WorldWideScience

Sample records for submicrometer alumina compacts

  1. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  2. Slurry dispersion state as a parameter to control internal structure of alumina green compact

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.; Shui, A.; Tanaka, S.; Uchida, N.; Uematsu, K. [Nagaoka Univ. of Technology, Niigata (Japan)

    2002-07-01

    The dispersion state of slurry must be controlled to produce granules with appropriated properties for pressing. In this study dispersion state of alumina slurry is changed to form granules with different morphology, deformation property and packing density, and the influence on the internal structure of green compact are presented. Novel methods applying liquid immersion technique coupled with different type of microscopy were used to characterize the internal structures of green compacts. Two types of granules were obtained: dimpled, hard and dense granule, and spherical, soft and loose granule. The respective internal structures of green compacts were totally different. (orig.)

  3. Compaction study of particulate iron-chromium matrix composite reinforced with alumina

    International Nuclear Information System (INIS)

    Saidatulakmar Shamsuddin; Shamsul Baharin Jamaludin; Zuhailawati Hussain; Zainal Arifin Ahmad

    2007-01-01

    Recently, a sharper focus on cost reduction in producing advanced composites systems has increased and leads to an interest in ferrous matrix composite which is cheaper compared to Cobalt, Nickel and their alloys that are scarce, expensive and their dust is especially harmful. In the present investigation, Fe-Cr-Al 2 O 3 composite was prepared using conventional powder metallurgy technique; mixing, compaction and sintering. Consolidation of particulate materials is dependent on the compaction process. As load is increased, the number of contacting asperities increases and they flatten and grow to form a planar contact surface. These asperities eventually merge to form bonding surfaces between particles. This paper focused on finding the optimum compaction parameter in a uniaxial pressing. Six different pressure were studied; (250, 375, 500, 625, 750 and 875)MPa. experimental results show that the optimum compaction parameter is 750 MPa that produced highest linear shrinkage, highest bulk density, lowest porosity and highest hardness value. Every sample has formed binary alloy of Fe-Cr alloy, confirmed by XRD and alumina are homogeneously distributed in the Fe-Cr matrix revealed by optical micrograph and SEM. from EDX, the composites consist of iron, chromium and alumina. (author)

  4. Effect of sintering on structure and mechanical properties of alumina-15 vol% zirconia nanocomposite compacts

    International Nuclear Information System (INIS)

    Maneshian, Mohammad H.; Banerjee, Malay K.

    2010-01-01

    The sintering and densification behavior of high energy ball milled (HEBM-ed) alumina-15 vol% zirconia nanocomposite were carried out and the probable tetragonal to monoclinic phase transformation of ZrO 2 during sintering was investigated. Evolution of microstructure resulting from sintering was followed up by means of scanning electron microscopy (SEM) on polished samples, and the degree of phase transformation was determined by quantitative X-ray analysis (XRD). Moreover, synergetic effect of milling time and dopant composition on properties such as relative density, hardness, and fracture toughness was studied. The results have shown that mechanical properties of the composites were strongly dependent on the dopant content, structure and the fraction of tetragonal to monoclinic induced by HEBM and subsequent sintering. The extent of retention of t-ZrO 2 depends on the balance of magnitude of the strain energy arising from HEBM and releasing from sintering. In fact, compacts with aggressive HEBM history showed improved fracture toughness. Also it is shown the homogeneous microstructure obtained by HEBM and subsequent sintering promotes better densification.

  5. Characterization by X-ray tomography of granulated alumina powder during in situ die compaction

    Energy Technology Data Exchange (ETDEWEB)

    Cottrino, Sandrine; Jorand, Yves, E-mail: yves.jorand@insa-lyon.fr; Maire, Eric; Adrien, Jérôme

    2013-07-15

    Compaction process, the aim of which being to obtain green bodies with low porosity and small size, is often used before sintering treatment. Prior to die filling, the ceramic powder is generally granulated to improve flowability. However during compaction, density heterogeneity and critical size defects may appear due to intergranule and granule-die wall frictions. In this work, the influence of granule formulation on the compact morphology has been studied. To do so, a compaction setup was installed inside an X-ray tomography equipment so that the evolution of the compact morphology could be analysed during the whole compaction process. We have demonstrated that high humidity rate and the addition of binder in the granule formulation increase density heterogeneity and generate larger defects. - Highlights: • An original compaction set up was installed inside an X-Ray tomography equipment. • The compaction process of granulated ceramic powder is imaged. • The compact green microstructure is quantified and related to the compaction stages. • The most detrimental defects of dry-pressed parts are caused by hollow granules. • Formulations without binder allow a reduction of the number of large defects.

  6. Submicrometer Metallic Barcodes

    Science.gov (United States)

    Nicewarner-Peña, Sheila R.; Freeman, R. Griffith; Reiss, Brian D.; He, Lin; Peña, David J.; Walton, Ian D.; Cromer, Remy; Keating, Christine D.; Natan, Michael J.

    2001-10-01

    We synthesized multimetal microrods intrinsically encoded with submicrometer stripes. Complex striping patterns are readily prepared by sequential electrochemical deposition of metal ions into templates with uniformly sized pores. The differential reflectivity of adjacent stripes enables identification of the striping patterns by conventional light microscopy. This readout mechanism does not interfere with the use of fluorescence for detection of analytes bound to particles by affinity capture, as demonstrated by DNA and protein bioassays.

  7. Effect of primary particle size on spray formation, morphology and internal structure of alumina granules and elucidation of flowability and compaction behaviour

    Directory of Open Access Journals (Sweden)

    Pandu Ramavath

    2014-06-01

    Full Text Available Three different alumina powders with varying particle sizes were subjected to spray drying under identical conditions and effect of particle size on heat transfer efficiency and mechanism of formation of granules was elucidated. Morphology, internal structure and size distribution of granules were studied and evaluated with respect to their flow behaviour. In order to estimate the elastic interaction of granules, the granules were subjected to compaction under progressive loading followed by periodic unloading. Compaction curves were plotted and compressibility factor was estimated and correlated with predicted and measured green density values.

  8. Influence of short chain organic acids and bases on the wetting properties and surface energy of submicrometer ceramic powders.

    Science.gov (United States)

    Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef

    2010-08-15

    The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Germania and Alumina Dopant Diffusion and Viscous Flow Effects at Preparation of Doped Optical Fibers

    Directory of Open Access Journals (Sweden)

    Jens Kobelke

    2017-01-01

    Full Text Available We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT technique. The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.

  10. Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube

    Science.gov (United States)

    Abouelsayed, A.; Ebrahim, M. R.; El hotaby, W.; Hassan, S. A.; Al-Ashkar, Emad

    2017-10-01

    We present terahertz spectroscopy study on spherical nanoparticles powder mixture of aluminum, alumina, and MWCNTs induced by surface mechanical attrition treatment (SMAT) of aluminum substrates. Surface alloying of AL, Al2O3 0.95% and MWCNTs 0.05% powder mixture was produced during SMAT process, where a compact surface layer of about 200 μm due to ball bombardment was produced from the mixture. Al2O3 alumina powder played a significant role in MWCNTs distribution on surface, those were held in deformation surface cites of micro-cavities due to SMAT process of Al. The benefits are the effects on resulted optical properties of the surface studied at the terahertz frequency range due to electrical isolation confinement effects and electronic resonance disturbances exerted on Al electronic resonance at the same range of frequencies. THz acoustic phonon around 0.53-0.6 THz (17-20 cm-1) were observed at ambient conditions for the spherical nanoparticles powder mixture of Al, Al2O3 and MWCNTs. These results suggested that the presence of Al2O3 and MWCNTs during SMAT process leads to the optically detection of such acoustic phonon in the THz frequency range.

  11. Investigation of the percentage and the compacting pressure effect on the structural, optical and thermal properties of alumina-zeolite mixture

    Science.gov (United States)

    Messaadi, C.; Ghrib, T.; Ghrib, M.; Al-Otaibi, A. L.; Glid, M.; Ezzaouia, H.

    2018-03-01

    This paper presents a detailed investigation of the correlation between micro-structural, optical and thermal properties of a mixture constituted of NaA zeolite and Al2O3 alumina with different portions at various compacting pressures. A comprehensive study was made by using SEM, EDX, XRD, PL and PTD analysis. Through this full characterization, it was demonstrated that a mixture of grain size ranging from 50 nm to 85 nm can be used as a red emitter of mean wave length λ = 650 μm in optical devices. This mixture also proved to be used as a thermoinsultor or a thermocondensor material; with a thermal conductivity of about 0.22-1.33 W·m-1·K-1 and a thermal diffusivity of about 0.070-0.174 cm2·s-1.

  12. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent

    2006-01-01

    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  13. Computer simulation analysis on the machinability of alumina dispersion enforced copper alloy for high performance compact heat exchanger

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi

    2001-01-01

    Feasibility study on a HTGR-GT (High Temperature Gas cooled Reactor-Gas Turbine) system is examining the application of the high strength / high thermal conductivity alumina dispersed copper (AL-25) in the ultra-fine rectangle plate fin of the recuperator for the system. However, it is very difficult to manufacture a ultra-fine fin by large-scale plastic deformation from the hard and brittle Al-25 foil. Therefor, in present study, to establish the fine fin manufacturing technology of the AL-25 foil, it did the processing simulation of the fine fin first by the large-scale elasto-plastic finite element analysis (FEM) and it estimated a forming limit. Next, it experimentally made the manufacturing equipment where it is possible to do new processing using these analytical results, and it implemented a manufacturing experiment on the AL-25 foil. With these results, the following conclusion was obtained. (1) It did the processing simulation to manufacture a fine rectangle fin (fin height x pitch x thickness, 3 mm x 4 mm x 0.156 mm) from AL-25 foil (Thickness=0.156 mm) by the large-scale elasto-plastic FEM using the double action processing method. As a result, the manufacturing of a fine rectangle fin found a possible thing in the following condition by the double action processing method. It made that 0.8 mm and 0.25 mm were a best value respectively in the R part and the clearance between dies by making double action processing examination equipment experimentally and implementing a manufacturing examination using this equipment. (2) It succeeded in the manufacturing of the fine fin that the height x pitch x thickness is 3 mm x 4 mm x (0.156 mm±0.001 mm) after implementing a fine rectangle fin manufacturing examination from the AL-25 foil. (3) The change of the process of the deformation and the thickness by the processing of the AL-25 foil which was estimated by the large-scale elasto-plastic FEM showed the result of the processing experiment and good agreement

  14. Ultrafiltro de alumina Alumina ultrafilter

    Directory of Open Access Journals (Sweden)

    M. F. de Souza

    1999-06-01

    Full Text Available Membranas de alumina AKP-50 foram preparadas sobre um substrato de alumina APC-SG de alta resistência mecânica. As membranas foram sinterizadas a 1000 °C e possuem uma distribuição estreita de poros de 40 a 90 nm, espessura média de 57 mm e taxa de fluxo de 0,4 m3/m2h. O filtro assim obtido é classificado como ultrafiltro sendo capaz de reter bactérias e alguns vírus. São quimicamente inertes e resistem a temperaturas inferiores a 1000 °C. A aderência entre as camadas permite a limpeza por contra-fluxo.Alumina ceramic membranes with unimodal pore size distribution in the 40 to 90 nm range were prepared on alumina porous substrates. The 57mm thickness membrane made from AKP-50 alumina shows 0,4 m3/m2h flow rate. The two layer substrate, prepared to have high mechanical strength, was made from commercially available APC-SG alumina. The filter made of three layers, membrane, intermediate layer and substrate, is classified as ultra-filter being able to retain bacteria and some viruses. Adherence between the three layers allows reverse washing. Filters are chemically inert and resistant to temperatures below 1000oC.

  15. High-performance DC SQUIDs with submicrometer niobium Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Klapwijk, T.M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 ..mu..m tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 ..mu..A and the resistances are about 100 ..cap omega... With SQUIDs having an inductance of 1 nH the voltage modulation is a least 60 ..mu..V. An intrinsic energy resolution of 4 x 10/sup -32/ J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2 x 10/sup -30/ J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3 x 10/sup -12/ Tm/sup -1/. The gradiometer has a size of 12 mm x 17 mm, is simple to fabricate, an is suitable for biomedical applications.

  16. High-performance dc SQUIDs with submicrometer niobium Josephson junctions

    Science.gov (United States)

    de Waal, V. J.; Klapwijk, T. M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 µm tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 µA and the resistances are about 100 Ω. With SQUIDs having an inductance of 1 nH the voltage modulation is at least 60 µV. An intrinsic energy resolution of 4×10-32 J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2×10-30 J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3×10-12 T m-1. The gradiometer has a size of 12 mm×17 mm, is simple to fabricate, and is suitable for biomedical applications.

  17. Filtration of submicrometer particles by pelagic tunicates.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P; Stocker, Roman

    2010-08-24

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-microm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 microm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-microm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 microm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean.

  18. alumina solid electrolyte

    Indian Academy of Sciences (India)

    -β/β -alumina ceramics come from two parent phases designated as β-alumina and β ..... Acknowledgements. This work was supported by the Energy Efficiency & ... of Trade, Industry & Energy, Republic of Korea (No. 20142010102460).

  19. Passive photonic alignment with submicrometer repeatability and accuracy

    NARCIS (Netherlands)

    Gurp, J.F.C.; Tichem, M; Staufer, U.; Zhao, J.

    2013-01-01

    In this paper, we report on passive alignment with submicrometer accuracy of two photonic chips on a silicon optical bench. An effective design principle to minimize the tolerance chain is presented and applied to a case study. The chips have been successfully manufactured and an experimental setup

  20. SEM, optical, and Moessbauer studies of submicrometer chromite in Allende

    Science.gov (United States)

    Housley, R. M.

    1982-01-01

    New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.

  1. Porous Alumina Films with Width-Controllable Alumina Stripes

    Directory of Open Access Journals (Sweden)

    Huang Shi-Ming

    2010-01-01

    Full Text Available Abstract Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface.

  2. Porous Alumina Films with Width-Controllable Alumina Stripes

    Science.gov (United States)

    2010-01-01

    Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406

  3. Sub-micrometer waveguide for nano-optics

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Dyndgaard, Morten Glarborg; Andersen, Karin Nordström

    2003-01-01

    With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide for prob......With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide...... for probing the reflection of light against a nano structure. The planar waveguide is based on a silicon nitride core layer, surrounded by a silica cladding region. In our design we utilize this waveguide to couple light into a nano-structure....

  4. Fabrication and properties of submicrometer structures of magnetic materials

    International Nuclear Information System (INIS)

    Martin, J.I.; Velez, M.; Nogues, J.; Schuller, I.K.

    1998-01-01

    The method of electron beam lithography is described. This technique allows to fabricate well defined submicrometer structures of magnetic materials, that are suitable to show and study interesting physical properties by transport measurements either in Superconductivity or in Magnetism. In particular, using these structures, we have analyzed pinning effects of the vortex lattice in superconductors and magnetization reversal processes in magnetic materials. (Author) 15 refs

  5. Dimensional measurements with submicrometer uncertainty in production environment

    DEFF Research Database (Denmark)

    De Chiffre, L.; Gudnason, M. M.; Madruga, D.

    2015-01-01

    The work concerns a laboratory investigation of a method to achieve dimensional measurements with submicrometer uncertainty under conditions that are typical of a production environment. The method involves the concurrent determination of dimensions and material properties from measurements carried...... gauge blocks along with their uncertainties were estimated directly from the measurements. The length of the two workpieces at the reference temperature of 20 °C was extrapolated from the measurements and compared to certificate values. The investigations have documented that the developed approach...

  6. Reuse of activated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  7. Shock diffraction in alumina powder

    International Nuclear Information System (INIS)

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  8. Three-dimensional structure of brain tissue at submicrometer resolution

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Rino; Mizutani, Ryuta, E-mail: ryuta@tokai-u.jp [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki [Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari [Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  9. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    International Nuclear Information System (INIS)

    Schmid, T E; Zlobinskaya, O; Michalski, D; Molls, M; Multhoff, G; Greubel, C; Hable, V; Girst, S; Siebenwirth, C; Dollinger, G; Schmid, E

    2012-01-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm −1 ) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBE MN = 1.48 ± 0.07) and dicentrics (RBE D = 1.92 ± 0.15), in human–hamster hybrid (A L ) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm 2 matrix compared to quasi homogeneous in a 1 × 1 µm 2 matrix applied protons (RBE MN = 1.28 ± 0.07; RBE D = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12 C ion with 55 MeV total energy (4.48 MeV u −1 ). The enhancements are about half of that obtained for 12 C ions (RBE MN = 2.20 ± 0.06 and RBE D = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles. (paper)

  10. Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness

    Science.gov (United States)

    Schmid, T. E.; Greubel, C.; Hable, V.; Zlobinskaya, O.; Michalski, D.; Girst, S.; Siebenwirth, C.; Schmid, E.; Molls, M.; Multhoff, G.; Dollinger, G.

    2012-10-01

    This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm-1) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBEMN = 1.48 ± 0.07) and dicentrics (RBED = 1.92 ± 0.15), in human-hamster hybrid (AL) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm2 matrix compared to quasi homogeneous in a 1 × 1 µm2 matrix applied protons (RBEMN = 1.28 ± 0.07; RBED = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12C ion with 55 MeV total energy (4.48 MeV u-1). The enhancements are about half of that obtained for 12C ions (RBEMN = 2.20 ± 0.06 and RBED = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.

  11. High alumina refractories

    International Nuclear Information System (INIS)

    Simao, L.C.; Lopes, A.B.; Galvao Filho, N.B.; Souza, R.B. de

    1989-01-01

    High alumina refractories with 92 to 96.5% Al 2 O 3 were produced using brown and white fused as aggregate. Those refractories present only alumina-α and mullite as crystalline mineralogical phase. Other physical and chemical characteristics are similar to the ones found in refractories produced in Brazil, Japan and U.S.A. The most important physical and chemical tests used for the characterization of the raw materials and refractories, complemented by those realized at high temperatures, plus X-ray Difractometry and optical microscopy are presented, besides the refractory formulation and main parameters of production [pt

  12. Alumina Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  13. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.

    2006-01-01

    An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies

  14. Comparative evaluation of alumina powders obtained from different routes for engineering applications

    International Nuclear Information System (INIS)

    Page, C.H.; Chatterjee, A.K.

    1991-01-01

    Alumina, the most versatile and widely used refractory ceramic oxide, has currently occupied the position of the most preferred material in engineering ceramic industry. Though limited to some extent, the experience so far has been that the selection of an inappropriat high alumina ceramic can lead to cost penalties and poor performance in service. With this in view, one of the studies undertaken at the research laboratories of The Associated Cement Cos.Ldt. (India) has been to synthesise alumina powders by various process routes and to compare their physico-mechanical, thermal, textural and microstructural characteristics so as to understand the effects emanating from the powder synthesis processes on the performance properties of alumina. Following this approach, the present paper deals with aluminas obtained from four process routes, viz. Sol-Gel, Controlled Precipitation, Pyrolysis and Aluminium salts and conventional alumina obtained by calcination of gibbsite. The properties of these four varieties of alumina are characterised with respect to chemical analysis, particle size, textural features, grindability, etc. Behaviour of these powders in green processing/shaping particularly in terms of compaction, density, binder requirements, etc. have been studied. The calcination characteristics as reflected in shrinkage, densification and crystal morphology have been examined. Finally, the physical and thermal properties of Aluminas obtained from various synthesis routes and their co-relation with various powder characteristics and compact microstrcture have been dealt with. (orig.)

  15. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  16. Uranyl sorption onto alumina

    International Nuclear Information System (INIS)

    Jacobsson, A.M.M.

    1997-01-01

    The mechanism for the adsorption of uranyl onto alumina from aqueous solution was studied experimentally and the data were modeled using a triple layer surface complexation model. The experiments were carried out at low uranium concentrations (9 x 10 -11 --5 x 10 -8 M) in a CO 2 free environment at varying electrolyte concentrations (0.01--1 M) and pH (4.5--12). The first and second acid dissociation constants, pK a1 and pK a2 , of the alumina surface were determined from potentiometric titrations to be 7.2 ± 0.6 and 11.2 ± 0.4, respectively. The adsorption of uranium was found to be independent of the electrolyte concentration. The authors therefore conclude that the uranium binds as an inner sphere complex. The results were modeled using the code FITEQL. Two reactions of uranium with the surface were needed to fit the data, one forming a uranyl complex with a single surface hydroxyl and the other forming a bridged or bidentate complex reacting with two surface hydroxyls of the alumina. There was no evidence from these experiments of site heterogeneity. The constants used for the reactions were based in part on predictions made utilizing the Hard Soft Acid Base, HSAB, theory, relating the surface complexation constants to the hydrolysis of the sorbing metal ion and the acid dissociation constants of the mineral oxide surface

  17. Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis

    DEFF Research Database (Denmark)

    Antfolk, M.; Muller, Peter Barkholt; Augustsson, P.

    2014-01-01

    Handling of sub-micrometer bioparticles such as bacteria are becoming increasingly important in the biomedical field and in environmental and food analysis. As a result, there is an increased need for less labor-intensive and time-consuming handling methods. Here, an acoustophoresis-based microfl......Handling of sub-micrometer bioparticles such as bacteria are becoming increasingly important in the biomedical field and in environmental and food analysis. As a result, there is an increased need for less labor-intensive and time-consuming handling methods. Here, an acoustophoresis......-based microfluidic chip that uses ultrasound to focus sub-micrometer particles and bacteria, is presented. The ability to focus sub-micrometer bioparticles in a standing one-dimensional acoustic wave is generally limited by the acoustic-streaming-induced drag force, which becomes increasingly significant the smaller...... particles as small as 0.5 μm in diameter in microchannels of square or rectangular cross sections, is demonstrated. Numerical analysis was used to determine generic transverse particle trajectories in the channels, which revealed spiral-shaped trajectories of the sub-micrometer particles towards the center...

  18. Bauxite Mining and Alumina Refining

    Science.gov (United States)

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  19. On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography

    International Nuclear Information System (INIS)

    Gregusova, D.; Martaus, J.; Fedor, J.; Kudela, R.; Kostic, I.; Cambel, V.

    2009-01-01

    We developed a technology of sub-micrometer Hall probes for future application in scanning hall probe microscopy (SHPM) and magnetic force microscopy (MFM). First, the Hall probes of ∼9-μm dimensions are prepared on the top of high-aspect-ratio GaAs pyramids with an InGaP/AlGaAs/GaAs active layer using wet-chemical etching and non-planar lithography. Then we show that the active area of planar Hall probes can be downsized to sub-micrometer dimensions by local anodic oxidation technique using an atomic force microscope. Such planar probes are tested and their noise and magnetic field sensitivity are evaluated. Finally, the two technologies are combined to fabricate sub-micrometer Hall probes on the top of high-aspect ratio mesa for future SHPM and MFM techniques.

  20. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  1. Double-layer imprint lithography on wafers and foils from the submicrometer to the millimeter scale

    NARCIS (Netherlands)

    Moonen, P.F.; Yakimets, I.; Peter, M.; Meinders, E.R.; Huskens, J.

    2011-01-01

    In this paper, a thermal imprint technique, double-layer nanoimprint lithography (dlNIL), is introduced, allowing complete filling of features in the dimensional range of submicrometer to millimeter. The imprinting and filling quality of dlNIL was studied on Si substrates as a model system and

  2. Injection molding of nanopatterned surfaces in the sub-micrometer range with induction heating aid

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    . A tool insert having a surface containing functional geometries in the sub-micrometer range was produced using aluminum anodization and nickel electroplating. In order to provide elevated mold temperatures necessary for the complete replica of the pattern, a new mold setup was developed, which allows...

  3. Fabrication of asymmetric alumina membranes

    International Nuclear Information System (INIS)

    Firouzghalb, H.; Falamaki, C.

    2010-01-01

    The effect of SrO addition on the thermal stabilization of transition aluminas with the aim of producing membrane layers (supported and unsupported) has been investigated. Al 2 O 3 -x wt.% SrO composite powders (x = 1, 3, 5, 8) were synthesized by co-precipitation of the hydroxides from solutions of AlCl 3 and Sr(NO 3 ) 2 salts using NH 4 OH as a precipitating agent. Optimum SrO dopant concentration regarding the transition aluminas stabilization effect was determined to be 5 wt.% based on XRD analysis. STA analysis showed a 30 deg. C shift versus higher temperatures in the transformation of final transitional alumina (θ-Al 2 O 3 ) to stable alpha phase due to addition of 5 wt.% SrO. The mechanism of transition aluminas thermal stabilization as a result of SrO addition is thoroughly discussed. Unsupported alumina membranes were prepared by drying boehmite sols at 600, 800, 1000 and 1100 deg. C. The effect of calcination temperature on surface area, pore size distribution of unsupported membranes containing 5 wt.% SrO has been investigated. The microstructure of unsupported and supported membranes revealed quite different. Smaller grains in the supported layers were attributed to the interaction between support and membrane.

  4. Gelcasting polycrystalline alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  5. Alumina Yield in the Bayer Process

    Science.gov (United States)

    Den Hond, R.

    The alumina industry has historically been able to reduce alumina production costs, by increasing the liquor alumina yield. To know the potential for further yield increases, the phase diagram of the ternary system Na2O-Al2O -H2O at various temperature levels was analysed. It was found that the maximum theorical precipitation alumina yield is 160 g/l, while that for digestion was calculated to be 675 g/l.

  6. A nanonewton force facility to test Newton's law of gravity at micro- and submicrometer distances

    International Nuclear Information System (INIS)

    Nesterov, Vladimir; Buetefisch, Sebastian; Koenders, Ludger

    2013-01-01

    An experiment to test Newton's law of gravity at micro- and submicrometer distances using a nanonewton force facility at PTB and modern microtechnologies is proposed. It is anticipated that the proposed method can advance the search for non-Newtonian gravity forces via an enhanced sensitivity of 10 3 to 10 4 in comparison to current experiments at the micrometer length scale. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  8. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    % alumina dissolves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors revealed that ...

  9. Dynamic tensile response of alumina-Al composites

    International Nuclear Information System (INIS)

    Atisivan, R.; Bandyopadhyay, A.; Gupta, Y. M.

    2002-01-01

    Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum (Al) composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites is discussed here

  10. Transport properties of alumina nanofluids

    International Nuclear Information System (INIS)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-01-01

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m -1 K -1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various

  11. The characterization of ceramic alumina prepared by using additive glass beads

    Science.gov (United States)

    Suprapedi; Muljadi; Sardjono, Priyo

    2018-01-01

    The ceramic alumina has been made by using additive glass bead (5 and 10 % wt.). There are two kinds of materials, such as : gamma Alumina and glass bead. Synthesis of alumina was done by ball milling for 24 hours, then the mixed powder was dried in drying oven at 100 °C for 6 hours. Furthermore, the dried powder was mixed by using 2 % of PVA and continued with compacted to form a pellet with pressure of 50 MPA. The next step is sintering process with variation temperature of 1150, 1200, 1250, 1300 and 1400 °C and holding time for 2 hours. The characterization conducted are consist of test density, hardness, shrinkage, and microstructure. The results show that ceramic alumina with addition of 10 % wt. glass bead has the higher value of density, hardness and shrinkage than addition of 5% wt. glass bead. The highest characterization of ceramic alumina with addition 10 % glass bead was achieved at sintering temperature of 1400 °C with density 3.68 g/cm3, hardness vickers 780.40 Hv and shrinkage 15.23 %. The XRD results show that it was founds a corrundum (alpha Alumina) as dominant phase and mullite as minor phase.

  12. Synthesis of zeolite membrane (Y / α-alumina)

    International Nuclear Information System (INIS)

    Araujo, Ana Paula; Silva, Valmir Jose da; Crispin, Alana Carolyne; Rodrigues, Meiry Glaucia F.; Menezes, Romualdo R.

    2009-01-01

    The general aim of this study was to develop materials of the type: Y zeolite (hydrothermal synthesis), ceramic support (forming of powder) and zeolite membrane (rubbing). The preparation of the Y zeolite was conducted in accordance with the hydrothermal synthesis method, the time of crystallization was one day. The ceramic support was prepared by means of the forming of powder technique and subsequently subjected to sintering at a temperature of 1400 deg C/1h. The zeolite membrane (Y/α- alumina) was prepared by secondary growth method (rubbing). These materials were characterized by XRD and SEM. Obtaining Y zeolite could be confirmed by X ray diffractograms. From the images obtained by SEM, it was possible to derive from analysis that the Y zeolite is composed of a homogeneous morphology, where the particles are crowded, with uniform size. The results obtained for the ceramic support (α-alumina) showed that it displays characteristics peaks of aluminum oxide. By using micrographs it was possible to observe a heterogeneous microstructure with a compact form, without cracks upon the layers. According to the XRD, for the method of secondary growth (rubbing), it was observed that the Y zeolite which had been synthesized on the ceramic support displayed a crystalline structure. The micrography of the zeolite membrane (Y/α-alumina) showed the formation of a layer of zeolite on the ceramic support. (author)

  13. Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors

    Science.gov (United States)

    Busom, J.; Schreiber, A.; Tolosa, A.; Jäckel, N.; Grobelsek, I.; Peter, N. J.; Presser, V.

    2016-10-01

    Supercapacitors are devices for rapid and efficient electrochemical energy storage and commonly employ carbon coated aluminum foil as the current collector. However, the thickness of the metallic foil and the corresponding added mass lower the specific and volumetric performance on a device level. A promising approach to drastically reduce the mass and volume of the current collector is to directly sputter aluminum on the freestanding electrode instead of adding a metal foil. Our work explores the limitations and performance perspectives of direct sputter coating of aluminum onto carbon film electrodes. The tight and interdigitated interface between the metallic film and the carbon electrode enables high power handling, exceeding the performance and stability of a state-of-the-art carbon coated aluminum foil current collector. In particular, we find an enhancement of 300% in specific power and 186% in specific energy when comparing aluminum sputter coated electrodes with conventional electrodes with Al current collectors.

  14. Bauxite Mining and Alumina Refining

    OpenAIRE

    Donoghue, A. Michael; Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust,...

  15. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    Science.gov (United States)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary

  16. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  17. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Laleh, M.; Rouhaghdam, A. Sabour; Shahrabi, T.; Shanghi, A.

    2010-01-01

    Oxide coatings were formed on AZ91D magnesium alloy using micro-arc oxidation process in alkaline electrolyte without and with addition of alumina sol. The microstructures and compositions of the MAO coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Corrosion behaviors of the coatings were evaluated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5%NaCl solution. Porosities of the coatings were measured by potentiodynamic polarization tests. It was found that the coating produced in the electrolyte with alumina sol has more compact and uniform morphology than that produced in the electrolyte without alumina sol. The results of corrosion tests showed that the coating formed in electrolyte with alumina sol enhances the corrosion resistance of the substrate significantly. XRD patterns showed that the coating produced in the electrolyte with alumina sol has more MgAl 2 O 4 phase than MgO.

  18. The effects of alumina nanofillers on mechanical properties of high-performance epoxy resin.

    Science.gov (United States)

    Zhang, Hui; Zhang, Hui; Tang, Longcheng; Liu, Gang; Zhang, Daijun; Zhou, Lingyun; Zhang, Zhong

    2010-11-01

    In the past decade extensive studies have been focused on mechanical properties of inorganic nanofiller/epoxy matrices. In this work we systematically investigated the mechanical properties of nano-alumina-filled E-54/4, 4-diaminodiphenylsulphone (DDS) epoxy resins, which were prepared via combining high-speed mixing with three-roll milling. Homogeneous dispersion of nano-alumina with small agglomerates was obtained in epoxy resin, which was confirmed using transmission electron microscopy (TEM). The static/dynamic modulus, tensile strength and fracture toughness of the nanocomposites were found to be simultaneously enhanced with addition of nano-alumina fillers. About 50% and 80% increases of K(IC) and G(IC) were achieved in nanocomposite filled with 18.4 wt% alumina nanofillers, as compared to that of the unfilled epoxy resin. Furthermore, the corresponding fracture surfaces of tensile and compact tension samples were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques in order to identify the relevant fracture mechanisms involved. Various fracture features including cavities/debonding of nanofiller, local plastic deformation as well as crack pinning/deflection were found to be operative in the presence of nano-alumina fillers.

  19. Nano-scale measurement of sub-micrometer MEMS in-plane dynamics using synchronized illumination

    International Nuclear Information System (INIS)

    Warnat, S; Forbrigger, C; Kujath, M; Hubbard, T

    2015-01-01

    A method for measuring the sub-micrometer in-plane dynamics of MEMS devices with nano-scale precision using a CCD camera and synchronized pulsating illumination is presented. Typical MEMS actuators have fast responses (generally in the 1–200 kHz range), much faster than typical cameras which record a time averaged motion. Under constant illumination the average displacement is steady state and independent of dynamic amplitude or phase. Methods such as strobe illumination use short light pulses to freeze the motion. This paper develops the use of longer pulses of illumination that do not freeze the image, but make the average displacement depend on dynamic amplitude and phase; thus allowing both properties to be extracted. The expected signal is derived as a function of light pulse width and delay, and short versus longer pulses are compared. Measurements using a conventional microscope with replacement of the lamp with LEDs confirmed the derived equations. The system was used to measure sub-micrometer motion of MEMS actuators with ∼5 nm precision. The time constant of a thermal actuator was measured and found to be 48 µs. A resonant peak of a MEMS device was measured at 123.30 kHz with an amplitude of 238 nm. (paper)

  20. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  1. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  2. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  3. Preparation of alumina-β'

    International Nuclear Information System (INIS)

    Casarini, J.R.; Souza, D.P.F.

    1984-01-01

    Alumina - (β + β') in powder, with composition of 8.85% Na 2 0 + 0.75% Li 2 0 + 90.40% Al 2 O 3 is obtained using the zeta process. The phase transformation β→β' can be seen with powder X-ray diffraction. It was observed that the efficiency of the transformation is related to the processing and purity of the raw material. Impurities as Ca and Si difficult the phase transformation β→β'. (E.G.) [pt

  4. Ordering of Octahedral Vacancies in Transition Aluminas

    NARCIS (Netherlands)

    Wang, Yuan Go; Bronsveld, Paul M.; Hosson, Jeff Th.M. De; Djuričić, Boro; McGarry, David; Pickering, Stephen

    1998-01-01

    The microstructure of transition aluminas obtained via the dehydration of boehmite has been characterized by using transmission electron microscopy (TEM). The presence of γ-, δ-, and θ-aluminas was identified by using selected-area electron diffraction. Modifications that resulted from the

  5. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands

    Directory of Open Access Journals (Sweden)

    H. Herrmann

    2009-12-01

    Full Text Available Monomethylamine (MA, dimethylamine (DMA and diethylamine (DEA were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines. This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment.

  6. Monodisperse, submicrometer-scale platinum colloidal spheres with high electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lixue; Wang, Liang; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun; Wang, Erkang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 130022 Jilin, Changchun (China)

    2009-02-15

    Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H{sub 2}PtCl{sub 6}) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells. (author)

  7. Narrow thermal hysteresis of NiTi shape memory alloy thin films with submicrometer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Huilong; Hamilton, Reginald F., E-mail: rfhamilton@psu.edu; Horn, Mark W. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-09-15

    NiTi shape memory alloy (SMA) thin films were fabricated using biased target ion beam deposition (BTIBD), which is a new technique for fabricating submicrometer-thick SMA thin films, and the capacity to exhibit shape memory behavior was investigated. The thermally induced shape memory effect (SME) was studied using the wafer curvature method to report the stress-temperature response. The films exhibited the SME in a temperature range above room temperature and a narrow thermal hysteresis with respect to previous reports. To confirm the underlying phase transformation, in situ x-ray diffraction was carried out in the corresponding phase transformation temperature range. The B2 to R-phase martensitic transformation occurs, and the R-phase transformation is stable with respect to the expected conversion to the B19′ martensite phase. The narrow hysteresis and stable R-phase are rationalized in terms of the unique properties of the BTIBD technique.

  8. Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity

    International Nuclear Information System (INIS)

    Lian Suoyuan; Wang Enbo; Gao Lei; Wu Di; Song Yanli; Xu Lin

    2006-01-01

    Submicrometer-sized hollow hematite particles were prepared through a surfactant-assisted solvothermal process. The amount of FeCl 3 .H 2 O and cetyltrimethylammonium bromide, and the acidity of the solution were systematically altered to study their effects on the final results. Hollow hematite particles with shapes from sphere, ellipsoid to peanut were obtained. Their sizes range from 500 nm to 2 μm with shell thickness from 100 to 500 nm. Powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction were applied to investigate the products' crystallinity, purity, morphology, size and structural features. Finally, the study on the photocatalysis of Fe 2 O 3 for the destruction of diethyl phthalate in water was carried out. The result proved that Fe 2 O 3 hollow particles were effective photocatalysts for the degradation of DEP, with 96.8% destruction ratio being obtained within 60 min

  9. Improved External Base Resistance Extraction for Submicrometer InP/InGaAs DHBT Models

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Nodjiadjim, Virginie

    2011-01-01

    An improved direct parameter extraction method is proposed for III–V heterojunction bipolar transistor (HBT) external base resistance $R_{\\rm bx}$ extraction from forward active $S$-parameters. The method is formulated taking into account the current dependence of the intrinsic base–collector cap......An improved direct parameter extraction method is proposed for III–V heterojunction bipolar transistor (HBT) external base resistance $R_{\\rm bx}$ extraction from forward active $S$-parameters. The method is formulated taking into account the current dependence of the intrinsic base...... factor given as the ratio of the emitter to the collector area. The determination of the parameters $I_{p}$ and $X_{0}$ from experimental $S$-parameters is described. The method is applied to high-speed submicrometer InP/InGaAs DHBT devices and leads to small-signal equivalent circuit models, which...

  10. A comparison of submicrometer particle dose between Australian and Italian people

    International Nuclear Information System (INIS)

    Buonanno, G.; Morawska, L.; Stabile, L.; Wang, L.; Giovinco, G.

    2012-01-01

    Alveolar and tracheobronchial-deposited submicrometer particle number and surface area data received by different age groups in Australia are shown. Activity patterns were combined with microenvironmental data through a Monte Carlo method. Particle number distributions for the most significant microenvironments were obtained from our measurement survey data and people activity pattern data from the Australian Human Activity Pattern Survey were used. Daily alveolar particle number (surface area) dose received by all age groups was equal to 3.0 × 10 10 particles (4.5 × 10 2 mm 2 ), varying slightly between males and females. In contrast to gender, the lifestyle was found to significantly affect the daily dose, with highest depositions characterizing adults. The main contribution was due to indoor microenvironments. Finally a comparison between Italian and Australian people in terms of received particle dose was reported; it shows that different cooking styles can affect dose levels: higher doses were received by Italians, mainly due to their particular cooking activity. - Highlights: ► Particle number and surface area deposition in alveolar and tracheobronchial areas. ► Activity pattern and microenvironment data combination by Monte Carlo simulation. ► Deposition increases as a function of age group: maximum value for 19–40 years old. ► Major contributions arise from cooking, eating and transportation activities. ► Italian people statistically experience a dose higher than Australian one. - Alveolar and tracheobronchial-deposited submicrometer particle doses, in terms of number and surface area, were evaluated through a Monte Carlo method for different age groups population in Brisbane, Australia and compared to previously published Italian data.

  11. Plasma-sprayed tantalum/alumina cermets

    International Nuclear Information System (INIS)

    Kramer, C.M.

    1977-12-01

    Cermets of tantalum and alumina were fabricated by plasma spraying, with the amount of alumina varied from 0 to 65 percent (by volume). Each of four compositions was then measured for tensile strength, elastic modulus, and coefficient of thermal expansion. In general, strength and strain to failure decreased with increasing alumina content: 62 MPa for 100 percent Ta to 19 MPa for 35 v percent Ta. A maximum of 0.1 percent strain was observed for the sprayed 100 percent Ta specimens. The coefficient of thermal expansion measured for the pure Ta was 6.2 (10 -6 )/K

  12. Mullite-alumina functionally gradient ceramics

    International Nuclear Information System (INIS)

    Pena, P.; Bartolome, J.; Requena, J.; Moya, J.S.

    1993-01-01

    Cracks free mullite-alumina Functionally Gradient Ceramics (FGC) have been obtained by sequential slip casting of Mullite-alumina slurries with different mullite/alumina ratios. These slurries were prepared with 65 % solids content and viscosities ranging from 10 to 40 mPa.s. The presence of cracks perpendicular to the FGC layers have been attributed to residual stresses developed because of the mismatch in thermal expansion between layers. The microstructure of the different layers, and de residual stress value σ R in each layer was also determined. (orig.)

  13. Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia

    Directory of Open Access Journals (Sweden)

    A. Massling

    2007-06-01

    Full Text Available Hygroscopic properties of aerosol particles in the sub-micrometer and one-micrometer size ranges were measured during the ACE-Asia study (Aerosol Characterization Experiment-Asia in spring 2001. The measurements took place off the coasts of Japan, Korea, and China. All instruments contributing to this study were deployed in a container on the forward deck of the NOAA Research Vessel Ronald H. Brown. Air masses with primarily marine influence and air masses from the Asian continent affected by both anthropogenic sources and by the transport of desert dust aerosol were encountered during the cruise.

    Results showed very different hygroscopic behavior in the sub-micrometer size range compared to the one-micrometer size range. In general, for all continentally influenced air masses, the one-micrometer particle population was characterized by two different particle groups – a nearly hydrophobic fraction with growth factors around 1.0 representative of dust particles and a sea salt fraction with hygroscopic growth factors around 2.0. The number fraction of dust particles was generally about 60% independent of long-range air mass origin.

    For sub-micrometer particles, a dominant, more hygroscopic particle fraction with growth factors between 1.5 and 1.9 (depending on dry particle size consistent with ammonium sulfate or non-neutralized sulfates as major component was always found. In marine air masses and for larger sizes within the sub-micrometer range (Dp=250 and 350 nm, a sea salt fraction with growth factors between 2.0 and 2.1 was also observed. For all other air masses, the more hygroscopic particle fraction in the sub-micrometer size range was mostly accompanied by a less hygroscopic particle fraction with growth factors between 1.20 and 1.55 depending on both the continental sources and the dry particle size. Number fractions of this particle group varied between 4 and 39% depending on dry particle size and air mass

  14. Study of the molybdenum retention in alumina

    International Nuclear Information System (INIS)

    Wilkinson, Maria V.; Mondino, Angel V.; Manzini, Alberto

    2002-01-01

    The Argentine National Atomic Energy Commission routinely produces 99 Mo by fission of highly enriched uranium contained in targets irradiated in RA-3 reactor. The current process begins with the dissolution of the irradiated target in a basic media, considering the possibility of changing the targets, it could be convenient to dissolve them in acid media. The use of alumina as a first separation step in acid dissolution processes is already known although it is necessary to determine both the type of alumina to be used and the separation conditions. The study of molybdenum retention in alumina was performed at laboratory scale, using Mo-99 as radiotracer. Different kinds of alumina were tried, varying charge solution acidity. Influence of uranium concentration in the loading solution on molybdenum retention was also studied. (author)

  15. Everlasting Dark Printing on Alumina by Laser

    Science.gov (United States)

    Penide, J.; Quintero, F.; Arias-González, F.; Fernández, A.; del Val, J.; Comesaña, R.; Riveiro, A.; Lusquiños, F.; Pou, J.

    Marks or prints are needed in almost every material, mainly for decorative or identification purposes. Despite alumina is widely employed in many different industries, the need of printing directly on its surface is still a complex problem. In this sense, lasers have largely demonstrated their high capacities to mark almost every material including ceramics, but performing dark permanent marks on alumina is still an open challenge. In this work we present the results of a comprehensive experimental analysis on the process of marking alumina by laser. Four different laser sources were used in this study: a fiber laser (1075 nm) and three diode pumped Nd:YVO4 lasers emitting at near-infrared (1064 nm), visible (532 nm) and ultraviolet (355 nm) wavelengths, respectively. The results obtained with the four lasers were compared and physical processes involved were explained in detail. Colorimetric analyses allowed to identify the optimal parameters and conditions to produce everlasting and high contrast marks on alumina.

  16. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    Administrator

    College of Engineering & Ceramic Technology, Kolkata 700 010, India. †. School of .... Chemical compositions of different batches of spinel–alumina composites. Chemistry ..... sence of magnesio–aluminate spinel, Ph D Thesis, University.

  17. Control of porosity in alumina for catalytic purposes - a review; Controle de porosidade em aluminas para fins cataliticos - uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Gustavo Torres [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Hidrorrefino, Lubrificantes e Parafinas; Morgado Junior, Edisson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Craqueamento Catalitico; Figueiredo, Cecilia Maria C.

    1999-12-01

    In recent years, the Alumina Group, of the Catalysts Division of CENPES, has dedicated research to develop and characterize alumina for the catalytic processes of interest to PETROBRAS. Control of the texture of the alumina and, consequently, the alumina based catalysts, is crucially important to their adequacy and performance. Knowledge of the porosity formation mechanisms in alumina was fundamental for the development of catalysts to satisfy the demand from PETROBRAS. This comprises the scope of this review. (author)

  18. Synthesis, extrusion processing and ionic conductivity measurements of sodium β-alumina tubes

    Directory of Open Access Journals (Sweden)

    Karanja Avinash

    2015-09-01

    Full Text Available Pure and Li-doped sodium β-alumina (NaMg0.67Al10.33O17 ceramics were prepared from the stoichiometric mixture of raw powders. Pellets and tubes were formed from the precursor (NBA-1S and preformed sodium β-alumina powder through compaction and extrusion processing, respectively. The obtained specimens were finally sintered to dense ceramics. The ceramics were comparatively evaluated for their density, microstructure, phase formation and electrical properties. Both tubes and pellets processed with the preformed sodium β-alumina powder (NBA-2S showed enhanced densification along with relatively better phase purity and crystallinity. The ceramics prepared from the preformed powder exhibited higher density of 94–95% TD (theoretical densities in comparison to the ceramics processed from the raw mixture (NBA-1S with a density of 85–87% TD, which are complemented well through fractographs and microstructures. The ceramics processed using the preformed sodium β-alumina (NBA-2S also exhibited high room temperature AC conductivity of 1.77×10-4 S/cm (1 MHz with an increasing trend with temperature. The higher ionic conductivity at all temperatures in NBA-2S than in NBA-1S ceramics can be attributed to the relatively high phase purity, crystallinity and higher density values of NBA-2S ceramics.

  19. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  20. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications.

    Science.gov (United States)

    Shirazi, F S; Mehrali, M; Oshkour, A A; Metselaar, H S C; Kadri, N A; Abu Osman, N A

    2014-02-01

    The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0-50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500-700nm after sintering process. © 2013 Published by Elsevier Ltd.

  1. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  2. Synthesis of Alumina using the solvo thermal method

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslimin

    2007-01-01

    The paper describes work done on synthesis of α- and β-alumina by using the solvo thermal technique. Synthesis of both these aluminas involves the transition reactions of the aluminium hydroxide into alumina by a dehydroxylation process. As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD) technique was used to identify α-alumina and β-alumina. After establishing the optimum conditions for the production of a single-phase α- and β-aluminas, characteristic study on the product was performed. An important parameter in establishing nano sized powders is their crystallite size and analysis of the β-alumina shows that it is a nano sized powder with a size of 28 nm while the α-alumina has a crystallite size of 200 nm. Other properties analysed include morphology, surface area and particle size. (author)

  3. Evaluation and Modification of Commercial Dry Powder Inhalers for the Aerosolization of a Submicrometer Excipient Enhanced Growth (EEG) Formulation

    Science.gov (United States)

    Son, Yoen-Ju; Longest, P. Worth; Tian, Geng; Hindle, Michael

    2013-01-01

    The aim of this study was to evaluate and modify commercial dry powder inhalers (DPIs) for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation. The optimized device and formulation combination was then tested in a realistic in vitro mouth-throat - tracheobronchial (MT-TB) model. An optimized EEG submicrometer powder formulation, consisting of albuterol sulfate (drug), mannitol (hygroscopic excipient), L-leucine (dispersion enhancer) and poloxamer 188 (surfactant) in a ratio of 30:48:20:2 was prepared using a Büchi Nano spray dryer. The aerosolization performance of the EEG formulation was evaluated with 5 conventional DPIs: Aerolizer, Novolizer, HandiHaler, Exubera and Spiros. To improve powder dispersion, the HandiHaler was modified with novel mouth piece (MP) designs. The aerosol performance of each device was assessed using a next generation impactor (NGI) at airflow rates generating a pressure drop of 4 kPa across the DPI. In silico and in vitro deposition and hygroscopic growth of formulations was studied using a MT-TB airway geometry model. Both Handihaler and Aerolizer produced high emitted doses (ED) together with a significant submicrometer aerosol fraction. A modified HandiHaler with a MP including a three-dimensional (3D) array of rods (HH-3D) produced a submicrometer particle fraction of 38.8% with a conventional fine particle fraction (% <5µm) of 97.3%. The mass median diameter (MMD) of the aerosol was reduced below 1 µm using this HH-3D DPI. The aerosol generated from the modified HandiHaler increased to micrometer size (2.8 µm) suitable for pulmonary deposition, when exposed to simulated respiratory conditions, with negligible mouth-throat (MT) deposition (2.6 %). PMID:23608613

  4. Multimodal sensing and imaging technology by integrated scanning electron, force, and nearfield microwave microscopy and its application to submicrometer studies

    OpenAIRE

    Hänßler, Olaf C.

    2018-01-01

    The work covers a multimodal microscope technology for the analysis, manipulation and transfer of materials and objects in the submicrometer range. An atomic force microscope (AFM) allows imaging of the surface topography and a Scanning Microwave Microscope (SMM) detects electromagnetic properties, both operating in a Scanning Electron Microscope (SEM). The described technology demonstrator allows to observe the region-of-interest live with the SEM, while at the same time a characterization w...

  5. Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel

    Directory of Open Access Journals (Sweden)

    K. Yamamura

    2016-09-01

    Full Text Available This paper reports the effect of a hydrothermal process for alumina sol on the crystal structure of alumina gel derived from hydrothermally treated alumina sol to help push forward the development of low temperature synthesis of α-Al2O3. White precipitate of aluminum hydroxide was prepared with a homogeneous precipitation method using aluminum nitrate and urea in aqueous solution. The obtained aluminum hydroxide precipitate was peptized by using acetic acid at room temperature, which resulted in the production of a transparent alumina sol. The alumina sol was treated with a hydrothermal process and transformed into an alumina gel film by drying at room temperature. Crystallization of the alumina gel to α-Al2O3 with 900 °C annealing was dominant for a hydrothermal temperature of 100 °C and a hydrothermal time of 60 min, as production of diaspore-like species was promoted with the hydrothermal temperature and time. Excess treatments with hydrothermal processes at higher hydrothermal temperature for longer hydrothermal time prevented the alumina gel from being crystallized to α-Al2O3 because the excess hydrothermal treatments promoted production of boehmite.

  6. Synthesis of alumina/YAG 20 vol% composite by co-precipitation

    Directory of Open Access Journals (Sweden)

    Radosław Lach

    2011-12-01

    Full Text Available Co-precipitation of alumina/YAG precursor from aluminum and yttrium nitrate solution with ammonium carbonate results in dawsonite. Its crystallographic parameters differ from the compound precipitated with no yttrium additive. It suggests that yttrium ions become incorporated into the dawsonite structure. The DSC/TG and X-ray diffraction measurements show decomposition of dawsonite at elevated temperatures resulting in γ-Al2O3 and then δ- and θ-alumina modifications. Full transformation to α-Al2O3 and YAG occurs at temperatures higher than 1230°C. Starting powder for the sintering experiments was prepared using the coprecipitated precursor calcined at 600°C. Seeding of such powder with 5 wt.% α-Al2O3 results in material of 98% density at 1500°C. Much lower densification show compacts of unseeded powder.

  7. Alkali Influence on Synthesis of Solid Electrolyte Based on Alkali Nitrate-Alumina

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Purnama, S.; Purwanto, P.

    2008-01-01

    Research of solid electrolyte based on alumina with addition of alkali materials of barium nitrate, calcium nitrate, sodium nitrate and lithium nitrate has been done. Aluminium hydroxide and alkali nitrate were mixed in mole ratio of 1 : 1 in water media and pyrolyzed at 300 o C for 1 hour Pyrolysis result were then mixed with alumina in mole ratio of 1 : 1, compacted and heated at 600 o C for 3 hours. To characterize the sample, XRD (X-Ray Diffractometers) and LCR meter (impedance, capacitance, and resistance) were used for analysis the phase and conductivity properties. The result showed formation of alkali-aluminate in which Li-base have the highest room temperature conductivity of 3.1290 x 10 -5 S.cm -1 , while Ba-base have the lowest conductivity of 5.7266 x 10 -8 S.cm -1 . (author)

  8. Distribution analysis of thermal effusivity for sub-micrometer YBCO thin films using thermal microscope

    International Nuclear Information System (INIS)

    Yagi, T.; Taketoshi, N.; Kato, H.

    2004-01-01

    Thermal effusivity measurements have been carried out for sub-micrometer YBCO superconducting films using thermal microscope based upon thermoreflectance technique. Two samples were prepared: c-axis aligned YBCO thin films with 800 nm in thickness synthesized on MgO and SrTiO 3 substrates. Measured thermal effusivities perpendicular to the surface, i.e. in parallel with c-axis were determined to be 1770 J/m 2 s 0.5 K on MgO substrate and 1420 J/m 2 s 0.5 K for that on SrTiO 3 substrate, respectively. The scatter of the measurements is estimated to be lower than ±5.2%. These values are consistent with reported values of YBCO single crystal in the direction of c-axis. In addition, 2D profiling image, that is, in-plane distribution of thermal effusivity was well obtained for the YBCO film on MgO substrate by operating this thermal microscope in a scanning mode. Its standard deviation of the in-plane thermal effusivity scattering due to the non-uniformity is evaluated to be ±5.7%

  9. High contrast laser marking of alumina

    International Nuclear Information System (INIS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; Val, J. del; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-01-01

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks

  10. Synthesis of nano γ-alumina by the solvothermal technique

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslimin

    2006-01-01

    The paper describes work done on synthesis of γ-alumina by using the solvo thermal technique. Synthesis of γ-alumina involves the transition reactions of the aluminium hydroxide into alumina by a dehydroxylation process. As there are many forms of transition aluminas produced during this process, a x-ray diffraction (XRD) technique was used to identify γ-alumina and the other forms of alumina. After establishing the optimum conditions for the production of a single-phase γ-alumina, characteristic study on the product was performed. An important parameter in establishing nanosized powders is their crystallite size and analysis of the γ-alumina shows that it is a nanosized powder with a size of 28 nm. Other properties analysed include morphology, surface area and particle size. (Author)

  11. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    study, alumina ball was chosen as the counter body material to show better performance of the ... Tribology is a relatively new science that considers ... The science is applied in ... for example, in hip prosthesis, instead of existing alumina.

  12. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  13. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  14. Electrochemically produced alumina as TL detector

    International Nuclear Information System (INIS)

    Osvay, M.

    1996-01-01

    The goal of this work was to compare the TL properties of various electrochemically produced alumina layers (E-AIO) in order to investigate the effect of the electrolyte and the Mg content on the alloys. It has been found that the TL sensitivity of oxidised layers is more influenced by the type of electrolyte, than by the composition of alloy. Hard oxide layer evolved in reduction electrolyte has rather different character compared to other alumina production investigated. The effect of reducing media seems to be very important during preparation of alumina layer. One of the advantages properties of E-AIO is, that it serve a promising method to increase the measuring range of TL method above 10 kGy as well. (author)

  15. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  16. Hydrogen diffusion in Pb β''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.; Dudney, N.J.; Wang, J.C.

    1985-01-01

    The mobile Na + ions in Na β''-alumina can be completely exchanged with Pb 2+ ions by treatment in molten PbCl 2 . When this exchange was carried out in the presence of air, protons in the form of OH - were introduced into the conduction layers along with lead ions. Although the concentration of OH - was low, on the order of 5 x 10 -3 per formula unit of Pb/sub 0.84/Mg/sub 0.67/Al/sub 10.33/O_1_7, the distribution of OH - after ion exchange indicated that the proton mobility in Pb β''-alumina is high. The potential use of Pb β''-alumina as a fast proton conductor that is stable at 400 0 C motivated further studies of hydrogen diffusion. In this report, the results of tracer diffusion measurements by isotope exchange will be presented

  17. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    Science.gov (United States)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  18. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling

    International Nuclear Information System (INIS)

    Razavi Hesabi, Z.; Hafizpour, H.R.; Simchi, A.

    2007-01-01

    The densification response of aluminum powder reinforced with 5 vol.% nanometric alumina particles (35 nm) during uniaxial compaction in a rigid die was studied. The composite powder was prepared by blending and mechanical milling procedures. To determine the effect of the reinforcement nanoparticles on the compressibility of aluminum powder, monolithic Al powder, i.e. without the addition of alumina, was also examined. It was shown that at the early stage of compaction when the rearrangement of particles is the dominant mechanism of the densification, disintegration of the nanoparticle clusters and agglomerates under the applied load contributes in the densification of the composite powder prepared by blending method. As the compaction pressure increases, however, the load partitioning effect of the nanoparticles decreases the densification rate of the powder mixture, resulting in a lower density compared to the monolithic aluminum. It was also shown that mechanical milling significantly impacts the compressibility of the unreinforced and reinforced aluminum powders. Morphological changes of the particles upon milling increase the contribution of particle rearrangement in densification whilst the plastic deformation mechanism is significantly retarded due to the work-hardening effect of the milling process. Meanwhile, the distribution of alumina nanoparticles is improved by mechanical milling, which in fact, affects the compressibility of the composite powder. This paper addresses the effect of mechanical milling and reinforcement nanoparticles on the compressibility of aluminum powder

  19. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  20. Blocking of grain reorientation in self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Ramirez-Rico, J.; Torrecillas, R.

    2011-01-01

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  1. Studies of alumina additions in zirconia - magnesia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1987-01-01

    Ionic conductivity measurements have been carried out in the 500 0 C - 1000 0 C temperature range in Mg - PSZ (Partially Stabilized Zirconia) with 0.5 to 10 mol % alumina additions. All specimens were prepared by pressing followed by pre - and sintering at 1000 0 C/2h and1450 0 C/4h, respectively. Thermal histerysis of the ionic conductivity have been detected, probably due to phase changes in the Mg-PSZ samples. The results show that alumina additions up to 2.1% enhances densification with no major variations in electrical resistivity values. (Author) [pt

  2. Tritium compatibility of alumina and Fosterite

    Energy Technology Data Exchange (ETDEWEB)

    Coffin, D.O.

    1979-09-01

    Many pressure measurements are required to control processing of the fuel gases associated with fusion power reactors. Since most pressure transducers respond to changes in pressure sensitive electrical parameters, insulators will be required to withstand chronic exposures to concentrated tritium. For this investigation samples of alumina and Fosterite were exposed to concentrated tritium gas for 11 weeks. Gas phase impurities were then analyzed for clues that would indicate decomposition of the exposed materials. The only gaseous impurity resulting from these tritium exposures was tritio-methane, which is always produced when tritium is stored in stainless steel containers. There was no evidence that either alumina or Fosterite decomposed in the presence of tritium.

  3. Delayed Failure in a Shock Loaded Alumina

    International Nuclear Information System (INIS)

    Cooper, G. A.; Millett, J. C. F.; Bourne, N. K.; Dandekar, D. P.

    2006-01-01

    Manganin stress gauges have been used to measure the lateral stress in a shock-loaded alumina. In combination with known longitudinal stresses, these have been used to determine the shear strength of this material, behind the shock front. The two-step nature of the lateral stress traces shows a slow moving front behind the main shock, behind which shear strength undergoes a significant decrease. Results also show that this front decreases markedly in velocity as the HEL is crossed, suggesting that limited plasticity occurs during inelastic deformation. Finally, comparison of measured shear strengths with other aluminas shows a high degree of agreement

  4. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  5. Characterization of alumina using small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro

    2007-01-01

    Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)

  6. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  7. Ionic and molecular transport in beta- and beta''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.

    1984-03-01

    Investigations of rapid transport of cations and water molecules in the β- and β''-alumina family of superionic conductors are reviewed. Particular topics that are discussed include the Haven ratio and mixed-ion effects in β-alumina, and the influence of superlattice ordering on ionic transport in β''-alumina

  8. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kaul, R.; Ganesh, P.; Shiroman, Ram; Tiwari, Pragya; Sridhar, R.; Kukreja, L.M.

    2013-01-01

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  9. LOW TEMPERATURE SINTERING OF ALUMINA BIOCERAMIC UNDER NORMAL PRESSURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Superfine alumina powder with high purity (mean particle size is less than 0. 35μm) were used as main starting material for sintering alumina ceramic. A multiple additive MgO-ZrO2 (Y2O3) was homogeneously added into the batch by the chemical coprecipitation method. Sintering of alumina bioceramic at low tempera ture (<1600C) was achieved resulting in a dense and high strength alumina ceramic with the bending strength up to 382 MPa and an improved fracture toughness. Mechanism that the multiple additives promote the sintering of alumina ceramic is discussed on the base of XRD and SEM analysis.

  10. Investigating the property profile of polyamide-alumina nanocomposite materials

    International Nuclear Information System (INIS)

    Sarwar, Muhammad Ilyas; Zulfiqar, Sonia; Ahmad, Zahoor

    2009-01-01

    Transparent sol-gel-derived nanocomposites were prepared by incorporating an alumina network into a polyamide matrix. Different amounts of aluminum butoxide were hydrolyzed and condensed to produce the alumina network. Thin composite films were characterized in terms of their optical, morphological, mechanical and thermomechanical properties. Tensile modulus, stress at both yield and break points, improved for alumina loadings of 5-10 wt.%. The glass transition temperature increased to 140 o C for nanocomposites containing 15 wt.% alumina. Scanning electron microscopy investigations indicated a uniform distribution of alumina in the polyamide matrix.

  11. Mechanical Properties of Plasma Sprayed Alumina Coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Nohava, Jiří; Siegel, J.

    2003-01-01

    Roč. 48, č. 2 (2003), s. 129-145 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma sprayed alumina coatings, fatigue test, metalography, fractography, residual stress, microhardness, Young's modulus , four-point bending Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Yield stress of alumina-zirconia suspensions

    International Nuclear Information System (INIS)

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-01-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data

  13. Wear of alumina on alumina total hip prosthesis - effect of lubricant on hip simulator test

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, M.; Amino, H. [Kyocera Corp., Fushimi, Kyoto (Japan). Bioceram Div.; Oonishi, H. [Dept. of Orthopaedic Surgery, Artificial Joint Sect. and Biomat. Res. Lab., Osaka Minami National Hospital, Osaka (Japan); Clarke, I.C.; Good, V. [Dept. of Orthopaedic Surgery, Loma Linda Univ. Medical Center, CA (United States)

    2001-07-01

    The complex wear-friction-lubrication behavior of alumina on alumina combination in total hip prostheses (THP) was investigated using a hip joint simulator. The objectives of this study were to evaluate the effect of the ball/cup clearance and of the lubricant conditions. Alumina bearings were categorized in three diametrical clearances, 20-30, 60-70 and 90-100 micrometer, three each and wear tests were carried out with 90% bovine serum. There was no significant difference between three groups. Volumetric wear in the run-in phase for all tested nine ceramic liners averaged 0.27mm{sup 3}/million cycles and in the steady-state phase averaged 0.0042mm{sup 3}/million cycles. In addition to the 90% serum, 27% serum and saline were used as the lubricant for evaluate the effect of serum concentration on alumina on alumina wear couples. The wear test results showed that in all tested conditions the wear trends of alumina BEARING were bi-phasic and wear volume could be affected by the serum concentration. Both ''Run-in'' and ''Steady-state'' wear rates in 90% bovine serum were three times higher than those in saline. (orig.)

  14. Multidecadal persistence of organic matter in soils: insights from spatially resolved investigations at the submicrometer scale

    Science.gov (United States)

    Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Alléon, Julien; Chenu, Claire

    2016-04-01

    Better understanding the mechanisms responsible for the pluri-decadal persistence of carbon in soils requires well constraining the dynamics, the distribution and the chemical nature of both the soil organic carbon (SOC) and the associated mineral phases. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here, benefiting from the unique opportunity offered by an INRA long term bare fallow (LTBF) experiment having started in 1928 in Versailles (France), we report the in-situ characterization of SOC dynamics in four clay fractions of this silty loam soil (total clays [TC, clays [CC, 0.2-2μm], intermediate clays [IC, 0.05-0.2μm] and fine clays [FC, 0-0.05μm]). The IC and FC fractions only contain smectite and illite/smectite mixed-layered clay minerals while the CC fraction also contains illite and kaolinite. In the absence of any carbon input, the plant-free LTBF clay fractions from Versailles progressively lost SOC during the first 50 years of the experiment, until they reached a seemingly stable concentration. Of note, the investigated clay fractions did not lose the same amount of SOC and do not exhibit the same final carbon concentrations. The decrease of the organic C:N ratios with LTBF duration corresponds to a progressive enrichment in N-rich SOC for all fractions which can be attributed to microbial material. Even though the speciation of SOC appears to only slightly evolve with LTBF duration, an enrichment in carboxyl and carbonyl groups is revealed by bulk-scale C-NEXAFS data for SOC from all clay fractions. In addition, STXM-based NEXAFS investigations at the submicrometer scale reveal three types of SOC-clay assemblages in addition to clay-free SOC and organic-free clays. While SOC appears mostly adsorbed onto clay surfaces within the IC and FC fractions, other protection mechanisms occur within the CC fraction

  15. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  16. Submicrometer aerosol in rural and urban backgrounds in southern Poland: primary and secondary components of PM1.

    Science.gov (United States)

    Rogula-Kozłowska, Wioletta; Klejnowski, Krzysztof

    2013-01-01

    Diurnal samples of PM(1) (submicrometer particles, having aerodynamic diameters not greater than 1 μm) were collected at an urban background site in Zabrze (from 01.08. to 31.12.2009) and a rural background site in Racibórz (from 01.08. to 31.12.2010). The samples were analyzed for carbon (organic and elemental), water soluble ions (Na(+), NH(4) (+), K(+), Mg(2+), Ca(2+), Cl(-), NO(3)(-), SO(4)(2-)) and concentrations of 21 elements by using, respectively, a Sunset Laboratory carbon analyzer, a Herisau Metrohm AG ion chromatograph, a PANalitycal Epsilon 5 spectrometer. To perform the monthly mass closure calculations for PM(1), the chemical components were categorized into organic matter (OM), elemental carbon (EC), secondary inorganic aerosol (SIA), crustal matter (CM), marine components (MC), other elements (OE) and unidentified matter (UM). The mass contributions of secondary (SOM) and primary (POM) organic matter to PM(1) were also estimated. In average, 50 % of PM(1) in Zabrze and 40 % in Racibórz were secondary aerosol coming from the transformations of its gaseous precursors. High concentrations and mass contributions of EC and OM to PM, and probable PM acidic nature in Zabrze, indicate particularly high hazard from the ambient submicrometer particles to the inhabitants of southern Poland.

  17. Aerodynamic Factors Responsible for the Deaggregation of Carrier-Free Drug Powders to form Micrometer and Submicrometer Aerosols

    Science.gov (United States)

    Longest, P. Worth; Son, Yoen-Ju; Holbrook, Landon; Hindle, Michael

    2013-01-01

    Purpose The objective of this study was to employ in vitro experiments combined with computational fluid dynamics (CFD) analysis to determine which aerodynamic factors were most responsible for deaggregating carrier-free powders to form micrometer and submicrometer aerosols from a capsule-based platform. Methods Eight airflow passages were evaluated for deaggregation of the aerosol including a standard constricted tube, impaction surface, 2D mesh, inward radial jets, and newly proposed 3D grids and rod arrays. CFD simulations were implemented to evaluate existing and new aerodynamic factors for deaggregation and in vitro experiments were used to evaluate performance of each inhaler. Results For the carrier-free formulation considered, turbulence was determined to be the primary deaggregation mechanism. A strong quantitative correlation was established between the mass median diameter (MMD) and newly proposed non-dimensional specific dissipation (NDSD) factor, which accounts for turbulent energy, inverse of the turbulent length scale, and exposure time. A 3D rod array design with unidirectional elements maximized NDSD and produced the best deaggregation with MMD<1μm. Conclusions The new NDSD parameter can be used to develop highly effective dry powder inhalers like the 3D rod array that can efficiently produce submicrometer aerosols for next-generation respiratory drug delivery applications. PMID:23471640

  18. Large-scale, rapid synthesis and application in surface-enhanced Raman spectroscopy of sub-micrometer polyhedral gold nanocrystals

    International Nuclear Information System (INIS)

    Guo Shaojun; Wang Yuling; Wang Erkang

    2007-01-01

    Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl 4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (∼25 nm)

  19. The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount

    International Nuclear Information System (INIS)

    Danilenko, I.; Konstantinova, T.; Volkova, G.; Burkhovetski, V.; Glazunova, V.

    2015-01-01

    In most cases zirconia-alumina composites for scientific investigations and industry are prepared by means of mechanical mixing of powders, compaction and sintering. In our opinion, this is one of the reasons for the low values for fracture toughness of the sintered materials. In this study, we investigated the effect of nanopowder synthesis methods on the structure and mechanical properties of 3Y-TZP/alumina ceramic composites and determined the mechanisms involved in composite toughening. We show that the addition of a small amount of alumina (1 - 2 wt%) to zirconia ceramics has the potential to increase the fracture toughness of zirconia ceramics. The starting powders were obtained by means of co-precipitation and ball milling. It turned out that at equal density, bending strength and hardness values, the fracture toughness in ceramic composites sintered from co-precipitated nanopowders is higher in comparison with fracture toughness values in matrix material and traditional 3Y-TZP/alumina composites. We believed that the role of the crack deflection process in ceramic composites sintered from co-precipitated nanopowders increased significantly. This can be conditioned by means of a series of processes for composite structure formation during precipitation, crystallization, and sintering of nanopowders.

  20. The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount

    Energy Technology Data Exchange (ETDEWEB)

    Danilenko, I.; Konstantinova, T.; Volkova, G.; Burkhovetski, V.; Glazunova, V. [NAS of Ukraine, Donetsk (Ukraine). Donetsk Inst. for Physics and Engineering

    2015-07-01

    In most cases zirconia-alumina composites for scientific investigations and industry are prepared by means of mechanical mixing of powders, compaction and sintering. In our opinion, this is one of the reasons for the low values for fracture toughness of the sintered materials. In this study, we investigated the effect of nanopowder synthesis methods on the structure and mechanical properties of 3Y-TZP/alumina ceramic composites and determined the mechanisms involved in composite toughening. We show that the addition of a small amount of alumina (1 - 2 wt%) to zirconia ceramics has the potential to increase the fracture toughness of zirconia ceramics. The starting powders were obtained by means of co-precipitation and ball milling. It turned out that at equal density, bending strength and hardness values, the fracture toughness in ceramic composites sintered from co-precipitated nanopowders is higher in comparison with fracture toughness values in matrix material and traditional 3Y-TZP/alumina composites. We believed that the role of the crack deflection process in ceramic composites sintered from co-precipitated nanopowders increased significantly. This can be conditioned by means of a series of processes for composite structure formation during precipitation, crystallization, and sintering of nanopowders.

  1. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification

    Energy Technology Data Exchange (ETDEWEB)

    Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F.

    2017-07-01

    In this work, we studied the aptitude to sintering green bodies using γ-Al2O3 transition alumina as raw powder. We focused on the influence of the heating rate on densification and microstructural evolution. Phase transformations from transition alumina γ→δ→θ→α-Al2O3 were studied by in situ X-rays diffraction from the ambient to 1200°C. XRD patterns revealed coexistence of various phase transformations during the heating cycle. DTA and dilatometry results showed that low heating rate leads to a significant reduction of the temperature of the α-Al2O3 alumina formation. Around 1190, 1217 and 1240°C were found when using 5, 10 and 20°C/min of heating rate, respectively. The activation energy for θ-Al2O3→α-Al2O3 transformation calculated by Kissinger and JMA equations using dilatometry method were 464.29 and 488.79kJ/mol, respectively and by DTA method were 450.72 and 475.49kJ/mol, respectively. In addition, the sintering of the green bodies with low heating rate promotes the rearrangement of the grains during θ-Al2O3→α-Al2O3 transformation, enhancing the relative density to 95% and preventing the development of a vermicular structure. (Author)

  2. Preparation and characterization of 6-layered functionally graded nickel-alumina (Ni-Al2O3) composites

    Science.gov (United States)

    Latiff, M. I. A.; Nuruzzaman, D. M.; Basri, S.; Ismail, N. M.; Jamaludin, S. N. S.; Kamaruzaman, F. F.

    2018-04-01

    The present research study deals with the preparation of 6-layered functionally graded (FG) metal-ceramic composite materials through powder metallurgy technique. Using a cylindrical die-punch set made of steel, the nickel-alumina (Ni-Al2O3) graded composite structure was fabricated. The samples consist of four gradual inter layers of varied nickel composition (80wt.%, 60wt.%, 40wt.%, 20wt.%) sandwiched with pure Ni and Al2O3 powders at the ends (100wt.% and 0wt.% nickel) were fabricated under 30 ton compaction load using a hydraulic press. After that, two-step sintering was carried out at sintering temperature 1200ºC and soaking time 3 hours was maintained in a tube furnace. The properties of the prepared samples were characterized by radial shrinkage, optical microscopy and hardness testing. Results showed that larger shrinkage occurred within the ceramic phase which proves that more porosities were eliminated in the ceramic rich layers. From the microstructural analysis, it was observed that alumina particles are almost uniformly distributed in nickel matrix, so as nickel particles in the ceramic matrix of alumina-dominant layers. From interfacial analyses, it was observed that a smooth transition in microstructure from one layer to the next confirms a good interfacial solid state bonding between metal-ceramic constituents and good compaction process. On the other hand, microhardness test results suggest that there might be increasing percentage of porosities in the graded structure as the ceramic content rises.

  3. Mechanical properties of ion-implanted alumina

    International Nuclear Information System (INIS)

    Pope, S.G.

    1988-01-01

    Monolithic oxide ceramics are being proposed as structural materials in continuously more-demanding applications. The demands being placed on these materials have caused concern pertaining to the continued growth of oxide structural ceramics due to limited toughness. The realization that ceramic strength and toughness can be affected by surface conditions has led to many surface-modification techniques, all striving to improve the mechanical properties of ceramics. Along these lines, the effects of ion implantation as a surface modification technique for improvement of the mechanical properties of alumina were studied. Initially, sapphire samples were implanted with elemental ion species that would produce oxide precipitates within the sapphire surface when annealed in an oxygen-containing atmosphere. Optimum conditions as determined from implantation into sapphire were then used to modify a polycrystalline alumina. Specific modifications in microhardness, indentation fracture toughness and flexure strength are reported for the parameters studied. Microstructure and phase relationships related to modified surfaces properties are also reported

  4. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  5. Influence of alumina characteristics on glaze properties

    Directory of Open Access Journals (Sweden)

    Arrufat, S.

    2010-10-01

    Full Text Available Aluminium oxide is a synthetic raw material manufactured from bauxite by the Bayer process, whose Al2O3 content typically exceeds 99%. Four main types of alumina can be defined, depending on the processing used: hydrargillite Al(OH3, boehmite AlOOH, transition aluminas (calcined at low temperatures, 1000 °C, with an intermediary crystallographic structure between hydrates and alpha alumina, and α-Al2O3 (calcined at high temperatures, >1100 °C. In glaze manufacturing, α-Al2O3 is the main type of alumina used. This raw material acts as a matting agent: the matt effect depends on alumina particle size and content in the glaze. This study examines the effect of the degree of alumina calcination on glaze technical and aesthetic properties. For this purpose, aluminas with different degrees of calcination were added to a glaze formulated with a transparent frit and kaolin, in order to simplify the system to be studied. The results show that, depending on the degree of calcination, alumina particles can react with the glaze components (SiO2, CaO, and ZnO to form new crystalline phases (anorthite and gahnite. Both crystallisations extract CaO and ZnO from the glassy phase, increasing glassy phase viscosity. The variation in crystalline phases and glassy phase viscosity yields glazes with different technical and aesthetic properties.

    El óxido de aluminio es una materia prima sintética fabricada a partir de la bauxita por medio del proceso Bayer, cuyo contenido de Al2O3 supera, por regla general, el 99%. Se pueden definir cuatro tipos de alúmina, en función del tipo de proceso usado: hidrargilita Al(OH3, boehmita AlOOH, alúminas de transición (calcinadas a bajas temperaturas, 1000 °C, con una estructura cristalográfica intermedia entre los hidratos y la alfa alúmina, y la α-Al2O3 (calcinada a

  6. Mesoscale Modelling of the Response of Aluminas

    International Nuclear Information System (INIS)

    Bourne, N. K.

    2006-01-01

    The response of polycrystalline alumina to shock is not well addressed. There are several operating mechanisms that only hypothesized which results in models which are empirical. A similar state of affairs in reactive flow modelling led to the development of mesoscale representations of the flow to illuminate operating mechanisms. In this spirit, a similar effort is undergone for a polycrystalline alumina. Simulations are conducted to observe operating mechanisms at the micron scale. A method is then developed to extend the simulations to meet response at the continuum level where measurements are made. The approach is validated by comparison with continuum experiments. The method and results are presented, and some of the operating mechanisms are illuminated by the observed response

  7. Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness.

    Science.gov (United States)

    Wang, Jinrong; Qiao, Jinliang; Wang, Jianfeng; Zhu, Ying; Jiang, Lei

    2015-05-06

    Due to hierarchical organization of micro- and nanostructures, natural nacre exhibits extraordinary strength and toughness, and thus provides a superior model for the design and fabrication of high-performance artificial composite materials. Although great progress has been made in constructing layered composites by alternately stacking hard inorganic platelets and soft polymers, the real issue is that the excellent strength of these composites was obtained at the sacrifice of toughness. In this work, inspired by the layered aragonite microplatelets/chitin nanofibers-protein structure of natural nacre, alumina microplatelets-graphene oxide nanosheets-poly(vinyl alcohol) (Al2O3/GO-PVA) artificial nacre is successfully constructed through layer-by-layer bottom-up assembly, in which Al2O3 and GO-PVA act as "bricks" and "mortar", respectively. The artificial nacre has hierarchical "brick-and-mortar" structure and exhibits excellent strength (143 ± 13 MPa) and toughness (9.2 ± 2.7 MJ/m(3)), which are superior to those of natural nacre (80-135 MPa, 1.8 MJ/m(3)). It was demonstrated that the multiscale hierarchical structure of ultrathin GO nanosheets and submicrometer-thick Al2O3 platelets can deal with the conflict between strength and toughness, thus leading to the excellent mechanical properties that cannot be obtained using only one size of platelet. We strongly believe that the work presented here provides a creative strategy for designing and developing new composites with excellent strength and toughness.

  8. Grinding mechanism of zirconia toughened alumina

    International Nuclear Information System (INIS)

    Tsukuda, A.; Kondo, Y.; Yokota, K.

    1998-01-01

    In the grinding process, physical properties of ceramics affect both grinding mechanism and quality of ground surface. In this study we focused on fracture toughness of ceramics and the effect on grinding. A grinding test was carried out by single point grinding for ten different zirconia toughened alumina ceramics with different monoclinic zirconia contents. Effects of zirconia contents on the grinding mechanism and crack initiation were discussed. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  9. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  10. In-beam dielectric properties of alumina

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  11. Separation of tungsten and rhenium on alumina

    Directory of Open Access Journals (Sweden)

    MILOVAN SM. STOILJKOVIC

    2004-09-01

    Full Text Available The conditions for the efficient separation of tungsten(VI and rhenium (VII on alumina were established. The distribution coefficients Kd for tungstate and perrhenate anions, as well as the separation factors a (a = KdWO42-/Kd ReO4- were determined using hydrochloric or nitric acid as the aqueous media. A solution of sodium chloride in the pH range 2–6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01– 0.1 mol dm-3 HCl or 1.0 mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl, pH 4–6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH 4 are 17 and 26 mg W/g Al2O3, respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

  12. High contrast laser marking of alumina

    Science.gov (United States)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  13. Slip cast coating of alumina crucibles

    International Nuclear Information System (INIS)

    Haroun, N.A.; El-Masry, M.A.A.

    1980-01-01

    The development of a process for coating alumina crucibles with MgO protective coat in a two-step slip casting operation is described. The best milling conditions for the alumina used were wet ball milling for 24 hr. MgO had to be calcined at 1200 0 C to minimize hydration. Optimum slip casting conditions for alumina and magnesia were found to be L/S I and pH 3-6 or 9-II for the former, and L/S 3 (alcohol) and pH 8.5-10 for the latter. Sintering of Al 2 O 3 and MgO in the temperature range 1150-500 0 C was investigated. Additions of NiO and MgO lowered the sintered densities at lower temperatures but improved the densification at 1500 0 C. Near theoretical density Al 2 O 3 and MgO crucibles were obtained. A two-step slip casting technique was developed to coat Al 2 O 3 with MgO. Certain slow firing schedules could eliminate the otherwise observed coat-crucible separation and cracks. (author)

  14. Preparation and Characterization of Activated Alumina

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Activated alumina is a high surface area and highly porous form of aluminum oxide that can be employed for contaminant species adsorb from ether gases or liquids without changing its form. The research in getting this material has generated huge interested. Thus, this paper presented preparation of activated alumina from chemical process. Pure aluminum (99.9% pure) reacted at room temperature with an aqueous NaOH in a reactor to produce a solution of sodium aluminate (NaAlO2). This solution was passed through filter paper and the clear filtrate was neutralized with H2SO4, to pH 6, 7 or 8, resulting in the precipitation of a white gel, Al(OH)3·XH2O. The washed gel for sulfate ions were dried at 80 °C for 6 h, a 60 mesh sieve was to separate and sort them into different sizes. The samples were then calcined (burn) for 3h in a muffle furnace, in air, at a heating rate of 2 °C min-1. The prepared activated alumina was further characterized for better understanding of its physical properties in order to predict its chemical mechanism.

  15. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  16. Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content

    Science.gov (United States)

    Fernandez, Ruben; Jodoin, Bertrand

    2018-04-01

    Deposition behavior and deposition efficiency were investigated for several aluminum-alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.

  17. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  18. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    "Revised to reflect modern pharmaceutical compacting techniques, this Second Edition guides pharmaceutical engineers, formulation scientists, and product development and quality assurance personnel...

  19. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  20. Tribological and stability investigations of alkylphosphonic acids on alumina surface

    International Nuclear Information System (INIS)

    Cichomski, M.; Kośla, K.; Grobelny, J.; Kozłowski, W.; Szmaja, W.

    2013-01-01

    Alumina substrates are commonly used for various micro-/nanoelectromechanical systems (MEMS/NEMS). For efficient and lifetime longevity of these devices, lubricant films of self-assembled monolayers (SAMs) with nanometer thickness are increasingly being employed. In the present paper, we report preparation, tribological and stability investigations of alkylphosphonic acids on the alumina surface. The alkylphosphonic acids were prepared on the alumina surface using the liquid phase deposition method. The effectiveness of modification of the alumina surface by alkylphosphonic acids was investigated using water contact angle measurements, secondary ion mass spectrometry, X-ray photoelectron and infrared spectroscopy. Frictional behavior in milinewton load range was studied by microtribometry. It is shown that surface modification of the alumina surface by alkylphosphonic acids reduces the coefficient of friction values compared to the unmodified alumina. In comparison to the non-modified alumina surface, all tested alkylphosphonic acids cause a decrease in the friction coefficients in friction tests for counterparts made from different materials, such as steel, zirconia and silicon nitride. It is also found that the alumina surface modified by alkylphosphonic acids with longer chain has a higher degree of hydrophobicity and lower coefficient of friction. The best frictional properties are obtained for the system consisting of the alumina surface modified by n-octadecylphosphonic acid and silicon nitride counterpart. Stability tests in different environmental conditions: laboratory, acidic and alkaline solutions were also monitored.

  1. Dynamical stability of the alpha and theta phases of alumina

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Parlinski, K.

    2003-01-01

    Using density functional calculations the phonon dispersion relations, phonon density of states, and free energy of theta and alpha phases of alumina are investigated. The temperature dependence of the free energy indicates that entropy contributes to the destabilization of the alpha phase...... cations in alumina, and suggest that some other than entropic mechanism exists, which stabilizes transition aluminas up to 1400 K. The present calculations go beyond the ground state energy calculations [C. Wolverton and K.C. Hass, Phys. Rev. B 63, 24102 (2001)], and give an additional understanding...... of the stability of transition alumina at finite temperatures....

  2. Edge-state-dependent tunneling of dipole-exchange spin waves in submicrometer magnetic strips with an air gap.

    Science.gov (United States)

    Xing, X J; Zhang, D; Li, S W

    2012-12-14

    We have investigated the tunneling of dipole-exchange spin waves across an air gap in submicrometer-sized permalloy magnetic strips by means of micromagnetic simulations. The magnetizations beside the gap could form three distinct end-domain states with various strengths of dipolar coupling. Spin-wave tunneling through the gap at individual end-domain states is studied. It is found that the tunneling behavior is strongly dependent on these domain states. Nonmonotonic decay of transmission of spin waves with the increase of the gap width is observed. The underlying mechanism for these behaviors is proposed. The tunneling characteristics of the dipole-exchange spin waves differ essentially from those of the magnetostatic ones reported previously.

  3. Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases

    Directory of Open Access Journals (Sweden)

    B. Wehner

    2003-01-01

    Full Text Available Long-term measurements (over 4 years of particle number size distributions (submicrometer particles, 3-800 nm in diameter, trace gases (NO, NO2, and O3, and meteorological parameters (global radiation, wind speed and direction, atmospheric pressure, etc. were taken in a moderately polluted site in the city of Leipzig (Germany. The resulting complex data set was analyzed with respect to seasonal, weekly, and diurnal variation of the submicrometer aerosol. Car traffic produced a peak in the number size distribution at around 20 nm particle diameter during morning rush hour on weekdays. A second peak at 10-15 nm particle diameter occurred around noon during summer, confirmed by high correlation between concentration of particles less than 20 nm and the global radiation. This new-particle formation at noon was correlated with the amount of global radiation. A high concentration of accumulation mode particles (between 100 and 800 nm, which are associated with large particle-surface area, might prevent this formation. Such high particle concentration in the ultrafine region (particles smaller than 20 nm in diameter was not detected in the particle mass, and thus, particle mass concentration is not suitable for determining the diurnal patterns of particles. In summer, statistical time series analysis showed a cyclic pattern of ultrafine particles with a period of one day and confirmed the correlation with global radiation. Principal component analysis (PCA revealed a strong correlation between the particle concentration for 20-800 nm particles and the NO- and NO2-concentrations, indicating the influence of combustion processes on this broad size range, in particular during winter. In addition, PCA also revealed that particle concentration depended on meteorological conditions such as wind speed and wind direction, although the dependence differed with particle size class.

  4. Uniaxial backfill block compaction

    International Nuclear Information System (INIS)

    Koskinen, V.

    2012-05-01

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  5. Compaction properties of isomalt

    NARCIS (Netherlands)

    Bolhuis, Gerad K.; Engelhart, Jeffrey J. P.; Eissens, Anko C.

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of

  6. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  7. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  8. Stabilization of compactible waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs

  9. Development and evaluation of alumina calcination

    International Nuclear Information System (INIS)

    Bennett, I.J.

    2000-01-01

    This thesis focuses on a number of aspects governing the transformation of gibbsite, via intermediate phases, to α-alumina. These aspects include the size and morphology of the gibbsite grains, the influence of additions of foreign elements, the effect of a mechanical treatment of the gibbsite prior to calcination, and combinations of these factors. The materials were characterised by scanning electron microscopy, X-ray diffraction and surface area measurements. For some of the calcined materials an attempt was made to sinter the powders to a dense body to investigate if any of the treatments during calcination had an effect on this process. The literature review covers the current state of understanding of the production of bulk alumina powder by the Bayer process and the phase changes seen on calcination of precursors to the stable α-alumina phase. A detailed description of the phase changes is given and the various routes and conditions necessary for the transformations to occur are considered. The transformations are examined in relation to the morphology of the crystals and the variables controlling the phase transformation route are discussed. Calcination in air showed that the size of the gibbsite grain governs the calcination route taken to reach oc-alumina. The standard gibbsites used in this work show a mixed calcination sequence transforming both via the boehmite phase, followed by the γ, δ and θ phases, and via the χ and κ phases. The formation of boehmite is attributed to retention of water vapour within the grain. Differences in morphology of the starting materials showed that for the range of materials seen, the morphology of the grain is less important than its size. The super fine material confirmed that a small grain size transforms via the non-boehmite route only, with the other gibbsites taking intermediate routes as for the standard gibbsites. Of the additions made prior to calcination, aluminium fluoride was found to reduce the

  10. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  11. Cathodoluminescence study of anodic nanochannel alumina

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Q.X. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan)]. E-mail: guoq@cc.saga-u.ac.jp; Hachiya, Y. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Tanaka, T. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Nishio, M. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan); Ogawa, H. [Department of Electrical and Electronic Engineering, Saga University, Honjo-1, Saga, 840-8502 (Japan)

    2006-07-15

    Nanochannel alumina (NCA) templates with highly ordered pore arrays were prepared by anodizing pure aluminum foil in acid solutions. Cathodoluminescence measurements reveal that a blue emission band appears at around 2.8 eV and its energy position depends on measurement temperature and pore size of NCA. The shift of the blue emission band energy with temperature is ascribed to the variations of electron-phonon interactions. X-ray absorption near-edge fine structure results show that the blue emission band shift with pore size is due to the local environment change of atoms in NCA.

  12. Shockless spalling damage of alumina ceramic

    Science.gov (United States)

    Erzar, B.; Buzaud, E.

    2012-05-01

    Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.

  13. Creep cavitation effects in polycrystalline alumina

    International Nuclear Information System (INIS)

    Porter, J.R.; Blumenthal, W.; Evans, A.G.

    1981-01-01

    Fine grained polycrystalline alumina has been deformed in creep at high temperatures, to examine the evolution of cavities at grain boundaries. Cavities with equilibrium and crack-like morphologies have been observed, distributed nonuniformly throughout the material. The role of these cavities during creep has been described. A transition from equilibrium to crack-like morphology has been observed and correlated with a model based on the influence of the surface to boundary diffusivity ratio and the local tensile stress. The contribution of cavitation to the creep rate and total creep strain has been analyzed and excluded as the principal cause of the observed non-linear creep rate

  14. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  15. Cavity cutting efficiency of a Bioglass and alumina powder ...

    Indian Academy of Sciences (India)

    1531–1536. c Indian Academy of Sciences. ... conical in shape, whereas cavities produced by alumina and alumina + 45S5 were more ... any other material having good cutting properties is highly .... Saw, Buehler Ltd, IL, USA) at a blade speed of 3500 r.p.m. ... and the machine was run for 1min to remove any residual.

  16. Treatment of chrome plating wastewater (Cr+6) using activated alumina.

    Science.gov (United States)

    Sarkar, Sudipta; Gupta, Anirban

    2003-01-01

    Suitability of activated alumina for removal of hexavalent chromium from electroplating wastewater has been investigated. Activated alumina exhibited good sorption capacity for hexavalent chromium and pH has no pronounced effect on the sorption capacity. Both batch and column adsorption studies have been carried out and an adsorption column design indicated reasonable depth of column for practical application.

  17. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  18. Near net-shape fabrication of alumina glass composites

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.; Dortmans, L.J.M.G.; Feenstra, F.

    2005-01-01

    The purpose of the present study is to fabricate alumina glass composites by melt infiltration with better dimensional control through reducing both the presintering and infiltration temperature. Main efforts were put to develop glasses that are chemically compatible with alumina. After extensive

  19. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    Engr Solomn Gajere

    Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment of ammonium alum prepared from the filtrate of the dealuminated metakaolin was employed to obtain the alumina. Crystalline aluminum sulfate with 39 wt% Al2O3 ...

  20. Synthesis of Nano Crystalline Gamma Alumina from Waste Cans

    Directory of Open Access Journals (Sweden)

    Nada Sadoon Ahmedzeki

    2018-03-01

    Full Text Available In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5, sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55% and weights of aluminum cans (2, 4, 6, 8 and 10 g. The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS; and maximum yield of alumina solution was 96.3% obtained at 2 mole ratios of reactants, 40% sodium hydroxide concentrations and 10g of aluminum cans respectively. Gamma alumina was acquired by hydrothermal treatment of alumina solution at pH 7 and calcination temperature of 550 ºC. The prepared catalyst was characterized by X-ray diffraction (XRD, N2 adsorption/ desorption isotherms, X-ray fluorescence (XRF and atomic force microscopy (AFM. Results showed good crystallinity of alumina as described by XRD patterns, with surface area of 311.149 m2/g, 0.36 cm3/g pore volume, 5.248 nm pore size and particle size of 68.56 nm respectively.

  1. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  2. Characterization of the microporous HDPE film with alpha alumina

    International Nuclear Information System (INIS)

    Park, Jong Seok; Sung, Hae Jun; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang

    2010-01-01

    The effects of the addition of the alpha alumina on the properties of the microporous high density polyethylene (HDPE) films were investigated. The particle size and the specific surface area of alpha alumina were 400 nm and 7.3 m 2 g -1 . The HDPE and the alpha alumina were mixed to obtain the precursor film in the twin extruder. The precursor films were uni-axially stretched up to 600% in oven 120 .deg. C and then the stretched HDPE films were irradiated by gamma rays. The pore volume of the microporous HDPE films was increased with an increasing content of the alpha alumina. The mechanical characteristics of the microporous HDPE films were increased with a content of alpha alumina up to 15%, but decreased at 20%. The electrochemical stability of the microporous HDPE film containing alpha alumia was increased with an increased irradiation dose up ti 50 kGy

  3. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  4. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  5. Characterization and sintering of niobium-ATR alumina

    International Nuclear Information System (INIS)

    Sibuya, N.H.; Iwasaki, H.; Suzuki, C.K.; Pinatti, D.G.

    1987-01-01

    In the niobium aluminothermy a slag is produced, composed mostly of alumina and other compounds such as niobium oxide and silica. The phase composition of this ATR alumina was characterized by X-ray powder diffractometry, and afterwards this alumina was subjected to leaching processes. It was noticed that the original content of 70% α-alumina in slag rose to 95% after the calcination. ATR alumina (leached and calcined, and without any treatment) was used to make pressed bodies which were fired in air at 1200 to 1400 0 C for 1 to 10,5 hours; and in vacuum at 1550 to 1800$0C for 2 hours. Characterization was done by density measurements, X-ray diffractometry and ultrasonic analysis. Ultrasonic analysis of some vacuum fired bodies showed londitudinal velocities close to the value found in literature. Correlation of several techniques measurements disclosed the niobium oxide interference in sintering. (Author) [pt

  6. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  7. Small Valdivia compact spaces

    CERN Document Server

    Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk

    2005-01-01

    We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.

  8. Properties of Transition Metal Doped Alumina

    Science.gov (United States)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  9. Compactibility of Al/Al2O3 Isotropic Composite with Variation of Holding Time Sintering.

    Directory of Open Access Journals (Sweden)

    Eddy S Siradj

    2008-11-01

    Full Text Available The requirement of component with structural ability, light weight and also strength is increasing base on Metal Matrix Composites (MMCs by aluminum as matrix (AMCs. A structural ability is connected to composites compactibility which is depend on quality of interfacial bounding. Powder metallurgy is one of method to produce composite with powder mixing, compacting and sintering. Volume fractions reinforced and sintering time can influence composites compactibility. Volume fractions reinforced variable can produce different reinforcement effect. Beside that, on sintering enables the formation of new phase during sintering time. In this research, Al/Al2O3 isotropic composites are made with aluminum as matrix and alumina (Al2O3 as reinforced. Volume fraction reinforced used 10%. 20%. 30% and 40%. Sintering temperature and compaction pressure are each 600oC and 15 kN. The tests that applied are compression and metallographic test. The result that obtained is optimum compactibility of Al/Al2O3 composite reached at holding time 2 hour. During sintering, new phase can occur that is aluminum oxides (alumina, with unstable properties. The best volume fraction reinforced and holding time sintering are 40% and 2 hours.

  10. Compact turbidity meter

    Science.gov (United States)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  11. An electrochemical investigation on the dissolution of bilayered porous anodic alumina

    International Nuclear Information System (INIS)

    Liao, Jinfu; Ling, Zhiyuan; Li, Yi; Hu, Xing

    2015-01-01

    Highlights: • Pulse polarization was introduced to investigate the dissolution of PAA. • Electric field within the bilayers was estimated. • The formation of the barrier layer involves mainly solid-state processes. • The structure should be the determining factor in the dissolution of the bilayers. - Abstract: Anodic alumina attracts much research interest in many disciplines for its versatility. Meanwhile, some aspects regarding its growth are still not well-understood, such as the formation and properties of its bilayer structure. In this paper, along with capacitance measurement, pulse polarization is introduced to study the dissolution of bilayered porous anodic alumina (PAA). Combined with electron microscope observation, the electric field in the outer layer is estimated to be slightly higher than that in the inner layer. By comparing with (oxy-)hydroxide layers, the electric field distribution within barrier layer of PAA confirms that the bilayers are compact and are formed mainly by solid-state ionic migration. The changes of dissolution rates after annealing and application of electric pulses suggest that structure may be a determining factor for the dissolution behaviors of the bilayers.

  12. Evaluation of technological properties of alumina refractory systems-zirconia and zirconia-silica-alumina

    International Nuclear Information System (INIS)

    Marinho, A.R.O.; Carvalho, T.U.S.; Fagury Neto, E.; Rabelo, A.A.

    2014-01-01

    Alumina-zirconia refractories are noted for being products of excellent cost-effective, however, zirconia may limit its use due to decreasing resistance to thermal shock. This study aims to evaluate these refractories with the addition of microsilica, which can greatly improve their properties. Were used the following starting materials: calcined alumina, zirconia (stabilized and monoclinic) in amounts of 2%, 4% and 6% by weight, plus microsilica (5%w.). The powders were milled together with binder and lubricant for conformation bodies by uniaxial pressing. The samples were dried, calcined and sintered at 1400 °C/2h were characterized using the methods of Archimedes, and scanning electron microscopy (SEM), chemical analysis using energy dispersive X-ray (EDS), and mechanical flexural strength tests at room temperature. Formulations with the presence of microsilica showed satisfactory results and optimized properties. (author)

  13. Microstructural evolution of alumina-zirconia nanocomposites; Evolucao microestrutural de nanocompositos alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Pallone, E.M.J.A., E-mail: christianelago@yahoo.com.br [Universidade de Sao Paulo (USP), Pirassununga, Sao Paulo, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos

    2012-07-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  14. Microstructural evaluation of alumina-niobium and alumina- niobium-zircon ceramics for ballistic application

    International Nuclear Information System (INIS)

    Mota, Juliana Machado da; Lopes, Cristina Moniz Araujo; Melo, Francisco Lourenco Cristovao de

    2009-01-01

    This study aimed to evaluate the microstructural of Alumina- Niobium and Alumina- Niobium-Zircon ceramics. Samples with 3.5 x 4.5 x 34 mm dimensions were prepared by uniaxial pressure (50 MPa) followed by isostatic pressure (300 MPa). The samples were sintered at 1500 ° C for 1 hour. The ceramics obtained were characterized by scanning electron microscopy (SEM) and X-ray diffraction, to evaluate the phases and microstructures. In order to analyze the microstructure, by SEM the samples were prepared using two techniques: heat treatment (1350 ° C for 5 minutes) and thermochemical treatment (500 ° C for 8 minutes in a solution of NaOH and KOH) on polished and fractured surfaces. The results showed that despite differences between the two etchings, both were effective to analyze the microstructure. (author)

  15. Statistical analysis and parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol in Beijing

    Science.gov (United States)

    Wang, Yu; Wu, Zhijun; Ma, Nan; Wu, Yusheng; Zeng, Limin; Zhao, Chunsheng; Wiedensohler, Alfred

    2018-02-01

    The take-up of water of aerosol particles plays an important role in heavy haze formation over North China Plain, since it is related with particle mass concentration, visibility degradation, and particle chemistry. In the present study, we investigated the size-resolved hygroscopic growth factor (HGF) of sub-micrometer aerosol particles (smaller than 350 nm) on a basis of 9-month Hygroscopicity-Tandem Differential Mobility Analyzer measurement in the urban background atmosphere of Beijing. The mean hygroscopicity parameter (κ) values derived from averaging over the entire sampling period for particles of 50 nm, 75 nm, 100 nm, 150 nm, 250 nm, and 350 nm in diameters were 0.14 ± 0.07, 0.17 ± 0.05, 0.18 ± 0.06, 0.20 ± 0.07, 0.21 ± 0.09, and 0.23 ± 0.12, respectively, indicating the dominance of organics in the sub-micrometer urban aerosols. In the spring, summer, and autumn, the number fraction of hydrophilic particles increased with increasing particle size, resulting in an increasing trend of overall particle hygroscopicity with enhanced particle size. Differently, the overall mean κ values peaked in the range of 75-150 nm and decreased for particles larger than 150 nm in diameter during wintertime. Such size-dependency of κ in winter was related to the strong primary particle emissions from coal combustion during domestic heating period. The number fraction of hydrophobic particles such as freshly emitted soot decreased with increasing PM2.5 mass concentration, indicating aged and internal mixed particles were dominant in the severe particulate matter pollution. Parameterization schemes of the HGF as a function of relative humidity (RH) and particle size between 50 and 350 nm were determined for different seasons and pollution levels. The HGFs calculated from the parameterizations agree well with the measured HGFs at 20-90% RH. The parameterizations can be applied to determine the hygroscopic growth of aerosol particles at ambient conditions for the area

  16. Dissolution kinetics for alumina in cryolite melts. Distribution of alumina in the electrolyte of industrial aluminium cells

    Energy Technology Data Exchange (ETDEWEB)

    Kobbeltvedt, Ove

    1997-12-31

    This thesis contributes to the understanding of which factors determine the rate of dissolution of alumina added to the bath in alumina reduction cells. Knowing this may help reduce the occurrences of operation interruptions and thus make it possible to produce aluminium using less energy. When alumina powder was added to a stirred cryolite melt, the alumina dissolved in two distinct main stages. In the first stage, the dissolution rate was very high, which reflects dissolution of single alumina grains that are being dispersed in the bath upon addition. In the second stage, lumps of alumina infiltrated with bath dissolved at a rate considerably slower than that of the first stage. The formation of these alumina agglomerates is the most important contributor to slow dissolution. The parameters varied in the experiments were convection, batch size, and temperature of the bath and of the added alumina. Increased gas stirring of the bath speeded up dissolution in both stages but the size of the batch was of little significance. Increasing the bath temperature had no effect in the first stage but speeded up dissolution considerably in the second stage. Compared to adding alumina at room temperature, preheating it to a high temperature (600 {sup o}C) increased the dissolution rate in the first stage while preheating to lower temperatures (100-300 {sup o}C) decreased the dissolution rate. In the second stage, preheating slowed the dissolution. The two latter phenomena of reduced dissolution rates are ascribed to the removal of moisture from the alumina upon preheating. The bath flow and the distribution of alumina in the bath were measured in four different types of cells. It was found that if a certain asymmetry of the magnetic field traverse to the cell was present, due to the presence of risers, then loops of high velocity bath flow occurred near the short ends of the cell. Thus, alumina added near the short ends is effectively transferred away from the feeding

  17. The effect of alumina particles on the microstructural and mechanical properties of copper foams fabricated by space-holder method

    Science.gov (United States)

    Salvo, C.; Aguilar, C.; Lascano, S.; Pérez, L.; López, M.; Mangalaraja, R. V.

    2018-05-01

    The copper foam is an interesting field of research because of its several advantages as an engineering material. Powder metallurgy presents an alternative route to obtain a porous structure with high strength to weight ratio and functional properties. The viability of processing copper foam separately with two different space-holders such as ammonium hydrogen carbonate (NH4HCO3) and sodium chloride (NaCl) of 50 vol% was studied. The green compacts obtained under 200 MPa were sintered at different cycles for the complete removal of space-holder. The sintered foams were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and uniaxial testing machine (UTM) to study their structural features and compressive strength, respectively. The results showed that NaCl particles were the best alternative to obtain a porous structure, hence two different sizes (1 and 0.01 μm) of alumina (Al2O3) particles with 2, 4 and 6 vol% were used to fabricate copper foams. As a result, a bimodal structure consisting of macro and micropores with a highly interconnected porosity was achieved. In addition, the smaller size alumina particles promoted a higher density of pores, however, the compressive strength was reduced for the higher volume fraction of alumina particles.

  18. Self-compacting geopolymer concrete-a review

    Science.gov (United States)

    Ukesh Praveen, P.; Srinivasan, K.

    2017-11-01

    In this construction world, Geopolymer concrete is a special concrete which doesn’t requires the Ordinary Portland Cement and also reduces the emission of carbon-dioxide. The Geopolymer Concrete is made up of industrial by-products (which contains more Silica and Alumina) and activated with the help of Alkaline solution (combination of sodium hydroxide & sodium silicate or potassium hydroxide & potassium silicate). The high viscosity nature of Geopolymer Concrete had the ability to fail due to lack of compaction. In improvising the issue, Self Compacting Geopolymer Concrete has been introduced. The SCGC doesn’t require any additional compaction it will flow and compacted by its own weight. This concrete is made up of industrial by-products like Fly ash, GGBFS and Silica Fume and activated with alkaline solution. The earlier research was mostly on Fly ash based SCGC. In few research works Fly ash was partially replaced with GGBS and Silica Fume. They evaluated the compressive strength of concrete with varying molarities of NaOH; curing time and curing temperature. The flexural behaviour of the concrete also examined. The Fly ash based SCGC was got high compressive strength in heat curing as well as low compressive strength in ambient curing. The presence of GGBS improves the strength in ambient curing. For aiming the high strength in ambient curing Fly ash will be completely replace and examine with different mineral admixtures.

  19. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  20. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  1. Effect of alumina on the dissolution rate of glasses

    International Nuclear Information System (INIS)

    Palavit, G.; Montagne, L.

    1997-01-01

    Small alumina addition to silicate glasses improves their chemical durability, but a large amount of alumina can also be beneficial to obtain a high dissolution rate. This paper describes the effect of Al 3+ on the early stage of glass alteration, in relation with its coordination in the glass and also with the reactions involved (hydrolysis and ionic exchange). We describe briefly nuclear magnetic resonance tools available to characterize the aluminum environments in the glasses. The rote of alumina on the dissolution rate of phosphate glasses is also discussed in order to show that the effect of Al 3+ is dependant upon the nature of the glass matrix. (author)

  2. Activated alumina preparation and characterization: The review on recent advancement

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized

  3. Nanoporous alumina as templates for multifunctional applications

    Science.gov (United States)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  4. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  5. Alumina strength degradation in the elastic regime

    International Nuclear Information System (INIS)

    Furnish, Michael D.; Chhabildas, Lalit C.

    1998-01-01

    Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime

  6. Compositional characterization of atomic layer deposited alumina

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev [Department of Instrumentation, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2014-01-28

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al{sub 2}O{sub 3} is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra.

  7. Compositional characterization of atomic layer deposited alumina

    International Nuclear Information System (INIS)

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev

    2014-01-01

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al 2 O 3 is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra

  8. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  9. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  10. Characterization of alumina suspensions by electroacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Galassi, C.; Roncari, E.; Greenwood, R.; Piancastelli, A. [CNR, Faenza (Italy). Research Inst. for Ceramics Technology

    1997-12-31

    Using the acoustophoresis technique three different dispersants were selected to investigate the effect of the volume fraction of the suspension on the minimum amount of dispersant required to give the maximum zeta potential. No effect was detected over a volume fraction range 0.11 to 0.35. The acoustosizer was used to screen many dispersants for alumina in a relatively short time. From the viewpoint that the most stable suspensions are those with the greatest zeta potentials, then the following dispersants can be recommended: Reotan LA (0.25 mg/m{sup 2}) Dolapix CA (0.20 mg/m{sup 2}) and Dolapix PC33 (0.30 mg/m{sup 2}). Vanisperse and Borresperse are poor. Polyacrylic acid and polymethacrylic acid were better than some commercially available products. (orig.) 2 refs.

  11. The local strength of microscopic alumina reinforcements

    International Nuclear Information System (INIS)

    Žagar, Goran; Pejchal, Václav; Mueller, Martin G.; Rossoll, Andreas; Cantoni, Marco; Mortensen, Andreas

    2015-01-01

    We measure, using an adaptation of a method designed for ceramic ball bearings, the local strength of a brittle second phase that serves to reinforce a metal. The method uses focused ion beam milling and a nanoindentation device, and is free of artifacts commonly present in micromachined specimens. It is demonstrated on Nextel 610™ nanocrystalline alumina fibers embedded in an aluminum matrix composite. Results reveal a size effect that does not follow, across size scales, usual Weibull statistics: the fiber strength distribution differs between measurements at the microscale and macroscopic tensile testing. This implies that, in micromechanical analysis of multiphase materials, highly localized events such as the propagation of internal damage require input data that must be measured at the same, local, microscale as the event; the present work opens a path to this end.

  12. Condensational Growth of Combination Drug-Excipient Submicrometer Particles for Targeted High Efficiency Pulmonary Delivery: Comparison of CFD Predictions with Experimental Results

    Science.gov (United States)

    Hindle, Michael

    2011-01-01

    Purpose The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Methods Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. Results The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6–2.5 µm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Conclusions Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery. PMID:21948458

  13. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: comparison of CFD predictions with experimental results.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2012-03-01

    The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6-2.5 μm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery.

  14. Fabrication of yttrium-doped barium zirconate thin films with sub-micrometer thickness by a sol–gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hanlin; Su, Pei-Chen, E-mail: peichensu@ntu.edu.sg

    2015-06-01

    A modified sol–gel process was developed for the fabrication of sub-micrometer scale yttrium-doped barium zirconate (BZY) thin film at much lower processing temperatures. The film was fabricated by direct spin-coating of the sol on a Si{sub 3}N{sub 4} passivated Si substrate, followed by low temperature thermal annealing at 1000 °C, and single BZY phase without barium carbonate residue was obtained. A 200 nm-thick thin film without obvious through-film cracks was fabricated with optimized process parameters of sol concentration and heating rate. The stoichiometry of the BZY thin film was well-controlled and no Ba evaporation was observed due to the low processing temperature. The combination of sol–gel and spin coating method can be a promising alternative to vacuum-based thin film deposition techniques for the fabrication of sub-micrometer scale BZY thin film. - Highlights: • A sol–gel spin coating method was developed for the fabrication of BZY thin films. • The processing temperature was much lower compared to powder-based sintering. • Sub-micrometer scale BZY thin film with well-controlled stoichiometry was obtained.

  15. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  16. Physically detached 'compact groups'

    Science.gov (United States)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  17. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    International Nuclear Information System (INIS)

    Park, J.-S.; Lee, S.-R.; Kim, Y.K.

    2004-01-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field (H ex.eff ) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply

  18. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    Science.gov (United States)

    Park, Jeong-Suk; Lee, Seong-Rae; Kim, Young Keun

    2004-08-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field ( Hex.eff) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply.

  19. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  20. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  1. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A

    1993-02-01

    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  2. Significance of structure–property relationship in alumina based ...

    Indian Academy of Sciences (India)

    Unknown

    adverse environmental conditions and mechanical vibra- tions. Most ceramic ... However, even alumina insulators manufactured (for use in 25 kV railway traction ..... early showed plastic deformation and large cracks in and around the indents.

  3. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    phase analysis of the fractured joint surface clearly indicate reactive wetting of the alumina ceramics. This wetting enhances ... ally considered oxide materials for many applications. .... three cases but is more pronounced in the case of C12A7.

  4. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    Science.gov (United States)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  5. Characterization of the Uptake of Nitrogen Oxides on Alumina Adsorbents

    National Research Council Canada - National Science Library

    Pocengal, David

    1999-01-01

    ...) to quantify nitrate and nitrite (NOx) in aqueous solutions that contained NOx exposed alumina and to correlate the quantities of these surface NOx species with the quantity of gaseous NOx sorbed...

  6. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  7. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Administrator

    dental applications. M GUEDES1,4,*, V .... Alumina/LAS bioceramics for dental applications. 697 strength ... assessment. ... indentation load (N) and c is the median length (m) of the ... mixtures show two distinct modes, reflecting both the.

  8. Synthesis of α-Alumina (Corundum) and its Application

    International Nuclear Information System (INIS)

    Nay Thwe Kyi; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    This paper described the preparation of aluminium isopropoxide from aluminium sheet at different heating times.Aluminium sheet is found to have a reaction with absolute isopropyl alcohol and mercury (II) chloride as a catalyst under nitrogen atmosphere. Aluminium isopropoxide was characterized by NMR, XRD and IR. Aluminium isopropoxide serves as a molecular precursor to derive pure alumina gel by hydrolysis under both homogeneous and heterogeneous conditions. Pyrolysis to this alumina gel transforms it into -aluminia (corundum) at 1200'C. The phase transformation during pyrolysis was characterized by XRD, SEM and TEM. The alumina (corundum) has porous crystalline nature with high surface aera, which may be used as efficient adsorbent packing material in coloumn chromatography for the seperation of vitamin A from the leaves. -alumina can be also used in catalysis

  9. Effect of chemical composition and alumina content on structure and ...

    Indian Academy of Sciences (India)

    porcelain types (Morrell 1985; Vazquez and Mejia Velasquez. 1998). By increasing ... Orlova et al found that, in alumina porcelains, opti- mum mechanical ... of high mobility of ions, acceptable electrical performance may be achieved with ...

  10. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  11. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  12. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  13. Self-ordered Porous Alumina Fabricated via Phosphonic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2016-01-01

    Self-ordered periodic porous alumina with an undiscovered cell diameter was fabricated via electrochemical anodizing in a new electrolyte, phosphonic acid (H3PO3). High-purity aluminum plates were anodized in phosphonic acid solution under various operating conditions of voltage, temperature, concentration, and anodizing time. Phosphonic acid anodizing at 150-180 V caused the self-ordering behavior of porous alumina, and an ideal honeycomb nanostructure measuring 370-440 nm in cell diameter w...

  14. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  15. Pemanfaatan serat silicon carbon dan partikel alumina pada matrik aluminium untuk meningkatkan sifat mekanis material komposit

    Directory of Open Access Journals (Sweden)

    Ketut Suarsana

    2017-03-01

    previous treatment. Indonesia has the potential of naturalresources potential, especially as fiber from plant sources also include metals aluminum (bauxite from fossils. This material canbe used for the needs of the industry as the manufacture of composite base Aluminium and as a reinforcement in the form offibers or particles of alumina. The method of making Aluminum Matrix Composites (AMC with a powder metallurgy process atthe compression force / compaction 2.5 tons using a hydraulic press equipment, holding time 15 minutes, and the treatmentprocess in the variation of the composition by weight (%wt. Variations in the composition of the fiber reinforcement SiliconCarbon (SiC and Al2O3 (alumina on a matrix Aluminium is: 30% SiC + 0% Al203, 27% SiC + 3% Al203, 24% SiC + 6% Al203 and21% SiC + 9% Al203 with a matrix of 70% Al, on condition tempertaur 500oC, 550oC and 600oC. After the composite material isformed, tested for mechanical properties due to the influence of variations in composition between matrix and reinforcement incomposites. Characteristics test performed in the laboratory to knowing strength and hardness properties of composite materials.Furthermore sought the relationship between the nature of each composition fiber reinforcement and an Al2O3 forming SiCcomposites made to know the benefits of reinforcing fibers and particles of alumina.Keywords: Strength, hardness, SiC fibers and Al2O3

  16. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    Science.gov (United States)

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  17. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  18. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  19. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  20. Effects of Etching Time and NaOH Concentration on the Production of Alumina Nanowires Using Porous Anodic Alumina Template

    Science.gov (United States)

    Sadeghpour-Motlagh, M.; Mokhtari-Zonouzi, K.; Aghajani, H.; Kakroudi, M. Ghassemi

    2014-06-01

    In this work, two-step anodizing of commercial aluminum foil in acid oxalic solution was applied for producing alumina film. Then the anodic alumina film was etched in sodium hydroxide (NaOH) solution resulting dense and aligned alumina nanowires. This procedure leads to splitting of alumina nanotubes. Subsequently nanowires are produced. The effects of NaOH solution concentration (0.2-1 mol/L) and etching time (60-300 s) at constant temperature on characteristic of nanotubes and produced nanowires were investigated using scanning electron microscopy. The results show that an increase in NaOH solution concentration increases the rate of nanowires production and in turn the manipulation process will be more specific.

  1. Influence of additives on the stability of the phases of alumina; Influencia de aditivos na estabilidade das fases da alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D.C.C.; Gouvea, D., E-mail: deisedorosario@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Processos Ceramicos

    2011-07-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO{sub 2}, respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO{sub 2} work on improving the stability but with distinct mechanisms. (author)

  2. Characterization of ceramic powder compacts

    International Nuclear Information System (INIS)

    Yanai, K.; Ishimoto, S.; Kubo, T.; Ito, K.; Ishikawa, T.; Hayashi, H.

    1995-01-01

    UO 2 and Al 2 O 3 powder packing structures in cylindrical powder compacts are observed by scanning electron microscopy using polished cross sections of compacts fixed by low viscosity epoxy resin. Hard aggregates which are not destroyed during powder compaction are observed in some of the UO 2 powder compacts. A technique to measure local density in powder compacts is developed based on counting characteristic X-ray intensity by energy dispersive X-ray analysis (EDX). The local density of the corner portion of the powder compact fabricated by double-acting dry press is higher than that of the inner portion. ((orig.))

  3. Characterization of high-energy milled alumina powders Caracterização de pós de alumina submetidos a moagem de alta energia

    Directory of Open Access Journals (Sweden)

    Roberto Tomasi

    1998-10-01

    Full Text Available The utilization of reactive high-energy milling has been reported for the synthesis of ceramic powders namely, metal oxides, carbides, borides, nitrides or mixtures of ceramics or ceramic and metal compounds. In this work, high-energy milling was used for reduction of alumina powders to nanometric particle size. The ceramic characteristics of the powders were analyzed in terms of the behavior during deagglomeration, compaction curves, sintering and microstructure characterization. It was observed that the high energy milling has strong effect in producing agglomeration of the nanosized powders. This effect is explained by the high-energy impact of the balls, which may fracture particles or just cause the particles compacting. In this case, strong agglomerates are produced. As the powder surface area increases, stronger agglomerates are produced.Tem sido amplamente divulgada a utilização da moagem reativa de alta energia para a síntese de pós cerâmicos de óxidos de metais, carbetos, boretos, nitretos ou misturas de compostos cerâmicos ou compostos cerâmicos e metálicos. Neste trabalho, a moagem de alta energia (não reativa foi utilizada para a redução de pós de alumina para partículas de dimensões nanométricas. As características cerâmicas dos pós obtidos foram analisadas a partir de resultados de comportamento durante a desaglomeração, curvas de densificação, sinterização e caracterização de microestrutura. Observou-se que a moagem de alta energia tem forte efeito de aglomeração dos pós com partículas em dimensões nanométricas. Esse efeito é explicado pelo impacto de alta energia das bolas, os quais podem fraturar as partículas ou apenas causar a compactação das mesmas. Nesse último caso, que sempre ocorre, são formados aglomerados de alta resistência. O aumento da área superficial do pó produz aglomerados mais resistentes.

  4. Method for estimating the atmospheric content of sub-micrometer aerosol using direct-sun photometric data

    Science.gov (United States)

    Stefan, S.; Filip, L.

    2009-04-01

    It is well known that the aerosol generated by human activity falls in the sub-micrometer rage [1]. The rapid increase of such emissions led to massive accumulations in the planetary boundary layer. Aerosol pollutants influence the quality of life on the Earth in at least two ways: by direct physiological effects following their penetration into living organisms and by the indirect implications on the overall energy balance of the Earth-atmosphere system. For these reasons monitoring the sub-micrometer aerosol on a global scale, become a stringent necessity in protecting the environment. The sun-photometry proved a very efficient way for such monitoring activities, mainly when vast networks of instruments (like AERONET [2]) are used. The size distribution of aerosols is currently a product of AERONET obtained through an inversion algorithm of sky-photometry data [3, 4]. Alternatively, various methods of investigating the aerosol size distribution have been developed through the use of direct-sun photometric data, with the advantages of simpler computation algorithms and a more convenient use [5, 6]. Our research aims to formulate a new simpler way to retrieve aerosol fine and coarse mode volume concentrations, as well as dimensional information, from direct-sun data. As in other works from the literature [3-6], the main hypothesis is that of a bi-modal shape of the size distribution of aerosols that can be reproduced rather satisfactorily by a linear combination of two lognormal functions. Essentially, the method followed in this paper relies on aerosol size information retrieval through fitting theoretical computations to measured aerosol optical depth (AOD) and related data. To this purpose, the experimental spectral dependence of AOD is interpolated and differentiated numerically to obtain the Ǻngström parameter. The reduced (i.e. normalized to the corresponding columnar volumetric content) contributions of the fine and coarse modes to the AOD have also been

  5. Properties of single crystal beta''-aluminas

    International Nuclear Information System (INIS)

    Bates, J.B.; Brown, G.M.; Kaneda, T.; Brundage, W.E.; Wang, J.C.; Engstrom, H.

    1979-01-01

    Large single crystals of sodium beta''-alumina were grown by slow evaporation of Na 2 O at 1690 0 C from a mixture of Na 2 CO 3 , MgO, and Al 2 O 3 . Polarized Raman measurements were made on the Na β'' single crystals and on single crystals of Li, K, Rb, and Ag β'' prepared by ion exchange of Na β''. The low frequency Raman spectra of Na, K, Rb, and Ag β'' contained four or more bands due to vibrations of the mobile cations. These results were analyzed by assuming the spectra to be due to the normal modes of a defect cluster consisting of a cation vacancy surrounded by three cations. From model calculations, the Raman band of Na β'' at 33 cm -1 is assigned to the attempt mode for diffusion of Na + ions. The structure of a Ag β'' single crystal was investigated by neutron diffraction, and 20% of the Ag + ion sites were found to be vacant

  6. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  7. Red mud flocculation process in alumina production

    Science.gov (United States)

    Fedorova, E. R.; Firsov, A. Yu

    2018-05-01

    The process of thickening and washing red mud is a gooseneck of alumina production. The existing automated systems of the thickening process control involve stabilizing the parameters of the primary technological circuits of the thickener. The actual direction of scientific research is the creation and improvement of models and systems of the thickening process control by model. But the known models do not fully consider the presence of perturbing effects, in particular the particle size distribution in the feed process, distribution of floccules by size after the aggregation process in the feed barrel. The article is devoted to the basic concepts and terms used in writing the population balance algorithm. The population balance model is implemented in the MatLab environment. The result of the simulation is the particle size distribution after the flocculation process. This model allows one to foreseen the distribution range of floccules after the process of aggregation of red mud in the feed barrel. The mud of Jamaican bauxite was acting as an industrial sample of red mud; Cytec Industries of HX-3000 series with a concentration of 0.5% was acting as a flocculant. When simulating, model constants obtained in a tubular tank in the laboratories of CSIRO (Australia) were used.

  8. Weakly compact operators and interpolation

    OpenAIRE

    Maligranda, Lech

    1992-01-01

    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  9. Effect of humic acid on sorption of technetium by alumina

    International Nuclear Information System (INIS)

    Kumar, S.; Rawat, N.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Highlights: → Tc sorption on alumina has been studied under aerobic as well anaerobic condition over pH 3-10. → Effect of humic acid on sorption of Tc by alumina has been investigated. → Linear additive modeling and surface complexation modeling were carried out to delineate the role of humic acid in Tc(IV) sorption in ternary system of Tc(IV)-humic acid-alumina. → Sorption of humic acid onto alumina and strong complexation of Tc(IV) with humic acid were found to govern the sorption of Tc(IV) in the ternary system. - Abstract: Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using 95 Tc m as a tracer. Measurements were carried out at fixed ionic strength (0.1 M NaClO 4 ) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10 -6 M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  10. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  11. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R 0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R 0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  12. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  13. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  14. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  15. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  16. Compaction of cereal grain

    OpenAIRE

    Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.

    2013-01-01

    We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.

  17. Compact nuclear reactor

    International Nuclear Information System (INIS)

    Juric, S.I.

    1975-01-01

    A compact nuclear reactor of the pressurized-water variety is described which has two separate parts separably engageable for ease of inspection, maintenance and repair. One of the parts is a pressure vessel having an active core and the other of the parts is a closure adapted on its lower surface with an integral steam generator. An integral pump, external pressurizer and control rods are provided which communicate with the active core when engaged to form a total unit. (U.S.)

  18. Compact power reactor

    International Nuclear Information System (INIS)

    Wetch, J.R.; Dieckamp, H.M.; Wilson, L.A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector

  19. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  20. Compact Information Representations

    Science.gov (United States)

    2016-08-02

    Department of Defense, Executive Services, Directorate (0704-0188).   Respondents should be aware that notwithstanding any other provision of law, no person...which lies in the mission of AFOSR. 15.  SUBJECT TERMS sparse sampling , principal components analysis 16.  SECURITY CLASSIFICATION OF: 17...approved for public release Contents 1 Training for Ph.D. Students and Postdoc Researchers 2 2 Papers 2 3 Summary of Proposed Research: Compact

  1. Testing of Compact Bolted Fasteners with Insulation and Friction-Enhanced Shims for NCSX

    International Nuclear Information System (INIS)

    Dudek, L.E.; Chrzanowski, J.H.; Gettelfinger, G.; Heitzenroeder, P.; Jurczynski, S.; Viola, M.; Freudenberg, K.

    2009-01-01

    The fastening of the National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to the high magnetic forces, need to control induced currents, tight tolerances and restrictive space envelope. A fastening method using high strength studs, jack nuts, insulating spacers, bushings and alumina coated shims was developed which met the requirements. A test program was conducted to verify the design. The tests included measurements of flatness of the spacers, determination of contact area, torque vs. tension of the studs and jack nuts, friction coefficient tests on the alumina and G-10 insulators, electrical tests, and tension relaxation tests due to temperature excursions from room temperature to liquid nitrogen temperatures. This paper will describe the design and the results of the test program.

  2. Corrosion resistance characterization of porous alumina membrane supports

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yingchao, E-mail: dongyc9@mail.ustc.edu.cn [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Lin Bin [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Zhou Jianer [Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Zhang Xiaozhen [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Ling Yihan; Liu Xingqin; Meng Guangyao [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Hampshire, Stuart [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  3. Enriched fluoride sorption using alumina/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy, E-mail: natrayasamy_viswanathan@rediffmail.com [Department of Chemistry, Anna University Tiruchirappalli - Dindigul Campus, Dindigul 624 622, Tamil Nadu (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamil Nadu (India)

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F{sup -}/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F{sup -}/kg than the alumina and chitosan (52 mg F{sup -}/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  4. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  5. Diffusion through statically compacted clay

    International Nuclear Information System (INIS)

    Ho, C.L.; Shebl, M.A.A.

    1994-01-01

    This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs

  6. Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland

    Directory of Open Access Journals (Sweden)

    S. Sjogren

    2008-09-01

    Full Text Available Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (GF, i.e. the relative change in particle diameter from dry diameter, D0, to diameter measured at higher relative humidity, RH are presented for three distinct air mass types, namely for: 1 free tropospheric winter conditions, 2 planetary boundary layer influenced air masses (during a summer period and 3 Saharan dust events (SDE. The GF values at 85% RH (D0=100 nm were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal GF distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed are presented, which can be used for modeling purposes.

    Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the GF measurements. This made it possible to estimate the apparent ensemble mean GF of the organics (GForg using inverse ZSR (Zdanovskii-Stokes-Robinson modeling. GForg was found to be ~1.20 at aw=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol.

  7. Real time measurements of submicrometer aerosols in Seoul, Korea: Sources, characteristics, and processing of organic aerosols during winter time.

    Science.gov (United States)

    Kim, H.; Zhang, Q.

    2016-12-01

    Highly time-resolved chemical characterization of non-refractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter when persistent air quality problems associated with elevated PM concentrations were observed. The average NR-PM1 concentration was 27.5 µg m-3 and the average mass was dominated by organics (44%), followed by nitrate (24%) and sulfate (10%). Five distinct sources of organic aerosol (OA) were identified from positive matrix factorization (PMF) analysis of the AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA), cooking represented by a cooking OA factor (COA), wood combustion represented by a biomass burning OA factor (BBOA), and secondary aerosol formation in the atmosphere that is represented by a semi-volatile oxygenated OA factor (SVOOA) and a low volatile oxygenated OA factor (LVOOA). These factors, on average, contributed 16, 20, 23, 15 and 26% to the total OA mass, respectively, with primary organic aerosol (POA = HOA + COA + BBOA) accounting for 59% of the OA mass. On average, both primary emissions and secondary aerosol formation are important factors affecting air quality in Seoul during winter, contributing approximately equal. However, differences in the fraction of PM source and properties were observed between high and low loading PM period. For example, during stagnant period with low wind speed (WS) (0.99 ± 0.7 m/s) and high RH (71%), high PM loadings (43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27%) and SVOOA (8%) were observed, indicating a strong influence from locally generated secondary aerosol. On the other hand, when low PM loadings (12.6 ± 7.1 µg m-3), which were commonly associated with high WS (1.8 ± 1.1 m/s) and low RH (50 %), were observed, the fraction of regional sources, such as sulfate (12%) and LVOOA (21

  8. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  9. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    International Nuclear Information System (INIS)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-01-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100 deg. C, 1300 deg. C and 1500 deg. C for about 20 hours using heating and cooling rates of 2 deg. C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  10. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    Science.gov (United States)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100° C, 1300° C and 1500° C for about 20 hours using heating and cooling rates of 2° C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  11. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  12. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  13. Conductivity variations in composites of. alpha. -zirconium phosphate and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Slade, R.C.T.; Knowles, J.A. (Dept. of Chemistry, Exeter Univ. (UK))

    Composite proton-conducting solid electrolytes have been formed from {alpha}-zirconium hydrogen phosphate ({alpha}-Zr(HPO{sub 4}){sub 2}.H{sub 2}O, {alpha}-ZrP) and aluminas (Al{sub 2}O{sub 3}) in varying mole ratios. Conductivity variations as a function of temperature have been characterised and compared to that for a delaminated {alpha}-ZrP (no alumina). There are no appreciable conductivity enhancements on composite formation, but conductivity for materials ca. 50 mole% in alumina can be comparable to the delaminated materials. Differential scanning calorimetry shows the composites to have different thermal properties to simple admixtures. High resolution {sup 31}P NMR studies show reaction to form aluminium phosphate at the interface between components. (orig.).

  14. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  15. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  16. Synthesis of alumina powders by precipitation method and solvothermal treatment

    International Nuclear Information System (INIS)

    Politchuk, J.O.; Lima, N.B.; Lazar, D.R.R.; Ussui, V.; Yoshito, W.K.

    2012-01-01

    The improvement of alumina powders synthesis processes has been focused on the preparation of ceramic powders with well defined crystalline structure and with high specific surface area and nanometric particle size without formation of hard agglomerates. For this purpose the precipitation step should be studied and and also the temperature of alumina crystallization should be reduced. The aim of this study was to obtain alumina powders by hydroxide precipitation with ammonia in the presence of cationic surfactant, followed by solvothermal treatment and calcination. The powders were characterized by TG/DTA, X-ray diffraction, surface area measurements by gas adsorption (BET) and scanning electron microscopy. The results showed that powders produced by solvothermal treatment without surfactant have higher crystallinity. However the presence of CTAB enhances 240% the specific surface area compared with powders produced without this reagent (author)

  17. MECHANICS OF DYNAMIC POWDER COMPACTION PROCESS

    OpenAIRE

    Nurettin YAVUZ

    1996-01-01

    In recent years, interest in dynamic compaction methods of metal powders has increased due to the need to improve compaction properties and to increase production rates of compacts. In this paper, review of dynamic and explosive compaction of metal powders are given. An attempt is made to get a better understanding of the compaction process with the mechanicis of powder compaction.

  18. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  19. Compact ignition experiments

    International Nuclear Information System (INIS)

    Angelini, A.; Coppi, B.; Nassi, M.

    1992-01-01

    This paper reports on high magnetic field experiments which can be designed to investigate D-T ignition conditions based on present-day experimental results and theoretical understanding of plasma phenomena. The key machine elements are: large plasma currents, compact dimensions, tight aspect ratios, moderate elongations and significant triangularities of the plasma column. High plasma densities, strong ohmic heating, the needed degree of energy confinement, good plasma purity and robust stability against ideal and resistive instabilities can be achieved simultaneously. The Ignitor design incorporates all these characteristics and involves magnet technology developments, started with the Alcator experiment, that use cryogenically cooled normal conductors

  20. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  1. Compact electron storage rings

    International Nuclear Information System (INIS)

    Williams, G.P.

    1987-01-01

    There have been many recent developments in the area of compact storage rings. Such rings would have critical wavelengths of typically 10 A, achieved with beam energies of several hundreds of MeV and superconducting dipole fields of around 5 Tesla. Although the primary motivation for progress in this area is that of commercial x-ray lithography, such sources might be an attractive source for college campuses to operate. They would be useful for many programs in materials science, solid state, x-ray microscopy and other biological areas. We discuss the properties of such sources and review developments around the world, primarily in the USA, japan and W. Germany

  2. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  3. LASL Compact Torus Program

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Bartsch, R.R.

    1981-01-01

    The Compact Torus (CT) concept includes any axisymmetric toroidal plasma configuration, which does not require the linking of any material through the hole in the torus. Thus, the magnet coils, vacuum vessel, etc., have a simple cylindrical or spherical geometry instead of the toroidal geometry required for Tokamaks and RFP's. This simplified geometry results in substantial engineering advantages in CT reactor embodiments while retaining the good confinement properties afforded by an axisymmetric toroidal plasma-field geometry. CT's can be classified into three major types by using the ion gyro radius rho/sub i/ and the magnitude of the maximum toroidal field B/sub tm/

  4. Compact Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Losano, L.; Marques, M.A. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Menezes, R. [Departamento de Ciências Exatas, Universidade Federal da Paraíba, 58297-000 Rio Tinto, PB (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB (Brazil); Rocha, R. da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-580 Santo André (Brazil)

    2016-07-10

    In this work we deal with non-topological solutions of the Q-ball type in two space–time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  5. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  6. Fabrication of Anodic Porous Alumina by Squaric Acid Anodizing

    OpenAIRE

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-01-01

    The growth behavior of anodic porous alumina formed via anodizing in a new electrolyte, squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), is reported for the first time. A high-purity aluminum foil was anodized in a 0.1 M squaric acid solution at 293 K and a constant applied potential of 100-150 V. Anodic oxides grew on the aluminum foil at applied potentials of 100-120 V, but a burned oxide film was formed at higher voltage. Anodic porous alumina with a cell size of approximately 200-400...

  7. Behaviour modelling of two aluminas in divergent spherical pyrotechnical experiments

    International Nuclear Information System (INIS)

    Malaise, F.; Tranchet, J.Y.; Collombet, F.

    1997-01-01

    Two pure aluminas of different characteristics have been subjected to the propagation of a longitudinal divergent spherical shock wave through pyrotechnical experiments. An approach combining a phenomenological analysis and numerical 1D-calculations is proposed to study the behaviour of these aluminas submitted to that type of wave loading. The modelling, proposed in a previous paper, is refined and gives satisfying experimentation-calculation correlations. An analysis of the influence exerted by the various encountered phenomena (plastic activity, pore closure, microcracking) is performed. The significant consequence of the activation of damage with an extension criterion is also underlined. (orig.)

  8. Comparative study on sintered alumina for ballistic shielding application

    International Nuclear Information System (INIS)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira

    1997-01-01

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull's modulii and other mechanical properties are able to improve ballistic penetration resistance. (author)

  9. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  10. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  11. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  12. Diffusion in compacted betonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Rantanen, J.

    1985-01-01

    The objective of this report is to collect the literature bearing on the diffusion in compacted betonite, which has been suggested as possible buffer material for the disposal of spent fuel. Diffusion in a porous, water-saturated material is usually described as diffusion in the pore-water where sorption on the solid matter can delay the migration in the instationary state. There are also models which take into consideration that the sorbed molecules can also move while being sorbed. Diffusion experiments in compacted bentonite have been reported by many authors. Gases, anions, cations and actinides have been used as diffusing molecules. The report collects the results and the information on the measurement methods. On the basis of the results can be concluded that different particles possibly follow different diffusion mechanisms. The parameters which affect the diffusion seem to be for example the size, the electric charge and the sorption properties of the diffusing molecule. The report also suggest the parameters to be used in the diffusion calculation of the safety analyses of spent fuel disposal. (author)

  13. Compact Infrasonic Windscreen

    Science.gov (United States)

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  14. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  15. Development task of compact reactor

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1982-01-01

    In the Ministry of International Trade and Industry, studies proceed on the usage of compact medium and small LWRs. As such, the reactors from 100 to 200 MW may meet varieties of demands in scale and kind in view of the saving of petroleum and the economy of nuclear power. In this case, the technology of light water reactors with already established safety will be suitable for the development of compact reactors. The concept of ''nuclear power community'' using the compact reactors in local society and industrial zones was investigated. The following matters are described: need for the introduction of compact reactors, the survey on the compact reactor systems, and the present status and future problems for compact reactor usage. (J.P.N.)

  16. The United Nations Global Compact

    DEFF Research Database (Denmark)

    Rasche, Andreas; Waddock, Sandra; McIntosh, Malcolm

    2013-01-01

    This article reviews the interdisciplinary literature on the UN Global Compact. The review identifies three research perspectives, which scholars have used to study the UN Global Compact so far: a historical perspective discussing the Global Compact in the context of UN-business relations...... key empirical as well as conceptual scholarly contributions. The remainder of this article contains focused summaries of the articles selected for this Special Issue. All articles are introduced and evaluated against the background of the three research perspectives....

  17. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    International Nuclear Information System (INIS)

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  18. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during ... Alumina ceramics are used in wide range of applications due to their .... temperature were recorded by DAQSOFT software in a sep- .... Tubes: Design and Development Capabilities (MTDDC)',.

  19. State of the art: alumina ceramics for energy applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1978-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development

  20. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara; Thorat, Sanjay B.; La Rocca, Rosanna; Scarpellini, Alice; Salerno, Marco; Dante, Silvia; Das, Gobind

    2014-01-01

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  1. Grafting of alumina on SBA-15: Effect of surface roughness

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Šiklová, Helena; Čejka, Jiří

    2008-01-01

    Roč. 24, č. 17 (2008), s. 9837-9842 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alumina-grafted materials * SBA-15 * Nitrogen adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.097, year: 2008

  2. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of ...

  3. Improving subcritical crack growth resistance for alumina glass dental composite

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.

    2005-01-01

    The improvement of subcritical crack growth (SCG) resistance for alumina glass dental composites was explored in this study. The addition of nitrogen to the glass phases in the composite was found to increase the SCG resistance, where the SCG exponent n increases from 22 for the oxide glass

  4. Electrochemical impedance spectroscopy of nanoporous anodic alumina template

    International Nuclear Information System (INIS)

    Shahzad, K.

    2010-01-01

    Room temperature EIS characterization of nanoporous anodic alumina prepared at 40 V and 60 V has been done in 0.3 M oxalic acid solution. Rapid decrease in impedance was observed for the template prepared at 40 V. EIS study of porous anodic alumina template prepared in 0.3 M oxalic acid has been done in different electrolytes. Templates prepared in 0.3 M sulfuric acid solution were also characterized for comparison. Rapid decrease in the thickness of nonporous anodic film was observed with an increase of aggressiveness of electrolyte. Temperature based systematic study of EIS measurement has been done for porous anodic alumina template at different temperatures. Formation of micropores was observed in the nanoporous anodic alumina film formed on aluminum in 0.3 M oxalic acid solution which accelerates the dissolution rate with increase of measurement temperature. In addition to these, electropolishing behavior of pure aluminum has also been studied in different electrolytes and it was observed that electropolishing conditions prior to anodization are extremely important. (author)

  5. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  6. A novel technique for synthesizing dense alumina nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pancholi, A [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Stoleru, V G [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Kell, C D [Department of Chemical Engineering, University of Delaware, Newark, DE 19716 (United States)

    2007-05-30

    The formation of highly ordered nanoporous alumina membranes by anodizing high-purity aluminium under optimum conditions (i.e., anodization time, electrolyte temperature, and cell voltage) in various electrolyte solutions is a well established process. In this paper we report on the formation of a wide range of alumina nanostructures, including nanotubes/nanochannels, nanoplates, and nanofibres, by using a technique that involves anodization and etching processing steps similar to the ones that yield nanopores, under slightly modified experimental conditions. The effects of the anodization voltage, time, and temperature, as well as the effects of the etching time, on the formation and the properties of the alumina nanostructures are analysed. We propose a simple analytical model to describe the formation of different types of alumina nanostructures, as a result of irreversible breakage of the pore walls for long etching times. The geometry of the nanostructures and their dimensions, ranging between 10 and 100 nm, were found to be dependent on the pore dimensions and on the location of the cleavage/breakage of the pore walls.

  7. Synthesis and characterization of hydroxyapatite/alumina ceramic ...

    Indian Academy of Sciences (India)

    39

    In the present work, nano crystalline hydroxyapatite/alumina (HAp-Al2O3) composite was .... powder was dried in hot air oven at 80 °C for 24 hours. ... weekly, and the culture medium was changed twice in a week. 4. Results and Discussion.

  8. Dielectric properties of carbon nanofibre/alumina composites

    Czech Academy of Sciences Publication Activity Database

    Fernandez-Garcia, L.; Suarez, M.; Menéndez, J.L.; Pecharromán, C.; Nuzhnyy, Dmitry; Bovtun, Viktor; Savinov, Maxim; Kempa, Martin; Petzelt, Jan

    2013-01-01

    Roč. 57, JUN (2013), s. 380-387 ISSN 0008-6223 R&D Projects: GA ČR GAP204/12/0232; GA MŠk LD12025 Institutional support: RVO:68378271 Keywords : alumina * carbon nanofibre * dielectric and THz spectroscopy * infrared spectroscopy * percolation threshold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.160, year: 2013

  9. Capillary condensation in porous alumina observed by positronium lifetime spectroscopy

    International Nuclear Information System (INIS)

    Ivanov, Eugeniu; Vata, Ion; Toderian, Stefan; Dudu, Dorin; Rusen, Ion; Stefan, Nitisor

    2008-01-01

    The PALS method based on time distribution measurements has been used to study capillary condensation of different gases adsorbed in microporous alumina powder. The isotherms exhibit features which are associated with a shifted gas-liquid transition. The sorption and desorption processes are irreversible presenting a hysteresis effect. Suggestions on some new aspects of the capillary condensation dynamics are made

  10. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    In compounded zeolite catalyst it serves as the active matrix which aids the conversion of the bulkiest molecules in the feed owing to its larger pore size than zeolite. Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment ...

  11. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  12. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  13. Fabrication of an alumina torus for thermonuclear fusion containment

    International Nuclear Information System (INIS)

    Hauth, W.E.; Blake, R.D.; Dickinson, J.M.; Rutz, H.L.; Stoddard, S.D.

    1978-05-01

    A 235-cm-diam torus has been fabricated for plasma containment during thermonuclear fusion experiments. This 30-cm-diam torus consists of sixty 99.5%-alumina segments, 80% of which are assembled by forming vacuum-tight ceramic-to-ceramic seals. Selection of sealing materials and techniques are discussed

  14. Synthesis and textural evolution of alumina particles with mesoporous structures

    International Nuclear Information System (INIS)

    Liu Xun; Peng Tianyou; Yao Jinchun; Lv Hongjin; Huang Cheng

    2010-01-01

    Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous γ-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl - in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into γ-Al 2 O 3 particles with mesostructures after further calcination at 1173 K, whereas coexisting SO 4 2- can promote above morphology evolution and then transformed into γ-Al 2 O 3 nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m 2 g -1 even after calcinations at 1173 K. - Graphical abstract: Co-existing Cl - is beneficial for the formation of γ-alumina nanoparticles with mesostructures during the precipitation process. Interparticle and intraparticle mesopores can be derived from acidic solution and near neutral solution, respectively.

  15. Controlled growth of single nanowires within a supported alumina template

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Faniel, S.

    2006-01-01

    A simple technique for fabricating single nanowires with well-defined position is presented. The process implies the use of a silicon nitride mask for selective electrochemical growth of the nanowires in a porous alumina template. We show that this method allows the realization of complex nanowire...

  16. Application of various types of alumina and nano--alumina sulfuric acid in the synthesis of α-aminonitriles derivatives: comparative study

    Directory of Open Access Journals (Sweden)

    A. Teimouri

    2014-09-01

    Full Text Available An efficient and green protocol for the synthesis of α-aminonitrile derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanide has been developed using natural alumina, alumina sulfuric acid (ASA, nano-g-alumina, nano-g-alumina sulfuric acid (nano-g-ASA under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency. DOI: http://dx.doi.org/10.4314/bcse.v28i3.13

  17. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  18. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  19. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. The Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Schmidt, J.

    1987-01-01

    The author discusses his lab's plan for completing the Compact Ignition Tokamak (CIT) conceptual design during calendar year 1987. Around July 1 they froze the subsystem envelopes on the device to continue with the conceptual design. They did this by formalizing a general requirements document. They have been developing the management plan and submitted a version to the DOE July 10. He describes a group of management activities. They released the vacuum vessel Request For Proposals (RFP) on August 5. An RFP to do a major part of the system engineering on the device is being developed. They intend to assemble the device outside of the test cell, then move it into the the test cell, install it there, and bring to the test cell many of the auxiliary facilities from TFTR, for example, power supplies

  1. Compact cryocooler heat exchangers

    International Nuclear Information System (INIS)

    Luna, J.; Frederking, T.H.K.

    1991-01-01

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  2. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  3. Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism

    Science.gov (United States)

    Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping

    2017-06-01

    A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.

  4. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, Shunta; Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Highlights: • Anodic porous alumina was formed in an arsenic acid solution. • Potential difference (voltage) anodizing at 340 V was achieved. • The porous alumina was slightly ordered under the appropriate conditions. • Pore sealing behavior was not observed in boiling distilled water. • The porous alumina exhibits a white photoluminescence emission under UV irradiation. - Abstract: Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1–0.5 M arsenic acid solutions at 310–340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  5. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    International Nuclear Information System (INIS)

    Méndez, Franklin J.; Rivero-Prince, Sayidh; Escalante, Yelisbeth; Villasana, Yanet; Brito, Joaquín L.

    2016-01-01

    Al_2O_3–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al_2O_3 are studied. • Al_2O_3–Al sponges could be used as structured reactors.

  6. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Franklin J., E-mail: fmendez@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Rivero-Prince, Sayidh [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Facultad de Ingeniería, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Escalante, Yelisbeth; Villasana, Yanet [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquín L., E-mail: joabrito@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2016-03-01

    Al{sub 2}O{sub 3}–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al{sub 2}O{sub 3} are studied. • Al{sub 2}O{sub 3}–Al sponges could be used as structured reactors.

  7. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  8. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  9. Optical performance of hybrid porous silicon-porous alumina multilayers

    Science.gov (United States)

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  10. Advanced morphological analysis of patterns of thin anodic porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Toccafondi, C. [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy); Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Stępniowski, W.J. [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Leoncini, M. [Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Salerno, M., E-mail: marco.salerno@iit.it [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy)

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for the thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.

  11. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina)

    International Nuclear Information System (INIS)

    Rouquerol, J.

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina α-trihydrate Al(OH) 3 and beryllium α-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [fr

  12. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  13. Compact magnetic fusin reactor concepts

    International Nuclear Information System (INIS)

    Chung, K.M.

    1984-01-01

    Compact, high-power-density approaches to fusion power represent alternatives to main-line fusion concepts, Tokamaks and mirrors. If technological issues are resolved, theses approaches would yield small, low-cost fusion power plants. This survey reviews the principal physics and technology employed by leading compact magnetic fusion plants. (Author)

  14. Solid targetry for compact cyclotrons

    International Nuclear Information System (INIS)

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  15. Roller-compacted concrete pavements.

    Science.gov (United States)

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  16. Machine for compacting solid residues

    International Nuclear Information System (INIS)

    Herzog, J.

    1981-11-01

    Machine for compacting solid residues, particularly bulky radioactive residues, constituted of a horizontally actuated punch and a fixed compression anvil, in which the residues are first compacted horizontally and then vertically. Its salient characteristic is that the punch and the compression anvil have embossments on the compression side and interpenetrating plates in the compression position [fr

  17. Synthesis and characterization of mesoporous ceria/alumina nanocomposite materials via mixing of the corresponding ceria and alumina gel precursors.

    Science.gov (United States)

    Khalil, Kamal M S

    2007-03-01

    Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.

  18. Extraction of Alumina from Red Mud for Synthesis of Mesoporous Alumina by Adding CTABr as Mesoporous Directing Agent

    Directory of Open Access Journals (Sweden)

    Eka Putra Ramdhani

    2018-05-01

    Full Text Available Mines in Bintan were producing bauxite for many years. The production process of bauxite to alumina produced much red mud. From X-ray Fluorescence (XRF, alumina content on Bintan’s red mud was 28.87 wt.%. This research was studying on the extraction alumina from red mud with reduction of hematite (Fe2O3 and desilication processes. After extraction process alumina was collected about 52.89 wt.%. Synthesis of mesoporous alumina from red mud using sol-gel method at the room temperature for 72 h with cetyltrimethylammonium bromide (CTABr as mesoporous directing agent. The CTABr/Al-salt ratio, i.e. 1.57; 4.71 and 7.85 with the sample code of AMC-1, AMC-3, AMC-5, respectively. The product was calcined at 550 °C for 6 h. The synthesized materials were characterized by X-ray Diffraction (XRD, scanning electron microscopy-energy dispersive X-ray (SEM-EDX, transmission electron microscopy (TEM, and N2 adsorption-desorption techniques. XRD pattern of AMC-1, AMC-3, and AMC-5 showed that all synthesized materials have amorphous phase. The morphology were wormhole aggregate that were showed by SEM and TEM characterization. N2 adsorption-desorption characterization showed the distribution of pore size of about 3.2 nm. The highest surface area and pore volume were obtained in solid-solid ratio CTABr/GM-AL by 1.57 (AMC-1 i.e. 241 m2/g and 0.107 cm3/g, respectively.

  19. Characterization of metallized alumina: properties. [Diamonite P-3142-1, Wesgo Al-500 alumina ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Swearengen, J.C.; Burchett, O.L., Gieske, J.H.

    1976-12-01

    The effects of metallizing and brazing on the mechanical properties of Diamonite P-3142-1 and Wesgo A1-500 alumina ceramics were evaluated. The information was required for analytical prediction of the performance of ceramic-to-metal joints formed by the metallize-braze process. Residual stresses and fracture strengths were monitored before and after metallizing treatments; micromechanical modelling and surface acoustic wave experiments were utilized to determine density, thermal expansion and elastic moduli within the metallized region of the ceramics. It was observed that the metallizing elements penetrate the ceramics to a depth of about 005 ..mu..m and measurably modify the properties to a depth of about 300 ..mu..m. The moduli and density are increased approximately five percent within the penetration zone. The thermal expansion coefficients are not modified significantly by metallizing; the warping which occurs during metallizing results from microstructural changes within the ceramics and not differential thermal contraction. Fracture toughness of the Diamonite ceramic is greater than that of the Wesgo, although the metallizing treatments increase the toughness of each. Fracture strength of the Diamonite was degraded on the metallized surface, whereas the strength of the Wesgo was essentially unchanged by metallizing. Macroscopic compressive residual stresses, which exist at the surfaces of the ceramics, do not significantly affect the fracture strengths. The implications of these results for calculations of joint performance are discussed.

  20. Diffusion and aggregation of implanted Ag and Au in a lithia--alumina--silica glass

    International Nuclear Information System (INIS)

    Arnold, G.W.; Borders, J.A.

    1975-01-01

    Optical extinction and Rutherford backscattering (RBS) techniques were employed to obtain information on the size and spatial distribution of Au- and Ag-colloids in implanted (Au + , Ag + ) lithia-alumina-silica glass. The formation of metallic aggregates (colloids), necessary for preparation of a glass-ceramic surface layer, proceeds readily with annealing temperature for Au-implanted samples but not for Ag-implanted material. The optical and RBS spectra show that the particle size and spatial distribution in as-implanted samples are sensitive to sample temperature and ion-beam heating effects, while these parameters for Au-implanted samples are relatively insensitive to temperature and beam current. It is suggested that this behavior is related to differences in the dissolution energies of Ag and Au aggregates. A two-peaked spatial distribution for Ag implanted at room temperature at a dose rate of approximately 1 μA/cm 2 is observed which may result from the trapping of Ag in the compacted damage region of the glass during implantation. (auth)

  1. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  2. Tensile test of a silicon microstructure fully coated with submicrometer-thick diamond like carbon film using plasma enhanced chemical vapor deposition method

    Science.gov (United States)

    Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.

  3. Compact radio sources

    International Nuclear Information System (INIS)

    Altschuler, D.R.

    1975-01-01

    Eighty-seven compact radio sources were monitored between 1971 and 1974 with the National Radio Astronomy Observatory interferometer. Both flux density and polarization were measured at intervals of about one month at wavelengths of 3.7 and 11.1 cms. Forty-four sources showed definite variability in their total and/or polarized flux density. The variations in polarization were of a shorter time scale than the corresponding flux density variations. Some of the qualitative features of an expanding source model were observed. The data suggest that some form of injection of relativistic electrons is taking place. The absence of significant depolarization in the variable sources indicates that only a small fraction of the mass of the radio outburst is in the form of non-relativistic plasma. Some of the objects observed belong to the BL-Lacertal class. It is shown that this class is very inhomogeneous in its radio properties. For the violently variable BL-Lacertal type objects the spectrum, flux variations and polarization data strongly suggest that these are very young objects

  4. Compact Dexterous Robotic Hand

    Science.gov (United States)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  5. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  6. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  7. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  8. A study on heat transfer characteristics of spherical and fibrous alumina nanofluids

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Lee, Gyoung-Ja; Rhee, Chang Kyu

    2012-01-01

    Highlights: ► Spherical and fibrous alumina nanoparticles were prepared by pulsed wire evaporation and hydrolysis methods. ► Fibrous alumina nanofluid exhibited higher thermal conductivity enhancement than spherical one due to entangled structure of nanofibers with high aspect-ratio. ► Decreasing rate of viscosity with temperature for fibrous alumina nanofluid was much larger than that for spherical one. - Abstract: Ethylene glycol based nanofluids containing spherical/fibrous alumina nanoparticles were synthesized by pulsed wire evaporation and hydrolysis methods. The crystallographic and morphological properties of the prepared nanoparticles were analyzed by X-ray diffraction, nitrogen gas adsorption and transmission electron microscopy. The average diameter of spherical alumina nanoparticles was about 80 nm and the alumina nanofibers exhibited a high aspect ratio (length/width). The viscosity and thermal conductivity of the spherical/fibrous alumina nanofluids were experimentally measured in the temperature range from 25 to 80 °C. For the fibrous alumina nanofluid, the increase of temperature raised thermal conductivity but lowered viscosity. On the other hand, for the spherical alumina nanofluid, both thermal conductivity and viscosity were decreased with increasing temperature. In particular, the fibrous alumina nanofluid exhibited a higher enhancement of thermal conductivity than the spherical one due to the well-connected structure between entangled nanofibers with high aspect ratio.

  9. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    International Nuclear Information System (INIS)

    Li Shuai; He Di; Liu Xiaopeng; Wang Shumao; Jiang Lijun

    2012-01-01

    Highlights: ► Deuterium permeation behavior of alumina coating by MOCVD is investigated. ► The as-prepared alumina is amorphous. ► The alumina coating is dense and well adherent to substrate. ► Deuterium permeation rate of alumina coating is 2–3 orders of magnitude lower than martensitic steels. - Abstract: The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.

  10. Study of preparation and surface morphology of self-ordered nanoporous alumina; Estudo da preparacao e da morfologia de superficie de alumina nanoporosa auto-organizada

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com, E-mail: MG.mdm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG. (Brazil); Silva, Ronald Arreguy, E-mail: arregsilva@yahoo.com.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2013-07-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  11. Electrochemically grown metallic nanocomb structures on nanoporous alumina templates

    International Nuclear Information System (INIS)

    Kaya, Savas; Atar, Erdem

    2011-01-01

    Electrochemical growth of metallic nanocomb structures on anodized alumina templates is described. Nanocombs originate from the orderly growth and merger of very thin (d=15±5 nm) metallic nanowires which do not completely fill much larger pores (d∼100 nm) in the alumina template (t≤3 μm). Instead, the nanowires prefer growing along the inner corners of the hexagonal pores, coalescing into a highly ordered structure as they emerge, resulting a metallic form reminiscent of the topology of the original template. We disclose here the typical processing conditions and the microstructure of this previously unknown material as observed with a scanning electron microscope (SEM) and energy dispersive x-ray (EDX) spectroscopy. It is shown that Au nanocombs have an anomalous EDX spectra and can emit electrons at a field of ∼1 kV/cm.

  12. Health monitoring technology for alumina-fiber-reinforced plastic

    International Nuclear Information System (INIS)

    Aoyama, Hiroshi; Watanabe, Hiroyuki; Terai, Motoaki

    1998-01-01

    Formally, we developed new load-support systems that consists of a biconical, alumina-fiber-reinforced plastic (ERP) structure for the superconducting magnet. Safe operation of the superconducting magnet will be jeopardized if the mechanical condition of the load-support system begins to degrade. One of the factors that evaluate the soundness of the superconducting magnet is the stiffness of the load-support system. Here, it is important to know the relation between the degradation of the stiffness and the growth of defects. For this purpose, firstly, a fatigue test of the load-support system was carried out, and the various defects (matrix cracking and delamination of FRP laminates) were observed during this fatigue testing. Finally, we proposed the application of two non-destructive-evaluation (NDE) methods for the health monitoring of alumina/epoxy load-support systems. (author)

  13. Long-term results of uncemented alumina acetabular implants.

    Science.gov (United States)

    Boehler, M; Knahr, K; Plenk, H; Walter, A; Salzer, M; Schreiber, V

    1994-01-01

    We report the clinical and tribological performance of 67 ceramic acetabular prostheses implanted between 1976 and 1979 without bone cement. They articulated with ceramic femoral heads mounted on mental femoral stems. After a mean elapsed period of 144 months, 59 sockets were radiographically stable but two showed early signs and six showed late signs of loosening. Four of the loose sockets have been revised. Histological analysis of the retrieved tissue showed a fibrous membrane around all the implants, with fibrocartilage in some. There was no bone ingrowth, and the fibrous membrane was up to 6 mm thick and infiltrated with lymphocytes, plasma cells, and macrophages. Intra- and extracellular birefringent wear particles were seen. Tribological analysis showed total wear rates in two retrieved alumina-on-alumina joints of 2.6 microns per year in a stable implant and 68 microns in a loose implant. Survival analysis showed a revision rate of 12.4% at 136 months.

  14. Preparation of alumina microspheres. Its application as in inorganic exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Santos, W.R. dos; Abrao, A [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina microspheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO/sub 2/, ThO/sub 2/). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper.

  15. Evaluation of technological properties of alumina refractory systems-zirconia and zirconia-silica-alumina; Avaliacao das propriedades tecnologicas de refratarios dos sistemas alumina-zirconia e alumina-zirconia-silica

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, A.R.O.; Carvalho, T.U.S.; Fagury Neto, E.; Rabelo, A.A., E-mail: adriano@unifesspa.edu.br [Universidade Federal do Sul e Sudeste do Para (UFSSPA), Maraba, PA (Brazil)

    2014-07-01

    Alumina-zirconia refractories are noted for being products of excellent cost-effective, however, zirconia may limit its use due to decreasing resistance to thermal shock. This study aims to evaluate these refractories with the addition of microsilica, which can greatly improve their properties. Were used the following starting materials: calcined alumina, zirconia (stabilized and monoclinic) in amounts of 2%, 4% and 6% by weight, plus microsilica (5%w.). The powders were milled together with binder and lubricant for conformation bodies by uniaxial pressing. The samples were dried, calcined and sintered at 1400 °C/2h were characterized using the methods of Archimedes, and scanning electron microscopy (SEM), chemical analysis using energy dispersive X-ray (EDS), and mechanical flexural strength tests at room temperature. Formulations with the presence of microsilica showed satisfactory results and optimized properties. (author)

  16. Complex-shaped ceramic composites obtained by machining compact polymer-filler mixtures

    Directory of Open Access Journals (Sweden)

    Rosa Maria da Rocha

    2005-06-01

    Full Text Available Research in the preparation of ceramics from polymeric precursors is giving rise to increased interest in ceramic technology because it allows the use of several promising polymer forming techniques. In this work ceramic composite pieces were obtained by pyrolysis of a compacted mixture of a polysiloxane resin and alumina/silicon powder. The mixture consists of 60 vol% of the polymer phase and 40 vol% of the filler in a 1:1 ratio for alumina/silicon, which was hot pressed to crosslink the polymer, thus forming a compact body. This green body was trimmed into different geometries and pyrolised in nitrogen atmosphere at temperatures up to 1600 °C. X-ray diffraction analysis indicated the formation of phases such as mullite and Si2ON2 during pyrolysis, that result from reactions between fillers, polymer decomposition products and nitrogen atmosphere. The porosity was found to be less than 20% and the mass loss around 10%. The complex geometry was maintained after pyrolysis and shrinkage was approximately 8%, proving pyrolisis to be a suitable process to form near-net-shaped bulk ceramic components.

  17. Compact Holographic Data Storage

    Science.gov (United States)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  18. Compact instantaneous water heater

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-07-01

    This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)

  19. MICROWAVE JOINING OF ALUMINA CERAMIC AND HYDROXYLAPATITE BIOCERAMIC

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Microwave joining is a rapid developmental new techniqu e in recent years.This paper introduces a new microwave joining equipment which was made by our lab,succeeds in alumina ceramic-hydroxylapatite bioceramic j o in in the equipment, and analyzes the join situation of join boundary by using s canni ng electron microscope(SEM),this paper analyzes the mechanism of microwave joini ng also.

  20. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  1. Porous Alumina and Zirconia Ceramics With Tailored Thermal Conductivity

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, Jiří

    2012-01-01

    Roč. 395, č. 1 (2012), 012022-012022 ISSN 1742-6588. [European Thermal Sciences Conference (Eurotherm)/6./. Poitiers, 04.09.2012-07.09.2012] Institutional support: RVO:61389021 Keywords : Ceramics * alumina * zirconia * porosity * thermal conductivity * pore-forming agent * oxide ceramics * starch * porosity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://iopscience.iop.org/1742-6596/395/1/012022/pdf/1742-6596_395_1_012022.pdf

  2. On the thermally activated crack propagation in alumina

    International Nuclear Information System (INIS)

    Devezas, T.C.

    1983-01-01

    Subcritical crack growth was studied in the temperature 25-100 0 C in two commercial aluminas containing different amounts of a glassy phase. The experimental method employed was that of double torsion under constant load, using a device specially built to carry out mechanical tests at constant compressive load and high temperatures. Activation enthalpies of subcritical crack growth were determined for the two materials. (Author) [pt

  3. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N T

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  4. Dependence of the Stabilization of -Alumina on the Spray Process

    Czech Academy of Sciences Publication Activity Database

    Stahr, C.Ch.; Saaro, S.; Berger, L.-M.; Herrmann, M.; Dubský, Jiří; Neufuss, Karel

    2007-01-01

    Roč. 16, 5-6 (2007), s. 822-830 ISSN 1059-9630 R&D Projects: GA ČR(CZ) GA106/05/0483 Institutional research plan: CEZ:AV0Z20430508 Keywords : -Al2O3 stabilization * alumina * chromia * solid solution * X-ray diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.204, year: 2007

  5. Antibacterial Activity of Zinc Oxide-Coated Nanoporous Alumina

    Science.gov (United States)

    2012-05-17

    made nanoporous alumina membranes, which were created by means of anodic oxidation of aluminum in an oxalic acid electrolyte, for treatment of skin...this study. All of the solutions were prepared using 18 M de-ionized water (lab supply) and trace metal grade nitric acid (Thermo Fisher Scientific...low production cost, repro- ducible reproduction, and facile reproduction approach for these materials. Using in vitro studies, keratinocytes (HaCaT

  6. Oxidation of mullite-zirconia-alumina-silicon carbide composites

    International Nuclear Information System (INIS)

    Baudin, C.; Moya, J.S.

    1990-01-01

    This paper reports the isothermal oxidation of mullite-alumina-zirconia-silicon carbide composites obtained by reaction sintering studied in the temperature interval 800 degrees to 1400 degrees C. The kinetics of the oxidation process was related to the viscosity of the surface glassy layer as well as to the crystallization of the surface film. The oxidation kinetics was halted to T ≤ 1300 degrees C, presumably because of crystallization

  7. Efective infrared reflectivity and dielectric function of polycrystalline alumina ceramics

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Borodavka, Fedir; Vaněk, Přemysl; Šimek, Daniel; Trunec, D.; Maca, K.

    2017-01-01

    Roč. 254, č. 5 (2017), s. 1-8, č. článku 1600607. ISSN 0370-1972 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : alumina * ceramics * effective dielectric function * effective medium approximation * geometrical resonances * infrared reflectivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.674, year: 2016

  8. Glass properties in the yttria-alumina-silica system

    Science.gov (United States)

    Hyatt, M. J.; Day, D. E.

    1987-01-01

    The glass formation region in the yttria-alumina-silica system was investigated. Properties of glasses containing 25 to 55 wt pct yttria were measured and the effect of the composition was determined. The density, refractive index, thermal-expansion coefficient, and microhardness increased with increasing yttria content. The dissolution rate in 1N HCl increased with increasing yttria content and temperature. These glasses were also found to have high electrical resistivity.

  9. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  10. Vitrification of high-level alumina nuclear waste

    International Nuclear Information System (INIS)

    Brotzman, J.R.

    1979-01-01

    Borophosphate glass compositions have been developed for the vitrification of a high-alumina calcined defense waste. The effect of substituting SiO 2 , P 2 O 5 and CuO for B 2 O 3 on the viscosity and leach resistance was measured. The effect of the alkali to borate ratio and the Li 2 O:Na 2 O ratio on the melt viscosity and leach resistance was also measured

  11. Organized Mesoporous Alumina: Synthesis, Structure and Potential in Catalysis

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří

    2003-01-01

    Roč. 254, - (2003), s. 327-338 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA MŠk ME 404 Institutional research plan: CEZ:AV0Z4040901 Keywords : organized mesoporous alumina * mesoporous molecular sieves * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  12. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  13. Thermal and tensile properties of alumina filled PET nanocomposites

    Science.gov (United States)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2018-05-01

    In the present investigation, nanocomposites of poly(ethylene terephathalate)(PET) with different content (0 to 5 wt.%) of alumina nanoparticles (n-Al2O3) were prepared by melt-extrusion technique. Morphological characterization of samples was examined by transmission electron microscopy (TEM). Morphological analysis revealed that degree of dispersion of alumina nanoparticles (ANPs) was increased at lower content (i.e. upto 2 wt.%), which observed by TEM. Thermal and tensile measurements were carried out using and differential scanning calorimetry (DSC) and universal testing machine (UTM). The thermal analysis showed that the glass transition termperature (Tg), melting temperature (Tm), crystallization temperature (Tc) of PET/alumina nanocomposites (PNCs) were higher than neat PET (PET0). The heat enthalpy (ΔHm) of crystallization for PNCs was increased compared to PET0, which indicates that degree of crystallinity of PNCs also increased compared to PET0. The half-time (t0.5) of crystallization of PNCs were decreased compared to PET0 which indicates that the incorporation of ANPs nucleate the PET molecular chains and allowing the easily crystallization during nonisothermal process. The tensile analysis revealed that the tensile elastic modulus (i.e. Young's modulus) of PNCs increased almost linearly with increasing the content of ANPs while tensile elongation at break decreased nonlinearly. The tensile strength of PNCs increased with a 1 wt.% of ANPs whereas the higher content of ANPs decreased the tensile strength.

  14. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  15. Dielectric properties of alumina/zirconia composites at millimeter wavelengths

    International Nuclear Information System (INIS)

    Molla, J.; Heidinger, R.; Ibarra, A.; Link, G.

    1994-01-01

    Alumina-zirconia composites with ZrO 2 contents up to 20% and negligible porosity were investigated at millimeter (mm) wavelengths to determine the changes appearing in the dielectric properties of pure alumina ceramics when unstabilized or partially stabilized ZrO 2 is added to improve the mechanical strength. It is demonstrated that it essential to distinguish between the contributions of the monoclinic and the tetragonal phase of zirconia (m-ZrO 2 , t-ZrO 2 ). Permittivity is raised with increasing content of either phases; the effective permittivity can be assessed by the rule of mixtures (Maxwell-Garnett formulation of the generalized Clasussius-Mossotti relation) using permittivity values of 10 for Al 2 O 3 , 14-21 for m-ZrO 2 and 40-45 for t-ZrO 2 . The permittivity data show only a small variation in the investigated range of 9-145 GHz. For the dielectric loss, there is evidence of a predominant contribution of m-ZrO 2 ; in addition, the marked increase in loss with frequency becomes sharper. The t-ZrO 2 , which is responsible for strengthening, does not show any significant influence on losses. It is therefore concluded, that ZrO 2 strengthening of alumina is feasible without affecting mm-wave losses at room temperature as long as the presence of m-ZrO 2 is avoided

  16. Environmental Sustainability of the Alumina Industry in Western Europe

    Directory of Open Access Journals (Sweden)

    Valentina Dentoni

    2014-12-01

    Full Text Available The implementation of European policies on environmental protection is enforcing some substantial modifications in the processing methods and technologies traditionally adopted in the alumina industry and, in particular, in the management of the alumina residue produced. The article analyses the evolution of the alumina production and the residue disposal practices in Western Europe. Some critical aspects regarding the legal implementation of the EU Directive on the landfill of waste are highlighted and discussed. With reference to the requirements established for the landfill of non-hazardous waste, a key point is represented by the possibility of reducing the deposit protection measures if the collection and treatment of leachate is not necessary. The flexibility introduced by the Directive is not incorporated into the Italian law; this fact may represent a major issue in the prospect of disposal conversion from wet to dry methods for companies operating in Italy, as it may endanger the economic sustainability of the plants’ upgrade, as well as the opportunity to attract outside investments.

  17. Investigation of vapor explosions with alumina droplets in sodium

    International Nuclear Information System (INIS)

    Zimmer, H.J.

    1991-02-01

    Within the analysis of severe hypothetical fast breeder accidents the consequence of a fuel-coolant interaction has to be considered i.e. the thermal interaction between hot molten fuel and sodium. Experiments have been performed to study the thermal fragmentation of a molten alumina droplet in sodium. Alumina temperatures up to 3100 K and sodium temperatures up to 1143 K were used. For the first time film boiling of alumina drops in sodium was achieved. With some droplets undergoing film boiling, the fragmentation was triggered by an externally applied pressure wave. The trigger was followed promptly by a strong reaction pressure wave if and only if a contact temperature threshold of T I =2060±160 K was exceeded. In agreement with similar experiments in which other materials were studied this threshold corresponds to an interfacial temperature close to the homogeneous nucleation temperature of the vaporising liquid. Based on the present and previous experimental results a model concept of thermal fragmentation is developed. (orig.) [de

  18. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles.

    Science.gov (United States)

    Mu, Dashuai; Mu, Xin; Xu, Zhenxing; Du, Zongjun; Chen, Guanjun

    2015-12-01

    In this study, an efficient separation technology using Al2O3 nanoparticles (NPs) was developed for removing Bacillus subtilis from fermentation broth. The dosage of alumina nanoparticles used for separating B. subtilis increased during the culture process and remained stable in the stationary phase of the culture process. The pH of the culture-broth was also investigated for its effects on flocculation efficiency, and showed an acidic pH could enhance the flocculation efficiency. The attachment mechanisms of Al2O3 NPs to the B. subtilis surface were investigated, and the zeta potential analysis showed that Al2O3 NPs could attach to B. subtilis via electrostatic attachment. Finally, the metabolite content and the antibacterial effect of the fermentation supernatants were detected and did not significantly differ between alumina nanoparticle separation and centrifugation separation. Together, these results indicate a great potential for a highly efficient and economical method for removing B. subtilis from fermentation broth using alumina nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Synthesis and textural evolution of alumina particles with mesoporous structures

    Science.gov (United States)

    Liu, Xun; Peng, Tianyou; Yao, Jinchun; Lv, Hongjin; Huang, Cheng

    2010-06-01

    Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous γ-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl - in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into γ-Al 2O 3 particles with mesostructures after further calcination at 1173 K, whereas coexisting SO 42- can promote above morphology evolution and then transformed into γ-Al 2O 3 nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m 2 g -1 even after calcinations at 1173 K.

  20. On characterizing the mechanical properties of aluminum–alumina composites

    International Nuclear Information System (INIS)

    Gudlur, Pradeep; Boczek, Artur; Radovic, Miladin; Muliana, Anastasia

    2014-01-01

    The overall response of aluminum–alumina (Al–Al 2 O 3 ) composites depends strongly on their microstructural characteristics. We study the overall mechanical response of Al–Al 2 O 3 composites experimentally, using Resonant Ultrasound Spectroscopy (RUS) and uniaxial compressive testing. Microstructures of composite with 10% alumina volume content are constructed from the microstructural images of the composite obtained from scanning electron microscopy (SEM). The SEM images of the composite are converted to finite element (FE) meshes, which are used to solve the boundary value problem in order to determine the overall mechanical response of the Al–Al 2 O 3 composite. The responses generated from the micromechanical models are compared with the elastic modulus obtained from RUS and experimental stress–strain curves from uniaxial compression tests. Effects of processing, porosity, alumina content, thermal (residual) stress, and plastic deformation on the overall elastic modulus and response of the composites are also studied. We observed that slightly altering the processing method had a significant effect on the microstructural characteristics and in turn on the overall physical and mechanical properties of the composite. With changes in porosity by 2–3%, the elastic modulus was found to vary by 10–15 GPa approximately. We observed that the elastic moduli of the composites determined from the uniaxial compressive tests are close to those obtained from RUS

  1. What Is Business's Social Compact?

    Science.gov (United States)

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  2. Collapse settlement in compacted soils

    CSIR Research Space (South Africa)

    Booth, AR

    1977-01-01

    Full Text Available Research into collapse settlement in compacted soils is described, with special reference to recent cases in Southern Africa where collapse settlement occurred in road embankments following wetting of the soil. The laboratory work described...

  3. A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA

    Directory of Open Access Journals (Sweden)

    Arezou Sezavar

    2015-04-01

    Full Text Available In the current research, the role of nano-sized alumina on deformation and fracture mechanism of Poly Methyl Methacrylate (PMMA was investigated. For this purpose, PMMA matrix nanocomposite reinforced with different wt% of alumina (i.e., 5, 10 and 15 were fabricated using the compression molding technique. Tensile properties of produced nanocomposites were studied using Zwick Z250 apparatus at cross head speed of about 5 mm/min. In order to specify the role of alumina nanoparticles on deformation and fracture mechanism of PMMA, microscopic evaluation was performed using scanning electron microscope (SEM. The achieved results prove that tensile properties of PMMA depend on alumina wt%. For example, addition of 15 wt% alumina to PMMA causes an increase of about 25% modulus of elasticity. Micrographs taken from the fracture surface of PMMA and its nanocomposites show deformation and fracture mechanism of PMMA changes as alumina is added to it.

  4. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    Science.gov (United States)

    Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2012-01-01

    The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.

  5. Role of Metal Oxides in Chemical Evolution: Interaction of Ribose Nucleotides with Alumina

    Science.gov (United States)

    Arora, Avnish Kumar; Kamaluddin

    2009-03-01

    Interaction of ribonucleotides—namely, 5‧-AMP, 5‧-GMP, 5‧-CMP, and 5‧-UMP—with acidic, neutral, and basic alumina has been studied. Purine nucleotides showed higher adsorption on alumina in comparison with pyrimidine nucleotides under acidic conditions. Adsorption data obtained followed Langmuir adsorption isotherm, and Xm and KL values were calculated. On the basis of infrared spectral studies of ribonucleotides, alumina, and ribonucleotide-alumina adducts, we propose that the nitrogen base and phosphate moiety of the ribonucleotides interact with the positive charge surface of alumina. Results of the present study may indicate the importance of alumina in concentrating organic molecules from dilute aqueous solutions in primeval seas in the course of chemical evolution on Earth.

  6. Experimental research on HEL and failure properties of alumina under impact loading

    Directory of Open Access Journals (Sweden)

    Xiao-wei Feng

    2016-06-01

    Full Text Available A series of plate impact experiments on alumina was conducted using a light gas gun in order to further investigate Hugoniot elastic limit (HEL and failure properties of alumina under shock compression. The velocity interferometer system for any reflector (VISAR was used to record the rear-free surface velocity histories of the alumina samples. According to the experimental results, the HELs of tested alumina samples with different thicknesses were measured, and the decay phenomenon of elastic wave in shocked alumina was studied. A phenomenological expression between HEL and thickness of sample was presented, and the causes of the decay phenomenon were discussed. The propagation of failure wave in shocked alumina was probed. The velocity and delayed time of failure wave propagation were obtained. The physical mechanism of the generation and propagation of failure was further discussed.

  7. Comparative study on sintered alumina for ballistic shielding application; Estudo comparativo entre aluminas sinterizadas visando aplicacao em blindagem balistica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco

    1997-12-31

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull`s modulii and other mechanical properties are able to improve ballistic penetration resistance. (author) 3 refs.

  8. Heterogeneous burnable poisons. Sinterability study in oxidizing atmosphere of alumina-gadolinia and alumina-boron carbide compounds

    International Nuclear Information System (INIS)

    Agueda, H.C.; Leiva, S.F.; Russo, D.O.

    1990-01-01

    Solid burnable poisons are used in reactors cooled by pressure light water (PLWR) with the purpose of controlling initial reactivity in the first reactor's core. The burnable poisons may be uniformly mixed with the fuel -known as 'homogeneous' poisons-; or constituting separate elements -known as heterogeneous poisons-. The purpose of this work is to present the results of two sinterability studies, performed on Al 2 O 3 -Gd 2 O 3 and Al 2 O 3 -B 4 C, where alumina acts as inert matrix, storing the absorbing elements as Gd 2 O 3 or B 4 C. The elements were sintered at an air atmosphere and additives permitting the obtention of a greater density alumina were tested at lower temperatures than the characteristic for this material, in order to determine its compatibility with the materials dealt with herein. (Author) [es

  9. Decomposition of silica-alumina ores of Afghanistan by sulfuric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2016-01-01

    Present article is devoted to decomposition of silica-alumina ores of Afghanistan by sulfuric acid. Physicochemical properties of initial silica-alumina ores were studied by means of X-ray phase, differential thermal and silicate analysis. The influence of temperature, process duration and acid concentration on extraction rate of valuable components was considered. The optimal conditions of decomposition of silica-alumina ores of Afghanistan by sulfuric acid were proposed.

  10. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    OpenAIRE

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-01-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The de...

  11. Removal of Arsenic from Drinking Water Using Modified Activated Alumina

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2005-09-01

    Full Text Available Considering contamination of drinking water to arsenic in some villages ofIran. In order to develop a simple method for household water treatment in rural areas, efficiency of  modified activated alumina with iron compounds- a product of Alcan Company with trade name of AAFS-50- was studied Equilibrium batch experiments were carried out using shaker incubator and arsenic was analyzed with SDDC method. Effects of initial concentration of arsenic, adsorbent dose, oxidation state of arsenic, pH and oxidation with chlorine on adsorption were studied. Correlation coefficient of Freundlich and Laungmuier  isotherms  for As(V and As(III were 0.964 , 0.991 and 0.970, 0.978 respectively . These results show that adsorption of arsenic on modified activated alumina is compatible with both models specially Laungmuier models. Removal efficiency of As(V at 0.5 ,1 and 2 hr increased with doubling the adsorbent dose from 44.8 to 72%, 69.6 to 90.8 and 92.4 to 98% ; respectively. Experiments using different concentrations of arsenic showed that adsorption of arsenic on activated alumina are a first order reaction that is, rate of reaction is dependent on intial; concentration of arsenic. Removal efficiency for concentration of 0.250 mg/L of arsenic, with increasing of reaction time from 15 min to 60 min, increased 1.54 times and reached from 61% to 94%. During 2hrs, removal of As(V and As(III were 96% and 16% respectively. Using 1.5 mg/L Chlorine as oxidant agent, removal of As(III was increased to 94%. In the case of pH effect, rate of adsorption increased for arsenite, with increasing of pH to 8 and decreased with more increasing, so that adsorption at pH 14 was equal to pH 2. For arsenate, the most adsorption was observed at pH between 6 to 8 . These results show that by using the studied activated alumina, there will not be need for adjustment of pH and the activated alumina used in this study could have application as a safe adsorbent for removal of

  12. Laser-induced reaction alumina coating on ceramic composite

    Science.gov (United States)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb

  13. Absorption of Ethylene on Membranes Containing Potassium Permanganate Loaded into Alumina-Nanoparticle-Incorporated Alumina/Carbon Nanofibers.

    Science.gov (United States)

    Tirgar, Ashkan; Han, Daewoo; Steckl, Andrew J

    2018-06-06

    Ethylene is a natural aging hormone in plants, and controlling its concentration has long been a subject of research aimed at reducing wastage during packaging, transport, and storage. We report on packaging membranes, produced by electrospinning, that act as efficient carriers for potassium permanganate (PPM), a widely used ethylene oxidant. PPM salt loaded on membranes composed of alumina nanofibers incorporating alumina nanoparticles outperform other absorber systems and oxidize up to 73% of ethylene within 25 min. Membrane absorption of ethylene generated by avocados was totally quenched in 21 h, and a nearly zero ethylene concentration was observed for more than 5 days. By comparison, the control experiments exhibited a concentration of 53% of the initial value after 21 h and 31% on day 5. A high surface area of the alumina nanofiber membranes provides high capacity for ethylene absorption over a long period of time. In combination with other properties, such as planar form, flexibility, ease of handling, and lightweight, these membranes are a highly desirable component of packaging materials engineered to enhance product lifetime.

  14. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  15. Reduction in Friction and Wear of Alumina Surfaces as Assisted with Surface-Adsorbing Polymers in Aqueous Solutions

    DEFF Research Database (Denmark)

    Røn, Troels; Lee, Seunghwan

    2016-01-01

    We have investigated the aqueous lubricating effects of various polymers for the sliding contacts of self-mated alumina surfaces in neutral aqueous environment. Given that isoelectric point (IEP) of alumina is ca. pH 9, polyanions can readily adsorb onto alumina surface at neutral pH via electros......We have investigated the aqueous lubricating effects of various polymers for the sliding contacts of self-mated alumina surfaces in neutral aqueous environment. Given that isoelectric point (IEP) of alumina is ca. pH 9, polyanions can readily adsorb onto alumina surface at neutral pH via...

  16. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    Directory of Open Access Journals (Sweden)

    Ben Hasan Somaya Ahmed

    2014-01-01

    Full Text Available Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on mechanical properties of prepared composite were studied using the nanoindentation measurements and dynamic mechanical analysis. It was observed that both alumina whiskers and alumina spherical nanoparticles added in the PMMA matrix improved the mechanical properties of the composite but the improvement was significantly higher with alumina whisker reinforcement. The concentration of the reinforcing alumina spherical nanoparticles and alumina whiskers in PMMA matrix varied up to 5 wt. %. The best performance was obtained by the addition of 3 wt. % of alumina whiskers in the PMMA matrix with regard to mechanical properties of the obtained composite.

  17. Determination of calcium and magnesium in nuclear grade alumina by ion chromatography technique

    International Nuclear Information System (INIS)

    Hespanhol, E.C.B.; Pires, M.A.F.; Atalla, L.T.

    1987-07-01

    A simple method for solubilization of alumina and separation of magnesium and calcium from alumina matrix was developed by initial coprecipitation of those elements with iron(III) hydroxide. Calcium and magnesium were later separated from iron chloride anionic complex in a Dowex 1-X 10 anionic exchange resin. The ion chromatography tecnnique was employed for the analysis of calcium and magnesium. One hundred percent recovery for calcium and magnesium was obtained in their separation from alumina. A precision of 6% and 10% for magnesium and calcium, respectively, was obtained in alumina samples analysis which contain less than 0,02% of magnesium and less than 0,08% of calcium. (Author) [pt

  18. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  19. Surface area, crystal morphology and characterization of transition alumina powders from a new gibbsite precursor

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Vieira Coelho

    2007-06-01

    Full Text Available A new procedure was used to prepare a microcrystalline powder constituted by thin euhedral hexagonal gibbsite plates, 0.2 to 0.6 µm in diameter and 32 nm thick. The powder, fired between 200 and 1000 °C, produced chi and kappa transition aluminas. Alpha-alumina is formed from 1000 °C and recrystallized up to 1500 °C. At 1000 °C, kappa- and alpha-alumina coexisted, but kappa-alumina could only be characterized by SAED. The details of the internal organization of the transition alumina pseudomorphs were clearly observable in TEM due to the great thinness of the I-gibbsite plates. The specific surface area varied from pristine I-gibbsite (24.9 m².g-1 to chi- and kappa transition aluminas (25.4 m².g-1 at 1000 °C to alpha-alumina (4.0 m².g-1 at 1500 °C. The maximum value of specific surface area is 347 m².g-1 in chi-alumina powder at 300 °C, a difference from Bayer gibbsite, in which the chi-alumina highest surface area is 370 m².g-1 at 400 °C.

  20. On the possibility of producing alumina ceramic with a slight electrical conductivity

    CERN Document Server

    Caspers, Fritz

    1989-01-01

    Antistatic alumina ceramic is desirable for certain particle accelerator applications. In general, highly insulating surface close to a charged particle beam must be avoided in order to prevent the formation of ion pockets and other unwanted electrical effects. For the AA vacuum chamber (UHV), an antistatic ferrite has been produced and successfully installed. The fabrication of antistatic alumina might be possible in a similar way. By using certain metal oxides in the cement, which holds the alumina particles together, a slight conductivity could be obtained after the firing and sintering process, without deteriorating the mechanical and outgassing properties of the alumina compound.

  1. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  2. Contribution to the study of the sintering of finely divided alumina; Contribution a l'etude du frittage de l'alumine finement divisee

    Energy Technology Data Exchange (ETDEWEB)

    Vergnon, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    Two crystalline forms of alumina, delta and alpha, were used to prepare compacts. The shrinkage of these compacts was investigated at different temperatures. The samples of alumina are composed of non porous, spherical particles, of a very high purity. Their mean diameter varies between 160 and 1 200 Angstrom for the delta alumina samples and between 400 and 1 200 Angstrom for the alpha alumina samples. The shrinkage of compacts, heated at a linearly increasing temperature (300 deg. C/h, slow heating) was studied in a A.D.A.M.E.L. dilatometer, modified to be used as a retractometer. The kinetics of the isothermal shrinkage of compacts after their rapid introduction (a few seconds, flash heating) in the high temperature zone of the furnace were followed with a photographic technique. It is shown that the heating rate influences the shrinkage of the compacts when they are heated at temperatures over 1 000 deg. C. The kinetics of the isothermal shrinkage, at temperature between 1000 deg. C and 1600 deg. C were thoroughly studied. Values of the apparent activation energy for the different classes of compacts are given. An interpretation of the results is proposed. It takes into account two different but interdependent mechanisms of sintering: the disappearance of porosity as a result of vacancy diffusion and the grain growth as a result of boundary migration. (author) [French] Deux formes cristallines de l'alumine, la forme delta et la forme alpha, ont ete utilisees pour confectionner des comprimes en vue d'une etude cinetique du frittage. Ces alumines d'une tres grande purete sont constituees de particules spheriques non poreuses, sensiblement homodispersees dont le diametre moyen varie entre 160 et 1200 Angstrom pour les echantillons de l'alumine delta et entre 400 et 1200 Angstrom pour ceux de l'alumine alpha. Le retrait des comprimes chauffes a temperature linerairement croissante (300 deg. C/h: chauffage lent) a ete suivi a l'aide du dilotometre A

  3. Contribution to the study of the sintering of finely divided alumina; Contribution a l'etude du frittage de l'alumine finement divisee

    Energy Technology Data Exchange (ETDEWEB)

    Vergnon, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    Two crystalline forms of alumina, delta and alpha, were used to prepare compacts. The shrinkage of these compacts was investigated at different temperatures. The samples of alumina are composed of non porous, spherical particles, of a very high purity. Their mean diameter varies between 160 and 1 200 Angstrom for the delta alumina samples and between 400 and 1 200 Angstrom for the alpha alumina samples. The shrinkage of compacts, heated at a linearly increasing temperature (300 deg. C/h, slow heating) was studied in a A.D.A.M.E.L. dilatometer, modified to be used as a retractometer. The kinetics of the isothermal shrinkage of compacts after their rapid introduction (a few seconds, flash heating) in the high temperature zone of the furnace were followed with a photographic technique. It is shown that the heating rate influences the shrinkage of the compacts when they are heated at temperatures over 1 000 deg. C. The kinetics of the isothermal shrinkage, at temperature between 1000 deg. C and 1600 deg. C were thoroughly studied. Values of the apparent activation energy for the different classes of compacts are given. An interpretation of the results is proposed. It takes into account two different but interdependent mechanisms of sintering: the disappearance of porosity as a result of vacancy diffusion and the grain growth as a result of boundary migration. (author) [French] Deux formes cristallines de l'alumine, la forme delta et la forme alpha, ont ete utilisees pour confectionner des comprimes en vue d'une etude cinetique du frittage. Ces alumines d'une tres grande purete sont constituees de particules spheriques non poreuses, sensiblement homodispersees dont le diametre moyen varie entre 160 et 1200 Angstrom pour les echantillons de l'alumine delta et entre 400 et 1200 Angstrom pour ceux de l'alumine alpha. Le retrait des comprimes chauffes a temperature linerairement croissante (300 deg. C/h: chauffage lent) a ete suivi a l'aide du

  4. Compact Intracloud Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David A. [Univ. of Colorado, Boulder, CO (United States)

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  5. PENGARUH PERBEDAAN SIFAT PENYANGGA ALUMINA TERHADAP SIFAT KATALIS HYDROTREATING BERBASIS NIKEL-MOLIBDENUM

    Directory of Open Access Journals (Sweden)

    Maria Ulfah

    2012-11-01

    Full Text Available EFFECT OF ALUMINA SUPPORT PROPERTIES ON THE NICKEL-MOLIBDENUM BASE HYDROTREATING CATALYST. Effect of surface characteristics of three species of synthesized γ-alumina (alumina-1, alumina-2 and alumina-3 on characteristics NiMo catalysts has been studied. Those aluminas are derived from boehmite Catapal B by varying rasio mol nitric acid to boehmite. A sol-gel method is used to synthesize γ-Al2O3 support. The Nitrogen adsorption, X-ray diffraction (XRD, Temperature Programmed Reduction (TPR of H2, Temperature Programmed Desorption (TPD of NH3, and mechanical strength are used to characterize the supports and catalysts. The results showed that the surface area alumina affects the formation of crystalline MoO3 in the NiMo catalyst, while γ-Al2O3-3 support which has the highest surface area (about 195 m2/g compared to the other two types of alumina (>195 m2/g does not have a crystalline MoO3. The formation of crystalline MoO3 is not influenced by the acidity alumina. Based on the results of XRD, it is  indicated that the supported alumina-3 NiMo catalyst (having the highest acid strength shows that there is no presence of crystalline MoO3. Pore size distribution of support did not change significantly after the deposition of Ni and Mo oxides. Mechanical strength of support also affects the strength NiMo catalyst. Support alumina-3 which has the highest mechanical strength gives the mechanical strength of the highest NiMo catalyst. Pengaruh sifat penyangga γ-alumina hasil pengembangan (alumina-1, alumina-2 dan alumina-3 pada karakter katalis hydrotreating nikel-molibdenum (NiMo telah dipelajari. Ketiga jenis γ-alumina diturunkan dari boehmite “Catapal B” dengan menvariasikan nisbah mol asam nitrat terhadap boehmite. Pembuatan γ-alumina menggunakan metoda sol-gel. Adsorpsi Nitrogen, X-ray difraksi (XRD, Temperature Programmed Reduction (TPR H2, Temperature Programmed Desorption (TPD NH3, dan kekuatan mekanik digunakan untuk

  6. Summary of Self-compacting Concrete Workability

    OpenAIRE

    GUO Gui-xiang; Duan Hong-jun

    2015-01-01

    On the basis of a large number of domestic and foreign literature, situation and development of self-compacting concrete is introduced. Summary of the compacting theory of self-compacting concrete. And some of the factors affecting the workability of self-compacting concrete were discussed and summarized to a certain extent. Aims to further promote the application and research of self-compacting concrete

  7. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  8. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  9. Overview of surface measurements and spatial characterization of submicrometer particulate matter during the DISCOVER-AQ 2013 campaign in Houston, TX.

    Science.gov (United States)

    Leong, Y J; Sanchez, N P; Wallace, H W; Karakurt Cevik, B; Hernandez, C S; Han, Y; Flynn, J H; Massoli, P; Floerchinger, C; Fortner, E C; Herndon, S; Bean, J K; Hildebrandt Ruiz, L; Jeon, W; Choi, Y; Lefer, B; Griffin, R J

    2017-08-01

    The sources of submicrometer particulate matter (PM 1 ) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM 1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM 1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM 1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM 1 mass concentrations (average 11.6 ± 5.7 µg/m 3 ) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM 1 (average 4.4 ± 3.3 µg/m 3 ), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA. This

  10. Efeito do processamento em misturas de alumina/ligantes orgânicos usadas na moldagem por injeção em baixa pressão Effect of processing variables in alumina/organic binders mixtures used in low-pressure injection molding

    Directory of Open Access Journals (Sweden)

    P . A. Ourique

    2013-03-01

    compromise the performance of the products obtained by this technique. This work is focused on the evaluation of these inhomogeneities and how they can be correlated with density variation and the rheological behavior of these mixtures. Therefore, submicrometer aluminas, as received and deagglomerated, were added to a molten mixture of paraffin based binders, waxes and additives and processed in two different mixers, with and without vacuum. The presence of alumina agglomerates was observed in the powder as received, possibly generated during the calcination step. It was also observed that the type of mixer and vacuum application or not during the final processing step, has a major influence on the mixing time required to reduce the viscosity of the feedstock for injection.

  11. Microwave sintering of zirconia toughened alumina at 28GHz

    International Nuclear Information System (INIS)

    Samandi, M.; Ji, H.; Miyake, S.

    1998-01-01

    Microwave radiation from a 10 kW, CW gyrotron operating at 28 GHz was employed to sinter 10% zirconia toughened alumina (ZTA) ceramic samples. It has been established that the use of millimetre wave radiation circumvents the difficulties encountered during the sintering of ceramics, i e. formation of hot spot, by radiation at industrially permissible frequency of 2.45GHz. Further, careful density measurement and microstructural characterisation of mm- wave and conventionally sintered samples by XRD, SEM and TEM has unequivocally demonstrated the effectiveness of mm-wave radiation for obtaining high density ceramics at lower sintering temperatures. Copyright (1998) Australasian Ceramic Society

  12. Techniques for detection of transition phases in calcined alumina

    International Nuclear Information System (INIS)

    Pandolfelli, V.C.; Folgueras-Dominguez, S.

    1987-01-01

    Detection of transition phases in alumina, is very important in the receiving control and calcination of aluminium hydroxide. The non alfa or transition phases difficults the processability and causes localized shrinkage on sintering compromising the dimensional and mechanical aspects of the product. In this research using refraction index, absorption of dyes, specific density, X-ray diffraction and scanning electron microscopy, analyses, are done in calcined hydroxides submited to different thermal treatments. The limits and facilities of each technique are discussed and compared. (Author) [pt

  13. Liquid-film assisted formation of alumina/niobium interfaces

    OpenAIRE

    Sugar, Joshua D.; McKeown, Joseph T.; Marks, Robert A.; Glaeser, Andreas M.

    2002-01-01

    Alumina has been joined at 1400 degrees C using niobium-based interlayers. Two different joining approaches were compared: solid-state diffusion bonding using a niobium foil as an interlayer, and liquid-film assisted bonding using a multilayer copper/niobium/copper interlayer. In both cases, a 127-(mu)m thick niobium foil was used; =1.4-(mu)m or =3-(mu)m thick copper films flanked the niobium. Room-temperature four-point bend tests showed that the introduction of a copper film had a significa...

  14. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  15. Adhesion of silver films to ion-bombarded alumina

    International Nuclear Information System (INIS)

    Erck, R.A.; Fenske, G.R.

    1990-01-01

    This paper reports on silver films deposited on alumina substrates using ion bombardment. Adhesion strength was measured as a function of deposition conditions, sputter-cleaning time, and bombarding ion species, using a pull-type adhesion tester. Argon- and argon/oxygen-ion sputtering produced large increases in adhesion strength, with the greatest increases occurring for oxygen-ion bombardment. Adhesion strength increased monotonically as a function of ion sputtering time. At a given deposition rate, further enhancement of adhesion is seen with concurrent ion bombardment

  16. Diffusion and flow of water vapours in chromatographic Alumina gel

    International Nuclear Information System (INIS)

    Khan, M.; Shah, H. U.

    2005-01-01

    The kinetics of sorption of water vapours in chromatographic alumina gel was studied. Water vapours are adsorbed on the gel at temperature (15 degree C) at different constant relative pressure from 0.1-0.93 p/p. Rate constant, Effective diffusivities, Knudsen diffusivities and bulk diffusivities were determined through Fick type equation. Total pore volume is 0.498 cc g-1 and specific surface area comes to be 465 m2 g-1 as obtained by Gurvitsch rule and Kieselve's quantities respectively. An average pore radius (hydraulic) is 1.1x10/sub -7/ cm. The study of these quantities provide a strong basis for evaluating surface properties. (author)

  17. Thermal diffusivity of alumina-zirconia sintered with niobium additions

    International Nuclear Information System (INIS)

    Santos, W.N. dos; Paulin Filho, P.I.; Taylor, R.

    1994-01-01

    The effect of niobium oxide addition on the alumina-zirconia thermal diffusivity was investigated from 100 0 C to 1000 0 C by the laser flash method. It was observed that 4 to 6% addition of niobium oxide increases the thermal diffusivity when samples were sintered at 1450 0 C. This effect was due to elimination of porosity by formation of liquid please above 1420 0 C in the Al 2 O 3 - Nb 2 O 5 system. (author). 7 refs., 3 figs

  18. Preparation of 11C-labelled methanol on alumina column

    International Nuclear Information System (INIS)

    Sarkadi, E.; Kovacs, Z.; Horvath, G.

    1998-01-01

    The [ 11 C]methyl iodide is an important intermedia to synthesize 11 C-labelled radiopharmaceuticals for medical diagnostics in positron emission tomography. Recently a new method has been developed to produce [ 11 C]methanol intermedia. The advantage of this method of radiomethanol preparation is the application of an alumina column at room temperature instead of a complicated cooling unit used with the conventional reaction vessel. The yield and purity of radiomethanol was the same as in the previous methods. (K.A.)

  19. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  20. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  1. Compact accelerator for medical therapy

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  2. Compact toroid refueling of reactors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  3. Co-compact Gabor Systems on Locally Compact Abelian Groups

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2016-01-01

    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characteriz...

  4. Isometric coactions of compact quantum groups on compact ...

    Indian Academy of Sciences (India)

    a compact quantum metric space in the framework of Rieffel, where the ... This problem can be formulated and studied in various settings. ... The spaces we are interested in this paper are metric spaces, both classical and quantum. ... He has given a definition for a quantum symmetry of a classical ...... by the construction of I.

  5. Development of tungsten coatings for the corrosion protection of alumina-based ceramics

    International Nuclear Information System (INIS)

    Arons, R.M.; Dusek, J.T.; Hafstrom, J.W.

    1979-01-01

    A means of applying tungsten coatings to an alumina based ceramic is described. A slurry of pure tungsten was prepared and applied by brush coating or slip casting on the alumina-3 wt % Yt small crucible. The composite was fired and a very dense ceramic crucible with a crack free tungsten coating was produced

  6. A High-Purity Alumina for Use in Studies of Shock Loaded Samples

    Science.gov (United States)

    Lacina, David; Neel, Christopher

    2017-06-01

    We report the results of plate impact experiments on a potential new ``standard'' material, Coorstek Plasmapure-UC (99.9% purity) polycrystalline alumina, for use in non-conduction, impact environment, shock loading studies. This work was motivated by a desire to find a 99.9% purity alumina to replace the now unavailable Coors Vistal (99.9%) alumina, as it was hoped the Hugoniot elastic limit (HEL) of the new standard would match the 9-11 GPa value of Vistal. Shock response data, including the HEL, Hugoniot particle velocities, Hugoniot shock velocities, stress vs volume, and release wave speeds, was obtained up to 14 GPa. This data will be compared with Hugoniot curve data for other high purity alumina to contrast differences in the shock response, and is intended to be useful in impedance matching calculations. We will show that the HEL of Plasmapure-UC alumina is 5.5 GPa and speculate on causes for this lower than expected value. We will also explore why the elastic-plastic response for Plasmapure-UC alumina differs from what has been observed from other high purity alumina. The final result of this work is to recommend a well-characterized, lower purity alumina (Coorstek AD-995) as a potential new ``standard'' material.

  7. Polyethyleneglycol grafting of γ-alumina membranes for solvent resistant nanofiltration

    NARCIS (Netherlands)

    Tanardi, Cheryl; Catana, Romina; Barboiu, Mihai; Ayral, André; Vankelecom, Ivo F.J.; Nijmeijer, Arian; Winnubst, Aloysius J.A.

    2016-01-01

    A method is presented for grafting mesoporous g-alumina (pore size 5 nm), supported on an a-alumina ceramic membrane, with polyethylene glycols (PEG). The grafting performance of g-Al2O3 powders with various PEG grafting agents, having different molecular weights, alkoxy groups, and ureido

  8. Factors influencing the transport rate of short-chain alcohols through mesoporous y-alumina membranes

    NARCIS (Netherlands)

    Roy Chowdhury, Sankhanilay; Roy Chowdhury, S.; Blank, David H.A.; ten Elshof, Johan E.

    2005-01-01

    The pressure-driven transport of water, ethanol, and 1-propanol through supported -alumina membranes with different pore diameters is reported. Water and alcohols had similar permeabilities when they were transported through y-alumina membranes with average pore diameters of 4.4 and 6.0 nm, and the

  9. Experimental investigation of nano-alumina effect on the filling time ...

    African Journals Online (AJOL)

    In this research, by producing composite samples made of glass fibers and epoxy resin with different percentages of nanoparticles (Nano-alumina), the adding effect of nanoparticles of alumina Alpha and Gamma grade on filling time in the vacuum assistant resin transfer molding process (VARTM) is investigated. The grade ...

  10. Morphology and thermal properties of compatibilized PA12/PP blends with boehmite alumina nanofiller inclusions

    CSIR Research Space (South Africa)

    Ogunniran, ES

    2011-12-01

    Full Text Available -1 Morphology and Thermal Properties of Compatibilized PA12/PP Blends with Boehmite Alumina Nanofiller Inclusions 1. Elijah Soba Ogunniran1, 2. Rotimi Sadiku1, 3. Suprakas Sinha Ray2,*, 4. Nyambeni Luruli3 Keywords: ? boehmite alumina; ? morphology...

  11. All cause mortality and incidence of cancer in workers in bauxite mines and alumina refineries

    NARCIS (Netherlands)

    Fritschi, Lin; Hoving, Jan Lucas; Sim, Malcolm R.; del Monaco, Anthony; Macfarlane, Ewan; McKenzie, Dean; Benke, Geza; de Klerk, Nicholas

    2008-01-01

    Bauxite is a reddish clay that is refined to produce alumina, which is then reduced to aluminium. There have been studies examining the health of workers in aluminium smelters, but not workers in bauxite mining and alumina refining. A cohort of employees of 1 large aluminium company since 1983 was

  12. Phase transformation of aluminium hydroxide to aα- alumina prepared from different aluminium salts

    International Nuclear Information System (INIS)

    Masliana Muslimin; Meor Yusoff Meor Sulaiman

    2006-01-01

    The study intends to look at the most suitable aluminium salt to produce a single-phase a-alumina by the hydrothermal method. In the process to produce alumina from the calcination of aluminium hydroxide (Al(OH) 3 ), three different aluminium salts namely aluminium sulfate (Al 2 (SO 4) 2), aluminium nitrate (A(NO 3 ) 3 ) and aluminium chloride (AlCl 3 ) were tried. The process involved the used of NH 4 OH as the precipitating medium. Aluminium hydroxide produced from each of these salts were characterised by x-ray diffraction (XRD) technique to identity the crystalline phase. Aluminium hydroxide produced by all the different aluminium salts is present as boehmite or pseudo-boehmite phase. Aluminium hydroxide produced from Al 2 (SO) 2 , Al(NO) 3 and AlCl 3 shows the transformation of the boehmite phase to a α-alumina phase at 500 0 C. On further heating, the α-alumina continuously formed at 800 o C followed soon at 1000 o C. But for the Al(NO3) 3 salts a different phase transitions occurs on heating especially at 1000 o C. Here it was observed not a single alumina phase is presence but the presence of both α and γ--alumina phases. At 1300 o C, the single α-alumina phase was formed. The study concluded that aluminium sulphate is recommended in order to obtain a single-phase α-alumina with the required characteristics. (Author)

  13. Studies on the promotion of nickel—alumina coprecipitated catalysts: I. Titanium oxide

    NARCIS (Netherlands)

    Lansink Rotgerink, H.G.J.; Mercera, P.D.L.; van Ommen, J.G.; Ross, J.R.H.

    1988-01-01

    A series of TiO2-promoted nickel—alumina catalysts has been prepared and characterized. The promoter was added in various proportions to a calcined coprecipitated nickel—alumina material by adsorption of the acetylacetonate complex of titanium, followed by further calcination and reduction. The

  14. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  15. Compaction dynamics of crunchy granular material

    Directory of Open Access Journals (Sweden)

    Guillard François

    2017-01-01

    Full Text Available Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  16. Compaction dynamics of crunchy granular material

    Science.gov (United States)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  17. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    Science.gov (United States)

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  18. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  19. Influence of size and shape of sub-micrometer light scattering centers in ZnO-assisted TiO2 photoanode for dye-sensitized solar cells

    Science.gov (United States)

    Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh

    2018-03-01

    Sub-micrometer cavities have been incorporated in the TiO2 photoanode of dye-sensitized solar cell to enhance its optical property with light scattering effect. These are large pores of several hundred nanometers in size and scatter incident light due to the difference refraction index between the scattering center and the surrounding materials, according to Mie theory. The pores are created using polystyrene (PS) or zinc oxide (ZnO) templates reported previously which resulted in ellipsoidal and spherical shapes, respectively. The effect of size and shape of scattering center was modeled using a numerical analysis finite-difference time-domain (FDTD). The scattering cross-section was not affected significantly with different shapes if the total displacement volume of the scattering center is comparable. Experiments were carried out to evaluate the optical property with varying size of ZnO templates. Photovoltaic effect of dye-sensitized solar cells made from these ZnO-assisted films were investigated with incident-photon-to-current efficiency to understand the effect of scattering center size on the enhancement of absorption. With 380 nm macropores incorporated, the power conversion efficiency has increased by 11% mostly thanks to the improved current density, while 170 nm and 500 nm macropores samples did not have increment in sufficiently wide range of absorbing wavelengths.

  20. Protein adsorption on low temperature alpha alumina films for surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Cloud, A.N., E-mail: acloud@uark.ed [University of Arkansas, Fayetteville, AR 72701 (United States); Kumar, S. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Kavdia, M.; Abu-Safe, H.H.; Gordon, M.H. [University of Arkansas, Fayetteville, AR 72701 (United States)

    2009-08-31

    Bulk alumina has been shown to exhibit reduced protein adsorption, a property that can be exploited for developing alumina-coated surgical instruments and devices. Alpha alumina thin films were deposited on surgical stainless steel substrates to investigate the adsorption of a model protein (BSA, bovine serum albumin). The films were deposited at 480 {sup o}C by AC inverted cylindrical magnetron sputtering. Films were obtained at 6 kW and 50% oxygen partial pressure by volume. The presence of alpha-phase alumina has been shown by transmission electron microscopy. Results indicate that there was a 50% reduction in protein adsorption for samples with the alumina coating compared to those with no coating.

  1. Study of preparation and surface morphology of self-ordered nanoporous alumina

    International Nuclear Information System (INIS)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany; Silva, Ronald Arreguy

    2013-01-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  2. Mesoporous Alumina Microfibers In Situ Transformation from AACH Fibers and the Adsorption Performance

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shi

    2014-01-01

    Full Text Available Well-dispersed mesoporous γ-alumina microfibers with high surface were prepared by thermal decomposition of the ammonium aluminum carbonate hydroxide (AACH precursors. The as-synthesized alumina retained the morphology of its precursor and exhibited memory effect. The structural, morphological, porous, and adsorptive properties of the samples were investigated by XRD, FTIR, TGA-DSC, SEM, TEM, and UV-vis spectroscopy. The prepared γ-alumina microfibers exhibited excellent ability to remove organic pollutants from waste water because of their mesoporous structures. The γ-alumina in situ converted from AACH synthesized without surfactant exhibited adsorption ability for Congo red as good as that synthesized with PEG2000 and better than PEG20000 that provided a facile method without surfactant to synthesize γ-alumina with excellent adsorption performance.

  3. Porous alumina scaffold produced by sol-gel combined polymeric sponge method

    Science.gov (United States)

    Hasmaliza, M.; Fazliah, M. N.; Shafinaz, R. J.

    2012-09-01

    Sol gel is a novel method used to produce high purity alumina with nanometric scale. In this study, three-dimensional porous alumina scaffold was produced using sol-gel polymeric sponge method. Briefly, sol gel alumina was prepared by evaporation and polymeric sponge cut to designated sizes were immersed in the sol gel followed by sintering at 1250 and 1550°C. In order to study the cell interaction, the porous alumina scaffold was sterilized using autoclave prior to Human Mesenchymal Stem Cells (HMSCs) seeding on the scaffold and the cell proliferation was assessed by alamarBlue® assay. SEM results showed that during the 21 day period, HMSCs were able to attach on the scaffold surface and the interconnecting pores while maintaining its proliferation. These findings suggested the potential use of the porous alumina produced as a scaffold for implantation procedure.

  4. High toughness alumina/aluminate: The role of hetero-interfaces

    International Nuclear Information System (INIS)

    Brito, M.E.; Yasuoka, M.; Kanzaki, S.

    1996-01-01

    Silica doped alumina/aluminate materials present a combination of high strength and high toughness not achieved before in other alumina systems, except for transformation toughened alumina. The authors have associated the increase in toughness to crack bridging by anisotropically grown alumina grains with concurrent interfacial debonding of these grains. A HREM study of grain boundaries and hetero-interface structures in this material shows the absence of amorphous phases at grain boundaries. Local Auger electron analysis of fractured surfaces revealed the coexistence of Si and La at the grain facets exposed by the noticeable intergranular fracture mode of this material. It is concluded that a certain and important degree of boundaries weakness is related to both presence of Si at the interfaces and existence of alumina/aluminate hetero-interfaces

  5. Bauxite mining and alumina refining: process description and occupational health risks.

    Science.gov (United States)

    Donoghue, A Michael; Frisch, Neale; Olney, David

    2014-05-01

    To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Review article. The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures.

  6. Fabrication and characterization of fine ceramic based on alumina, bentonite, and glass bead

    Science.gov (United States)

    Sebayang, P.; Nurdina; Simbolon, S.; Kurniawan, C.; Yunus, M.; Setiadi, E. A.; Sitorus, Z.

    2018-03-01

    Fabrication of fine ceramics based on alumina, bentonite and glass bead has been carried out by powder metallurgy. The preparation of powder has been performed using High Energy Milling (HEM) with wet milling process and using toluene as medium for 2 hours. The powder milling result was dried in oven at 100 °C for 24 hours. After that, the powder was compacted into pellet by using hydraulic press with 80 kgf/cm2 pressure at room temperature. Then, the pellet was sintered at 900 °C for 4 hours. Materials characterization such as physical properties (true density, bulk density, porosity, and water absorption), average particle diameter, hardness, microstructure and phase were measured by Archimedes method, Particle Size Analyzer (PSA), Hardness Vickers (HV), Scanning Electron Microscope (SEM-EDX) and X-Ray Diffraction (XRD). From the result, the optimum condition is sample D (with addition of 30 wt.% γ-Al2O3) with sintering temperature of 900 °C for 4 hours. At this condition, these properties were measured: average particle diameter of 4.27 μm, true density of 2.32 g/cm3, porosity of 5.57%, water absorption of 2.46%, bulk density of 2.39 g/cm3, and hardness of 632 HV. The fine ceramic has four phases with albite (Al2NaO8Si3) and quartz (SiO2) as dominant phases and corundum (Al2O3) and nepheline (AlNaO4Si) as minor phases.

  7. A comparison of alumina, carbon and carbon-covered alumina as support for Ni-Mo-F additives: gas oil hydroprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.M.; Bell, W.S. (University of Calgary, Calgary, AB (Canada). Dept. of Chemistry)

    1991-01-01

    Catalysts with 3 wt% NiO, 15 wt% MoO{sub 3} and 0-6.9 nominal wt% fluoride supported on alumina, carbon and carbon-covered alumina were studied to examine the role of fluoride and the influence of the support on hydroprocessing on Alberta gas oil. Experiments were carried out in a batch reactor at 410{degree}C and 6.9 MPa initial H{sub 2} pressure. It was found that fluoride promotion enhances cracking and hydrogenation reactions resulting in decreased aromatic and sulphur contents in the gas oil. The promotion is dependent on the type of support and is related to the strength of the fluoride-support interaction and the accessibility of the fluoride to the surface hydroxyl groups on the support. A maximum in activity at 3.6 wt% fluoride was observed for the alumina-supported catalysts whereas higher loadings of fluoride were required for carbon-covered alumina-supported catalysts to see an improvement over their carbon-supported counterparts. However, the carbon-covered alumina-supported catalysts seem to have a lower propensity for coke deposition than their alumina counterparts. 27 refs., 1 fig., 4 tabs.

  8. A comparison of alumina, carbon and carbon-covered alumina as supports for Ni-Mo-F additives: gas oil hydroprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.M.; Bell, W.S. (Calgary Univ., AB (Canada). Dept. of Chemistry)

    1992-01-01

    Catalysts with 3 wt% NiO, 15 wt% MoO{sub 3} and 0-6.9 nominal wt% fluoride supported on alumina, carbon and carbon-covered alumina were studied to examine the role of fluoride and the influence of the support on hydroprocessing on Alberta gas oil. Experiments were carried out in a batch reactor at 410{sup o}C and 6.9 MPa initial H{sub 2} pressure. It was found that fluoride promotion enhances cracking and hydrogenation reactions resulting in decreased aromatic and sulphur contents in the gas oil. The promotion is dependent on the type of support and is related to the strength of the fluoride-support interaction and the accessibility of the fluoride to the surface hydroxyl groups on the support. A maximum in activity at 3.6 wt% fluoride was observed for the alumina-supported catalysts whereas higher loadings of fluoride were required for carbon-covered alumina-supported catalysts to see an improvement over their carbon supported counterparts. However, the carbon-covered alumina supported catalysts seem to have a lower propensity for coke deposition than their alumina counterparts. (author).

  9. Compact objects and accretion disks

    NARCIS (Netherlands)

    Blandford, Roger; Agol, Eric; Broderick, Avery; Heyl, Jeremy; Koopmans, Leon; Lee, Hee-Won

    2002-01-01

    Recent developments in the spectropolarimetric study of compact objects, specifically black holes (stellar and massive) and neutron stars are reviewed. The lectures are organized around five topics: disks, jets, outflows, neutron stars and black holes. They emphasize physical mechanisms and are

  10. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  11. Compact Circuit Preprocesses Accelerometer Output

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  12. Structural, optical and mechanical properties of amorphous and crystalline alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Priyanka [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Khanna, Atul, E-mail: akphysics@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Kabiraj, D.; Abhilash, S.R. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Beake, Ben D.; Losset, Yannick [Micro Materials Limited, Unit 3, Wrexham Technology Park, Wrexham LL13 7YP (United Kingdom); Chen, Banghao [Chemistry and Biochemistry Department, Florida State University, Tallahassee 32306 (United States)

    2014-10-01

    Thin films of amorphous alumina of thickness 350 nm were deposited on fused silica substrates by electron beam evaporation. Amorphous films were annealed at several temperatures in the range: 400–1130 °C and changes in film crystallinity, short-range structure, optical and mechanical properties were studied. X-ray diffraction studies found that crystallization starts at 800 °C and produces γ and δ-alumina, the latter phase grows with heat treatment and the sample was mostly δ and θ-alumina after annealing at 1130 °C. The as-deposited amorphous alumina films have low hardness of 5 to 8 GPa, which increases to 11 to 12 GPa in crystalline sample. {sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance was used to study the short-range order of amorphous and crystalline alumina films and it was found that amorphous alumina film contains AlO{sub 5} and AlO{sub 4} structural units in the ratio of 1:2. The concentration of AlO{sub 5} was significantly suppressed in crystalline film, which contains 48% of Al{sup 3+} ions in AlO{sub 6}, 7% in AlO{sub 5} and 45% in AlO{sub 4} units. - Highlights: • Structure–property correlations in alumina films grown by electron-beam evaporation • Amorphous films crystallize into γ and δ-alumina on annealing in air at 800 °C. • δ and θ-alumina films are stable up to 1130 °C and do not transform to α-phase. • Amorphous alumina films contain {sup [5]}Al and {sup [4]}Al structural units in the ratio of 1:2. • {sup [5]}Al decreases whereas {sup [6]}Al concentration increases on crystallization.

  13. Oxidation of Alumina-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon

    2017-01-01

    Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.

  14. Scratch induced failure of plasma sprayed alumina based coatings

    International Nuclear Information System (INIS)

    Hazra, S; Bandyopadhyay, P.P.

    2012-01-01

    Highlights: ► Scratch induced failure of alumina based coatings including nanostructured is reported. ► Ceramic is deposited on bond coat instead of steel, emulating a realistic situation. ► Lateral force data is supplemented with microscopy to observe coating failure. ► The failure mechanism during scratching has been identified. ► Critical load of failure has been calculated for each bond-top coat combination. -- Abstract: A set of plasma sprayed coatings were obtained from three alumina based top coat and two bond coat powders. Scratch test was undertaken on these coatings, under constant and linearly varying load. Test results include the lateral force data and scanning electron microscope (SEM) images. Failure occurred by large area spallation of the top coat and in most cases tensile cracks appeared on the exposed bond coat. The lateral force showed an increasing trend with an increase in normal load up to a certain point and beyond this, it assumed a steady average value. The locations of coating spallation and occurrence of maximum lateral force did not coincide. A bond coat did not show a significant role in determining the scratch adhesion strength.

  15. Wet chemical synthesis of nickel supported on alumina catalysts

    International Nuclear Information System (INIS)

    Freire, Ranny Rodrigues; Costa, Talita Kenya Oliveira; Morais, Ana Carla da Fonseca Ferreira; Costa, Ana Cristina Figueiredo de Melo; Freitas, Normanda Lino de

    2016-01-01

    Heterogenic catalysts are those found to be in a different phase on the reaction when compared to the reactants and products. Preferred when compared to homogeneous catalysts due to the easiness on which the separation is processed. The objective of this study is to obtain and characterize Alumina based catalysts impregnated with Nickel (Al_2O_3), by wet impregnation. The alumina was synthesized by combustion reaction. Before and after the impregnation the catalysts were characterized by X-ray diffraction (XRD), granulometric analysis, the textural analysis will be held by nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show a presence of a stable crystalline phase of Al2O3 in all the studied samples and after the impregnation the second phase formed was of NiO and NiAl_2O_4. The Al_2O_3 e Ni/Al_2O_3 catalysts resulted in clusters with a medium diameter of 18.9 and 14.2 μm, respectively. The catalysts show a medium-pore characteristic (medium pore diameter between 2 and 50 nm), the superficial area to Al_2O_3 and Ni/Al_2O_3 catalysts were 8.69 m"2/g and 5.56 m"2/g, respectively. (author)

  16. Magnetic properties of ferromagnetic nanowires embedded in nanoporous alumina membranes

    International Nuclear Information System (INIS)

    Kroell, M.; Blau, W.J.; Grandjean, D.; Benfield, R.E.; Luis, F.; Paulus, P.M.; Jongh, L.J. de

    2002-01-01

    Iron, nickel and cobalt nanowires are prepared within the pores of nanoporous alumina membranes using an electrochemical AC plating procedure. Nanowires produced in this way can be easily varied in diameter (5-250 nm) and length (up to several hundred microns). The magnetisation curves for these nanowire/alumina composites can then be determined not only as a function of the temperature but also as a function of the wire diameter and length. Conclusions regarding the magnetisation reversal processes that take place in the wires can be drawn. For Fe and Ni nanowires, we show that the magnetisation process in wires with a diameter smaller than the domain wall width is independent of the wire length and probably takes place via the formation of a small magnetic domain at the end of the wires and a subsequent propagation of the domain wall along the wire. For Co nanowires a competition between the shape anisotropy and the temperature- and size-dependent magnetocrystalline anisotropy could be observed

  17. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    Science.gov (United States)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  18. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  19. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    International Nuclear Information System (INIS)

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-01-01

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl 2 –N 2 flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al 2 O 3 (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl 2 atmosphere of the MgO–Al 2 O 3 mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C

  20. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  1. On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target

    International Nuclear Information System (INIS)

    Zhang, X.F.; Li, Y.C.

    2010-01-01

    Ballistic performance of different type of ceramic materials subjected to high velocity impact was investigated in many theoretical, experimental and numerical studies. In this study, a comparison of ballistic performance of 95% alumina ceramic and 10% zirconia toughened alumina (ZTA) ceramic tiles was analyzed theoretically and experimentally. Spherical cavity model based on the concepts of mechanics of compressible porous media of Galanov was used to analyze the relation of target resistance and static mechanical properties. Experimental studies were carried out on the ballistic performance of above two types of ceramic tiles based on the depth of penetration (DOP) method, when subjected to normal impact of tungsten long rod projectiles. Typical damaged targets were presented. The residual depth of penetration on after-effect target was measured in all experiments, and the ballistic efficiency factor of above two types ceramic plates were determined. Both theoretical and experimental results show that the improvement on ballistic resistance was clearly observed by increasing fracture toughness in ZTA ceramics.

  2. Wet chemical synthesis of nickel supported on alumina catalysts; Sintese de catalisadores de niquel suportado em alumina por via umida

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Ranny Rodrigues; Costa, Talita Kenya Oliveira; Morais, Ana Carla da Fonseca Ferreira; Costa, Ana Cristina Figueiredo de Melo; Freitas, Normanda Lino de, E-mail: normanda@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2016-07-01

    Heterogenic catalysts are those found to be in a different phase on the reaction when compared to the reactants and products. Preferred when compared to homogeneous catalysts due to the easiness on which the separation is processed. The objective of this study is to obtain and characterize Alumina based catalysts impregnated with Nickel (Al{sub 2}O{sub 3}), by wet impregnation. The alumina was synthesized by combustion reaction. Before and after the impregnation the catalysts were characterized by X-ray diffraction (XRD), granulometric analysis, the textural analysis will be held by nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show a presence of a stable crystalline phase of Al2O3 in all the studied samples and after the impregnation the second phase formed was of NiO and NiAl{sub 2}O{sub 4}. The Al{sub 2}O{sub 3} e Ni/Al{sub 2}O{sub 3} catalysts resulted in clusters with a medium diameter of 18.9 and 14.2 μm, respectively. The catalysts show a medium-pore characteristic (medium pore diameter between 2 and 50 nm), the superficial area to Al{sub 2}O{sub 3} and Ni/Al{sub 2}O{sub 3} catalysts were 8.69 m{sup 2}/g and 5.56 m{sup 2}/g, respectively. (author)

  3. Rate type isotach compaction of consolidated sandstone

    NARCIS (Netherlands)

    Waal, J.A. de; Thienen-Visser, K. van; Pruiksma, J.P.

    2015-01-01

    Laboratory experiments on samples from a consolidated sandstone reservoir are presented that demonstrate rate type compaction behaviour similar to that observed on unconsolidated sands and soils. Such rate type behaviour can have large consequences for reservoir compaction, surface subsidence and

  4. Siting actions in compacts and nonmember states

    International Nuclear Information System (INIS)

    Tullis, J.

    1986-05-01

    This paper examines the status of siting actions in those compacts and states currently progressing with siting studies. The efforts of the Central Compact Commission, Texas, California, Colorado and Illinois are highlighted to illustrate progress, methodology, and problems encountered

  5. Powder compaction in systems of bimodal distribution

    Science.gov (United States)

    Chattopadhyay, A. K.; Whittemore, O. J., Jr.

    1973-01-01

    The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.

  6. UV written compact broadband optical couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques.......In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques....

  7. Invariant subsets under compact quantum group actions

    OpenAIRE

    Huang, Huichi

    2012-01-01

    We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.

  8. Equationally Compact Acts : Coproducts / Peeter Normak

    Index Scriptorium Estoniae

    Normak, Peeter

    1998-01-01

    In this article equational compactness of acts and its generalizations are discussed. As equational compactness does not carry over to coproducts a slight generalization of c-equational campactness is introduced. It is proved that a coproduct of acts is c-equationally compact if and only if all components are c-equationally campact

  9. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  10. Iron migration from the anode surface in alumina electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V. [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, 660036 (Russian Federation)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Corrosion destruction of two-component iron-based alloys in high-temperature aluminum electrolysis in the cryolite alumina melt has been studied. Black-Right-Pointing-Pointer It was found that at the first stage oxidative polarization of iron atoms on the anode surface into Fe{sup 2+} takes place. Black-Right-Pointing-Pointer Fe{sup 2+} interacts with cryolite melt producing FeF{sub 2}. Black-Right-Pointing-Pointer FeF{sub 2} gives oxides FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Black-Right-Pointing-Pointer The participation of oxygen in the corrosion has not been observed. - Abstract: Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF{sub 3} electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF{sub 2}. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The

  11. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  12. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Science.gov (United States)

    Masuda, Tatsuya; Asoh, Hidetaka; Haraguchi, Satoshi; Ono, Sachiko

    2015-01-01

    Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane. PMID:28788005

  13. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Directory of Open Access Journals (Sweden)

    Tatsuya Masuda

    2015-03-01

    Full Text Available Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane.

  14. Seeding technique for lowering temperature during synthesis of α-alumina

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2015-03-01

    Full Text Available This paper reports a method for producing α-Al2O3 at low temperature using a seeding technique. A white product obtained by hydrolyzing aluminum isopropoxide in water at 80 °C was peptized using acetic acid at 80 °C, which transformed the white product to a transparent alumina sol. α-Al2O3 particles were added to the alumina sol as seed material; the sol containing α-Al2O3 particles was then transformed to an α-Al2O3-seeded alumina gel by drying the sol at room temperature. The non-seeded alumina gel remained boehmite after annealing at 300 °C and crystallized into γ-Al2O3 and α-Al2O3 at temperatures between 300 and 500 °C and between 900 and 1100 °C, respectively. The α-Al2O3 seeding promoted crystallization of the alumina gel into α-Al2O3. The promotion of crystallization was significant with an increase in α-Al2O3 particle content by weight in the final seeded alumina gel. With an α-Al2O3 particle content of 5%, the seeded alumina gel was partially crystallized into α-Al2O3 by annealing at a temperature as low as 900 °C.

  15. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Dong, Kang; Wang, Shengping; Zhang, Hanyu; Wu, Jinping

    2013-01-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al 2 O 3 can provide surface area for the deposition of Li 2 S and Li 2 S 2 . ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g −1 , and the remaining capacity was 585 mAh g −1 after 50 cycles at 0.25 mA cm −2 . Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process

  16. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  17. Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite–alumina nanocomposites

    International Nuclear Information System (INIS)

    Radha, G.; Balakumar, S.; Venkatesan, Balaji; Vellaichamy, Elangovan

    2015-01-01

    This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)–alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. - Highlights: • The microwave-assisted hydroxyapatite (nHAp)–alumina nanocomposites were prepared. • Structural and interaction between nHAp and alumina have been explored. • Increased alumina concentration enhanced mechanical strength of the nHAp. • Trace elements from SBF, incorporated on nHAp–alumina nanocomposite surface, were characterized by FESEM and EDX techniques. • Hemocompatibility of the samples were evaluated and the results are in accordance with ASTM standards

  18. Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite–alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Radha, G. [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai - 600025 (India); Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai - 600025 (India); Venkatesan, Balaji; Vellaichamy, Elangovan [Department of Biochemistry, University of Madras, Guindy campus, Chennai - 600025 (India)

    2015-05-01

    This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)–alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. - Highlights: • The microwave-assisted hydroxyapatite (nHAp)–alumina nanocomposites were prepared. • Structural and interaction between nHAp and alumina have been explored. • Increased alumina concentration enhanced mechanical strength of the nHAp. • Trace elements from SBF, incorporated on nHAp–alumina nanocomposite surface, were characterized by FESEM and EDX techniques. • Hemocompatibility of the samples were evaluated and the results are in accordance with ASTM standards.

  19. [Characterization of alumina adobe and sintered body of GI-infiltrated ceramic].

    Science.gov (United States)

    Wang, H; Chao, Y; Liao, Y; Liang, X; Zhu, Z; Gao, W

    2001-06-01

    This study was conducted to elucidate the mechanism of formation of porous structure by investigating the porosity of the alumina adobe and sintered body of GI-II Infiltrate Ceramic, and its role in strengthening and toughening this kind of ceramic composite. The alumina powder size-mass distribution was obtained by BI-XDC powder size analysis device; the open pore parameters of alumina adobe and sintered body were analyzed using the mercury pressure method. Their fracture surfaces were observed under scanning electronic microscope. Fine powder had two main size groups of 0.09-0.1 micron and 0.2-0.5 micron, respectively, and coarse powder, with size between 1.5 to 4.5 microns, occupied the majority of powder mass. Alumina adobe's pores became larger after sintering. The median pore radii of adobe and sintered body were 0.2531 micron and 0.3081 micron, respectively; the average pore radii changed from 0.0956 micron to 0.1102 micron. Under scanning electronic microscope, fine alumina powders were fused partially together and their surfaces were blunted, but coarse powders did not show such phenomena. The alumina size distribution contributes to the formation of porous structure of alumina sintered body. This porous structure is not only the shape skeleton but also the mechanical skeleton of GI-II Infiltrated Ceramic. It plays an important role in raising the mechanical properties of this kind of ceramic composite.

  20. Compact sources for eyesafe illumination

    Science.gov (United States)

    Baranova, Nadia; Pu, Rui; Stebbins, Kenneth; Bystryak, Ilya; Rayno, Michael; Ezzo, Kevin; DePriest, Christopher

    2018-02-01

    Q-peak has demonstrated a compact, pulsed eyesafe laser architecture operating with >10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2˜4), while also providing a path toward higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high-pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse widths designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.

  1. Magnetohydrodynamical processes near compact objects

    International Nuclear Information System (INIS)

    Bisnovatyi Kogan, G.S.

    1979-01-01

    Magnetohydrodynamical processes near compact objects are reviewed in this paper. First the accretion of the magnetized matter into a single black hole and spectra of radiation are considered. Then the magnetic-field phenomena in the disk accretion, when the black hole is in a pair are discussed. Furthermore, the magnetohydrodynamics phenomena during supernova explosion are considered. Finally the magnetohydrodynamics in the accretion of a neutron star is considered in connection With x-ray sources

  2. Compact toroids with Alfvenic flows

    International Nuclear Information System (INIS)

    Wang Zhehui; Tang, X.Z.

    2004-01-01

    The Chandrasekhar equilibria form a class of stationary ideal magnetohydrodynamics equilibria stabilized by magnetic-field-aligned Alfvenic flows. Analytic solutions of the Chandrasekhar equilibria are explicitly constructed for both field-reversed configurations and spheromaks. Favorable confinement property of nested closed flux surfaces and the ideal magnetohydrodynamic stability of the compact toroids are of interest for both magnetic trapping of high energy electrons in astrophysics and confinement of high temperature plasmas in laboratory

  3. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    Energy Technology Data Exchange (ETDEWEB)

    Louaer, Seif-Eddine; Wang, Yao, E-mail: yao@buaa.edu.cn; Guo, Lin, E-mail: guolin@buaa.edu.cn

    2014-11-14

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work.

  4. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    International Nuclear Information System (INIS)

    Louaer, Seif-Eddine; Wang, Yao; Guo, Lin

    2014-01-01

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work

  5. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  6. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  7. Strange matter in compact stars

    Science.gov (United States)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  8. Strange matter in compact stars

    Directory of Open Access Journals (Sweden)

    Klähn Thomas

    2018-01-01

    Full Text Available We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  9. Structural analysis of anodic porous alumina used for resistive random access memory

    International Nuclear Information System (INIS)

    Lee, Jeungwoo; Nigo, Seisuke; Kato, Seiichi; Kitazawa, Hideaki; Kido, Giyuu; Nakano, Yoshihiro

    2010-01-01

    Anodic porous alumina with duplex layers exhibits a voltage-induced switching effect and is a promising candidate for resistive random access memory. The nanostructural analysis of porous alumina is important for understanding the switching effect. We investigated the difference between the two layers of an anodic porous alumina film using transmission electron microscopy and electron energy-loss spectroscopy. Diffraction patterns showed that both layers are amorphous, and the electron energy-loss spectroscopy indicated that the inner layer contains less oxygen than the outer layer. We speculate that the conduction paths are mostly located in the oxygen-depleted area.

  10. Radiation degradation in the mechanical properties of Polyetheretherketone–alumina composites

    International Nuclear Information System (INIS)

    Lawrence, Falix; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S.K.; Sampath Kumar, T.S.

    2012-01-01

    Polyetheretherketone (PEEK) is extensively employed in corrosive and radiation environments. To improve the radiation tolerance of PEEK in the presence of high energetic radiation, PEEK was reinforced with micron sized alumina powder (5–25% by weight) and PEEK–alumina composite sheets fabricated were irradiated to 10 MGy. Mechanical properties of the irradiated composites revealed significant reduction in the degradation of PEEK with addition of alumina as the polymer reinforced with ceramic additives is expected to increase the interface area of the constituents in the system resulting in an improvement in the performance of the reinforced material.

  11. Stress determination in thermally grown alumina scales using ruby luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Renusch, D.; Veal, B.W.; Koshelev, I.; Natesan, K.; Grimsditch [Argonne National Lab., IL (United States); Hou, P.Y. [Lawrence Berkeley Lab., CA (United States)

    1996-06-01

    By exploiting the strain dependence of the ruby luminescence line, we have measured the strain in alumina scales thermally grown on Fe-Cr- Al alloys. Results are compared and found to be reasonably consistent with strains determined using x rays. Oxidation studies were carried out on alloys Fe - 5Cr - 28Al and Fe - 18Cr - 10Al (at.%). Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a ``reactive element`` (Zr or Hf) in dilute quantity are also presented. Scales on alloys containing a reactive element (RE) can support significantly higher strains than scales on RE-free alloys. With the luminescence technique, strain relief associated with spallation thresholds is readily observed.

  12. Characterization of AMC commercial bricks with different alumina qualities

    International Nuclear Information System (INIS)

    Muñoz, V.; Camerucci, Maria A.; Martinez, A.G. Tomba

    2011-01-01

    The study of commercial bricks Al 2 O 3 -MgO-C (AMC) has some advantages over the analysis of materials prepared in the laboratory, but requires a complete characterization. This paper presents the results of the characterization of commercial bricks AMC with different types of alumina aggregates used in ladles floor. The same is done by several complementary techniques: XRD, DTA / TGA, EPR, volume density and apparent porosity, dilatometric analysis, microstructural analysis by low magnification and scanning electron microscopy (SEM) coupled with analysis Energy dispersive X-ray (EDX) and determination of mechanical properties at room temperature (Young's modulus, stress and strain at fracture). The main characteristics and differences in the composition and microstructure, essential data for further analysis of the mechanical behavior and resistance to slag attack of these refractories, are determined. (author)

  13. Fabrication and characteristics of alumina-iron functionally graded materials

    DEFF Research Database (Denmark)

    He, Zeming; Ma, J.; Tan, G.E.B.

    2009-01-01

    . The microstructure and the composition of the prepared component were studied, and its flexural strength, fracture toughness, and fracture energy were tested and evaluated. The relative density and the Vickers hardness of each layer in the graded material were also measured. The correlation between microstructure...... and composition and mechanical properties was discussed. Flat, crack-free, and relatively high-density gradient components were obtained from this work. Compared to monolithic alumina ceramic, the remarkable improvement on fracture toughness and fracture energy of the investigated graded material system......In the present work, five-layered alumina–iron functionally graded materials (FGMs) were fabricated via a simple route of die pressing and pressureless sintering. The shrinkage differences among the layers in the FGM were minimized by particle size selection and processing control...

  14. Study on 95 alumina ceramic metallizing and glazing technique

    International Nuclear Information System (INIS)

    Zhou Qun; Wang Wei

    2007-12-01

    Electric heater is a component of pressurizer in NPP. So the connector of heater must suit for special requirement with high reliability. It need join 95% alumina ceramic and special metal together. Traditional technique is to glazing ceramic at first, then sintering metal powder on ceramic. It result in melting glaze when metallizing at high temperature. The research on high temperature glaze hasn't got ideal result. In another way, the experiments prove low temperature metallizing couldn't get enough strength. Base on present conditions, a new technique is introduced. It is first metallizing then glazing. It can not only provide high strength with high temperature metallizing , but also avoid melting glaze at high temperature. Compared with other ways, the experiments prove it is feasible. The test data can satisfy requirement. This research has been put into production. (authors)

  15. Electroless Fabrication of Cobalt Alloys Nanowires within Alumina Template

    Directory of Open Access Journals (Sweden)

    Nazila Dadvand

    2007-01-01

    Full Text Available A new method of nanowire fabrication based on electroless deposition process is described. The method is novel compared to the current electroless procedure used in making nanowires as it involves growing nanowires from the bottom up. The length of the nanowires was controlled at will simply by adjusting the deposition time. The nanowires were fabricated within the nanopores of an alumina template. It was accomplished by coating one side of the template by a thin layer of palladium in order to activate the electroless deposition within the nanopores from bottom up. However, prior to electroless deposition process, the template was pretreated with a suitable wetting agent in order to facilitate the penetration of the plating solution through the pores. As well, the electroless deposition process combined with oblique metal evaporation process within a prestructured silicon wafer was used in order to fabricate long nanowires along one side of the grooves within the wafer.

  16. Rapid identification of graphene flakes: alumina does it better

    International Nuclear Information System (INIS)

    De Marco, P; Nardone, M; Santucci, S; Ottaviano, L; Del Vitto, A; Alessandri, M

    2010-01-01

    We report a systematic investigation of the colour contrast (CC) of graphene (one, two and three layers) on 50, 72 and 80 nm thick Al 2 O 3 /Si(100) and 100 and 300 nm thick SiO 2 /Si(100). The CC is determined by the analysis of optical microscopy images taken under white light illumination. A corresponding assignment of graphene in the single-layer, double-layer and trilayer phases is made using micro-Raman spectroscopy. A quantitative evaluation allows us to conclude that the colour contrast between 72 nm alumina and graphene is significantly larger than that between 300 nm silicon oxide and graphene (by factors of 2.2, 2.0 and 3.3 for the single-layer, double-layer and trilayer graphene flakes respectively). Moreover, data indicate that, to increase visibility, the use of a red or a green light is preferable.

  17. Microstructural features of alumina refractories with mullite-zirconia aggregates

    Directory of Open Access Journals (Sweden)

    Ferrari, C. R.

    2003-02-01

    Full Text Available Refractory materials are often subjected to high temperatures and loads and their performance depends on their microstructural evolution during use. In this context, microstructural changes were monitored in alumina-based refractories containing mullite-zirconia aggregates and heat-treated at 1400°C and 1500°C for 2, 6, and 18 days. With the purpose of inducing in situ mullite formation, bricks containing microsilica were also prepared and heat-treated at 1500°C for 6 days for the sake of comparison. These heat treatments allowed for an evaluation of the use of refractories from the standpoint of temperature and time. In this work, scanning electron microscopy and X-ray diffraction analyses were made to identify the phases in the materials. The Rietveld method was also used for quantitative phase analyses. Interfacial reactions occurred between alumina and aggregates and between alumina and microsilica, causing the system to become mullitized. The effect of in situ-formed mullite was particularly evident in the results of the modulus of rupture of the materials containing microsilica. Creep tests revealed a reduction in the creep rate of materials treated at 1500°C for 18 days.

    El comportamiento de los materiales refractarios, cuando sometidos a altas temperaturas y a grandes esfuerzos mecánicos, está íntimamente relacionado con la evolución microestuctural, durante su uso. En este contexto, fue realizado un estudio de la evolución microestructural de los materiales refractarios de alumina conteniendo diferentes porcentajes de agregado de mullita–circona, sometidos a tratamientos térmicos por 2, 6 y 18 días, en temperaturas de 1400 y 1500oC. Fueron confeccionados, algunos ladrillos conteniendo microsílice, con la idea de se introducir la formación de mullita en situ. Para la comparación de los ladrillos, fueron realizados tratamientos térmicos por un periodo de 6 días en 1500oC. Estos tratamientos térmicos permitieron

  18. Quantitative convergent beam electron diffraction measurements of bonding in alumina

    International Nuclear Information System (INIS)

    Johnson, A.W.S.

    2002-01-01

    Full text: The QCBED technique of measuring accurate structure factors has been made practical by advances in energy filtering, computing and in the accurate measurement of intensity. Originally attempted in 1965 by the late Peter Goodman (CSIRO, Melbourne) while working with Gunter Lehmpfuhl (Fritz Haber Institut, Berlin), QCBED has been successfully developed and tested in the last decade on simple structures such as Si and MgO. Our work on Alumina is a step up in complexity and has shown that extinction in X-ray diffraction is not correctable to the precision required. In combination with accurate X-ray diffraction, QCBED promises to revolutionize the accuracy of bonding charge density measurements, experimental results which are of significance in the development of Density Functional Theory used in predictive chemistry. Copyright (2002) Australian Society for Electron Microscopy Inc

  19. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  20. Ordered Nanomaterials Thin Films via Supported Anodized Alumina Templates

    Directory of Open Access Journals (Sweden)

    Mohammed eES-SOUNI

    2014-10-01

    Full Text Available Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large area ordered nanostructures with tunable dimensions and aspect ratios. In this paper we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin film heterostructure on a substrate for high quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discuss briefly their optical properties and their applications to molecular detection using surface enhanced Raman spectroscopy. Finally we briefly address the possibility to make nanocomposite films, exemplary shown on a plasmonic-thermochromic nanocomposite of VO2-capped Au-nanorods.

  1. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Abel Santos

    2014-05-01

    Full Text Available Nanoporous anodic alumina (NAA has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field.

  2. Preparation and Various Characteristics of Epoxy/Alumina Nanocomposites

    Science.gov (United States)

    Kozako, Masahiro; Ohki, Yoshimichi; Kohtoh, Masanori; Okabe, Shigemitsu; Tanaka, Toshikatsu

    Epoxy/ alumina nanocomposites were newly prepared by dispersing 3, 5, 7, and 10 weight (wt) % boehmite alumina nanofillers in a bisphenol-A epoxy resin using a special two-stage direct mixing method. It was confirmed by scanning electron microscopy imaging that the nanofillers were homogeneously dispersed in the epoxy matrix. Dielectric, mechanical, and thermal properties were investigated. It was elucidated that nanofillers affects various characteristics of epoxy resins, when they are nanostructrued. Such nano-effects we obtained are summarized as follows. Partial discharge resistance increases as the filler content increases; e.g. 7 wt% nanofiller content creates a 60 % decrease in depth of PD-caused erosion. Weibull analysis shows that short-time electrical treeing breakdown time is prolonged to 265 % by 5 wt% addition of nanofillers. But there was more data scatter in nanocomposites than in pure epoxy. Permittivity tends to increase from 3.7 to 4.0 by 5 wt% nanofiller addition as opposed to what was newly found in the recent past. Glass transition temperature remains unchanged as 109 °C. Mechanical properties such as flexural strength and flexural modulus increase; e.g. flexural strength and flexural modulus are improved by 5 % and 8 % with 5 wt% content, respectively. Excess addition causes a reverse effect. It is concluded from permittivity and glass transition temperature characteristics that interfacial bonding seems to be more or less weak in the nanocomposite specimens prepared this time, even though mechanical strengths increase. There is a possibility that the nanocomposites specimens will be improved in interfacial quality.

  3. The characterization of thin platinum films on alumina

    International Nuclear Information System (INIS)

    Altman, E.I.; Gorte, R.J.

    1987-01-01

    Industrial metal catalysts are usually in the form of small metal particles supported on a porous oxide. The typical size of these metal particles ranges between 1.0 and 10.0 nm and it is well known that the particle size and the oxide substrate can affect the catalytic properties of the metal for some important reactions. Previous work with adsorption on small particles has indicated that desorption temperatures and the ability to dissociate CO can also be affected by the particle size. To further investigate these size and substrate effects, the authors have examined the adsorption properties of several simple gases on small Pt particles supported on alumina using temperature programmed desorption (TPD). The author show that the desorption curves for CO, H/sub 2/, and NO on these particles are very similar to curves measured on single crystals. The details of sample preparation and characterization have been described previously. Samples were prepared by vapor depositing Pt onto an alumina substrate which was formed by exposing an Al film to O/sub 2/. Auger electron spectroscopy was used to monitor surface cleanliness and to characterize the growth of the Pt on the substrate. As reported previously, the Pt grew in a layer-by-layer manner at both 90K and 300K. This film aggregated into clusters when the sample was heated above 650K and the average size of these particles could be determined from the saturation coverage of CO and from the quantity of metal deposited, as measured using a film thickness monitor. All adsorption measurements reported in this paper were made on samples heated above 650K

  4. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  5. La3+-modified activated alumina for fluoride removal from water

    International Nuclear Information System (INIS)

    Cheng, Jiemin; Meng, Xiaoguang; Jing, Chuanyong; Hao, Jumin

    2014-01-01

    Graphical abstract: - Highlights: • A La 3+ -modified activated alumina adsorbent was prepared for effective removal F − . • SEM/EDS and EXAFS analyses determined the formation of La(OH) 3 coating on the AA. • The La-AA had much high adsorption rate and capacity than the AA. • The La-AA was promising adsorbent for effective removal of F − from water. - Abstract: A La 3+ -modified activated alumina (La-AA) adsorbent was prepared for effective removal of fluoride from water. The surface properties of adsorbent were characterized with zeta potential analysis, SEM-EDS and EXAFS. Batch and column experiments were conducted to evaluate improvement of F − removal by the La-AA. SEM/EDS and EXAFS analyses determined the formation of La(OH) 3 coating on the AA and strong bonding interactions between La 3+ and the Al atoms. The points of zero charge (pH PZC ) of AA and La-AA were at pH 8.94 and 9.57, respectively. Batch experimental results indicated that the La-AA had much higher adsorption rate and capacity than the AA. The F − adsorption processes on La-AA and AA followed the pseudo-second-order kinetics and the Langmuir isotherm. Column filtration results shows that the La-AA and AA treated 270 and 170 bed volumes of the F − -spiked tap water, respectively, before F − breakthrough occurred. The results demonstrated that the La-AA was a promising adsorbent for effective removal of F − from water

  6. Response Of Lowland Rice To Soil Compaction

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2000-01-01

    Soil compaction, as a new tillage practice for paddy soil, is to substitute pudding in order to reduce land preparation cost. To study response of lowland rice to soil compaction, a pot experiment has been conducted which took place in the greenhouse of P3TIR-BATAN. Soil for experiment was taken from pusakanegara. Two factors (degree of soil compaction and rice variety) were combined. Degree of compaction was split into 3 levels (DI = normal; D215% more compact than normal; 30 % more compact than normal), and rice variety into 2 levels (IR64 and Atomita IV). KH 2 32 PO 4 solution was injected into the soil surrounding rice clump to test the root activity at blooming stage of rice plant. Data resulted from this experiment is presented together with additional data from some other experiments of fertilization in the research s erie to study soil compaction. Some information's from experiment results are as following. Both rice varieties tested gave the same response to soil compaction. Root activity, according to data of 32 P absorbed by plant, was not harmed by soil compaction at the degree tested in the experiment. This prediction is supported by the growth by rice observed at generative growth stage, in pot experiment as well as in field experiment, which showed that soil compaction tested did not decrease rice yield but in opposite in tended to increase the yield. In practising soil compaction in land preparation, fertilizers should be applied by deep placement to have higher increasing is rice yield

  7. Prediction of reservoir compaction and surface subsidence

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.A.; Smits, R.M.M.

    1988-06-01

    A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

  8. Diverse Formation Mechanisms for Compact Galaxies

    Science.gov (United States)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  9. Characterization of AMC commercial bricks with different alumina qualities; Caracterizacion de ladrillos comerciales AMC con diferentes calidades de alumina

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, V.; Camerucci, Maria A.; Martinez, A.G. Tomba [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales (INTEMA), CONICET - Fac. de Ingenieria (UNMdP), Mar del Plata (Argentina)

    2011-07-01

    The study of commercial bricks Al{sub 2}O{sub 3}-MgO-C (AMC) has some advantages over the analysis of materials prepared in the laboratory, but requires a complete characterization. This paper presents the results of the characterization of commercial bricks AMC with different types of alumina aggregates used in ladles floor. The same is done by several complementary techniques: XRD, DTA / TGA, EPR, volume density and apparent porosity, dilatometric analysis, microstructural analysis by low magnification and scanning electron microscopy (SEM) coupled with analysis Energy dispersive X-ray (EDX) and determination of mechanical properties at room temperature (Young's modulus, stress and strain at fracture). The main characteristics and differences in the composition and microstructure, essential data for further analysis of the mechanical behavior and resistance to slag attack of these refractories, are determined. (author)

  10. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  11. Performance study of mullite and mullite-alumina ceramic MF membranes for oily wastewaters treatment

    DEFF Research Database (Denmark)

    Abbasi, Mohsen; Mirfendereski, Mojtaba; Fini, Mahdi Nikbakht

    2010-01-01

    In this paper, results of an experimental study on separation of oil from actual and synthetic oily wastewaters with mullite and mullite-alumina tubular ceramic membranes are presented. Mullite and mullite-alumina microfiltration (MF) symmetric membranes were synthesized from kaolin clay and α......-alumina membranes for treatment of synthetic wastewaters were investigated. In order to determine the best operating conditions, 250-3000ppm condensate gas in water emulsions was employed as synthetic oily wastewaters using mullite membrane. At the best operating conditions (3bar pressure, 1.5m/s cross flow...... velocity and 35°C temperature), performance of mullite and mullite-alumina membranes for treatment of real and synthetic wastewaters were also compared. The results for treatment of emulsions showed that the mullite ceramic membrane has the highest R (93.8%) and the lowest FR (28.97%). Also, the mullite...

  12. Synthesis and characterization of alumina application in support of zeolite membrane

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Rodrigues, M.G.F.

    2012-01-01

    Much interest has been aroused in process applications using zeolite membrane. The physicochemical properties of the support have a strong effect on the quality of zeolite membrane. This work is to synthesize and characterize alumina for use as a support for zeolite membrane. In this work was synthesized α-alumina: 40% alumina, 0.2% for PABA, 0.5% oleic acid and 59.3% ethyl alcohol. The mixture was ground in ball mill and placed in an oven for 24 hours at 60 °C, allowed to stand for 24h. The pressing was performed with 4 tons. The pressed material was subjected to sintering at 1400 °C/hour. The samples were characterized by EDX, XRD and SEM. The results for the media by XRD showed that they are crystalline and pure. By EDX was observed that the supports consist essentially of alumina. (author)

  13. Synthesis of ultrafine alumina powders using egg white as complexing medium

    International Nuclear Information System (INIS)

    Salem, R.E.P.; Guilherme, K. A.; Chinelatto, A.S.A.; Chinelatto, A.L.

    2011-01-01

    Synthesis of alumina powders through chemical methods has been attracting much attention of researchers in the past few years, due to the ability to produce powders in nanometric scale with high degree of purity. In this work, there were synthesized alumina powders through a chemical route, using egg white as a complexing medium and aluminium nitrate as the source of Al 3+ cations. Egg white contains ovalbumin, a protein which acts effectively on the isolation of aluminium cations during the mixing process, enabling the formation of ultrafine alumina powders in a relatively economic and environmentally friendly way. The powders obtained by calcinations of the precursor resin were characterized by X-ray diffraction, specific surface area measurements, infrared spectroscopy and scanning electron microscopy. It was observed that the egg white, present at the reaction medium, allowed obtaining transition alumina powders, with high degree of purity. (author)

  14. Synthesis and nature of heterogeneous catalysts of low-valent tungsten supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, A.; Hucul, D.A.

    1980-01-01

    Temperature-programed decomposition of catalysts prepared from zero-valent W(CO)/sub 6/ and alumina under rigorously air-free conditions showed a low-temperature carbon monoxide desorption peak at 110/sup 0/-172/sup 0/C, depending on alumina pretreatment, in which a relatively stable surface W(CO)/sub 3/ complex was formed; and a high-temperature carbon monoxide desorption peak at 257/sup 0/ to > 400/sup 0/C, which gave zero-valent tungsten if the ratio of hydroxyl groups of alumina to tungsten surface complexes was low, and hexavalent tungsten if the ratio was high. Up to about half the W(CO)/sub 6/ sublimated from the alumina during activation.

  15. Preparation of Nano Activated γ-Alumina ( with Surfactant and Surface Characterization

    Directory of Open Access Journals (Sweden)

    Enas Sameer AL-Khawaja

    2016-09-01

    Full Text Available This paper deals with the preparation of Alumina by sol-gel technique through the hydrolysis of aluminum ion mixed with the glucose as a surfactant and converting it to gel by ammonium hydroxide in aqueous media. The resulting sol composed of particle is draying to become a transparent gel. The freshly prepared gel is heated at 700°C for 2hrs to obtain alumina ( particles. The obtained particles are found to be γ-alumina particles with high porosity, Their characteristics are determined by LPSA, XRD, SEM, TEM and BET techniques. The results show that the particles are pure alumina, nano-sized=20nm, spherical shape, high surface area=210 /gm.

  16. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    KAUST Repository

    Farhat, Mohamed; Cheng, Tsung-Chieh; Le, Khai. Q.; Cheng, Mark Ming-Cheng; Bagci, Hakan; Chen, Pai-Yen

    2016-01-01

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness

  17. Influence of additives on the stability of the phases of alumina

    International Nuclear Information System (INIS)

    Rosario, D.C.C.; Gouvea, D.

    2011-01-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO 2 , respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO 2 work on improving the stability but with distinct mechanisms. (author)

  18. The sorption and crystallographic characteristics of alumina activated in a reactor for pneumatic transport

    Directory of Open Access Journals (Sweden)

    LJILJANA ROZIC

    2006-11-01

    Full Text Available Active transition alumina powders were obtained by flash calcination of gibbsite in a reactor for pneumatic transport in the dilute, two-phase flow regime in the temperature interval from 883 to 943 K with a residence time between 0.4 and 0.9 s. The results of X-ray diffraction analysis confirmed that the activated alumina samples were either microcrystalline or amorphous. From nitrogen adsorption–desorption isotherms, the specific surface areas of all samples were calculated by the BETmethod. Using the sorption data, the fractal dimension of the surface of the alumina samples was calculated according to a modified FHH method. By application of fractal geometry, using the values of the fractal dimension of the surface and of the specific surface area, the effective surface areas of the active aluminas were calculated for the adsorption of molecules having a cross-section area greater than that of the nitrogen molecule.

  19. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  20. Membranes obtained from alumina from separation water/oil; Membranas obtidas a partir do residuo de alumina para separacao de agua/oleo

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Neto, M.I.; Lira, H.L; Guimaraes, I.O; Franca, K.B., E-mail: moisesnetu@gmail.com [Universidade Federal de Campina Grande (UFCG), PB, (Brazil)

    2016-07-01

    This study aims to evaluate by flow test emulsion water/oil a membrane obtained from a crude residue of the alumina industry and see if this membrane is able to filter this emulsion within the limits specified by CONAMA. In this work, tubular membranes composed of the alumina and the residue bentonite clay were produced by extrusion and were sintered at 900, 1000 and 1100 ° C. tangential flow tests were conducted with deionized water and subsequently with an emulsion of water / oil, all done with a pressure of 1.5 bar. The results showed that membranes produced from the crude residue the alumina industry were quite efficient the emulsion's oil removal, reducing the concentration of about 100 ppm in the feed, to below 5ppm and flow rates of around 30L/h.m{sup 2}. (author)