophys. 583). These channels have also been used to map the distribution of relatively large dust grains (radius > ˜1 mm) in the inner coma of the comet, with the potential to constrain models of dust acceleration, cooling, and fragmentation. This talk will review the latest results from MIRO's measurements of the nucleus, coma, and dust, and discuss some of the processes that couple these components of the comet.

  19. The JCMT Transient Survey: Identifying Submillimeter Continuum Variability over Several Year Timescales Using Archival JCMT Gould Belt Survey Observations

    Science.gov (United States)

    Mairs, Steve; Johnstone, Doug; Kirk, Helen; Lane, James; Bell, Graham S.; Graves, Sarah; Herczeg, Gregory J.; Scicluna, Peter; Bower, Geoffrey C.; Chen, Huei-Ru Vivien; Hatchell, Jennifer; Aikawa, Yuri; Chen, Wen-Ping; Kang, Miju; Kang, Sung-Ju; Lee, Jeong-Eun; Morata, Oscar; Pon, Andy; Scholz, Aleks; Takahashi, Satoko; Yoo, Hyunju; The JCMT Transient Team

    2017-11-01

    Investigating variability at the earliest stages of low-mass star formation is fundamental in understanding how a protostar assembles mass. While many simulations of protostellar disks predict non-steady accretion onto protostars, deeper investigation requires robust observational constraints on the frequency and amplitude of variability events characterized across the observable SED. In this study, we develop methods to robustly analyze repeated observations of an area of the sky for submillimeter variability in order to determine constraints on the magnitude and frequency of deeply embedded protostars. We compare 850 μm JCMT Transient Survey data with archival JCMT Gould Belt Survey data to investigate variability over 2-4 year timescales. Out of 175 bright, independent emission sources identified in the overlapping fields, we find seven variable candidates, five of which we classify as Strong, and the remaining two we classify as Extended to indicate that the latter are associated with larger-scale structure. For the Strong variable candidates, we find an average fractional peak brightness change per year of | 4.0| % {{yr}}-1, with a standard deviation of 2.7 % {{yr}}-1. In total, 7% of the protostars associated with 850 μm emission in our sample show signs of variability. Four of the five Strong sources are associated with a known protostar. The remaining source is a good follow-up target for an object that is anticipated to contain an enshrouded, deeply embedded protostar. In addition, we estimate the 850 μm periodicity of the submillimeter variable source, EC 53, to be 567 ± 32 days, based on the archival Gould Belt Survey data.

  20. Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams

    OpenAIRE

    Vidya Ramanathan; Sudeep Banerjee; Nathan Powers; Nathaniel Cunningham; Nathan A. Chandler-Smith; Kun Zhao; Kevin Brown; Donald Umstadter; Shaun Clarke; Sara Pozzi; James Beene; Vane, C R; David Schultz

    2010-01-01

    We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100  MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense ma...

  1. Laboratory permittivity measurements of icy planetary analogs in the millimeter and submillimeter domains, in relation with JUICE mission.

    Science.gov (United States)

    Brouet, Y.; Jacob, K.; Murk, A.; Poch, O.; Pommerol, A.; Thomas, N.; Levasseur-Regourd, A. C.

    2015-12-01

    The European Space Agency's JUpiter ICy moons Explorer (JUICE) spacecraft is planned for launch in 2022 and arrival at Jupiter in 2030. It will observe the planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa. One instrument on the JUICE spacecraft is the Sub-millimeter Wave Instrument (SWI), which will measure brightness temperatures from Jupiter's stratosphere and troposphere, and from subsurfaces of Jupiter's icy moons. In the baseline configuration SWI consists of two tunable sub-millimeter wave receivers operating from 530 to 625 GHz. As an alternative one of the receivers could cover the range of 1080 and 1275 GHz. Inversion models are strongly dependent on the knowledge of the complex relative permittivity (hereafter permittivity) of the target material to retrieve the physical properties of the subsurface (e.g. [1][2]). We set up a laboratory experiment allowing us to perform reproducible measurements of the complex scattering parameters S11 and S21 in the ranges of 70 to 110 GHz, of 100 to 160 GHz, of 140 to 220 GHz, of 140 to 220 GHz and of 510 to 715 GHz. These scattering parameters can be used to retrieve the permittivity of icy analogs of the surfaces and subsurfaces of Jupiter's icy moons in order to prepare the data interpretation of SWI [3]. The measurements are performed under laboratory conditions with a quasi-optical bench (Institute of Applied Physics, University of Bern). The icy analogs that we prepare in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy, Physics Institute, University of Bern), include two different porous water ice samples composed of fine-grained ice particles with a size range of 4 to 6 microns and ice particles with a size range of 50 to 100 microns [4][5]; and possibly CO2 ice. We will present the general experimental set-up and the first results in the context to prepare the data interpretation of SWI. [1] Ulaby, F. T., Long, D. G., 2014. Microwave radar and radiometric remote

  2. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Biggs, A. D.; Ivison, R. J. [European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dannerbauer, H. [Institut für Astrophysik, Universität Wien, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Schinnerer, E.; Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Wardlow, J. L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  3. RoboWeedSupport-Semi-Automated Unmanned Aerial System for Cost Efficient High Resolution in Sub-Millimeter Scale Acquisition of Weed Images

    OpenAIRE

    Simon L. Madsen; Mads Dyrmann; Morten S. Laursen; Rasmus N. Jørgensen

    2017-01-01

    Recent advances in the Unmanned Aerial System (UAS) safety and perception systems enable safe low altitude autonomous terrain following flights recently demonstrated by the consumer DJI Mavic PRO and Phamtom 4 Pro drones. This paper presents the first prototype system utilizing this functionality in form of semi-automated UAS based collection of crop/weed images where the embedded perception system ensures a significantly safer and faster gathering of weed images with sub-millimeter resolutio...

  4. Characterization of multi-scale porous structure of fly ash/phosphate geopolymer hollow sphere structures: from submillimeter to nano-scale.

    Science.gov (United States)

    Li, Ruifeng; Wu, Gaohui; Jiang, Longtao; Sun, Dongli

    2015-01-01

    In the present work, the porous structure of fly ash/phosphate geopolymer hollow sphere structures (FPGHSS), prepared by pre-bonding and curing technology, has been characterized by multi-resolution methods from sub-millimeter to nano-scale. Micro-CT and confocal microscopy could provide the macroscopic distribution of porous structure on sub-millimeter scale, and hollow fly ashes with sphere shape and several sub-millimeter open cells with irregular shape were identified. SEM is more suitable to illustrate the distribution of micro-sized open and closed cells, and it was found that the open cells of FPGHSS were mainly formed in the interstitial porosity between fly ashes. Mercury porosimeter measurement showed that the micro-sized open cell of FPGHSS demonstrated a normal/bimodal distribution, and the peaks of pore size distribution were mainly around 100 and 10 μm. TEM observation revealed that the phosphate geopolymer was mainly composed of the porous area with nano-pores and dense areas, which were amorphous Al-O-P phase and α-Al2O3 respectively. The pore size of nano-pores demonstrated a quasi-normal distribution from about 10 to 100 nm. Therefore, detailed information of the porous structure of FPGHSS could be revealed using multiple methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Micro-Spec: An Ultra-Compact, High-Sensitivity Spectrometer for Far-Infrared and Sub-Millimeter Astronomy

    Science.gov (United States)

    Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.

    2013-01-01

    High-performance, integrated spectrometers operating in the far-infrared and sub-millimeter promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a four-inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (mu-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of approx. 90% has been developed for initial demonstration, and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.

  6. Determining the Concentrations and Temperatures of Products in a CF_4/CHF_3/N_2 Plasma via Submillimeter Absorption Spectroscopy

    Science.gov (United States)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2017-06-01

    Plasmas used for the manufacturing of semiconductor devices are similar in pressure and temperature to those used in the laboratory for the study of astrophysical species in the submillimeter (SMM) spectral region. The methods and technology developed in the SMM for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied and their spectra have been cataloged or are in the literature. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500-750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption was used to calculate absolute densities and temperatures of polar species. Measurements for CHF_3, CF_2, FCN, HCN, and CN made in a CF_4/CHF_3/N_2 plasma will be presented. Temperature equilibrium among species will be shown and the common temperature is leveraged to obtain accurate density measurements for simultaneously observed species. The densities and temperatures of plasma species are studied as a function of plasma parameters, including flow rate, pressure, and discharge power.

  7. Fibrosis and Atrial Fibrillation: Computerized and Optical Mapping; A View into the Human Atria at Submillimeter Resolution.

    Science.gov (United States)

    Hansen, Brian J; Zhao, Jichao; Fedorov, Vadim V

    2017-06-01

    Recent studies strongly suggest that the majority of atrial fibrillation (AF) patients with diagnosed or subclinical cardiac diseases have established or even pre-existing fibrotic structural remodeling, which may lead to conduction abnormalities and reentrant activity that sustain AF. As conventional treatments fail to treat AF in far too many cases, an urgent need exists to identify specific structural arrhythmogenic fibrosis patterns, which may maintain AF, in order to identify effective ablation targets for AF treatment. However, the existing challenge is to define what exact structural remodeling within the complex 3D human atrial wall is arrhythmogenic, as well as linking arrhythmogenic fibrosis to an underlying mechanism of AF maintenance in the clinical setting. This review is focused on the role of 3D fibrosis architecture in the mechanisms of AF maintenance revealed by submillimeter, high-resolution ex-vivo imaging modalities directly of human atria, as well as from in-silico 3D computational techniques that can be able to overcome in-vivo clinical limitations. The systematic integration of functional and structural imaging ex-vivo may inform the necessary integration of electrode and structural mapping in-vivo. A holistic view of AF driver mechanisms may begin to identify the defining characteristics or "fingerprints" of reentrant AF drivers, such as 3D fibrotic architecture, in order to design optimal patient-specific ablation strategies.

  8. Submillimeter wave GaAs Schottky diode application based study and optimization for 0.1-1.5 THz

    Science.gov (United States)

    Jenabi, Sarvenaz; Malekabadi, Ali; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-08-01

    In this paper, a design and optimization method for submillimeter-wave Schottky diode is proposed. Parasitic capacitance is significantly reduced to under 20% of the total capacitance of the diode. The parasitic capacitance value is measured to be 0.6 fF for 1 μm anode radius which increased the cut-off frequency to 1.5 THz. A corresponding microfabrication process that provides higher degrees of freedom for the anode diameter, air-bridge dimensions and distance to the substrate is introduced and implemented. The DC and RF measurements are provided and compared with the simulations. In order to provide a better understanding of the diode behavior, the limiting factors of the cut-off frequency for different applications are studied and compared. For the mixer/multiplier mode, an improved and expanded formulation for calculation of the cut-off frequency is introduced. It is shown that the usable voltage bias range (with acceptable cut-off frequency) is limited by the exponential reduction of junction resistance, Rj , in mixer/multiplier mode.

  9. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  10. The millimeter and sub-millimeter rotational spectrum of triple 13C-substituted ethyl cyanide

    Science.gov (United States)

    Pienkina, A. O.; Margulès, L.; Motiyenko, R. A.; Müller, H. S. P.; Guillemin, J.-C.

    2017-05-01

    Context. A recently published astronomical detection of all three doubly 13C-substituted ethyl cyanides toward Sgr B2(N2) motivated us to investigate triple 13C isotopic species that are expected to be also present in the ISM. Aims: We aim to present an experimental study of the rotational spectrum of triple 13C-substituted ethyl cyanide, 13CH313CH213CN, in the frequency range 150-990 GHz. We want to use the determined spectroscopic parameters for searching for 13CH313CH213CN in ALMA data. The main objective of this work is to provide accurate frequency predictions to search for this molecule in the Galactic center source Sagittarius B2(N) and to facilitate its detection in space. Methods: The laboratory rotational spectrum of 13CH313CH213CN has been recorded with the Lille's fast DDS solid-state spectrometer between 150 GHz and 990 GHz. Results: More than 4000 rotational transitions were identified in the laboratory. The quantum numbers reach J = 115 and Ka = 39. Watson's Hamiltonian in the A and S reductions were used to analyze the spectra. Accurate spectroscopic parameters were determined. The rotational spectra of the 13C containing species CH3CH2CN have been assigned, thus allowing the determination of the rotational and centrifugal distortion constants Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A2

  11. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Aretxaga, I. [Instituto Nacional de Astrofisica, Optica y Electronica, Aptdo. Postal 51 y 216, 72000 Puebla (Mexico); Auld, R.; Dariush, A. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Barton, E.; Cooke, J.; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Beelen, A. [Institut d' Astrophysique spatiale bat 121-Universite Paris-Sud, F-91405 Orsay Cedex (France); Bertoldi, F. [Argelander Institute for Astronomy, Bonn University, Auf dem Huegel 71, D-53121 Bonn (Germany); Bock, J. J.; Bradford, C. M. [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Bonfield, D. [Centre for Astrophysics Research, Science and Technology Research Centre, University of Hertfordshire, Herts AL10 9AB (United Kingdom); Buttiglione, S.; De Zotti, G. [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Cava, A. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, E-38200 La Laguna (Spain); Clements, D. L. [Astrophysics Group, Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Dannerbauer, H. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, DAPNIA/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Dunne, L., E-mail: Roxana.E.Lupu@nasa.gov [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); and others

    2012-10-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.

  12. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Science.gov (United States)

    Leem, Hyun Tae; Choi, Yong; Kim, Kyu Bom; Lee, Sangwon; Yamamoto, Seiichi; Yeom, Jung-Yeol

    2017-02-01

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO4 reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm2 and the size of each LGSO scintillator element was 0.7×0.7×6 mm3. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400-600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  13. Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2017-08-01

    Full Text Available Bacteriophages can be used as antibacterial agents as a form of biological control, e.g., such as phage therapy. With active treatment, phages must “actively” produce new virions, in situ, to attain “inundative” densities, i.e., sufficient titers to eradicate bacteria over reasonable timeframes. Passive treatment, by contrast, can be accomplished using phages that are bactericidal but incapable of generating new phage virions in situ during their interaction with target bacteria. These ideas of active versus passive treatment come from theoretical considerations of phage therapy pharmacology, particularly as developed in terms of phage application to well-mixed cultures consisting of physically unassociated bacteria. Here I extend these concepts to bacteria which instead are physically associated. These are bacteria as found making up cellular arrangements or bacterial microcolonies—collectively, clonal bacterial “clumps”. I consider circumstances where active phage replication would be required to effect desired levels of bacterial clearance, but populations of bacteria nevertheless are insufficiently prevalent to support phage replication to bacteria-inundative densities across environments. Clumped bacteria, however, may still support active treatment at more local, i.e., sub-millimeter, within-clump spatial scales, and potential consequences of this are explored mathematically. Application is to the post-harvest biocontrol of foodborne pathogens, and potentially also to precise microbiome editing. Adequate infection performance by phages in terms of timely burst sizes, that is, other than just adsorption rates and bactericidal activity, thus could be important for treatment effectiveness even if bacterial densities overall are insufficient to support active treatment across environments. Poor phage replication during treatment of even low bacterial numbers, such as given food refrigeration during treatment, consequently could

  14. ALMACAL I: First Dual-band Number Counts from a Deep and Wide ALMA Submillimeter Survey, Free from Cosmic Variance

    Science.gov (United States)

    Oteo, I.; Zwaan, M. A.; Ivison, R. J.; Smail, I.; Biggs, A. D.

    2016-05-01

    We have exploited ALMA calibration observations to carry out a novel, wide, and deep submillimeter (submm) survey, almacal. These calibration data comprise a large number of observations of calibrator fields in a variety of frequency bands and array configurations. By gathering together data acquired during multiple visits to many ALMA calibrators, it is possible to reach noise levels which allow the detection of faint, dusty, star-forming galaxies (DSFGs) over a significant area. In this paper, we outline our survey strategy and report the first results. We have analyzed data for 69 calibrators, reaching depths of ˜25 μJy beam-1 at sub-arcsec resolution. Adopting a conservative approach based on ≥5σ detections, we have found 8 and 11 DSFGs in ALMA bands 6 and 7, respectively, with flux densities S 1.2 mm ≥ 0.2 mJy. The faintest galaxies would have been missed by even the deepest Herschel surveys. Our cumulative number counts have been determined independently at 870 μm and 1.2 mm from a sparse sampling of the astronomical sky, and are thus relatively free of cosmic variance. The counts are lower than reported previously by a factor of at least 2×. Future analyses will yield large, secure samples of DSFGs with redshifts determined via the detection of submm spectral lines. Uniquely, our strategy then allows for morphological studies of very faint DSFGs—representative of more normal star-forming galaxies than conventional submm galaxies—in fields where self-calibration is feasible, yielding milliarcsecond spatial resolution.

  15. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Hyun Tae [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Choi, Yong, E-mail: ychoi@sogang.ac.kr [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Kim, Kyu Bom; Lee, Sangwon [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Yamamoto, Seiichi [Department of Medical Technology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yeom, Jung-Yeol, E-mail: jungyeol@korea.ac.kr [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-21

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO{sub 4} reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm{sup 2} and the size of each LGSO scintillator element was 0.7×0.7×6 mm{sup 3}. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400–600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  16. Comparing submillimeter polarized emission with near-infrared polarization of background stars for the Vela C molecular cloud

    Science.gov (United States)

    Santos, Fabio P.; Ade, Peter; Angilè, Francesco E.; Ashton, Peter; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie; Klein, Jeffrey; Li, Zhi-Yun; Korotkov, Andrei; Martin, Peter G.; Matthews, Tristan; Moncelsi, Lorenzo; nakamura, fumitaka; Barth Netterfield, Calvin; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil; Soler, Juan D.; Thomas, Nicholas; tucker, carole; Tucker, Gregory S.; Ward-Thompson, Derek; BLASTPOL

    2016-06-01

    We present a large-scale combination of near-infrared (near-IR) interstellar polarization data from background starlight, with polarized emission data at sub-millimetric (sub-mm) bands for the Vela C molecular cloud. The sub-mm data were obtained by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) during the 2012 flight in Antartica. The near-IR data consist of more than 6700 detections in the I-band, covering a wide area around the cloud, mostly in the range of visual extinctions between 2 and 16 mag. The main goal was to determine the polarization efficiency ratio Reff , defined as p500/(pI/τV), where p500 is the polarization fraction at 500 μm and optical depths τV are estimated from cataloged near-IR photometry. To ensure that the same column density of material is producing both polarization from emission and extinction, we introduce a new method to select stars that are located in the near-background, the Gaussian-logistic (GL) technique. The polarization efficiency ratio is critically affected by stellar objects with background contamination from the diffuse Galactic material, emphasizing the need for a careful selection. Accounting for the statistical and systematic uncertainties from the GL method, we estimate an average Reff value of 2.4 ± 0.8, which can be used to test dust grain models designed specifically for molecular clouds. Reff appears to be relatively flat as a function of the cloud depth, suggesting that significant grain modification might occur only at higher densities.

  17. The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES

    Directory of Open Access Journals (Sweden)

    P. Baron

    2011-10-01

    Full Text Available This paper describes the algorithms of the level-2 research (L2r processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES. The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. A theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles, temperature and ozone profiles. While pointing information is often retrieved from molecular oxygen lines, there is no oxygen line in the SMILES spectra, so the strong ozone line at 625.371 GHz has been chosen. The pointing parameters and the ozone profiles are retrieved from the line wings which are measured with high signal to noise ratio, whereas the temperature profile is retrieved from the optically thick line center. The main systematic component of the retrieval error was found to be the neglect of the non-linearity of the radiometric gain in the calibration procedure. This causes a temperature retrieval error of 5–10 K. Because of these large temperature errors, it is not possible to construct a reliable hydrostatic pressure profile. However, as a consequence of the retrieval of pointing parameters, pressure induced errors are significantly reduced if the retrieved trace gas profiles are represented on pressure levels instead of geometric altitude levels. Further, various setups of trace gas retrievals have been tested. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows.

  18. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    Science.gov (United States)

    White, S. M.; Iwai, K.; Phillips, N. M.; Hills, R. E.; Hirota, A.; Yagoubov, P.; Siringo, G.; Shimojo, M.; Bastian, T. S.; Hales, A. S.; Sawada, T.; Asayama, S.; Sugimoto, M.; Marson, R. G.; Kawasaki, W.; Muller, E.; Nakazato, T.; Sugimoto, K.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; Remijan, A. J.; de Gregorio, I.; Corder, S. A.; Hudson, H. S.; Loukitcheva, M.; Chen, B.; De Pontieu, B.; Fleishmann, G. D.; Gary, D. E.; Kobelski, A.; Wedemeyer, S.; Yan, Y.

    2017-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at λ = 3 mm and 5900 K at λ = 1.3 mm. These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about 25'', the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

  19. DIRECT DETECTION OF PRECURSORS OF GAS GIANTS FORMED BY GRAVITATIONAL INSTABILITY WITH THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Lucio [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Peters, Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Pineda, Jaime E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Wadsley James; Rogers, Patrick, E-mail: p.rogers@marianopolis.edu [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2016-06-01

    Phases of gravitational instability are expected in the early phases of disk evolution, when the disk mass is still a substantial fraction of the mass of the star. Disk fragmentation into sub-stellar objects could occur in the cold exterior part of the disk. Direct detection of massive gaseous clumps on their way to collapse into gas giant planets would offer an unprecedented test of the disk instability model. Here we use state-of-the-art 3D radiation-hydro simulations of disks undergoing fragmentation into massive gas giants, post-processed with RADMC-3D to produce dust continuum emission maps. These are then fed into the Common Astronomy Software Applications (CASA) ALMA simulator. The synthetic maps show that both overdense spiral arms and actual clumps at different stages of collapse can be detected with the Atacama Large Millimeter/submillimeter Array (ALMA) in the full configuration at the distance of the Ophiuchus star forming region (125 pc). The detection of clumps is particularly effective at shorter wavelengths (690 GHz) combining two resolutions with multi-scale clean. Furthermore, we show that a flux-based estimate of the mass of a protoplanetary clump can be comparable to a factor of three higher than the gravitationally bound clump mass. The estimated mass depends on the assumed opacity, and on the gas temperature, which should be set using the input of radiation-hydro simulations. We conclude that ALMA has the capability to detect “smoking gun” systems that are a signpost of the disk instability model for gas giant planet formation.

  20. Millimeter/Submillimeter Spectroscopy of TiO (X3Δr): The Rare Titanium Isotopologues

    Science.gov (United States)

    Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538 GHz. This study is the first complete spectroscopic characterization of these species in their X 3Δ r ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J + 1 ≤ftrightarrow J were measured for each species, typically in all 3 spin-orbit ladders Ω = 1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I = 5/2 and 7/2, respectively. For the Ω = 1 and 3 components, the hyperfine structure was found to follow a classic Landé pattern, while that for Ω = 2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a 1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis.

  1. A Multiwavelength Study of the Intracluster Medium and the Characterization of the Multiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Siegel, Seth Robert

    The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel'dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample. The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased

  2. Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron

    Science.gov (United States)

    Aripin, Haji; Mitsudo, Seitaro; Sudiana, I. Nyoman; Tani, Shinji; Sako, Katsuhide; Fujii, Yutaka; Saito, Teruo; Idehara, Toshitaka; Sabchevski, Sliven

    2011-06-01

    In this paper, we present and discuss experimental results from a microwave sintering of a silica-glass ceramic, produced from a silica xerogel extracted from a sago waste ash. As a radiation source for the microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of silica xerogel have been dry pressed and then sintered at temperatures ranging from 300°C to 1500°C. The influence of the sintering temperature on the technological properties such as porosity and bulk density was studied in detail. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy have been used in order to study the structure of the produced silica glass-ceramics. It has been found that the silica xerogel crystallizes at a temperature of 800°C, which is about 200°C lower than the one observed in the conventional process. The silica xerogel samples sintered by their irradiation with a sub-millimeter wave at 900°C for 18 minutes are fully crystallized into a silica glass-ceramic with a density of about 2.2 g/cm3 and cristobalite as a major crystalline phase. The results obtained in this study allow one to conclude that the microwave sintering with sub-millimeter waves is an appropriate technological process for production of silica glass-ceramics from a silica xerogel and is characterized with such advantages as shorter times of the thermal cycle, lower sintering temperatures and higher quality of the final product.

  3. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  4. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  5. Modeling solid-to-solid biocatalysis

    NARCIS (Netherlands)

    Michielsen, M.J.F.

    1999-01-01

    In this thesis, a kinetic model is described for the conversion of solid Ca-maleate to solid Ca-D-malate. The reaction is catalysed by maleate hydratase in permeabilized Pseudomonas pseudoalcaligenes and is executed in a batch reactor seeded

  6. THE STAR FORMATION HISTORIES OF z {approx} 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S. [Harvard-Smithsonian Center for Astrophysics, 160 Concord Avenue, Cambridge, MA 02138 (United States); Dey, Arjun; Jannuzi, B. T. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Armus, L.; Desai, V.; Soifer, B. T. [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Brown, M. J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Melbourne, J., E-mail: rbussmann@cfa.harvard.edu [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-01-10

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M{sub *}) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 {mu}m associated with stellar emission ({sup b}ump DOGs{sup )}, while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ({sup p}ower-law DOGs{sup )}. We measure M{sub *} by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M{sub *} values for SMGs, bump DOGs, and power-law DOGs are log(M{sub *}/M{sub Sun }) = 10.42{sup +0.42}{sub -0.36}, 10.62{sup +0.36}{sub -0.32}, and 10.71{sup +0.40}{sub -0.34}, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z {approx} 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z {approx} 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M{sub *}, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  7. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  8. Experimental investigation with respect to the performance of deep submillimeter-scaled textured tools in dry turning titanium alloy Ti-6Al-4V

    Science.gov (United States)

    Li, Ning; Chen, Yongjie; Kong, Dongdong; Tan, Shenglin

    2017-05-01

    Titanium alloy Ti-6Al-4V falls under the category of the most difficult to machine materials due to its inherent high strength maintained at elevated temperature and low thermal conductivity. Based on size effect, the poor machinability may be improved by surface texturing on the tools. Thus, the effect of deep submillimeter-scaled textures on the cutting performance in Ti-6Al-4V turning was investigated. To this end, three kinds of surface textures with different sizes were fabricated using femtosecond laser on rake faces of the uncoated cemented carbide (WC/Co) inserts. Then, dry cutting experiments were conducted with these textured inserts and conventional inserts under the condition of cutting speed Vc = 50m/min, depth of cut ap = 2 mm, and feed rate f = 0.3 mm/rev. The cutting performance is evaluated in terms of cutting forces, coefficient of friction at the tool-chip interface. Results obtained in this work show the feasibility of fabricating deep submillimeter-scaled textures on tool rake face to improve the machinability of Ti-6Al-4V. The parallel type of textured tool P01 demonstrates the best performance in both reducing cutting force and improving the friction properties on the rake face. This result can be explained by the reduced tool-chip contact area and the ploughing effect.

  9. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  10. Organic and Related Solids

    Indian Academy of Sciences (India)

    Administrator

    Organic solid state is a fascinating area of current research. The design of such solids follows the well laid principles based on inter-molecular interactions and establishes the relationships between the structures of a molecular solid and its properties. The term. 'Crystal Engineering' is now well-established in the ...

  11. Solid state phenomena

    CERN Document Server

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  12. TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics

    Science.gov (United States)

    Caux, E.; Kahane, C.; Castets, A.; Coutens, A.; Ceccarelli, C.; Bacmann, A.; Bisschop, S.; Bottinelli, S.; Comito, C.; Helmich, F. P.; Lefloch, B.; Parise, B.; Schilke, P.; Tielens, A. G. G. M.; van Dishoeck, E.; Vastel, C.; Wakelam, V.; Walters, A.

    2011-08-01

    Context. Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. Aims: While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high mass protostars, very little exists on low mass protostars, which are believed to resemble our own Sun's progenitor. To help fill up this gap in our understanding, we carried out a complete spectral survey of the bands at 3, 2, 1, and 0.9 mm towards the solar type protostar IRAS 16293-2422. Methods: The observations covered a range of about 200 GHz and were obtained with the IRAM-30 m and JCMT-15 m telescopes during about 300 h of observations. Particular attention was devoted to the inter-calibration of the acquired spectra with previous observations. All the lines detected with more than 3σ confidence-interval certainty and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Results: More than 4000 lines were detected (with σ ≥ 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (about two-thirds) of the lines are weak and produced by complex organic molecules. The analysis of the profiles of more than 1000 lines belonging to 70 species firmly establishes the presence of two distinct velocity components associated with the two objects, A and B, forming the IRAS 16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 M⊙ object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 M⊙. The difference in the rest velocities

  13. THE SCUBA-2 COSMOLOGY LEGACY SURVEY: ALMA RESOLVES THE REST-FRAME FAR-INFRARED EMISSION OF SUB-MILLIMETER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Chen, Chian-Chou; Danielson, A. L. R.; Edge, A. C.; Ma, C.-J. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Almaini, O.; Conselice, C.; Hartley, W. G.; Lani, C. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Bremer, M. N.; Coppin, K. E. K. [School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Dunlop, J. S.; Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford HIll, Edinburgh EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Geach, J. E. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Karim, A., E-mail: j.m.simpson@dur.ac.uk [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2015-01-20

    We present high-resolution (0.''3) Atacama Large Millimeter Array 870 μm imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey field to investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2-10 kpc scales. We derive a median intrinsic angular size of FWHM = 0.''30 ± 0.''04 for the 23 SMGs in the sample detected at a signal-to-noise ratio (S/N) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4 ± 0.2 kpc. A stacking analysis of the SMGs detected at S/N <10 shows they have sizes consistent with the 870 μm bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ∼250 μm sizes of SMGs are consistent with studies of resolved {sup 12}CO (J = 3-2 to 7-6) emission lines, but that sizes derived from 1.4 GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kiloparsecs in extent, with a median star formation rate surface density of 90 ± 30 M {sub ☉} yr{sup –1} kpc{sup –2}, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.

  14. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  15. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  16. Millimeter and submillimeter wave ESR measurement of Ho{sub 2}Cu{sub 2}O{sub 5} aligned powder sample

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, S. [Kobe Univ., Graduate School of Science and Technology, Kobe, Hyogo (Japan); Goto, T.; Tanaka, T.; Ohta, H. [Kobe Univ. (Japan). Dept. of Physics; Mogi, I.; Watanabe, K.; Motokawa, M. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1999-07-01

    To gain information of anisotropy of Ho{sub 2}Cu{sub 2}O{sub 5} the aligned powder sample was prepared under the static high magnetic field of 5T. Millimeter and submillimeter wave ESR measurements of aligned Ho{sub 2}Cu{sub 2}O{sub 5} samples have been performed for the first time in the frequency region from 50 to 430 GHz using the pulsed magnetic field up to 16T at 1.8K. Antiferromagnetic resonances were observed clearly at 1.8K. AFMR modes of easy axis change at two critical fields. The temperature dependence measurements were also performed and the Neel temperature of the system is discussed. (author)

  17. Scanning SQUID microscopy as a new tool for sub-millimeter scale magnetostratigraphy: An application to unveil the growth process of marine ferromanganese crusts and its future potential

    Science.gov (United States)

    Oda, H.; Noguchi, A.; Yamamoto, Y.; Usui, A.; Sato, M.; Kawai, J.

    2016-12-01

    Scanning SQUID microscope, a new developing tool for paleomagnetists, enables us to map magnetic field on surfaces of geological samples or thin sections at sub-millimeter scale and provides opportunity to conduct magnetostratigraphy with an unprecedented resolution. In the presentation, we show an example of sub-millimeter scale magnetostratigraphy with a newly developed scanning SQUID (superconducting quantum interference device) microscope (SSM) at Geological Survey, AIST (Kawai et al., 2016; Oda et al., submitted). Marine ferromanganese crusts grow very slowly throughout the global ocean by direct precipitation typically on seamounts for more than several tens of millions of years, which can be considered as archives of paleoclimate and paleoceanography.In order to uncover the history of paleoenvironment recorded in the ferromanganese cursts, it is very important to provide their reliable age models and growth rates. Previous studies have shown universal applicability of magnetostratigraphy in estimating growth ages of ferromanganese crust (Oda et al., 2011; Noguchi et al., in press). A thin section of a ferromanganese crust sample from Takuyo-Daigo seamount in northwest Pacific was used for the mapping of magnetic field with the SSM, where minimum amount of dust and sediment are expected to come from continents. The result shows that average growth rate of the ferromanganese crust from this seamount is 3.56 ± mm/m.y., which is within 17.6% of that deduced from the 10Be/9Be dating method (2.93 ±0.15 mm/m.y.). Although the mechanism of remanent magnetization acquisition for ferromanganese crusts need to be investigated further, the magnetic stripes parallel to the growth pattern observed on optical and backscattered electron images promises the future possibilities to provide a quick tool to estimate ages and growth rates for ferromanganese crusts. Finally, it can be concluded that SSM could be a fundamental tool for paleomagnetists in providing avenue to

  18. TU-H-CAMPUS-TeP2-03: High Sensitivity and High Resolution Fiber Based Micro-Detector for Sub-Millimeter Preclinical Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, E; Pokhrel, S; Knewtson, T [University of Tennessee Medical Science Center, Memphis, TN (United States); University of Missouri, Columbia, MO (United States); Hedrick, S [Provision Center for Proton Therapy, Knoxville, TN (United States)

    2016-06-15

    Purpose: Current precision of small animal and cell micro-irradiators has continuously increased during the past years. Currently, preclinical irradiators can deliver sub-millimeter fields with micrometric precision but there are no water equivalent dosimeters to determine small field profiles and dose in the orthovoltage range of energies with micrometric resolution and precision. We have developed a fiber based micro-dosimeter with the resolution and dosimetric accuracy required for radiobiological research. Methods: We constructed two prototypes of micro-dosimeters based on different compositions of fiber scintillators to study the spatial resolution and dosimetric precision of small animal and cell micro-irradiators. The first has green output and the second has blue output. The blue output dosimeter has the highest sensitivity because it matches the spectral sensitivity of silicon photomultipliers. A blue detector with 500um cross section was built and tested respect to a CC01 ion chamber, film, and the 1500um green output detector. Orthovoltage fields from 1×1mm2 to 5×5mm2 were used for detector characteristics comparison. Results: The blue fiber dosimeter shows great agreement with films and matches dose measurements with the gold-standard ion chamber for 5×5mm2 fields. The detector has the appropriate sensitivity to measure fields from 1×1mm2 to larger sizes with a 1% dosimetric accuracy. The spatial resolution is in the sub-millimeter range and the spectral matching with the photomultiplier allows reducing the sensor cross section even further than the presented prototype. These results suggest that scintillating fibers combined with silicon photomultipliers is the appropriate technology to pursue micro-dosimetry for small animals and disperse cell samples. Conclusion: The constructed detectors establish a new landmark for the resolution and sensitivity of fiber based microdetectors. The validation of the detector in our small animal and cell

  19. Applied mechanics of solids

    CERN Document Server

    Bower, Allan F

    2009-01-01

    Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based. Develop Intuitive Ability to Identify and Avoid Physically Meaningless Predictions Applied Mechanics of Solids is a powerful tool for understanding how to take advantage of these revolutionary computer advances in the field of solid mechanics. Beginning with a description of the physical and mathematical laws that govern deformation in solids, the text presents modern constitutive equations, as well as analytical and computational methods of stress analysis and fracture mechanics. It also addresses the nonlinear theory of deformable rods, membranes, plates, and shells, and solutions to important boundary and initial value problems in solid mechanics. The author uses the step-by-step manner of a blackboard lecture to explain problem solving methods, often providing...

  20. Applications in solid mechanics

    DEFF Research Database (Denmark)

    Ølgaard, Kristian Breum; Wells, Garth N.

    2012-01-01

    or linearized kinematics, and the constitutive model for determining the stress. For some common models, the constitutive relationships are rather complex. This chapter addresses a number of canonical solid mechanics models in the context of automated modeling, and focuses on some pertinent issues that arise......Problems in solid mechanics constitute perhaps the largest field of application of finite element methods. The vast majority of solid mechanics problems involve the standard momentum balance equation, posed in a Lagrangian setting, with different models distinguished by the choice of nonlinear...

  1. Low-Dimensional Solids

    CERN Document Server

    Bruce, Duncan W; O'Hare, Dermot

    2010-01-01

    With physical properties that often may not be described by the transposition of physical laws from 3D space across to 2D or even 1D space, low-dimensional solids exhibit a high degree of anisotropy in the spatial distribution of their chemical bonds. This means that they can demonstrate new phenomena such as charge-density waves and can display nanoparticulate (0D), fibrous (1D) and lamellar (2D) morphologies. Low-Dimensional Solids presents some of the most recent research into the synthesis and properties of these solids and covers: Metal Oxide Nanoparticles; Inorganic Nanotubes and Nanowir

  2. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  3. Aluminum Doped Parahydrogen Solids

    National Research Council Canada - National Science Library

    Fajardo, Mario

    2001-01-01

    ...) solids doped with large (- 1 %) concentrations of Al atoms. We incorporated into our apparatus a commercially available effusive Al atom source capable of delivering Al atom fluxes in excess of 10(exp 17...

  4. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  5. Solids Accumulation Scouting Studies

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  6. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  7. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  8. Organic Molecular Solids

    CERN Document Server

    Schwoerer, Marcus

    2007-01-01

    This is the first comprehensive textbook on the physical aspects of organic solids. All phenomena which are necessary in order to understand modern technical applications are being dealt with in a way which makes the concepts of the topics accessible for students. The chapters - from the basics, production and characterization of organic solids and layers to organic semiconductors, superconductors and opto-electronical applications - have been arranged in a logical and well thought-out order.

  9. Lyophilization -Solid Waste Treatment

    Science.gov (United States)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  10. A system for measuring complex dielectric properties of thin films at submillimeter wavelengths using an open hemispherical cavity and a vector network analyzer

    Science.gov (United States)

    Rahman, Rezwanur; Taylor, P. C.; Scales, John A.

    2013-08-01

    Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006);, 10.1063/1.2172403 R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982);, 10.1088/0022-3735/15/1/002 T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)], 10.1109/19.516996. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10-5) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm-1) down to 104 GHz (3.12 cm-1).

  11. Measurement of stratospheric and mesospheric winds with a submillimeter wave limb sounder: results from JEM/SMILES and simulation study for SMILES-2

    Science.gov (United States)

    Baron, Philippe; Manago, Naohiro; Ozeki, Hiroyuki; Irimajiri, Yoshihisa; Murtagh, Donal; Uzawa, Yoshinori; Ochiai, Satoshi; Shiotani, Masato; Suzuki, Makoto

    2015-10-01

    Satellite missions for measuring winds in the troposphere and thermosphere will be launched in a near future. There is no plan to observe winds in the altitude range between 30-90 km, though middle atmospheric winds are recognized as an essential parameter in various atmospheric research areas. Sub-millimetre limb sounders have the capability to fill this altitude gap. In this paper, we summarize the wind retrievals obtained from the Japanese Superconducting Submillimeter Wave Limb Emission Sounder (SMILES) which operated from the International Space Station between September 2009 and April 2010. The results illustrate the potential of such instruments to measure winds. They also show the need of improving the wind representation in the models in the Tropics, and globally in the mesosphere. A wind measurement sensitivity study has been conducted for its successor, SMILES-2, which is being studied in Japan. If it is realized, sub-millimeter and terahertz molecular lines suitable to determine line-of-sight winds will be measured. It is shown that with the current instrument definition, line-of-sight winds can be observed from 20 km up to more than 160 km. Winds can be retrieved with a precision better than 5 ms-1 and a vertical resolution of 2-3 km between 35-90 km. Above 90 km, the precision is better than 10 ms-1 with a vertical resolution of 3-5 km. Measurements can be performed day and night with a similar sensitivity. Requirements on observation parameters such as the antenna size, the satellite altitude are discussed. An alternative setting for the spectral bands is examined. The new setting is compatible with the general scientific objectives of the mission and the instrument design. It allows to improve the wind measurement sensitivity between 35 to 90 km by a factor 2. It is also shown that retrievals can be performed with a vertical resolution of 1 km and a precision of 5-10 ms-1 between 50 and 90 km.

  12. TU-F-CAMPUS-T-02: Vernier Picket Fence Test: A Non-Imaging Method to Localize the Radiation Isocenter with Submillimeter Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J; Gallagher, K [Oregon Health & Science University, Portland, OR (United States); Oregon State University, Corvallis, OR (United States); Zhang, J [Oregon Health & Science University, Portland, OR (United States)

    2015-06-15

    Purpose: The purpose of this study is to propose a new non-imaging method to localize the radiation isocenter with submillimeter accuracy. Methods: The Vernier picket fence (VPF) is a multileaf collimator (MLC) picket fence sequence in which the fence spacing is 1/N smaller than the detector spacing of the QA phantom, where N is the magnification factor, typically set to 10 or 20. Similar to reading a Vernier caliper, the user can easily achieve the resolution of 1/N of the detector spacing by visually inspecting the maximum signal. To achieve higher accuracy, a Gaussian model was used to interpolate the peak position, which can fall between adjacent detectors. In two separate tests, precise MLC offsets and imprecise couch offsets were applied to a 2D detector array (MapCheck, Sun Nuclear Corp., Melbourne, Florida) to introduce setup errors. Two vertical VPF fields were delivered with collimator angles at 0° and 90° to detect the lateral and longitudinal setup errors, respectively. For a rotational QA phantom, an additional lateral VPF field is needed to detect the vertical setup error for three-dimensional capabilities. Results: With N set to 20 and a detector spacing of 5 mm for MapCheck, the resolution of the VPF’s visual analysis is 0.25 mm. With the Gaussian interpretation, the VPF can achieve an accuracy of 0.02 mm, as shown by the MLC offset test. The couch offset test measured the couch hysteresis and demonstrated that the setup error detected by the VPF differed from the ExacTrac™ (Brainlab AG, Feldkirchen, Germany) optical tracking by 0.055 mm in the lateral direction and 0.041 mm in the longitudinal direction on average. The VPF was also shown to be feasible in the vertical direction as well. Conclusion: This study verified the VPF as a non-imaging method to localize the radiation isocenter with submillimeter accuracy. Funding is in part by the Portland Chapter of the Achievement Rewards for College Scientists. The content is solely the

  13. PNIPAM Poly (N-isopropylacrylamide): A Thermoresponsive “Smart ...

    African Journals Online (AJOL)

    Over the past years, extensive research has been carried out in designing and optimizing various drug delivery systems in order to maximize therapeutic effect and minimize unwanted effects of drugs. Many drug carrier systems have been developed on the basis of nanotechnology including systems based on polymeric ...

  14. Cogasification of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.; Jurczyk, K.; Mullin, J. [Univ. of Florida, Gainesville, FL (United States); Zanardi, M. [Sao Paulo State Univ., Guaratingueta, Sao Paulo (Brazil). Energy Dept.; Peres, S. [Univ. of Pernambuco, Recife (Brazil)

    1996-12-31

    High efficiency gas turbine based systems, utility deregulation and more stringent environmental regulations strongly favor the use of natural gas over coal and other solid fuels in new electricity generators. Solid fuels could continue to compete, however, if a low cost gasifier fed by low cost feedstocks can be coupled with a gas turbine system. The authors examine on-site gasification of coal with other domestic fuels in an indirectly heated gasifier as a strategy to lower the costs of solid fuel systems. The systematics of gaseous pyrolysis yields assembled with the help of thermal measurement data and molecular models suggests blending carbonaceous fuels such as coal, coke or char with oxygenated fuels such as biomass, RDF, MSW, or dried sewage sludge. Such solid fuel blending can, with the help of inexpensive catalysts, achieve an optimum balance of volatiles, heating values and residual char thus reducing the technical demands upon the gasifier. Such simplifications should lower capital and operating costs of the gasifier to the mutual benefit of both solid fuel communities.

  15. SUBMILLIMETER ARRAY OBSERVATIONS OF MAGNETIC FIELDS IN G240.31+0.07: AN HOURGLASS IN A MASSIVE CLUSTER-FORMING CORE

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Liu, Hauyu B.; Tang, Ya-Wen [Academia Sinica Institute of Astronomy and Astrophysics, P. O. Box 23-141, Taipei 106, Taiwan (China); Girart, Josep M., E-mail: kpqiu@nju.edu.cn [Institut de Ciències de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain)

    2014-10-10

    We report the first detection of an hourglass magnetic field aligned with a well-defined outflow rotation system in a high-mass, star-forming region. The observations were performed with the Submillimeter Array toward G240.31+0.07, which harbors a massive, flattened, and fragmenting molecular cloud core and a wide-angle bipolar outflow. The polarized dust emission at 0.88 mm reveals a clear hourglass-shaped magnetic field aligned within 20° of the outflow axis. Maps of high-density tracing spectral lines, e.g., H{sup 13}CO{sup +} (4-3), show that the core is rotating about its minor axis, which is also aligned with the magnetic field axis. Therefore, both the magnetic field and kinematic properties observed in this region are surprisingly consistent with the theoretical predictions of the classic paradigm of isolated low-mass star formation. The strength of the magnetic field in the plane of sky is estimated to be ∼1.1 mG, resulting in a mass-to-magnetic flux ratio of 1.4 times the critical value and a turbulent-to-ordered magnetic energy ratio of 0.4. We also find that the specific angular momentum almost linearly decreases from r ∼ 0.6 pc to 0.03 pc scales, which is most likely attributed to magnetic braking.

  16. Reactions at Solid Surfaces

    CERN Document Server

    Ertl, Gerhard

    2009-01-01

    Expanding on the ideas first presented in Gerhard Ertl's acclaimed Baker Lectures at Cornell University, Reactions at Solid Surfaces comprises an authoritative, self-contained, book-length introduction to surface reactions for both professional chemists and students alike. Outlining our present understanding of the fundamental processes underlying reactions at solid surfaces, the book provides the reader with a complete view of how chemistry works at surfaces, and how to understand and probe the dynamics of surface reactions. Comparing traditional surface probes with more modern ones, and brin

  17. Photochemistry on solid surfaces

    CERN Document Server

    Matsuura, T

    1989-01-01

    The latest developments in photochemistry on solid surfaces, i.e. photochemistry in heterogeneous systems, including liquid crystallines, are brought together for the first time in a single volume. Distinguished photochemists from various fields have contributed to the book which covers a number of important applications: molecular photo-devices for super-memory, photochemical vapor deposition to produce thin-layered electronic semiconducting materials, sensitive optical media, the control of photochemical reactions pathways, etc. Photochemistry on solid surfaces is now a major field and this

  18. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  19. Hybrid elastic solids

    KAUST Repository

    Lai, Yun

    2011-06-26

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  20. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  1. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  2. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  3. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  4. Introducing solid foods

    African Journals Online (AJOL)

    To encourage and establish healthy eating habits, parents and caregivers should offer a wide variety of dark green, leafy and deep yellow vegetables and colourful fruits. Pure fruit juices (115-170 ml/day) may be introduced into the diet after six months of age.14. Introducing solid foods. Lombard MJ, PhD, NICUS Manager, ...

  5. Sheared solid materials

    Indian Academy of Sciences (India)

    Abstract. We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation ...

  6. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  7. Current Solid Mechanics Research

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    About thirty years ago James Lighthill wrote an essay on “What is Mechanics?” With that he also included some examples of the applications of mechanics. While his emphasis was on fluid mechanics, his own research area, he also included examples from research activities in solid mechanics....

  8. SolidWorks Administration Bible

    CERN Document Server

    Lombard, Matt

    2009-01-01

    What you need to prepare, install, and maintain SolidWorks. It's not enough to know how to use SolidWorks, if your job also requires you to install or maintain it, train new users, and implement standards. This in-depth guide was written for those of you who have to actually manage your company's SolidWorks system. From hardware selection to helping users to licensing and more, this is the everyday, bread-and-butter SolidWorks administration resource that IT and CAD managers have been seeking.:; SolidWorks is a powerful 3D solid modeling system that is popular with CAD users everywhere, but of

  9. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  10. Study of radiation chemistry in solids using solid hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    Having simple and highly symmetric structure, solid hydrogen is a useful matrix on the study of radiation-chemical processes in solid phase which have been less understood in previous studies. We have found three outstanding findings: resonance effects on the tunneling reaction H+H{sub 2} {yields} H{sub 2} + H, effects of pressure on the dissociation and recombination of H{sub 2} molecules in solid hydrogen, and high-resolution ESR spectroscopy using a solid parahydrogen matrix. (author)

  11. A novel gamma-ray detector with submillimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T., E-mail: katou.frme.8180@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Nakamori, T.; Miura, T.; Matsuda, H.; Kishimoto, A. [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo (Japan); Sato, K.; Ishikawa, Y.; Yamamura, K.; Nakamura, S.; Kawabata, N. [Solid State Division, Hamamatsu Photonics K. K., 1126-1, Ichino-cho, Hamamatsu, Shizuoka (Japan); Ikeda, H. [ISAS/JAXA, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara-shi, Kanagawa (Japan); Yamamoto, S. [Kobe City College of Technology, 8-3, Gakuenhigashimati, Nishi-ku, Kobe-shi, Hyougo 651-2194 (Japan); Kamada, K. [Materials Research Laboratory, Furukawa Co., Ltd., 1-25-13, Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2013-01-21

    We have developed a large-area monolithic Multi-Pixel Photon Counter (MPPC) array consisting of 4×4 channels with a three-side buttable package. Each channel has a photosensitive area of 3×3 mm{sup 2} and 3600 Geiger mode avalanche photodiodes (APDs). For typical operational gain of 7.5×10{sup 5} at +20 °C, gain fluctuation over the entire MPPC device is only ±5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤400kcps per channel. We first fabricated a gamma-ray camera consisting of the MPPC array with one-to-one coupling to a Ce-doped (Lu,Y){sub 2}(SiO{sub 4})O (Ce:LYSO) crystal array (4×4 array of 3×3×10 mm{sup 3} crystals). Energy and time resolutions of 11.5±0.5% (FWHM at 662 keV) and 493±22ps were obtained, respectively. When using the charge division resistor network, which compiles signals into four position-encoded analog outputs, the ultimate positional resolution is estimated as 0.19 mm in both X and Y directions, while energy resolution of 10.2±0.4% (FWHM) was obtained. Finally, we fabricated submillimeter Ce:LYSO and Ce-doped Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12} (Ce:GGAG) scintillator matrices each consisting of 1.0×1.0, 0.7×0.7 and 0.5×0.5 mm{sup 2} pixels, to further improve the spatial resolution. In all types of Ce:LYSO and Ce:GGAG matrices, each crystal was clearly resolved in the position histograms when irradiated by a {sup 137}Cs source. The energy resolutions for 662 keV gamma-rays for each Ce:LYSO and Ce:GGAG scintillator matrix were ≤14.3%. These results suggest excellent potential for its use as a high spatial medical imaging device, particularly in positron emission tomography (PET). -- Highlights: ► We developed a newly designed large-area monolithic MPPC array. ► We obtained fine gain uniformity, and good energy and time resolutions when coupled to the LYSO scintillator. ► We fabricated gamma-ray camera consisting of the MPPC array and submillimeter pixelized LYSO and GGAG scintillators. ► In

  12. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Gary A. [Hanford Site (HNF), Richland, WA (United States)

    2015-03-09

    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  13. The rotational spectrum of CuCCH(X~ 1Σ+): A Fourier transform microwave discharge assisted laser ablation spectroscopy and millimeter/submillimeter study

    Science.gov (United States)

    Sun, M.; Halfen, D. T.; Min, J.; Harris, B.; Clouthier, D. J.; Ziurys, L. M.

    2010-11-01

    The pure rotational spectrum of CuCCH in its ground electronic state (X˜ Σ1+) has been measured in the frequency range of 7-305 GHz using Fourier transform microwave (FTMW) and direct absorption millimeter/submillimeter methods. This work is the first spectroscopic study of CuCCH, a model system for copper acetylides. The molecule was synthesized using a new technique, discharge assisted laser ablation spectroscopy (DALAS). Four to five rotational transitions were measured for this species in six isotopologues (C63uCCH, C65uCCH, C63uC13CH, C63uCC13H, C63uC13C13H, and C63uCCD); hyperfine interactions arising from the copper nucleus were resolved, as well as smaller splittings in CuCCD due to deuterium quadrupole coupling. Five rotational transitions were also recorded in the millimeter region for C63uCCH and C65uCCH, using a Broida oven source. The combined FTMW and millimeter spectra were analyzed with an effective Hamiltonian, and rotational, electric quadrupole (Cu and D) and copper nuclear spin-rotation constants were determined. From the rotational constants, an rm(2) structure for CuCCH was established, with rCuC=1.8177(6) Å, rCC=1.2174(6) Å, and rCH=1.046(2) Å. The geometry suggests that CuCCH is primarily a covalent species with the copper atom singly bonded to the CCH moiety. The copper quadrupole constant indicates that the bonding orbital of this atom may be sp hybridized. The DALAS technique promises to be fruitful in the study of other small, metal-containing molecules of chemical interest.

  14. The rotational spectrum of CuCCH(X̃  1Σ+): a Fourier transform microwave discharge assisted laser ablation spectroscopy and millimeter/submillimeter study.

    Science.gov (United States)

    Sun, M; Halfen, D T; Min, J; Harris, B; Clouthier, D J; Ziurys, L M

    2010-11-07

    The pure rotational spectrum of CuCCH in its ground electronic state (X̃  (1)Σ(+)) has been measured in the frequency range of 7-305 GHz using Fourier transform microwave (FTMW) and direct absorption millimeter/submillimeter methods. This work is the first spectroscopic study of CuCCH, a model system for copper acetylides. The molecule was synthesized using a new technique, discharge assisted laser ablation spectroscopy (DALAS). Four to five rotational transitions were measured for this species in six isotopologues ((63)CuCCH, (65)CuCCH, (63)Cu(13)CCH, (63)CuC(13)CH, (63)Cu(13)C(13)CH, and (63)CuCCD); hyperfine interactions arising from the copper nucleus were resolved, as well as smaller splittings in CuCCD due to deuterium quadrupole coupling. Five rotational transitions were also recorded in the millimeter region for (63)CuCCH and (65)CuCCH, using a Broida oven source. The combined FTMW and millimeter spectra were analyzed with an effective Hamiltonian, and rotational, electric quadrupole (Cu and D) and copper nuclear spin-rotation constants were determined. From the rotational constants, an r(m)(2) structure for CuCCH was established, with r(Cu-C) = 1.8177(6) Å, r(C-C) = 1.2174(6) Å, and r(C-H) = 1.046(2) Å. The geometry suggests that CuCCH is primarily a covalent species with the copper atom singly bonded to the C≡C-H moiety. The copper quadrupole constant indicates that the bonding orbital of this atom may be sp hybridized. The DALAS technique promises to be fruitful in the study of other small, metal-containing molecules of chemical interest.

  15. Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI.

    Science.gov (United States)

    Kemper, Valentin G; De Martino, Federico; Vu, An T; Poser, Benedikt A; Feinberg, David A; Goebel, Rainer; Yacoub, Essa

    2015-01-01

    Functional magnetic resonance imaging (fMRI) allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD) contrast employing T(*) 2 weighted 2D multi-slice echo-planar imaging (EPI). At ultra-high magnetic field (i.e., 7 T and above), it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE) and 2D Spin-Echo EPI (SE-EPI), with evaluation of their imaging point-spread function (PSF), functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging PSF revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction) was about 60% higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction). In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio (tSNR). High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T(*) 2 contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.

  16. Solid residues; Os residuos solidos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This chapter gives a general overview on the general effects of the solid waste pollution, the principal pollutants emitted by the oil refineries, control actions for the solid waste emissions, the minimization actions, and the effluent treatment.

  17. Fracture of brittle solids

    CERN Document Server

    Lawn, Brian

    1993-01-01

    This is an advanced text for higher degree materials science students and researchers concerned with the strength of highly brittle covalent-ionic solids, principally ceramics. It is a reconstructed and greatly expanded edition of a book first published in 1975. The book presents a unified continuum, microstructural and atomistic treatment of modern day fracture mechanics from a materials perspective. Particular attention is directed to the basic elements of bonding and microstructure that govern the intrinsic toughness of ceramics. These elements hold the key to the future of ceramics as high-technology materials--to make brittle solids strong, we must first understand what makes them weak. The underlying theme of the book is the fundamental Griffith energy-balance concept of crack propagation. The early chapters develop fracture mechanics from the traditional continuum perspective, with attention to linear and nonlinear crack-tip fields, equilibrium and non-equilibrium crack states. It then describes the at...

  18. Acoustics of solids

    CERN Document Server

    Beltzer, Abraham I

    1988-01-01

    Technological developments in composite materials, non-destructive testing, and signal processing as well as biomedical applications, have stimulated wide-ranging engineering investigations of heterogeneous, anisotropic media and surface waves of different types. Wave propagation in solids is now of considerable importance in a variety of applications. The book presents many of the key results in this field and interprets them from a unified engineering viewpoint. The conceptual importance and relevance for applications were the prevailing criteria in selecting the topics. Included are body and surface waves in elastic, viscoelastic, and piezoelectric media and waveguides, with emphasis on the effects of inhomogeneity and anisotropy. The book differs in many aspects from the other monographs dealing with wave propagation in solids. It focuses on physically meaningful theoretical models, a broad spectrum of which is covered, and not on mathematical techniques. Some of the results, particularly those dealing wi...

  19. Edge remap for solids

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  20. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  1. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  2. Compressibility of solids

    Science.gov (United States)

    Vinet, P.; Ferrante, J.; Rose, J. H.; Smith, J. R.

    1987-01-01

    A universal form is proposed for the equation of state (EOS) of solids. Good agreement is found for a variety of test data. The form of the EOS is used to suggest a method of data analysis, which is applied to materials of geophysical interest. The isothermal bulk modulus is discussed as a function of the volume and of the pressure. The isothermal compression curves for materials of geophysical interest are examined.

  3. Solid waste handling

    Energy Technology Data Exchange (ETDEWEB)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  4. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  5. Conformal solids and holography

    Science.gov (United States)

    Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R.

    2017-12-01

    We argue that a SO( d) magnetic monopole in an asymptotically AdS space-time is dual to a d-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration solidon. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary — the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.

  6. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local

  7. Solid Oxide Fuel Cells

    Science.gov (United States)

    Brown, Jack T.

    Solid oxide fuel cells offer the potential for high efficiency, low cost electric power plants for many applications. The fuel cell generator Itself is an all solid state reactor operating at about 1000°C, which produces direct current electricity from the conversion of the energy in gaseous fuel by an electrochemical reaction with the oxygen in air. System studies have shown 50-60 percent efficiency can be obtained in multi-megawatt all electric power plants in which the high quality exhaust heat is used to produce electricity In a bottoming cycle. Alternatively the exhaust heat can be used in Industrial and commercial co-generation systems for space cooling or raising high pressure steam. Space based and military applications for electric power plants have been proposed with high power per unit weight and volume designs which use hydrogen fuel and pure oxygen. Truly significant accomplishments have been made in the 1980's in the technological development of the special materials and processes for producing them for the various cell designs and in the conception of device designs. These advancements were due to the fundamental work of the several decades earlier. In 1986 through 1988 experimental test units in the several hundred to several thousand watt sizes have been designed, fabricated, shipped, and tested for thousands of hours by user organizations in the United States and Japan. The extent of the commercial market for Solid Oxide fuel cells for various applications, vis-a-vis alternate electrical generation options, will depend on what system capital cost can be achieved.

  8. Solid phase transformations

    CERN Document Server

    Čermák, J

    2008-01-01

    This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n

  9. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  10. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  11. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  12. Solid phase transformations II

    CERN Document Server

    Čermák, J

    2009-01-01

    This topical volume includes ten invited papers that cover selected areas of the field of solid phase transformations. The first two contributions represent a burgeoning branch; that of the computer simulation of physical phenomena. The following three articles deal with the thermodynamics of phase transformations as a basic theory for describing the phenomenology of phase changes in matter. The next paper describes the interconnections between structural stability and the electronic structure of phases. Two further articles are devoted to displacive transformations; a field where there are ma

  13. Solid-phase microextraction

    DEFF Research Database (Denmark)

    Nilsson, Torben

    and organophosphate pesticides and triazine herbicides together with their metabolites in aqueous samples. SPME combined with gas chromatography proved to be a precise, accurate and sensitive technique for water analysis. Also SPME combined with high performance liquid chromatography was tested, and a method......The objective of this study has been to develop new analytical methods using the rapid, simple and solvent-free extraction technique solid-phase microextraction (SPME) for the quantitative analysis of organic pollutants at trace level in drinking water and environmental samples. The dynamics...

  14. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  15. Solid Earth: The priorities

    Science.gov (United States)

    Paquet, P.

    1991-10-01

    The European Space Agency's strategy concerning the solid Earth program is reviewed. Improvement of current knowledge of the global geopotential fields, both gravity and magnetic, was stressed as the highest priority. It was agreed that the objectives and goals of the planned Aristoteles mission correspond to this priority, and the need to realize this part of the program was stated. The interdisciplinary links of the program were identified, and it was decided that this program could make substantial contributions to research of oceans, climate and global change, atmosphere, ice and land surfaces.

  16. Solid medical waste

    DEFF Research Database (Denmark)

    Udofia, Emilia Asuquo; Gulis, Gabriel; Fobil, Julius

    2017-01-01

    BACKGROUND: Solid medical waste (SMW) in households is perceived to pose minimal risks to the public compared to SMW generated from healthcare facilities. While waste from healthcare facilities is subject to recommended safety measures to minimize risks to human health and the environment, similar......-demographic characteristics, medication related practices, the belief that one is at risk of diseases associated with SMW, SMW disposal practices and reported harm associated with SMW at home and in the community. RESULTS: Eighty percent and 89% of respondents discarded unwanted medicines and sharps in household refuse bins...

  17. Hopping transport in solids

    CERN Document Server

    Pollak, M

    1991-01-01

    The hopping process, which differs substantially from conventional transport processes in crystals, is the central process in the transport phenomena discussed in this book. Throughout the book the term ``hopping'' is defined as the inelastic tunneling transfer of an electron between two localized electronic states centered at different locations. Such processes do not occur in conventional electronic transport in solids, since localized states are not compatible with the translational symmetry of crystals.The rapid growth of interest in hopping transport has followed in the footsteps of the

  18. Physics of solids

    CERN Document Server

    Ketterson, John B

    2016-01-01

    This comprehensive text covers the basic physics of the solid state starting at an elementary level suitable for undergraduates but then advancing, in stages, to a graduate and advanced graduate level. In addition to treating the fundamental elastic, electrical, thermal, magnetic, structural, electronic, transport, optical, mechanical and compositional properties, we also discuss topics like superfluidity and superconductivity along with special topics such as strongly correlated systems, high-temperature superconductors, the quantum Hall effects, and graphene. Particular emphasis is given to so-called first principles calculations utilizing modern density functional theory which for many systems now allow accurate calculations of the electronic, magnetic, and thermal properties.

  19. Quantum theory of solids

    CERN Document Server

    Peierls, Rudolf Ernst

    1955-01-01

    This book develops the subject from the basic principles of quantum mechanics. The emphasis is on a single statement of the ideas underlying the various approximations that have to be used and care is taken to separate sound arguments from conjecture. This book is written for the student of theoretical physics who wants to work in the field of solids and for the experimenter with a knowledge of quantum theory who is not content to take other people's arguments for granted. The treatment covers the electron theory of metals as well as the dynamics of crystals, including the author's work on the thermal conductivity of crystals which has been previously published in English.

  20. Solids flow mapping in gas-solid risers

    Science.gov (United States)

    Bhusarapu, Satish Babu

    Gas-solid risers are extensively used in many industrial processes for gas-solid reactions (e.g. coal combustion and gasification) and for solid catalyzed gas phase reactions (e.g. fluid catalytic cracking, butane oxidation to maleic anhydride). Ab initio prediction of the complex multiphase fluid dynamics in risers is not yet possible, which makes reactor modeling difficult. In particular, quantification of solids flow and mixing is important. Almost all the experimental techniques used to characterize solids flow lead to appreciable errors in measured variables in large scale, high mass flux systems. In addition, none of the experimental techniques provide all the relevant data required to develop a satisfactory solids flow model. In this study, non-invasive Computer Automated Radioactive Particle Tracking (CARPT) is employed to visualize and quantify the solids dynamics and mixing in the gas-solid riser of a Circulating Fluidized Bed (CFB). A single radioactive tracer particle is monitored during its multiple visits to the riser and with an assumption of ergodicity, the following flow parameters are estimated: (a) Overall solids mass flux in the CFB loop. (b) Solids residence time distribution in the riser and down-comer. (c) Lagrangian and Eulerian solids velocity fields in a fully-developed section of the riser. This includes velocity fluctuations and components of the diffusivity tensor. The existing CARPT technique is extended to large scale systems. A new algorithm, based on a cross-correlation search, is developed for position rendition from CARPT data. Two dimensional solids holdup profiles are estimated using gamma-ray computed tomography. The image quality from the tomography data is improved by implementing an alternating minimization algorithm. This work establishes for the first time a reliable database for local solids dynamic quantities such as time-averaged velocities, Reynolds stresses, eddy diffusivities and turbulent kinetic energy. In addition

  1. The ArTéMiS wide-field sub-millimeter camera: preliminary on-sky performance at 350 microns

    Science.gov (United States)

    Revéret, Vincent; André, Philippe; Le Pennec, Jean; Talvard, Michel; Agnèse, Patrick; Arnaud, Agnès.; Clerc, Laurent; de Breuck, Carlos; Cigna, Jean-Charles; Delisle, Cyrille; Doumayrou, Eric; Duband, Lionel; Dubreuil, Didier; Dumaye, Luc; Ercolani, Eric; Gallais, Pascal; Groult, Elodie; Jourdan, Thierry; Leriche, Bernadette; Maffei, Bruno; Lortholary, Michel; Martignac, Jérôme; Rabaud, Wilfried; Relland, Johan; Rodriguez, Louis; Vandeneynde, Aurélie; Visticot, François

    2014-07-01

    ArTeMiS is a wide-field submillimeter camera operating at three wavelengths simultaneously (200, 350 and 450 μm). A preliminary version of the instrument equipped with the 350 μm focal plane, has been successfully installed and tested on APEX telescope in Chile during the 2013 and 2014 austral winters. This instrument is developed by CEA (Saclay and Grenoble, France), IAS (France) and University of Manchester (UK) in collaboration with ESO. We introduce the mechanical and optical design, as well as the cryogenics and electronics of the ArTéMiS camera. ArTeMiS detectors consist in Si:P:B bolometers arranged in 16×18 sub-arrays operating at 300 mK. These detectors are similar to the ones developed for the Herschel PACS photometer but they are adapted to the high optical load encountered at APEX site. Ultimately, ArTeMiS will contain 4 sub-arrays at 200 μm and 2×8 sub-arrays at 350 and 450 μm. We show preliminary lab measurements like the responsivity of the instrument to hot and cold loads illumination and NEP calculation. Details on the on-sky commissioning runs made in 2013 and 2014 at APEX are shown. We used planets (Mars, Saturn, Uranus) to determine the flat-field and to get the flux calibration. A pointing model was established in the first days of the runs. The average relative pointing accuracy is 3 arcsec. The beam at 350 μm has been estimated to be 8.5 arcsec, which is in good agreement with the beam of the 12 m APEX dish. Several observing modes have been tested, like "On- The-Fly" for beam-maps or large maps, spirals or raster of spirals for compact sources. With this preliminary version of ArTeMiS, we concluded that the mapping speed is already more than 5 times better than the previous 350 μm instrument at APEX. The median NEFD at 350 μm is 600 mJy.s1/2, with best values at 300 mJy.s1/2. The complete instrument with 5760 pixels and optimized settings will be installed during the first half of 2015.

  2. Demonstration of Submillimeter Astrophysics Technology at Caltech Submillimeter Observatory Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The following are the objectives of this project:(1) Demonstration of 1600-element Kinetic Inductance Detector (KID) imaging array operating at 350 micron with near...

  3. Solid substrate fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tengerdy, R.P.

    1985-04-01

    Solid Substrate Fermentation (SSF) describes the microbiological tranformation of biological materials in their natural state, in contrast with liquid or submerged fermentations which are carried out in dilute solutions or slurries. The most important industrial microorganisms used in SSF are filamentous fungi and the critical factors in their growth are the control of the moisture level and the temperature. Traditionally, most SSFs are conducted in shallow trays (so that heat build up is avoided) and stacked in a moist chamber, however, the modern SSF should be able to mix large amounts of substrate for a uniform fermentation, maximum automization scale-up of the process, continuous operation and fermentation control and a promising new design is the Helical screw fermenter. At the present time SSF is used in the production of foods (e.g. mushrooms and oriental foods) in municipal, agricultural and industrial solid waste disposal and in the production of enzymes and speciality chemicals but it does not seem likely that it will replace prevalent liquid fermentation technologies. 29 references.

  4. WET SOLIDS FLOW ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Hugo S. Caram; Natalie Foster

    1999-03-30

    The elastic modulus E of wet granular material was found to be of the order of 0.25 MPa, this value does not compare well with the value predicted for a cubic array of spheres under Hertzian contact were the predicted values were in the order of 250 MPa . The strain-stress behavior of a wet granular media was measured using a split Parfitt tensile tester. In all cases the stress increases linearly with distance until the maximum uniaxial tensile stress is reached. The stress then decreases exponentially with distance after this maximum is reached. The linear region indicates that wet solids behave elastically for stresses below the tensile stresses and can store significant elastic energy. The elastic deformation cannot be explained by analyzing the behavior of individual capillary bridges and requires accounting for the deformation of the solids particles. The elastic modulus of the wet granular material remains unexplained. New information was found to support the experimental finding and a first theory to explain the very small elastic modulus is presented. A new model based on the used of the finite element method is being developed.

  5. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    Science.gov (United States)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  6. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  7. A Submillimeter Free Electron Laser

    Science.gov (United States)

    1985-09-30

    radiation fields sinale- etage M design and b) the uv-visible- generated by a single electron have an angar ir region using a two- etage M device...the UCSB M -dill be tested as a two- etage device. The range of wavelength that will be covered with this mode of operation is from the vacuum

  8. The electronic structures of solids

    CERN Document Server

    Coles, B R

    2013-01-01

    The Electronic Structures of Solids aims to provide students of solid state physics with the essential concepts they will need in considering properties of solids that depend on their electronic structures and idea of the electronic character of particular materials and groups of materials. The book first discusses the electronic structure of atoms, including hydrogen atom and many-electron atom. The text also underscores bonding between atoms and electrons in metals. Discussions focus on bonding energies and structures in the solid elements, eigenstates of free-electron gas, and electrical co

  9. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  10. Atomistic Properties of Solids

    CERN Document Server

    Sirdeshmukh, Dinker B; Subhadra, K G

    2011-01-01

    The book deals with atomistic properties of solids which are determined by the crystal structure, interatomic forces and atomic displacements influenced by the effects of temperature, stress and electric fields. The book gives equal importance to experimental details and theory. There are full chapters dedicated to the tensor nature of physical properties, mechanical properties, lattice vibrations, crystal structure determination and ferroelectricity. The other crystalline states like nano-, poly-, liquid- and quasi crystals are discussed. Several new topics like nonlinear optics and the Rietveld method are presented in the book. The book lays emphasis on the role of symmetry in crystal properties. Comprehensiveness is the strength of the book; this allows users at different levels a choice of chapters according to their requirements.

  11. ISRO's solid rocket motors

    Science.gov (United States)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  12. Solid Oxide Electrolyser Cell

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard

    Solid oxide fuel cells (SOFCs) produced at Risø National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 °C and a cell voltage of 1.48V the current density was -3.6A/cm2 with app. 30% H2 + 70% H2O in the inlet...... it is possible to achieve a production price of 0.7 US$/kg H2 with an electricity price of 1.3 US¢/kWh. The cell voltage was measured as function of time. In test ofabout two month of duration a long-term degradation was observed. At 850 °C, -0.5 A/cm2 with 50 vol% H2 the degradation rate was app. 20 mV/1000h...

  13. Solid waste utilization: pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Boegly, W.J. Jr.; Mixon, W.R.; Dean, C.; Lizdas, D.J.

    1977-08-01

    As a part of the Integrated Community Energy System (ICES) Program, a number of technology evaluations are being prepared on various current and emerging sources of energy. This evaluation considers the use of pyrolysis as a method of producing energy from municipal solid waste. The energy can be in the form of a gas, oil, chars, or steam. Pyrolysis, the decomposition of organic matter in the absence of oxygen (or in an oxygen-deficient atmosphere), has been used to convert organic matter to other products or fuels. This process is also described as ''destructive distillation''. Four processes are described in detail: the ''Landgard'' System (Monsanto Environ-Chem Systems, Inc.); the Occidental Research Corporation Process (formerly the Garrett Research and Development Company; The ''Purox'' System (Union Carbide Corporation); and the ''Refu-Cycler'' (Hamilton Standard Corporation). ''Purox'' and ''Refu-Cycler'' produce a low-Btu gas; the Occidental process produces an oil, and the ''Landgard'' process produces steam using on-site auxiliary boilers to burn the fuel gases produced by the pyrolysis unit. Also included is a listing of other pyrolysis processes currently under development for which detailed information was not available. The evaluation provides information on the various process flowsheets, energy and material balances, product characteristics, and economics. Pyrolysis of municipal solid waste as an energy source can be considered a potential for the future; however little operational or economic information is available at this time.

  14. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  15. Solvent selection for solid-to-solid synthesis

    NARCIS (Netherlands)

    Ulijn, R.V.; Martin, de L.; Gardossi, L.; Janssen, A.E.M.; Moore, B.D.; Halling, P.J.

    2002-01-01

    Thermolysin catalyzed solid-to-solid synthesis of the model peptide Z-L-Phe-L-Leu-NH2 is practically feasible in water and a range of organic solvents with different physicochemical properties. Excellent overall conversions were obtained in acetonitrile, ethyl acetate, n-hexane, methanol,

  16. Durability of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hauch, Anne; Hjelm, Johan

    2011-01-01

    In recent years extended focus has been placed on monitoring and understanding degradation mechanisms in both solid oxide fuel cells and solid oxide electrolysis cells. The time-consuming nature of degradation experiments and the disparate conclusions from experiment reproductions indicates...

  17. Electrodialytic remediation of solid waste

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...

  18. From Solid Waste to Energy.

    Science.gov (United States)

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  19. Scalability study of solid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  20. Solid phase protein chemical synthesis.

    Science.gov (United States)

    Raibaut, Laurent; El Mahdi, Ouafâa; Melnyk, Oleg

    2015-01-01

    The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.

  1. A comparison of observables for solid-solid phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  2. Advanced mechanics of solids

    CERN Document Server

    Bruhns, Otto T

    2003-01-01

    Mechanics, and in particular, the mechanics of solids, forms the basis of all engi­ neering sciences. It provides the essential foundations for understanding the action of forces on bodies, and the effects of these forces on the straining of the body on the one hand, and on the deformation and motion of the body on the other. Thus, it provides the solutions of many problems with which the would-be engineer is going to be confronted with on a daily basis. In addition, in engineering studies, mechanics has a more vital importance, which many students appreciate only much later. Because of its clear, and analyt­ ical setup, it aids the student to a great extent in acquiring the necessary degree of abstraction ability, and logical thinking, skills without which no engineer in the practice today would succeed. Many graduates have confirmed to me that learning mechanics is generally per­ ceived as difficult. On the other hand, they always also declared that the preoccu­ pation with mechanics made an essential c...

  3. Solid state laser

    Science.gov (United States)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)

    1993-01-01

    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  4. Handbook of solid state batteries & capacitors

    National Research Council Canada - National Science Library

    Munshi, M. Z. A

    1995-01-01

    ... is witnessing a metamorphosis in the area of solid state power sources. The genesis of solid state battery research commenced with the discovery of highly conductive silver solid state and copper solid state electrolytes in the sixties and seventies, and their subsequent use in solid state batteries. These discoveries were major breakthroughs for those ti...

  5. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  6. The Physics of Amorphous Solids

    CERN Document Server

    Zallen, Richard

    1998-01-01

    An in-depth study of non-crystalline solids in which the arrangement of the atoms do not have long-range order. Describes the way amorphous solids are formed, the phenomenology of the liquid-to-glass and glass- to-liquid transition, and the technological applications. Emphasizes modern approaches such as scaling, localization, and percolation. Includes extensive treatment of structural aspects of amorphous solids, ranging from metallic glasses, to chalcogenides, to organic polymers. Incorporates illustrations for the clarification of physics concepts.

  7. The Oxford solid state basics

    CERN Document Server

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  8. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  9. Solid State Theory An Introduction

    CERN Document Server

    Rössler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields.

  10. Solid mechanics a variational approach

    CERN Document Server

    Dym, Clive L

    2013-01-01

    Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems.  Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as ...

  11. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  12. Cosserat modeling of cellular solids

    NARCIS (Netherlands)

    Onck, P.R.

    2002-01-01

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  13. Composite solid polymer electrolyte membranes

    Science.gov (United States)

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  14. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  15. Solid state physics at ISOLDE

    CERN Document Server

    Deicher, M; Wichert, T

    2003-01-01

    Radioactive atoms have been used in solid state physics and in materials science for decades. Besides their classical applications as tracers for diffusion studies, nuclear techniques such as Mossbauer spectroscopy, perturbed gamma gamma angular correlation, beta -NMR, and emission channeling make use of nuclear properties (via hyperfine interactions or emitted alpha or beta particles) to gain microscopic information on structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as clean ion beams at ISOL facilities like ISOLDE/CERN has triggered a new era involving methods sensitive to the optical and electronic properties of solids, especially in the field of semiconductor physics. This overview will browse through ongoing solid state physics experiments with radioactive ion beams at ISOLDE. A wide variety of problems is under study, involving bulk properties, surfaces and interfaces in many different systems like semiconductors, superconduc...

  16. Composite solid polymer electrolyte membranes

    Science.gov (United States)

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  17. Propagating Instabilities in Solids

    Science.gov (United States)

    Kyriakides, Stelios

    1998-03-01

    Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this

  18. Solid oxide electrolyser cell

    Energy Technology Data Exchange (ETDEWEB)

    Hoejgaard Jensen, S.

    2006-12-15

    Solid oxide fuel cells (SOFCs) produced at Riso National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 deg. C and a cell voltage of 1.48V the current density was -3.6 A/cm{sup 2} with app. 30% H{sub 2} + 70% H{sub 2}O in the inlet gas and a H{sub 2}O utilization of app. 40%. The tested SOECs were also used for CO{sub 2} electrolysis. Economy studies of CO and H2 production show that especially H{sub 2} production can be competitive in areas with cheap electricity. Assuming the above described initial performance and a lifetime of 10 years it is possible to achieve a production price of 0.7 US dollar/kg H{sub 2} with an electricity price of 1.3 US cent/kWh. The cell voltage was measured as function of time. In test of about two month of duration a long-term degradation was observed. At 850 deg. C, -0.5 A/cm{sup 2} with 50 vol% H{sub 2} the degradation rate was app. 20 mV/1000h. It was shown that the degradation happens at Ni/YSZ-electrode. The long term degradation is probably caused by coarsening of the Ni-particles. After onset of electrolysis operation a transient passivation/reactivation phenomena with duration of several days was observed. It was shown that the phenomenon is attributed to the SiO{sub 2} contamination at the Ni/YSZ electrode-electrolyte interface. The SiO{sub 2} arises from the albite glass sealing (NaAlSi{sub 3}O{sub 8}) that surrounds the electrode. Si may enter the Ni/YSZ electrode via the reaction Si(OH){sub 4}(g) {r_reversible} SiO{sub 2}(l)+H{sub 2}O(g). At the active sites of the Ni/YSZ electrode steam is reduced via the reaction H{sub 2}O - 2e {yields} H{sub 2}+O{sup 2-} . This shifts the equilibrium of the first reaction to form SiO{sub 2}(l) at the active sites. After a certain time the sealing crystallizes and the SiO{sub 2}(l) evaporates from the active sites and the cell reactivates. The passivation is shown to relate to a build up of a

  19. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1988-01-01

    Solid-State Laser Engineering is written from an industrial perspective and discusses in detail the characteristics, design, construction and practical problems of solid-state lasers. Emphasis is placed on engineering and practical considerations, with a phenomenological treatment using modelsbeing preferred to abstract mathematical derivations. This new edition has been updated and revised to include important developments, concepts and technologies that have emerged since the publication of the first edition.

  20. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  1. Optimizing end-to-end system performance for millimeter and submillimeter spectroscopy of protostars : wideband heterodyne receivers and sideband-deconvolution techniques for rapid molecular-line surveys

    Science.gov (United States)

    Sumner, Matthew Casey

    This thesis describes the construction, integration, and use of a new 230-GHz ultra-wideband heterodyne receiver, as well as the development and testing of a new sideband-deconvolution algorithm, both designed to enable rapid, sensitive molecular-line surveys. The 230-GHz receiver, known as Z-Rex, is the first of a new generation of wideband receivers to be installed at the Caltech Submillimeter Observatory (CSO). Intended as a proof-of-concept device, it boasts an ultra-wide IF output range of sim 6 - 18 GHz, offering as much as a twelvefold increase in the spectral coverage that can be achieved with a single LO setting. A similarly wideband IF system has been designed to couple this receiver to an array of WASP2 spectrometers, allowing the full bandwidth of the receiver to be observed at low resolution, ideal for extra-galactic redshift surveys. A separate IF system feeds a high-resolution 4-GHz AOS array frequently used for performing unbiased line surveys of galactic objects, particularly star-forming regions. The design and construction of the wideband IF system are presented, as is the work done to integrate the receiver and the high-resolution spectrometers into a working system. The receiver is currently installed at the CSO where it is available for astronomers' use. In addition to demonstrating wideband design principles, the receiver also serves as a testbed for a synthesizer-driven, active LO chain that is under consideration for future receiver designs. Several lessons have been learned, including the importance of driving the final amplifier of the LO chain into saturation and the absolute necessity of including a high-Q filter to remove spurious signals from the synthesizer output. The on-telescope performance of the synthesizer-driven LO chain is compared to that of the Gunn-oscillator units currently in use at the CSO. Although the frequency agility of the synthesized LO chain gives it a significant advantage for unbiased line surveys, the cleaner

  2. Molecular gas in the Herschel-selected strongly lensed submillimeter galaxies at z 2-4 as probed by multi-J CO lines

    Science.gov (United States)

    Yang, C.; Omont, A.; Beelen, A.; Gao, Y.; van der Werf, P.; Gavazzi, R.; Zhang, Z.-Y.; Ivison, R.; Lehnert, M.; Liu, D.; Oteo, I.; González-Alfonso, E.; Dannerbauer, H.; Cox, P.; Krips, M.; Neri, R.; Riechers, D.; Baker, A. J.; Michałowski, M. J.; Cooray, A.; Smail, I.

    2017-12-01

    We present the IRAM-30 m observations of multiple-J CO (Jup mostly from 3 up to 8) and [C I](3P2 → 3P1) ([C I](2-1) hereafter) line emission in a sample of redshift 2-4 submillimeter galaxies (SMGs). These SMGs are selected among the brightest-lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Forty-seven CO lines and 7 [C I](2-1) lines have been detected in 15 lensed SMGs. A non-negligible effect of differential lensing is found for the CO emission lines, which could have caused significant underestimations of the linewidths, and hence of the dynamical masses. The CO spectral line energy distributions (SLEDs), peaking around Jup 5-7, are found to be similar to those of the local starburst-dominated ultra-luminous infrared galaxies and of the previously studied SMGs. After correcting for lensing amplification, we derived the global properties of the bulk of molecular gas in the SMGs using non-LTE radiative transfer modelling, such as the molecular gas density nH2 102.5-104.1 cm-3 and the kinetic temperature Tk 20-750 K. The gas thermal pressure Pth ranging from 105 K cm-3 to 106 K cm-3 is found to be correlated with star formation efficiency. Further decomposing the CO SLEDs into two excitation components, we find a low-excitation component with nH2 102.8-104.6 cm-3 and Tk 20-30 K, which is less correlated with star formation, and a high-excitation one (nH2 102.7-104.2 cm-3, Tk 60-400 K) which is tightly related to the on-going star-forming activity. Additionally, tight linear correlations between the far-infrared and CO line luminosities have been confirmed for the Jup ≥ 5 CO lines of these SMGs, implying that these CO lines are good tracers of star formation. The [C I](2-1) lines follow the tight linear correlation between the luminosities of the [C I](2-1) and the CO(1-0) line found in local starbursts, indicating that [C I] lines could serve as good total molecular gas mass tracers for high-redshift SMGs as well

  3. Systems for production of polymer encapsuated solids

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, William L.; Aines, Roger D.; Baker, Sarah E.; Duoss, Eric B.; Maiti, Amitesh; Roberts, Jeffery J.; Spadaccini, Christopher M.; Stolaroff, Joshuah K.; Vericella, John J.; Lewis, Jennifer A.; Hardin, IV, James O.; Floyd, III, William C.

    2017-11-21

    Encapsulated solids are made by first encapsulating precursor materials in a polymer shell. The precursors are some combination of solids, liquids, gases, and/or gels. The precursors are then transformed into solids by emplacement of the capsule in an environment where gas or fluid transport into or out of the polymer shell causes transformation into solids.

  4. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  5. The SoLid experiment

    Science.gov (United States)

    Kalousis, L. N.; SoLid Collaboration

    2017-09-01

    The SoLid experiment is a short-baseline project, probing the disappearance of reactor antineutrinos using a novel detector design. Installed at a very short distance of ˜ 5.5 - 10 m from the BR2 research reactor at SCK·CEN in Mol (Belgium) it will be able to search for active-to-sterile neutrino oscillations, exploring most of the allowed parameter region. SoLid will make use of a highly segmented detector, built from 5 cm PVT cubes, interleaved with 6LiF:ZnS(Ag) screens, and read out by optical fibers and Silicon Photomultipliers (SiPMs). The detector granularity allows for the localization of the positron and neutron signals from antineutrino interactions and the robust neutron identification capabilities, offered by the 6LiF:ZnS(Ag) inorganic scintillator, provide background suppression to an unparalleled level. This paper reviews the experimental layout and current status of SoLid. Emphasis is put on the challenges one faces towards this measurement, focusing on the decisions and strategy adapted by the SoLid collaboration. The analysis scheme and the details of the oscillation framework are also presented, highlighting the sensitivity contour and physics potential of SoLid. Finally, other physics topics, such as, reactor monitoring or measurement of the 235U spectrum are also covered.

  6. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  7. Solid-State Laser Engineering

    CERN Document Server

    Koechner, Walter

    2006-01-01

    Written from an industrial perspective, Solid-State Laser Engineering discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. Since its first edition almost 30 years ago this book has become the standard in the field of solid-state lasers for scientists,engineers and graduate students. This new edition has been extensively revised and updated to account for recent developments in the areas of diode-laser pumping, laser materials and nonlinear crystals. Completely new sections have been added dealing with frequency control, the theory of mode-locking, femto second lasers, high efficiency harmonic generation, passive and acousto-optic Q-switching, semiconductor saturable absorber mirrors (SESAM) and peridically poled nonlinear crystals.

  8. Impurity effects on solid-solid transitions in atomic clusters.

    Science.gov (United States)

    Husic, B E; Schebarchov, D; Wales, D J

    2016-11-03

    We use the harmonic superposition approach to examine how a single atom substitution affects low-temperature anomalies in the vibrational heat capacity (CV) of model nanoclusters. Each anomaly is linked to competing solidlike "phases", where crossover of the corresponding free energies defines a solid-solid transition temperature (Ts). For selected Lennard-Jones clusters we show that Ts and the corresponding CV peak can be tuned over a wide range by varying the relative atomic size and binding strength of the impurity, but excessive atom-size mismatch can destroy a transition and may produce another. In some tunable cases we find up to two additional CV peaks emerging below Ts, signalling one- or two-step delocalisation of the impurity within the ground-state geometry. Results for Ni74X and Au54X clusters (X = Au, Ag, Al, Cu, Ni, Pd, Pt, Pb), modelled by the many-body Gupta potential, further corroborate the possibility of tuning, engineering, and suppressing finite-system analogues of a solid-solid transition in nanoalloys.

  9. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  10. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  11. Electrons and Disorder in Solids

    CERN Document Server

    Gantmakher, VF

    2005-01-01

    This book has been written for those who study or professionally deal with solid state physics. It contains modern concepts about the physics of electrons in solids. It is written using a minimum of mathematics. The emphasis is laid on various physical models aimed at stimulating creative thinking. The book helps the reader choose the most efficient scheme of an experiment or the optimal algorithm of a calculation. Boltzmann and hopping types of conductivity are compared. Thequalitative theory of weak localization is presented and its links with the true localization and metal-insulator transi

  12. Power generation from solid fuels

    CERN Document Server

    Spliethoff, Hartmut

    2010-01-01

    Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration. The main motivation of the book is to explain the technical possibilities for reduci

  13. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  14. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan

    1984-01-01

    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  15. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  16. Continuum mechanics of electromagnetic solids

    CERN Document Server

    Maugin, GA

    1988-01-01

    This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e

  17. Onsager Reciprocity in Premelting Solids

    KAUST Repository

    Peppin, S. S. L.

    2009-02-01

    The diffusive motion of foreign particles dispersed in a premelting solid is analyzed within the framework of irreversible thermodynamics. We determine the mass diffusion coefficient, thermal diffusion coefficient and Soret coefficient of the particles in the dilute limit, and find good agreement with experimental data. In contrast to liquid suspensions, the unique nature of premelting solids allows us to derive an expression for the Dufour coefficient and independently verify the Onsager reciprocal relation coupling diffusion to the flow of heat. © 2009 Springer Science+Business Media, LLC.

  18. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  19. Breastfeeding FAQs: Solids and Supplementing

    Science.gov (United States)

    ... the first bottle? When should I introduce solid foods and juice? When can I give my baby water? en español Preguntas más frecuentes sobre la lactancia materna: sólidos y biberones suplementarios Whether you're a new mom or a seasoned parenting pro, breastfeeding often comes with its fair share ...

  20. Multiple solid-phase microextraction

    NARCIS (Netherlands)

    Koster, EHM; de Jong, GJ

    2000-01-01

    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that

  1. Removing Solids From Supercritical Water

    Science.gov (United States)

    Hong, Glenn T.

    1992-01-01

    Apparatus removes precipitated inorganic salts and other solids in water-recycling process. Designed for use with oxidation in supercritical water which treats wastes and yields nearly pure water. Heating coils and insulation around vessel keep it hot. Locking bracket seals vessel but allows it to be easily opened for replacement of filled canisters.

  2. Solidity of viscous liquids. III

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2005-01-01

    is much larger than estimated from the alpha relaxation time. This is shown to follow from the solidity of viscous liquids in an argument which, utilizing the irrelevance of momentum conservation at high viscosity, predicts that at high viscosity the coherent diffusion constant is much larger than...

  3. Towards effective solid form screening.

    Science.gov (United States)

    Allesø, Morten; Tian, Fang; Cornett, Claus; Rantanen, Jukka

    2010-09-01

    Solid form screening is commonly performed using solvent-based crystallizations. However, less attention is paid to the role of secondary manufacturing, during which process-induced transformations of the active pharmaceutical ingredient (API) may occur, and potentially a new solid form may be discovered. In this study a new approach for effective solid form screening is presented. The technology combines well-plate-based crystallizations with miniaturized processing equipment, mimicking essential unit operations. Process-induced stresses (heat, solvent, shear, pressure) can be introduced directly to the well-plate unit. Theophylline and nifedipine were used as model compounds. Small-scale wet massing of theophylline resulted in an anhydrate-to-monohydrate transformation, followed by dehydration upon drying at 60 degrees C. Amorphous nifedipine was subjected to small-scale milling and compaction. Kinetic profiling of the milling operation enabled the detection of an intermediate, metastable polymorph (beta form), while the stable polymorph (alpha form) was the predominant form after 20 min of milling. Compaction of amorphous nifedipine at 100 MPa resulted in a complete conversion into the stable polymorph. The reported expanded approach is expected to maximize the outcome of solid form screening with minimal consumption of the compound of interest.

  4. Solid State and Materials Chemistry

    Indian Academy of Sciences (India)

    Unknown

    It gives us immense pleasure to present this Special Issue of the Proceedings of the Indian. Academy of Sciences (Chemical Sciences) to mark the Silver Jubilee of the Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bangalore. This Unit was created by Professor C N R Rao, FRS, at the Institute ...

  5. Regional solid waste management study

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  6. Solid Waste/Energy Curriculum.

    Science.gov (United States)

    Vivan, V. Eugene; And Others

    Provided are solid waste/energy curriculum materials for grades K-2, 3-4, 5-6, 7-9, and 10-12. Separate folders containing units of study (focusing on trash, litter, and recycling) are provided for kindergarten (four units), grade 1 (two units), and grade 2 (two units). Folders contain teachers' directions and activity cards which include picture…

  7. Separating Device for solid Particles

    NARCIS (Netherlands)

    De Jong, T.P.R.; Kattentidt, H.U.R.; Schokker, E.A.

    2001-01-01

    The invention relates to a separating device for solid fragments, comprising a conveyor belt for supplying the fragments, at least one sensor for detecting the fragments, and an ejector for dislodging the fragments from the belt. The ejector is embodied as mechanical impulse-transmitting organ

  8. Muonic processes in solid hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G.M.; Beveridge, J.L. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada); Bailey, J.M. [Chester Technology, Chester (United Kingdom); Beer, G.A.; Knowles, P.E.; Maier, M.; Mason, G.R.; Olin, A.; Porcelli, T.A. [University of Victoria, Victoria, BC (Canada); Fujiwara, M.C. [University of British Columbia, Vancouver, BC (Canada); Huber, T.M. [Gustavus Adolphus College, St. Peter, Minnesota (United States); Jacot-Guillarmod, R.; Mulhauser, F.; Schaller, L.A. [University of Fribourg, Fribourg (Switzerland); Kammel, P. [Lawrence Berkeley Laboratory, Berkeley, California (United States); Kim, S.K. [Jeonbuk National University, Jeonju City, S. (Korea); Kunselman, A.R. [University of Wyoming, Laramie, Wyoming (United States); Petitjean, C. [PSI, Villigen (Switzerland); Zmeskal, J. [IMEP, Vienna (Austria)

    1998-08-01

    Muonic hydrogen participates in many different interactions, including muon induced fusion of hydrogen nuclei. Conventional experimental techniques cannot always unravel and separate the processes of interest. Some of the most important measurements may be more reliably accomplished with the use of a unique and versatile target consisting of layers of different solid hydrogen isotope mixtures. {copyright} {ital 1998 American Institute of Physics.}

  9. Quadric solids and computational geometry

    Energy Technology Data Exchange (ETDEWEB)

    Emery, J.D.

    1980-07-25

    As part of the CAD-CAM development project, this report discusses the mathematics underlying the program QUADRIC, which does computations on objects modeled as Boolean combinations of quadric half-spaces. Topics considered include projective space, quadric surfaces, polars, affine transformations, the construction of solids, shaded image, the inertia tensor, moments, volume, surface integrals, Monte Carlo integration, and stratified sampling. 1 figure.

  10. Handling of bulk solids theory and practice

    CERN Document Server

    Shamlou, P A

    1990-01-01

    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  11. System and process for dissolution of solids

    Energy Technology Data Exchange (ETDEWEB)

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  12. Assessing total and volatile solids in municipal solid waste samples.

    Science.gov (United States)

    Peces, M; Astals, S; Mata-Alvarez, J

    2014-01-01

    Municipal solid waste is broadly generated in everyday activities and its treatment is a global challenge. Total solids (TS) and volatile solids (VS) are typical control parameters measured in biological treatments. In this study, the TS and VS were determined using the standard methods, as well as introducing some variants: (i) the drying temperature for the TS assays was 105°C, 70°C and 50°C and (ii) the VS were determined using different heating ramps from room tempature to 550°C. TS could be determined at either 105°C or 70°C, but oven residence time was tripled at 70°C, increasing from 48 to 144 h. The VS could be determined by smouldering the sample (where the sample is burnt without a flame), which avoids the release of fumes and odours in the laboratory. However, smouldering can generate undesired pyrolysis products as a consequence of carbonization, which leads to VS being underestimated. Carbonization can be avoided using slow heating ramps to prevent the oxygen limitation. Furthermore, crushing the sample cores decreased the time to reach constant weight and decreased the potential to underestimate VS.

  13. Methods and machinery for pulverising solid wastes

    CSIR Research Space (South Africa)

    Simpkins, MJ

    1976-11-01

    Full Text Available This report is published on behalf of the South African Committee for Solid Wastes which in turn advises the National Committee for Environmental Sciences on problems concerned with Solid Wastes in South Africa. It is particularly concerned...

  14. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.

    2013-01-01

    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  15. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  16. Biogasification of municipal solid wastes

    Science.gov (United States)

    Diaz, L. F.; Savage, G. M.; Trezek, G. J.; Golueke, C. G.

    1981-06-01

    A series of experiments on the anaerobic digestion of the organic fraction of municipal refuse was performed. The refuse fraction used in the study was one of the portions segregated in a resource recovery system developed at the University of California, Berkeley. The scale of experiments includes 4, 9, and 1600-L digesters. The refuse used as feed was enriched by the addition of raw sewage sludge in various ratios, i.e., from 0-100 percent of the total volatile solids. No other sources of nutrients or chemicals for pH control were introduced into the reactors. Organic loading rates ranging from 1.1-6.4 g of volatile solids/Ld were obtained. Typical hydraulic detention times were 15 to 30 days. Temperatures were kept within the range of 72-104 F (22-40 C). Digestion efficiency was based on energy conversion and gas production.

  17. Stem cells and solid cancers.

    Science.gov (United States)

    McDonald, Stuart A C; Graham, Trevor A; Schier, Stefanie; Wright, Nicholas A; Alison, Malcolm R

    2009-07-01

    Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.

  18. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  19. Nanoparticles for solid rocket propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Galfetti, L [Politecnico di Milano, SPLab, Milan (Italy); De Luca, L T [Politecnico di Milano, SPLab, Milan (Italy); Severini, F [Politecnico di Milano, SPLab, Milan (Italy); Meda, L [Polimeri Europa, Istituto G Donegani, Novara (Italy); Marra, G [Polimeri Europa, Istituto G Donegani, Novara (Italy); Marchetti, M [Universita di Roma ' La Sapienza' , Dipartimento di Ingegneria Aerospaziale ed Astronautica, Rome (Italy); Regi, M [Universita di Roma ' La Sapienza' , Dipartimento di Ingegneria Aerospaziale ed Astronautica, Rome (Italy); Bellucci, S [INFN, Laboratori Nazionali di Frascati, Frascati (Italy)

    2006-08-23

    The characterization of several differently sized aluminium powders, by BET (specific surface), EM (electron microscopy), XRD (x-ray diffraction), and XPS (x-ray photoelectron spectroscopy), was performed in order to evaluate their application in solid rocket propellant compositions. These aluminium powders were used in manufacturing several laboratory composite solid rocket propellants, based on ammonium perchlorate (AP) as oxidizer and hydroxil-terminated polybutadiene (HTPB) as binder. The reference formulation was an AP/HTPB/Al composition with 68/17/15% mass fractions respectively. The ballistic characterization of the propellants, in terms of steady burning rates, shows better performance for propellant compositions employing nano-aluminium when compared to micro-aluminium. Results obtained in the pressure range 1-70 bar show that by increasing the nano-Al mass fraction or decreasing the nano-Al size, larger steady burning rates are measured with essentially the same pressure sensitivity.

  20. Molecular tailoring of solid surfaces

    CERN Document Server

    Evenson, S A

    1997-01-01

    The overall performance of a material can be dramatically improved by tailoring its surface at the molecular level. The aim of this project was to develop a universal technique for attaching dendrimers (well-defined, nanoscale, functional polymers) and Jeffamines (high molecular weight polymer chains) to the surface of any shaped solid substrate. This desire for controlled functionalization is ultimately driven by the need to improve material compatibility in various biomedical applications. Atomic force microscopy (AFM) was used initially to study the packing and structure of Langmuir-Blodgett films on surfaces, and subsequently resulted in the first visualization of individual, spherically shaped, nanoscopic polyamidoamine dendrimers. The next goal was to develop a methodology for attaching such macromolecules to inert surfaces. Thin copolymer films were deposited onto solid substrates to produce materials with a fixed concentration of surface anhydride groups. Vapor-phase functionalization reactions were t...

  1. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  2. Oxidative pyrolysis of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Senneca, Osvalda; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, C.N.R., P.le Tecchio 80, 80125 Napoli (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2004-06-01

    This study addresses the dependence of the rate and pattern of pyrolysis of solid fuels from the oxidizing versus inert nature of the gaseous atmosphere. A selection of four solid fuels is considered in the study, namely two plastics (polyethylene and polyethylene terephthalate), one lignocellulosic material (Robinia Pseudoacacia) and a South African bituminous coal. Fuels are pyrolyzed in a thermogravimetric apparatus at different heating rates, under inert conditions or in the presence of oxygen at different concentration.Results indicate that the action exerted by oxygen during pyrolysis depends on the nature of the fuel and on the process conditions such as heating rate and oxygen concentration. Larger heating rates and larger oxygen concentration may indeed emphasize differences between inert and oxidative pyrolysis. Further analysis is directed to check the adequacy of a power low kinetic expression to describe the dependence of the rate of oxidative pyrolysis from the level of oxygen concentration.

  3. Metabolic scaling in solid tumours

    Science.gov (United States)

    Milotti, E.; Vyshemirsky, V.; Sega, M.; Stella, S.; Chignola, R.

    2013-06-01

    Tumour metabolism is an outstanding topic of cancer research, as it determines the growth rate and the global activity of tumours. Recently, by combining the diffusion of oxygen, nutrients, and metabolites in the extracellular environment, and the internal motions that mix live and dead cells, we derived a growth law of solid tumours which is linked to parameters at the cellular level. Here we use this growth law to obtain a metabolic scaling law for solid tumours, which is obeyed by tumours of different histotypes both in vitro and in vivo, and we display its relation with the fractal dimension of the distribution of live cells in the tumour mass. The scaling behaviour is related to measurable parameters, with potential applications in the clinical practice.

  4. Mathematical modelling in solid mechanics

    CERN Document Server

    Sofonea, Mircea; Steigmann, David

    2017-01-01

    This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...

  5. Clustering fossils in solid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Akhshik, Mohammad, E-mail: m.akhshik@ipm.ir [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2015-05-01

    In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tenor perturbation induces observable clustering fossils in the form of quadrupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar bispectrum for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with the Planck constraints. Specializing to this allowed range of model parameter we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum of the scalar perturbations. We argue that the imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.

  6. Nanoscale mixing of soft solids.

    Science.gov (United States)

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E; Lodge, Timothy P; Bates, Frank S

    2011-02-16

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C(30)H(62)) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ((1)H and (2)H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  7. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  8. Solid organ donation and transplantation.

    Science.gov (United States)

    Furlow, Bryant

    2012-01-01

    Medical imaging plays a key role in solid organ donation and transplantation. In addition to confirming the clinical diagnosis of brain death, imaging examinations are used to assess potential organ donors and recipients, evaluate donated organs, and monitor transplantation outcomes. This article introduces the history, biology, ethics, and institutions of organ donation and transplantation medicine. The article also discusses current and emerging imaging applications in the transplantation field and the controversial role of neuroimaging to confirm clinically diagnosed brain death.

  9. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  10. Dynamics in orientationally disordered solids

    OpenAIRE

    Martínez García, Julio César

    2011-01-01

    Premi extraordinari doctorat curs 2010-2011, àmbit de Ciències The key features of dynamics of ultraslowing glass forming systems are their universality in diversity. Its origin is recognized as one of the greatest challenges of condensed matter physics and materials engineering in the XXI century. Similar phenomena are observed on approaching the glass transition in low molecular weight supercooled liquids, polymers, colloidal fluids as well as in solids, for instance in orie...

  11. Characterization of solid hydrogen targets

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [British Columbia Univ., Vancouver, BC (Canada); Bailey, J.M.; Mulhauser, F. [Chester Technology (United Kingdom); Beer, G.A.; Douglas, J.L.; Knowles, P.E.; Maier, M.; Mason, G.R.; Olin, A.; Porcelli, T.A. [Victoria Univ., BC (Canada); Beveridge, J.L.; Marshall, G.M. [British Columbia Univ., Vancouver, BC (Canada). TRIUMF Facility; Huber, T.M. [Gustavus Adolphus Coll., St. Peter, MN (United States); Jacot-Guillarmod, R. [Fribourg Univ. (Switzerland); Kammel, P. [Lawrence Berkeley Lab., CA (United States); Kim, S.K. [Jeonbuk National Univ., Jeonju City (Korea, Republic of); Kunselman, A.R. [Wyoming Univ., Laramie, WY (United States); Martoff, C.J. [Temple Univ., Philadelphia, PA (United States); Petitjean, C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zmeskal, J. [Oesterreichische Akademie der Wissenschaften, Vienna (Austria)

    1996-10-01

    In experiments using the TRIUMF solid hydrogen target system, the knowledge of the target thickness and uniformity is often essential in order to extract physical parameters from the data. We have characterized the thickness and uniformity of frozen targets using the energy loss of alpha particles. An accuracy of {approx}5% was achieved, a limit imposed by the uncertainty in the stopping powers. The details of the method are described, and the thickness calibration of the target is presented. (orig.). 11 refs.

  12. Solid phase syntheses of oligoureas

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  13. Solid-state proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Jewulski, J.R.; Osif, T.L.; Remick, R.J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

  14. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  15. Rechargeable solid polymer electrolyte battery cell

    Science.gov (United States)

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  16. 76 FR 53376 - Definition of Solid Waste

    Science.gov (United States)

    2011-08-26

    ... AGENCY 40 CFR Parts 260, 261, and 270 RIN 2050-AG62 Definition of Solid Waste AGENCY: Environmental... definition of solid waste published in the Federal Register on July 22, 2011. EPA is proposing to revise certain exclusions from the definition of solid waste for hazardous secondary materials intended for...

  17. Energy and solid/hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  18. Solid Waste Activity Packet for Teachers.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  19. Solid Waste Management Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  20. Gas-solid reaction with porosity change

    Directory of Open Access Journals (Sweden)

    Ivar Stakgold

    2000-10-01

    Full Text Available For a gas diffusing through a porous solid and reacting with it isothermally and irreversibly, the mathematical formulation consists of a nonlinear parabolic PDE for the gas concentration coupled with an ODE for the solid concentration. Under the assumption of constant porosity, a fairly complete analysis was provided by Diaz and Stakgold, [3]. Here some of the results are extended to the case when the porosity increases as the solid is consumed. In particular, estimates are given for the time to full conversion of the solid when the reaction rate is proportional to the product of the gas concentration and a fractional power of the solid concentration.

  1. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  2. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  3. SolidWorks 2011 Assemblies Bible

    CERN Document Server

    Lombard, Matt

    2011-01-01

    A fan of the SolidWorks Bible, but want more detail on assemblies? Here you go. SolidWorks fans have long sought more detail on SolidWorks topics, and now you have it. We took our popular SolidWorks Bible, divided it into two books (SolidWorks 2011 Assemblies Bible and SolidWorks 2011 Parts Bible) and packed each new book with a host of items from your wish lists, such as more extensive coverage of the basics, additional tutorials, and expanded coverage of topics largely ignored by other books. This SolidWorks 2011 Assemblies Bible shows you how to organize parts data to create assemblies or s

  4. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  5. Solid state division progress report, period ending February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  6. A Novel Solid State Ultracapacitor

    Science.gov (United States)

    Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.

    2017-01-01

    Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.

  7. Solid phase microextraction field kit

    Science.gov (United States)

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  8. Solid-state quantum metamaterials

    Science.gov (United States)

    Wilson, Richard; Everitt, Mark; Saveliev, Sergey; Zagoskin, Alexandre

    2013-03-01

    Quantum metamaterials provide a promising potential test bed for probing the quantum-classical transition. We propose a scalable and feasible architecture for a solid-state quantum metamaterial. This consists of an ensemble of superconducting flux qubits inductively coupled to a superconducting transmission line. We make use of fully quantum mechanical models which account for decoherence, input and readout to study the behaviour of prototypical 1D and 2D quantum metamaterials. In addition to demonstrating some of the novel phenomena that arise in these systems, such as ``quantum birefringence,'' we will also discuss potential applications.

  9. Wave motion in elastic solids

    CERN Document Server

    Graff, Karl F

    1991-01-01

    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  10. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2008-01-01

    Written by the 2011 Gaede Award Winner Filling a gap in the literature for a brief course in solid sate physics, this is a clear and concise introduction that not only describes all the basic phenomena and concepts, but also discusses such advanced issues as magnetism and superconductivity. This textbook assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems with solutions as well as further supplementary material available for free to lecturers from the Wiley-VCH website. From the Contents:Chemical Bonding in So

  11. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  12. Contamination and solid state welds.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  13. Solid holography and massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Alberte, Lasma [Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34151, Trieste (Italy); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Department of Physics, Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Khmelnitsky, Andrei [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2016-02-17

    Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.

  14. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  15. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  16. Undulatory microswimming near solid boundaries

    Science.gov (United States)

    Schulman, R. D.; Backholm, M.; Ryu, W. S.; Dalnoki-Veress, K.

    2014-10-01

    The hydrodynamic forces involved in the undulatory microswimming of the model organism C. elegans are studied in proximity to solid boundaries. Using a micropipette deflection technique, we attain direct and time-resolved force measurements of the viscous forces acting on the worm near a single planar boundary as well as confined between two planar boundaries. We observe a monotonic increase in the lateral and propulsive forces with increasing proximity to the solid interface. We determine normal and tangential drag coefficients for the worm, and find these to increase with confinement. The measured drag coefficients are compared to existing theoretical models. The ratio of normal to tangential drag coefficients is found to assume a constant value of 1.5 ± 0.1(5) at all distances from a single boundary, but increases significantly as the worm is confined between two boundaries. In response to the increased drag due to confinement, we observe a gait modulation of the nematode, which is primarily characterized by a decrease in the swimming amplitude.

  17. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  18. Solid State Lighting Program (Falcon)

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated

  19. Monolayer solid of N-2/Ag(111)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing

    1998-01-01

    An incommensurate monolayer solid of N-2/Ag(111) is modeled using extensive molecular-dynamics simulations. The conditions treated range from the low-temperature orientationally ordered solid to the melting of the solid. The properties are evaluated as a function of spreading pressure. Comparison...... is made to recent experimental data for N-2/Ag(111) and to results for N-2 adsorbed on graphite. Cu(110), and MgO(001). [S0163-1829(98)02715-5]....

  20. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  1. Solid Rocket Testing at AFRL (Briefing Charts)

    Science.gov (United States)

    2016-10-21

    19b. TELEPHONE NUMBER (Include area code) 10/21/2016 Briefing Charts 01 October 2016 - 31 October 2016 Solid Rocket Testing at AFRL Robert Antypas Air...Unclassified SAR 18 R. Antypas N/A Solid Rocket Testing at AFRL 21 Oct 2016 Robert Antypas AFRL/RQRO -Distribution A: Approved for Public Release...Distribution Unlimited. PA#16492 2 Agenda • Solid Rocket Motors • History of Sea Level Testing • Small Component Testing • Full-scale Testing • Altitude

  2. Washing of the AN-107 entrained solids

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  3. Solid finite elements through three decades

    OpenAIRE

    Venkatesh, DN; Shrinivasa, U

    1994-01-01

    conventionally, solid finite elements have been looked upon as just generalizations of two-dimensional finite elements. In this article we trace their development starting from the days of their inception. Keeping in tune with our perceptions on developing finite elements, without taking recourse to any extra variational techniques, we discuss a few of the techniques which have been applied to solid finite elements. Finally we critically examine our own work on formulating solid finite elemen...

  4. Solid-state physics for electronics

    National Research Council Canada - National Science Library

    Moliton, André

    2009-01-01

    ...) . . . . . . . . . . . . . . . . . . . . . 1.2.3. Important properties of linear operators . . . . . . . . . . . . . . . . . 1.3. Bonds in solids: a free electron as the zero order approximation for a weak...

  5. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  6. Statistical theory of solid and liquid crystals

    Science.gov (United States)

    Bazarov, I. P.; Gevorkian, E. V.

    The statistical theory of solid and liquid crystals is presented with allowance for many-particle interactions. Statistical variational principles and various representations of Bogoliubov's equations are examined, and the thermodynamic properties of anharmonic solid crystals and microscopic models of liquid crystals are then discussed. Attention is given to the application of the theory developed here to the description of phase transitions in solid and liquid crystals. The stability of the far-range orientational and translational orders in solid and liquid crystals is discussed using a continuum model of liquid crystals and rigorous methods of statistical mechanics based on Bogoliubov's inequality.

  7. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  8. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  9. Excitons in solid C60

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, Eric L.; Benedict, Lorin X.; Louie, Steven G.

    1995-10-01

    Exciton levels in undoped, solid C60 are calculated using a model Hamiltonian. We find excitation energies of 1.58 and 1.30 eV for the lowest singlet and triplet exciton, respectively, in comparison with the measured energies of 1.83 and 1.55 eV. Singlet and triplet states have similar energy diagrams, wherein exciton states having T{sub 2g}, T{sub 1g},G{sub g}, and H{sub g} symmetries are separated by up to several tenths of an electron volt. As a function of crystal momentum, exciton energies exhibit dispersion from 20 to 40 meV. Theoretical pressure derivatives of exciton energies are presented.

  10. Inside Solid State Drives (SSDs)

    CERN Document Server

    Micheloni, Rino; Eshghi, Kam

    2013-01-01

    Solid State Drives (SSDs) are gaining momentum in enterprise and client applications, replacing Hard Disk Drives (HDDs) by offering higher performance and lower power. In the enterprise, developers of data center server and storage systems have seen CPU performance growing exponentially for the past two decades, while HDD performance has improved linearly for the same period. Additionally, multi-core CPU designs and virtualization have increased randomness of storage I/Os. These trends have shifted performance bottlenecks to enterprise storage systems. Business critical applications such as online transaction processing, financial data processing and database mining are increasingly limited by storage performance. In client applications, small mobile platforms are leaving little room for batteries while demanding long life out of them. Therefore, reducing both idle and active power consumption has become critical. Additionally, client storage systems are in need of significant performance improvement as well ...

  11. Light Scattering in Solid IX

    CERN Document Server

    Cardona, Manuel

    2007-01-01

    This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...

  12. Printing Non-Euclidean Solids

    Science.gov (United States)

    Zurlo, Giuseppe; Truskinovsky, Lev

    2017-07-01

    Geometrically frustrated solids with a non-Euclidean reference metric are ubiquitous in biology and are becoming increasingly relevant in technological applications. Often they acquire a targeted configuration of incompatibility through the surface accretion of mass as in tree growth or dam construction. We use the mechanics of incompatible surface growth to show that geometrical frustration developing during deposition can be fine-tuned to ensure a particular behavior of the system in physiological (or working) conditions. As an illustration, we obtain an explicit 3D printing protocol for arteries, which guarantees stress uniformity under inhomogeneous loading, and for explosive plants, allowing a complete release of residual elastic energy with a single cut. Interestingly, in both cases reaching the physiological target requires the incompatibility to have a topological (global) component.

  13. Scattering functions of Platonic solids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin [Rensselaer Polytechnic Institute; Shew, Chwen-Yang [City University of New York (CUNY); He, Lilin [ORNL; Meilleur, Flora [ORNL; Myles, Dean A A [ORNL; Liu, Emily [Rensselaer Polytechnic Institute; Zhang, Yang [ORNL; Smith, Greg [ORNL; Herwig, Kenneth W [ORNL; Pynn, Roger [ORNL; Chen, Wei-Ren [ORNL

    2011-01-01

    The single-particle small-angle scattering properties of five Platonic solids, including the tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron, are systematically investigated. For each given geometry, the Debye spatial autocorrelation function, pair distance distribution function and intraparticle structure factor (form factor) are calculated and compared with the corresponding scattering function of a spherical reference system. From the theoretical models, the empirical relationship between the dodecahedral and icosahedral structural characteristics and those of the equivalent spheres is found. Moreover, the single-particle scattering properties of icosahedral and spherical shells with identical volume are investigated, and the prospect of using different data analysis approaches to explore their structural differences is presented and discussed.

  14. Scattering functions of Platonic solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ren [ORNL; Herwig, Kenneth W [ORNL; Li, Xin [ORNL; Liu, Emily [Rensselaer Polytechnic Institute (RPI); Pynn, Roger [ORNL; Shew, Chwen-Yang [City University of New York (CUNY); Smith, Gregory Scott [ORNL; Myles, Dean A A [ORNL; He, Lilin [ORNL; Meilleur, Flora [ORNL

    2011-01-01

    In this report the single-particle scattering properties of five Platonic solids, including tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron, are investigated in a systematic manner. For each given geometry, the Debye spatial autocorrelation function (r), pair distance distribution function (PDDF) p (r) and intraparticle structure factor (form factor) P (Q) are respectively calculated and compared to the corresponding scattering function of the spherical referential system. Based on our theoretical models, the empirical relationship between the dodecahedral and icosahedral structural characteristics and those of the equivalent spheres is found. Moreover, the single-particle scattering properties of the icosahedral and the spherical shells with the same volume are further investigated and the prospect of using different data analysis approaches to explore their structural difference is also presented and discussed.

  15. Solid phase sequencing of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Charles R.; Hubert, Koster

    2014-06-24

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Probes may be affixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  16. Solid phase sequencing of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Charles (Del Mar, CA); Koster, Hubert (La Jolla, CA)

    2010-09-28

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  17. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. If you're a research professional, academic, or student, you'll learn: nucleation theory, precipitate growth, calculation of interfacial energies. advanced techniques for technologically relevant multicomponent systems and complex thermo-mechanical treatments. numerical approaches using evolution equations and discrete particle size distribu...

  18. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  19. Solid-Solid Vacuum Regolith Heat-Exchanger for Oxygen Production Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of using a novel coaxial counterflow solid-solid heat exchanger to recover heat energy from spent regolith...

  20. Solid angles III. The role of conformers in solid angle calculations

    CSIR Research Space (South Africa)

    White, D

    1995-06-14

    Full Text Available The values of the solid angles Omega for a range of commonly encountered ligands in organometallic chemistry (phosphines, phosphites, amines, arsines and cyclopentadienyl rings) have been determined. The solid angles were derived from a single...

  1. Kinetics of Solid-Solid Phase Transition in Iron (u)

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Cynthia, L [Los Alamos National Laboratory

    2011-01-27

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy multi-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where rad iographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {micro}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {micro}m/5.251 km/s = 50 ns. Both Boettger1 & Jensen2 conclude that

  2. Phonons in quantum solids with defects. [lattice vacancies and interstitials in solid helium and metallic hydrogen

    Science.gov (United States)

    Jacobi, N.; Zmuidzinas, J. S.

    1974-01-01

    A formalism was developed for temperature-dependent, self-consistent phonons in quantum solids with defects. Lattice vacancies and interstitials in solid helium and metallic hydrogen, as well as electronic excitations in solid helium, were treated as defects that modify properties of these systems. The information to be gained from the modified phonon spectrum is discussed.

  3. Solid fuel applications to transportation engines

    Energy Technology Data Exchange (ETDEWEB)

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  4. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  5. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  6. Mechanochemically assisted room temperature solid state ...

    Indian Academy of Sciences (India)

    This communication reports a novel mechanochemically assisted room temperature solid state metathesis reaction for the synthesis of submicron-size alkaline-earth molybdates crystallizing in a tetragonal Scheelite structure. The solids were characterized by powder XRD, FTIR, TGA, DTA, SEM, EDAX and TEM to ascertain ...

  7. Managing America`s solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  8. Managing America's solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J. A.

    1998-09-15

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  9. Anomalous properties of spray dried solid dispersions.

    Science.gov (United States)

    Al-Obaidi, Hisham; Brocchini, Steve; Buckton, Graham

    2009-12-01

    The use of solid dispersions for oral dosage forms can increase the dissolution rate of poorly soluble drugs. Spray drying is one process that can be used to prepare solid dispersions. Spray dried solid dispersions of griseofulvin, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA) and polyvinylpyrrolidone (PVP) were prepared from acetone and water. When methanol was substituted for water, the morphology, stability and dissolution properties of the solid dispersion changed dramatically. The glass transition temperature for the ternary solid dispersion (GF, PHPMA, and PVP) shifted from 83 degrees C (acetone/water) to 103 degrees C for the acetone/methanol system. These differences in the dispersions are thought to derive from conformational variations of the polymers in solution prior to spray drying. Both PHPMA and PVP formed globules in solution of a size range between 16 and 33 nm. The effect of drug and polymer concentration in solution (before spray drying) on the properties of the solid dispersion was studied. It was found that solid dispersions that were prepared using lower concentrations of drug and polymers in solutions resulted in the formation of particles that display a lower relaxation rate. This result supports the hypothesis that the polymer conformation may significantly change the properties of the solid dispersion. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  10. Equation of state for inert gas solids

    Indian Academy of Sciences (India)

    The equation of state is a fundamental relation to analyse the thermophysical properties of different class of solids and it plays a key role in basic and applied condensed matter physics research. A lot of work has been done in the field of ionic solids, minerals and metals but a very little work is done in the field of inert gas ...

  11. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  12. Fmoc Solid-Phase Peptide Synthesis.

    Science.gov (United States)

    Hansen, Paul R; Oddo, Alberto

    2015-01-01

    Synthetic peptides are important as drugs and in research. Currently, the method of choice for producing these compounds is solid-phase peptide synthesis. In this nonspecialist review, we describe the scope and limitations of Fmoc solid-phase peptide synthesis. Furthermore, we provide a detailed protocol for Fmoc peptide synthesis.

  13. Antireduction Insulator For Solid-Electrolyte Cell

    Science.gov (United States)

    Shlichta, Paul J.

    1990-01-01

    Depletion of oxygen from electrolyte prevented. Proposed to add layer of electrical insulation between solid electrolyte and portion of porous negative electrode under negative metal contact in solid-electrolyte cell. Helps maintain efficiency of cell by preventing "shadow" effect degrading portion of electrolyte under negative contact and sometimes near seals.

  14. Fungal mats in solid-state fermentation

    NARCIS (Netherlands)

    Rahardjo, Y.S.P.

    2005-01-01

    Since over 2000 years man has cultivated fungi on grains, beans or other (by)products from agriculture or agro-industries, in order to produce tastier and healthier foods. Nowadays, cultivation on solid substrates (solid-state fermentation, SSF) is also used to produce industrial enzymes, drugs and

  15. Nylon 6 polymerization in the solid state

    NARCIS (Netherlands)

    Gaymans, R.J.; Amirtharaj, John; Kamp, Henk

    1982-01-01

    The postcondensation of nylon 6 in the solid state was studied. The reactions were carried out on fine powder in a fluidized bed reactor in a stream of dry nitrogen in the temperature range 110-205°C and during 1-24 h. The solid-state polymerization (SSP) did not follow melt kinetics, but was found

  16. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  17. Development of sustained release tablets containing solid ...

    African Journals Online (AJOL)

    Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier.

  18. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  19. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  20. The Herschel–ATLAS Data Release 2, Paper I. Submillimeter and Far-infrared Images of the South and North Galactic Poles: The Largest Herschel Survey of the Extragalactic Sky

    Science.gov (United States)

    Smith, Matthew W. L.; Ibar, Edo; Maddox, Steve J.; Valiante, Elisabetta; Dunne, Loretta; Eales, Stephen; Dye, Simon; Furlanetto, Christina; Bourne, Nathan; Cigan, Phil; Ivison, Rob J.; Gomez, Haley; Smith, Daniel J. B.; Viaene, Sébastien

    2017-12-01

    We present the largest submillimeter images that have been made of the extragalactic sky. The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 660 deg2 with the PACS and SPIRE cameras in five photometric bands: 100, 160, 250, 350, and 500 μm. In this paper we present the images from our two largest fields, which account for ∼75% of the survey. The first field is 180.1 deg2 in size, centered on the north Galactic pole (NGP), and the second is 317.6 deg2 in size, centered on the south Galactic pole. The NGP field serendipitously contains the Coma cluster. Over most (∼80%) of the images, the pixel noise, including both instrumental noise and confusion noise, is approximately 3.6, and 3.5 mJy pix‑1 at 100 and 160 μm, and 11.0, 11.1 and 12.3 mJy beam‑1 at 250, 350 and 500 μm, respectively, but reaches lower values in some parts of the images. If a matched filter is applied to optimize point-source detection, our total 1σ map sensitivity is 5.7, 6.0, and 7.3 mJy at 250, 350, and 500 μm, respectively. We describe the results of an investigation of the noise properties of the images. We make the most precise estimate of confusion in SPIRE maps to date, finding values of 3.12 ± 0.07, 4.13 ± 0.02, and 4.45 ± 0.04 mJy beam‑1 at 250, 350, and 500 μm in our un-convolved maps. For PACS we find an estimate of the confusion noise in our fast-parallel observations of 4.23 and 4.62 mJy beam‑1 at 100 and 160 μm. Finally, we give recipes for using these images to carry out photometry, both for unresolved and extended sources.

  1. [Companion Diagnostics for Solid Tumors].

    Science.gov (United States)

    Watanabe, Atsushi

    2015-11-01

    Companion diagnostics (CoDx) will likely continue to rapidly increase in number and application to disease areas including solid tumors, for example EGFR for gefitinib and ALK fusion gene for crizotinib in non-small-cell lung cancer; KRAS against the use of cetuximab and panitumumab in colorectal cancer; HER2 for trastuzumab in breast cancer. CoDx are an indispensable part of personalized medicine and pharmacogenomics. In CoDx development, there are still many challenges, such as the business model promoting cooperation between diagnostics and pharmaceutical companies, and also the regulations related to CoDx. The FDA notice on the development of CoDx in 2011 recommended the co-development of a new drug and CoDx as the best practice, and the Ministry of Health, Labour and Welfare in Japan also issued a statement in 2013. In addition, the recent discovery of many novel variants in the DNA sequence, advances in sequencing and genomic technology, and improved analytic methods have enabled the impact of germline and somatic mutations to be determined using multiplex diagnosis. The complex challenges to develop CoDx necessitate a close collaboration among academic institutions, regulatory authorities, and pharmaceutical companies. [Review].

  2. Solid state radiative heat pump

    Science.gov (United States)

    Berdahl, Paul H.

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  3. Oilfield solids and water-in-oil emulsion stability.

    Science.gov (United States)

    Sztukowski, Danuta M; Yarranton, Harvey W

    2005-05-15

    Model water-in-hydrocarbon emulsions consisting of toluene, heptane, water, asphaltenes, and native solids were used to investigate the role of native solids in the stability of oilfield emulsions. The solids were recovered from an oil-sands bitumen, a wellhead emulsion, and a refinery slop oil. The solids were clay platelets and fell into two size categories: (1) fine solids 50 to 500 nm in diameter and (2) coarse solids 1 to 10 microm in diameter. Emulsions stabilized by fine solids and asphaltenes were most stable at a 2:1 fractional area ratio of asphaltenes to solids. It appears that when the asphaltene surface coverage is high, insufficient solids remain to make an effective barrier. When the solids coverage is high, insufficient asphaltenes remain on the interface to immobilize the solids. Treatments that weaken the interface, such as toluene dilution, are recommended for emulsions stabilized by fine solids. Emulsions stabilized by coarse solids were unstable at low solids concentrations but became very stable at solids concentrations greater than 10 kg/m(3). At low concentrations, these solids may act as bridges between water droplets and promote coalescence. At high concentrations, layers of coarse solids may become trapped between water droplets and prevent coalescence. Treatments that flocculate the solids, such as heptane dilution, are recommended for emulsions stabilized by high concentrations of coarse solids. It is possible that emulsions containing both types of solids may require more than one treatment, or even process step, for effective water resolution.

  4. Sample Results from MCU Solids Outage

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

    2014-09-22

    Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries: A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate; A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate; A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate; An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate; A solids sample from ; A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed. Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or

  5. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient......, with the formation of Frenkel pairs playing a large role. The charge and discharge performance of all-solid-state batteries with LiBH4- LiI as an electrolyte is reported for the first time. Lithium titanate (Li4Ti5O12) was used for the positive electrode and lithium metal for the negative electrode...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary...

  6. Moisture-driven fracture in solid wood

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur; Olesen, John Forbes

    2011-01-01

    process, suggesting that sealing the ends of timber logs while in the green moisture state could considerably reduce the development of end-cracks. The initial moisture content and the shrinkage properties of the wood varied markedly from pith to bark. The importance of taking material inhomogeneities......Moisture-induced fractures in solid timber create considerable problems for both building industries and sawmills. Cracks caused by kiln-drying of solid timber are extremely difficult to predict. This paper reports on experiments concerned with methods of reducing cracks in wood...... into account when modelling crack propagation in solid wood is emphasized. © 2011 Taylor & Francis....

  7. Scalar operators in solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Boqin [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C60 is analyzed.

  8. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  9. Cadmium complexation by solid waste leachates

    DEFF Research Database (Denmark)

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste....... The leachates were spiked with Cd (separated into labile complexes......, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter is due...

  10. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  11. Composite Solid Fuel: Research of Formation Parameters

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman

    2016-01-01

    Full Text Available Involving of local low-grade fuels resources in fuel and energy balance is actual question of research in the present. In this paper the possibility of processing low-grade fuel in the solid fuel composite was considered. The aim of the work is to define the optimal parameters for formation of the solid composite fuel. A result of researches determined that dextrin content in the binder allows to obtain solid composite fuel having the highest strength. The drying temperature for the various fuels was determined: for pellets production was 20-80 °C, for briquettes – 20-40 °C.

  12. AN-107 entrained solids - Solubility versus temperature

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; RC Lettau

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AN-107 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AN-107 sample using sodium hydroxide and de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AN-107 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions.

  13. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  14. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  15. Solid State Energy Conversion Alliance Delphi SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Gary Blake; Sean Kelly; Subhasish Mukerjee; Karl Haltiner; Larry Chick; David Schumann; Jeff Weissman; Gail Geiger; Ralphi Dellarocco

    2006-12-31

    The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for High Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.

  16. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  17. Continuum emission from irradiated solid deuterium

    DEFF Research Database (Denmark)

    Forrest, J.A.; Brooks, R.L.; Hunt, J.L.

    1992-01-01

    A new emission feature from the spectrum of irradiated solid deuterium has been observed in the very near-infrared spectral region. Experiments from three laboratories, using different excitation conditions, have confirmed the observation. Comparison of the timing and temperature dependence...... of the spectral feature to the information previously available from electron spin resonance studies of solid deuterium, points to atomic association as the underlying cause. We shall show the connection of this emission to the occurrence of thermal spikes and optical flashes, previously observed in solid...... deuterium....

  18. Springback-Compensated, Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Inconsistent radius of curvature of replicated, composite reflector panels limit application of composites to large, segmented telescope apertures. This project...

  19. Submillimeter studies of main-sequence stars

    Science.gov (United States)

    Zuckerman, B.; Becklin, E. E.

    1993-01-01

    JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.

  20. Superconducting submillimeter and millimeter wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-[Tc] microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa[sub 2]Cu[sub 3]0[sub 7-[delta

  1. Superconducting submillimeter and millimeter wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, Michael [Univ. of California, Berkeley, CA (United States)

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-Tc microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa2Cu307-δ films was subsequently measured and provided direct evidence for the bolometric response of high-Tc films to fast (ns) laser pulses. The low-Tc microbolometer was developed and used to make the first direct measurements of the frequency dependent optical efficiency of planar lithographed antennas. The hot-electron microbolometer was invented less than a year prior to the writing of this dissertation. Our analysis, presented here, indicates that it should be possible to attain up to two orders of magnitude higher sensitivity than that of the best available direct detectors when operated at the same temperature. The temperature readout scheme for this device could also be used to measure the intrinsic interaction between electrons and phonons in a metal with a sensitivity that is five orders of magnitude better than in previous measurements. Preliminary measurements of quasiparticle trapping effects at the interface between a metal and a superconductor are also presented.

  2. [Non-solid and part-solid pulmonary nodules on CT scanning].

    Science.gov (United States)

    Ferretti, G; Félix, L; Serra-Tosio, G; Brambilla, C; Moro-Sibilot, D; Brichon, P Y; Coulomb, M; Lantuejoul, S

    2007-12-01

    The entities of non-solid and part-solid pulmonary nodules on CT scan have been recently described. Nonsolid and part-solid pulmonary nodules account for between 2.9 and 19% of all pulmonary nodules detected in high-risk patients included in CT screening series for lung cancer. Radio-pathological correlations have shown that the aetiology could be either benign (chronic pneumonia, atypical adenomatous hyperplasia, localized fibrosis) or malignant (broncholoalveolar cell carcinoma, adenocarcinoma, more rarely metastasis). Part-solid or non-solid nodules are more likely to be malignant than solid ones. The doubling time of non-solid nodules can be longer than part-solid ones and even longer than the doubling time of solid nodules. Patient prognosis is related to the proportion of the ground glass component. The management of these nodules requires prolonged surveillance of nodules less than 10mm in diameter and surgical excision of nodules greater than 10mm persisting on scans between 1 to 3 months after they have been discovered and anti-inflammatory and anti-infectious therapy has been administered. Nonsolid and part-solid pulmonary nodules found on CT scan warrant a specific diagnostic workup.

  3. Quadruple-responsive nanocomposite based on dextran-PMAA-PNIPAM, iron oxide nanoparticles, and gold nanorods.

    Science.gov (United States)

    Feng, Wenqian; Lv, Weipeng; Qi, Junjie; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2012-01-01

    A quadruple-responsive nanocomposite that responds to temperature, pH, magnetic field, and NIR is obtained by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) and gold nanorods (AuNRs) into a dextran-based smart copolymer network. The dual-sensitive copolymer is prepared by sequential RAFT polymerization of methacrylic acid and N-isopropylacrylamide from trithiocarbonate groups linked to dextran in one pot. These functionalized nanocomposites with superior stability can respond to the four stimuli mentioned above well. As evidenced by UV-vis and TEM measurements, the temperature-induced unusual blue-shift in the longitudinal plasmon band is possibly due to the side-to-side assembly of AuNRs. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pick up, move and release of nanoparticles utilizing co-non-solvency of PNIPAM brushes

    NARCIS (Netherlands)

    Yu, Yunlong; Lopez de la Cruz, Ricardo; Kieviet, Bernard D.; Gojzewski, Hubert; Pons, Adeline Christine; Vancso, Julius; de Beer, Sissi

    2017-01-01

    A critical complication in handling nanoparticles is the formation of large aggregates when particles are dried e.g. when they need to be transferred from one liquid to another. The particles in these aggregates need to disperse into the destined liquid medium, which has been proven difficult due to

  5. Lysozyme complexes with thermo- and pH-responsive PNIPAM-b-PAA block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Pippa, Natassa [National and Kapodistrian University of Athens, Department of Pharmaceutical Technology, Faculty of Pharmacy (Greece); Meristoudi, Anastasia; Pispas, Stergios, E-mail: pispas@eie.gr [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute (Greece); Demetzos, Costas [National and Kapodistrian University of Athens, Department of Pharmaceutical Technology, Faculty of Pharmacy (Greece)

    2017-02-15

    Lysozyme is an enzyme responsible for the damage of bacterial cell walls and is abundant in a number of secretions such as tears and human milk. In the present study, we investigated the structure, the physicochemical characteristics, and the temperature-responsiveness of lysozyme complexes with poly(N-isopropylacrylamide)-b-poly(acrylic acid) block polyelectrolyte in aqueous media. A gamut of light-scattering techniques and fluorescence spectroscopy were used in order to examine the complexation process, as well as the structure, solution behavior, and temperature response of the nanosized complexes. The concentration of copolymer polyelectrolyte was kept constant. The values of the scattering intensity, I{sub 90}, which is proportional to the mass of the species in solution, increased gradually as a function of C{sub LYS,} providing proof of the occurring complexation, while the size of the nanostructures decreased. The structure of the complexes became more open as the C{sub LYS} increased. The increase of the salinity did not affect the structural characteristics of the supramolecular nanoparticulate aggregates. On the other hand, the physicochemical and structural characteristics of the complexes changed upon increasing temperature, and the changes depended on the initial ratio block polyelectrolyte/lysozyme. The knowledge on developing block polyelectrolyte/protein complexes through electrostatic interactions, obtained from this investigation, may be applied to the design of nutraceuticals.

  6. Investigation of the phase separation of PNIPAM using infrared spectroscopy together with multivariate data analysis

    DEFF Research Database (Denmark)

    Munk, Tommy; Baldursdottir, Stefania G.; Hietala, S.

    2013-01-01

    to gain an oversight of small but systematic spectral differences anywhere within the spectra, providing further insight into structural changes and associated transformation mechanisms. In this study, the novel analytical approach of infrared spectroscopy combined with principal component analysis...

  7. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core–PNIPAM Shell Nanoparticles

    Science.gov (United States)

    2015-01-01

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. “Grafting-to” and “grafting-from” methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction. PMID:26270412

  8. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles.

    Science.gov (United States)

    Kurzhals, Steffen; Zirbs, Ronald; Reimhult, Erik

    2015-09-02

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. "Grafting-to" and "grafting-from" methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction.

  9. Hofmeister Effect on PNIPAM in Bulk and at an Interface: Surface Partitioning of Weakly Hydrated Anions

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2017-01-01

    microbalance, and atomic force microscopy. The results indicate a surface partitioning of the weakly hydrated anions, i.e., thiocyanate and trichloroacetate, and the findings are discussed in terms of anion-induced electrostatic stabilization. Although attractive polymer-ion interactions are suggested...... for thiocyanate and trichloroacetate, a salting-out effect is found for sodium trichloroacetate. This apparent contradiction is explained by a combination of previously suggested mechanisms for the salting-out effect by weakly hydrated anions....

  10. Survey of industrial dryers for solids

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.S.; Jensen, W.P.

    1976-07-01

    A study was directed toward obtaining data for an estimate of the current and anticipated energy demand for industrial drying operations for solid materials. Twenty-seven dryer types, including those utilizing both direct and indirect heat sources, were identified and are described. Results of an analysis made on 17 dryer types and based on data obtained from several of the largest solids dryer manufacturers indicate that industrial dryers for solids currently consume about 1.3 x 10/sup 18/ J (1.2 quads) of energy. This represents nearly 4 percent of the total United States industrial energy use. Several examples of steps being taken by industry to reduce energy requirements for solids drying are included. Still further action to reduce energy consumption of dryers is possible; implementation will depend upon the extent to which incentives are provided by fuel scarcity, fuel costs, and the perfection of new technology by industry alone and in programs with the Federal Government.

  11. Layered solid sorbents for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  12. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  13. Preliminary report on the diffusion of solids

    Science.gov (United States)

    Van Orstrand, C. E.; Dewey, F.P.

    1916-01-01

    Although 19 years has elapsed since Roberts-Austen published his classical paper on the diffusion of solid metals, no attempt seems to have been made to verify his important results and conclusions or to extend the investigations to minerals and to the great number of solids in which diffusion may be expected to occur. Progress has been made by means of chemical and electrical methods in the detection of diffusion in a number of metals in the solid state, some progress has been made in explaining the phenomena of diffusion on the basis of osmotic pressure and the kinetic theory, and recent measurements of the vapor pressures of solids have contributed indirectly to the progress of the science, but investigators have not undertaken the difficult and essential task of making definitive determinations of the coefficients of diffusivity at various pressures and temperatures.

  14. Solid wastes research in South Africa

    CSIR Research Space (South Africa)

    Noble, RG

    1976-06-01

    Full Text Available The importance of solid wastes management in environmental pollution control cannot be over-emphasised. Increased socio-economic development in South Africa has brought with it increasing volumes of urban, industrial and agricultural wastes...

  15. Methane potential of sterilized solid slaughterhouse wastes.

    Science.gov (United States)

    Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo

    2012-07-01

    The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Supercritical water oxidation - Microgravity solids separation

    Science.gov (United States)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  17. Actively doped solid core Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Broeng, Jes; Olausson, Christina Bjarnal Thulin; Lyngsøe, Jens Kristian

    2010-01-01

    Solid photonic bandgap fibers offer distributed spectral filtering with extraordinary high suppression. This opens new possibilities of artificially tailoring the gain spectrum of fibers. We present record-performance of such fibers and outline their future applications....

  18. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  19. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani

    2011-01-01

    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  20. Nanorod Array Solid State Neutron Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR project, Synkera proposes to develop and commercialize solid-state neutron detectors of a unique architecture that will enable sensor modules...