WorldWideScience

Sample records for submersible load cell

  1. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... of an effective system to treatment of sewage sludge and simultaneous recover energy....

  2. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190±5 mW/m2. The corresponding total...... system to treat sewage sludge and simultaneously recover energy....

  3. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 m...... improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens...

  4. Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions

    DEFF Research Database (Denmark)

    Vologni, Valentina; Kakarla, Ramesh; Angelidaki, Irini

    2013-01-01

    Microbial fuel cells (MFCs) have received attention as a promising renewable energy technology for waste treatment and energy recovery. We tested a submersible MFC with an innovative design capable of generating a stable voltage of 0.250 ± 0.008 V (with a fixed 470 Ω resistor) directly from prima...... prolonged the current generation and increased the power density by 7 and 1.5 times, respectively, in comparison with raw primary sludge. These findings suggest that energy recovery from primary sludge can be maximized using an advanced MFC system with optimum conditions....

  5. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic...... digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m2 /day and current density...... of 4.33 A/m2 were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic...

  6. Phytoplankton cell counts from a moored submersible flow cytometer at Martha's Vineyard (Massachusetts) Coastal Observatory, May 10 - December 15, 2003 (NODC Accession 0002299)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton cell counts data were collected using a moored submersible flow cytometer from a Coastal Observatory at the Martha's Vineyard in Masschutsetts from 10...

  7. Phytoplankton cell counts from a moored submersible flow cytometer at Martha's Vineyard (Massachusetts) Coastal Observatory, May - December 2006 (NODC Accession 0036656)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton cell counts were collected from using a moored submersible flow cytometer from the Martha's Vineyard Coastal Observatory in the Northwest Atlantic...

  8. Phytoplankton cell counts from a moored submersible flow cytometer at Martha's Vineyard Coastal Observatory, Massachusetts, May - September 2004 (NODC Accession 0002722)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton cell counts were collected from using a moored submersible flow cytometer from the Martha's Vineyard Coastal Observatory in the Northwest Atlantic...

  9. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-07-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m(2) /day and current density of 4.33 A/m(2) were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic benefits of biogas enhancement and possible wastewater treatment, the SMDC may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues. © 2015 Wiley Periodicals, Inc.

  10. Submersible energy storage apparatus

    International Nuclear Information System (INIS)

    Mccartney, J.F.; Rowe, R.A.

    1980-01-01

    A submersible energy storage apparatus for an electrical power source is provided which includes an electrolysis unit feed water gas collection assembly and a fuel cell. The electrolysis unit feed water gas collection assembly includes a hydrogen container and an oxygen container wherein each container has a gas outlet and is capable of containing feed water as well as hydrogen and oxygen gases respectively. An electrolysis cell is provided which has a hydrogen outlet, an oxygen outlet and a feed water inlet. The hydrogen outlet is located in the hydrogen container, the oxygen outlet is located in the oxygen container, and the feed water inlet is located in one of the containers. Each of the containers has an opening to the submersible environment so as to be pressure responsive thereto. A barrier device is provided in association with the opening in each container for isolating the feed water in the container from water in the submersible environment. The fuel cell is operatively connected to the hydrogen and oxygen containers, and the electrical power source is operatively connected to the electrolysis cell. With this arrangement the electrolysis cell is capable of utilizing power from the power source during low electrical energy demand, and the fuel cell is capable of utilizing the hydrogen and oxygen gases for generating electricity during high demand periods

  11. Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions

    Directory of Open Access Journals (Sweden)

    Shengtao Zhou

    2017-12-01

    Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.

  12. Submersion and acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Yu-Jang Su

    2014-01-01

    Conclusions: Submersion patients who are hypothermic on arrival of emergency department (ED are risky to respiratory failure and older, more hypothermic, longer hospital stay in suicidal submersion patients.

  13. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...... recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7g-N/L during 30days, resulting in an average recovery rate of 80g-N/m2/d. Meanwhile, a maximum power density of 0.71±0.5W/m2 was generated at 2.85A/m2. Both current driven NH4+ migration...... and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative...

  14. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-02-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Cooling devices and methods for use with electric submersible pumps

    Science.gov (United States)

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  16. Submersed sensing electrode used in fuel-cell type hydrogen detector

    Science.gov (United States)

    Niedrach, L. W.; Rudek, F. P.; Rutkoneski, M. D.

    1971-01-01

    Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described.

  17. Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    external resistance (≤400 Ω in this study) was applied. In addition, the internal resistance and OCV were the most important parameters for predicting which cell unit had the highest probability to undergo voltage reversal. Use of a capacitor was found to be an effective way to prevent voltage reversal......Electric energy can be harvested from aquatic sediments by utilizing microbialfuelcells (MFCs). A main challenge of this application is the limited voltage output. In this study, an innovative self-stackedsubmersible MFC (SSMFC) was developed to improve the voltage generation from lakesediments....... The SSMFC successfully produced a maximum power density of 294 mW/m2 and had an open circuit voltage (OCV) of 1.12 V. However, voltage reversal was observed in one cell at high current density. Investigation on the cause for voltage reversal revealed that voltage reversal was occurring only when low...

  18. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2011-01-01

    was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg......A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode...

  19. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power......Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial...... density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community...

  20. Long-term global response analysis of a vertical axis wind turbine supported on a semi-submersible floating platform: Comparison between operating and non-operating wind turbine load cases

    DEFF Research Database (Denmark)

    Collu, Maurizio; Manuel, Lance; Borg, Michael

    2015-01-01

    This study continues [1] the examination of the long-term global response of a floating vertical axis wind turbine (VAWT) situated off the Portuguese coast in the Atlantic Ocean. The VAWT, which consists of a 5-MW 3-bladed H-type rotor developed as part of the EU-FP7 H2OCEAN project, is assumed...... is adopted, as well as also taking into account the drag generated by the wind turbine tower. Short-term turbine load and platform motion statistics are established for individual sea states that are analysed. The long-term reliability yields estimates of 50-year loads and platform motions that takes...... to be mounted on the OC4 semi-submersible floating platform. Adding a non-operational load case (wind speed 35m/s), the sea states identified are used to carry out coupled dynamics simulations using the FloVAWT design tool, for which an improved wave elevation and relative force/moment time signals approach...

  1. Multi-Capacity Load Cell Concept

    Directory of Open Access Journals (Sweden)

    Seif. M. OSMAN

    2014-09-01

    Full Text Available Force measuring systems are usually used to calibrate force generated systems, it is not preferable to use load cells to measure forces less than 10 % of its nominal capacity. Several load cells are required to offer calibration facilities at sites to cover different ranges, this lead to difficulties in handling procedures, through the need for several carrying cases to carry this overweight in addition to the over cost of purchasing several load cells. This article concerns with introducing a new concept for designing a multi-capacity load cell as a new force standard in the field of measuring the force. This multi-capacity load cell will replace a set of load cells and reflects economically on the total cost and on easiness of handling procedures.

  2. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC)

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    Asubmersiblemicrobial fuel cell (SBMFC) was developed as a biosensor forin situand real time monitoring of dissolvedoxygen (DO) in environmental waters. Domestic wastewater was utilized as sole fuel for powering the sensor. The sensor performance was firstly examined with tap water at varying DO...... the sensing activities. The sensor ability was further explored under different environmental conditions (e.g., pH, temperature, conductivity, alternative electron acceptor), and the results indicated that a calibration would be required before field application. Lastly, the sensor was tested with different...

  3. Transfection Agent Induced Nanoparticle Cell Loading

    Directory of Open Access Journals (Sweden)

    Karin Montet-Abou

    2005-07-01

    Full Text Available Loading cells with magnetic nanoparticles, and tracking their fate in vivo by high resolution MRI, is an attractive approach for enhancing the efficacy of cell-based therapies including those utilizing hematopoietic stem cells, neuroprogenitor cells, and T cells. The transfection agent (internalization agent assisted loading with the Feridex IV® nanoparticle is an attractive method of loading because of the low cost of materials, and possible low regulatory barriers for eventual clinical use. We therefore explored the interaction between Feridex IV® and three internalization agents protamine (PRO, polylysine (PLL, and lipofectamine (LFA. Feridex reacted with internalization agents to form aggregates, except when either the internalization agent or Feridex was present in large excess. When Jurkat T cells were incubated with Feridex/LFA or Feridex/PRO mixtures, and washed by centrifugation, nanoparticle aggregates co-purified with cells. With C17.2 cells large iron oxide particles adhered to the cell surface. At 30 μg/mL Feridex and 3 μg/mL LFA, internalization was largely mediated by LFA and was largely cytoplasmic. However, we found that the conditions used to label cells with Feridex and transfection agents need to be carefully selected to avoid the problems of surface adsorption and nanoparticle precipitation.

  4. Submersible Generator for Marine Hydrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Cinq-Mars, Robert S; Burke, Timothy; Irish, James; Gustafson, Brian; Kirtley, James; Alawa, Aiman

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: Identified the conditions and requirements for MHK generators. Defined a methodology for sizing and rating MHK systems. Selected an MHK generator topology and form factor. Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. Investigated MHK generator manufacturing requirements. Reviewed cost implications and financial viability. Completed final reporting and deliverables

  5. Smart load cells : an industrial application

    OpenAIRE

    Rocha, J. G.; Couto, Carlos; Correia, J. H.

    2000-01-01

    This paper presents a data acquisition solution using a RISC type microcontroller with a very few components around, taking advantage of the ratiometric functioning of the load cells. The need of thermally stable circuits is minimized through the use of the same amplification chain for both signal and reference. The amplification and filtering are done trough switched-capacitor techniques controlled by the microcontroller. This option allows the choice of the proper scal...

  6. The Submersible Threat to Maritime Homeland Security

    Science.gov (United States)

    2013-09-01

    successfully utilized both semi-submersible and fully-submersible vessels during naval engagements. David boats were cigar -shaped, steam driven, wooden vessels...Capabilities: Maximum diving depth of 40 feet. Features an Auto-Hover system, built-in SONAR, Fly-By-Wire Joystick, Electronic Buoyancy Control...Features include a Fly-By-Wire Joystick, Electronic Buoyancy Control, and Electrical Systems Monitor. Cost: $ 59,000 (USD) (International VentureCraft Corp

  7. Research and application of key technology of electric submersible plunger pump

    Science.gov (United States)

    Qian, K.; Sun, Y. N.; Zheng, S.; Du, W. S.; Li, J. N.; Pei, G. Z.; Gao, Y.; Wu, N.

    2018-06-01

    Electric submersible plunger pump is a new generation of rodless oil production equipment, whose improvements and upgrades of key technologies are conducive to its large-scale application and reduce the cost and improve the efficiency. In this paper, the operating mechanism of the unit in-depth study, aimed at the problems existing in oilfield production, to propose an optimization method creatively, including the optimal design of a linear motor for submersible oil, development of new double-acting load-relief pump, embedded flexible closed-loop control technology, research and development of low-cost power cables. 90 oil wells were used on field application, the average pump inspection cycle is 608 days, the longest pump check cycle has exceeded 1037 days, the average power saving rate is 45.6%. Application results show that the new technology of optimization and upgrading can further improve the reliability and adaptability of electric submersible plunger pump, reduce the cost of investment.

  8. Development of a load cell for mechanical testing in hydrogen

    International Nuclear Information System (INIS)

    McCabe, L.P.

    1982-01-01

    Mechanical testing in hydrogen environments is performed on materials to determine hydrogen compatibility. Many tests are performed on small test samples in pressure vessels where monitoring of actual sample load is difficult. A method was developed to monitor small samples by placing inside the vessel a miniature load cell which is capable of measuring loads of less than 100 lbs. The load cell monitors load by means of a Wheatstone Bridge circuit composed of four strain gages. Two of the gages are mounted on a stainless steel stub which becomes part of the vessel load string; the others are wired outside the pressure vessel. Previously, load cells have been short-lived because of hydrogen diffusion into the epoxy-phenolic adhesive used to attach the strain gages to the stub. The use of a flame-sprayed ceramic, however, rather than an organic epoxy to mount the strain gages appears to produce a load cell resistant to the hydrogen test environment

  9. Special considerations for electric submersible pump applications in underpressured reservoirs

    International Nuclear Information System (INIS)

    Powers, M.L.

    1991-01-01

    This paper investigates the effect of electric submersible pump performance tolerances and minor speed variations on the producing rate of wells completed in underpressured reservoirs, and presents ESP design considerations which are unique for this class of wells. These wells require considerable head to initiate flow and have relatively flat well-load curves. Pumps that operate near their maximum recommended rate have steep performance curves. it is shown that this minimizes the effect of an underperforming pump on producing rate. Equations are developed for calculating the effects of pump performance and speed. Application requires evaluating the slopes of the pump performance curve and well-load curve at design rate. Utility of these equations is demonstrated by practical examples. It is also demonstrated that flow-stall can easily occur in underpressured reservoir applications when pumps designed to operate near their minimum recommended rate are installed

  10. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  11. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John.

    Science.gov (United States)

    Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T

    2015-09-01

    The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Study on installation of the submersible mixer

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; He, X H; Xu, Y H; Jiang, H

    2013-01-01

    Study on installation of the submersible mixer for sewage treatment has been limited. In this article, large-scale computational fluid dynamics software FLUENT6.3 was adopted. ICEM software was used to build an unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. Agitation pools on four different installation location cases were simulated respectively, and the external characteristic of the submersible mixer and the velocity cloud of the axial section were respectively comparatively analyzed. The best stirring effect can be reached by the installation location of case C, which is near the bottom of the pool 600 mm and blade distance the bottom at least for 200 mm wide and wide edge and narrow edge distance by 4:3. The conclusion can guide the engineering practice

  13. Optimized Loading for Particle-in-cell Gyrokinetic Simulations

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2004-01-01

    The problem of particle loading in particle-in-cell gyrokinetic simulations is addressed using a quadratic optimization algorithm. Optimized loading in configuration space dramatically reduces the short wavelength modes in the electrostatic potential that are partly responsible for the non-conservation of total energy; further, the long wavelength modes are resolved with good accuracy. As a result, the conservation of energy for the optimized loading is much better that the conservation of energy for the random loading. The method is valid for any geometry and can be coupled to optimization algorithms in velocity space

  14. Development of submersible axial pump for wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jeong Eui [Kangwon Nat' l Univ., Chuncheon (Korea, Republic of)

    2013-02-15

    This study was performed to develop a high efficiency submersible axial pump for concentration wastewater treatment. To do this, we simulated the effect of some parameters such as the axial twist angle of a blade({beta}), the radial twist angle of a blade({alpha}) and the length of a blade ({iota}) on pump efficiency using commercial code, ANSYS CFX and BladeGen. The results showed that the axial twist angle of a blade({beta}) was the most sensible parameter on the pump efficiency. And the pump efficiency had a maximum at {beta}=20.deg, {alpha}=110.deg and {iota}=240mm.

  15. Cell Load Balancing in Heterogeneous Scenarios

    DEFF Research Database (Denmark)

    Eduardo, Simao; Rodrigues, Antonio; Mihovska, Albena D.

    2013-01-01

    . It jointly performs congestion control and inter-cell interference avoidance by means of a utility describing the cell's channel. Centralized and uncoordinated schemes are studied. The first is defined as an integer linear program, while the second builds on the best channel utility developed for the first...

  16. A submersible physics laboratory experiment. Technical report

    International Nuclear Information System (INIS)

    Stehling, K.R.

    1979-01-01

    Since 1972, NOAA (OOE and MUSandT) and the University of Washington Physics Department, have been associated in the underwater detection and analysis of cosmic radiation flux. The purpose of experiments described in this paper has been to take advantage of the nuclear cosmic-ray related qualities of the ocean water mass by allowing the experimenter(s) to work in situ on the sea floor, rather than attempting to try an impractical alternative: lowering a prepared photoemulsion detector to the bottom from a surface vessel, a method that would yield an unacceptably surface-radiation-cluttered emulsion. This report describes briefly the four elements that motivated or comprised the subject experiment: basic physics which motivated the mission; applied physics, including particle detection, emulsion chemistry, calibration, and scanning; engineering, including design and fabrication of supporting apparatus, use of a submersible (JSL was modified slightly to permit lock-on to the bottom chamber), and a bottom lockout chamber; and operations, including submersible dives, ship support, emulsion preparation, deployment, recovery, and development

  17. Lethal effect of glucose load on malignant cells

    International Nuclear Information System (INIS)

    Shmakova, N.L.; Yarmonenko, S.P.; Kozubek, S.

    1987-01-01

    Ehrlich ascites tumor (EAT) cells were treated with glucose load under anoxic conditions (for 15 or 60 min) and/or with γ radiation (20 Gy). The efficiency of the treatment was judged from the tumorigenic activity of EAT cell inocula. The markedly increased efficiency of the combined treatment of EAT cells using glucose load in anoxia and γ radiation is due to the additive action of both agents. The glucose load in anoxia leads to extensive desintegration of tumor cells. Further, the lethal effect of various pH values on EAT cells was investigated. Different pH values were obtained by means of both glucose load and phosphate buffers. The effect was investigated by determining the tumorigenic activity of EAT cells tested in vivo in mice and by determining the radiosensitivity of treated EAT cells. The results allowed us to conclude that the same values of pH lead to the same effect on EAT cells independently of the way by which the given pH value was reached. (author). 5 figs., 2 tabs., 12 refs

  18. Quantitative analysis of impact measurements using dynamic load cells

    Directory of Open Access Journals (Sweden)

    Brent J. Maranzano

    2016-03-01

    Full Text Available A mathematical model is used to estimate material properties from a short duration transient impact force measured by dropping spheres onto rectangular coupons fixed to a dynamic load cell. The contact stress between the dynamic load cell surface and the projectile are modeled using Hertzian contact mechanics. Due to the short impact time relative to the load cell dynamics, an additional Kelvin–Voigt element is included in the model to account for the finite response time of the piezoelectric crystal. Calculations with and without the Kelvin–Voigt element are compared to experimental data collected from combinations of polymeric spheres and polymeric and metallic surfaces. The results illustrate that the inclusion of the Kelvin–Voigt element qualitatively captures the post impact resonance and non-linear behavior of the load cell signal and quantitatively improves the estimation of the Young's elastic modulus and Poisson's ratio. Mathematically, the additional KV element couples one additional differential equation to the Hertzian spring-dashpot equation. The model can be numerically integrated in seconds using standard numerical techniques allowing for its use as a rapid technique for the estimation of material properties. Keywords: Young's modulus, Poisson's ratio, Dynamic load cell

  19. Purinergic responses of chondrogenic stem cells to dynamic loading

    Directory of Open Access Journals (Sweden)

    Gađanski Ivana

    2013-01-01

    Full Text Available In habitually loaded tissues, dynamic loading can trigger ATP (adenosine 5’- triphosphate release to extracellular environment, and result in calcium signaling via ATP binding to purine P2 receptors1. In the current study we have compared purinergic responses (ATP release of two types of cells: bovine chondrocytes (bCHs and human mesenchymal stem cells (hMSC that were encapsulated in agarose and subjected to dynamic loading. Both cell types were cultured under chondrogenic conditions, and their responses to loading were evaluated by ATP release assay in combination with connexin (Cx-sensitive fluorescent dye (Lucifer Yellow - LY and a Cx-hemichannel blocker (Flufenamic acid - FFA. In response to dynamic loading, chondrogenic hMSCs released significantly higher amounts of ATP (5-fold in comparison to the bCHs early in culture (day 2. Triggering of LY uptake in the bCHs and hMSCs by dynamic loading implies opening of the Cx-hemichannels. However, the number of LY-positive cells in hMSC-constructs was 2.5-fold lower compared to the loaded bCH-constructs, suggesting utilization of additional mechanisms of ATP release. Cx-reactive sites were detected in both bCHs and hMSCs-constructs. FFA application led to reduced ATP release both in bCHs and hMSCs, which confirms the involvement of connexin hemichannels, with more prominent effects in bCHs than in hMSCs, further implying the existence of additional mechanism of ATP release in chondrogenic hMSCs. Taken together, these results indicate stronger purinergic response to dynamic loading of chondrogenic hMSCs than primary chondrocytes, by activation of connexin hemichannels and additional mechanisms of ATP release. [Projekat Ministrastva nauke Republike Srbije, ON174028 i br. III41007

  20. Calculations of the Acceleration of Centrifugal Loading on Adherent Cells

    Science.gov (United States)

    Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu

    2017-07-01

    Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.

  1. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  2. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  3. Buckling behavior of origami unit cell facets under compressive loads

    Science.gov (United States)

    Kshad, Mohamed Ali Emhmed; Naguib, Hani E.

    2018-03-01

    Origami structures as cores for sandwich structures are designed to withstand the compressive loads and to dissipate compressive energy. The deformation of the origami panels and the unit cell facets are the primary factors behind the compressive energy dissipation in origami structures. During the loading stage, the origami structures deform through the folding and unfolding process of the unit cell facets, and also through the plastic deformation of the facets. This work presents a numerical study of the buckling behavior of different origami unit cell elements under compressive loading. The studied origami configurations were Miura and Ron-Resch-like origami structures. Finite element package was used to model the origami structures. The study investigated the buckling behavior of the unit cell facets of two types of origami structures Miura origami and Ron-Resch-Like origami structures. The simulation was conducted using ANSYS finite element software, in which the model of the unit cell represented by shell elements, and the eigenvalues buckling solver was used to predict the theoretical buckling of the unit cell elements.

  4. Submersion of alkali clusters in helium nano droplets

    International Nuclear Information System (INIS)

    An der Lan, L.

    2011-01-01

    The interaction of helium nano droplets (HND) with dopants has been an extensively studied Field, both experimentally and theoretically. First papers concerning this topic date back to the late 1960's. Still, on both sides (theory and experiment) were and are loose ends. One of such is the submersion behavior of alkali metals in HND. Although a theory of submersion was developed by Ancilotto et al., which can explain a lot of interesting features in this Field, this particular question (among others) remained unresolved. In 2010, a semiclassi- cal theory was developed by Kresin and Stark, which specifically addressed this problem and gave exact numbers for the critical submersion size. The scope of this doctoral thesis is to continuously build up towards this topic until Finally our results, confirming some of the theoretical Findings, are presented. Especially the critical submersion size for sodium and potassium clusters, 21 and 78, respectively, are confirmed by our experiments. (author) [de

  5. Effects of cold stratification, sulphuric acid, submersion in hot and ...

    African Journals Online (AJOL)

    Effects of cold stratification, sulphuric acid, submersion in hot and tap water pretreatments in the greenhouse and open field conditions on germination of bladder-Senna ( Colutea armena Boiss. and Huet.) seeds.

  6. AWWA E102-17 submersible vertical turbine pumps

    CERN Document Server

    2017-01-01

    This standard describes minimum requirements for submersible vertical turbine pumps utilizing a discharge column pipe assembly, 5 hp or larger, used in water service, including materials, design, manufacture, inspection, and testing.

  7. Mesenchymal Stromal Cells for Antineoplastic Drug Loading and Delivery.

    Science.gov (United States)

    Petrella, Francesco; Rimoldi, Isabella; Rizzo, Stefania; Spaggiari, Lorenzo

    2017-11-23

    Mesenchymal stromal cells are a population of undifferentiated multipotent adult cells possessing extensive self-renewal properties and the potential to differentiate into a variety of mesenchymal lineage cells. They express broad anti-inflammatory and immunomodulatory activity on the immune system and after transplantation can interact with the surrounding microenvironment, promoting tissue healing and regeneration. For this reason, mesenchymal stromal cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Another clinical application of mesenchymal stromal cells is the targeted delivery of chemotherapeutic agents to neoplastic cells, maximizing the cytotoxic activity against cancer cells and minimizing collateral damage to non-neoplastic tissues. Mesenchymal stem cells are home to the stroma of several primary and metastatic neoplasms and hence can be used as vectors for targeted delivery of antineoplastic drugs to the tumour microenvironment, thereby reducing systemic toxicity and maximizing antitumour effects. Paclitaxel and gemcitabine are the chemotherapeutic drugs best loaded by mesenchymal stromal cells and delivered to neoplastic cells, whereas other agents, like pemetrexed, are not internalized by mesenchymal stromal cells and therefore are not suitable for advanced antineoplastic therapy. This review focuses on the state of the art of advanced antineoplastic cell therapy and its future perspectives, emphasizing in vitro and in vivo preclinical results and future clinical applications.

  8. Submersible fans and pumps for cryogenic fluids

    International Nuclear Information System (INIS)

    Mark, J.W.

    1986-01-01

    Submersible electric motor driven fans of three sizes have been designed, built and operated at 21 0 K at the Stanford Linear Accelerator Center. The largest is a 100-mm diameter, 2 stage vaneaxial fan with a nominal capacity of 6 L/s at 2 m head. It is driven by a 4 pole, 3 phase induction motor that runs at 1750 rpm. The next smaller one is an 85-mm diameter centrifugal pump. It pumps 3 L/s at a head of 5 m. The third is a 75-mm single stage vaneaxial fan with a nominal capacity is 3 L/s at a head of 2 m. The 85-mm pump and the 75-mm fan are driven by 2 pole, 3 phase induction motors running at 3550 rpm. The motors were modified to operate submerged in the cryogenic fluid. The pumps have been operated in liquid hydrogen, liquid deuterium, and pressurized helium gas at 21 0 K. They can also operate with denser fluids such as liquid nitrogen, but rotational speed, capacity, and head will be reduced. They have been operated while submerged in liquid helium

  9. Measurement of blowdown flow rates using load cells

    International Nuclear Information System (INIS)

    Dolas, P.K.; Venkat Raj, V.; Ghosh, A.K.; Murty, L.G.K.; Muralidhar Rao, S.

    1980-01-01

    To establish a reliable method for measuring two-phase flow, experiments were planned for measurement of transient single phase flow rates from vessels using load cells. Suitability of lead-zirconate-titanate piezoelectric ceramic discs was examined. Discharge time constant of the disc used was low, leading to large measurement errors. Subsequently, experiments were carried out using strain gauge load cells and these were found satisfactory. The unsteady flow equation has been derived for the system under investigation. The equation has been solved numerically using the fourth order Runge-Kutta method and also by integrating it analytically. The experimental results are compared with the theoretical results and presented in this report. (auth.)

  10. Study on global performances and mooring-induced damping of a semi-submersible

    Science.gov (United States)

    Xiong, Ling-zhi; Yang, Jian-min; Lv, Hai-ning; Zhao, Wen-hua; Kou, Yu-feng

    2016-10-01

    The harsh environmental conditions bring strong nonlinearities to the hydrodynamic performances of the offshore floating platforms, which challenge the reliable prediction of the platform coupled with the mooring system. The present study investigates a typical semi-submersible under both the operational and the survival conditions through numerical and experimental methods. The motion responses, the mooring line tensions, and the wave loads on the longitudinal mid-section are investigated by both the fully non-linearly coupled numerical simulation and the physical experiment. Particularly, in the physical model test, the wave loads distributed on the semi-submersible's mid-section were measured by dividing the model into two parts, namely the port and the starboard parts, which were rigidly connected by three six-component force transducers. It is concluded that both the numerical and physical model can have good prediction of the semi-submersible's global responses. In addition, an improved numerical approach is proposed for the estimation of the mooring-induced damping, and is validated by both the experimental and the published results. The characteristics of the mooring-induced damping are further summarized in various sea states, including the operational and the survival environments. In order to obtain the better prediction of the system response in deep water, the mooring-induced damping of the truncated mooring lines applied in the physical experiment are compensated by comparing with those in full length. Furthermore, the upstream taut and the downstream slack mooring lines are classified and investigated to obtain the different mooring line damping performances in the comparative study.

  11. Temperature dependent estimator for load cells using an adaptive neuro-fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K-C [Department of Automation Engineering, National Formosa University, Huwei, Yunlin 63208, Taiwan (China)

    2005-01-01

    Accurate weighting of pieces in various temperature environments for load cells is a key feature in many industrial applications. This paper proposes a method to achieve high-precision {+-}0.56/3000 grams for a load-cell-based weighting system by using ANFIS. ANFIS is used to model the relationship between the reading of load cells and the actual weight of samples considering temperature-varying effect and nonlinearity of the load cells. The model of the load-cell-based weighting system can accurately estimate the weight of test samples from the load cell reading. The proposed ANFIS-based method is convenient for use and can improve the precision of digital load cell measurement systems. Experiments demonstrate the validity and effectiveness of fuzzy neural networks for modeling of load cells and the results show that the proposed ANFIS-based method outperforms some existing methods in terms of modeling and prediction accuracy.

  12. Temperature dependent estimator for load cells using an adaptive neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Lee, K-C

    2005-01-01

    Accurate weighting of pieces in various temperature environments for load cells is a key feature in many industrial applications. This paper proposes a method to achieve high-precision ±0.56/3000 grams for a load-cell-based weighting system by using ANFIS. ANFIS is used to model the relationship between the reading of load cells and the actual weight of samples considering temperature-varying effect and nonlinearity of the load cells. The model of the load-cell-based weighting system can accurately estimate the weight of test samples from the load cell reading. The proposed ANFIS-based method is convenient for use and can improve the precision of digital load cell measurement systems. Experiments demonstrate the validity and effectiveness of fuzzy neural networks for modeling of load cells and the results show that the proposed ANFIS-based method outperforms some existing methods in terms of modeling and prediction accuracy

  13. Submersed macrophytes as indicators of the nutrient burden of Lake Constance (Untersee)

    International Nuclear Information System (INIS)

    Schmieder, K.

    1992-01-01

    Most of the submersed species react sensitively to changes in the site conditions during the investigation period; this shows the high value of submersed macrophytes as biological indicators of water pollution. (orig./EF) [de

  14. Use of sediment CO2 by submersed rooted plants

    DEFF Research Database (Denmark)

    Winkel, Anders; Borum, Jens

    2009-01-01

    freshwater plants with different morphology and growth characteristics (Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana and Hydrocotyle verticillata) are able to support photosynthesis supplied by uptake of CO2 from the sediment. Methods: Gross photosynthesis was measured......Background and Aims: Submersed plants have different strategies to overcome inorganic carbon limitation. It is generally assumed that only small rosette species (isoetids) are able to utilize the high sediment CO2 availability. The present study examined to what extent five species of submersed......, the shoot to root ratio on an areal basis was the single factor best explaining variability in the importance of sediment CO2. For Ludwigia, diffusion barriers limited uptake or transport from roots to stems and transport from stems to leaves. Conclusions: Submersed plants other than isoetids can utilize...

  15. 77 FR 65360 - Grant of Authority for Subzone Status (Centrifugal and Submersible Pumps); Auburn, NY

    Science.gov (United States)

    2012-10-26

    ... Status (Centrifugal and Submersible Pumps); Auburn, NY Pursuant to its authority under the Foreign-Trade... authority to establish a special-purpose subzone at the centrifugal and submersible pump manufacturing and... submersible pumps and related controllers at the Xylem Water Systems U.S.A., LLC, facilities located in Auburn...

  16. INTENSITY SETTER FOR A DEVICE OF SMOOTH START OF SUBMERSIBLE PUMP ELECTRIC MOTOR

    Directory of Open Access Journals (Sweden)

    V.I. Lobov

    2016-06-01

    the rotor of the electric motor continues to rotate more steadily. Now the voltage at the motor stator windings increases exponentially to the nominal voltage of the supply network. This start flowing smoothly for the right time to establish nominal rotor speed of the motor. Practical value. Developed dial allows you to increase the intensity of the electric motor acceleration time and reduce the dynamic loads of the electric submersible pump.

  17. Machine Visual Guidance For An Autonomous Undersea Submersible

    Science.gov (United States)

    Nguyen, Hoa G.; Kaomea, Peter K.; Heckman, Paul J.

    1988-12-01

    Optical imaging is the preferred sensory modality for underwater robotic activities requiring high resolution at close range, such as station keeping, docking, control of manipulator, and object retrieval. Machine vision will play a vital part in the design of next generation autonomous underwater submersibles. This paper describes an effort to demonstrate that real-time vision-based guidance and control of autonomous underwater submersibles is possible with compact, low-power, and vehicle-imbeddable hardware. The Naval Ocean Systems Center's EAVE-WEST (Experimental Autonomous Vehicle-West) submersible is being used as the testbed. The vision hardware consists of a PC-bus video frame grabber and an IBM-PC/AT compatible single-board computer, both residing in the artificial intelligence/vision electronics bottle of the submersible. The specific application chosen involves the tracking of underwater buoy cables. Image recognition is performed in two steps. Feature points are identified in the underwater video images using a technique which detects one-dimensional local brightness minima and maxima. Hough transformation is then used to detect the straight line among these feature points. A hierarchical coarse-to-fine processing method is employed which terminates when enough feature points have been identified to allow a reliable fit. The location of the cable identified is then reported to the vehicle controller computer for automatic steering control. The process currently operates successfully with a throughput of approximately 2 frames per second.

  18. IMPACT OF SUBMERSIBLE PUMPS ON PB CONSTITUENTS IN RESIDENTIAL WELLS

    Science.gov (United States)

    Dissolved lead in 51 domestic wells screened from 18 m to 48 m in glacial tills and outwash deposits were examined, from archived samples collected during 2001-2004, in conjunction with respective submersible pump characteristics. Pb concentrations of these residential water supp...

  19. Study on velocity distribution in a pool by submersible mixers

    International Nuclear Information System (INIS)

    Tian, F; Shi, W D; Lu, X N; Chen, B; Jiang, H

    2012-01-01

    To study the distribution of submersible mixers and agitating effect in the sewage treatment pool, Pro/E software was utilized to build the three-dimensional model. Then, the large-scale computational fluid dynamics software FLUENT6.3 was used. ICEM software was used to build unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. The macro fluid field and each section velocity flow field distribution were analyzed to observe the efficiency of each submersible mixer. The average velocity and mixing area in the sewage pool were studied simultaneously. Results show that: the preferred project B, two submersible mixers speed is 980 r/min, and setting angles are all 30°. Fluid mixing area in the pool has reached more than 95%. Under the action of two mixers, the fluid in the sewage pool form a continuous circulating water flow. The fluid is mixed adequately and average velocity of fluid in the pool is at around 0.241m/s, which agreed with the work requirements. Consequently it can provide a reference basis for practical engineering application of submersible mixers by using this method.

  20. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations.

    Science.gov (United States)

    Yu, Qing; Wang, Hong-Zhu; Li, Yan; Shao, Jian-Chun; Liang, Xiao-Min; Jeppesen, Erik; Wang, Hai-Jun

    2015-10-15

    Eutrophication of lakes leading to loss of submersed macrophytes and higher turbidity is a worldwide phenomenon, attributed to excessive loading of phosphorus (P). However, recently, the role of nitrogen (N) for macrophyte recession has received increasing attention. Due to the close relationship between N and P loading, disentanglement of the specific effects of these two nutrients is often difficult, and some controversy still exists as to the effects of N. We studied the effects of N on submersed macrophytes represented by Vallisneria natans (Lour.) Hara in pots positioned at three depths (0.4 m, 0.8 m, and 1.2 m to form a gradient of underwater light conditions) in 10 large ponds having moderate concentrations of P (TP 0.03 ± 0.04 mg L(-1)) and five targeted concentrations of total nitrogen (TN) (0.5, 2, 10, 20, and 100 mg L(-1)), there were two ponds for each treatment. To study the potential shading effects of other primary producers, we also measured the biomass of phytoplankton (ChlaPhyt) and periphyton (ChlaPeri) expressed as chlorophyll a. We found that leaf length, leaf mass, and root length of macrophytes declined with increasing concentrations of TN and ammonium, while shoot number and root mass did not. All the measured growth indices of macrophytes declined significantly with ChlaPhyt, while none were significantly related to ChlaPeri. Neither ChlaPhyt nor ChlaPeri were, however, significantly negatively related to the various N concentrations. Our results indicate that shading by phytoplankton unrelated to the variation in N loading and perhaps toxic stress exerted by high nitrogen were responsible for the decline in macrophyte growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. New Navigation Post-Processing Tools for Oceanographic Submersibles

    Science.gov (United States)

    Kinsey, J. C.; Whitcomb, L. L.; Yoerger, D. R.; Howland, J. C.; Ferrini, V. L.; Hegrenas, O.

    2006-12-01

    We report the development of Navproc, a new set of software tools for post-processing oceanographic submersible navigation data that exploits previously reported improvements in navigation sensing and estimation (e.g. Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract OS32A- 0225, 2003). The development of these tools is motivated by the need to have post-processing software that allows users to compensate for errors in vehicle navigation, recompute the vehicle position, and then save the results for use with quantitative science data (e.g. bathymetric sonar data) obtained during the mission. Navproc does not provide real-time navigation or display of data nor is it capable of high-resolution, three dimensional (3D) data display. Navproc supports the ASCII data formats employed by the vehicles of the National Deep Submergence Facility (NDSF) operated by the Woods Hole Oceanographic Institution (WHOI). Post-processing of navigation data with Navproc is comprised of three tasks. First, data is converted from the logged ASCII file to a binary Matlab file. When loaded into Matlab, each sensor has a data structure containing the time stamped data sampled at the native update rate of the sensor. An additional structure contains the real-time vehicle navigation data. Second, the data can be displayed using a Graphical User Interface (GUI), allowing users to visually inspect the quality of the data and graphically extract portions of the data. Third, users can compensate for errors in the real-time vehicle navigation. Corrections include: (i) manual filtering and median filtering of long baseline (LBL) ranges; (ii) estimation of the Doppler/gyro alignment using previously reported methodologies; and (iii) sound velocity, tide, and LBL transponder corrections. Using these corrections, the Doppler and LBL positions can be recomputed to provide improved estimates of the vehicle position compared to those computed in real-time. The data can be saved in either binary or ASCII

  2. Force loading explains spatial sensing of ligands by cells

    Science.gov (United States)

    Oria, Roger; Wiegand, Tina; Escribano, Jorge; Elosegui-Artola, Alberto; Uriarte, Juan Jose; Moreno-Pulido, Cristian; Platzman, Ilia; Delcanale, Pietro; Albertazzi, Lorenzo; Navajas, Daniel; Trepat, Xavier; García-Aznar, José Manuel; Cavalcanti-Adam, Elisabetta Ada; Roca-Cusachs, Pere

    2017-12-01

    Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds

  3. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world

    Science.gov (United States)

    Orth, Robert J.; Dennison, William C.; Lefcheck, Jonathon S.; Gurbisz, Cassie; Hannam, Michael; Keisman, Jennifer; Landry, J. Brooke; Moore, Kenneth A.; Murphy, Rebecca R.; Patrick, Christopher J.; Testa, Jeremy; Weller, Donald E.; Wilcox, David J.

    2017-01-01

    Chesapeake Bay has undergone profound changes since European settlement. Increases in human and livestock populations, associated changes in land use, increases in nutrient loadings, shoreline armoring, and depletion of fish stocks have altered the important habitats within the Bay. Submersed aquatic vegetation (SAV) is a critical foundational habitat and provides numerous benefits and services to society. In Chesapeake Bay, SAV species are also indicators of environmental change because of their sensitivity to water quality and shoreline development. As such, SAV has been deeply integrated into regional regulations and annual assessments of management outcomes, restoration efforts, the scientific literature, and popular media coverage. Even so, SAV in Chesapeake Bay faces many historical and emerging challenges. The future of Chesapeake Bay is indicated by and contingent on the success of SAV. Its persistence will require continued action, coupled with new practices, to promote a healthy and sustainable ecosystem.

  4. VALUE CHANGE DIAMETERRED BLOOD CELLS ATHLETES IN THE PHYSICAL LOAD

    Directory of Open Access Journals (Sweden)

    Lidiya Yurevna Rubtsova

    2017-05-01

    Full Text Available Background: to study the nature of distribution of erythrocytes on diameter in the circulating blood of skiers-racers during achievement of a threshold of anaerobic threshold (AТ. Materials and methods: Professional Skiers racers (young men and men, girls and women at the age of 17–37 years (n = 33 are еxamined in the conditions of physical activity on the stationary bicycle. The research is conducted according to the protocol approved by local committee on bioethics in case of Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences. Samples of blood were taken from an elbow vein on an empty stomach, then from finger capillaries to, - on a threshold of anaerobic exchange, after execution of loading “to the full” and in 5 min restoration. On the stained blood smears measured diameter of 50 erythrocytes. Results processed statistically with use of an application program package of Windows (Basic, 2011. Results: At stage AT at 36% of athletes defined increase in average diameter of erythrocytes from 7,46 ± 0,06 to 7,68 ± 0,08 µm (р<0,05, without changes at 12% (7,45 ± 0,04 – 7,43 ± 0,05 µm and reduction of the size of cells at 52% from 7,51± 0,04 to 7,35 ± 0,05 µm (р<0,05. In the conditions of a maximum load (men have 337,1 ± 12,4 W and women have 246,7 ± 10,8 W and during the 5-minute recovery diameter of erythrocytes returned to the original value. Conclusion: Thus, the individual nature of change of average diameter of erythrocytes at athletes is shown during achievement of ANSPs and probably corresponds to selective elimination preferentially macro- or microcytes.

  5. The Application of Load-cell Technique in the Study of Armour Unit Responses to Impact Loads Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    1995-01-01

    The slender, complex types of armour units, such as Tetrapods and Dolosse are widely used for rubble mound breakwaters. Many of the recent failures of such structures were caused by unforeseen early breakage of the units, thus revealing an in balance between the strength (structural integrity......) of the units and the hydraulic stability (resistance to displacements) of the armour layers. Breakage is caused by stresses from static, pulsating and impact loads. Impact load generated stresses are difficult to investigate due to non-linear scaling laws. The paper describes a method by which impact loads on....... slender armour units can be studied. by load-cell technique. Moreover, the paper presents DoJos design diagrams for the prediction of both breakage and hydraulic stability...

  6. In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gaston; Cherubini, Thomas; Pankratova, Nadezda; Confalonieri, Fabio; Massa, Francesco; Tercier-Waeber, Mary-Lou; Abdou, Melina; Schäfer, Jörg; Bakker, Eric

    2018-04-03

    A new submersible probe for the in situ detection of nitrate, nitrite, and chloride in seawater is presented. Inline coupling of a desalination unit, an acidification unit, and a sensing flow cell containing all-solid-state membrane electrodes allows for the potentiometric detection of nitrate and nitrite after removal of the key interfering ions in seawater, chloride and hydroxide. Thus, the electrodes exhibited attractive analytical performances for the potentiometric detection of nitrate and nitrite in desalinated and acidified seawater: fast response time ( t 95 macronutrient levels with salinity cycles, which is of special interest in recessed coastal water bodies. The system is capable of autonomous operation during deployment, with routines for repetitive measurements (every 2 h), data storage and management, and computer visualization of the data in real time. In situ temporal profiles observed in the Arcachon Bay (France) showed valuable environmental information concerning tide-dependent cycles of nitrate and chloride levels in the lagoon, which are here observed for the first time using direct in situ measurements. The submersible probe based on membrane electrodes presented herein may facilitate the study of biogeochemical processes occurring in marine ecosystems by the direct monitoring of nitrate and nitrite levels, which are key chemical targets in coastal waters.

  7. What can be done about corrosion in submersible pumps?

    Energy Technology Data Exchange (ETDEWEB)

    Minett, S.

    2000-09-01

    Useful advice and a survey of materials and techniques which can help counter corrosion risks in submersible pumps are provided. The greatest risk of corrosion is caused by sea water, hydrochloric acid, certain types of solvents, hydrogen sulphide, liquids with a high copper content, bases with a high pH value and certain liquids containing a mixture of acids. Counteractive strategies suggested include using a corrosion resistant material such as stainless steel, or other resistant coatings and materials for particular components that are exposed to high corrosion risks. Most submersible pumps are made of cast iron which should present no corrosion problems in normal domestic use. In mining and construction applications aluminum submersibles are common, which is resistant to a pH value of about 8. The use of stainless steel is recommended as the main material in submersible pumps when used for pumping acidic liquids, and when purity of the liquid pumped is of prime consideration. Coatings and anodes on conventional cast iron pumps are a less expensive and more flexible alternative against salt water corrosion. Among coatings epoxy coating is the most widely used. Zinc anodes are used in conjunction with epoxy coatings, which by setting up a micro current by contact with the cast iron prevent corrosion of areas of the cast iron that may be exposed as a result of post-production scratching. By being sacrificially corroded, the zinc anodes thus significantly extend the life of a coated pump. Impressed current from an external power source, is an effective, but more expensive alternative to the implanted anode method. Using resistant materials such as nitrile rubber, fluoro-carbon rubber, corrosion resistant cemented carbide, or chlorinated rubber for various components (rotating shaft seals, rubber 'O' rings, cable sheathing, etc) are other alternatives that may be depending on the application and the degree of exposure.

  8. Gravitational and submersible offshore platform, and construction method. Nedsenkbar fralandsplattform av gravitasjonstypen og fremgangsmaate for fremstilling av samme

    Energy Technology Data Exchange (ETDEWEB)

    Berge, T.; Olsen, O.

    1985-06-17

    The invention concerns a submersible offshore platform of the gravitational type designed for great depths. The platform is made of concrete or the like comprising a sea-bed foundation, and a number of at least 3 cantilevered pillars connected to the prop section carrying the load-bearing structure and the platform deck. In addition, the platform consists of a cellular floating section, and the central part of it is lengthened upwards. The central column supports the prop section. There is a considerable space between the floating section and the bed foundation. The various steps of the construction methods are presented. 11 drawings.

  9. Issues in offshore platform research - Part 1: Semi-submersibles

    Science.gov (United States)

    Sharma, R.; Kim, Tae-Wan; Sha, O. P.; Misra, S. C.

    2010-09-01

    Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor) or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

  10. Issues in offshore platform research - Part 1: Semi-submersibles

    Directory of Open Access Journals (Sweden)

    R. Sharma

    2010-09-01

    Full Text Available Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

  11. WTEC panel report on research submersibles and undersea technologies

    Science.gov (United States)

    Seymore, Richard J.; Blidberg, D. Richard; Brancart, Claude P.; Gentry, Larry L.; Kalvaitis, Algis N.; Lee, Michael J.; Mooney, Brad; Walsh, Don

    1994-06-01

    This report covers research submersibles and related subsea technologies in Finland, France, Russia, Ukraine and the United Kingdom. Manned, teleoperated, and autonomous submersibles were of interest. The panel found that, in contrast to the United States, Europe is making substantial progress in cooperative and coordinated research in subsea technology, including the development of standards. France is a leader in autonomous vehicle technology. Because much less was known a priori about the technologies in Russia and Ukraine, there were more new findings in those countries than in those Western European nations visited. However, Russia and Ukraine have a sizeable (and currently underutilized) infrastructure in this field, including a highly educated and experienced manpower pool, impressive (in some cases unique) facilities for physical testing, extensive fleets of seagoing research vessels capable of long voyages, and state-of-the-art facilities for conducting oceanographic investigations. The panel visited newly-formed commercial companies associated with long-standing submersible R&D and production centers in Russia and Ukraine. So far, these new efforts are undercapitalized, and as such represent opportunities at very low cost for Western nations, as detailed in the site reports.

  12. Design and construction of a strain gage compression load cell to measure rolling forces

    International Nuclear Information System (INIS)

    Schoeffer, L.; Borchardt, I.G.; Carvalho, L.F.A.

    1978-05-01

    A complete detailed mechanical desion of a strain gauge compression load cell is presented. This cell was specialy designed to measure rolling forces at conventional duo or trio industrial roughing stands. The stands, in general, have little space (height) to adjust to the cells. Moreover the contact stands surfaces are very rough. Do to this facts, load cells of elastic cilindrical geometries are not recommended for accuracies better than 8%. This work describes the complete design and the construction of a circular (membrane) steel plate load cell. A prototype of 300 KN (approximately 30t) capacity, with 2% accuracies and with a height of 6 cm was constructed and tested. The design proposed is a general one and permits the construction of small load cells to measure any compression load [pt

  13. HPV-16 viral load in oropharyngeal squamous cell carcinoma using digital PCR.

    Science.gov (United States)

    Antonsson, Annika; Knight, Lani; Panizza, Benedict J; Porceddu, Sandro V; Emmett, Sarah; Whiteman, David C

    2018-05-09

    We did not identify any strong associations between HPV-16 viral load and any of the clinical or lifestyle factors. The epidemiology of oropharyngeal SCC is changing, with an increasing proportion of HPV-positive cases seen in the last decade. It is known that a high viral load is linked to the development of cervical cancer, the relation between viral load and oropharyngeal SCC is less clear. We sought to determine HPV-16 viral load in HPV-positive oropharyngeal SCCs using highly sensitive digital PCR and to identify clinical and lifestyle factors associated with viral load. We analysed 45 HPV-16 positive oropharyngeal SCCs diagnosed between 2013 and 2015. All patients completed a lifestyle questionnaire and clinical data were extracted from medical charts. Viral load was determined using digital PCR assays for HPV-L1 and RNAseP. We found large variations in HPV-16 viral load from 1 to 930 copies per cell (median 34 copies per cell).

  14. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy.

    Science.gov (United States)

    Hatfield, Paul; Merrick, Alison E; West, Emma; O'Donnell, Dearbhaile; Selby, Peter; Vile, Richard; Melcher, Alan A

    2008-09-01

    The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.

  15. A new concept of submersed centrifugal pump protection

    International Nuclear Information System (INIS)

    Ribeiro, Fabiano U.; Aguiar, Jose Luiz de M.; Hamdan, Adel C.; Doerwald, Bruno K.; Dutra, Diogenes; Ghiotto, Edson Carlos da S.; Meira, Marco Antonio A. de

    2000-01-01

    The present article is related to the development of one motor protection relay, which features include the electrical and mechanical device protection of machine. The main focus the purpose of this development, was the monitoring of the phenomena called 'Back Spin', which is common in oil production plant where 'Electrical Submersible Pump' (ESP) Technologies is used. The final results of this job is to present one equipment which is capable to completely protect the ESP Set, electrically and mechanically, and with additional functions of monitoring the mechanical set, with graphic interface to set all protection and monitoring functions using 'windows based' tools. (author)

  16. 36 CFR 3.19 - May I operate a submersible within park waters?

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false May I operate a submersible within park waters? 3.19 Section 3.19 Parks, Forests, and Public Property NATIONAL PARK SERVICE... waters? The use of manned or unmanned submersibles may only occur in accordance with a permit issued by...

  17. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Jeppesen, Christian; Steenberg, Thomas

    2017-01-01

    The objective of this paper is to develop a new operational strategy to increase the lifetime of a high temperature proton exchange membrane (HT-PEMFCs) fuel cell system by using load cycling patterns to reduce the phosphoric acid loss from the fuel cell. Four single cells were operated under.......8 Acm-2 for the higher end, were selected for the load cycling operation. The relaxation time, which is the period of time spent at low current density operation, is varied to understand how the performance over prolonged period behaves. The duration of the high current density operation is selected...... based on the relaxation time in order to have the same average current density of (0.55 Acm-2 ) for all the cells. Cell 5, with a relaxation time of 2 min performs best and shows lower degradation rate of 36 μVh-1 compared to other load cycling cells with smaller relaxation times. The cell operated...

  18. UE-Initiated Cell Reselection Game for Cell Load Balancing in a Wireless Network

    Directory of Open Access Journals (Sweden)

    Jaesung Park

    2018-01-01

    Full Text Available A user changes its serving cell if the quality of experience (QoE provided by the current serving cell is not satisfactory. Since users reselect cells to increase their QoEs selfishly, the system resource efficiency can be deteriorated and a system can be unstable if users are not driven to cooperate appropriately. In this paper, inspired by the minority game (MG model, we design a UE-initiated cell reselection policy. The MG has a salient characteristic that the number of players who win the game converges to a prespecified value even though players act selfishly without knowing the actions taken by the other players. Using the MG model, we devise a rule by which each UE plays a cell reselection game. We also design a criterion that a system controller uses to determine the result of a game and public information sent by a system controller to induce implicit cooperation among UEs. The simulation results show that compared with noncooperative method the proposed method increases not only the system performance, such as cell load balance index and system utility, but also the performance of UEs in terms of a downlink data rate and an outage probability received from a system.

  19. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    International Nuclear Information System (INIS)

    Laughter, Mark D.; Whitaker, J. Michael; Howell, John

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF 6 feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated load

  20. Determination of Orbiter and Carrier Aerodynamic Coefficients from Load Cell Measurements

    Science.gov (United States)

    Glenn, G. M.

    1976-01-01

    A method of determining orbiter and carrier total aerodynamic coefficients from load cell measurements is required to support the inert and the captive active flights of the ALT program. A set of equations expressing the orbiter and carrier total aerodynamic coefficients in terms of the load cell measurements, the sensed dynamics of the Boeing 747 (carrier) aircraft, and the relative geometry of the orbiter/carrier is derived.

  1. Robust Load Cell Cell for Discrete Contact Force Measurements of Sampling Systems and/or Instruments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Bear Engineering proposes to develop a simple, robust, extreme environment compatible, mechanical load cell to enable the control of contact forces for placement of...

  2. Impact of cell load on 5GHz IEEE 802.11 WLAN

    OpenAIRE

    Abu-Tair, Mamoun; Bhatti, Saleem Noel

    2017-01-01

    We have conducted an empirical study of the latest 5GHz IEEE 802.11 wireless LAN (WLAN) variants of 802.11n (5GHz) and 802.11ac (Wave 1), under different cell load conditions. We have considered typical configurations of both protocols on a Linux testbed. Under light load,there is no clear difference between 802.11n and 802.11ac in terms of performance and energy consumption. However, in some cases of high cell load, we have found that there may be a small advantage with 802.11ac. Overall, we...

  3. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    Science.gov (United States)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  4. Numerical modelling of closed-cell aluminium foam under dynamic loading

    Science.gov (United States)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  5. Simultaneous measurement of passage through the restriction point and MCM loading in single cells

    Science.gov (United States)

    Håland, T. W.; Boye, E.; Stokke, T.; Grallert, B.; Syljuåsen, R. G.

    2015-01-01

    Passage through the Retinoblastoma protein (RB1)-dependent restriction point and the loading of minichromosome maintenance proteins (MCMs) are two crucial events in G1-phase that help maintain genome integrity. Deregulation of these processes can cause uncontrolled proliferation and cancer development. Both events have been extensively characterized individually, but their relative timing and inter-dependence remain less clear. Here, we describe a novel method to simultaneously measure MCM loading and passage through the restriction point. We exploit that the RB1 protein is anchored in G1-phase but is released when hyper-phosphorylated at the restriction point. After extracting cells with salt and detergent before fixation we can simultaneously measure, by flow cytometry, the loading of MCMs onto chromatin and RB1 binding to determine the order of the two events in individual cells. We have used this method to examine the relative timing of the two events in human cells. Whereas in BJ fibroblasts released from G0-phase MCM loading started mainly after the restriction point, in a significant fraction of exponentially growing BJ and U2OS osteosarcoma cells MCMs were loaded in G1-phase with RB1 anchored, demonstrating that MCM loading can also start before the restriction point. These results were supported by measurements in synchronized U2OS cells. PMID:26250117

  6. Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-01-01

    Full Text Available Oridonin (ORI, a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs. ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.

  7. Size effect related to damping caused by water submersion

    International Nuclear Information System (INIS)

    Dong, R.G.

    1981-01-01

    An important effect of water submersion on the dynamic response of a structure is the increase in effective damping. The dynamic response of submerged structures is of interest in the nuclear power industry for reasons of operational safety during seismic and other dynamic excitations. In this paper, the added damping contribution that results from the viscosity of water and the dependence of the contribution on structural size are examined. Other factors considered are the applicable range of viscous damping with respect to displacement amplitude and, as far as damping is concerned, how far neighboring members must be from each other to respond as if in open water. An expression is derived for relating the damping value to structural size. Estimated added-damping values for representative fuel elements, fuel bundles, and main steam-pressure-relief-valve lines are given based on our derived expression for added damping

  8. Anchoring submersible ultrasonic receivers in river channels with stable substrate

    Science.gov (United States)

    Bettoli, Phillip William; Scholten, G.D.; Hubbs, D.

    2010-01-01

    We developed an anchoring system for submersible ultrasonic receivers (SURs) that we placed on the bottom of the riverine reaches of three main-stem reservoirs in the upper Tennessee River. Each anchor consisted of a steel tube (8.9 x 35.6 cm) welded vertically to a round plate of steel (5.1 x 40.6 cm). All seven SURs and their 57-kg anchors were successfully deployed and retrieved three times over 547 d by a dive team employing surface air-breathing equipment and a davit-equipped boat. All of the anchors and their SURs remained stationary over two consecutive winters on the hard-bottom, thalweg sites where they were deployed. The SUR and its anchor at the most downriver site experienced flows that exceeded 2,100 m(3)/s and mean water column velocities of about 0.9 m/s.

  9. Using Multispectral Sentinel-2 Data to Monitor Submerse Macrophytes

    Science.gov (United States)

    Wolf, Patrick; Roessler, Sebastian; Schneider, Thomas; Melzer, Arnulf

    2012-04-01

    Due to climate change and the involved temperatures of Bavarian freshwater lakes, the invasive submerse macrophytes Elodea nuttallii and Najas marina exhibit a massive expansion. To map these processes, a monitoring system based on remote sensing methods is under development. The main part of the monitoring system is a coupled reflection-/growth-model, which derives biometrical parameters for the EU water framework directive (WFD) by inversion of the reflectance spectra. For operational monitoring tasks a high revisiting time is necessary. Hence, the Sentinel-2 sensor might be very promising, as filling the gap between RapidEye and WorldView2 and between hyperspectral an aerial images. This paper outlines principles, methods and first results of the project.

  10. Performance evaluation of a transformerless multiphase electric submersible pump system

    Directory of Open Access Journals (Sweden)

    Ahmed A. Hakeem

    2014-08-01

    Full Text Available Using of low-voltage variable-frequency drive followed by a step-up transformer is the most preferable way to feed an electrical submersible pump motor. The existence of long feeder between the motor and drive systems usually causes over-voltage problems because of the travelling wave phenomenon, which makes the employment of filter networks on the motor or inverter terminals mandatory. The so-called boost-inverter inherently can solve this problem with filter-less operation as it offers a direct sinusoidal output voltage. As boost inverters have voltage boosting capability, it can provide a transformer-less operation as well. This study investigates the performance of a five-phase modular winding induction machine fed from a boost-inverter through a long feeder. A simulation study using a 1000 Hp system and experimental investigation on a 1 Hp prototype machine are used to support the presented approach.

  11. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

  12. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    Science.gov (United States)

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  13. Design of Solar PV Cell Based Inverter for Unbalanced and Distorted Industrial Loads

    Directory of Open Access Journals (Sweden)

    Naga Ananth D

    2015-04-01

    Full Text Available PV cell is getting importance in low and medium power generation due to easy installation, low maintenance and subsidies in price from respective nation. Most of the loads in distribution system are unbalanced and distorted, due to which there will be unbalanced voltage and current occur at load and may disturb its overall performance. Due to these loads voltage unbalance, distorted voltage and current and variable power factors in each phase can be observed. An efficient algorithm to mitigate unbalanced and distorted load and source voltage and current in solar photo voltaic (PV inverter for isolated load system was considered. This solar PV system can be applicable to remote located industrial loads like heating, welding and small arc furnace type distorted loads and also for unbalanced loads. The PV inverter is designed such that it will maintain nearly constant voltage magnitude and can mitigate harmonics in voltage and current near the load terminals. A MATLAB/ SIMULINK based solar PV inverter was simulated and results are compared with standard AC three phase grid connected system. The proposed shows that the inverter is having very less voltage and current harmonic content and can maintain nearly constant voltage profile for highly unbalanced system.

  14. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  15. Human respiratory syncytial virus load normalized by cell quantification as predictor of acute respiratory tract infection.

    Science.gov (United States)

    Gómez-Novo, Miriam; Boga, José A; Álvarez-Argüelles, Marta E; Rojo-Alba, Susana; Fernández, Ana; Menéndez, María J; de Oña, María; Melón, Santiago

    2018-05-01

    Human respiratory syncytial virus (HRSV) is a common cause of respiratory infections. The main objective is to analyze the prediction ability of viral load of HRSV normalized by cell number in respiratory symptoms. A prospective, descriptive, and analytical study was performed. From 7307 respiratory samples processed between December 2014 to April 2016, 1019 HRSV-positive samples, were included in this study. Low respiratory tract infection was present in 729 patients (71.54%). Normalized HRSV load was calculated by quantification of HRSV genome and human β-globin gene and expressed as log10 copies/1000 cells. HRSV mean loads were 4.09 ± 2.08 and 4.82 ± 2.09 log10 copies/1000 cells in the 549 pharyngeal and 470 nasopharyngeal samples, respectively (P respiratory tract infection and 4.22 ± 2.28 log10 copies/1000 cells with upper respiratory tract infection or febrile syndrome (P < 0.05). A possible cut off value to predict LRTI evolution was tentatively established. Normalization of viral load by cell number in the samples is essential to ensure an optimal virological molecular diagnosis avoiding that the quality of samples affects the results. A high viral load can be a useful marker to predict disease progression. © 2018 Wiley Periodicals, Inc.

  16. Highly Loaded Carbon Black Supported Pt Catalysts for Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Vít, Zdeněk; Šolcová, Olga; Soukup, Karel; Koštejn, Martin; Bonde, J.L.; Maixnerová, Lucie; Odgaard, M.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 375-383 ISSN 0920-5861 R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * fuell cell * electrocatalyst Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 4.312, year: 2015

  17. Effects on Packed Cell Volume and Parasitic Worm Load from ...

    African Journals Online (AJOL)

    Their packed cell volumes were estimated with centrifuge hematocrit and stool examined for parasitic worms with saline wet prep microscopy. A dose of Albendazole was administered to the study group. The data presented in Microsoft Excel spread sheet, were then analysed using SPSS version 17, T-test and Chi Square ...

  18. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J.-L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D.F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glosli, J.N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·106 particles on 65,536 MPI tasks.

  19. FUZZY LOGIC BASED OPTIMIZATION OF CAPACITOR VALUE FOR SINGLE PHASE OPEN WELL SUBMERSIBLE INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    R. Subramanian

    2011-01-01

    Full Text Available Purpose – The aim of this paper is to optimize the capacitor value of a single phase open well submersible motor operating under extreme voltage conditions using fuzzy logic optimization technique and compared with no-load volt-ampere method. This is done by keeping the displacement angle (a between main winding and auxiliary winding near 90o, phase angle (f between the supply voltage and line current near 0o. The optimization work is carried out by using Fuzzy Logic Toolbox software built on the MATLAB technical computing environment with Simulink software. Findings – The optimum capacitor value obtained is used with a motor and tested for different supply voltage conditions. The vector diagrams obtained from the experimental test results indicates that the performance is improved from the existing value. Originality/value – This method will be highly useful for the practicing design engineers in selecting the optimum capacitance value for single phase induction motors to achieve the best performance for operating at extreme supply voltage conditions.

  20. Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Cortizo

    2016-01-01

    Full Text Available Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation. In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering.

  1. Direct methanol feed fuel cell with reduced catalyst loading

    Science.gov (United States)

    Kindler, Andrew (Inventor)

    1999-01-01

    Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.

  2. Submersible Data (Dive Trackpoints) for Life on the Edge 2004 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link I along its track during twenty-five dives of the 2004 "Life on the Edge" expedition sponsored by...

  3. Submersible Data (Dive Waypoints) for Investigating the Charleston Bump 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during fourteen dives of the 2003 "Investigating the Charleston...

  4. Submersible Data (Dive Trackpoints) for Operation Deep Scope 2005 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link I along its track during thirteen dives of the 2005 "Operation Deep Scope" expedition sponsored by...

  5. Submersible Data (Dive Waypoints) for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during seventeen dives of the 2009 "Bioluminescence" expedition...

  6. Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells.

    Science.gov (United States)

    Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L

    2010-04-01

    The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.

  7. Improved mass-measurement accuracy using a PNB Load Cell Scale

    International Nuclear Information System (INIS)

    Suda, S.; Pontius, P.; Schoonover, R.

    1981-08-01

    The PNB Load Cell Scale is a Preloaded, Narrow-Band calibration mass comparator. It consists of (1) a frame and servo-mechanism that maintains a preload tension on the load cell until the load, an unknown mass, is sensed, and (2) a null-balance digital instrument that suppresses the cell response associated with the preload, thereby improving the precision and accuracy of the measurements. Ideally, the objects used to set the preload should be replica mass standards that closely approximate the density and mass of the unknowns. The advantages of the PNB scale are an expanded output signal over the range of interest which increases both the sensitivity and resolution, and minimizes the transient effects associated with loading of load cells. An area of immediate and practical application of this technique to nuclear material safeguards is the weighing of UF 6 cyliners where in-house mass standards are currently available and where the mass values are typically assigned on the basis of comparison weighings. Several prototypical versions of the PNB scale have been assembled at the US National Bureau of Standards. A description of the instrumentation, principles of measurements, and applications are presented in this paper

  8. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    Energy Technology Data Exchange (ETDEWEB)

    Craft, A.E., E-mail: aaron.craft@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); O’Brien, R.C., E-mail: Robert.OBrien@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); Howe, S.D., E-mail: Steven.Howe@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-07-01

    Highlights: • Criticality safety studies consider a generic space nuclear reactor in reentry scenarios. • Describes the submersion criticality behavior for a reactor fueled with a tungsten cermet fuel. • Study considers effects of varying fuel content, geometry, and other conditions. - Abstract: Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  9. Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance

    Directory of Open Access Journals (Sweden)

    Robert U. Payne

    2011-01-01

    Full Text Available Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra not measured at either electrode. The processes to which elements are attributed have been deduced by varying cell temperature, load current, and hydrogen concentration. Spectra data were also obtained for a planar stack of five 61 cm2 cells and the individual cells therein, which were fitted to a simplified equivalent circuit model of the total button cell. Similar to the button cell, the planar cells and stack exhibit a pronounced low-frequency relaxation process, which has been attributed to concentration losses, that is, the combined effects of diffusion and gas conversion. The simplified total-cell model approximates well the dynamic behavior of the SOFC cells and the whole stack.

  10. Mechatronic FEM model of an electromagnetic-force-compensated load cell

    International Nuclear Information System (INIS)

    Weis, Hanna; Hilbrunner, Falko; Fröhlich, Thomas; Jäger, Gerd

    2012-01-01

    In this paper, a mechatronic model for an electromagnetic-force-compensated (EMC) load cell is presented. Designed in ANSYS Mechanical APDL®, the model consists of two modules: the mechanical behaviour of the load cell is represented by a FEM model. The electronic and the electromagnetic parts, consisting of a position indicator, controller and electromagnetic actuator, are implemented into the model as a set of differential equations via ANSYS Parametric Design Language (APDL). Optimization of the mechanical, electromagnetic and controller components can be performed using this model, as well as experiments to determine the sensitivity of the complete system to changes of environmental properties, e.g., the stiffness of the support. (paper)

  11. Implementation of Admittance Control on a Construction Robot using Load Cells

    DEFF Research Database (Denmark)

    Bekker, Misha; Pedersen, Rasmus; Bak, Thomas

    2018-01-01

    Physical human-robot interactions (pHRI) must be safe and should feel natural to the human operator. To this end impedance or admittance control is often employed to relate the force applied by the human to the dynamic behavior of the robot. The robot under consideration in this work uses a load...... cell to sense the externally applied force. This paper presents a practical modeling procedure and implementation of admittance control that specifically deal with the undesired non-linearities caused by the use of a load cell. Experiments are performed on a 1-DoF testbed to validate the work done...

  12. Peptide-loaded dendritic cells prime and activate MHC-class I-restricted T cells more efficiently than protein-loaded cross-presenting DC

    DEFF Research Database (Denmark)

    Met, Ozcan; Buus, Søren; Claesson, Mogens H

    2003-01-01

    -pulsed DC. Moreover, SIINFEKL-loaded DC were up to 50 times more efficient than DC-pulsed with OVA-protein for generation of an H-2K(b)-restricted response. Immunization of mice with SIINFEKL-loaded DC resulted in a much stronger H-2K(b)-restricted response than immunization with OVA-pulsed DC. These data......Undifferentiated and differentiated dendritic cells (uDC and dDC, respectively), derived from the bone marrow, were studied in vitro and in vivo. Ovalbumin (OVA) and two OVA-derived peptides binding to H-2K(b) and I-A(b), respectively, were used. Two IL-2 secreting T cell hybridomas specific...... for the OVA-derived epitopes were used in the in vitro read-out. The ability to cross-present the H-2K(b) binding OVA(257-264)-peptide (SIINFEKL) was restricted to dDC, which express CD11c(+), CD86(+), and MHC-II(+). In vitro, the antigenicity of SIINFEKL-loaded DC declined at a slower rate than that of OVA...

  13. Application of a newly built semi-submersible vessel for transportation of a tension leg platform

    Science.gov (United States)

    Zhang, Dagang; Sun, Weiying; Fan, Zhixia

    2012-09-01

    Transportation of tension leg platform (TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel. The requirements of this type of vessel are always special, and their availability is limited. To prepare for the future development of South China Sea deepwater projects, the China Offshore Oil Engineering Corporation has recently built a heavy lift transport vessel-Hai Yang Shi You 278. This semi-submersible vessel has a displacement capacity of 50k DWT, and a breath of 42 meters. Understanding the vessel's applicability and preparing it for use in future deepwater projects are becoming imminent needs. This paper reviews the current critical issues associated with TLP transportation and performs detailed analysis of the designed TLP during load-out and transportation. The newly built COOEC transportation vessel HYSY 278 was applied to dry transport of the TLP structure from the COOEC fabrication yard in Qingdao to an oil field in South China Sea. The entire process included the load-out of the TLP structure from the landsite of the fabrication yard, the offloading and float-on of the platform from the vessel, the dry transport of the TLP over a long distance, and the final offloading of the platform. Both hydrodynamic and structure analysis were performed to evaluate the behavior of the transport vessel and TLP structure. Special attention was paid to critical areas associated with the use of this new vessel, along with any potential limitations. The results demonstrate that HYSY 278 can effectively be used for transporting the structure with proper arrangement and well-prepared operation. The procedure and details were presented on the basis of the study results. Special attention was also given to discussion on future use based on the results from the analysis.

  14. Automatic control of load increases power and efficiency in a microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Premier, Giuliano C.; Kim, Jung Rae; Michie, Iain [Sustainable Environment Research Centre (SERC), Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Mid-Glamorgan CF37 1DL (United Kingdom); Dinsdale, Richard M.; Guwy, Alan J. [Sustainable Environment Research Centre (SERC), Faculty of Health, Sport and Science, University of Glamorgan, Pontypridd, Mid-Glamorgan CF37 1DL (United Kingdom)

    2011-02-15

    Increasing power production and coulombic efficiency (CE) of microbial fuel cells (MFCs) is a common research ambition as the viability of the technology depends to some extent on these measures of performance. As MFCs are typically time varying systems, comparative studies of controlled and un-controlled external load impedance are needed to show if control affects the biocatalyst development and hence MFC performance. The application of logic based control of external load resistance is shown to increase the power generated by the MFC, when compared to an equivalent system which has a static resistive load. The controlled MFC generated 1600 {+-} 400 C, compared to 300 {+-} 10 C with an otherwise replicate fixed load MFC system. The use of a parsimonious gradient based control was able to increase the CE to within the range of 15.1-22.7%, while the CE for a 200 {omega} statically loaded MFC lay in the range 3.3-3.7%. The controlled MFC improves the electrogenic anodic biofilm selection for power production, indicating that greater power and substrate conversion can be achieved by controlling load impedance. Load control ensured sustainable current demand, applied microbial selection pressures and provided near-optimal impedance for power transference, compared to the un-controlled system. (author)

  15. Polyethylenimine-modified curcumin-loaded mesoporus silica nanoparticle (MCM-41) induces cell death in MCF-7 cell line.

    Science.gov (United States)

    Harini, Lakshminarasimhan; Karthikeyan, Bose; Srivastava, Sweta; Suresh, Srinag Bangalore; Ross, Cecil; Gnanakumar, Georgepeter; Rajagopal, Srinivasan; Sundar, Krishnan; Kathiresan, Thandavarayan

    2017-02-01

    Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti-cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti-cancer activity is elucidated with MCF-7 cell death. Structural characteristics of Mobil Composition of Matter - 41(MCM-41) as determined by high-resolution transmission electron microscopy (HR-TEM) shows that MCM-41 size ranges from 100 to 200 nm diameters with pore size 2-10 nm for drug adsorption. The authors found 80-90% of curcumin is loaded on MCM-41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin-loaded MCM-41 induced 50% mortality of MCF-7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM-41 effectively decreased cell survival of MCF-7 cells in vitro.

  16. [Optimization of trehalose loading in red blood cells before freeze-drying].

    Science.gov (United States)

    Zhuang, Yuan; Liu, Jing-Han; Ouyang, Xi-Lin; Chen, Lin-Feng; Che, Ji

    2007-04-01

    The key points for better protection of trehalose in freeze-drying red blood cells (RBCs) are to resolve non-osmosis of trehalose to red blood cells and to make cytoplasmic trehalose to reach effective concentration. This study was aimed to investigate the regularity of loading RBCs with trehalose, screen out optimal loading condition and evaluate the effect of trehalose on physico-chemical parameters of RBCs during the period of loading. The cytoplasmic trehalose concentration in red blood cells, free hemoglobin and ATP level were determined at different incubation temperatures (4, 22 and 37 degrees C), different trehaolse concentrations (0, 200, 400, 600, 800 and 1000 mmol/L) and different incubation times (2, 4, 6, 8 and 10 hours), the cytoplasmic trehalose, free hemoglobin (FHb), hemoglobin (Hb) and mean corpuscular volume (MCV) in fresh RBCs and RBCs stored for 72 hours at 4 degrees C were compared, when loading condition was ensured. The results showed that with increase of incubation temperature, time and extracellular trehalose concentration, the loading of trehalose in RBCs also increased. Under the optimal loading condition, cytoplasmic trehalose concentration and free hemoglobin level of fresh RBCs and RBCs stored for 72 hours at 4 degrees C were 65.505 +/- 6.314 mmol/L, 66.2 +/- 5.002 mmol/L and 6.567 +/- 2.568 g/L, 16.168 +/- 3.922 g/L respectively. It is concluded that the most optimal condition of loading trehalose is that fresh RBCs incubate in 800 mmol/L trehalose solution for 8 hours at 37 degrees C. This condition can result in a efficient cytoplasmic trehalose concentration. The study provides an important basis for long-term preservation of RBCs.

  17. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers

    International Nuclear Information System (INIS)

    Subia, B; Kundu, S C

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin–albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin–albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules. (paper)

  18. Life extension of semi-submersible drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, I.; Sinclair, C.I.K. [TWI, Cambridge (United Kingdom). Structural Integrity Dept.; Magne, E. [Schlumberger Sedco Forex, Montrouge (France)

    1995-12-31

    This paper describes the life extension of a semi-submersible drilling rig built in the early 1970`s. A nominal design life of 20 years was estimated at the time of building; however, in the interim period, numerous improvements have been made in fatigue life estimation ad life improvement techniques, raising the possibility that a further 20 years of operation could be considered. The life extension strategy made use of a number of aspects of offshore technology which were not available at the time of construction of the rig. Finite element studies and results from offshore research programs were used to gauge the effect of fatigue life improvement techniques. The program demonstrated the feasibility of extending the operation of the rig for a further 20 years, with the interval between in-service inspection increased to every five years. It also provided a valuable database of fracture toughness data for the rig materials, which may be used in future work to address reliability issues.

  19. A tensile machine with a novel optical load cell for soft biological tissues application.

    Science.gov (United States)

    Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah

    2014-11-01

    The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.

  20. Transient loading of CD34+ hematopoietic progenitor cells with polystyrene nanoparticles

    Directory of Open Access Journals (Sweden)

    Deville S

    2017-01-01

    Full Text Available Sarah Deville,1,2 Wahyu Wijaya Hadiwikarta,1 Nick Smisdom,1,2 Bart Wathiong,1,3 Marcel Ameloot,2 Inge Nelissen,1 Jef Hooyberghs1,3 1VITO, Flemish Institute for Technological Research, Mol, Belgium; 2Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; 3Theoretical Physics, Hasselt University, Diepenbeek, Belgium Abstract: CD34+ hematopoietic progenitor cells (HPCs offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS NPs with HPCs. Interestingly, a transient association of the NPs with HPCs is observed, reaching a maximum within 1 hour and declining afterwards. This behavior is not seen in dendritic cells (CD34-DCs differentiated from HPCs, which display a monotonic increase in NP load. We demonstrate that this transient interaction requires an energy-dependent cellular process, suggesting active loading and release of NPs by HPCs. This novel observation offers a unique approach to transiently equip HPCs. A simple theoretical approach modeling the kinetics of NP loading and release is presented, contributing to a framework of describing this phenomenon. Keywords: nanoparticles, hematopoietic progenitor cells, dendritic cells, uptake, release

  1. Realization of an Electronic Load for Testing Low Power PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Djordje Šaponjić

    2011-06-01

    Full Text Available A realized electronic load system intended for testing and characterization of hydrogen fuel sells is described. The system is based on microcontroller PIC16F877 by applying the concept of virtual instrumentation. The accomplished accuracy of the developed electronic system allows performing efficiently investigations of the electro-chemical phenomena involved in the process of designing hydrogen fuel cells.

  2. Kinetics of Epstein-Barr virus load and virus-specific CD8+ T cells in acute infectious mononucleosis.

    Science.gov (United States)

    Hoshino, Yo; Nishikawa, Kazuo; Ito, Yoshinori; Kuzushima, Kiyotaka; Kimura, Hiroshi

    2011-03-01

    During the convalescent phase of acute infectious mononucleosis (AIM), Epstein-Barr virus (EBV) load shrinks rapidly in association with a rapid decline in the number of EBV-specific CD8(+) T cells. The actual contribution of EBV-specific CD8(+) T cells in reducing EBV load, however, is not known. To clarify the impact of EBV-specific CD8(+) T cells on the contraction of EBV load in AIM, we estimated half-lives of both EBV load and EBV-specific CD8(+) T cells. Blood was serially taken from five pediatric patients with AIM during the convalescent period, including the very early phase, and both EBV load and EBV-specific CD8(+) T cell numbers were assayed. EBV load declined rapidly (half-life 1.5 d) during the first 2 weeks after onset of symptoms. This half-life was seven-fold shorter than that reported for CD27(+) memory B cells. Subsequently, the EBV load declined much more slowly, with a half-life of 38.7 d. EBV-specific CD8(+) T cell numbers also declined concomitantly with the decrease in EBV load. The half-life of EBV-specific CD8(+) T cells during first 2 weeks was 2.9 d. The number of EBV-specific CD8(+) T cells and the rate of change of viral load correlated significantly (R(2) ≥ 0.8; p ≤ 0.02). The short half-life of EBV load, together with the strong correlation between the number of EBV-specific CD8(+) T cells and the rate of change of viral load indicates an active role for EBV-specific CD8(+) T cells in elimination of EBV in AIM. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2018-01-01

    A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.

  4. Dendritic cells loaded with HeLa-derived exosomes simulate an antitumor immune response.

    Science.gov (United States)

    Ren, Guoping; Wang, Yanhong; Yuan, Shexia; Wang, Baolian

    2018-05-01

    The aim of the present study was to investigate the effect of loading dendritic cells (DCs) with HeLa-derived exosomes on cytotoxic T-lymphocyte (CTL) responses, and the cytotoxic effects of CTL responses on the HeLa cell line. Ultrafiltration centrifugation combined with sucrose density gradient ultracentrifugation was applied to isolate exosomes (HeLa-exo) from the supernatant of HeLa cells. Morphological features of HeLa-exo were identified by transmission electron microscopy (TEM), and the expression of cluster of differentiation (CD)63 was detected by western blotting. Next, monocytes were isolated from peripheral blood and cultured with the removal of adherent cells to induce DC proliferation. DCs were then phenotypically characterized by flow cytometry. Finally, MTT assays were performed to analyze the effects of DCs loaded with HeLa-exo on T cell proliferation and cytotoxicity assays to evaluate the effect of CTL responses on HeLa cells. TEM revealed that HeLa-exo exhibit typical cup-shaped morphology with a diameter range of 30-100 nm. It was also identified that the CD63 surface antigen is expressed on HeLa-exo. Furthermore, monocyte-derived DCs were able to express CD1a, suggesting that DC induction was a success. DCs exhibited hair-like protrusions and other typical dendritic cell morphology. Furthermore, DCs loaded with HeLa-exo could enhance CTL proliferation and the cytotoxic activity of CTLs compared with DCs without HeLa-exo (PHeLa-exo may promote T cell proliferation and induce CTL responses to inhibit the growth of cervical cancer cells in vitro .

  5. Failure mechanisms of closed-cell aluminum foam under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Amsterdam, E.; De Hosson, J.Th.M.; Onck, P.R.

    2006-01-01

    This paper concentrates on the differences in failure mechanisms of Alporas closed-cell aluminum foam under either monotonic or cyclic loading. The emphasis lies on aspects of crack nucleation and crack propagation in relation to the microstructure. The cell wall material consists of Al dendrites and an interdendritic network of Al 4 Ca and Al 22 CaTi 2 precipitates. In situ scanning electron microscopy monotonic tensile tests were performed on small samples to study crack nucleation and propagation. Digital image correlation was employed to map the strain in the cell wall on the characteristic microstructural length scale. Monotonic tensile tests and tension-tension fatigue tests were performed on larger samples to observe the overall fracture behavior and crack path in monotonic and cyclic loading. The crack nucleation and propagation path in both loading conditions are revealed and it can be concluded that during monotonic tension cracks nucleate in and propagate partly through the Al 4 Ca interdendritic network, whereas under cyclic loading cracks nucleate and propagate through the Al dendrites

  6. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan

    International Nuclear Information System (INIS)

    Ohma, Atsushi; Mashio, Tetsuya; Sato, Kazuyuki; Iden, Hiroshi; Ono, Yoshitaka; Sakai, Kei; Akizuki, Ken; Takaichi, Satoshi; Shinohara, Kazuhiko

    2011-01-01

    The biggest issue that must be addressed in promoting widespread use of fuel cell vehicles (FCVs) is to reduce the cost of the fuel cell system. Especially, it is of vital importance to reduce platinum (Pt) loading of catalyst layers (CLs) in the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEMFC). In order to lower the Pt loading of the MEA, mass transport of reactants related to the performance in high current density should be enhanced significantly as well as kinetics of the catalyst, which can result in the better Pt utilization and effectiveness. In this study, we summarized our analytical approach and methods for reduction of Pt loading in CLs. Microstructure, mass transport properties of the reactants, and their relation in CLs were elucidated by applying experimental analyses and computational methods. A simple CL model for I–V performance prediction was then established, where experimentally elucidated parameters of the microstructure and the properties in CLs were taken into account. Finally, we revealed the impact of lowering the Pt loading on the transport properties, polarization, and the I–V performance.

  7. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Carlos Augusto Zanoni [Federal Institute of Espirito Santo (Brazil); Madeira, Klesia Pirola [Federal University of Espirito Santo, Biotechnology Program/RENORBIO, Health Sciences Center (Brazil); Rettori, Daniel [Federal University of Sao Paulo, Department of Exact Sciences and Earth (Brazil); Baratti, Mariana Ozello [University of Campinas, Department of Cellular Biology (Brazil); Rangel, Leticia Batista Azevedo [Federal University of Espirito Santo, Department of Pharmaceutical Sciences (Brazil); Razzo, Daniel [University of Campinas, Department of Physical Chemistry, Institute of Chemistry (Brazil); Silva, Andre Romero da, E-mail: aromero@ifes.edu.br [Federal Institute of Espirito Santo (Brazil)

    2013-09-15

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8-7.5 {mu}mol/L), incubation time (1-2 h), and laser power (10-100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 {+-} 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm{sup 2} and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 {+-} 3 % while for free InPc was 60 {+-} 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.

  8. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment.

    Science.gov (United States)

    Schwartz, Andrea G; Long, Fanxin; Thomopoulos, Stavros

    2015-01-01

    Tendon attaches to bone across a specialized tissue called the enthesis. This tissue modulates the transfer of muscle forces between two materials, i.e. tendon and bone, with vastly different mechanical properties. The enthesis for many tendons consists of a mineralized graded fibrocartilage that develops postnatally, concurrent with epiphyseal mineralization. Although it is well described that the mineralization and development of functional maturity requires muscle loading, the biological factors that modulate enthesis development are poorly understood. By genetically demarcating cells expressing Gli1 in response to Hedgehog (Hh) signaling, we discovered a unique population of Hh-responsive cells in the developing murine enthesis that were distinct from tendon fibroblasts and epiphyseal chondrocytes. Lineage-tracing experiments revealed that the Gli1 lineage cells that originate in utero eventually populate the entire mature enthesis. Muscle paralysis increased the number of Hh-responsive cells in the enthesis, demonstrating that responsiveness to Hh is modulated in part by muscle loading. Ablation of the Hh-responsive cells during the first week of postnatal development resulted in a loss of mineralized fibrocartilage, with very little tissue remodeling 5 weeks after cell ablation. Conditional deletion of smoothened, a molecule necessary for responsiveness to Ihh, from the developing tendon and enthesis altered the differentiation of enthesis progenitor cells, resulting in significantly reduced fibrocartilage mineralization and decreased biomechanical function. Taken together, these results demonstrate that Hh signaling within developing enthesis fibrocartilage cells is required for enthesis formation. © 2015. Published by The Company of Biologists Ltd.

  9. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    International Nuclear Information System (INIS)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-01

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned

  10. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  11. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol-loaded

  12. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-01-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol-loaded

  13. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells

    Science.gov (United States)

    Pramod, P. S.; Shah, Ruchira; Jayakannan, Manickam

    2015-04-01

    The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 +/- 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX.HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL-1 in PBS. MTT assays on fibroblast cells revealed that DOX.HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells.The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the

  14. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  15. Integrated System Design for a Large Wind Turbine Supported on a Moored Semi-Submersible Platform

    Directory of Open Access Journals (Sweden)

    Jinsong Liu

    2018-01-01

    Full Text Available Over the past few decades, wind energy has emerged as an alternative to conventional power generation that is economical, environmentally friendly and, importantly, renewable. Specifically, offshore wind energy is being considered by a number of countries to harness the stronger and more consistent wind resource compared to that over land. To meet the projected “20% energy from wind by 2030” scenario that was announced in 2006, 54 GW of added wind energy capacity need to come from offshore according to a National Renewable Energy Laboratory (NREL study. In this study, we discuss the development of a semi-submersible floating offshore platform with a catenary mooring system to support a very large 13.2-MW wind turbine with 100-m blades. An iterative design process is applied to baseline models with Froude scaling in order to achieve preliminary static stability. Structural dynamic analyses are performed to investigate the performance of the new model using a finite element method approach for the tower and a boundary integral equation (panel method for the platform. The steady-state response of the system under uniform wind and regular waves is first studied to evaluate the performance of the integrated system. Response amplitude operators (RAOs are computed in the time domain using white-noise wave excitation; this serves to highlight nonlinear, as well as dynamic characteristics of the system. Finally, selected design load cases (DLCs and the stochastic dynamic response of the system are studied to assess the global performance for sea states defined by wind fields with turbulence and long-crested irregular waves.

  16. Osteogenic differentiation of periosteum-derived stromal cells in blast-associated traumatic loading

    Science.gov (United States)

    Sory, David R.; Amin, Harsh D.; Rankin, Sara M.; Proud, William G.

    2017-06-01

    One of the most recurrent medical complications resulting from blast trauma includes blast-induced heterotopic ossification. Heterotopic ossification refers to the pathologic formation of extraskeletal bone in non-osseous tissue. Although a number of studies have established the interaction between mechanics and biology in bone formation following shock trauma, the exact nature of the mechanical stimuli associated to blast-loading and their influence on the activation of osteogenic differentiation of cells remain unanswered. Here we present the design and calibration of a loading platform compatible with living cells to examine the effects of mechanical stress pulses of blast-associated varying strain rates on the activation of osteogenic differentiation of periosteum (PO) cells. Multiaxial compression loadings of PO cells are performed at different magnitudes of stress and ranges of strain rate. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injuries at the cellular level. This work was conducted under the auspices of the Royal British Legion Centre for Blast Injury Studies at Imperial College London. The authors would like to acknowledge the financial support of the Royal British Legion.

  17. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery.

    Science.gov (United States)

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-10-17

    In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee ® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice ® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper).The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V)and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical) enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  18. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    Directory of Open Access Journals (Sweden)

    Reddad El-Moznine

    2007-10-01

    Full Text Available In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper.The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5Vand with two imposed currents (0.6A and 4A. The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  19. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    Science.gov (United States)

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  20. Spray-loading: A cryogenic deposition method for diamond anvil cell

    Science.gov (United States)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  1. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  2. Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs.

    Science.gov (United States)

    Connelly, John T; Vanderploeg, Eric J; Mouw, Janna K; Wilson, Christopher G; Levenston, Marc E

    2010-06-01

    Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1-2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro.

  3. Transient loading of CD34+ hematopoietic progenitor cells with polystyrene nanoparticles.

    Science.gov (United States)

    Deville, Sarah; Hadiwikarta, Wahyu Wijaya; Smisdom, Nick; Wathiong, Bart; Ameloot, Marcel; Nelissen, Inge; Hooyberghs, Jef

    2017-01-01

    CD34 + hematopoietic progenitor cells (HPCs) offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP)-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS) NPs with HPCs. Interestingly, a transient association of the NPs with HPCs is observed, reaching a maximum within 1 hour and declining afterwards. This behavior is not seen in dendritic cells (CD34-DCs) differentiated from HPCs, which display a monotonic increase in NP load. We demonstrate that this transient interaction requires an energy-dependent cellular process, suggesting active loading and release of NPs by HPCs. This novel observation offers a unique approach to transiently equip HPCs. A simple theoretical approach modeling the kinetics of NP loading and release is presented, contributing to a framework of describing this phenomenon.

  4. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient

  5. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Science.gov (United States)

    Chen, Qushan; Hu, Tongning; Qin, Bin; Xiong, Yongqian; Fan, Kuanjun; Pei, Yuanji

    2018-04-01

    Huazhong University of Science and Technology (HUST) has built a compact linac-based terahertz free electron laser (THz-FEL) prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  6. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Directory of Open Access Journals (Sweden)

    Qushan Chen

    2018-04-01

    Full Text Available Huazhong University of Science and Technology (HUST has built a compact linac-based terahertz free electron laser (THz-FEL prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  7. Embryonic Stem Cells-loaded Gelatin Microcryogels Slow Progression of Chronic Kidney Disease

    Science.gov (United States)

    Geng, Xiao-Dong; Zheng, Wei; Wu, Cong-Mei; Wang, Shu-Qiang; Hong, Quan; Cai, Guang-Yan; Chen, Xiang-Mei; Wu, Di

    2016-01-01

    Background: Chronic kidney disease (CKD) has become a public health problem. New interventions to slow or prevent disease progression are urgently needed. In this setting, cell therapies associated with regenerative effects are attracting increasing interest. We evaluated the effect of embryonic stem cells (ESCs) on the progression of CKD. Methods: Adult male Sprague–Dawley rats were subjected to 5/6 nephrectomy. We used pedicled greater omentum flaps packing ESC-loaded gelatin microcryogels (GMs) on the 5/6 nephrectomized kidney. The viability of ESCs within the GMs was detected using in vitro two-photon fluorescence confocal imaging. Rats were sacrificed after 12 weeks. Renal injury was evaluated using serum creatinine, urea nitrogen, 24 h protein, renal pathology, and tubular injury score results. Structural damage was evaluated by periodic acid-Schiff and Masson trichrome staining. Results: In vitro, ESCs could be automatically loaded into the GMs. Uniform cell distribution, good cell attachment, and viability were achieved from day 1 to 7 in vitro. After 12 weeks, in the pedicled greater omentum flaps packing ESC-loaded GMs on 5/6 nephrectomized rats group, the plasma urea nitrogen levels were 26% lower than in the right nephrectomy group, glomerulosclerosis index was 62% lower and tubular injury index was 40% lower than in the 5/6 nephrectomized rats group without GMs. Conclusions: In a rat model of established CKD, we demonstrated that the pedicled greater omentum flaps packing ESC-loaded GMs on the 5/6 nephrectomized kidney have a long-lasting therapeutic rescue function, as shown by the decreased progression of CKD and reduced glomerular injury. PMID:26879011

  8. Automatic recognition of falls in gait-slip training: Harness load cell based criteria.

    Science.gov (United States)

    Yang, Feng; Pai, Yi-Chung

    2011-08-11

    Over-head-harness systems, equipped with load cell sensors, are essential to the participants' safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force, and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects' trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects' data revealed that the peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. AUTOMATIC RECOGNITION OF FALLS IN GAIT-SLIP: A HARNESS LOAD CELL BASED CRITERION

    Science.gov (United States)

    Yang, Feng; Pai, Yi-Chung

    2012-01-01

    Over-head-harness systems, equipped with load cell sensors, are essential to the participants’ safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7-m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects’ trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects’ data revealed that peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1-s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. PMID:21696744

  10. AUTOMATIC RECOGNITION OF FALLS IN GAIT-SLIP: A HARNESS LOAD CELL BASED CRITERION

    OpenAIRE

    Yang, Feng; Pai, Yi-Chung

    2011-01-01

    Over-head-harness systems, equipped with load cell sensors, are essential to the participants’ safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7-m walkway. Each tri...

  11. Immunotherapy with internally inactivated virus loaded dendritic cells boosts cellular immunity but does not affect feline immunodeficiency virus infection course

    Directory of Open Access Journals (Sweden)

    Pistello Mauro

    2008-04-01

    Full Text Available Abstract Immunotherapy of feline immunodeficiency virus (FIV-infected cats with monocyte-derived dendritic cells (MDCs loaded with aldrithiol-2 (AT2-inactivated homologous FIV was performed. Although FIV-specific lymphoproliferative responses were markedly increased, viral loads and CD4+ T cell depletion were unaffected, thus indicating that boosting antiviral cell-mediated immunity may not suffice to modify infection course appreciably.

  12. Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells.

    Science.gov (United States)

    Menale, Ciro; Piccolo, Maria Teresa; Favicchia, Ilaria; Aruta, Maria Grazia; Baldi, Alfonso; Nicolucci, Carla; Barba, Vincenzo; Mita, Damiano Gustavo; Crispi, Stefania; Diano, Nadia

    2015-02-01

    Combined treatment based on cisplatin-loaded Poly(D,L-lactic-co-glicolic)acid (PLGA) nanoparticles (NP-C) plus the NSAID piroxicam was used as novel treatment for mesothelioma to reduce side effects related to cisplatin toxicity. PLGA nanoparticles were prepared by double emulsion solvent evaporation method. Particle size, drug release profile and in vitro cellular uptake were characterized by TEM, DLS, LC/MS and fluorescence microscopy. MSTO-211H cell line was used to analyse NP-C biological efficacy by FACS and protein analysis. Cisplatin was encapsulated in 197 nm PLGA nanoparticles with 8.2% drug loading efficiency and 47% encapsulation efficiency. Cisplatin delivery from nanoparticles reaches 80% of total encapsulated drug in 14 days following a triphasic trend. PLGA nanoparticles in MSTO-211H cells were localized in the perinuclear space NP-C in combination with piroxicam induced apoptosis using a final cisplatin concentration 1.75 fold less than free drug. Delivered cisplatin cooperated with piroxicam in modulating cell cycle regulators as caspase-3, p53 and p21. Cisplatin loaded PLGA nanoparticles plus piroxicam showed a good efficacy in exerting cytotoxic activity and inducing the same molecular apoptotic effects of the free drugs. Sustained cisplatin release allowed to use less amount of drug, decreasing toxic side effects. This novel approach could represent a new strategy for mesothelioma treatment.

  13. Bioactive Glass Nanoparticles-Loaded Poly(ɛ-caprolactone Nanofiber as Substrate for ARPE-19 Cells

    Directory of Open Access Journals (Sweden)

    Tadeu Henrique Lima

    2016-01-01

    Full Text Available Bioactive glass nanoparticles-loaded poly(ɛ-caprolactone nanofibers (BIOG PCL nanofibers were synthesized and evaluated as substrates for ocular cells (ARPE-19. BIOG PCL nanofibers were characterized using SEM, FTIR, and DSC, and the in vitro degradation profile was also investigated. The in vitro ocular biocompatibility of nanofibers was exploited in Müller glial cells (MIO-M1 cells and in chorioallantoic membrane (CAM; and the proliferative capacity, cytotoxicity, and functionality were evaluated. Finally, ARPE-19 cells were seeded onto BIOG PCL nanofibers and they were investigated as supports for in vitro cell adhesion and proliferation. SEM images revealed the incorporation of BIOG nanoparticles into PCL nanofibers. Nanoparticles did not induce modifications in the chemical structure and semicrystalline nature of PCL in the nanofiber, as shown by FTIR and DSC. MIO-M1 cells exposed to BIOG PCL nanofibers showed viability, and they were able to proliferate and to express GFAP, indicating cellular functionality. Moreover, nanofibers were well tolerated by CAM. These findings suggested the in vitro ocular biocompatibility and absence of toxicity of these nanofibers. Finally, the BIOG nanoparticles modulated the protein adsorption, and, subsequently, ARPE-19 cells adhered and proliferated onto the nanostructured supports, establishing cell-substrate interactions. In conclusion, the biodegradable and biocompatible BIOG PCL nanofibers supported the ARPE-19 cells.

  14. Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

    Directory of Open Access Journals (Sweden)

    De Maria Ruggero

    2008-07-01

    Full Text Available Abstract Background PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor® EL (polyethoxylated castor oil and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration. Methods In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC. Results NS loaded with 3% PTX (w/w had a mean size Conclusion These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies.

  15. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy

    Czech Academy of Sciences Publication Activity Database

    Vávrová, K.; Vrabcova, P.; Filipp, Dominik; Bartunkova, J.; Horváth, R.

    2016-01-01

    Roč. 33, č. 12 (2016), č. článku 136. ISSN 1357-0560 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : Cancer Immunotherapy * Prostate cancer * Adoptive T cell therapy * Tumor-specific T cell expansion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.634, year: 2016

  16. Effect of a dual inlet channel on cell loading in microfluidics.

    Science.gov (United States)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2014-11-01

    Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in

  17. The Application of Load-cell Technique in the Study of Armour Unit Responses to Impact Loads

    OpenAIRE

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The slender, complex types of armour units, such as Tetrapods and Dolosse arewidely used for rubble mound breakwaters. Many of the recent failures of such structures were caused by unforeseen early breakage of the units, thus revealing an inbalance between the strength (structural integrity) of the units and the hydraulic stability (resistance to displacements) of the armour layers. Breakage is caused by stresses from static, pulsating and impact loads. Impact load generated stresses are diff...

  18. The Application of Load-cell Technique in the Study of Armour Unit Responses to Impact Loads Tests

    OpenAIRE

    Burcharth, H. F.; Liu, Z.

    1995-01-01

    The slender, complex types of armour units, such as Tetrapods and Dolosse arewidely used for rubble mound breakwaters. Many of the recent failures of suchstructures were caused by unforeseen early breakage of the units, thus revealingan in balance between the strength (structural integrity) of the units and thehydraulic stability (resistance to displacements) of the armour layers. Breakageis caused by stresses from static, pulsating and impact loads. Impact load generated stresses are difficu...

  19. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells.

    Science.gov (United States)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. Copyright © 2013. Published by

  20. Performance of an Active Micro Direct Methanol Fuel Cell Using Reduced Catalyst Loading MEAs

    Directory of Open Access Journals (Sweden)

    D.S. Falcão

    2017-10-01

    Full Text Available The micro direct methanol fuel cell (MicroDMFC is an emergent technology due to its special interest for portable applications. This work presents the results of a set of experiments conducted at room temperature using an active metallic MicroDMFC with an active area of 2.25 cm2. The MicroDMFC uses available commercial materials with low platinum content in order to reduce the overall fuel cell cost. The main goal of this work is to provide useful information to easily design an active MicroDMFC with a good performance recurring to cheaper commercial Membrane Electrode Assemblies MEAs. A performance/cost analysis for each MEA tested is provided. The maximum power output obtained was 18.1 mW/cm2 for a hot-pressed MEA with materials purchased from Quintech with very low catalyst loading (3 mg/cm2 Pt–Ru at anode side and 0.5 mg/cm2 PtB at the cathode side costing around 15 euros. Similar power values are reported in literature for the same type of micro fuel cells working at higher operating temperatures and substantially higher cathode catalyst loadings. Experimental studies using metallic active micro direct methanol fuel cells operating at room temperature are very scarce. The results presented in this work are, therefore, very useful for the scientific community.

  1. Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs

    International Nuclear Information System (INIS)

    Wimmers, L.E.; Turgeon, R.

    1987-01-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 μmol photons m -2 sec -1 ) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on 14 C-sucrose (10 mM). There is a positive correlation between uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged

  2. Tumor mutational load and immune parameters across metastatic Renal Cell Carcinoma (mRCC) risk groups

    Science.gov (United States)

    de Velasco, Guillermo; Miao, Diana; Voss, Martin H.; Hakimi, A. Ari; Hsieh, James J.; Tannir, Nizar M.; Tamboli, Pheroze; Appleman, Leonard J.; Rathmell, W. Kimryn; Van Allen, Eliezer M.; Choueiri, Toni K.

    2016-01-01

    Patients with metastatic renal cell carcinoma (mRCC) have better overall survival when treated with nivolumab, a cancer immunotherapy that targets the immune checkpoint inhibitor programmed cell death 1 (PD-1), rather than everolimus (a chemical inhibitor of mTOR and immunosuppressant). Poor-risk mRCC patients treated with nivolumab seemed to experience the greatest overall survival benefit, compared to patients with favorable or intermediate-risk, in an analysis of the CheckMate-025 trial subgroup of the Memorial Sloan Kettering Cancer Center (MSKCC) prognostic risk groups. Here we explore whether tumor mutational load and RNA expression of specific immune parameters could be segregated by prognostic MSKCC risk strata and explain the survival seen in the poor-risk group. We queried whole exome transcriptome data in RCC patients (n = 54) included in The Cancer Genome Atlas that ultimately developed metastatic disease or were diagnosed with metastatic disease at presentation and did not receive immune checkpoint inhibitors. Nonsynonymous mutational load did not differ significantly by MSKCC risk group, nor was the expression of cytolytic genes –granzyme A and perforin – or selected immune checkpoint molecules different across MSKCC risk groups. In conclusion, this analysis found that mutational load and expression of markers of an active tumor microenvironment did not correlate with MSKCC risk prognostic classification in mRCC. PMID:27538576

  3. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload

    Science.gov (United States)

    Kuipers, Marjorie A.; Stasevich, Timothy J.; Sasaki, Takayo; Wilson, Korey A.; Hazelwood, Kristin L.; McNally, James G.; Davidson, Michael W.

    2011-01-01

    The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles. PMID:21220507

  4. A parallel 3D particle-in-cell code with dynamic load balancing

    International Nuclear Information System (INIS)

    Wolfheimer, Felix; Gjonaj, Erion; Weiland, Thomas

    2006-01-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated

  5. A parallel 3D particle-in-cell code with dynamic load balancing

    Energy Technology Data Exchange (ETDEWEB)

    Wolfheimer, Felix [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)]. E-mail: wolfheimer@temf.de; Gjonaj, Erion [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany); Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)

    2006-03-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated.

  6. Novel apigenin-loaded sodium hyaluronate nano-assemblies for targeting tumor cells.

    Science.gov (United States)

    Zhao, Ting; He, Yue; Chen, Huali; Bai, Yan; Hu, Wenjing; Zhang, Liangke

    2017-12-01

    We aimed to construct a novel nano-assembly carrying apigenin (APG), a hydrophobic drug, and to evaluate its in vitro targeting ability for A549 cells overexpressing CD44 receptors. The apigenin-loaded sodium hyaluronate nano-assemblies (APG/SH-NAs) were assembled by multiple non-covalent interactions between sodium hyaluronate (SH) and APG. The prepared APG/SH-NAs exhibited a small average size and narrow particle size distribution. In addition, satisfactory encapsulation efficiency and drug loading were obtained. The drug release curves indicated that APG/SH-NAs achieved a sustainable drug-release effect due to the presence of hydrophilic materials. The in vitro cytotoxicity of APG/SH-NAs against A549 cells and HepG2 cells was evaluated, and the results indicated that the prepared APG/SH-NA showed higher cytotoxicity compared to apigenin suspensions. When CD44 receptors on the surface of A549 cells were blocked by the addition of excess SH, the cytotoxicity of APG/SH-NA was significantly reduced. However, similar phenomena were not observed in HepG2 cells with relatively low CD44 receptor expression. The resulting APG/SH-NAs could efficiently facilitate the internalization of APG into A549 cells, which might be due to their high affinity for CD44 receptors. Moreover, the apoptotic rate of APG/SH-NAs through receptor-mediated endocytosis mechanism was higher than that of the other groups in A549 cells. Thus, such nano-assemblies were considered to be an effective transport system with excellent affinity for CD44 receptors to allow the SH-mediated targeted delivery of APG. Copyright © 2017. Published by Elsevier Ltd.

  7. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Souto, Carlos Augusto Zanoni; Madeira, Klésia Pirola; Rettori, Daniel; Baratti, Mariana Ozello; Rangel, Letícia Batista Azevedo; Razzo, Daniel; Silva, André Romero da

    2013-01-01

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8–7.5 μmol/L), incubation time (1–2 h), and laser power (10–100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 ± 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm 2 and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 ± 3 % while for free InPc was 60 ± 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc

  8. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load

    CSIR Research Space (South Africa)

    Sichilalu, S

    2016-10-01

    Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...

  9. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  10. Self-Propelled Semi-Submersibles: The Next Great Threat to Regional Security and Stability

    Science.gov (United States)

    2011-06-01

    December.27 The FARC is also coordinating with Chinese gangs in the tri-border area of Argentina, Paraguay and Brazil .28 These gangs could... mangrove swamps in Western Colombia you can be ten feet away from where somebody‘s building a semi-submersible and never see it.‖63 D. INSPECTION OF

  11. Effects of four fungicides on nine non-target submersed macrophytes

    NARCIS (Netherlands)

    Belgers, J.D.M.; Aalderink, G.H.; Brink, van den P.J.

    2009-01-01

    We tested the sensitivity of nine submersed macrophyte species to the fungicides chlorothalonil, pentachlorophenol, fluazinam, and carbendazim. Endpoints determined 3 weeks after the start of the treatment were based on shoot and root growth in water. Carbendazim proved not or only moderately toxic

  12. Competition between two submersed aquatic macrophytes, Potamogeton pectinatus and Potamogeton gramineus, across a light gradient

    Science.gov (United States)

    Submersed aquatic macrophyte communities, are often limited by the availability of light. Thus, they offer a unique opportunity to evaluate competition when light is the limiting resource. Competitive abilities of Potamogeton pectinatus (L.) Börner and Potamogeton gramineus L. were estimated using a...

  13. Geology of mud volcanos in the Eastern Mediterranean from combined sidescan and submersible surveys

    NARCIS (Netherlands)

    Zitter, T.A.C.; Huguen, C.; Woodside, J.M.

    2005-01-01

    Submersible observations and seafloor mapping over areas of mud volcanism in the eastern Mediterranean Sea reveal an abundance of methane-rich fluid emissions, as well as specific seep-associated fauna (e.g. tubeworms, bivalves and chemosynthetic bacteria) and diagenetic deposits (i.e. carbonates

  14. Comparison of EBV DNA viral load in whole blood, plasma, B-cells and B-cell culture supernatant.

    Science.gov (United States)

    Ouedraogo, David Eric; Bollore, Karine; Viljoen, Johannes; Foulongne, Vincent; Reynes, Jacques; Cartron, Guillaume; Vendrell, Jean-Pierre; Van de Perre, Philippe; Tuaillon, Edouard

    2014-05-01

    Epstein-Barr virus (EBV) genome quantitation in whole blood is used widely for therapeutic monitoring of EBV-associated disorders in immunosuppressed individuals and in patients with EBV-associated lymphoma. However, the most appropriate biological material to be used for EBV DNA quantitation remains a subject of debate. This study compare the detection rate and levels of EBV DNA from whole blood, plasma, enriched B-cells, and B-cell short-term culture supernatant using quantitative real-time PCR. Samples were collected from 33 subjects with either HIV infection or B-cell lymphoma. Overall, EBV DNA was detected in 100% of enriched B-cell samples, in 82% of B-cell culture supernatants, in 57% of plasma, and 42% of whole blood samples. A significant correlation for EBV viral load was found between enriched B-cell and B-cell culture supernatant material (ρ = 0.92; P cells (ρ = -0.02; P = 0.89), whole blood and plasma (ρ = 0.24; P = 0.24), or enriched B-cells and plasma (ρ = 0.08; P = 0.77). Testing of enriched B-cells appeared to be the most sensitive method for detection of EBV DNA as well as for exploration of the cellular reservoir. Quantitation of EBV DNA in plasma and B-cell culture supernatant may be of interest to assess EBV reactivation dynamics and response to treatment as well as to decipher EBV host-pathogen interactions in various clinical scenarios. © 2013 Wiley Periodicals, Inc.

  15. Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Majidi, Majid; Zare, Kazem

    2017-01-01

    Highlights: • Optimum performance of PV/battery/fuel cell/grid hybrid system under load uncertainty. • Employing information gap decision theory (IGDT) to model the load uncertainty. • Robustness and opportunity functions of IGDT are modeled for risk-averse and risk-taker. • Robust strategy of hybrid system's operation obtained from robustness function. • Opportunistic strategy of hybrid system's operation obtained from opportunity function. - Abstract: Nowadays with the speed that electrical loads are growing, system operators are challenged to manage the sources they use to supply loads which means that that besides upstream grid as the main sources of electric power, they can utilize renewable and non-renewable energy sources to meet the energy demand. In the proposed paper, a photovoltaic (PV)/fuel cell/battery hybrid system along with upstream grid has been utilized to supply two different types of loads: electrical load and thermal load. Operators should have to consider load uncertainty to manage the strategies they employ to supply load. In other words, operators have to evaluate how load variation would affect their energy procurement strategies. Therefore, information gap decision theory (IGDT) technique has been proposed to model the uncertainty of electrical load. Utilizing IGDT approach, robustness and opportunity functions are achieved which can be used by system operator to take the appropriate strategy. The uncertainty modeling of load enables operator to make appropriate decisions to optimize the system’s operation against possible changes in load. A case study has been simulated to validate the effects of proposed technique.

  16. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    Directory of Open Access Journals (Sweden)

    Andressa Vilas Boas Nogueira

    2014-01-01

    Full Text Available The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS of low (CTSL and high (CTSH magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2 and prostaglandin E2 (PGE2 was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG and receptor activator of nuclear factor kappa-B ligand (RANKL were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P<0.05 increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

  17. The role of pH in lethal effect of glucose load malignant cells

    International Nuclear Information System (INIS)

    Shmakova, N.L.; Yarmonenko, S.P.; Laser, K.; Fomenkova, T.E.; Kozubek, S.; Korogodin, V.I.

    1985-01-01

    The lethal effect of variuos pH values on Erlich ascites tumour (EAT) calls has been investigated. Different pH values were obtained by means of both glucose load and phosphate buffers. The effect has been investigated by observing cell death in vitro, determining cancerogenity of EAT cells and determining their radiosensitivity. The results of all methods enabled us to conclude that the same values of pH lead to the same effect on EAT cells independently of the way by which the given pH value was reached. The lethal effect markedly increased when the value of pH was lower than 5.6. It is concluded that the basis of the mechanism of glucose load lethal effect is their ''self-acidisation''. The measurement of pH in tumours is proposed as a basic test for determining the suitability of the use of hyperglycemia in clinics and for comparison of the efficiency of various modes of treatment

  18. Lycopene loaded gelatin nanoparticles induces internucleosmal DNA fragmentation and apoptosis in human breast adenocarcinoma cells

    Science.gov (United States)

    Preetha, K. Mary Anne; Devasena, T.

    2018-06-01

    The complex disease, cancer is caused by genetic uncertainty and various molecular alterations. Due to the present ineffective diagnostic and prognostic classifications, the complete heterogeneity of a tumor is not revealed which in turn affects the selection of suitable treatment and patient outcome. Cancer nanotechnology is an emerging interdisciplinary research field that covers important aspects of chemistry, engineering, biology and medicine, leading to the advancement of cancer diagnosis and treatment. Hence the main aim of this study is to develop lycopene loaded gelatin nanoparticles and evaluate its in vitro anticancer activity using breast adenocarcinoma cells.

  19. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning

    Directory of Open Access Journals (Sweden)

    Jongryun Roh

    2018-01-01

    Full Text Available Sitting posture monitoring systems (SPMSs help assess the posture of a seated person in real-time and improve sitting posture. To date, SPMS studies reported have required many sensors mounted on the backrest plate and seat plate of a chair. The present study, therefore, developed a system that measures a total of six sitting postures including the posture that applied a load to the backrest plate, with four load cells mounted only on the seat plate. Various machine learning algorithms were applied to the body weight ratio measured by the developed SPMS to identify the method that most accurately classified the actual sitting posture of the seated person. After classifying the sitting postures using several classifiers, average and maximum classification rates of 97.20% and 97.94%, respectively, were obtained from nine subjects with a support vector machine using the radial basis function kernel; the results obtained by this classifier showed a statistically significant difference from the results of multiple classifications using other classifiers. The proposed SPMS was able to classify six sitting postures including the posture with loading on the backrest and showed the possibility of classifying the sitting posture even though the number of sensors is reduced.

  20. Targeted, homology-driven gene insertion in stem cells by ZFN-loaded 'all-in-one' lentiviral vectors

    DEFF Research Database (Denmark)

    Cai, Yujia; Laustsen, Anders; Zhou, Yan

    2016-01-01

    -driven mechanism into safe loci. This insertion mechanism is driven by time-restricted exposure of treated cells to ZFNs. We show targeted gene integration in human stem cells, including CD34+ hematopoietic progenitors and induced pluripotent stem cells (iPSCs). Notably, targeted insertions are identified in 89......% of transduced iPSCs. Our findings demonstrate the applicability of nuclease-loaded 'all-in-one' IDLVs for site-directed gene insertion in stem cell based gene therapies....

  1. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wonseok; Weber, Adam Z.

    2011-01-01

    The cathode catalyst layer within a proton-exchange-membrane fuel cell is the most complex and critical, yet least understood, layer within the cell. The exact method and equations for modeling this layer are still being revised and will be discussed in this paper, including a 0.8 reaction order, existence of Pt oxides, possible non-isopotential agglomerates, and the impact of a film resistance towards oxygen transport. While the former assumptions are relatively straightforward to understand and implement, the latter film resistance is shown to be critically important in explaining increased mass-transport limitations with low Pt-loading catalyst layers. Model results demonstrate agreement with experimental data that the increased oxygen flux and/or diffusion pathway through the film can substantially decrease performance. Also, some scale-up concepts from the agglomerate scale to the more macroscopic porous-electrode scale are discussed and the resulting optimization scenarios investigated.

  2. A Study of a Load Cell Based High Speed Weighting Method for a Potato Sorter

    International Nuclear Information System (INIS)

    Yang, Jong Hoon

    2002-02-01

    Potatoes, together with tangerines, are one of the major agricultural products in Jeju, and the production account for more than 30 % of the domestic production. Recently some kinds of sorting machine for potatoes are available, but they are not extensively used because their performance is not satisfactory and/or they are very expensive. This paper presents a load cell based high speed weighting method for sorting the potatoes. This method is based on the fact that the linear momentum of a potato is proportional to the mass of it. To test the performance of the weighting system, we developed load cell based automatic sorting system for potatoes. The system does not adopt an additional mechanism for weighting the potato such as a cup conveyer. It uses normal flat conveyers themselves so that the cost for maintenance and establishment will be lower than other system. Through sets of experiments, the developed weighting system was proved to be very reliable, and its performance is good enough to use as a practical sorting system

  3. High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Garcia-Ybarra, P.L.; Castillo, J.L. [Dept. Fisica Matematica y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-10-15

    Cathode electrodes for proton exchange membrane fuel cells (PEMFCs) with ultra-low platinum loadings as low as 0.012 mg{sub Pt}cm{sup -2} have been prepared by the electrospray method. The electrosprayed layers have nanostructured fractal morphologies with dendrites formed by clusters (about 100 nm diameter) of a few single catalyst particles rendering a large exposure surface of the catalyst. Optimization of the control parameters affecting this morphology has allowed us to overcome the state of the art for efficient electrodes prepared by electrospraying. Thus, using these cathodes in membrane electrode assemblies (MEAs), a high platinum utilization in the range 8-10 kW g{sup -1} was obtained for the fuel cell operating at 40 C and atmospheric pressure. Moreover, a platinum utilization of 20 kW g{sup -1} was attained under more suitable operating conditions (70 C and 3.4 bar over-pressure). These results substantially improve the performances achieved previously with other low platinum loading electrodes prepared by electrospraying. (author)

  4. Remelting of Aluminium by Continuous Submersion of Rolled Scrap

    Energy Technology Data Exchange (ETDEWEB)

    Farner, Snorre

    2000-12-01

    When remelting aluminium scrap, metal losses due to dross generation is a common problem. Reduction of these losses will give substantial economic and environmental benefits. Dross is generated when aluminium metal oxidizes and films of oxide envelope molten metal. When a cold metal object is immersed in a melt, the heat of the melt around this is transferred so rapidly into the object that a shell of melt often solidifies to the surface of the object. When scrap with low bulk density is charged to a melt, solidification of melt on the cold scrap prevents melt from entering the cavities in the bulk of the scrap, and the bulk density remains low. Thus the scrap tends to float on the melt surface. Submersion of this scrap is important to avoid oxidation and subsequent dross generation. One solution to this is to roll scrap to a strip and feed it into the melt. This system has been examined by studying feeding of a continuous, thin aluminium plate into molten aluminium. Also, the effect of lacquer was considered, as well as feeding the plate into a launder with melt flowing along the surface of the plate. An analytical, one-dimensional, steady-state model has been developed to describe the melting and the melting mechanisms. It is based on a shell solidifying on the plate surface and a gap introducing a thermal resistance 1/h{sub g} between the shell and the plate. The thermal resistance 1/h{sub l} of the boundary layer of the melt is included. Depending on these resistances, the initial temperature of the plate and the melt temperature, a shell will form, and the plate will penetrate a distance P into the melt before it melts away. An experimental apparatus was designed and constructed to feed aluminium plate from a coil into a melt bath at a specified velocity. The plate could be withdrawn rapidly to ''freeze'' the situation like it was below the melt surface. The penetration depth P of the plate could be measured and shell formation observed

  5. High load of Merkel cell polyomavirus DNA detected in the normal skin of Japanese patients with Merkel cell carcinoma.

    Science.gov (United States)

    Hashida, Yumiko; Nakajima, Kimiko; Nakajima, Hideki; Shiga, Takeo; Tanaka, Moe; Murakami, Masanao; Matsuzaki, Shigenobu; Naganuma, Seiji; Kuroda, Naoki; Seki, Yasutaka; Katano, Harutaka; Sano, Shigetoshi; Daibata, Masanori

    2016-09-01

    Although Merkel cell polyomavirus (MCPyV) has the potential to cause Merkel cell carcinoma (MCC), it is also found in the normal skin of healthy individuals. However, the mechanism for transformation of MCPyV to an oncogenic form is unknown. To investigate the levels of MCPyV infection in the normal skin patients with MCC compared with those in a control cohort. We studied a total of six Japanese patients with cutaneous MCC. Sun-exposed and sun-unexposed skin swabs were obtained and analyzed for MCPyV loads using quantitative real-time polymerase chain reaction. At first, we found a patient with MCC carrying an extremely high load of MCPyV DNA in normal skin. This unique case prompted us to further explore the levels of MCPyV as skin microbiota in patients with MCC. We showed that MCPyV DNA levels were significantly higher in swabs obtained from normal skin samples of six patients with MCC compared with those from 30 age-matched healthy individuals and 19 patients with other cutaneous cancers. Whereas MCPyV strains obtained from the normal skin of patients with MCC had gene sequences without structural alterations, sequences of the tumor-derived strains showed truncating mutations or deletions. Although the number of patients with MCC studied was small, our findings suggest that MCC may occur with a background of high MCPyV load in the skin, and are expected to stimulate further studies on whether such skin virome levels could be one of predictive markers for the development of MCC. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  7. Disseminated HIV-Associated Kaposi’s Sarcoma With High CD4 Cell Count And Low Viral Load

    Directory of Open Access Journals (Sweden)

    Diana Pereira Anjos

    2017-12-01

    Full Text Available Kaposi’s sarcoma is considered an acquired immunodeficiency syndrome-defining illness and is caused by human herpesvirus 8. It has been associated with patients infected with human immunodeficiency virus (HIV who have CD4 T lymphocytes <200 cells/uL and high viral loads. We report a case of a 23-year old woman infected with HIV-1 and receiving antiretroviral treatment since diagnosis, with high CD4 cell count and low viral load that presented with disseminated Kaposi’s sarcoma. Clinicians should be aware of the occurrence of Kaposi’s sarcoma despite robust CD4 cell counts.

  8. A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments.

    Science.gov (United States)

    Lindensmith, Christian A; Rider, Stephanie; Bedrossian, Manuel; Wallace, J Kent; Serabyn, Eugene; Showalter, G Max; Deming, Jody W; Nadeau, Jay L

    2016-01-01

    Sea ice is an analog environment for several of astrobiology's near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM) that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland. In all samples, the appearance and motility of eukaryotes were conclusive signs of life. The appearance of prokaryotic cells alone was not sufficient to confirm life, but when prokaryotic motility occurred, it was rapid and conclusive. Warming the samples to above-freezing temperatures or supplementing with serine increased the number of motile cells and the speed of motility; supplementing with serine also stimulated chemotaxis. These results show that DHM is a useful technique for detection of active organisms in extreme environments, and that motility may be used as a biosignature in the liquid brines that persist in ice. These findings have important implications for the design of missions to icy environments and suggest ways in which DHM imaging may be integrated with chemical life-detection suites in order to create more conclusive life detection packages.

  9. A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments.

    Directory of Open Access Journals (Sweden)

    Christian A Lindensmith

    Full Text Available Sea ice is an analog environment for several of astrobiology's near-term targets: Mars, Europa, Enceladus, and perhaps other Jovian or Saturnian moons. Microorganisms, both eukaryotic and prokaryotic, remain active within brine channels inside the ice, making it unnecessary to penetrate through to liquid water below in order to detect life. We have developed a submersible digital holographic microscope (DHM that is capable of resolving individual bacterial cells, and demonstrated its utility for immediately imaging samples taken directly from sea ice at several locations near Nuuk, Greenland. In all samples, the appearance and motility of eukaryotes were conclusive signs of life. The appearance of prokaryotic cells alone was not sufficient to confirm life, but when prokaryotic motility occurred, it was rapid and conclusive. Warming the samples to above-freezing temperatures or supplementing with serine increased the number of motile cells and the speed of motility; supplementing with serine also stimulated chemotaxis. These results show that DHM is a useful technique for detection of active organisms in extreme environments, and that motility may be used as a biosignature in the liquid brines that persist in ice. These findings have important implications for the design of missions to icy environments and suggest ways in which DHM imaging may be integrated with chemical life-detection suites in order to create more conclusive life detection packages.

  10. Submersible Data (Dive Waypoints) for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during one dive of the 2002 "Islands in the Stream - Deep Reef...

  11. vid113_0401p -- Point coverage of sediment types from video collected from the Delta submersible vehicle.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Delta submersible vehicle, outfitted with video equipment (and other devices), was deployed from theR/V Auriga during September 2001 to monitor seafloor...

  12. vid119_0601d -- Line coverage of sediment types from video collected from the Delta submersible vehicle.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Delta submersible vehicle, outfitted with video equipment (and other devices), was deployed from the R/V Auriga during September 2001 to monitor seafloor...

  13. vid119_0601c-- Point coverage of sediment types from video collected from the Delta submersible vehicle.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Delta submersible vehicle, outfitted with video equipment (and other devices), was deployed from the R/V Auriga during September 2001 to monitor seafloor...

  14. Modeling the Impacts of Suspended Sediment Concentration and Current Velocity on Submersed Vegetation in an Illinois River Pool, USA

    National Research Council Canada - National Science Library

    Best, Elly

    2004-01-01

    This technical note uses a modeling approach to examine the impacts of suspended sediment concentrations and current velocity on the persistence of submersed macrophytes in a shallow aquatic system...

  15. Submersible Data (Dive Waypoints) for Life on the Edge 2003: Exploring Deep Ocean Habitats - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during two of the seventeen dives of the 2003 "Life on the Edge -...

  16. Submersible Data (Dive Waypoints) for Islands in the Stream 2002 - Pharmaceutical Discovery, Vision, and Bioluminescence - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during one dive of the 2002 "Islands in the Stream -...

  17. Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels

    Directory of Open Access Journals (Sweden)

    AH Huang

    2012-07-01

    Full Text Available The primary goal of cartilage tissue engineering is to recapitulate the functional properties and structural features of native articular cartilage. While there has been some success in generating near-native compressive properties, the tensile properties of cell-seeded constructs remain poor, and key features of cartilage, including inhomogeneity and anisotropy, are generally absent in these engineered constructs. Therefore, in an attempt to instill these hallmark properties of cartilage in engineered cell-seeded constructs, we designed and characterized a novel sliding contact bioreactor to recapitulate the mechanical stimuli arising from physiologic joint loading (two contacting cartilage layers. Finite element modeling of this bioreactor system showed that tensile strains were direction-dependent, while both tensile strains and fluid motion were depth-dependent and highest in the region closest to the contact surface. Short-term sliding contact of mesenchymal stem cell (MSC-seeded agarose improved chondrogenic gene expression in a manner dependent on both the axial strain applied and transforming growth factor-β supplementation. Using the optimized loading parameters derived from these short-term studies, long-term sliding contact was applied to MSC-seeded agarose constructs for 21 d. After 21 d, sliding contact significantly improved the tensile properties of MSC-seeded constructs and elicited alterations in type II collagen and proteoglycan accumulation as a function of depth; staining for these matrix molecules showed intense localization in the surface regions. These findings point to the potential of sliding contact to produce engineered cartilage constructs that begin to recapitulate the complex mechanical features of the native tissue.

  18. Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study

    Science.gov (United States)

    Madsen, Steen J.; Shih, En-Chung; Peng, Qian; Christie, Catherine; Krasieva, Tatiana; Hirschberg, Henry

    2016-01-01

    Moderate hyperthermia (MHT) has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of commonly used chemotherapeutic agents with MHT induced by near-infrared (NIR) activation of gold nanoshell (AuNS)-loaded macrophages (Ma). AuNS-loaded murine Ma combined with human FaDu squamous cells, in hybrid monolayers, were subjected to three cytotoxic drugs (doxorubicin, bleomycin, cisplatin) with or without NIR laser irradiation. For all three drugs, efficacy was increased by NIR activation of AuNS-loaded Ma. The results of this in vitro study provide proof-of-concept for the use of AuNS-loaded Ma for photothermal enhancement of the effects of chemotherapy on squamous cell carcinoma.

  19. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells.

    Science.gov (United States)

    Suwannoi, Panita; Chomnawang, Mullika; Sarisuta, Narong; Reichl, Stephan; Müller-Goymann, Christel C

    2017-12-01

    The aim of the present study was to develop acyclovir (ACV) ocular drug delivery systems of bovine serum albumin (BSA) nanoparticles as well as to assess their in vitro transcorneal permeation across human corneal epithelial (HCE-T) cell multilayers. The ACV-loaded BSA nanoparticles were prepared by desolvation method along with physicochemical characterization, cytotoxicity, as well as in vitro transcorneal permeation studies across HCE-T cell multilayers. The nanoparticles appeared to be spherical in shape and nearly uniform in size of about 200 nm. The size of nanoparticles became smaller with decreasing BSA concentration, while the ratios of water to ethanol seemed not to affect the size. Increasing the amount of ethanol in desolvation process led to significant reduction of drug entrapment of nanoparticles with smaller size and more uniformity. The ACV-loaded BSA nanoparticles prepared were shown to have no cytotoxic effect on HCE-T cells used in permeation studies. The in vitro transcorneal permeation results revealed that ACV could permeate through the HCE-T cell multilayers significantly higher from BSA nanoparticles than from aqueous ACV solutions. The ACV-loaded BSA nanoparticles could be prepared by desolvation method without glutaraldehyde in the formulation. ACV could increasingly permeate through the multilayers of HCE-T cells from the ACV-loaded BSA nanoparticles. Therefore, the ACV-loaded BSA nanoparticles could be a highly potential ocular drug delivery system.

  20. A coupled diffusion-fluid pressure model to predict cell density distribution for cells encapsulated in a porous hydrogel scaffold under mechanical loading.

    Science.gov (United States)

    Zhao, Feihu; Vaughan, Ted J; Mc Garrigle, Myles J; McNamara, Laoise M

    2017-10-01

    Tissue formation within tissue engineering (TE) scaffolds is preceded by growth of the cells throughout the scaffold volume and attachment of cells to the scaffold substrate. It is known that mechanical stimulation, in the form of fluid perfusion or mechanical strain, enhances cell differentiation and overall tissue formation. However, due to the complex multi-physics environment of cells within TE scaffolds, cell transport under mechanical stimulation is not fully understood. Therefore, in this study, we have developed a coupled multiphysics model to predict cell density distribution in a TE scaffold. In this model, cell transport is modelled as a thermal conduction process, which is driven by the pore fluid pressure under applied loading. As a case study, the model is investigated to predict the cell density patterns of pre-osteoblasts MC3T3-e1 cells under a range of different loading regimes, to obtain an understanding of desirable mechanical stimulation that will enhance cell density distribution within TE scaffolds. The results of this study have demonstrated that fluid perfusion can result in a higher cell density in the scaffold region closed to the outlet, while cell density distribution under mechanical compression was similar with static condition. More importantly, the study provides a novel computational approach to predict cell distribution in TE scaffolds under mechanical loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  2. Influence of temperature and salinity on heavy metal uptake by submersed plants

    International Nuclear Information System (INIS)

    Fritioff, A.; Kautsky, L.; Greger, M.

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants

  3. Oligonol Supplementation Affects Leukocyte and Immune Cell Counts after Heat Loading in Humans

    Directory of Open Access Journals (Sweden)

    Jeong Beom Lee

    2014-06-01

    Full Text Available Oligonol is a low-molecular-weight form of polyphenol and has antioxidant and anti-inflammatory activity, making it a potential promoter of immunity. This study investigates the effects of oligonol supplementation on leukocyte and immune cell counts after heat loading in 19 healthy male volunteers. The participants took a daily dose of 200 mg oligonol or a placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. After each supplement, half-body immersion into hot water was made, and blood was collected. Then, complete and differential blood counts were performed. Flow cytometry was used to enumerate and phenotype lymphocyte subsets. Serum concentrations of interleukin (IL-1β and IL-6 in blood samples were analyzed. Lymphocyte subpopulation variables included counts of total T cells, B cells, and natural killer (NK cells. Oligonol intake attenuated elevations in IL-1β (an 11.1-fold change vs. a 13.9-fold change immediately after heating; a 12.0-fold change vs. a 12.6-fold change 1h after heating and IL-6 (an 8.6-fold change vs. a 9.9-fold change immediately after heating; a 9.1-fold change vs. a 10.5-fold change 1h after heating immediately and 1 h after heating in comparison to those in the placebo group. Oligonol supplementation led to significantly higher numbers of leukocytes (a 30.0% change vs. a 21.5% change immediately after heating; a 13.5% change vs. a 3.5% change 1h after heating and lymphocytes (a 47.3% change vs. a 39.3% change immediately after heating; a 19.08% change vs. a 2.1% change 1h after heating relative to those in the placebo group. Oligonol intake led to larger increases in T cells, B cells, and NK cells at rest (p < 0.05, p < 0.05, and p < 0.001, respectively and immediately after heating (p < 0.001 in comparison to those in the placebo group. In addition, levels of T cells (p < 0.001 and B cells (p < 0.001 were significantly higher 1 h after heating in comparison to those in

  4. Docetaxel-loaded solid lipid nanoparticles suppress breast cancer cells growth with reduced myelosuppression toxicity

    Directory of Open Access Journals (Sweden)

    Yuan Q

    2014-10-01

    Full Text Available Qing Yuan,1 Jing Han,1,2 Wenshu Cong,1 Ying Ge,3 Dandan Ma,1,3,4 Zhaoxia Dai,3,4 Yaping Li,5 Xiaolin Bi1,3,4 1CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 2School of Life Sciences, Anhui University, Hefei, 3Cancer Center, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 4Graduate School, Dalian Medical University, Dalian, 5Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Docetaxel is an adjuvant chemotherapy drug widely used to treat multiple solid tumors; however, its toxicity and side effects limit its clinical efficacy. Herein, docetaxel-loaded solid lipid nanoparticles (DSNs were developed to reduce systemic toxicity of docetaxel while still keeping its anticancer activity. To evaluate its anticancer activity and toxicity, and to understand the molecular mechanisms of DSNs, different cellular, molecular, and whole genome transcription analysis approaches were utilized. The DSNs showed lower cytotoxicity compared with the commercial formulation of docetaxel (Taxotere® and induced more apoptosis at 24 hours after treatment in vitro. DSNs can cause the treated cancer cells to arrest in the G2/M phase in a dose-dependent manner similar to Taxotere. They can also suppress tumor growth very effectively in a mice model with human xenograft breast cancer. Systemic analysis of gene expression profiles by microarray and subsequent verification experiments suggested that both DSNs and Taxotere regulate gene expression and gene function, including DNA replication, DNA damage response, cell proliferation, apoptosis, and cell cycle regulation. Some of these genes expressed differentially at the protein level although their messenger RNA expression level was similar under Taxotere and DSN treatment. Moreover, DSNs improved the main side effect of Taxotere by greatly

  5. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel

    Directory of Open Access Journals (Sweden)

    AH Huang

    2010-02-01

    Full Text Available Mesenchymal stem cells (MSCs are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this study, we applied long-term dynamic compression to MSC-seeded constructs and assessed whether varying pre-culture duration, loading regimens and inclusion of TGF-beta3 during loading would influence functional outcomes and these phenotypic transitions. Loading initiated before chondrogenesis decreased functional maturation, although chondrogenic gene expression increased. In contrast, loading initiated after chondrogenesis and matrix elaboration further improved the mechanical properties of MSC-based constructs, but only when TGF-beta3 levels were maintained and under specific loading parameters. Although matrix quantity was not affected by dynamic compression, matrix distribution, assessed histologically and by FT-IRIS analysis, was significantly improved on the micro- (pericellular and macro- (construct expanse scales. Further, whole genome expression profiling revealed marked shifts in the molecular topography with dynamic loading. These results demonstrate, for the first time, that dynamic compressive loading initiated after a sufficient period of chondro-induction and with sustained TGF-beta exposure enhances matrix distribution and the mechanical properties of MSC-seeded constructs.

  6. Cell Death, Neuronal Plasticity and Functional Loading in the Development of the Central Nervous System

    Science.gov (United States)

    Keefe, J. R.

    1985-01-01

    Research on the precise timing and regulation of neuron production and maturation in the vestibular and visual systems of Wistar rats and several inbred strains of mice (C57B16 and Pallid mutant) concentrated upon establishing a timing baseline for mitotic development of the neurons of the vestibular nuclei and the peripheral vestibular sensory structures (maculae, cristae). This involved studies of the timing and site of neuronal cell birth and preliminary studies of neuronal cell death in both central and peripheral elements of the mammalian vestibular system. Studies on neuronal generation and maturation in the retina were recently added to provide a mechanism for more properly defining the in utero' developmental age of the individual fetal subject and to closely monitor potential transplacental effects of environmentally stressed maternal systems. Information is given on current efforts concentrating upon the (1) perinatal period of development (E18 thru P14) and (2) the role of cell death in response to variation in the functional loading of the vestibular and proprioreceptive systems in developing mammalian organisms.

  7. Load-balancing techniques for a parallel electromagnetic particle-in-cell code

    Energy Technology Data Exchange (ETDEWEB)

    PLIMPTON,STEVEN J.; SEIDEL,DAVID B.; PASIK,MICHAEL F.; COATS,REBECCA S.

    2000-01-01

    QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.

  8. Load-balancing techniques for a parallel electromagnetic particle-in-cell code

    International Nuclear Information System (INIS)

    Plimpton, Steven J.; Seidel, David B.; Pasik, Michael F.; Coats, Rebecca S.

    2000-01-01

    QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER

  9. Portable load-cell based system for weighing UF6 cylinders

    International Nuclear Information System (INIS)

    Fainberg, A.; Gordon, D.; Dermendjiev, E.; Terrey, D.; Mitchell, R.

    1982-01-01

    A load-cell-based portable weighing system which is capable of verifying the weights of 2.2 tonne 30-inch UF 6 cylinders has been developed by the US National Bureau of Standards (NBS). This system weighs about 13 kg and has an attainable accuracy of about 1 kg. After an initial calibration at NBS, the system is ready for use in the field. Approximately 5 to 10 minutes are needed for assembly, and, if an overhead crane has access to all cylinders to be weighed, from 10 to 15 weighings may be performed in one hour. During the past year the system has been tested at several facilities around the world with satisfactory results and with favorable comments from the facility operators. Results of several tests are presented in this paper

  10. Fast Response, Load-Matching Hybrid Fuel Cell: Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, T. S.; Sitzlar, H. E.; Geist, T. D.

    2003-06-01

    Hybrid DER technologies interconnected with the grid can provide improved performance capabilities compared to a single power source, and, add value, when matched to appropriate applications. For example, in a typical residence, the interconnected hybrid system could provide power during a utility outage, and also could compensate for voltage sags in the utility service. Such a hybrid system would then function as a premium power provider and eliminate the potential need for an uninterruptible power supply. In this research project, a proton exchange membrane (PEM) fuel cell is combined with an asymmetrical ultracapacitor to provide robust power response to changes in system loading. This project also considers the potential of hybrid DER technologies to improve overall power system compatibility and performance. This report includes base year accomplishments of a proposed 3-year-option project.

  11. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A., E-mail: beck@llr.in2p3.fr [Laboratoire Leprince-Ringuet, École polytechnique, CNRS-IN2P3, Palaiseau 91128 (France); Frederiksen, J.T. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø (Denmark); Dérouillat, J. [CEA, Maison de La Simulation, 91400 Saclay (France)

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  12. Synthesis of drug loaded magnetic nanoparticles and their uptake into immune cells

    International Nuclear Information System (INIS)

    Prinz, Eva-Marie; Hempelmann, Rolf; Eggers, Ruth; Lee, Hyeck-Hee; Steinfeld, Ute

    2010-01-01

    Ferrite nanoparticles (Mn 0,8 Zn 0,2 Fe 2 O 4 ) are synthesized by the co-precipitation method and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. The particles are functionalized with dextran which is activated via amino or carboxymethyl groups. The chemotherapeutic drug doxorubicin (DOX) is attached to these dextran derivates in different ways. One method is based on the attachment of DOX to amino dextran by its keto group; the other is a bond to the primary amino group of DOX. The characterization of drug loaded dextran derivates is performed by Raman, FT-IR-, UV/VIS-and fluorescence spectroscopy. The biofunctionalized particles are intended for use in adoptive cancer immunotherapy as a new approach, where immune cells (T lymphocytes) will be used as new autonomous highly target specific drug delivery systems. The uptake efficiency of these particles into T lymphocytes is investigated by fluorescence and convocal microscopy.

  13. Concept of a nuclear powered submersible research vessel and a compact reactor

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Odano, Naoteru; Yoritsune, Tsutomu; Ishida, Toshihisa; Nishimura, Hajime; Tokunaga, Sango

    2001-07-01

    A conceptual design study of a submersible research vessel navigating in 600 m depth and a compact nuclear reactor were carried out for the expansion of the nuclear power utilization. The mission of the vessel is the research of mechanism of the climate change to predict the global environment. Through conditions of the Arctic Ocean and the sea at high latitude have significant impacts on the global environmental change, it is difficult to investigate those areas by ordinary ships because of thick ice or storm. Therefore the research vessel is mainly utilized in the Arctic Ocean and the sea at high latitude. By taking account of the research mission, the basic specifications of the vessel are decided; the total weight is 500 t, the submersible depth is 600 m, the maximum speed is 12 knots (22.2 km/h), and the number of crews is 16. Nuclear power has an advantage in supplying large power of electricity in the sea for long period. Based on the requirements, it has been decided that two sets of submersible compact reactor, SCR, which is light-weighted and of enhanced safety characteristics of supply the total electricity of 500 kW. (author)

  14. Curcumin-loaded lipid nanocarrier for improving bioavailability, stability and cytotoxicity against malignant glioma cells.

    Science.gov (United States)

    Kumar, Anil; Ahuja, Alka; Ali, Javed; Baboota, Sanjula

    2016-01-01

    In the present study, Curcumin (CU)-loaded nanocarrier (NC) such as nanoemulsion (NE) was developed with the objective of increasing its cytotoxicity and bioavailability through lymphatic transport by enhancing its solubility and intestinal permeability. Based on the area obtained in pseudoternary phase diagram, various % combination of Labrafac Lipophile WL 1349, Solutol HS 15, Transcutol HP and distilled water were selected. Formulations which passed physical stability studies were selected for further studies such as globule size, zeta potential, in vitro release, ex vivo permeation, in vitro lipolysis studies, bioavailability studies and cytotoxicity against glioblastoma cells (U-87). The optimized NC (NE-SB1) had small average globule diameter of 67 ± 6 nm with zeta potential of -37 ± 2.5 mv which indicated long-term dispersion stability. During in vitro lipolysis study, the digestion rate of medium chain triglycerides increased with decreased globule diameter. Statistically significant difference was found in AUC0-inf of NC formulation (p < 0.05) compared to CU suspension. The relative bioavailability of NC was found 11.88 ± 0.47 with respect to CU suspension. During cytotoxicity studies, IC50 of CU solution on U87 cells was found 24.23 µM, while for the NE- SB1 it was 16.41 µM. The optimized formulation was found to be stable during 6 months of accelerated stability. The overall results revealed that the CU-loaded NC is a very effective approach for enhancing the oral absorption of poorly water-soluble drug CU and have great potential for future clinical application.

  15. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    Science.gov (United States)

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  16. Load-cell-based weighing system for weighing 9.1- and 12.7-tonne UF6 cylinders

    International Nuclear Information System (INIS)

    McAuley, W.A.; Kane, W.R.

    1986-01-01

    For the independent verification of UF 6 cylinder masses by the International Atomic Energy Agency (IAEA) at uranium enrichment facilities, an 18-tonne capacity Load-Cell-Based Weighing System (LCBWS) has been developed. The system was developed at Brookhaven National Laboratory and the Oak Ridge Gaseous Diffusion Plant and calibrated at the US National Bureau of Standards. The principal components of the LCBWS are two load cells, with readout and ancillary equipment, and a lifting fixture that couples the load cells to a cylinder. Initial experience with the system demonstrates that it has the advantages of transportability, ease of application, stability, and an attainable accuracy of 2 kg or better for a full cylinder

  17. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Alkhatib, Mayson H., E-mail: mhalkhatib@kau.edu.sa; AlBishi, Hayat M. [College of Science, King Abdulaziz University, Department of Biochemistry (Saudi Arabia)

    2013-03-15

    Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.

  18. Effects of eutrophication and temperature on submersed rooted plants

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl

    nutrient levels facilitate the formation of pelagic alga blooms which lead to poor light conditions (Nielsen et al., 2002). However, the lack of re‐colonization after reduced nutrient loading for Zostera marina and other seagrasses indicates that other factors influence the pattern. Sedimentation...... in combination with high temperature affect internal oxygen concentrations, growth and survival of aquatic macrophytes. Measurements of internal oxygen levels were made on several north temperate and tropical marine seagrass species exposed to a range of water column oxygen concentrations. The combined effects...... of eutrophication and temperatures were clarified for the temporal seagrass Zostera marina. Furthermore, the direct effect of sediment enrichment with labile organic matter was examined for four freshwater species with different growth strategies (isoetids: Lobelia dortmanna and Littorella uniflora, and elodeids...

  19. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  20. Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells

    International Nuclear Information System (INIS)

    Papa, Anne-Laure; Basu, Sudipta; Sengupta, Poulomi; Banerjee, Deboshri; Sengupta, Shiladitya; Harfouche, Rania

    2012-01-01

    Pancreatic cancer remains the deadliest of all cancers, with a mortality rate of 91%. Gemcitabine is considered the gold chemotherapeutic standard, but only marginally improves life-span due to its chemical instability and low cell penetrance. A new paradigm to improve Gemcitabine’s therapeutic index is to administer it in nanoparticles, which favour its delivery to cells when under 500 nm in diameter. Although promising, this approach still suffers from major limitations, as the choice of nanovector used as well as its effects on Gemcitabine intracellular trafficking inside pancreatic cancer cells remain unknown. A proper elucidation of these mechanisms would allow for the elaboration of better strategies to engineer more potent Gemcitabine nanotherapeutics against pancreatic cancer. Gemcitabine was encapsulated in two types of commonly used nanovectors, namely poly(lactic-co-glycolic acid) (PLGA) and cholesterol-based liposomes, and their physico-chemical parameters assessed in vitro. Their mechanisms of action in human pancreatic cells were compared with those of the free drug, and with each others, using cytotoxity, apoptosis and ultrastructural analyses. Physico-chemical analyses of both drugs showed high loading efficiencies and sizes of less than 200 nm, as assessed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), with a drug release profile of at least one week. These profiles translated to significant cytotoxicity and apoptosis, as well as distinct intracellular trafficking mechanisms, which were most pronounced in the case of PLGem showing significant mitochondrial, cytosolic and endoplasmic reticulum stresses. Our study demonstrates how the choice of nanovector affects the mechanisms of drug action and is a crucial determinant of Gemcitabine intracellular trafficking and potency in pancreatic cancer settings

  1. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    Science.gov (United States)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an

  2. EFFECT OF TEFLON AND NAFION LOADING AT ANODE IN DIRECT FORMIC ACID FUEL CELL (DFAFC

    Directory of Open Access Journals (Sweden)

    M. S. MASDAR

    2016-08-01

    Full Text Available DFAFC has extensive hydrophilic nature and will cause problems in a limited mass transport in the anode side of electrode. Thus, the microporous layer (MPL of DFAFC needs a different in structure and morphology compared with that of PEMFC and DMFC because it will directly affect the performance. Therefore, in this study, the formulation of anode’s MPL has been investigated by varying the amount of Teflon and Nafion. Different loading of Teflon in MPL and Nafion in catalyst layer, i.e., 0 to 40% in weight, were used to fabricate the anode’s DFAFC. The characteristic of MPLs and anode (MPL with catalyst layer such as surface morphologies and resistivity, i.e., electrical impedance, have been analyzed using field emission scanning electron microscopy (FESEM and contact angle measurements as well as electrochemical impedance spectra (EIS. Meanwhile, the performance of fabricated anode was measured using cyclic voltammetry (CV technique with a half cell of DFAFC. From the result, it was obtained that the optimum content for both Teflon and Nafion on anode’s DFAFC was 20 wt% as shown in a highest electro-activity in electrode. The single cell DFAFC with optimum MEA formulation showed a good performance and hence, it is possible to apply the electricity power for electronic devices.

  3. Highly Zeolite-Loaded Polyvinyl Alcohol Composite Membranes for Alkaline Fuel-Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Po-Ya Hsu

    2018-01-01

    Full Text Available Having a secure and stable energy supply is a top priority for the global community. Fuel-cell technology is recognized as a promising electrical energy generation system for the twenty-first century. Polyvinyl alcohol/zeolitic imidazolate framework-8 (PVA/ZIF-8 composite membranes were successfully prepared in this work from direct ZIF-8 suspension solution (0–45.4 wt % and PVA mixing to prevent filler aggregation for direct methanol alkaline fuel cells (DMAFCs. The ZIF-8 fillers were chosen for the appropriate cavity size as a screening aid to allow water and suppress methanol transport. Increased ionic conductivities and suppressed methanol permeabilities were achieved for the PVA/40.5% ZIF-8 composites, compared to other samples. A high power density of 173.2 mW cm−2 was achieved using a KOH-doped PVA/40.5% ZIF-8 membrane in a DMAFC at 60 °C with 1–2 mg cm−2 catalyst loads. As the filler content was raised beyond 45.4 wt %, adverse effects resulted and the DMAFC performance (144.9 mW cm−2 was not improved further. Therefore, the optimal ZIF-8 content was approximately 40.5 wt % in the polymeric matrix. The specific power output was higher (58 mW mg−1 than most membranes reported in the literature (3–18 mW mg−1.

  4. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    Science.gov (United States)

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  5. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity.

    Science.gov (United States)

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage.

    Science.gov (United States)

    Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L

    2011-05-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.

  7. Active load current sharing in fuel cell and battery fed DC motor drive for electric vehicle application

    International Nuclear Information System (INIS)

    Pany, Premananda; Singh, R.K.; Tripathi, R.K.

    2016-01-01

    Highlights: • Load current sharing in FC and battery fed dc drive. • Active current sharing control using LabVIEW. • Detail hardware implementation. • Controller performance is verified through MATLAB simulation and experimental results. - Abstract: In order to reduce the stress on fuel cell based hybrid source fed electric drive system the controller design is made through active current sharing (ACS) technique. The effectiveness of the proposed ACS technique is tested on a dc drive system fed from fuel cell and battery energy sources which enables both load current sharing and source power management. High efficiency and reliability of the hybrid system can be achieved by proper energy conversion and management of power to meet the load demand in terms of required voltage and current. To overcome the slow dynamics feature of FC, a battery bank of adequate power capacity has to be incorporated as FC voltage drops heavily during fast load demand. The controller allows fuel cell to operate in normal load region and draw the excess power from battery. In order to demonstrate the performance of the drive using ACS control strategy different modes of operation of the hybrid source with the static and dynamic behavior of the control system is verified through simulation and experimental results. This control scheme is implemented digitally in LabVIEW with PCI 6251 DAQ I/O interface card. The efficacy of the controller performance is demonstrated in system changing condition supplemented by experimental validation.

  8. The Reusable Load Cell with Protection Applied for Online Monitoring of Overhead Transmission Lines Based on Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Guoming Ma

    2016-06-01

    Full Text Available Heavy ice coating of high–voltage overhead transmission lines may lead to conductor breakage and tower collapse causing the unexpected interrupt of power supply. The optical load cell applied in ice monitoring systems is immune to electromagnetic interference and has no need of a power supply on site. Therefore, it has become a hot research topic in China and other countries. In this paper, to solve the problem of eccentric load in measurement, we adopt the shearing structure with additional grooves to improve the strain distribution and acquire good repeatability. Then, the fiber Bragg grating (FBG with a permanent weldable package are mounted onto the front/rear groove of the elastic element by spot welding, the direction deviation of FBGs is 90° from each other to achieve temperature compensation without an extra FBG. After that, protection parts are designed to guarantee high sensitivity for a light load condition and industrial safety under a heavy load up to 65 kN. The results of tension experiments indicate that the sensitivity and resolution of the load cell is 0.1285 pm/N and 7.782 N in the conventional measuring range (0–10 kN. Heavy load tension experiments prove that the protection structure works and the sensitivity and resolution are not changed after several high load (65 kN cycles. In addition, the experiment shows that the resolution of the sensor is 87.79 N in the large load range, allowing the parameter to be used in heavy icing monitoring.

  9. Controllable labelling of stem cells with a novel superparamagnetic iron oxide-loaded cationic nanovesicle for MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ruo Mi; Zhang, Fang; Wen, Xue Hua; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China); Cao, Nuo; Wang, Yi Ru; Shuai, Xin Tao [Sun Yat-Sen University, BME Center, School of Chemistry and Chemical Engineering, Guangzhou (China)

    2012-11-15

    To investigate the feasibility of highly efficient and controllable stem cell labelling for cellular MRI. A new class of cationic, superparamagnetic iron oxide nanoparticle (SPION)-loaded nanovesicles was synthesised to label rat bone marrow mesenchymal stem cells without secondary transfection agents. The optimal labelling conditions and controllability were assessed, and the effect of labelling on cell viability, proliferation activity and multilineage differentiation was determined. In 18 rats, focal ischaemic cerebral injury was induced and the rats randomly injected with 1 x 10{sup 6} cells labelled with 0-, 8- or 20-mV nanovesicles (n = 6 each). In vivo MRI was performed to follow grafted cells in contralateral striata, and results were correlated with histology. Optimal cell labelling conditions involved a concentration of 3.15 {mu}g Fe/mL nanovesicles with 20-mV positive charge and 1-h incubation time. Labelling efficiency showed linear change with an increase in the electric potentials of nanovesicles. Labelling did not affect cell viability, proliferation activity or multilineage differentiation capacity. The distribution and migration of labelled cells could be detected by MRI. Histology confirmed that grafted cells retained the label and remained viable. Stem cells can be effectively and safely labelled with cationic, SPION-loaded nanovesicles in a controllable way for cellular MRI. (orig.)

  10. Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells.

    Science.gov (United States)

    Dhivya, Raman; Ranjani, Jothi; Bowen, Patrick K; Rajendhran, Jeyaprakash; Mayandi, Jeyanthinath; Annaraj, Jamespandi

    2017-11-01

    Although curcumin is efficient in killing cancer cells, its poor water solubility and assocaited inadequate bioavailability remain major limitations to its therapeutic application. The formulation of curcumin micellar nanoparticles (NPs) encapsulated with a biodegradable polymer promises to significantly improve curcumin's solubility, stability, and bioavailability. The past decade has witnessed the development of nanoscale curcumin delivery systems: curcumin-loaded liposomes or nanoparticles, self-microemulsifying drug delivery systems (SMEDDS), cyclodextrin inclusions, solid dispersions, nanodisks, and nanotubes. The intention of the present investigation was to enhance the bioavailability and ultimately the efficacy of curcumin by developing a curcumin loaded PMMA-PEG/ZnO bionanocomposite utilizing insoluble curcumin and poorly soluble ZnO nanoparticles. Here, the drug (curcumin) may be carry and deliver the biomolecule(s) by polymer-encapsulated ZnO NPs. Physical characteristics of these novel nanomaterials have been studied with transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) in conjunction with spectral techniques. Aqueous solubility of curcumin was augmented upon conjugation with the polymer-stabilized ZnO NPs. A narrow nanocomposite particle size distribution with an average value of 40 to 90nm was found via TEM. Most importantly, the pH-responsive release of curcumin from the nano-vehicle ensures safer, more controlled delivery of the drug at physiological pH. Cytotoxic potential and cellular uptake of curcumin loaded ZnO NPs were assessed by) cell viability assay, cell cycle assays along with the cell imaging studies have been done in addition to MTT using AGS cancer cells. Hence, these studies demonstrate that the clinical potential of the Curcumin Loaded PMMA-PEG/ZnO can induce the apoptosis of cancer cells through a cell cycle mediated apoptosis corridor, which raises its probability to cure gastric cancer cells. Copyright

  11. Icariin-Loaded TiO2 Nanotubes for Regulation of the Bioactivity of Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-01-01

    Full Text Available To explore the effects of icariin on the biocompatibility of dental implants, icariin- (ICA- loaded TiO2 nanotubes were fabricated on Ti substrates via anodic oxidation and physical absorption. The surface characteristics of the specimens were monitored by field emission scanning electron microscopy (FE-SEM, X-ray diffractometry (XRD, contact angle measurements (CA, and high-pressure liquid chromatography. Additionally, the activities of bone marrow cells, such as cytoskeletal, proliferative activities, mineralization, and osteogenesis-related gene expression on the substrates were investigated in detail. The characterization results demonstrated that ICA-loaded TiO2 nanotubes were successfully fabricated and the hydrophilicity of these TiO2 nanotubes was significantly higher than that of the pure Ti groups. The results also showed that ICA-loaded TiO2 nanotubes might not have enhanced effects on cell proliferation and ALP expression. However, it seemed to significantly promote differentiation of bone marrow cells, demonstrated by enhancing the formation of mineralized nodule and the upregulation of the gene expression such as OC, BSP, OPN, and COL-1. The results indicated that ICA-loaded TiO2 nanotubes can modulate bioactivity of bone marrow cells, which is promising for potential applications in the orthopedics field.

  12. Effect of Zebularine loaded MePEG-PCL nanoparticles on viability, attachment of in vitro cultured lens epithelial cells

    Directory of Open Access Journals (Sweden)

    Si-Wei Liu

    2015-01-01

    Full Text Available AIM: To investigate the effect of zebularine(Zebloaded Poly(ethylene glycol-block-poly(ε-caprolactonemethyl ether(MePEG-PCLnanoparticles(NPson the viability, attachment, and apoptosis of in vitro cultured lens epithelial cells(LECs. METHODS: In vitro cultured infant human lens tissue HLE B-3 immortalized cells were distributed randomly divided into six groups. Each group was administered with free Zeb 50μmol/L(ZebF1 group, 100μmol/L(ZebF2 group, Zeb -loaded MePEG-PCL NPs 50μmol/L(ZebNP1 group, Zeb -loaded MePEG-PCL NPs 100μmol/L(ZebNP2 group, MePEG-PCL empty NPs(NPs groupor blank medium(group Crespectively. A tetrazolium dye assay(MTTtest and modified MTT test were performed to determine cell viability and cell attachment. DNA ladder was used to detect the cell apoptosis. RESULTS: Determined by MTT colorimetric method: Cell proliferation rate of LECs were suppressed by all Zeb administration groups in a concentration-time dependent manner(PPP ZebNP1>ZebF2(PCONCLUSION: Zeb loaded MePEG-PCL NPs had better effect on suppressing the viability and attachment of in vitro cultured LECs than the free Zeb groups, as well as enhancing the apoptosis.

  13. Dendritic cells induce specific cytotoxic T lymphocytes against prostate cancer TRAMP-C2 cells loaded with freeze- thaw antigen and PEP-3 peptide.

    Science.gov (United States)

    Liu, Xiao-Qi; Jiang, Rong; Li, Si-Qi; Wang, Jing; Yi, Fa-Ping

    2015-01-01

    Prostate cancer is the most common cancer in men. In this study, we investigated immune responses of cytotoxic T lymphocytes (CTLs) against TRAMP-C2 prostate cancer cells after activation by dendritic cells (DCs) loaded with TRAMP-C2 freeze-thaw antigen and/or PEP-3 peptide in vitro. Bone marrow-derived DC from the bone marrow of the C57BL/6 were induced to mature by using the cytokine of rhGM-CSF and rhIL-4, and loaded with either the freeze-thaw antigen or PEP-3 peptide or both of them. Maturation of DCs was detected by flow cytometry. The killing efficiency of the CTLs on TRAMP-C2 cells were detected by flow cytometry, CCK8, colony formation, transwell migration, and wound-healing assay. The levels of the IFN-γ, TNF-β and IL-12 were measured by enzyme-linked immunosorbent assay (ELISA). Compared with the unloaded DCs, the loaded DCs had significantly increased expression of several phenotypes related to DC maturation. CTLs activated by DCs loaded with freeze-thaw antigen and PEP-3 peptide had more evident cytotoxicity against TRAMP-C2 cells in vitro. The secretion levels of IFN-γ, TNF-β and IL-12, secreted by DCs loaded with antigen and PEP-3 and interaction with T cells, were higher than in the other groups. Our results suggest that the CTLs activated by DCs loaded with TRAMP-C2 freeze-thaw antigen and PEP-3 peptide exert a remarkable killing efficiency against TRAMP-C2 cells in vitro.

  14. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    Science.gov (United States)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  15. Merkel cell carcinoma: histopathologic and prognostic features according to the immunohistochemical expression of Merkel cell polyomavirus large T antigen correlated with viral load.

    Science.gov (United States)

    Leroux-Kozal, Valérie; Lévêque, Nicolas; Brodard, Véronique; Lesage, Candice; Dudez, Oriane; Makeieff, Marc; Kanagaratnam, Lukshe; Diebold, Marie-Danièle

    2015-03-01

    Merkel cell carcinoma (MCC) is a neuroendocrine skin malignancy frequently associated with Merkel cell polyomavirus (MCPyV), which is suspected to be oncogenic. In a series of MCC patients, we compared clinical, histopathologic, and prognostic features according to the expression of viral large T antigen (LTA) correlated with viral load. We evaluated the LTA expression by immunohistochemistry using CM2B4 antibody and quantified viral load by real-time polymerase chain reaction. We analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples (n = 36) and corresponding fresh-frozen biopsies when available (n = 12), of the primary tumor and/or metastasis from 24 patients. MCPyV was detected in 88% and 58% of MCC patients by real-time polymerase chain reaction and immunohistochemistry, respectively. The relevance of viral load measurements was demonstrated by the strong consistency of viral load level between FFPE and corresponding frozen tissues as well as between primary tumor and metastases. From FFPE samples, 2 MCC subgroups were distinguished based on a viral load threshold defined by the positivity of CM2B4 immunostaining. In the LTA-negative subgroup with no or low viral load (nonsignificant), tumor cells showed more anisokaryosis (P = .01), and a solar elastosis around the tumor was more frequently observed (P = .03). LTA-positive MCCs with significant viral load had a lower proliferation index (P = .03) and a longer survival of corresponding patients (P = .008). Depending on MCPyV involvement, 2 MCC subgroups can be distinguished on histopathologic criteria, and the CM2B4 antibody is able to differentiate them reliably. Furthermore, the presence of a significant viral load in tumors is predictive of better prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Analysis of Electric Propulsion Performance on Submersible with Motor DC, Supply Power 10260AH at Voltage 115VDC

    Directory of Open Access Journals (Sweden)

    Indra Ranu Kusuma

    2017-03-01

    Full Text Available Electric propulsion is the ship system using propulsion motor to replace performance of main engine. The application of diesel engine as propulsion system have some problems and weaknesses such as diesel engine unability to operate when submersible vessel is operating under sea. To overcome that problems in submersible vessel, alternative solution of ship propulsion is required. DC Motor can be used as this alternative solution. Submersible vessel use electric propulsion system with DC Motor because DC Motor has advantages of easy rotation setting and does not cause noise when submersible vessel is diving. This bachelor thesis will study the application of DC Motor as an electric propulsion system on submersible vessel with length 59,57 m in series and parallel circuit by simulation using MATLAB software. The simulation data obtained are rotation and torque of DC Motor. From these simulation, it can be concluded that parallel circuit rotation is greater than series circuit rotation. It caused the greater speed and lower power in parallel circuit. 

  17. In Vivo Quantification of Cell Coupling in Plants with Different Phloem-Loading Strategies[W][OA

    Science.gov (United States)

    Liesche, Johannes; Schulz, Alexander

    2012-01-01

    Uptake of photoassimilates into the leaf phloem is the key step in carbon partitioning and phloem transport. Symplasmic and apoplasmic loading strategies have been defined in different plant taxa based on the abundance of plasmodesmata between mesophyll and phloem. For apoplasmic loading to occur, an absence of plasmodesmata is a sufficient but not a necessary criterion, as passage of molecules through plasmodesmata might well be blocked or restricted. Here, we present a noninvasive, whole-plant approach to test symplasmic coupling and quantify the intercellular flux of small molecules using photoactivation microscopy. Quantification of coupling between all cells along the prephloem pathways of the apoplasmic loader Vicia faba and Nicotiana tabacum showed, to our knowledge for the first time in vivo, that small solutes like sucrose can diffuse through plasmodesmata up to the phloem sieve element companion cell complex (SECCC). As expected, the SECCC was found to be symplasmically isolated for small solutes. In contrast, the prephloem pathway of the symplasmic loader Cucurbita maxima was found to be well coupled with the SECCC. Phloem loading in gymnosperms is not well understood, due to a profoundly different leaf anatomy and a scarcity of molecular data compared with angiosperms. A cell-coupling analysis for Pinus sylvestris showed high symplasmic coupling along the entire prephloem pathway, comprising at least seven cell border interfaces between mesophyll and sieve elements. Cell coupling together with measurements of leaf sap osmolality indicate a passive symplasmic loading type. Similarities and differences of this loading type with that of angiosperm trees are discussed. PMID:22422939

  18. Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro

    Directory of Open Access Journals (Sweden)

    Yeong-Min Yoo

    2014-04-01

    Full Text Available Neuropeptides such as vasoactive intestinal peptide (VIP and calcitonin gene-related peptide (CGRP are present in nerve fibers of bone tissues and have been suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF-induced shear stress is a potent signal in mechanotransduction that is capable of regulating both anabolic and catabolic bone remodeling. However, the interaction between neuropeptides and mechanical induction in bone remodeling is poorly understood. In this study, we attempted to quantify the effects of combined neuropeptides and mechanical stimuli on mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL and osteoprotegerin (OPG mRNA and protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared to control. Changes were not further enhanced with combined neuropeptides and OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to mechanical loading.

  19. The development of the friction coefficient inspection equipment for skin using a load cell.

    Science.gov (United States)

    Song, Han Wook; Park, Yon Kyu; Lee, Sung Jun; Woo, Sam Yong; Kim, Sun Hyung; Kim, Dal Rae

    2008-01-01

    The skin is an indispensible organ for human because it contributes to the metabolism using its own biochemical functions as well as it protects the human body from the exterior stimuli. Recently, the friction coefficient have been used as the decision index of the progress for the bacterial aliments in the field of the skin physiology and the importance of friction coefficient have been increased in the skin care market because of the needs of the well being times. In addition, the usage of friction coefficient is known to have the big discrimination ability in classification of human constitutions, which is utilized in the alternative medicine. In this study, we designed a system which used the multi axes load cell and hemi-circular probe and tried to measure the friction coefficient of hand skins repeatedly. Using this system, the relative repeatability error for the measurement of the friction coefficient was below 4 %. The coefficient is not concerned in curvatures of tips. Using this system, we will try to establish the standard for classification of constitutions.

  20. MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design

    Science.gov (United States)

    Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.

    2010-12-01

    This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.

  1. SULEU NTP Core with Passive Reactivity Control and Enhanced Submersion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yong Hee [KAIST, Daejeon (Korea, Republic of); Eades, Michael J [The Ohio State University, Ohio (United States)

    2016-05-15

    In this summary, SULEU has been adapted to implement some of the latest developments of LEUNTP design efforts. These include the implementation of a rapid depletion burnable absorber to flatten the reactivity profile during operation and the addition of a lower axial reflector to help minimize the reactivity increase during the full submersion criticality accident. The purpose of this study is to show the state of current LEU-NTP designs in terms of resolving key issues such as minimizing control drum usage and resolving the full submersion criticality accident. Future work will include integrating the rapid depletion poison with other passive reactivity control devices (such as hydrogen density in the tie-tubes) and developing additional systems for mitigating the full submersion criticality accident. It is widely acknowledged that nuclear thermal propulsion (NTP) is an enabling technology for manned missions to Mars and other locations beyond low-Earth orbit. Without nuclear thermal propulsion, manned space travel will be severely limited by the propellant requirements of chemical propulsion and significantly longer travel times of electric propulsion. While the performance superiority of NTP is clear, its implementation has been to date unsuccessful due to the significant costs of development, implementation, and regulations associated with the heritage NTP designs. These new systems take heritage designs and experimental results and adapt them to use LEU fuel with minimum impact on the heritage system. This is done in order to ensure their continued relevance with existing NTP research efforts and enable their rapid implementation into existing NASA efforts for human Mars mission planning. Of the current baseline NTP designs being studied, this paper concerns itself with the improvement of the Superb Use of Low Enriched (SULEU) core.

  2. Thermal effects of whole head submersion in cold water on nonshivering humans.

    Science.gov (United States)

    Pretorius, Thea; Bristow, Gerald K; Steinman, Alan M; Giesbrecht, Gordon G

    2006-08-01

    This study isolated the effect of whole head submersion in cold water, on surface heat loss and body core cooling, when the confounding effect of shivering heat production was pharmacologically eliminated. Eight healthy male subjects were studied in 17 degrees C water under four conditions: the body was either insulated or uninsulated, with the head either above the water or completely submersed in each body-insulation subcondition. Shivering was abolished with buspirone (30 mg) and meperidine (2.5 mg/kg), and subjects breathed compressed air throughout all trials. Over the first 30 min of immersion, exposure of the head increased core cooling both in the body-insulated conditions (head out: 0.47 +/- 0.2 degrees C, head in: 0.77 +/- 0.2 degrees C; P body-exposed conditions (head out: 0.84 +/- 0.2 degrees C and head in: 1.17 +/- 0.5 degrees C; P body surface area) in the body-exposed conditions increased total heat loss by only 10%. In both body-exposed and body-insulated conditions, head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss. This may be explained by a redistribution of blood flow in response to stimulation of thermosensitive and/or trigeminal receptors in the scalp, neck and face, where a given amount of heat loss would have a greater cooling effect on a smaller perfused body mass. In 17 degrees C water, the head does not contribute relatively more than the rest of the body to surface heat loss; however, a cold-induced reduction of perfused body mass may allow this small increase in heat loss to cause a relatively larger cooling of the body core.

  3. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice.

    Science.gov (United States)

    Al Faraj, Achraf; Gazeau, Florence; Wilhelm, Claire; Devue, Cécile; Guérin, Coralie L; Péchoux, Christine; Paradis, Valérie; Clément, Olivier; Boulanger, Chantal M; Rautou, Pierre-Emmanuel

    2012-04-01

    To assess the feasibility of loading iron oxide nanoparticles in endothelial microparticles (EMPs), thereby enabling their noninvasive monitoring with magnetic resonance (MR) imaging in mice. Experiments were approved by the French Ministry of Agriculture. Endothelial cells, first labeled with anionic superparamagnetic nanoparticles, were stimulated to generate EMPs, carrying the nanoparticles in their inner compartment. C57BL/6 mice received an intravenous injection of nanoparticle-loaded EMPs, free nanoparticles, or the supernatant of nanoparticle-loaded EMPs. A 1-week follow-up was performed with a 4.7-T MR imaging device by using a gradient-echo sequence for imaging spleen, liver, and kidney and a radial very-short-echo time sequence for lung imaging. Comparisons were performed by using the Student t test. The signal intensity loss induced by nanoparticle-loaded EMPs or free nanoparticles was readily detected within 5 minutes after injection in the liver and spleen, with a more pronounced effect in the spleen for the magnetic EMPs. The kinetics of signal intensity attenuation differed for nanoparticle-loaded EMPs and free nanoparticles. No signal intensity changes were observed in mice injected with the supernatant of nanoparticle-loaded EMPs, confirming that cells had not released free nanoparticles, but only in association with EMPs. The results were confirmed by using Perls staining and immunofluorescence analysis. The strategy to generate EMPs with magnetic properties allowed noninvasive MR imaging assessment and follow-up of EMPs and opens perspectives for imaging the implications of these cellular vectors in diseases. © RSNA, 2012.

  4. Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels.

    Science.gov (United States)

    Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John

    2017-03-15

    Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial

  5. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Science.gov (United States)

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  6. Mitigating with macrophytes: submersed plants reduce the toxicity of pesticide-contaminated water to zooplankton.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2013-03-01

    In ecotoxicology, appreciation is growing for the influence that ecological interactions have on the toxicity of contaminants, such as insecticides, to sensitive species. Most previous studies, however, have focused on factors that exacerbate insecticide effects on species, while factors that may mitigate these effects have been relatively ignored. In aquatic habitats, a small number of studies have shown that submersed macrophytes can remove some insecticides from the water column via sorption. Although examining sorption dynamics is important for understanding the environmental fate of insecticides, whether and to what extent macrophytes actually mitigate insecticide effects on aquatic species remains unknown. In the present study, the authors examined how much and how quickly several realistic densities of the macrophyte Elodea canadensis decreased the toxicity of the insecticide malathion to Daphnia magna, a keystone aquatic herbivore. To do this, the authors quantified Daphnia survival in outdoor test systems (0.95 L) exposed to a factorial combination of five Elodea densities crossed with five malathion concentrations. The authors discovered that malathion's lethality to Daphnia decreased with increasing Elodea density. Furthermore, the rate at which Elodea reduced malathion's toxicity in the water column increased with macrophyte density. These results provide strong evidence that submersed macrophytes can mitigate the ecological impacts of a popular insecticide and further support that ecological interactions can strongly influence contaminant environmental effects. Copyright © 2013 SETAC.

  7. Submersible pumps: Energetic efficiency norm; Bombas sumergibles: norma de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Torres, R. A.; Buendia Dominguez, E. H. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The Instituto de Investigaciones Electricas (IIE), supporting the Comision Nacional para el Ahorro de Energia (CONAE), has prepared a preliminary project of the norm of energy efficiency for submersible pumps. This document has complied with the necessary formalities for the emission of the norm. This paper presents the results of the analysis of the submersible pumps, the energy savings, as well as the economic evaluation that sustains the norm project, additionally pointing out the environmental impact that will bring along the implantation of the same. [Espanol] El Instituto de Investigaciones Electricas (IIE), apoyando a la Comision Nacional para el Ahorro de Energia (CONAE), ha elaborado el anteproyecto de norma de eficiencia energetica para bombas sumergibles. Dicho documento ha cumplido con los tramites necesarios para la emision de una norma. En el presente articulo se mencionan los resultados del analisis de las bombas sumergibles, los ahorros energeticos, asi como la evaluacion economica que sustenta el proyecto de norma, indicandose ademas el impacto ambiental que tendra la implantacion de la misma.

  8. Submersible pumps: Energetic efficiency norm; Bombas sumergibles: norma de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Torres, R A; Buendia Dominguez, E H [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    The Instituto de Investigaciones Electricas (IIE), supporting the Comision Nacional para el Ahorro de Energia (CONAE), has prepared a preliminary project of the norm of energy efficiency for submersible pumps. This document has complied with the necessary formalities for the emission of the norm. This paper presents the results of the analysis of the submersible pumps, the energy savings, as well as the economic evaluation that sustains the norm project, additionally pointing out the environmental impact that will bring along the implantation of the same. [Espanol] El Instituto de Investigaciones Electricas (IIE), apoyando a la Comision Nacional para el Ahorro de Energia (CONAE), ha elaborado el anteproyecto de norma de eficiencia energetica para bombas sumergibles. Dicho documento ha cumplido con los tramites necesarios para la emision de una norma. En el presente articulo se mencionan los resultados del analisis de las bombas sumergibles, los ahorros energeticos, asi como la evaluacion economica que sustenta el proyecto de norma, indicandose ademas el impacto ambiental que tendra la implantacion de la misma.

  9. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals

    Directory of Open Access Journals (Sweden)

    Jennifer M. Lang

    2016-01-01

    Full Text Available Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses and epilithic (biofilms on unglazed ceramic tiles communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context.

  10. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms

    International Nuclear Information System (INIS)

    Knauert, Stefanie; Singer, Heinz; Hollender, Juliane; Knauer, Katja

    2010-01-01

    The submersed macrophytes Elodea canadensis, Myriophyllum spicatum and Potamogeton lucens were constantly exposed over a five-week period to environmentally relevant concentrations of atrazine, isoproturon, diuron, and their mixture in outdoor mesocosms. Effects were evaluated investigating photosynthetic efficiency (PE) of the three macrophytes and growth of M. spicatum and E. canadensis. Adverse effects on PE were observed on days 2 and 5 after application. M. spicatum was found to be the more sensitive macrophyte. E. canadensis and P. lucens were less sensitive to atrazine, diuron and the mixture and insensitive to isoproturon. PE of M. spicatum was similarly affected by the single herbicides and the mixture demonstrating concentration addition. Growth of E. canadensis and M. spicatum was not reduced indicating that herbicide exposure did not impair plant development. Although PE measurements turned out to be a sensitive method to monitor PSII herbicides, plant growth remains the more relevant ecological endpoint in risk assessment. - Short-term effects on photosynthesis did not result in growth reduction of submerse macrophytes exposed to PSII inhibitors.

  11. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Knauert, Stefanie, E-mail: stefanie.knauert@basf.co [University of Basel, Department of Environmental Sciences, Hebelstrasse 1, 4056 Basel (Switzerland); Singer, Heinz; Hollender, Juliane [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Chemistry, Uberlandstrasse 133, 8600 Duebendorf (Switzerland); Knauer, Katja [University of Basel, Program Sustainability Research, Klingelbergstr. 50, 4056 Basel (Switzerland)

    2010-01-15

    The submersed macrophytes Elodea canadensis, Myriophyllum spicatum and Potamogeton lucens were constantly exposed over a five-week period to environmentally relevant concentrations of atrazine, isoproturon, diuron, and their mixture in outdoor mesocosms. Effects were evaluated investigating photosynthetic efficiency (PE) of the three macrophytes and growth of M. spicatum and E. canadensis. Adverse effects on PE were observed on days 2 and 5 after application. M. spicatum was found to be the more sensitive macrophyte. E. canadensis and P. lucens were less sensitive to atrazine, diuron and the mixture and insensitive to isoproturon. PE of M. spicatum was similarly affected by the single herbicides and the mixture demonstrating concentration addition. Growth of E. canadensis and M. spicatum was not reduced indicating that herbicide exposure did not impair plant development. Although PE measurements turned out to be a sensitive method to monitor PSII herbicides, plant growth remains the more relevant ecological endpoint in risk assessment. - Short-term effects on photosynthesis did not result in growth reduction of submerse macrophytes exposed to PSII inhibitors.

  12. Numerical simulation and performance prediction in multi-stage submersible centrifugal pump

    International Nuclear Information System (INIS)

    Wang, W J; Li, G D; Wang, Y; Cui, Y R; Yin, G; Peng, S

    2013-01-01

    In order to study the inner flow field of multi-stage submersible centrifugal pump, the model named QD3-60/4-1.1 was selected. Steady turbulence characteristics of impellers, diffusers and return channel were calculated by Fluent software, the SIMPLEC algorithm and RNG κ-ε turbulence model with sliding mesh technology. Then, the distributions of pressure, velocity and Turbulence kinetic energy was obtained and the distributions of velocity field of a channel were analysed. The results show that the static pressure in impeller is increasing with the increasing of radius. The circumferential component of relative velocity is in the opposite direction of impeller rotating. At the same radius, the component value of pressure surface is larger than suction surface. With the increasing of flow rate, absolute velocity and relative velocity flow angle are becoming small, in opposite of the relative velocity and absolute velocity flow angle. The high turbulent zone of impeller is located in the gap of impellers and diffusers. Flow similarity and structure similarity of the multi-stage submersible pump are confirmed

  13. Study Of Calculation Of Degaussing System For Reducing Magnetic Field From Submersible Vehicle

    Directory of Open Access Journals (Sweden)

    Sardono Sarwito

    2017-03-01

    Full Text Available The rapid development of maritime technology in the world to make Indonesia are also increasingly taking the development of maritime technology, such as in a Submersible Vehicle one is degaussing system, this technology should be owned by the vessel so that the vessel can avoid dangerous explosive equipment contained in the sea. Degaussing system is a system that is in use on the metal parts or electronic devices that are at risk of a magnetic field. This system is used to prevent the vessel from dangerous equipment in the sea which can trigger an explosion and the damage that utilize magnetic fields as a metal-detection sensor when the boat was doing dives. To the authors will plan the design degaussing system, and calculating the system in order to reduce the magnetic properties of the Submersible Vehicle which were obtained by the use of Coil Degaussing along 214,5 meters, a diameter of 0,2, with 500.000 coil that will generate a current of 0,0157 Ampere's 0.0787 Tesla generates a magnetic field.

  14. Closure of the concrete supercontainer in hot cell under thermal load

    Energy Technology Data Exchange (ETDEWEB)

    Craeye, Bart, E-mail: bart.craeye@artesis.b [Artesis Univerity College of Antwerp, Applied Engineering and Technology, Antwerp (Belgium); De Schutter, Geert [Magnel Laboratory for Concrete Research, Ghent University, Technologiepark-Zwijnaarde 904, 9052 Ghent (Belgium); Wacquier, William; Van Humbeeck, Hughes [ONDRAF/NIRAS, Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Belgium); Van Cotthem, Alain [Tractebel Development Engineering, Consulting Company (Belgium); Areias, Lou [SCK.CEN, Belgian Nuclear Research Center (Belgium)

    2011-05-15

    Research highlights: We model the behaviour of the supercontainer for the disposal of high-level waste and spent fuel assemblies during fabrication at ground surface. We study the early-age cracking behaviour of the buffer and evaluate the crack creating mechanisms. In case accurate measures are taken, cracking of the buffer can be avoided. - Abstract: For the final disposal of long-lived, heat-emitting vitrified high-level waste (HLW) in a clayey host rock, an intensive study is conducted to investigate the early-age behaviour of concrete supercontainers. Self-compacting concrete (SCC) is taken as the reference concrete type as it facilitates the casting process in combination with an improved homogeneity compared to the traditional concrete compositions. A laboratory characterization program is conducted to obtain the relevant thermal, mechanical and maturity-related properties of the SCC. These obtained data are implemented into the material database of the finite element tool HEAT to study the behaviour of the concrete layers during the different construction stages of the supercontainer: (i) Stage 1: Fabrication of the concrete buffer inside a stainless steel envelope. No early-age cracking is expected in case accurate measures are taken to reduce the thermal gradient between the outer surface and the middle of the buffer, e.g. by providing insulation and excluding wind. (ii) Stages 2-4: Emplacement of the carbon steel overpack containing the HLW canisters, filling the remaining annular gap with cementitious filler and closure by fitting the lid under thermal load. The construction stages (2-4) for the closure of the supercontainer are executed in hot cell. In this study, the crack creating mechanism and the behaviour of the concrete supercontainer during these construction stages in hot cell are investigated. In case precautionary measures are taken, such as reducing the coefficient of thermal expansion (CTE) of the overpack, prolonging the preceding cooling

  15. Closure of the concrete supercontainer in hot cell under thermal load

    International Nuclear Information System (INIS)

    Craeye, Bart; De Schutter, Geert; Wacquier, William; Van Humbeeck, Hughes; Van Cotthem, Alain; Areias, Lou

    2011-01-01

    Research highlights: → We model the behaviour of the supercontainer for the disposal of high-level waste and spent fuel assemblies during fabrication at ground surface. → We study the early-age cracking behaviour of the buffer and evaluate the crack creating mechanisms. → In case accurate measures are taken, cracking of the buffer can be avoided. - Abstract: For the final disposal of long-lived, heat-emitting vitrified high-level waste (HLW) in a clayey host rock, an intensive study is conducted to investigate the early-age behaviour of concrete supercontainers. Self-compacting concrete (SCC) is taken as the reference concrete type as it facilitates the casting process in combination with an improved homogeneity compared to the traditional concrete compositions. A laboratory characterization program is conducted to obtain the relevant thermal, mechanical and maturity-related properties of the SCC. These obtained data are implemented into the material database of the finite element tool HEAT to study the behaviour of the concrete layers during the different construction stages of the supercontainer: (i) Stage 1: Fabrication of the concrete buffer inside a stainless steel envelope. No early-age cracking is expected in case accurate measures are taken to reduce the thermal gradient between the outer surface and the middle of the buffer, e.g. by providing insulation and excluding wind. (ii) Stages 2-4: Emplacement of the carbon steel overpack containing the HLW canisters, filling the remaining annular gap with cementitious filler and closure by fitting the lid under thermal load. The construction stages (2-4) for the closure of the supercontainer are executed in hot cell. In this study, the crack creating mechanism and the behaviour of the concrete supercontainer during these construction stages in hot cell are investigated. In case precautionary measures are taken, such as reducing the coefficient of thermal expansion (CTE) of the overpack, prolonging the

  16. Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide

    International Nuclear Information System (INIS)

    Liao Chengde; Sun Qiquan; Liang, Biling; Shen Jun; Shuai Xintao

    2011-01-01

    Epidermal growth factor receptor (EGFR), a cellular transmembrane receptor, plays a key role in cell proliferation and is linked to a poor prognosis in various human cancers. In this study, we constructed Cetuximab-immunomicelles in which the anti-EGFR monoclonal antibody was linked to poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG–PCL) nanomicelles that were loaded with doxorubicin (DOX) and superparamagnetic iron oxide (SPIO). The specific interactions between EGFR-overexpressing tumor cells (A431) and immunomicelles were observed using confocal laser scanning microscopy (CLSM) and flow cytometry. Furthermore, the capacity of transporting SPIO into tumor cells using these immunomicelles was evaluated with a 1.5 T clinical magnetic resonance imaging (MRI) scanner. It was found that the acquired MRI T2 signal intensity of A431 cells that were treated with the SPIO-loaded and antibody-functionalized micelles decreased significantly. Using the thiazolyl blue tetrazolium bromide (MTT) assay, we also demonstrated that the immunomicelles inhibited cell proliferation more effectively than their nontargeting counterparts. Our results suggest that Cetuximab-immunomicelles are a useful delivery vehicle for DOX and SPIO to EGFR-overexpressing tumor cells in vitro and that Cetuximab-immunomicelles can serve as a MRI-visible and targeted drug delivery agent for better tumor imaging and therapy.

  17. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers.

    Science.gov (United States)

    Iacobazzi, Rosa Maria; Porcelli, Letizia; Lopedota, Angela Assunta; Laquintana, Valentino; Lopalco, Antonio; Cutrignelli, Annalisa; Altamura, Emiliano; Di Fonte, Roberta; Azzariti, Amalia; Franco, Massimo; Denora, Nunzio

    2017-08-07

    Reported here is the synthesis and biological evaluation of the asialoglycoprotein receptor (ASGP-R) targeted fourth generation poliamidoamine dendrimer (G(4)-PAMAM) loaded with sorafenib. The ASGP-R targeted dendrimer was obtained by conjugation of Lactobionic acid (La) to the G(4)-PAMAM dendrimer, followed by acetylation (Ac) of the free amino groups in order to reduce the non-specific interactions with the cell membrane. Moreover, by additionally grafting fluorescein (FITC), it was easy to characterize the internalization pathway and the intracellular fate of the targeted dendrimer Ac-La-G(4)-PAMAM-FITC. In vitro experiments performed on HepG-2 and HLE cell lines, allowed to study the ability of the dendrimers to affect the cell vitality. Confocal microscopy and cytofluorimetric analysis confirmed higher binding and uptake ability of the Ac-La-G(4)-PAMAM-FITC dendrimer in well differentiated and ASGP-R expressing human liver cancer cell line HepG-2 compared non-expressing HLE cells. Ac-La-G(4)-PAMAM-FITC dendrimer loaded with sorafenib was stable and showed sustained sorafenib release. As evidenced by the cytotoxicity studies, sorafenib included in the dendrimer maintained its effectiveness, and was able to produce a longer lasting effect over the time compared to molar equivalent doses of free sorafenib. This new targeted dendrimer appears to be a suitable carrier for the delivery of sorafenib to liver cancer cells expressing ASGP-R. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. CXCR5+ CD8+ T Cells Indirectly Offer B Cell Help and Are Inversely Correlated with Viral Load in Chronic Hepatitis B Infection.

    Science.gov (United States)

    Jiang, Hang; Li, Linhai; Han, Jiang; Sun, Zhiwei; Rong, Yihui; Jin, Yun

    2017-04-01

    Treatment options for chronic hepatitis B (CHB) infection are extremely limited. CXCR5 + CD8 + T cell is a novel cell subtype and could possess strong cytotoxic properties in HIV infection. In this study, we investigated the role of CXCR5 + CD8 + T cells in CHB patients. Compared to healthy individuals, both CHB patients and hepatitis B virus (HBV)-infected hepatocellular carcinoma patients presented significant upregulation of CXCR5 + CD8 + T cells in peripheral blood, in which CXCR5 + CD8 + T cells were negatively correlated with the frequency of CXCR5 + CD4 + T cells in CHB patients. After PMA+ionomycin stimulation, CXCR5 + CD8 + T cells from CHB patients presented significantly higher transcription level of interferon gamma (IFN-γ), interleukin 10 (IL-10), and IL-21, as well as higher IL-10 and IL-21 protein secretion, than CXCR5 - CD8 + T cells. Unlike CXCR5 + CD4 + T cells, when incubated with naive CD19 + CD27 - B cells, CXCR5 + CD8 + T cells alone did not upregulate IgM, IgG, and IgA secretion. However, addition of CXCR5 + CD8 + T cells in B cell-CXCR5 + CD4 + T cell coculture significantly increased the levels of secreted IgG and IgA, demonstrating that CXCR5 + CD8 + T cell could indirectly offer B cell help. Furthermore, high frequencies of CXCR5 + CD8 + T cells tended to associate with low HBV DNA load, and the frequency of CXCR5 + CD8 + T cells was negatively correlated with alanine aminotransferase (ALT) level. Together, these results suggested that CXCR5 + CD8 + T cells were involved in the antiviral immune responses in CHB and could potentially serve as a therapeutic candidate.

  19. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients.

    Science.gov (United States)

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-09-17

    Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8(+) memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH(+) patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8(+) Tm were detected. Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial.

  20. Gastrointestinal viral load and enteroendocrine cell number are associated with altered survival in HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Guido van Marle

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infects and destroys cells of the immune system leading to an overt immune deficiency known as HIV acquired immunodeficiency syndrome (HIV/AIDS. The gut associated lymphoid tissue is one of the major lymphoid tissues targeted by HIV-1, and is considered a reservoir for HIV-1 replication and of major importance in CD4+ T-cell depletion. In addition to immunodeficiency, HIV-1 infection also directly causes gastrointestinal (GI dysfunction, also known as HIV enteropathy. This enteropathy can manifest itself as many pathological changes in the GI tract. The objective of this study was to determine the association of gut HIV-1 infection markers with long-term survival in a cohort of men who have sex with men (MSM enrolled pre-HAART (Highly Active Antiretroviral Therapy. We examined survival over 15-years in a cohort of 42 HIV-infected cases: In addition to CD4+ T cell counts and HIV-1 plasma viral load, multiple gut compartment (duodenum and colon biopsies were taken by endoscopy every 6 months during the initial 3-year period. HIV-1 was cultured from tissues and phenotyped and viral loads in the gut tissues were determined. Moreover, the tissues were subjected to an extensive assessment of enteroendocrine cell distribution and pathology. The collected data was used for survival analyses, which showed that patients with higher gut tissue viral load levels had a significantly worse survival prognosis. Moreover, lower numbers of serotonin (duodenum and somatostatin (duodenum and colon immunoreactive cell counts in the gut tissues of patients was associated with significant lower survival prognosis. Our study, suggested that HIV-1 pathogenesis and survival prognosis is associated with altered enteroendocrine cell numbers, which could point to a potential role for enteroendocrine function in HIV infection and pathogenesis.

  1. Circulating, cell-free DNA as a marker for exercise load in intermittent sports

    OpenAIRE

    Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles

    2018-01-01

    Background Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of ...

  2. Performance improvement of switched-based interference mitigation for channel assignment in over-loaded small-cell networks

    KAUST Repository

    Gaaloul, Fakhreddine

    2013-05-01

    This paper proposes adequate methods to improve the interference mitigation capability of a recently investigated switched-based interference reduction scheme for single downlink channel assignment in over-loaded small-cell networks. The model assumes that the available orthogonal channels for small cells are distributed among access points in close vicinity, where each access point knows its allocated channels a priori. Each cell has a single antenna, employs the open access strategy, and can reuse its allocated channels simultaneously, while scheduling concurrent service requests. Moreover, the access points can not coordinate their transmissions, and can receive limited feedback from active users. The paper presents low-complexity schemes to identify a suitable channel to serve the scheduled user by maintaining the interference power level within a tolerable range. They attempt to either complement the switched-based scheme by minimum interference channel selection or adopt different interference thresholds on available channels, while reducing the channel examination load. The optimal thresholds for interference mitigation at the desired receive station are quantified for various performance criteria. The performance and processing load of the proposed schemes are obtained analytically, and then compared to those of the single-threshold scheme via numerical and simulation results. © 2002-2012 IEEE.

  3. Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model.

    Science.gov (United States)

    Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2013-03-01

    Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaco, S.

    1992-01-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure. (Author) 3 refs., 2 figs., tab

  5. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaca, S.

    1992-08-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure

  6. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    Science.gov (United States)

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load

    Science.gov (United States)

    Feng, Cuijie; Li, Jiangwei; Qin, Dan; Chen, Lixiang; Zhao, Feng; Chen, Shaohua; Hu, Hongbo; Yu, Chang-Ping

    2014-01-01

    Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L−1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m−2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density. PMID:25412475

  8. Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load.

    Directory of Open Access Journals (Sweden)

    Cuijie Feng

    Full Text Available Microorganisms capable of generating electricity in microbial fuel cells (MFCs have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu shock load by Hungate roll-tube technique with solid ferric (III oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load and B4B2 (after Cu shock load were chosen for further analysis. B4B2 is resistant to 200 mg L-1 of Cu(II while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m-2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density.

  9. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  10. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    International Nuclear Information System (INIS)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-01-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing

  11. MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection

    Science.gov (United States)

    Rozanov, Dmitri V.; Rozanov, Nikita D.; Chiotti, Kami; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Cha, Seung W.; Woo, Sunghee; Pevzner, Pavel; Bafna, Vineet; Burrows, Gregory G.; Rantala, Juha K.; Levin, Trevor; Anur, Pavana; Johnson-Camacho, Katie; Tabatabaei, Shaadi; Munson, Daniel J.; Bruno, Tullia C.; Slansky, Jill E.; Kappler, John W.; Hirano, Naoto; Boegel, Sebastian; Fox, Bernard A.; Egelston, Colt; Simons, Diana L.; Jimenez, Grecia; Lee, Peter P.; Gray, Joe W.; Spellman, Paul T.

    2018-01-01

    Breast cancer therapy based on amplifying a patient’s antitumor immune response depends on the availability of appropriate MHC class I-restricted, breast cancer-specific epitopes. To build a catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cell lines. We determined the sequence of 3,196 MHC class I-bound peptides representing 1,921 proteins from a panel of 20 breast cancer cell lines including basal, luminal, and claudin-low subtypes. The data has been deposited to the ProteomeXchange with identifier PXD006406. After removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total number of unique peptides was 2,740. Of the unique peptides eluted, more than 1,750 had been previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, only 3 of these immunogenic peptides have been identified in breast cancer cells in earlier studies. MHC class I binding probability of eluted peptides was used to plot the distribution of MHC class I allele-specific peptides in accordance with the binding score for each breast cancer cell line. We also determined that the tested breast cancer cells presented 89 mutation-containing peptides and peptides derived from aberrantly translated genes, 7 of which were shared between four or two different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is an effective strategy for systematic characterization of cancer peptides, and could be employed for design of multi-peptide anticancer vaccines. PMID:29331515

  12. Deepwater marine litter densities and compsoition from submersible video-gransects around the ABC-islands, Dutch Caribbean

    NARCIS (Netherlands)

    Debrot, A.O.; Vinke, E.; Wende, van der G.; Hylkema, A.; Reed, J.K.

    2014-01-01

    Baseline data on anthropogenic seafloor debris contamination in the year 2000 is provided for 24 submersible video transects at depths of 80–900 m, off the Dutch ABC-islands (Aruba, Bonaire, Curaçao), in the southeastern Caribbean Sea. In total, 202 objects were documented from a combined 21,184 m

  13. Towards improved management of coastal submersion crises – CRISMA-WAVE solution as an example of CRISMA Framework application

    Directory of Open Access Journals (Sweden)

    Erlich Marc

    2016-01-01

    Full Text Available Coping with various types of natural or man-made hazards the FP7 SECURITY CRISMA project (http://www.crismaproject.eu has designed and developed an experimental software framework allowing building crisis management simulation application. One of the five pilot applications of CRISMA dealing with preparedness to the coastal submersions was developed and implemented using return of experience of the reference Xynthia storm surge event in the Charente Maritime County in France. The paper addresses the generic CRISMA Framework applicability to simulate mitigation effects of a coastal submersion through CRISMA-Wave implementation of a full modelling cycle. The CRISMA-Wave paradigm reflects user needs for simulation of “what-if” scenarios for short and long-term actions and the paper describes in particular its different components : *Simulation of submersion effects at a range of temporal and spatial scales, *Preparedness Planning, *Assessment of impacts depending on scenarios based on options for managing the inundation risks, *Cascading effects and *Evaluation of damages with comparison of submersion defence scenarios based on cost-benefit and multi criteria analysis.

  14. A tri-generation system based on polymer electrolyte fuel cell and desiccant wheel – Part A: Fuel cell system modelling and partial load analysis

    International Nuclear Information System (INIS)

    Najafi, Behzad; De Antonellis, Stefano; Intini, Manuel; Zago, Matteo; Rinaldi, Fabio; Casalegno, Andrea

    2015-01-01

    Highlights: • A mathematical model for a PEMFC based cogeneration system is developed. • Developed model is validated using the available experimental data. • Performance of the plant at full load conditions is investigated. • Performance indices while applying two different modifications are determined. • System’s performance with and without modifications at partial loads is investigated. - Abstract: Polymer Electrolyte Membrane Fuel Cell (PEMFC) based systems have recently received increasing attention as a viable alternative for meeting the residential electrical and thermal demands. However, as the intermittent demand profiles of a building can only be addressed by a tri-generative unit which can operate at partial loads, the variation of performance of the system at partial loads might affect its corresponding potential benefits significantly. Nonetheless, no previous study has been carried out on assessing the performance of this type of tri-generative systems in such conditions. The present paper is the first of a two part study dedicated to the investigation of the performance of a tri-generative system in which a PEMFC based system is coupled with a desiccant wheel unit. This study is focused on evaluating the performance of the PEMFC subsystem while operating at partial loads. Accordingly, a detailed mathematical model of the fuel cell subsystem is first developed and validated using the experimental data obtained from the plant’s and the fuel cell stack’s manufacturer. Next, in order to increase the performance of the plant, two modifications have been proposed and the resulting performance at partial load have been determined. The obtained results demonstrate that applying both modifications results in increasing the electrical efficiency of the plant by 5.5%. It is also shown that, while operating at partial loads, the electrical efficiency of the plant does not significantly change; the fact which corresponds to the trade-off between

  15. Body drop into a fluid tank and dynamic loads calculation

    Directory of Open Access Journals (Sweden)

    Komarov Aleksandr Andreevich

    2014-05-01

    Full Text Available The theory of a body striking a fluid began intensively developing due to the tasks of hydroplanes landing. For the recent years the study of a stroke and submersion of bodies into fluid became even more current. We face them in the process of strength calculation of ship hulls and other structures in modern technology. These tasks solution represents great mathematical difficulty even in case of the mentioned simplifications. These difficulties emerge due to the unsteady character of fluid motion in case of body submersion, and also jet and spray phenomena, which lead to discontinuous motions. On the basis of G.V. Logvinovich’s concept the problem of loads determination with consideration for air gap is solved for both a body and reservoir enclosing structures when a body falls into a fluid. Numerical method is based on the decay of an arbitrary discontinuity.

  16. Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake.

    Science.gov (United States)

    Ye, Bibi; Chu, Zhaosheng; Wu, Aiping; Hou, Zeying; Wang, Shengrui

    2018-01-01

    Macrophytes show a zonal distribution along the lake littoral zone because of their specific preferred water depths while the optimum growth water depths of dominant submersed macrophytes in natural lakes are not well known. We studied the seasonal biomass and frequency patterns of dominant and companion submersed macrophytes along the water depth gradient in Lake Erhai in 2013. The results showed that the species richness and community biomass showed hump-back shaped patterns along the water depth gradient both in polydominant and monodominant communities. Biomass percentage of Potamogenton maackianus showed a hump-back pattern while biomass percentages of Ceratophyllum demersum and Vallisneria natans appeared U-shaped patterns across the water depth gradient in polydominant communities whereas biomass percentage of V. natans increased with the water depth in monodominant communities. Dominant species demonstrated a broader distribution range of water depth than companion species. Frequency and biomass of companion species declined drastically with the water depth whereas those of dominant species showed non-linear patterns across the water depth gradient. Namely, along the water depth gradient, biomass of P. maackianus and V. natans showed hump-back patterns and biomasses of C. demersum displayed a U-shaped pattern in the polydominant communities but biomass of V. natans demonstrated a hump-back pattern in the monodominant communities; frequency of P. maackianus showed a hump-back pattern and C. demersum and V. natans maintained high frequencies in the two types of communities. We can speculate that in Lake Erhai the optimum growth water depths of P. maackianus and C. demersum in the polydominant communities are 2.5-4.5 m and 1-2 m or 5-6 m, respectively and that of V. natans is 3-5 m in the polydominant communities and 2.5-5 m in the monodominant communities. This is the first report that the optimum water depth ranges in the horizontal direction of three

  17. Epidemiology of non-submersion injuries in aquatic sporting and recreational activities.

    Science.gov (United States)

    Chalmers, David; Morrison, Luke

    2003-01-01

    Although the issues of drowning and near-drowning in aquatic sporting and recreational activities receive considerable attention in the epidemiological literature, there is not a recognised literature on non-submersion injuries occurring in these activities. This review draws together the epidemiological literature on non-submersion injuries and describes the incidence, nature and causes of these injuries, common risk factors, and strategies for prevention. Activities covered by the review include swimming, diving, boating, surf sports, fishing, water polo and water sliding. For most activities there is a dearth of good quality descriptive studies, with most involving cases-series designs and few providing estimates of incidence. Inconsistencies in inclusion criteria and the reporting of incidence rates makes comparisons within and between activities difficult. Incidence rates were identified for most activities and in general the incidence of injury was low, especially for more serious injury. However, some activities were associated with severely disabling injury, such as spinal cord injury (diving) and amputation (from propeller strikes in water skiing and swimming). Only three studies reporting the significance of postulated risk factors were identified. Lack of knowledge about the water being entered and alcohol consumption are significant risk factors in recreational diving; increased blood alcohol concentrations were reported to increase the risk of death in boating; and obesity and tandem riding were reported to increase the risk of injury on public water slides. Few evaluations of preventive measures were identified. Two studies reported reductions in the incidence of water slide injuries following the introduction of design changes and supervision, but neither had a non-intervention comparison group. Improvements in swimming and diving skills were reported in three studies, but these were not designed to measure changes in the risk of injury.This review

  18. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sultana Mehbuba Hossain

    2018-03-01

    Full Text Available Biodegradable inorganic apatite-based particle complex is popular for its pH-sensitivity at the endosomal acidic environment to facilitate drug release following cellular uptake. Despite being a powerful anticancer drug, doxorubicin shows severe off-target effects and therefore would need a carrier for the highest effectiveness. We aimed to chemically modify carbonate apatite (CA with Krebs cycle intermediates, such as citrate and succinate in order to control the growth of the resultant particles to more efficiently carry and transport the anticancer drug into the cancer cells. Citrate- or succinate-modified CA particles were synthesized with different concentrations of sodium citrate or sodium succinate, respectively, in the absence or presence of doxorubicin. The drug loading efficiency of the particles and their cellular uptake were observed by quantifying fluorescence intensity. The average diameter and surface charge of the particles were determined using Zetasizer. Cell viability was assessed by MTT assay. Citrate-modified carbonate apatite (CMCA exhibited the highest (31.38% binding affinity for doxorubicin and promoted rapid cellular uptake of the drug, leading to the half-maximal inhibitory concentration 1000 times less than that of the free drug in MCF-7 cells. Hence, CMCA nanoparticles with greater surface area enhance cytotoxicity in different breast cancer cells by enabling higher loading and more efficient cellular uptake of the drug.

  19. Exfoliation rate of mammary epithelial cells in milk on bovine mastitis caused by Staphylococcus aureus is associated with bacterial load.

    Science.gov (United States)

    Nagasawa, Yuya; Kiku, Yoshio; Sugawara, Kazue; Tanabe, Fuyuko; Hayashi, Tomohito

    2018-01-01

    The exfoliation rate of mammary epithelial cells (MECs) in milk is affected by physiological, breeding and environmental factors. Little is known about the relationship between the MEC exfoliation into milk and mammary-infected Staphylococcus aureus (S. aureus) load on bovine mastitis caused by S. aureus. The aim of this study was to investigate the relationship between S. aureus load and the proportion of MEC exfoliation in milk using five substantial bovine mastitis models. In 64 randomly extracted milk samples from udders at 3-21 days after S. aureus infusion, there were various samples with different numbers of S. aureus counts and somatic cell counts. No significant correlations were found between the S. aureus counts and somatic cell count (r = 0.338). In contrast, a significant correlation was noted between S. aureus counts and the proportion of cytokeratin-positive cells in the milk from the infused udders (r = 0.734, P mastitis udders caused by S. aureus may contribute to reduced milk yield. © 2017 Japanese Society of Animal Science.

  20. Preparation of anastrozole loaded PEG-PLA nanoparticles: evaluation of apoptotic response of breast cancer cell lines.

    Science.gov (United States)

    Alyafee, Yusra A; Alaamery, Manal; Bawazeer, Shahad; Almutairi, Mansour S; Alghamdi, Badr; Alomran, Nawaf; Sheereen, Atia; Daghestani, Maha; Massadeh, Salam

    2018-01-01

    Anastrozole (ANS) is an aromatase inhibitor that is widely used as a treatment for breast cancer in postmenopausal women. Despite the wide use of ANS, it is associated with serious side effects due to uncontrolled delivery. In addition, ANS exhibits low solubility and short plasma half-life. Nanotechnology-based drug delivery has the potential to enhance the efficacy of drugs and overcome undesirable side effects. In this study, we aimed to prepare novel ANS-loaded PLA-PEG-PLA nanoparticles (ANS-NPs) and to compare the apoptotic response of MCF-7 cell line to both ANS and ANS-loaded NPs. ANS-NPs were synthesized using double emulsion method and characterized using different methods. The apoptotic response was evaluated by assessing cell viability, morphology, and studying changes in the expression of MAPK3 , MCL1 , and c-MYC apoptotic genes in MCF-7 cell lines. ANS was successfully encapsulated within PLA-PEG-PLA, forming monodisperse therapeutic NPs with an encapsulation efficiency of 67%, particle size of 186±27.13, and a polydispersity index of 0.26±0.11 with a sustained release profile extended over 144 hours. In addition, results for cell viability and for gene expression represent a similar apoptotic response between the free ANS and ANS-NPs. The synthesized ANS-NPs showed a similar therapeutic effect as the free ANS, which provides a rationale to pursue pre-clinical evaluation of ANS-NPs on animal models.

  1. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers

    International Nuclear Information System (INIS)

    Samimi, Fereshteh; Babapoor, Aziz; Azizi, Mohammadmehdi; Karimi, Gholamreza

    2016-01-01

    High latent heat of PCMs (phase change materials) has made them as one of the most important materials for thermal management purposes. However, PCMs’ low thermal diffusivities could limit their use in applications which require fast thermal response. The goal of this study is to simulate thermal performance of a lithium ion battery cell in the presence of carbon fiber-PCM composites. The effect of carbon fiber loading within the PCM on thermal performance is studied and the results are compared with the experimental data. The results showed that the presence of carbon fibers increases the effective thermal conductivity of PCM and hence influences temperature distribution within the cell. PCM composites containing higher percentages of carbon fibers present a more uniform temperature distribution. The results showed that the minimum and maximum thermal conductivity enhancement of 85% and 155% respectively (105% on average). A reasonable agreement is obtained between the simulation results and the experimental data. - Highlights: • Phase change materials (PCMs) are used for thermal management purposes. • Effective thermal conductivity of PCMs can be enhanced by loading carbon fibers. • Thermal performance of a battery is studied in presence of carbon fiber loaded PCM. • The presence of carbon fibers in the PCM can improve Li-ion battery performance.

  2. The Need Of A Phenological Spectral Library Of Submersed Macrophytes For Lake Monitoring

    Science.gov (United States)

    Wolf, Patrick; Robler, Sebastian; Schneider, Thomas; Melzer, Arnulf

    2013-12-01

    Submersed macrophytes are bio-indicators for water quality. For plant monitoring by remote sensing, in-situ reflectance measurements are necessary. Hence, systematic measurements were carried out at Lake Starnberg and Lake Tegernsee (Germany) in the year 2011. Besides two wide-spread species (Chara spp. and Potamogeton perfoliatus), the invasive species Elodea nuttallii and Najas marina were investigated. Remote sensing reflectances were calculated from downwelling irradiance and upwelling radiance. Those were collected with RAMSES spectroradiometers (320nm-950nm, 3.3nm step). As data collection took place several times, changes in the spectral responses within the growing season were detected and could be linked to population density, growing height, biomass and pigmentation. Additionally, a stable sampling method and a processing chain for the in-situ reflectance measurements were developed. Part of the processing was a water column correction, including WASI (water colour simulator). Principal component analysis showed separability of sediment from vegetation and species differentiation.

  3. Sensitivity of submersed freshwater macrophytes and endpoints in laboratory toxicity tests

    International Nuclear Information System (INIS)

    Arts, Gertie H.P.; Belgers, J. Dick M.; Hoekzema, Conny H.; Thissen, Jac T.N.M.

    2008-01-01

    The toxicological sensitivity and variability of a range of macrophyte endpoints were statistically tested with data from chronic, non-axenic, macrophyte toxicity tests. Five submersed freshwater macrophytes, four pesticides/biocides and 13 endpoints were included in the statistical analyses. Root endpoints, reflecting root growth, were most sensitive in the toxicity tests, while endpoints relating to biomass, growth and shoot length were less sensitive. The endpoints with the lowest coefficients of variation were not necessarily the endpoints, which were toxicologically most sensitive. Differences in sensitivity were in the range of 10-1000 for different macrophyte-specific endpoints. No macrophyte species was consistently the most sensitive. Criteria to select endpoints in macrophyte toxicity tests should include toxicological sensitivity, variance and ecological relevance. Hence, macrophyte toxicity tests should comprise an array of endpoints, including very sensitive endpoints like those relating to root growth. - A range of endpoints is more representative of macrophyte fitness than biomass and growth only

  4. Algorithm to determine electrical submersible pump performance considering temperature changes for viscous crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Valderrama, A. [Petroleos de Venezuela, S.A., Distrito Socialista Tecnologico (Venezuela); Valencia, F. [Petroleos de Venezuela, S.A., Instituto de Tecnologia Venezolana para el Petroleo (Venezuela)

    2011-07-01

    In the heavy oil industry, electrical submersible pumps (ESPs) are used to transfer energy to fluids through stages made up of one impeller and one diffuser. Since liquid temperature increases through the different stages, viscosity might change between the inlet and outlet of the pump, thus affecting performance. The aim of this research was to create an algorithm to determine ESPs' performance curves considering temperature changes through the stages. A computational algorithm was developed and then compared with data collected in a laboratory with a CG2900 ESP. Results confirmed that when the fluid's viscosity is affected by the temperature changes, the stages of multistage pump systems do not have the same performance. Thus the developed algorithm could help production engineers to take viscosity changes into account and optimize the ESP design. This study developed an algorithm to take into account the fluid viscosity changes through pump stages.

  5. Catamaran or semi-submersible for floating platform - selection of a better design

    Science.gov (United States)

    Qasim, Idrees; Gao, Liangtian; Peng, Duojin; Liu, Bo

    2018-02-01

    With nonstop advancement in marine engineering, more and more new structures are being designed and explored for tidal current energy. There are three different kinds of support structures for tidal current power station mostly in use, which are sea-bed mounted/gravity based system, pile mounted system and floating moored platform. Comparing all of them, the floating mooring system is most suitable for deep water systems and the application of this arrangement is widely usable. In this paper, a semi-submersible and a catamaran as floating platforms for tidal current power stations are studied are compared on the basis of its economics, efficiency of turbine and stability of the station. Based on basic ship theory and using software MAXSURF, the stability of Catamaran tidal current power station is also calculated. It is found that the catamaran design is optimal choice.

  6. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms.

    Science.gov (United States)

    Knauert, Stefanie; Singer, Heinz; Hollender, Juliane; Knauer, Katja

    2010-01-01

    The submersed macrophytes Elodea canadensis, Myriophyllum spicatum and Potamogeton lucens were constantly exposed over a five-week period to environmentally relevant concentrations of atrazine, isoproturon, diuron, and their mixture in outdoor mesocosms. Effects were evaluated investigating photosynthetic efficiency (PE) of the three macrophytes and growth of M. spicatum and E. canadensis. Adverse effects on PE were observed on days 2 and 5 after application. M. spicatum was found to be the more sensitive macrophyte. E. canadensis and P. lucens were less sensitive to atrazine, diuron and the mixture and insensitive to isoproturon. PE of M. spicatum was similarly affected by the single herbicides and the mixture demonstrating concentration addition. Growth of E. canadensis and M. spicatum was not reduced indicating that herbicide exposure did not impair plant development. Although PE measurements turned out to be a sensitive method to monitor PSII herbicides, plant growth remains the more relevant ecological endpoint in risk assessment.

  7. PHYSICAL PROPERTIES OF KAOLIN/SAND SLURRY USED DURING SUBMERSIBLE MIXER PUMP TESTS AT TNX

    International Nuclear Information System (INIS)

    HANSEN, ERICH

    2005-01-01

    The purpose of this task is to characterize the physical properties of the kaolin/sand slurries used during the testing of a new submersible mixer pump (SMP) which had undergone performance testing at the TNX Waste Tank mockup facility from July 2004 through May 2005. During this time period, four identical SMPs were subjected to various water tests and four different tests using different batches of kaolin/sand slurries. The physical properties of the kaolin/sand slurries were measured for three of the four tests. In these tests, three different sample locations were used to pull samples, the SMP cooling water exit (CWE), the SMP fluid flow field (FFF), and SMP effective cleaning radius (ECR). The physical properties measured, though not for each sample, included rheology, weight percent total solids (wt% TS), density, kaolin/sand slurry particle size distribution (PSD), weight percent and particles size distribution of material greater than 45 microns

  8. Killing malignant melanoma cells with protoporphyrin IX-loaded polymersome-mediated photodynamic therapy and cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Wang M

    2017-05-01

    Full Text Available Mian Wang,1 Benjamin M Geilich,2 Michael Keidar,3 Thomas J Webster1,4 1Department of Chemical Engineering, 2Department of Bioengineering, Northeastern University, Boston, MA, 3Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA; 4Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Traditional cancer treatments contain several limitations such as incomplete ablation and multidrug resistance. It is known that photodynamic therapy (PDT is an effective treatment for several tumor types especially melanoma cells. During the PDT process, protoporphyrin IX (PpIX, an effective photosensitizer, can selectively kill cancer cells by activating a special light source. When tumor cells encapsulate a photosensitizer, they can be easily excited into an excited state by a light source. In this study, cold atmospheric plasma (CAP was used as a novel light source. Results of some studies have showed that cancer cells can be effectively killed by using either a light source or an individual treatment due to the generation of reactive oxygen species and electrons from a wide range of wavelengths, which suggest that CAP can act as a potential light source for anticancer applications compared with UV light sources. Results of the present in vitro study indicated for the first time that PpIX can be successfully loaded into polymersomes. Most importantly, cell viability studies revealed that PpIX-loaded polymersomes had a low toxicity to healthy fibroblasts (20% were killed at a concentration of 400 µg/mL, but they showed a great potential to selectively kill melanoma cells (almost 50% were killed. With the application of CAP posttreatment, melanoma cell viability significantly decreased (80% were killed compared to not using a light source (45% were killed or using a UV light source (65% were killed. In summary, these results indicated for the

  9. Conductive heat flow at the TAG Active Hydrothermal Mound: Results from 1993-1995 submersible surveys

    Science.gov (United States)

    Becker, K.; Von Herzen, R.; Kirklin, J.; Evans, R.; Kadko, D.; Kinoshita, M.; Matsubayashi, O.; Mills, R.; Schultz, A.; Rona, P.

    We report 70 measurements of conductive heat flow at the 50-m-high, 200-m-diameter TAG active hydrothermal mound, made during submersible surveys with Alvin in 1993 and 1995 and Shinkai 6500 in 1994. The stations were all measured with 5-thermistor, 0.6- or 1-m-long Alvin heat flow probes, which are capable of determining both gradient and thermal conductivity, and were transponder-navigated to an estimated accuracy of ±5-10 m relative to the 10-m-diameter central complex of black smokers. Within 20 m of this complex, conductive heat flow values are extremely variable (0.1- > 100 W/m²), which can only be due to local spatial and possible temporal variability in the immediate vicinity of the vigorous discharge sites. A similar local variability is suggested in the “Kremlin” area of white smokers to the southeast of the black smoker complex. On the south and southeast side of the mound, there is very high heat flow (3.7- > 25 W/m²) on the sedimented terraces that slope down from the Kremlin area. Heat flow is also high (0.3-3 W/m²) in the pelagic carbonate sediments on the surrounding seafloor within a few tens of meters of the southwest, northwest, and northeast sides of the mound. On the west side of the sulfide rubble plateau that surrounds the central black smoker peak, there is a coherent belt of very low heat flow (smokers, suggestive of local, shallow recharge of bottom water. The three submersible surveys spanned nearly two years, but showed no indication of any temporal variability in conductive heat flow over this time scale, whether natural or induced by ODP drilling in 1994.

  10. Validation of red cell sodium-lithium countertransport measurement--influence of different loading conditions

    DEFF Research Database (Denmark)

    Besch, W; Schläger, D; Brahm, J

    1995-01-01

    Increased sodium-lithium countertransport in erythrocytes from patients with long-standing type I (insulin-dependent) diabetes mellitus has been considered as an early marker of nephropathy. Since the activity and kinetics of the sodium-lithium countertransport may critically depend on loading co...

  11. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality

    Science.gov (United States)

    Orth, Robert J.; Williams, Michael R.; Marion, Scott R.; Wilcox, David J.; Carruthers, Tim J.B.; Moore, Kenneth A.; Kemp, W.M.; Dennison, William C.; Rybicki, Nancy B.; Peter Bergstrom,; Batiuk, Richard A.

    2010-01-01

    Chesapeake Bay supports a diverse assemblage of marine and freshwater species of submersed aquatic vegetation (SAV) whose broad distributions are generally constrained by salinity. An annual aerial SAV monitoring program and a bi-monthly to monthly water quality monitoring program have been conducted throughout Chesapeake Bay since 1984. We performed an analysis of SAV abundance and up to 22 environmental variables potentially influencing SAV growth and abundance (1984-2006). Historically, SAV abundance has changed dramatically in Chesapeake Bay, and since 1984, when SAV abundance was at historic low levels, SAV has exhibited complex changes including long-term (decadal) increases and decreases, as well as some large, single-year changes. Chesapeake Bay SAV was grouped into three broad-scale community-types based on salinity regime, each with their own distinct group of species, and detailed analyses were conducted on these three community-types as well as on seven distinct case-study areas spanning the three salinity regimes. Different trends in SAVabundance were evident in the different salinity regimes. SAV abundance has (a) continually increased in the low-salinity region; (b) increased initially in the medium-salinity region, followed by fluctuating abundances; and (c) increased initially in the high-salinity region, followed by a subsequent decline. In all areas, consistent negative correlations between measures of SAV abundance and nitrogen loads or concentrations suggest that meadows are responsive to changes in inputs of nitrogen. For smaller case-study areas, different trends in SAV abundance were also noted including correlations to water clarity in high-salinity case-study areas, but nitrogen was highly correlated in all areas. Current maximum SAV coverage for almost all areas remain below restoration targets, indicating that SAV abundance and associated ecosystem services are currently limited by continued poor water quality, and specifically high

  12. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel...

  13. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture.

    Science.gov (United States)

    Li, Pei; Zhang, Ruijie; Wang, Liyuan; Gan, Yibo; Xu, Yuan; Song, Lei; Luo, Lei; Zhao, Chen; Zhang, Chengmin; Ouyang, Bin; Tu, Bing; Zhou, Qiang

    2017-04-30

    Long-term exposure to a mechanical load causes degenerative changes in the disc nucleus pulposus (NP) tissue. A previous study demonstrated that N-cadherin (N-CDH)-mediated signalling can preserve the NP cell phenotype. However, N-CDH expression and the resulting phenotype alteration in NP cells under mechanical compression remain unclear. The present study investigated the effects of the compressive duration on N-CDH expression and on the phenotype of NP cells in an ex vivo disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days. The discs were subjected to different dynamic compression durations (1 and 8 h at a magnitude of 0.4 MPa and frequency of 1.0 Hz) once per day. Discs that were not compressed were used as controls. The results showed that long-term compression duration (8 h) significantly down-regulated the expression of N-CDH and NP-specific molecule markers (Brachyury, Laminin, Glypican-3 and Keratin 19), attenuated Alcian Blue staining intensity, decreased glycosaminoglycan (GAG) and hydroxyproline (HYP) contents and decreased matrix macromolecule (aggrecan and collagen II) expression compared with the short-term compression duration (1 h). Taken together, these findings demonstrate that long-term load duration can induce N-CDH down-regulation, loss of normal cell phenotype and result in attenuation of NP-related matrix synthesis in NP cells. © 2017 The Author(s).

  14. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    Science.gov (United States)

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  15. Human cultured cells are capable to incorporate isolated plant mitochondria loaded with exogenous DNA

    Directory of Open Access Journals (Sweden)

    Laktionov P. P.

    2012-07-01

    Full Text Available Aim. To investigate the possibility of human cultured cells to incorporate isolated mitochondria together with exogenous DNA introduced into organelles. Methods. Two approaches were used for this purpose, fluorescent labelling of mitochondria and/or DNA with subsequent analysis of the cells subjected to incubation by microscopy or by quantitative PCR. Results. We have shown that human cultured cells lines, HeLa and HUVEC, are capable to uptake isolated plant mitochondria and that this process depends on the incubation time and concentration of organelles present in medium. The incorporated mitochondria can serve as vehicles to deliver exogenous DNA into human cells, this DNA is then distributed in different cell compartments. Conclusions. These results are preliminary and need further investigations, including testing the possibility of human cells to incorporate the mitochondria of human or animal origin and creating genetic construction which could provide certain selectivity or stability of the transferred exogenous DNA upon cell uptake of the mitochondria as vectors.

  16. Comparing passive angle-torque curves recorded simultaneously with a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments.

    Science.gov (United States)

    Buckner, Samuel L; Jenkins, Nathaniel D M; Costa, Pablo B; Ryan, Eric D; Herda, Trent J; Cramer, Joel T

    2015-05-01

    The purpose of the present study was to compare the passive angle-torque curves and the passive stiffness (PS, N m °(-)(1)) values recorded simultaneously from a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments in vivo. Nine healthy men (mean ± SD age = 21.4 ± 1.6 years) completed stretch tolerance assessments on a custom-built apparatus where passive torque was measured simultaneously from an isokinetic dynamometer and a load cell. Passive torque values that corresponded with the last 10° of dorsiflexion, verified by surface electromyographic amplitude, were analyzed for each device (θ1, θ2, θ3, …, θ10). Passive torque values measured with the load cell were greater (p ≤ 0.05) than the dynamometer torque values for θ4 through θ10. There were more statistical differentiations among joint angles for passive torque measured by the load cell, and the load cell measured a greater (p ≤ 0.01) increase in passive torque and PS than the isokinetic dynamometer. These findings suggested that when examining the angle-torque curves from passive dorsiflexion stretch tolerance tests, a load cell placed under the distal end of the foot may be more sensitive than the torque recorded from an isokinetic dynamometer. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Preparation, characterization and toxicological investigation of copper loaded chitosan nanoparticles in human embryonic kidney HEK-293 cells

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Divya [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Dhanwal, Vandna [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Nayak, Debasis [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Saneja, Ankit [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Amin, Hina [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Rasool, Reyaz ur [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Gupta, Prem Narayan [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Goswami, Anindya, E-mail: agoswami@iiim.ac.in [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India)

    2016-04-01

    Metallic nanoparticles often attribute severe adverse effects to the various organs or tissues at the molecular level despite of their applications in medical, laboratory and industrial sectors. The present study highlights the preparation of copper adsorbed chitosan nanoparticles (CuCSNPs), its characterization and validation of cytotoxicity in human embryonic kidney HEK-293 cells. Particle size of the CuCSNPs was determined by using Zetasizer and the copper loading was quantified with the help of ICP/MS. Further characterization of CuCSNPs was carried out by FT-IR analysis to determine the formation of nanoparticles and SEM was conducted for the morphological analysis of the CuCSNPs. The CuCSNPs exhibited pronounced cytotoxic effects towards HEK-293 cells as analyzed by MTT assay. Moreover, the CuCSNPs inhibited the colony formation and induced nuclear damage at the dose of 100 μg/mL, much more effectively than the in built control copper sulfate (CuSO{sub 4}). At the molecular level, the CuCSNPs were found to be triggering reactive oxygen species (ROS), activating effector caspases and subsequent PARP cleavage to induce cell death in HEK-293 cells. - Highlights: • Subtoxic levels of CuCSNPs induce apoptosis in HEK-293 cells. • CuCSNPs mediate toxicity via nuclear cleavage and ROS generation. • CuCSNPs favor caspase activation and PARP cleavage to induce cell death.

  18. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Science.gov (United States)

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  19. Direct sorbitol proton exchange membrane fuel cell using moderate catalyst loadings

    International Nuclear Information System (INIS)

    Oyarce, Alejandro; Gonzalez, Carlos; Lima, Raquel Bohn; Lindström, Rakel Wreland; Lagergren, Carina; Lindbergh, Göran

    2014-01-01

    Highlights: •The performance of a direct sorbitol fuel cell was evaluated at different temperatures. •The performance was compared to the performance of a direct glucose fuel cell. •The mass specific peak power density of the direct sorbitol fuel cell was 3.6 mW mg −1 totalcatalystloading at 80 °C. •Both sorbitol and glucose fuel cell suffer from deactivation. -- Abstract: Recent progress in biomass hydrolysis has made it interesting to study the use of sorbitol for electricity generation. In this study, sorbitol and glucose are used as fuels in proton exchange membrane fuel cells having 0.9 mg cm −2 PtRu/C at the anode and 0.3 mg cm −2 Pt/C at the cathode. The sorbitol oxidation was found to have slower kinetics than glucose oxidation. However, at low temperatures the direct sorbitol fuel cell shows higher performance than the direct glucose fuel cell, attributed to a lower degree of catalyst poisoning. The performance of both fuel cells is considerably improved at higher temperatures. High temperatures lower the poisoning, allowing the direct glucose fuel cell to reach a higher performance than the direct sorbitol fuel cell. The mass specific peak power densities of the direct sorbitol and direct glucose fuel cells at 65 °C was 3.2 mW mg −1 catalyst and 3.5 mW mg −1 catalyst , respectively. Both of these values are one order of magnitude larger than mass specific peak power densities of earlier reported direct glucose fuel cells using proton exchange membranes. Furthermore, both the fuel cells showed a considerably decrease in performance with time, which is partially attributed to sorbitol and glucose crossover poisoning the Pt/C cathode

  20. Targeting Mast Cells and Basophils with Anti-FcεRIα Fab-Conjugated Celastrol-Loaded Micelles Suppresses Allergic Inflammation.

    Science.gov (United States)

    Peng, Xia; Wang, Juan; Li, Xianyang; Lin, Lihui; Xie, Guogang; Cui, Zelin; Li, Jia; Wang, Yuping; Li, Li

    2015-12-01

    Mast cells and basophils are effector cells in the pathophysiology of allergic diseases. Targeted elimination of these cells may be a promising strategy for the treatment of allergic disorders. Our present study aims at targeted delivery of anti-FcεRIα Fab-conjugated celastrol-loaded micelles toward FcεRIα receptors expressed on mast cells and basophils to have enhanced anti-allergic effect. To achieve this aim, we prepared celastrol-loaded (PEO-block-PPO-block-PEO, Pluronic) polymeric nanomicelles using thin-film hydration method. The anti-FcεRIα Fab Fragment was then conjugated to carboxyl groups on drug-loaded micelles via EDC amidation reaction. The anti-FcεRIα Fab-conjugated celastrol-loaded micelles revealed uniform particle size (93.43 ± 12.93 nm) with high loading percentage (21.2 ± 1.5% w/w). The image of micelles showed oval and rod like. The anti-FcεRIα Fab-conjugated micelles demonstrated enhanced cellular uptake and cytotoxity toward target KU812 cells than non-conjugated micelles in vitro. Furthermore, diffusion of the drug into the cells allowed an efficient induction of cell apoptosis. In mouse model of allergic asthma, treatment with anti-FcεRIα Fab-conjugated micelles increased lung accumulation of micelles, and significantly reduced OVA-sIgE, histamine and Th2 cytokines (IL-4, IL-5, TNF-α) levels, eosinophils infiltration and mucus production. In addition, in mouse model of passive cutaneous anaphylaxis, anti-FcεRIα Fab-conjugated celastrol-loaded micelles treatment significantly decreased extravasated evan's in the ear. These results indicate that anti-FcεRIα Fab-conjugated celastrol-loaded micelles can target and selectively kill mast cells and basophils which express FcεRIα, and may be efficient reagents for the treatment of allergic disorders and mast cell related diseases.

  1. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model

    Directory of Open Access Journals (Sweden)

    Rahman HS

    2015-03-01

    Full Text Available Heshu Sulaiman Rahman,1–3 Abdullah Rasedee,1,2 Chee Wun How,2 Nazariah Allaudin Zeenathul,1,2 Max Stanley Chartrand,4 Swee Keong Yeap,2 Ahmad Bustamam Abdul,2,5 Sheau Wei Tan,2 Hemn Hassan Othman,1,3 Zahra Ajdari,6 Farideh Namvar,7 Palanisamy Arulselvan,2 Sharida Fakurazi,2,5 Parvaneh Mehrbod,2 Nasibeh Daneshvar,2 Hasina Begum2 1Faculty of Veterinary Medicine, 2Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; 3Faculty of Veterinary Medicine, University of Sulaimany, Sulaimany City, Northern Iraq; 4DigiCare Behavioral Research, Casa Grande, AZ, USA; 5Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia; 6Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia; 7Institute of Tropical Forestry and Forest Products (INTROP, Universiti Putra Malaysia, Selangor, Malaysia Abstract: Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC (ZER-NLC on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects

  2. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes

    International Nuclear Information System (INIS)

    Tang Yong; Yuan Wei; Pan Minqiang; Li Zongtao; Chen Guoqing; Li Yong

    2010-01-01

    The dynamic performance is a very important evaluation index of proton exchange membrane (PEM) fuel cells used for real application, which is mostly related with water, heat and gas management. A commercial PEM fuel cell system of Nexa module is employed to experimentally investigate the dynamic behavior and transient response of a PEM fuel cell stack and reveal involved influential factors. Five groups of dynamic tests are conducted and divided into different stage such as start-up, shut-down, step-up load, regular load variation and irregular load variation. It is observed that the external load changes the current output proportionally and reverses stack voltage accordingly. The purge operation benefits performance recovery and enhancement during a constant load and its time strongly depends on the operational current level. Overshoot and undershoot behaviors are observed during transience. But the current undershoot does not appear due to charge double-layer effect. Additionally, magnitudes of the peaks of the voltage overshoot and undershoot vary at different current levels. The operating temperature responds fast to current load but changes slowly showing an arc-like profile without any overshoot and undershoot events. The air flow rate changes directly following the dynamic load demand. But the increased amount of air flow rate during different step-change is not identical, which depends on the requirement of internal reaction and flooding intensity. The results can be utilized for validation of dynamic fuel cell models, and regarded as reference for effective control and management strategies.

  3. Alkali resistant Ni-loaded yolk-shell catalysts for direct internal reforming in molten carbonate fuel cells

    Science.gov (United States)

    Jang, Won-Jun; Hong, Young Jun; Kim, Hak-Min; Shim, Jae-Oh; Roh, Hyun-Seog; Kang, Yun Chan

    2017-06-01

    A facile and scalable spray pyrolysis process is applied to synthesize multi-shelled Ni-loaded yolk-shell catalysts on various supports (Al2O3, CeO2, ZrO2, and La(OH)3). The prepared catalysts are applied to direct internal reforming (DIR) in a molten carbonate fuel cell (MCFC). Even on exposure to alkali hydroxide vapors, the Ni-loaded yolk-shell catalysts remain highly active for DIR-MCFCs. The Ni@Al2O3 microspheres show the highest conversion (92%) of CH4 and the best stability among the prepared Ni-loaded yolk-shell catalysts. Although the initial CH4 conversion of the Ni@ZrO2 microspheres is higher than that of the Ni@CeO2 microspheres, the Ni@CeO2 microspheres are more stable. The catalytic performance is strongly dependent on the surface area and acidity and also partly dependent on the reducibility. The acidic nature of Al2O3 combined with its high surface area and yolk-shell structure enhances the adsorption of CH4 and resistance against alkali poisoning, resulting in efficient DIR-MCFC reactions.

  4. Protective CD8+ T-cell responses to cytomegalovirus driven by rAAV/GFP/IE1 loading of dendritic cells

    Directory of Open Access Journals (Sweden)

    Dalle-Donne Isabella

    2008-10-01

    Full Text Available Abstract Background Recent studies demonstrate that recombinant adeno-associated virus (rAAV-based antigen loading of dendritic cells (DCs generates in vitro, significant and rapid cytotoxic T-lymphocyte (CTL responses against viral antigens. Methods We used the rAAV system to induce specific CTLs against CVM antigens for the development of cytomegalovirus HCMV gene therapy. As an extension of the versatility of the rAAV system, we incorporated immediate-early 1 (IE1, expressed in HCMV. Our rAAV vector induced a strong stimulation of CTLs directed against the HCMV antigen IE1. We then investigated the efficiency of the CTLs in killing IE1 targeted cells. Results A significant MHC Class I-restricted, anti-IE1-specific CTL killing was demonstrated against IE1 positive peripheral blood mononuclear cells (PBMC after one, in vitro, stimulation. Conclusion In summary, single PBMC stimulation with rAAV/IE1 pulsed DCs induces strong antigen specific-CTL generation. CTLs were capable to lyse low doses of peptides pulsed into target cells. These data suggest that AAV-based antigen loading of DCs is highly effective for generating human CTL responses against HCMV antigens.

  5. Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line

    Directory of Open Access Journals (Sweden)

    Rahman HS

    2014-01-01

    Full Text Available Heshu Sulaiman Rahman,1–3 Abdullah Rasedee,1,2 Ahmad Bustamam Abdul,2,4 Nazariah Allaudin Zeenathul,1,2 Hemn Hassan Othman,1,3 Swee Keong Yeap,2 Chee Wun How,2 Wan Abd Ghani Wan Nor Hafiza4,51Faculty of Veterinary Medicine, 2Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; 3Faculty of Veterinary Medicine, University of Sulaimanyah, Sulaimanyah City, Kurdistan Region, Northern Iraq; 4Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia; 5College of Medical Laboratory Technology, Institute for Medical Research, Kuala Lumpur, MalaysiaAbstract: This investigation evaluated the antileukemia properties of a zerumbone (ZER-loaded nanostructured lipid carrier (NLC prepared by hot high-pressure homogenization techniques in an acute human lymphoblastic leukemia (Jurkat cell line in vitro. The apoptogenic effect of the ZER-NLC on Jurkat cells was determined by fluorescent and electron microscopy, Annexin V-fluorescein isothiocyanate, Tdt-mediated dUTP nick-end labeling assay, cell cycle analysis, and caspase activity. An MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyltetrazolium bromide assay showed that ZER-NLC did not have adverse effects on normal human peripheral blood mononuclear cells. ZER-NLC arrested the Jurkat cells at G2/M phase with inactivation of cyclin B1 protein. The study also showed that the antiproliferative effect of ZER-NLC on Jurkat cells is through the intrinsic apoptotic pathway via activation of caspase-3 and caspase-9, release of cytochrome c from the mitochondria into the cytosol, and subsequent cleavage of poly (adenosine diphosphate-ribose polymerase (PARP. These findings show that the ZER-NLC is a potentially useful treatment for acute lymphoblastic leukemia in humans.Keywords: zerumbone-loaded nanostructured lipid carrier, cell cycle arrest, apoptosis, mitochondrial pathway

  6. Cocoa Beach, Oculina Banks Clelia Dive 617 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of from fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance...

  7. Sebastian Pinnacles, Oculina Banks Clelia Dive 618 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  8. Sebastian Pinnacles, Oculina Banks Clelia Dive 614 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  9. Sebastian Pinnacles, Oculina Banks Clelia Dive 615 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  10. Sebastian Pinnacles, Oculina Banks Clelia Dive 619 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  11. Jeff's Reef, Oculina Banks Clelia Dive 606 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These are data from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  12. Chapman's Reef, Oculina Banks Clelia Dive 620 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  13. stil113_0401p -- Still frame locations of sediment extracted from video imagery collected by Delta submersible in September 2001.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Delta submersible vehicle, outfitted with video equipment (and other devices), was deployed from the R/V Auriga during September 2001 to monitor seafloor...

  14. Jeff's Reef Oculina Banks Clelia Dive 607 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These are data from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  15. Submersible Data (Dive Waypoints) for Islands in the Stream 2002 - Exploration of Outer Shelf and Slope Habitats off the Coast of North Carolina - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during one dive of the 2002 "Islands in the Stream - Outer Shelf...

  16. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    Science.gov (United States)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  17. Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds

    Directory of Open Access Journals (Sweden)

    Gayathri Subramanian

    2017-01-01

    Full Text Available Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment.

  18. Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds.

    Science.gov (United States)

    Subramanian, Gayathri; Stasuk, Alexander; Elsaadany, Mostafa; Yildirim-Ayan, Eda

    2017-01-01

    Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment.

  19. Dendritic cells that phagocytose apoptotic macrophages loaded with mycobacterial antigens activate CD8 T cells via cross-presentation

    OpenAIRE

    Espinosa-Cueto, Patricia; Magallanes-Puebla, Alejandro; Castellanos, Carlos; Mancilla, Raul

    2017-01-01

    While homeostatic apoptosis is immunologically silent, macrophage apoptosis during Mycobacterium tuberculosis infection can potentially induce an immune response against the mycobacteria. To examine the role of dendritic cells in this response, macrophage apoptosis was induced by incubating the macrophage with cell wall extracts of mycobacteria expressing LpqH. The apoptogenic proteins of the cell wall extracts were engulfed by the macrophage and then were translocated from the cytosol to the...

  20. Differences in fetal bovine serum affect the responsiveness of cells to mechanical loads

    NARCIS (Netherlands)

    Rubert, M.; Vetsch, J.R.; Storz, L.; Lehtoviita, I.; Mueller, R.M.; Hofmann, S.

    2015-01-01

    Nowadays, the end-point of a cell culture in bone tissue engineering (BTE) is the acquisition of a well mineralized extracellular matrix. The biological performance of BTE relies on evaluation of the cell capacity to proliferate and to produce extracellular matrix by quantification of gene

  1. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.

    Science.gov (United States)

    Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles

    2018-01-01

    Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game. Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute) or "long" pauses (5 minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline) and in all 17 enrolled players following a season game. Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate (r = 0.69; psports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a particular load related aspect in professional football.

  2. Hematopoietic stem cell capture and directional differentiation into vascular endothelial cells for metal stent-coated chitosan/hyaluronic acid loading CD133 antibody.

    Science.gov (United States)

    Zhang, Shixuan; Zhang, Fan; Feng, Bo; Fan, Qingyu; Yang, Feng; Shang, Debin; Sui, Jinghan; Zhao, Hong

    2015-03-01

    A series of metal stents coated with chitosan/hyaluronic acid (CS/HA) loading antibodies by electrostatic self-assembled method were prepared, and the types of cells captured by antibodies and their differentiation in vascular endothelial cells (ECs) evaluated by molecular biology and scanning electron microscope. The results showed that CD133 stent can selectively capture hematopoietic stem cells (HSC),which directionally differentiate into vascular ECs in peripheral blood by (CS/HA) induction, and simultaneously inhibit migration and proliferation of immune cells and vascular smooth muscle cells (MCs). CD34 stent can capture HSC, hematopoietic progenitor cells that differentiate into vascular ECs and immune cells, promoting smooth MCs growth, leading to thrombosis, inflammation, and rejection. CD133 stent can be implanted into miniature pig heart coronary and can repair vascular damage by capturing own HSC, thus contributing to the rapid natural vascular repair, avoiding inflammation and rejection, thrombosis and restenosis. These studies demonstrated that CD133 stent of HSC capture will be an ideal coated metal stent providing a new therapeutic approach for cardiovascular and cerebrovascular disease.

  3. Full and part load exergetic analysis of a hybrid micro gas turbine fuel cell system based on existing components

    International Nuclear Information System (INIS)

    Bakalis, Diamantis P.; Stamatis, Anastassios G.

    2012-01-01

    Highlights: ► Hybrid SOFC/GT system based on existing components. ► Exergy analysis using AspenPlus™ software. ► Greenhouse gases emission is significantly affected by SOFC stack temperature. ► Comparison with a conventional GT of similar power. ► SOFC/GT is almost twice efficient in terms of second low efficiency and CO 2 emission. - Abstract: The paper deals with the examination of a hybrid system consisting of a pre-commercially available high temperature solid oxide fuel cell and an existing recuperated microturbine. The irreversibilities and thermodynamic inefficiencies of the system are evaluated after examining the full and partial load exergetic performance and estimating the amount of exergy destruction and the efficiency of each hybrid system component. At full load operation the system achieves an exergetic efficiency of 59.8%, which increases during the partial load operation, as a variable speed control method is utilized. Furthermore, the effects of the various performance parameters such as fuel cell stack temperature and fuel utilization factor are assessed. The results showed that the components in which chemical reactions occur have the higher exergy destruction rates. The exergetic performance of the system is affected significantly by the stack temperature. Based on the exergetic analysis, suggestions are given for reducing the overall system irreversibility. Finally, the environmental impact of the operation of the hybrid system is evaluated and compared with a similarly rated conventional gas turbine plant. From the comparison it is apparent that the hybrid system obtains nearly double exergetic efficiency and about half the amount of greenhouse gas emissions compared with the conventional plant.

  4. Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

    KAUST Repository

    Viswanath, Anupam

    2012-12-21

    This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas™, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm × 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas™ and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP -1 over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg-1 with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response. © 2013 IOP Publishing Ltd.

  5. Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

    KAUST Repository

    Viswanath, Anupam; Green, Scott Ryan; Kosel, Jü rgen; Gianchandani, Yogesh B.

    2012-01-01

    This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas™, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm × 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas™ and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP -1 over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg-1 with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response. © 2013 IOP Publishing Ltd.

  6. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...... remodeling in vivo, and therefore provide a promising new tool for regenerative dentistry, for example mineralized tissue engineering to restore bone defects in relation to periodontitis, periimplantatis and orofacial surgery. Experiments in progress have proven that DPCSs are also useful for assessing...

  7. Minocycline Loaded Hybrid Composites Nanoparticles for Mesenchymal Stem Cells Differentiation into Osteogenesis

    Directory of Open Access Journals (Sweden)

    Allister Yingwei Tham

    2016-07-01

    Full Text Available Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM and including new biomaterials could produce a better substitute for new bone tissue formation. A purpose of this study is to analyze polycaprolactone/silk fibroin/hyaluronic acid/minocycline hydrochloride (PCL/SF/HA/MH nanoparticles initiate human mesenchymal stem cells (MSCs proliferation and differentiation into osteogenesis. Electrospraying technique was used to develop PCL, PCL/SF, PCL/SF/HA and PCL/SF/HA/MH hybrid biocomposite nanoparticles and characterization was analyzed by field emission scanning electron microscope (FESEM, contact angle and Fourier transform infrared spectroscopy (FT-IR. The obtained results proved that the particle diameter and water contact angle obtained around 0.54 ± 0.12 to 3.2 ± 0.18 µm and 43.93 ± 10.8° to 133.1 ± 12.4° respectively. The cell proliferation and cell-nanoparticle interactions analyzed using (3-(4,5-dimethyl thiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium inner salt MTS assay (Promega, Madison, WI, USA, FESEM for cell morphology and 5-Chloromethylfluorescein diacetate (CMFDA dye for imaging live cells. Osteogenic differentiation was proved by expression of osteocalcin, alkaline phosphatase activity (ALP and mineralization was confirmed by using alizarin red (ARS. The quantity of cells was considerably increased in PCL/SF/HA/MH nanoparticles when compare to all other biocomposite nanoparticles and the cell interaction was observed more on PCL/SF/HA/MH nanoparticles. The electrosprayed PCL/SF/HA/MH biocomposite nanoparticle significantly initiated increased cell proliferation, osteogenic differentiation and mineralization, which provide huge potential for bone tissue engineering.

  8. Regeneration of musculoskeletal injuries using mesenchymal stem cells loaded scaffolds: review article

    Directory of Open Access Journals (Sweden)

    Maryam Ataie

    2017-07-01

    Full Text Available An increase in the average age of the population and physical activities where the musculoskeletal system is involved as well as large number of people suffering from skeletal injuries which impose high costs on the society. Bone grafting is currently a standard clinical approach to treat or replace lost tissues. Autografts are the most common grafts, but they can lead to complications such as pain, infection, scarring and donor site morbidity. The alternative is allografts, but they also carry the risk of carrying infectious agents or immune rejection. Therefore, surgeons and researchers are looking for new therapeutic methods to improve bone tissue repair. The field of tissue engineering and the use of stem cells as an ideal cell source have emerged as a promising approach in recent years. Three main components in the field of tissue engineering include proper scaffolds, cells and growth factors that their combination leads to formation of tissue-engineered constructs, resulting in tissue repair and regeneration. The use of scaffolds with suitable properties could effectively improve the tissue function or even regenerate the damaged tissue. The main idea of tissue engineering is to design and fabricate an appropriate scaffold which can support cell attachment, proliferation, migration and differentiation to relevant tissue. Scaffold gives the tissue its structural and mechanical properties, for instance flexibility and stiffness that is related with the tissue functions. Biomaterials used to fabricate scaffolds can be categorized into natural or synthetic biodegradable or non-biodegradable materials. Polymers are the most widely used materials in tissue engineering. Growth factors are a group of proteins that cause cell proliferation and differentiation. Two main cell sources are specialized cells of desired tissue and stem cells. However, according to the low proliferation and limited accessibility to the cells of desired tissue, stem cells

  9. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity

    Directory of Open Access Journals (Sweden)

    Saima Jadoon

    2015-01-01

    Full Text Available The exposure to ultraviolet radiations (UVR is the key source of skin sunburn; it may produce harmful entities, reactive oxygen species (ROS, leading to aging. The skin can be treated and protected from the injurious effects of ROS by using various pharmaceutical formulations, such as cream. Cream can be loaded with antioxidants to quench ROS leading to photo-protective effects. Moreover, modern medicines depend on ethnobotanicals for protection or treatment of human diseases. This review article summarizes various in vivo antioxidant studies on herbal creams loaded with phyto-extracts. These formulations may serve as cosmeceuticals to protect skin against injurious effects of UVR. The botanicals studied for dermatologic use in cream form include Acacia nilotica, Benincasa hispida, Calendula officinalis, Camellia sinensis, Camellia sinensis, Nelumbo nucifera, Capparis decidua, Castanea sativa, Coffea arabica, Crocus sativus, Emblica officinalis Gaertn, Foeniculum vulgare, Hippophae rhamnoides, Lithospermum erythrorhizon, Malus domestica, Matricaria chamomilla L., Moringa oleifera, Morus alba, Ocimum basilicum, Oryza sativa, Polygonum minus, Punica granatum, Silybum marianum, Tagetes erecta Linn., Terminalia chebula, Trigonella foenum-graecum, and Vitis vinifera. The observed anti-aging effects of cream formulations could be an outcome of a coordinating action of multiple constituents. Of numerous botanicals, the phenolic acids and flavonoids appear effective against UVR-induced damage; however the evidence-based studies for their anti-aging effects are still needed.

  10. [Sulfatide-loaded CD1d tetramer to detect typeII NKT cells in mice].

    Science.gov (United States)

    Zhang, Gu-qin; Nie, Han-xiang; Yang, Jiong; Yu, Hong-ying

    2012-07-01

    To create a method of detecting typeII natural killer T (NKT) cells of mice. Biotinylated mouse CD1d monomers were mixed with sulfatide at a molar ratio of 1:3 (protein:lipid) and incubated at room temperature overnight, and then 80 μg of streptavidin-PE was added into 200 μg of the CD1d-sulfatide mixture and incubated at room temperature for 4 h to get sulfatide/CD1d tetramer. Flow cytometry was used to detect the percentage of typeII NKT cells in mononuclear cells (MNCs) of lung and spleen of normal mice, as well as the percentage of typeII NKT cells in spleen MNCs of mice after stimulated with sulfatide. In normal mice, the percentage of typeII NKT cells accounted for (0.875±0.096)% and (1.175±0.263)% in MNCs of spleen and lung; the percentage in spleen MNCs after activated with sulfatide was (2.75±0.603)%, which significantly increased as compared with that in normal mice (PNKT cells in mice.

  11. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line.

    Science.gov (United States)

    Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila M M; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy C R; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K

    2014-01-01

    Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.

  12. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering.

    Science.gov (United States)

    Diniz, Ivana M A; Carreira, Ana C O; Sipert, Carla R; Uehara, Cindi M; Moreira, Maria S N; Freire, Laila; Pelissari, Cibele; Kossugue, Patrícia M; de Araújo, Daniele R; Sogayar, Mari C; Marques, Márcia M

    2018-06-01

    Photobiomodulation (PBM) therapy displays relevant properties for tissue healing and regeneration, which may be of interest for the tissue engineering field. Here, we show that PBM is able to improve cell survival and to interact with recombinant human Bone Morphogenetic Protein 4 (rhBMP4) to direct and accelerate odonto/osteogenic differentiation of dental derived mesenchymal stem cells (MSCs). MSCs were encapsulated in an injectable and thermo-responsive cell carrier (Pluronic ® F-127) loaded with rhBMP4 and then photoactivated. PBM improved MSCs self-renewal and survival upon encapsulation in the Pluronic ® F-127. In the presence of rhBMP4, cell odonto/osteogenic differentiation was premature and markedly improved in the photoactivated MSCs. An in vivo calvarial critical sized defect model demonstrated significant increase in bone formation after PBM treatment. Finally, a balance in the reactive oxygen species levels may be related to the favorable results of PBM and rhBMP4 association. PBM may act in synergism with rhBMP4 and is a promise candidate to direct and accelerate hard tissue bioengineering. © 2017 Wiley Periodicals, Inc.

  13. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.

    Directory of Open Access Journals (Sweden)

    Nils Haller

    Full Text Available Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game.Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute or "long" pauses (5 minutes. Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline and in all 17 enrolled players following a season game.Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016 and cfDNA correlated significantly with lactate (r = 0.69; p<0.001. Incremental exercise testing increased cfDNA 7.0-fold (p<0.001. The season game increased cfDNA 22.7-fold (p<0.0001, while lactate showed a 2.0-fold (p = 0.09 increase compared to baseline. Fold-changes in cfDNA correlated with distance covered during game (spearman's r = 0.87, p = 0.0012, while no correlation between lactate and the tracking data could be found.We show for the first time that cfDNA could be an objective marker for distance covered in elite intermittent sports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a

  14. Numerical Investigation of a Tuned Heave Plate Energy-Harvesting System of a Semi-Submersible Platform

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2016-01-01

    Full Text Available A novel tuned heave plate energy-harvesting system (THPEH is presented for the motion suppressing and energy harvesting of a semi-submersible platform. This THPEH system is designed based on the principle of a tuned mass damper (TMD and is composed of spring supports, a power take-off system (PTO and four movable heave plates. The permanent magnet linear generators (PMLG are used as the PTO system in this design. A semi-submersible platform operating in the South China Sea is selected as the research subject for investigating the effects of the THPEH system on motion reduction and harvesting energy through numerical simulations. The numerical model of the platform and the THPEH system, which was established based on hydrodynamic analysis, is modified and validated by the results of the flume test of a 1:70 scale model. The effects of the parameters, including the size, the frequency ratio and the damping ratio of the THPEH system, are systematically investigated. The results show that this THPEH system, with proper parameters, could significantly reduce the motions of the semi-submersible platform and generate considerable power under different wave conditions.

  15. Linking carbon and nitrogen metabolism to depth distribution of submersed macrophytes using high ammonium dosing tests and a lake survey.

    Science.gov (United States)

    Yuan, Guixiang; Cao, Te; Fu, Hui; Ni, Leyi; Zhang, Xiaolin; Li, Wei; Song, Xin; Xie, Ping; Jeppesen, Erik

    2013-12-01

    Strategies of carbon (C) and nitrogen (N) utilisation are among the factors determining plant distribution. It has been argued that submersed macrophytes adapted to lower light environments are more efficient in maintaining C metabolic homeostasis due to their conservative C strategy and ability to balance C shortage. We studied how depth distributions of 12 submersed macrophytes in Lake Erhai, China, were linked to their C-N metabolic strategies when facing acute [Formula: see text] dosing.[Formula: see text] dosing changed C-N metabolism significantly by decreasing the soluble carbohydrate (SC) content and increasing the [Formula: see text]-N and free amino acid (FAA) content of plant tissues.The proportional changes in SC contents in the leaves and FAA contents in the stems induced by [Formula: see text] dosing were closely correlated (positive for SC and negative for FAA) with the colonising water depths of the plants in Lake Erhai, the plants adapted to lower light regimes being more efficient in maintaining SC and FAA homeostasis.These results indicate that conservative carbohydrate metabolism of submersed macrophytes allowed the plants to colonise greater water depths in eutrophic lakes, where low light availability in the water column diminishes carbohydrate production by the plants.

  16. Studi Pengaruh Gerak Semi-submersible Drilling Rig dengan Variasi Pre-tension Mooring Line terhadap Keamanan Drilling Riser

    Directory of Open Access Journals (Sweden)

    Arda Arda

    2012-09-01

    Full Text Available Analisis terhadap sistem tambat pada anjungan pengeboran semi-submersible drilling rig perlu dilakukan sebelum dilakukannya operasi di lapangan untuk mengetahui perencanaan sistem tambat yang tepat dan aman. Dalam penelitian ini dilakukan analisa perilaku gerak semi-submersible dengan variasi pre-tension mooring line untuk mengetahui berapa besar pre-tension minimal yang harus digunakan agar operasi pengeboran di lingkungan laut Natuna dapat berjalan dengan aman. Variasi pre-tension yang digunakan adalah sebesar 400kN-2000kN dengan penambahan sebesar 400kN. Karakteristik gerakan semi-submersible diprediksi dengan menghitung RAO free floating dengan pemodelan numerik dalam domain frekuensi. Kemudian dilakukan analisa simulasi sistem lengkap (platform, mooring dan drilling riser dengan pemodelan numerik dalam domain waktu. Hasil yang didapat yakni nilai maksimum tegangan mooring line memenuhi batas kriteria API-RP2SK untuk semua variasi pre-tension dengan safety factor terkecil 2.44. Sudut flex joint drilling riser yang terjadi melewati batas kriteria API-RP16Q pada pre-tension 400kN-800kN yang mencapai 6.20 untuk sudut maksimum dan 4.80 untuk sudut rata-rata. Tegangan von Mises yang terjadi pada drilling riser melebihi kriteria API-RP16Q pada pre-tension 400kN-1200kN karena nilainya mencapai 369 MPa (0.82 yield stress.

  17. Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells

    Directory of Open Access Journals (Sweden)

    Fanglong Song

    2017-02-01

    Full Text Available Background/Aims: This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs and tendon cells (TCs. Methods: The effect of continuous passive motion (CPM therapy on tendon-bone healing in a rabbit ACL reconstruction model was evaluated by histological analysis, biomechanical testing and gene expressions at the tendon-bone interface. Furthermore, the effect of mechanical stretch on cell proliferation and matrix synthesis in BMSC/TC co-culture was also examined. Results: Postoperative CPM therapy significantly enhanced tendon-bone healing, as evidenced by increased amount of fibrocartilage, elevated ultimate load to failure levels, and up-regulated gene expressions of Collagen I, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin at the tendon-bone junction. In addition, BMSC/TC co-culture treated with mechanical stretch showed a higher rate of cell proliferation and enhanced expressions of Collagen I, Collagen III, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin than that of controls. Conclusion: These results demonstrated that proliferation and differentiation of local precursor cells could be enhanced by mechanical stimulation, which results in enhanced regenerative potential of BMSCs and TCs in tendon-bone healing.

  18. Erlotinib-loaded albumin nanoparticles: A novel injectable form of erlotinib and its in vivo efficacy against pancreatic adenocarcinoma ASPC-1 and PANC-1 cell lines.

    Science.gov (United States)

    Noorani, M; Azarpira, N; Karimian, K; Heli, H

    2017-10-05

    Erlotinib was loaded on albumin nanoparticles for the first time and the cytotoxic effect of the resulting nanoparticles against ASPC-1 and PANC-1 pancreatic adenocarcinoma cell lines was evaluated. The carrier (albumin nanoparticles, ANPs) was synthesized by desolvation method using a mixed solvent followed by thermal crosslinking for stabilization. ANPs and the drug-loaded ANPs were characterized by field emission scanning and transmission electron microscopies, particle size analysis and Fourier transform infrared spectroscopy. The nanoformulation had a size of PANC-1 cell line). Values of IC 50 were obtained for both cell lines and indicated significant reduction in the erlotinib dose necessary for killing the cells, while, ANPs were completely safe. The results demonstrated that erlotinib-loaded ANPs had a remarkable potential for pancreatic cancer drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nanoparticle-neural stem cells for targeted ovarian cancer treatment: optimization of silica nanoparticles for efficient drug loading

    Science.gov (United States)

    Patel, Z.; Berlin, J.; Abidi, W.

    2018-02-01

    One of the drugs used to treat ovarian cancer is cisplatin. However, cisplatin kills normal surrounding tissue in addition to cancer cells. To improve tumor targeting efficiency, our lab uses neural stem cells (NSCs), which migrate directly to ovarian tumors. If free cisplatin is loaded into NSCs for targeted drug delivery, it will kill the NSCs. To prevent the drug cisplatin from killing both the NSCs and normal surrounding tissue, our lab synthesizes silica nanoparticles (SiNPs) that act as a protective carrier. The big picture here is to maximize efficiency of tumor targeting using NSCs and minimize toxicity to these NSCs using SiNPs. The goal of this project is to optimize the stability of SiNPs, which is important for efficient drug loading. To do this, the concentration of tetraethyl orthosilicate (TEOS), one of the main components of SiNPs, was varied. We hypothesized that more TEOS equates to more stable SiNPs because TEOS contributes carbon to SiNPs, and thus a tightly-packed chemical structure results in a stable particle. Then, the stability of the SiNPs were checked in cell media and phosphate buffered saline (PBS). Lastly, the SiNPs were analyzed for their porosity using the transmission electron microscope (TEM). TEM imaging showed white spots in the 200-800 μL TEOS batches and no white spots in the 1000-1800 μL TEOS batches. The white spots were pores, which indicate instability. We concluded that the ultimate factor that determines the stability of SiNPs (100 nm) is the concentration of organic substance.

  20. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line.

    Science.gov (United States)

    Doggui, Sihem; Sahni, Jasjeet Kaur; Arseneault, Madeleine; Dao, Lé; Ramassamy, Charles

    2012-01-01

    Curcumin, a natural polyphenolic pigment present in the spice turmeric (Curcuma longa), is known to possess a pleiotropic activity such as antioxidant, anti-inflammatory, and anti-amyloid-β activities. However, these benefits of curcumin are limited by its poor aqueous solubility and oral bioavailability. In the present study, a polymer-based nanoparticle approach has been utilized to deliver drugs to neuronal cells. Curcumin was encapsulated in biodegradable poly (lactide-co-glycolide) (PLGA) based-nanoparticulate formulation (Nps-Cur). Dynamic laser light scattering and transmission electronic microscopy analysis indicated a particle diameter ranging from 80 to 120 nm. The entrapment efficiency was 31% with 15% drug-loading. In vitro release kinetics of curcumin from Nps-Cur revealed a biphasic pattern with an initial exponential phase followed by a slow release phase. Cellular internalization of Nps-Cur was confirmed by fluorescence and confocal microscopy with a wide distribution of the fluorescence in the cytoplasm and within the nucleus. The prepared nanoformulation was characterized for cellular toxicity and biological activity. Cytotoxicity assays showed that void PLGA-nanoparticles (Nps) and curcumin-loaded PLGA nanoparticles (Nps-Cur) were nontoxic to human neuroblastoma SK-N-SH cells. Moreover, Nps-Cur was able to protect SK-N-SH cells against H2O2 and prevent the elevation of reactive oxygen species and the consumption of glutathione induced by H2O2. Interestingly, Nps-Cur was also able to prevent the induction of the redox-sensitive transcription factor Nrf2 in the presence of H2O2. Taken together, these results suggest that Nps-Cur could be a promising drug delivery strategy to protect neurons against oxidative damage as observed in Alzheimer's disease.

  1. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  2. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    Science.gov (United States)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained

  3. In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells.

    Science.gov (United States)

    Correia, Clara R; Santos, Tírcia C; Pirraco, Rogério P; Cerqueira, Mariana T; Marques, Alexandra P; Reis, Rui L; Mano, João F

    2017-04-15

    Capsules coated with polyelectrolytes and co-encapsulating adipose stem (ASCs) and endothelial (ECs) cells with surface modified microparticles are developed. Microparticles and cells are freely dispersed in a liquified core, responsible to maximize the diffusion of essential molecules and allowing the geometrical freedom for the autonomous three-dimensional (3D) organization of cells. While the membrane wraps all the instructive cargo elements within a single structure, the microparticles provide a solid 3D substrate for the encapsulated cells. Our hypothesis is that inside this isolated biomimetic 3D environment, ECs would lead ASCs to differentiate into the osteogenic lineage to ultimately generate a mineralized tissue in vivo. For that, capsules encapsulating only ASCs (MONO capsules) or co-cultured with ECs (CO capsules) are subcutaneously implanted in nude mice up to 6weeks. Capsules implanted immediately after production or after 21days of in vitro osteogenic stimulation are tested. The most valuable outcome of the present study is the mineralized tissue in CO capsules without in vitro pre-differentiation, with similar levels compared to the pre-stimulated capsules in vitro. We believe that the proposed bioencapsulation strategy is a potent self-regulated system, which might find great applicability in bone tissue engineering. The diffusion efficiency of essential molecules for cell survival is a main issue in cell encapsulation. Former studies reported the superior biological outcome of encapsulated cells within liquified systems. However, most cells used in TE are anchorage-dependent, requiring a solid substrate to perform main cellular processes. We hypothesized that liquified capsules encapsulating microparticles are a promising attempt. Inspired by the multiphenotypic cellular environment of bone, we combine the concept of liquified capsules with co-cultures of stem and endothelial cells. After implantation, results show that co-cultured capsules

  4. Dynamic Modeling and Simulation of Deep Geothermal Electric Submersible Pumping Systems

    Directory of Open Access Journals (Sweden)

    Julian Kullick

    2017-10-01

    Full Text Available Deep geothermal energy systems employ electric submersible pumps (ESPs in order to lift geothermal fluid from the production well to the surface. However, rough downhole conditions and high flow rates impose heavy strain on the components, leading to frequent failures of the pump system. As downhole sensor data is limited and often unrealible, a detailed and dynamical model system will serve as basis for deeper understanding and analysis of the overall system behavior. Furthermore, it allows to design model-based condition monitoring and fault detection systems, and to improve controls leading to a more robust and efficient operation. In this paper, a detailed state-space model of the complete ESP system is derived, covering the electrical, mechanical and hydraulic subsystems. Based on the derived model, the start-up phase of an exemplary yet realistic ESP system in the Megawatt range—located at a setting depth of 950 m and producing geothermal fluid of 140 ∘ C temperature at a rate of 0.145 m 3 s − 1 —is simulated in MATLAB/Simulink. The simulation results show that the system reaches a stable operating point with realistic values. Furthermore, the effect of self-excitation between the filter capacitor and the motor inductor can clearly be observed. A full set of parameters is provided, allowing for direct model implementation and reproduction of the presented results.

  5. Classification of submersed aquatic vegetation of the Venice lagoon using MIVIS airborne data

    Directory of Open Access Journals (Sweden)

    S. Pignatti

    2006-06-01

    Full Text Available In July 2001 an aerial survey with MIVIS (Multispectral Infrared and Visible Spectrometer hyperspectral sensor and an in situ survey campaign were performed on Venice lagoon to map benthic macro-algae and sea phanerogams distribution. On MIVIS VIS spectral range images, training areas for benthic macro-algae and sea phanerogams have been selected by using sea truth data collected by CNR-ISMAR from in situ campaign and periodic area surveys used in the lagoon by the local authorities. The derived spectral signature has been used to classify the area in order to produce the maps of the pure and mixture submersed vegetation population. The algorithm applied to the data is based on the Subpixel Spectral Analytical Process (SSAP method. The method assumes that the spectrum of a single pixel is composed of a fraction of the material of interest while the remainder of the observed spectra contains background materials. In terms of recognition processes the produced maps present a very good agreement with the sea truth data even though the fraction material expressed in the maps does not represent a quantitative estimation of the material of interest.

  6. Carbon dioxide and submersed macrophytes in lakes: linking functional ecology to community composition.

    Science.gov (United States)

    Titus, John E; Pagano, Angela M

    2017-12-01

    Evaluating plant community response to atmospheric CO 2 rise is critical to predicting ecosystem level change. Freshwater lakes offer a model system for examining CO 2 effects as submersed macrophyte species differ greatly in their growth responses to CO 2 enrichment, and free CO 2 concentrations among these habitats show a wide range of natural, spatial variation. We determined free CO 2 concentrations in the water column and sediment porewater in littoral zones with pH macrophyte communities coupled with greenhouse-derived growth responses to CO 2 enrichment of constituent species to test two hypotheses: (1) CCRI, which is higher for communities dominated by species with greater growth responses to CO 2 enrichment, is positively correlated to free [CO 2 ] in the water column, and (2) in natural communities, the percent of sediment CO 2 -using species, which are relatively unresponsive to CO 2 enrichment, is negatively correlated to free [CO 2 ]. A significant positive correlation (P = 0.003) between our physiologically based CCRI and the concentration of free CO 2 in the water column supported our primary hypothesis that sites with higher levels of free CO 2 are dominated by species with greater growth responses to CO 2 enrichment. Our CCRI is also highly significantly correlated (P macrophyte community composition. Further, we demonstrate the utility of a physiologically-based index of community composition, our CCRI, as an ecologically valid measure of community response to CO 2 . © 2017 by the Ecological Society of America.

  7. Development for LMR coolant technology - Development of a submersible-in-pool electromagnetic pump

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Kim, Hee Reyoung; Lee, Sang Don; Seo, Chun Ho [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyungki University, Suwon (Korea, Republic of)

    1995-08-01

    The conceptual and detailed designs of an annular linear induction electromagnetic pump of small scale submersible-in-pool type are performed for the purpose of domestic development of the pumps used for the high-temperature natrium coolant transportation in liquid metal reactors. The pump drawings for and input power of 1,100 VA, an input frequency of 17 Hz, a maximum flowrate of 60 l/min and a maximum operation temperature of 600 deg C are obtained from the optimum design analyses by solving MHD and equivalent circuit equations. The characteristics of pump materials in the high temperature and neutron irradiation environment are reflected in designing the pump, and theoretical analyses for improving the pump performance and efficiency are tried through calculations of magnetic flux and temperature distributions inside the pump. The present project contributes to the further design of engineering proto-type electromagnetic pump with higher capacity and the development of liquid metal reactor with innovative simplicity. 44 refs., 4 tabs., 33 figs. (author)

  8. Ocean Economy and Fault Diagnosis of Electric Submersible Pump applied in Floating platform

    Directory of Open Access Journals (Sweden)

    Panlong Zhang

    2017-04-01

    Full Text Available Ocean economy plays a crucial role in the strengthening maritime safety industry and in the welfare of human beings. Electric Submersible Pumps (ESP have been widely used in floating platforms on the sea to provide oil for machines. However, the ESP fault may lead to ocean environment pollution, on the other hand, a timely fault diagnosis of ESP can improve the ocean economy. In order to meet the strict regulations of the ocean economy and environmental protection, the fault diagnosis of ESP system has become more and more popular in many countries. The vibration mechanical models of typical faults have been able to successfully diagnose the faults of ESP. And different types of sensors are used to monitor the vibration signal for the signal analysis and fault diagnosis in the ESP system. Meanwhile, physical sensors would increase the fault diagnosis challenge. Nowadays, the method of neural network for the fault diagnosis of ESP has been applied widely, which can diagnose the fault of an electric pump accurately based on the large database. To reduce the number of sensors and to avoid the large database, in this paper, algorithms are designed based on feature extraction to diagnose the fault of the ESP system. Simulation results show that the algorithms can achieve the prospective objectives superbly.

  9. Development of LMR Coolant Technology - Development of a submersible-in-pool electromagnetic pump

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hi; Kim, Hee Reyoung; Lee, Sang Don; Seo, Joon Ho [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyoungki University, Suwon (Korea, Republic of)

    1997-07-15

    A submersible-in-pool type annular linear induction pumps of 60 l/min and 200 l/min, and 600 deg C has been designed with optimum geometrical and operating values found from MHD and circuit analyses reflecting the high-temperature characteristics of pump materials. Through the characteristics analyses inside the narrow flow channel of electromagnetic pump, the distribution of the time-varying flow field is calculated, and magnetic flux and force density are evaluated by end effects of linear induction electromagnetic pump and the instability analyses are carried out introducing one-dimensional linear perturbation. Testing the pump with the flow rate of 60 l/min in the suitably manufactured loop system shows a flow rate of 58 l/min at an input power of 1,377 VA with 60Hz. The design of a scaled-up pump is further taken into account LMR coolant system requiring increased capacity, and a basic analysis is carried out on the pump of 40,000 l/min for KALIMER. The present project contributes to the further design of engineering prototype electromagnetic pumps with higher capacity and to the development of liquid metal reactor with innovative simplicity. 89 refs., 8 tabs., 45 figs. (author)

  10. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma

    DEFF Research Database (Denmark)

    Lauss, Martin; Donia, Marco; Harbst, Katja

    2017-01-01

    Adoptive T-cell therapy (ACT) is a highly intensive immunotherapy regime that has yielded remarkable response rates and many durable responses in clinical trials in melanoma; however, 50-60% of the patients have no clinical benefit. Here, we searched for predictive biomarkers to ACT in melanoma. ...

  11. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    Science.gov (United States)

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers

    Directory of Open Access Journals (Sweden)

    Hu CS

    2012-09-01

    Full Text Available Chieh-shen Hu,1 Chiao-hsi Chiang,2 Po-da Hong,1,4,* Ming-kung Yeh1–3,*1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology; 2School of Pharmacy, National Defence Medical Center; 3Bureau of Pharmaceutical Affairs, Ministry of National Defence Medical Affairs Bureau; 4Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan, Republic of China*These authors contributed equally to this workBackground and methods: Chondroitin sulfate-chitosan (ChS-CS nanoparticles and positively and negatively charged fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA-loaded ChS-CS nanoparticles were prepared and characterized. The properties of ChS-CS nanoparticles, including cellular uptake, cytotoxicity, and transepithelial transport, as well as findings on field emission-scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were evaluated in human epithelial colorectal adenocarcinoma (Caco-2 fibroblasts. ChS-CS nanoparticles with a mean particle size of 250 nm and zeta potentials ranging from –30 to +18 mV were prepared using an ionic gelation method.Results: Standard cell viability assays demonstrated that cells incubated with ChS-CS and FITC-BSA-loaded ChS-CS nanoparticles remained more than 95% viable at particle concentrations up to 0.1 mg/mL. Endocytosis of nanoparticles was confirmed by confocal laser scanning microscopy and measured by flow cytometry. Ex vivo transepithelial transport studies using Caco-2 cells indicated that the nanoparticles were effectively transported into Caco-2 cells via endocytosis. The uptake of positively charged FITC-BSA-loaded ChS-CS nanoparticles across the epithelial membrane was more efficient than that of the negatively charged nanoparticles.Conclusion: The ChS-CS nanoparticles fabricated in this study were

  13. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    Science.gov (United States)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  14. Increased Plasma Cell-Free DNA Level during HTNV Infection: Correlation with Disease Severity and Virus Load

    Directory of Open Access Journals (Sweden)

    Jing Yi

    2014-07-01

    Full Text Available Cell-free DNA (cf-DNA in blood represents a promising DNA damage response triggered by virus infection or trauma, tumor, etc. Hantavirus primarily causes two diseases: haemorrhagic fever with renal syndrome (HFRS and Hantavirus cardiopulmonary syndrome (HCPS, depending on different Hantavirus species. The aim of this study was to evaluate plasma cf-DNA levels in acute phase of HFRS, and to correlate plasma cf-DNA with disease severity and plasma Hanttan virus (HTNV load. We observed the appearance of cf-DNA in 166 plasma samples from 76 HFRS patients: the plasma cf-DNA levels peaked at the hypotensive stage of HFRS, and then decreased gradually. Until the diuretic stage, there was no significant difference in plasma cf-DNA level between patients and the healthy control. Exclusively in the febrile/hypotensive stage, the plasma cf-DNA levels of severe/critical patients were higher than those of the mild/moderate group. Moreover, the plasma cf-DNA value in the early stage of HFRS was correlated with HTNV load and disease severity. In most of the patients, plasma cf-DNA displayed a low-molecular weight appearance, corresponding to the size of apoptotic DNA. In conclusion, the plasma cf-DNA levels were dynamically elevated during HFRS, and correlated with disease severity, which suggests that plasma cf-DNA may be a potential biomarker for the pathogenesis and prognosis of HFRS.

  15. An experimental study of the dynamic behavior of a 2 kW proton exchange membrane fuel cell stack under various loading conditions

    International Nuclear Information System (INIS)

    Jian, Qifei; Zhao, Yang; Wang, Haoting

    2015-01-01

    The dynamic behavior of the PEM (proton exchange membrane) fuel cell stack has great effect on the safety and effective operation of its applications. In this paper, a self-designed bulb-array is used to simulate the various loading conditions and study the dynamic behavior of a 2 kW PEM fuel cell stack. An evaluation index, including oscillation rate, pressure variation and dynamic resistance factor, is used to analyze the transient response of the PEM fuel cell stack. It is observed that the stack current increases about 8.6%, and the Oscillation rate decreases more rapidly after activation. In the step-up load stage, the oscillation rate and the dynamic resistance decrease more rapidly as the external load increases. Due to the periodic anodic purge process, a periodic voltage fluctuation can be seen. In addition, when the stack works in the open-loop state (working without the external load), the transient response of the stack current is significantly affected by the hydrogen humidity and the charge double-layer. - Highlights: • The working time of open-loop state significantly affects the transient response. • Oscillation rate decreases faster as the external load increases. • Dynamic resistance factor decreases as the external load increases. • The periodic anodic purge process leads to a slight periodic oscillation of voltage

  16. Doxorubicin-loaded magnetic nanoparticle clusters for chemo-photothermal treatment of the prostate cancer cell line PC3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weibing; Zheng, Xinmin [Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 (China); Shen, Shun [School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203 (China); Wang, Xinghuan, E-mail: xinghuanwang9@gmail.com [Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 (China)

    2015-10-16

    In addition to the conventional cancer treatment such as radiotherapy, chemotherapy and surgical management, nanomedicine-based approaches have attracted widespread attention in recent years. In this paper, a promising nanocarrier, magnetic nanoparticle clusters (MNCs) as porous materials which provided enough room on the surface, was developed for loading chemotherapeutic agent of doxorubicin (DOX). Moreover, MNCs are a good near-infrared (NIR) photothermal mediator. Thus, MNCs have great potential both in photothermal therapy (PTT) and drug delivery for chemo-photothermal therapy of cancer. We firstly explored the destruction of prostate cancer in vitro by the combination of PTT and chemotherapy using DOX@MNCs. Upon NIR irradiation at 808 nm, more cancer cells were killed when PC3 cells incubated with DOX@MNCs, owing to both MNCs-mediated photothermal ablation and cytotoxicity of light-triggered DOX release. Compared with PTT or chemotherapy alone, the chemo-photothermal therapy by DOX@MNCs showed a synergistically higher therapeutic efficacy. - Highlights: • MNCs have great potential both in photothermal therapy and drug delivery. • DOX@MNCs were used for chemo-photothermal therapy of prostate cancer cells. • DOX@MNCs showed a synergistically higher therapeutic efficacy.

  17. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice.

    Directory of Open Access Journals (Sweden)

    Karsten Buschard

    Full Text Available BACKGROUND: Ethanol ('alcohol' is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. METHODS: The study included cellular in vitro tests using α-galactosylceramide (αGalCer, and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. RESULTS: Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05. CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05, whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. CONCLUSION: Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases.

  18. Correlation between live attenuated measles viral load and growth inhibition percentage in non-small cell lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Rasha Fadhel Obaid

    2018-03-01

    Conclusion Live attenuated measles virus strain induced cytotoxic effect against human lung cancer cell line (A549 by induction of apoptosis as an important mechanism of anti-tumor activity, in addition, it indicates a correlation between the quantity of MV genomesand percentage of growth inhibition. This relation  has proved that measles virus had anticancer effect.

  19. Control and load management of a fuel cell based hybrid system; Steuerung und Lademanagement eines brennstoffzellen-basierten Hybridsystems

    Energy Technology Data Exchange (ETDEWEB)

    Klausmann, Andreas

    2011-07-01

    Objective of this work is the development of a control for a hybrid electric power train. Initial point is an electric drive powered by a rechargeable battery. This battery shall be recharged during operation by a methanol-driven fuel cell. At this point it is not intended to deploy a direct methanol fuel cell but a combination of a methanol reformer generating hydrogen-rich gas and a high-temperature fuel cell (HTPEM-FC). This work covers the general strategy of operation like load cycles, standby phases etc., the reformer control and the fuel cell operation with a newly developed charge concept. While the basic research is done on a rapid prototyping system this work aims on porting the control system to an embedded platform. Here emphasis is put on the hardware independency of the control. The development of the reformer control contains the strategy for heating up the system with a minimum of electrical energy consumption, since this energy has to be supplied from the battery during the system start-up, increasing the minimum charge level of the battery required for an autarkic recharge. Unlike in common systems the reformer will be modulated according to the electric load and not vice versa, though the fuel cell serves as load sensor. Beside start-up and shutdown strategies the fuel cell control covers particularly the charge control. The electric load is assumed to be unknown, non-influenceable and unsteady. The charge control handles the charging of the battery under optimal utilization of the available hydrogen while avoiding an overload of the fuel cell caused by sudden load changes like powering up the drive. Therefore the common step-down circuit will be advanced so that all huge and heavy electronic components can be minimized or substituted by internal effects of battery and fuel cell. The fuel utilization will be feed back to the reformer control. After coupling of reformer and fuel cell control the system will be ported to an embedded control system

  20. Slow-wave sleep estimation on a load-cell-installed bed: a non-constrained method

    International Nuclear Information System (INIS)

    Choi, Byung Hun; Chung, Gih Sung; Lee, Jin-Seong; Jeong, Do-Un; Park, Kwang Suk

    2009-01-01

    Polysomnography (PSG) involves simultaneous and continuous monitoring of relevant normal and abnormal physiological activity during sleep. At present, an electroencephalography-based rule is generally used for classifying sleep stages. However, scoring the PSG record is quite laborious and time consuming. In this paper, movement and cardiac activity were measured unobtrusively by a load-cell-installed bed, and sleep was classified into two stages: slow-wave sleep and non-slow-wave sleep. From the measured cardiac activity, we extracted heartbeat data and calculated heart rate variability parameters: standard deviation of R–R intervals SDNN, low frequency-to-high frequency ratio, alpha of detrended fluctuation analysis and correlation coefficient of R–R interval. The developed system showed a substantial concordance with PSG results when compared using a contingency test. The mean epoch-by-epoch agreement between the proposed method and PSG was 92.5% and Cohen's kappa was 0.62

  1. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active...... power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...

  2. Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits.

    Science.gov (United States)

    Chang, Nai-Jen; Lin, Chih-Chan; Shie, Ming-You; Yeh, Ming-Long; Li, Chien-Feng; Liang, Peir-In; Lee, Kuan-Wei; Shen, Pei-Hsun; Chu, Chih-Jou

    2015-12-01

    The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full

  3. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    Science.gov (United States)

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  4. Dendritic Cells Loaded with Pancreatic Cancer Stem Cells (CSCs) Lysates Induce Antitumor Immune Killing Effect In Vitro

    Science.gov (United States)

    Yin, Tao; Shi, Pengfei; Gou, Shanmiao; Shen, Qiang; Wang, Chunyou

    2014-01-01

    According to the cancer stem cells (CSCs) theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA) and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs) were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH) assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer. PMID:25521461

  5. Dendritic cells loaded with pancreatic Cancer Stem Cells (CSCs lysates induce antitumor immune killing effect in vitro.

    Directory of Open Access Journals (Sweden)

    Tao Yin

    Full Text Available According to the cancer stem cells (CSCs theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer.

  6. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats

    Directory of Open Access Journals (Sweden)

    Wu S

    2014-12-01

    Full Text Available Shengzheng Wu,1 Lu Li,1 Gong Wang,1 Weiwei Shen,2 Yali Xu,1 Zheng Liu,1 Zhongxiong Zhuo,1 Hongmei Xia,1 Yunhua Gao,1 Kaibin Tan1 1Department of Ultrasound, 2Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Mesenchymal stem cell (MSC therapy has been considered a promising strategy to cure diabetic nephropathy (DN. However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1 plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MBSDF-1 via covalent conjugation. The characterization and bioactivity of MBSDF-1 were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MBSDF-1. The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 µg/mL. MBSDF-1 remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with

  7. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury.

    Science.gov (United States)

    Kalani, Anuradha; Chaturvedi, Pankaj; Kamat, Pradip K; Maldonado, Claudio; Bauer, Philip; Joshua, Irving G; Tyagi, Suresh C; Tyagi, Neetu

    2016-10-01

    We tested whether the combined nano-formulation, prepared with curcumin (anti-inflammatory and neuroprotective molecule) and embryonic stem cell exosomes (MESC-exo cur ), restored neurovascular loss following an ischemia reperfusion (IR) injury in mice. IR-injury was created in 8-10 weeks old mice and divided into two groups. Out of two IR-injured groups, one group received intranasal administration of MESC-exo cur for 7days. Similarly, two sham groups were made and one group received MESC-exo cur treatment. The study determined that MESC-exo cur treatment reduced neurological score, infarct volume and edema following IR-injury. As compared to untreated IR group, MESC-exo cur treated-IR group showed reduced inflammation and N-methyl-d-aspartate receptor expression. Treatment of MESC-exo cur also reduced astrocytic GFAP expression and alleviated the expression of NeuN positive neurons in IR-injured mice. In addition, MESC-exo cur treatment restored vascular endothelial tight (claudin-5 and occludin) and adherent (VE-cadherin) junction proteins in IR-injured mice as compared to untreated IR-injured mice. These results suggest that combining the potentials of embryonic stem cell exosomes and curcumin can help neurovascular restoration following ischemia-reperfusion injury in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Chudíčková, Milada; Trošan, Peter; Svobodová, Eliška; Krulová, Magdalena; Kubinová, Šárka; Syková, Eva; Širc, Jakub; Michálek, Jiří; Juklíčková, M.; Munzarová, M.; Zajícová, Alena

    2011-01-01

    Roč. 156, č. 3 (2011), s. 406-412 ISSN 0168-3659 R&D Projects: GA AV ČR KAN200520804; GA ČR GAP304/11/0653; GA ČR(CZ) GAP301/11/1568; GA ČR GD310/08/H077; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40500505; CEZ:AV0Z50520514 Keywords : nanofibers * immunosuppression * cell transfer Subject RIV: EC - Immunology Impact factor: 5.732, year: 2011

  9. Static Mechanical Loading Influences the Expression of Extracellular Matrix and Cell Adhesion Proteins in Vaginal Cells Derived From Premenopausal Women With Severe Pelvic Organ Prolapse.

    Science.gov (United States)

    Kufaishi, Hala; Alarab, May; Drutz, Harold; Lye, Stephen; Shynlova, Oksana

    2016-08-01

    Primary human vaginal cells derived from women with severe pelvic organ prolapse (POP-HVCs) demonstrate altered cellular characteristics as compared to cells derived from asymptomatic women (control-HVCs). Using computer-controllable Flexcell stretch unit, we examined whether POP-HVCs react differently to mechanical loading as compared to control-HVCs by the expression of extracellular matrix (ECM) components, cell-ECM adhesion proteins, and ECM degrading and maturating enzymes. Vaginal tissue biopsies from premenopausal patients with Pelvic Organ Prolapse Quantification System stage ≥3 (n = 8) and asymptomatic controls (n = 7) were collected during vaginal hysterectomy or repair. Human vaginal cells were isolated by enzymatic digestion, seeded on collagen (COLI)-coated plates, and stretched (24 hours, 25% elongation). Total RNA was extracted, and 84 genes were screened using Human ECM and Adhesion Molecules polymerase chain reaction array; selected genes were verified by quantitative reverse transcription-polymerase chain reaction. Stretch-conditioned media (SCM) were collected and analyzed by protein array, immunoblotting, and zymography. In mechanically stretched control-HVCs, transcript levels of integrins (ITGA1, ITGA4, ITGAV, and ITGB1) and matrix metalloproteinases (MMPs) 2, 8, and 13 were downregulated (P SCM from POP-HVCs compared to control-HVCs. Primary human vaginal cells derived from women with severe pelvic organ prolapse and control-HVCs react differentially to in vitro mechanical stretch. Risk factors that induce stretch may alter ECM composition and cell-ECM interaction in pelvic floor tissue leading to the abatement of pelvic organ support and subsequent POP development. © The Author(s) 2016.

  10. Development of miniaturized submersible fluorometers for the detection of aromatic hydrocarbons in marine waters

    Science.gov (United States)

    Tedetti, Marc; Bachet, Caroline; Joffre, Pascal; Ferretto, Nicolas; Guigue, Catherine; Goutx, Madeleine

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread organic contaminants in aquatic environments. Due to their physico-chemical properties, PAHs are persistent and mobile, can strongly bioaccumulate in food chains and are harmful to living organisms. They are thus recognized by various international organizations as priority contaminants and are included in the list of 45 priority regulated substances by the European Union. Because of their aromatic structure, PAHs are "optically active" and have inherent fluorescence properties in the ultraviolet (UV) spectral domain (200-400 nm). Therefore, UV fluorescence spectroscopy has been successfully used to develop PAH sensors (i.e. UV fluorometers). Currently, five UV submersible fluorometers are commercially available for in situ measurements of PAHs: EnviroFlu-HC (TriOS Optical Sensors, Germany), Hydrocarbon Fluorometer (Sea & Sun Technology, Germany), HydroC ™ / PAH (CONTROS, Germany), UviLux AquaTracka (Chelsea Technology Group, UK) and Cyclops-7 (Turner Designs, US). These UV fluorometers are all dedicated to the measurement of phenanthrene (λEx /λEm: 255/360 nm), one of the most abundant and fluorescent PAHs found in the aquatic environment. In this study, we developed original, miniaturized submersible fluorometers based on deep UV light-emitting diodes (LEDs) for simultaneous measurements of two PAHs of interest: the MiniFluo-UV 1 for the detection of phenanthrene (PHE, at λEx /λEm: 255/360 nm) and naphthalene (NAP, at λEx /λEm: 270/340 nm), and the MiniFluo-UV 2 for the detection of fluorene (FLU, at λEx /λEm: 255/315 nm) and pyrene (PYR, at λEx /λEm: 270/380 nm). The MiniFluo-UV sensors have several features: measurements of two PAHs at the same time, small size (puck format, 80 x 60 mm), very low energy consumption (500 mW at 12V), LED monitoring, analog and numerical communication modes. The two MiniFluo-UV sensors were first tested in the laboratory: 1) on standard solutions of

  11. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Pilehvar-Soltanahmadi, Younes; Alizadeh, Effat; Ebrahimi-Kalan, Abbas; Mortazavi, Yousef; Zarghami, Nosratollah

    2017-12-01

    Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14 days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.

  12. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    Science.gov (United States)

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  13. Biomolecule-loaded chitosan nanoparticles induce apoptosis and molecular changes in cancer cell line (SiHa).

    Science.gov (United States)

    Sujima Anbu, Anbu; Velmurugan, Palanivel; Lee, Jeong-Ho; Oh, Byung-Taek; Venkatachalam, Perumal

    2016-07-01

    The present study reports on the synthesis of chitosan nanoparticles (CNPs) using methanol extracts of Gymnema sylvestre (GS) leaves and Cinnamomum zeylanicum (CZ) bark. Biomolecule-loaded nanoparticles induced apoptosis in a human cervical cancer (SiHa) cell line, and experiments were carried out to elucidate the underlying molecular mechanisms. FT-IR and XRD showed possible functional groups of the biomolecules and the crystalline nature of CNPs, respectively. Transmission electron microscopy images revealed that synthesized GSCNPs and CZCNPs had a smooth spherical shape with average sizes of about 58-80 and 60-120nm, respectively. Dynamic light scattering studies indicated that both GSCNPs and CZCNs were structurally stable with homogenous and heterogeneous natures, respectively. Furthermore, synthesized GSCNPs and CZCNPs exhibited dose-dependent cytotoxicity against the SiHa cancer cell line, with inhibitory concentration (IC50) values of 102.17μg/ml, 87.75μg/ml, 132.74μg/ml and 90.35μg/ml for GS leaf extract, GSCNPs, CZBE and CZCNPs, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. DORADO/DOLPHIN: A Unique Semi-submersible Autonomous Vehicle for Ocean Field Experiments.

    Science.gov (United States)

    Wallace, D.

    2016-02-01

    The Ocean Science and Technology research group (CERC.OCEAN) at Dalhousie University focuses on new approaches to the design and development of autonomous platforms to study biogeochemical and ecological changes in the world's oceans. Mesoscale "patch" experiments involving tracers are used to test hypotheses (e.g. iron fertilization) and examine near-surface processes and air-sea exchange. Such experiments typically require mapping of rapidly-evolving properties on scales of 10's to 100's of kilometers. These experiments typically employ a research vessel to monitor patch movement and to support process studies: however allocation of expensive vessel time between these uses can be problematic. We present a class of autonomous vehicle with unique potential for mesoscale mapping and experimental science at sea. The Dorado/Dolphin semi-submersibles, manufactured by International Submarine Engineering Ltd., travel just below the sea surface. A surface-piercing, "snorkel" mast allows use of a diesel engine allowing speeds of up to 16 knots and sufficient power for support of complex payloads. A tow-body can profile to 200m. The mast allows air sampling with near-zero atmospheric disturbance as well as remote sensing of the sea surface. The characteristics of this type of vehicle will be compared with those of other available platforms. We will report on our adaptation of the vehicle for measurement of gases and purposeful tracers (e.g. SF5CF3) as well as properties such as T, S, pCO2, O2, fluorescence, etc. and present and solicit ideas for the vehicles' further application/use for ocean science.

  15. Lightweight submersed 'Walking' NDE manipulators for PWR and BWR vessel weld inspection

    International Nuclear Information System (INIS)

    Saernmark, Ivan; Lenz, Herbert

    2008-01-01

    Three new manipulators developed by WesDyne TRC in Sweden have under the year 2007 performed three very successful inspections in the PWR reactor Ringhals 3 and the BWR reactors Ringhals 1 and Oskarshamn 1. The manipulator systems can be used to perform inspection of circumferential and vertical welds on the reactor pressure vessel, the core shroud, core shroud support in BWR reactors or vessel and core barrel welds in PWR reactors. Most other flat or curved surfaces can be inspected using the new concept through relatively simple mechanical reconfigurations of system modules. The first inspection was performed on the R3 PWR core barrel in June 2007 with a very good result. This Manipulator is designed for access in very narrow gaps and for the type of core barrels with a shield covering the whole area of the perimeter. The manipulator is attached to the inspection area by means of a new unique suction cup system. The current manipulators consist of a curved horizontal beam, with radius similar to the reactor vessel, and a straight vertical beam, forming a T-shaped structure. By alternating the application of suction cup pairs on the horizontal beam and the vertical beam and by driving the scanning motors, the manipulator performs an incremental translational movement upwards/downwards or from side to side. The principles of this system give a well defined and stable platform for global and local positioning accuracy. A combination of advanced sensor solutions provides accurate position information in the absence of other physical reference objects. The system is controlled by the new WesDyne TRC Motor Control Panel and software, the MCP is specifically designed for remote control of submersed manipulators using techniques for cable reduction

  16. Lightweight submersed 'Walking' NDE manipulators for PWR and BWR vessel weld inspection

    Energy Technology Data Exchange (ETDEWEB)

    Saernmark, Ivan; Lenz, Herbert [WesDyne TRC AB, Stockholm (Sweden)

    2008-04-15

    Three new manipulators developed by WesDyne TRC in Sweden have under the year 2007 performed three very successful inspections in the PWR reactor Ringhals 3 and the BWR reactors Ringhals 1 and Oskarshamn 1. The manipulator systems can be used to perform inspection of circumferential and vertical welds on the reactor pressure vessel, the core shroud, core shroud support in BWR reactors or vessel and core barrel welds in PWR reactors. Most other flat or curved surfaces can be inspected using the new concept through relatively simple mechanical reconfigurations of system modules. The first inspection was performed on the R3 PWR core barrel in June 2007 with a very good result. This Manipulator is designed for access in very narrow gaps and for the type of core barrels with a shield covering the whole area of the perimeter. The manipulator is attached to the inspection area by means of a new unique suction cup system. The current manipulators consist of a curved horizontal beam, with radius similar to the reactor vessel, and a straight vertical beam, forming a T-shaped structure. By alternating the application of suction cup pairs on the horizontal beam and the vertical beam and by driving the scanning motors, the manipulator performs an incremental translational movement upwards/downwards or from side to side. The principles of this system give a well defined and stable platform for global and local positioning accuracy. A combination of advanced sensor solutions provides accurate position information in the absence of other physical reference objects. The system is controlled by the new WesDyne TRC Motor Control Panel and software, the MCP is specifically designed for remote control of submersed manipulators using techniques for cable reduction.

  17. CubeSub - A CubeSat Based Submersible Testbed for Space Technology

    Science.gov (United States)

    Slettebo, Christian

    2016-01-01

    This report is a Master's Thesis in Aerospace Engineering, performed at the NASA Ames Research Center. It describes the development of the CubeSub, a submersible testbed compatible with the CubeSat form factor. The CubeSub will be used to mature technology and operational procedures to be used in space exploration, and possibly also as a tool for exploration of Earthly environments. CubeSats are carried as payloads, either containing technology to be tested or experiments and sensors for scientific use. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module is powered individually and intermodular communication is wireless, reducing the need for wiring. The inside of the hull is flooded with ambient water to simplify the interaction between payloads and surrounding environment. The overall shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole. Rapid prototyping is utilized to a large extent, with full-scale prototypes being constructed through 3D-printing and with COTS (Commercial Off-The-Shelf) components. Arduino boards are used for control and internal communication. Modules required for basic operation have been designed, manufactured and tested. Each module is described with regards to its function, design and manufacturability. By performing tests in a pool it was found that the basic concept is sound and that future improvements include better controllability, course stability and waterproofing of electrical components. Further development is needed to make the CubeSub usable for its intended purposes. The largest gains are expected to be found by developing the software and improving controllability.

  18. New Submersed Chamber for Calibration of Relative Humidity Instruments at HMI/FSB-LPM

    Science.gov (United States)

    Sestan, D.; Zvizdic, D.; Sariri, K.

    2018-02-01

    This paper gives a detailed description of a new chamber designed for calibration of relative humidity (RH) instruments at Laboratory for Process Measurement (HMI/FSB-LPM). To the present time, the calibrations of RH instruments at the HMI/FSB-LPM were done by comparison method using a climatic chamber of large volume and calibrated dew point hygrometer with an additional thermometer. Since 2010, HMI/FSB-LPM in cooperation with Centre for Metrology and Accreditation in Finland (MIKES) developed the two primary dew point generators which cover the dew point temperature range between - 70 {°}C and 60 {°}C. In order to utilize these facilities for calibrations of the RH instruments, the new chamber was designed, manufactured and installed in the existing system, aiming to extend its range and reduce the related calibration uncertainties. The chamber construction allows its use in a thermostatic bath of larger volume as well as in the climatic chambers. In the scope of this paper, performances of the new chamber were tested while it was submersed in a thermostated bath. The chamber can simultaneously accommodate up to three RH sensors. In order to keep the design of the chamber simple, only cylindrical RH sensors detachable from display units can be calibrated. Possible optimizations are also discussed, and improvements in the design proposed. By using the new chamber, HMI/FSB-LPM reduced the expanded calibration uncertainties (level of confidence 95 %, coverage factor k=2) from 0.6 %rh to 0.25 %rh at 30 %rh (23 {°}C), and from 0.8 %rh to 0.53 %rh at 70 %rh (23 {°}C).

  19. Lipid-load in peripheral blood mononuclear cells: Impact of food-consumption, dietary-macronutrients, extracellular lipid availability and demographic factors.

    Science.gov (United States)

    Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen

    2017-04-01

    Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Pediatric Solid-Organ Transplant Recipients Carry Chronic Loads of Epstein-Barr Virus Exclusively in the Immunoglobulin D-Negative B-Cell Compartment

    Science.gov (United States)

    Rose, Camille; Green, Michael; Webber, Steven; Ellis, Demetrius; Reyes, Jorges; Rowe, David

    2001-01-01

    Solid-organ transplant recipients are at risk for development of lymphoproliferative diseases. The purpose of this study was to examine the distribution of Epstein-Barr virus (EBV) load in the peripheral blood of pediatric transplant recipients who had become chronic viral load carriers (>8 copies/105 lymphocytes for >2 months). A total of 19 patients with viral loads ranging from 20 to 5,000 viral genome copies/105 lymphocytes were studied. Ten patients had no previous diagnosis of posttransplant lymphoproliferative disease (PT-LPD), while nine had recovered from a diagnosed case of PT-LPD. No portion of the peripheral blood viral load was detected in the cell-free plasma fraction. Viral DNA was found in a population of cells characterized as CD19hi and immunoglobulin D negative, a phenotype that is consistent with the virus being carried exclusively in the memory B-cell compartment of the peripheral blood. There was no difference in the compartmentalization based upon either the level of the viral load or the past diagnosis of an episode of PT-LPD. These results have implications for the design of tests to detect EBV infection and for the interpretation and use of positive EBV PCR assays in the management of transplant recipients. PMID:11283064

  1. Variable EBV DNA Load Distributions and Heterogeneous EBV mRNA Expression Patterns in the Circulation of Solid Organ versus Stem Cell Transplant Recipients

    Directory of Open Access Journals (Sweden)

    A. E. Greijer

    2012-01-01

    Full Text Available Epstein-Barr virus (EBV driven post-transplant lymphoproliferative disease (PTLD is a heterogeneous and potentially life-threatening condition. Early identification of aberrant EBV activity may prevent progression to B-cell lymphoma. We measured EBV DNA load and RNA profiles in plasma and cellular blood compartments of stem cell transplant (SCT; n=5, solid organ transplant recipients (SOT; n=15, and SOT having chronic elevated EBV-DNA load (n=12. In SCT, EBV DNA was heterogeneously distributed, either in plasma or leukocytes or both. In SOT, EBV DNA load was always cell associated, predominantly in B cells, but occasionally in T cells (CD4 and CD8 or monocytes. All SCT with cell-associated EBV DNA showed BARTs and EBNA1 expression, while LMP1 and LMP2 mRNA was found in 1 and 3 cases, respectively. In SOT, expression of BARTs was detected in all leukocyte samples. LMP2 and EBNA1 mRNA was found in 5/15 and 2/15, respectively, but LMP1 mRNA in only 1, coinciding with severe PTLD and high EBV DNA. Conclusion: EBV DNA is differently distributed between white cells and plasma in SOT versus SCT. EBV RNA profiling in blood is feasible and may have added value for understanding pathogenic virus activity in patients with elevated EBV-DNA.

  2. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells

    KAUST Repository

    Hutchinson, Adam J.

    2011-11-01

    Flat carbon anodes placed near a cathode in a microbial fuel cell (MFC) are adversely affected by oxygen crossover, but graphite fiber brush anodes placed near the cathode produce high power densities. The impact of the brush size and electrode spacing was examined by varying the distance of the brush end from the cathode and solution conductivity in multiple MFCs. The startup time was increased from 8 ± 1 days with full brushes (all buffer concentrations) to 13 days (50 mM), 14 days (25 mM) and 21 days (8 mM) when 75% of the brush anode was removed. When MFCs were all first acclimated with a full brush, up to 65% of the brush material could be removed without appreciably altering maximum power. Electrochemical impedance spectroscopy (EIS) showed that the main source of internal resistance (IR) was diffusion resistance, which together with solution resistance reached 100 Ω. The IR using EIS compared well with that obtained using the polarization data slope method, indicating no major components of IR were missed. These results show that using full brush anodes avoids adverse effects of oxygen crossover during startup, although brushes are much larger than needed to sustain high power. © 2011 Elsevier B.V.

  3. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells

    KAUST Repository

    Hutchinson, Adam J.; Tokash, Justin C.; Logan, Bruce E.

    2011-01-01

    Flat carbon anodes placed near a cathode in a microbial fuel cell (MFC) are adversely affected by oxygen crossover, but graphite fiber brush anodes placed near the cathode produce high power densities. The impact of the brush size and electrode spacing was examined by varying the distance of the brush end from the cathode and solution conductivity in multiple MFCs. The startup time was increased from 8 ± 1 days with full brushes (all buffer concentrations) to 13 days (50 mM), 14 days (25 mM) and 21 days (8 mM) when 75% of the brush anode was removed. When MFCs were all first acclimated with a full brush, up to 65% of the brush material could be removed without appreciably altering maximum power. Electrochemical impedance spectroscopy (EIS) showed that the main source of internal resistance (IR) was diffusion resistance, which together with solution resistance reached 100 Ω. The IR using EIS compared well with that obtained using the polarization data slope method, indicating no major components of IR were missed. These results show that using full brush anodes avoids adverse effects of oxygen crossover during startup, although brushes are much larger than needed to sustain high power. © 2011 Elsevier B.V.

  4. A new platelet cryoprecipitate glue promoting bone formation after ectopic mesenchymal stromal cell-loaded biomaterial implantation in nude mice.

    Science.gov (United States)

    Trouillas, Marina; Prat, Marie; Doucet, Christelle; Ernou, Isabelle; Laplace-Builhé, Corinne; Blancard, Patrick Saint; Holy, Xavier; Lataillade, Jean-Jacques

    2013-01-04

    This study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair. PGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry. We showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP. We have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair.

  5. Extremely high Tp53 mutation load in esophageal squamous cell carcinoma in Golestan Province, Iran.

    Directory of Open Access Journals (Sweden)

    Behnoush Abedi-Ardekani

    Full Text Available BACKGROUND: Golestan Province in northeastern Iran has one of the highest incidences of esophageal squamous cell carcinoma (ESCC in the world with rates over 50 per 100,000 person-years in both sexes. We have analyzed TP53 mutation patterns in tumors from this high-risk geographic area in search of clues to the mutagenic processes involved in causing ESCC. METHODOLOGY/PRINCIPAL FINDINGS: Biopsies of 119 confirmed ESCC tumor tissue from subjects enrolled in a case-control study conducted in Golestan Province were analyzed by direct sequencing of TP53 exons 2 through 11. Immunohistochemical staining for p53 was carried out using two monoclonal antibodies, DO7 and 1801. A total of 120 TP53 mutations were detected in 107/119 cases (89.9%, including 11 patients with double or triple mutations. The mutation pattern was heterogeneous with infrequent mutations at common TP53 "hotspots" but frequent transversions potentially attributable to environmental carcinogens forming bulky DNA adducts, including 40% at bases known as site of mutagenesis by polycyclic aromatic hydrocarbons (PAHs. Mutations showed different patterns according to the reported temperature of tea consumption, but no variation was observed in relation to ethnicity, tobacco or opium use, and alcoholic beverage consumption or urban versus rural residence. CONCLUSION/SIGNIFICANCE: ESCC tumors in people from Golestan Province show the highest rate of TP53 mutations ever reported in any cancer anywhere. The heterogeneous mutation pattern is highly suggestive of a causative role for multiple environmental carcinogens, including PAHs. The temperature and composition of tea may also influence mutagenesis.

  6. Autonomous Optofluidic Chemical Analyzers for Marine Applications: Insights from the Submersible Autonomous Moored Instruments (SAMI for pH and pCO2

    Directory of Open Access Journals (Sweden)

    Chun-Ze Lai

    2018-01-01

    Full Text Available The commercial availability of inexpensive fiber optics and small volume pumps in the early 1990's provided the components necessary for the successful development of low power, low reagent consumption, autonomous optofluidic analyzers for marine applications. It was evident that to achieve calibration-free performance, reagent-based sensors would require frequent renewal of the reagent by pumping the reagent from an impermeable, inert reservoir to the sensing interface. Pumping also enabled measurement of a spectral blank further enhancing accuracy and stability. The first instrument that was developed based on this strategy, the Submersible Autonomous Moored Instrument for CO2 (SAMI-CO2, uses a pH indicator for measurement of the partial pressure of CO2 (pCO2. Because the pH indicator gives an optical response, the instrument requires an optofluidic design where the indicator is pumped into a gas permeable membrane and then to an optical cell for analysis. The pH indicator is periodically flushed from the optical cell by using a valve to switch from the pH indicator to a blank solution. Because of the small volume and low power light source, over 8,500 measurements can be obtained with a ~500 mL reagent bag and 8 alkaline D-cell battery pack. The primary drawback is that the design is more complex compared to the single-ended electrode or optode that is envisioned as the ideal sensor. The SAMI technology has subsequently been used for the successful development of autonomous pH and total alkalinity analyzers. In this manuscript, we will discuss the pros and cons of the SAMI pCO2 and pH optofluidic technology and highlight some past data sets and applications for studying the carbon cycle in aquatic ecosystems.

  7. Vaccine adjuvant MF59 promotes the intranodal differentiation of antigen-loaded and activated monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Rossella Cioncada

    Full Text Available MF59 is an oil-in-water emulsion adjuvant approved for human influenza vaccination in European Union. The mode of action of MF59 is not fully elucidated yet, but results from several years of investigation indicate that MF59 establishes an immunocompetent environment at injection site which promotes recruitment of immune cells, including antigen presenting cells (APCs, that are facilitated to engulf antigen and transport it to draining lymph node (dLN where the antigen is accumulated. In vitro studies showed that MF59 promotes the differentiation of monocytes to dendritic cells (Mo-DCs. Since after immunization with MF59, monocytes are rapidly recruited both at the injection site and in dLN and appear to have a morphological change toward a DC-like phenotype, we asked whether MF59 could play a role in inducing differentiation of Mo-DC in vivo. To address this question we immunized mice with the auto-fluorescent protein Phycoerythrin (PE as model antigen, in presence or absence of MF59. We measured the APC phenotype and their antigen uptake within dLNs, the antigen distribution within the dLN compartments and the humoral response to PE. In addition, using Ovalbumin as model antigen, we measured the capacity of dLN APCs to induce antigen-specific CD4 T cell proliferation. Here, we show, for the first time, that MF59 promotes differentiation of Mo-DCs within dLNs from intranodal recruited monocytes and we suggest that this differentiation could take place in the medullary compartment of the LN. In addition we show that the Mo-DC subset represents the major source of antigen-loaded and activated APCs within the dLN when immunizing with MF59. Interestingly, this finding correlates with the enhanced triggering of antigen-specific CD4 T cell response induced by LN APCs. This study therefore demonstrates that MF59 is able to promote an immunocompetent environment also directly within the dLN, offering a novel insight on the mechanism of action of

  8. During Stably Suppressive Antiretroviral Therapy Integrated HIV-1 DNA Load in Peripheral Blood is Associated with the Frequency of CD8 Cells Expressing HLA-DR/DP/DQ

    Directory of Open Access Journals (Sweden)

    Alessandra Ruggiero

    2015-09-01

    Conclusions: The observed positive association between integrated HIV-1 DNA load and frequency of CD8+DR/DP/DQ+ cells indicates that a close correlation between HIV persistence and immune activation continues during consistently suppressive therapy. The inducers of the distinct activation profile warrant further investigation.

  9. Outcomes from monitoring of patients on antiretroviral therapy in resource-limited settings with viral load, CD4 cell count, or clinical observation alone: a computer simulation model

    DEFF Research Database (Denmark)

    Phillips, Andrew N; Pillay, Deenan; Miners, Alec H

    2008-01-01

    BACKGROUND: In lower-income countries, WHO recommends a population-based approach to antiretroviral treatment with standardised regimens and clinical decision making based on clinical status and, where available CD4 cell count, rather than viral load. Our aim was to study the potential consequenc...... laboratory monitoring-is currently the highest priority....

  10. CD4 cell count and viral load-specific rates of AIDS, non-AIDS and deaths according to current antiretroviral use

    DEFF Research Database (Denmark)

    Mocroft, Amanda; Phillips, Andrew N; Gatell, Jose

    2013-01-01

    CD4 cell count and viral loads are used in clinical trials as surrogate endpoints for assessing efficacy of newly available antiretrovirals. If antiretrovirals act through other pathways or increase the risk of disease this would not be identified prior to licensing. The aim of this study...

  11. Fluorescence in situ hybridization and qPCR to detect Merkel cell polyomavirus physical status and load in Merkel cell carcinomas.

    Science.gov (United States)

    Haugg, Anke M; Rennspiess, Dorit; zur Hausen, Axel; Speel, Ernst-Jan M; Cathomas, Gieri; Becker, Jürgen C; Schrama, David

    2014-12-15

    The Merkel cell polyomavirus (MCPyV) is detected in 80% of Merkel cell carcinomas (MCC). Clonal integration and tumor-specific mutations in the large T antigen are strong arguments that MCPyV is a human tumor virus. However, the relationship between viral presence and cancer induction remains discussed controversially. Since almost all studies on virus prevalence are based on PCR techniques, we performed MCPyV fluorescence in situ hybridization (FISH) on MCC to gain information about the quality of the viral presence on the single cell level. MCPyV-FISH was performed on tissue microarrays containing 62 formalin-fixed and paraffin-embedded tissue samples including all tumor grades of 42 patients. The hybridization patterns were correlated to the qPCR data determined on corresponding whole tissue sections. Indeed, MCPyV-FISH and qPCR data were highly correlated, i.e. 83% for FISH-positive and 93% for FISH-negative cores. Accordingly, the mean of the qPCR values of all MCPyV-positive cores differed significantly from the mean of the negative cores (p = 0.0076). Importantly, two hybridization patterns were definable in the MCPyV-FISH: a punctate pattern (85%) indicating viral integration, which correlated with a moderate viral abundance and a combination of the punctate with a diffuse pattern (15%), suggesting a possible coexistence of integrated and episomal virus which was associated with very high viral load and VP1 expression. Thus, MCPyV-FISH adds important information on the single cell level within the histomorphological context and could therefore be an important tool to further elucidate MCPyV related carcinogenesis. © 2014 UICC.

  12. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines.

    Science.gov (United States)

    Doktorovova, Slavomira; Souto, Eliana B; Silva, Amélia M

    2018-01-01

    Curcumin, a phenolic compound from turmeric rhizome (Curcuma longa), has many interesting pharmacological effects, but shows very low aqueous solubility. Consequently, several drug delivery systems based on polymeric and lipid raw materials have been proposed to increase its bioavailability. Solid lipid nanoparticles (SLN), consisting of solid lipid matrix and a surfactant layer can load poorly water-soluble drugs, such as curcumin, deliver them at defined rates and enhance their intracellular uptake. In the present work, we demonstrate that, despite the drug's affinity to lipids frequently used in SLN production, the curcumin amount loaded in most SLN formulations may be too low to exhibit anticancer properties. The predictive curcumin solubility in solid lipids has been thoroughly analyzed by Hansen solubility parameters, in parallel with the lipid-screening solubility tests for a range of selected lipids. We identified the most suitable lipid materials for curcumin-loaded SLN, producing physicochemically stable particles with high encapsulation efficiency (>90%). Loading capacity of curcumin in SLN allowed preventing the cellular damage caused by cationic SLN on MCF-7 and BT-474 cells but was not sufficient to exhibit drug's anticancer properties. But curcumin-loaded SLN exhibited antioxidant properties, substantiating the conclusions that curcumin's effect in cancer cells is highly dose dependent.

  13. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Science.gov (United States)

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  14. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    2015-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  15. Inhibition of HeLa cell growth by doxorubicin-loaded and tuftsin-conjugated arginate-PEG microparticles

    Directory of Open Access Journals (Sweden)

    Tianmu Hu

    2018-03-01

    Full Text Available In order to improve the release pattern of chemotherapy drug and reduce the possibility of drug resistance, poly(ethylene glycol amine (PEG-modified alginate microparticles (ALG-PEG MPs were developed then two different mechanisms were employed to load doxorubicin (Dox: 1 forming Dox/ALG-PEG complex by electrostatic attractions between unsaturated functional groups in Dox and ALG-PEG; 2 forming Dox-ALG-PEG complex through EDC-reaction between the amino and carboxyl groups in Dox and ALG, respectively. Additionally, tuftsin (TFT, a natural immunomodulation peptide, was conjugated to MPs in order to enhance the efficiency of cellular uptake. It was found that the Dox-ALG-PEG-TFT MPs exhibited a significantly slower release of Dox than Dox/ALG-PEG-TFT MPs in neutral medium, suggesting the role of covalent bonding in prolonging Dox retention. Besides, the release of Dox from these MPs was pH-sensitive, and the release rate was observably increased at pH 6.5 compared to the case at pH 7.4. Compared with Dox/ALG-PEG MPs and Dox-ALG-PEG MPs, their counterparts further conjugated with TFT more efficiently inhibited the growth of HeLa cells over a period of 48 h, implying the effectiveness of TFT in enhancing cellular uptake of MPs. Over a period of 48 h, Dox-ALG-PEG-TFT MPs inhibited the growth of HeLa cells less efficiently than Dox/ALG-PEG-TFT MPs but the difference was not significant (p > 0.05. In consideration of the prolonged and sustained release of Dox, Dox-ALG-PEG-TFT MPs possess the advantages for long-term treatment.

  16. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  17. Use of open-cell resilient polyurethane foam loaded with crown ether for the preconcentration of uranium from aqueous solutions

    International Nuclear Information System (INIS)

    Abou-Mesalam, M.M.; El-Naggar, I.M.; Abdel-Hai, M.S.; El-Shahawi, M.S.

    2003-01-01

    The preconcentration of uranium from aqueous solutions on open-cell resilient polyurethane foams (PUF) impregnated with crown ether as an organic extractant in different conditions was investigated. The data showed that 50 minutes is a sufficient time to attain equilibrium with a maximum extraction percentage for uranium ion on polyurethane foams loaded with crown ether. Also the extraction percentage of uranium is increased markedly with increasing the pH values up to pH ∼ 6 and displayed the lowest extraction at 8 > pH > 6. The different isotherms of uranium sorption have shown that the sorption followed a Freundlich isotherm. Column studies have been carried out in order to extend these studies to the plant scale. From the data of column sorption and breakthrough curves, the height equivalent of theoretical plates (HETP), and breakthrough capacity which affect the efficiency of the column have been calculated and found to be 1.03 mm/plate, 64 ± 5 and 58.3 mg uranium/gram polyurethane foam impregnated with crown ether, respectively. (author)

  18. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system

    Science.gov (United States)

    Chen, Xiaohang; Wang, Yuan; Cai, Ling; Zhou, Yinghui

    2015-10-01

    Based on the current models of phosphoric acid fuel cells (PAFCs) and thermoelectric generators (TGs), a new hybrid system is proposed, in which the effects of multi-irreversibilities resulting from the activation, concentration, and ohmic overpotentials in the PAFC, Joule heat and heat leak in the TG, finite-rate heat transfer between the TG and the heat reservoirs, and heat leak from the PAFC to the environment are taken into account. Expressions for the power output and efficiency of the PAFC, TG, and hybrid system are analytically derived and directly used to discuss the performance characteristics of the hybrid system. The optimal relationship between the electric currents in the PAFC and TG is obtained. The maximum power output is numerically calculated. It is found that the maximum power output density of the hybrid system will increase about 150 Wm-2, compared with that of a single PAFC. The problem how to optimally match the load resistances of two subsystems is discussed. Some significant results for practical hybrid systems are obtained.

  19. Development of Yam Dioscorin-Loaded Nanoparticles for Paracellular Transport Across Human Intestinal Caco-2 Cell Monolayers.

    Science.gov (United States)

    Hsieh, Hung-Ling; Lee, Chia-Hung; Lin, Kuo-Chih

    2018-02-07

    Dioscorins, the major storage proteins of yam tubers, exert immunomodulatory activities. To improve oral bioavailability of dioscorins in the intestine, recombinant dioscorin (rDioscorin) was coated with N,N,N-trimethyl chitosan (TMC) and tripolyphosphate (TPP), resulting in the formation of TMC-rDio-TPP nanoparticles (NPs). The loading capacity and entrapment efficiency of rDioscorin in the NPs were 26 ± 0.7% and 61 ± 1.4%, respectively. The NPs demonstrated a substantial release profile in the pH environment of the jejunum. The rDioscorin released from the NPs stimulated proliferation and phagocytosis of the macrophage RAW264.7 and activated the gene expression of IL-1β and IL-6. Incubation of the NPs in the Caco-2 cell monolayer led to a 5.2-fold increase of P app compared with rDioscorin alone, suggesting that rDioscorin, with the assistance of TMC, can be promptly transported across the intestinal epithelia. These results demonstrate that the TMC-rDio-TPP NPs can be utilized for elucidating the immunopharmacological effects of dioscorins through oral delivery.

  20. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton

    Directory of Open Access Journals (Sweden)

    J Klein-Nulend

    2012-09-01

    Full Text Available Lack of physical activity causes bone loss and fractures not only in elderly people, but also in bedridden patients or otherwise inactive youth. This is fast becoming one of the most serious healthcare problems in the world. Osteocytes, cells buried within our bones, stimulate bone formation in the presence of mechanical stimuli, as well as bone degradation in the absence of such stimuli. As yet, we do not fully comprehend how osteocytes sense mechanical stimuli, and only know a fraction of the whole range of molecules that osteocytes subsequently produce to regulate bone formation and degradation in response to mechanical stimuli. This dramatically hampers the design of bone loss prevention strategies. In this review we will focus on the first step in the cascade of events leading to adaptation of bone mass to mechanical loading, i.e., on how osteocytes are able to perceive mechanical stimuli placed on whole bones. We will place particular emphasis on the role of the osteocyte cytoskeleton in mechanosensing. Given the crucial importance of osteocytes in maintaining a proper resistance against bone fracture, greater knowledge of the molecular mechanisms that govern the adaptive response of osteocytes to mechanical stimuli may lead to the development of new strategies towards fracture prevention and enhanced bone healing.

  1. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  2. The Epstein-Barr virus DNA load in the peripheral blood of transplant recipients does not accurately reflect the burden of infected cells.

    Science.gov (United States)

    Fink, Susanne; Tsai, Ming-Han; Schnitzler, Paul; Zeier, Martin; Dreger, Peter; Wuchter, Patrick; Bulut, Olcay C; Behrends, Uta; Delecluse, Henri-Jacques

    2017-01-01

    Transplant recipients frequently exhibit an increased Epstein-Barr virus (EBV) load in the peripheral blood. Here, we quantitated the EBV-infected cells in the peripheral blood of these patients and defined the mode of viral infection, latent or lytic. These data indicated that there is no strong correlation between the number of infected cells and the EBV load (EBVL). This can be explained by a highly variable number of EBV copies per infected cell and by lytic replication in some cells. The plasma of these patients did not contain any free infectious viruses, but contained nevertheless EBV DNA, sometimes in large amounts, that probably originates from cell debris and contributed to the total EBVL. Some of the investigated samples carried a highly variable number of infected cells in active latency, characterized by an expression of the Epstein-Barr nuclear antigens (EBNA2) protein. However, a third of the samples expressed neither EBNA2 nor lytic proteins. Patients with an increased EBVL represent a heterogeneous group of patients whose infection cannot be characterized by this method alone. Precise characterization of the origin of an increased EBVL, in particular, in terms of the number of EBV-infected cells, requires additional investigations including the number of EBV-encoded small RNA-positive cells. © 2016 Steunstichting ESOT.

  3. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    Science.gov (United States)

    Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-09-01

    The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y fuel cell electrode than that using catalysts with y ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  4. Structural analyses of very large semi-submersibles in waves; Choogata hansensuishiki futai no harochu kozo oto kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, K.; Yoshida, K.; Suzuki, H. [The University of Tokyo, Tokyo (Japan)

    1997-08-01

    An analysis method in which the technique of a vehicle obtained when a three-dimensional singular point distribution method and Kagemoto`s mutual interaction theory are combined was expanded for the fluid area was proposed as the structural analysis of very large semi-submersibles in waves. A partial structure method is used for the structure. In a fluid area, the number of unknown quantities appearing in a final expression could be largely reduced by introducing the new concept of a group body. In this process, both hydro-elasticity and hydrodynamic mutual interaction are considered. As a result, floating bodies that could not be previously calculated can be modeled as a three-dimensional frame structure and the response analysis in waves can be carried out without damaging the accuracy. The calculation result is used as the input data required for analyzing the structural fatigue locally during structural design of very large semi-submersibles in the 3,000 (m) class. This study can present a series of procedures between the response analysis of very large floating bodies in waves and the structural design. 11 refs., 14 figs., 1 tab.

  5. Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes.

    Science.gov (United States)

    Chen, Jianfeng; Cao, Te; Zhang, Xiaolin; Xi, Yilong; Ni, Leyi; Jeppesen, Erik

    2016-10-03

    To evaluate the relative importance of photosynthetic versus morphological adaptations of submersed macrophytes to low light intensity in lakes, rapid light curves (RLCs), morphological parameters, relative growth rate (RGR), clonal reproduction and abundance of two submersed macrophytes (Potamogeton maackianus and Vallisneria natans) were examined under 2.8%, 7.1%, 17.1% and 39.5% ambient light in a field and outdoor experimental study. The plants increased their initial slope of RLCs (α) and decreased their minimum saturating irradiance (E k ) and maximum relative electron transport rate (ETRm) of RLCs under low light stress, but V. natans was more sensitive in RLCs than P. maackianus. Accordingly, the RGR, plant height and abundance of P. maackianus were higher in the high light regimes (shallow water) but lower in the low light regimes than those of V. natans. At the 2.8% ambient light, V. natans produced ramets and thus fulfilled its population expansion, in contrast to P. maackianus. The results revealed that P. maackianus as a canopy-former mainly elongated its shoot length towards the water surface to compensate for the low light conditions, however, it became limited in severe low light stress conditions. V. natans as a rosette adapted to low light stress mainly through photosynthetic adjustments and superior to severely low light than shoot elongation.

  6. Double twist : Can-K's electric submersible twin screw pump is designed to handle the nastiest crudes

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-12-15

    This article described the Can-K Group of Companies' electric submersible twin screw pump (ESTSP) designed for pumping heavy crudes with high levels of asphaltenes, hydrogen sulphide, wax, and methane. The technology was awarded the 2010 winner of best production technology for a company with fewer than 100 employees. The ESTSP can pump at a greater depth than other lift technologies. The design challenges included making the pump small enough to fit inside the well casing while also able to generate the high pressures necessary for pumping heavy oil. The ESTSP can compete directly against other lift technologies, including electric submersible pumps (ESPs). In the design, two shafts are separated by a timing gear. Each shaft has short sections of interlocking screws that do not touch, which lessens tension and the need for torque, lowering electricity consumption. The ESTSP is more efficient than ESP systems, particularly in more viscous mediums with high gas-to-oil ratios. The positive displacement pump interprets only volume and does not distinguish between gas and oil, functioning with gas content up to 97 percent. ESTSP can also handle more sand than ESP because it does not rely on centrifugal force. A patented screw design also helps prevent pump seizure resulting from sand and other solids. The pump uses downhole electric motors from other manufacturers. The inherent efficiencies of twin screw pumps give the technology the potential to replace conventional ESPs. 2 figs.

  7. Dynamic interaction between STLV-1 proviral load and T-cell response during chronic infection and after immunosuppression in non-human primates.

    Directory of Open Access Journals (Sweden)

    Sandrine Souquière

    Full Text Available We used mandrills (Mandrillus sphinx naturally infected with simian T-cell leukemia virus type 1 (STLV-1 as a model for evaluating the influence of natural STLV-1 infection on the dynamics and evolution of the immune system during chronic infection. Furthermore, in order to evaluate the role of the immune system in controlling the infection during latency, we induced immunosuppression in the infected monkeys. We first showed that the STLV-1 proviral load was higher in males than in females and increased significantly with the duration of infection: mandrills infected for 10-6 years had a significantly higher proviral load than those infected for 2-4 years. Curiously, this observation was associated with a clear reduction in CD4+ T-cell number with age. We also found that the percentage of CD4(+ T cells co-expressing the activation marker HLA-DR and the mean percentage of CD25(+ in CD4(+ and CD8(+ T cells were significantly higher in infected than in uninfected animals. Furthermore, the STLV-1 proviral load correlated positively with T-cell activation but not with the frequency of T cells secreting interferon gamma in response to Tax peptides. Lastly, we showed that, during immunosuppression in infected monkeys, the percentages of CD8(+ T cells expressing HLA-DR(+ and of CD4(+ T cells expressing the proliferation marker Ki67 decreased significantly, although the percentage of CD8(+ T cells expressing HLA-DR(+ and Ki67 increased significantly by the end of treatment. Interestingly, the proviral load increased significantly after immunosuppression in the monkey with the highest load. Our study demonstrates that mandrills naturally infected with STLV-1 could be a suitable model for studying the relations between host and virus. Further studies are needed to determine whether the different compartments of the immune response during infection induce the long latency by controlling viral replication over time. Such studies would provide important

  8. The more, the less: age and chemotherapy load are predictive of poor stem cell mobilization in patients with hematologic malignancies

    Institute of Scientific and Technical Information of China (English)

    YANG Shen-miao; CHEN Huan; CHEN Yu-hong; ZHU Hong-hu; ZHAO Ting; LIU Kai-yan

    2012-01-01

    Background Intensive treatment such as autologous peripheral blood stem cell (PBSC) transplantation is an important therapeutic strategy in many hematologic malignancies.A number of factors have been reported to impact PBSC mobilization,but the predictive factors varied from one study to another.This retrospective study assessed our current mobilization and collection protocols,and explored the factors predictive of PBSC mobilization in patients with hematologic malignancies.Methods Data of 64 consecutive patients with hematologic malignancies (multiple myeloma,n=22; acute leukemia,n=27; lymphoma,n=15) who underwent PBSC mobilization for over 1 year were analyzed.Four patients with response to treatment of near complete remission or better were administered granulocyte colony-stimulating factor (G-CSF) to mobilize PBSCs.Sixty patients received G-CSF followed by chemotherapy mobilizing regimens.Poor mobilization (PM) was defined as when ≤2.0×106 CD34+ cells/kg body weight were collected within three leukapheresis procedures.Results The incidence of PM at the first mobilization attempt was 19% (12/64).The PM group was older than the non-PM group (median age,51 vs.40 years; P=0.013).In univariate analysis,there were no significant differences in gender,diagnosis,and body weight between the PM and non-PM groups.A combination of chemotherapy and G-CSF was more effective than G-CSF alone as a mobilizing regimen (P=0.019).Grade Ⅲ or Ⅳ hematopoietic toxicity of chemotherapy had no significant effect on the mobilization efficacy.Supportive care and the incidence of febrile neutropenia were not significantly different between the two groups.In multivariate analysis,age (odds ratio (OR),9.536;P=-0.002) and number of previous chemotherapy courses (OR 3.132; P=0.024) were two independent negative predictive factors for CD34+ cell yield.PM patients could be managed well by remobilization.Conclusion Older age and a heavy load of previous chemotherapy are the negative

  9. Targeting property and toxicity of a novel ultrasound contrast agent microbubble carrying the targeting and drug-loaded complex FA-CNTs-PTX on MCF7 cells.

    Science.gov (United States)

    Zhang, Jie; Zhang, Yu; Liu, Junxi; Li, Guozhong; Wen, Zhaohui; Zhao, Yue; Zhang, Xiangyu; Liu, Fenghua

    2017-10-01

    The application of ultrasound contrast agents not only is confined to the enhancement of ultrasound imaging but also has started to be used as a drug system for diagnosis and treatment. In this paper, Span60 and PEG1500 were used as membrane materials, and a new targeting and drug-loading multifunctional ultrasound contrast agent microbubble enveloping the FA-CNTs-PTX complex was successfully prepared by acoustic cavitation. With the breast cancer cell line MCF7 as the research target, the effects of the microbubble with FA-CNTs-PTX on the proliferation and toxicity of MCF7 cells were studied using a CCK-8 and AO/EB double-staining method. The influences of the microbubbles with FA-CNTs-PTX on the cellular morphology and apoptosis period of the MCF7 cells were detected using an inverted fluorescence microscope. The apoptosis of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was investigated with flow cytometry and an annexin and PI double staining fluorescence quantitative analysis. The results indicated that the ultrasound contrast agent microbubble with FA-CNTs-PTX remarkably inhibited the proliferation of MCF7 cells, which was mainly controlled by the drug loading rate and the nanometer size of the microbubbles. Moreover, the proliferative inhibition rate of the microbubbles with FA-CNTs-PTX was related to the cell apoptosis period of MCF7 cells. Its inhibition degree on the proliferation of MCF7 cells was higher than that of the hepatoma HepG2 cells. The apoptosis rate of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was higher than that of normal human umbilical vein endothelial cells (HUVECs), and the microbubbles with FA-CNTs-PTX could target the MCF7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A three-dimensional cell-loading system using autologous plasma loaded into a porous β-tricalcium-phosphate block promotes bone formation at extraskeletal sites in rats

    International Nuclear Information System (INIS)

    Tajima, Nobutaka; Sotome, Shinichi; Marukawa, Eriko; Omura, Ken; Shinomiya, Kenichi

    2007-01-01

    The effects of platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on bone marrow stromal cells (MSCs) with respect to proliferation, osteogenic differentiation, and bone formation capability were investigated. MSCs derived from rats were cultured in medium containing mixtures of PRP and PPP. Fibrinogen was eliminated prior to the experiment. The DNA content and alkaline phosphatase (ALP) activity were measured. PRP stimulated cell proliferation and inhibited osteoblastic differentiation. To examine the effects of fibrin in plasma, MSCs were cultured in PRP or PPP fibrin gels formed both on a cell culture insert installed in a culture well and on the bottom surface of the same culture well. The ALP activities of the MSCs in both of the gels were higher than those on the surface of the culture wells. The MSCs cultured on the PPP gel showed the highest ALP activity. The effects of PRP and PPP used as scaffolds for bone formation were also investigated. MSCs were suspended in PRP or PPP, introduced into porous β-tricalcium phosphate blocks, and then implanted into subcutaneous sites. Subsequently, bone formation was quantified. Further in vivo studies found that implants prepared using PPP had a greater osteoinductive capability than implants prepared with PRP

  11. A three-dimensional cell-loading system using autologous plasma loaded into a porous {beta}-tricalcium-phosphate block promotes bone formation at extraskeletal sites in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Nobutaka [Oral and Maxillofacial Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Orthopaedic and Spinal Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Sotome, Shinichi [Orthopaedic and Spinal Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Marukawa, Eriko [Oral and Maxillofacial Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Orthopaedic and Spinal Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Omura, Ken [Oral and Maxillofacial Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo Medical and Dental University (Japan); Shinomiya, Kenichi [Orthopaedic and Spinal Surgery, Graduate school, Tokyo Medical and Dental University (Japan) and Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo Medical and Dental University (Japan) and Advanced Bone and Joint Science (Japan)]. E-mail: shinomiya.orth@tmd.ac.jp

    2007-05-16

    The effects of platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on bone marrow stromal cells (MSCs) with respect to proliferation, osteogenic differentiation, and bone formation capability were investigated. MSCs derived from rats were cultured in medium containing mixtures of PRP and PPP. Fibrinogen was eliminated prior to the experiment. The DNA content and alkaline phosphatase (ALP) activity were measured. PRP stimulated cell proliferation and inhibited osteoblastic differentiation. To examine the effects of fibrin in plasma, MSCs were cultured in PRP or PPP fibrin gels formed both on a cell culture insert installed in a culture well and on the bottom surface of the same culture well. The ALP activities of the MSCs in both of the gels were higher than those on the surface of the culture wells. The MSCs cultured on the PPP gel showed the highest ALP activity. The effects of PRP and PPP used as scaffolds for bone formation were also investigated. MSCs were suspended in PRP or PPP, introduced into porous {beta}-tricalcium phosphate blocks, and then implanted into subcutaneous sites. Subsequently, bone formation was quantified. Further in vivo studies found that implants prepared using PPP had a greater osteoinductive capability than implants prepared with PRP.

  12. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-04-01

    Full Text Available Lei Zhang,1 Faming Gong,2 Fang Zhang,3 Jing Ma,1 Peidong Zhang,1 Jun Shen3 1Department of Hepatobiliary and Pancreatic Surgery, 2PCFM Laboratory of Ministry of Education, School of Chemistry and Chemical Engineering, 3Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China Background: The purpose of this study was to evaluate the inhibitory effect of targeted folate-functionalized micelles containing superparamagnetic iron oxide nanoparticles (SPIONs and sorafenib on human hepatic carcinoma (HepG2 cells in vitro, and to observe the feasibility of surveillance of this targeting therapeutic effect by magnetic resonance imaging. Methods: Sorafenib and SPIONs were loaded into polymeric micelles. The targeted nanocarrier was synthesized by functionalizing the micelles with folate. Folate-free micelles loaded with sorafenib and SPIONs were used as control (nontargeted micelles. Uptake of the nanocarrier by cells was assessed using Prussian blue staining after 1 hour of incubation with the polymeric micelles. The inhibitory effect of the targeted micelles on HepG2 cell proliferation at various concentrations of sorafenib was assessed in vitro using the methyl thiazolyl tetrazolium (MTT assay and apoptotic analysis using flow cytometry. Magnetic resonance imaging using a clinical 1.5 T scanner was performed to detect changes in the signal intensity of cells after incubation with the targeted micelles. Results: Prussian blue staining showed significantly more intracellular SPIONs in cells incubated with the targeted micelles than those incubated with nontargeted micelles. The MTT assay showed that the average inhibitory ratio in the targeted group was significantly higher than that in the nontargeted group (38.13% versus 22.54%, P = 0.028. The mean apoptotic rate in the targeted cells, nontargeted cells, and untreated cells was 17.01%, 11.04%, and 7.89%, respectively. The apoptotic rate in the

  13. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.

    Science.gov (United States)

    Patil, Sharvil; Choudhary, Bhavana; Rathore, Atul; Roy, Krishtey; Mahadik, Kakasaheb

    2015-11-15

    Curcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation. The objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549. 3(2) Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch. CUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats. The average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44. Thus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Load-cell based characterization system for a “Violin-Mode” shadow-sensor in advanced LIGO suspensions

    International Nuclear Information System (INIS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-01-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre’s holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  15. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  16. Load-cell based characterization system for a “Violin-Mode” shadow-sensor in advanced LIGO suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance) Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2016-07-15

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre’s holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  17. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    Science.gov (United States)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  18. Electrochemical Deposition of Platinum and Palladium on Gold Nanoparticles Loaded Carbon Nanotube Support for Oxidation Reactions in Fuel Cell

    Directory of Open Access Journals (Sweden)

    Surin Saipanya

    2014-01-01

    Full Text Available Pt and Pd sequentially electrodeposited Au nanoparticles loaded carbon nanotube (Au-CNT was prepared for the electrocatalytic study of methanol, ethanol, and formic acid oxidations. All electrochemical measurements were carried out in a three-electrode cell. A platinum wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. Suspension of the Au-CNT, phosphate buffer, isopropanol, and Nafion was mixed and dropped on glassy carbon as a working electrode. By sequential deposition method, PdPtPt/Au-CNT, PtPdPd/Au-CNT, and PtPdPt/Au-CNT catalysts were prepared. Cyclic voltammograms (CVs of those catalysts in 1 M H2SO4 solution showed hydrogen adsorption and hydrogen desorption reactions. CV responses for those three catalysts in methanol, ethanol, and formic acid electrooxidations studied in 2 M CH3OH, CH3CH2OH, and HCOOH in 1 M H2SO4 show characteristic oxidation peaks. The oxidation peaks at anodic scan contribute to those organic substance oxidations while the peaks at cathodic scan are related with the reoxidation of the adsorbed carbonaceous species. Comparing all those three catalysts, it can be found that the PdPtPt/Au-CNT catalyst is good at methanol oxidation; the PtPdPt/Au-CNT effectively enhances ethanol oxidation while the PtPdPd/Au-CNT exceptionally catalyzes formic acid oxidation. Therefore, a different stoichiometry affects the electrochemical active surface area of the catalysts to achieve the catalytic oxidation reactions.

  19. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan-alginate-STPP nanoparticles.

    Science.gov (United States)

    Ahmadi, Fatemeh; Ghasemi-Kasman, Maryam; Ghasemi, Shahram; Gholamitabar Tabari, Maryam; Pourbagher, Roghayeh; Kazemi, Sohrab; Alinejad-Mir, Ali

    2017-01-01

    Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR). FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of apoptosis in human cervical epithelioid carcinoma cancer cells, which might be regarded as an effective alternative strategy for cancer therapy.

  20. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan–alginate–STPP nanoparticles

    Science.gov (United States)

    Ahmadi, Fatemeh; Ghasemi-Kasman, Maryam; Ghasemi, Shahram; Gholamitabar Tabari, Maryam; Pourbagher, Roghayeh; Kazemi, Sohrab; Alinejad-Mir, Ali

    2017-01-01

    Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan–alginate–sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR). FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of apoptosis in human cervical epithelioid carcinoma cancer cells, which might be regarded as an effective alternative strategy for cancer therapy. PMID:29238191

  1. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model.

    Science.gov (United States)

    Nomura, Takushi; Yamamoto, Hiroyuki; Takahashi, Naofumi; Naruse, Taeko K; Kimura, Akinori; Matano, Tetsuro

    2014-07-25

    Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Yurgel VC

    2014-03-01

    Full Text Available Virginia C Yurgel,1,* Catiuscia P Oliveira,2,* Karine R Begnini,1 Eduarda Schultze,1 Helena S Thurow,1 Priscila MM Leon,1 Odir A Dellagostin,1 Vinicius F Campos,1 Ruy CR Beck,2 Silvia S Guterres,2 Tiago Collares,1 Adriana R Pohlmann,2–4 Fabiana K Seixas11Programa de Pós-Graduação em Biotecnologia (PPGB, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil; 2Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 3Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 4Centro de Nanociência e Nanotecnologia, CNANO-UFRGS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil*These authors contributed equally to this workAbstract: Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt2] and MTX(OEt2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt2 solution and MTX(OEt2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231

  3. A Study of the Failure of Joints in Composite Material Fuel Cells Due to Hydraulic Ram Loading

    Science.gov (United States)

    1976-06-01

    H co PSw Z QW <H W CO 33 PS4 o CO O CM \\ Q> 00 vO m CO CM N ra Figure VI.B.l THICKNESS MODEL 55 it acts upon on the membrane, gives the force to be...ability of the joint to carry the loads created by hydraulic ram loading. It would also make the manufacturing procedure easier, less time consuming , and...70 less expensive. Cutting holes and channels in a composite plate not only alters the behavior and load carrying capa- bility of the plate, but it is

  4. Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea.

    Science.gov (United States)

    Tucker, E B

    1990-08-01

    The effect of microinjected calcium-loaded 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (CaBAPTA) on cell-to-cell diffusion of carboxyfluorescein (CF) was examined in staminal hairs of S. purpurea Boom. The CaBAPTA was microinjected into the cytoplasm of the staminal hairs either with CF or prior to a subsequent microinjection of CF. The cell-to-cell diffusion of CF along the hair was monitored using enhanced-fluorescence video microscopy. Cytoplasmic streaming stopped in cells treated with CaBAPTA, indicating that intracellular Ca(2+) had increased. Cell-to-cell diffusion of CF was blocked in cells treated with Ca-BAPTA. An inhibition of cytoplasmic streaming and cell-to-cell diffusion was observed in the cells adjoining the CaBAPTA-microinjected cell, indicating that the Ca-BAPTA appeared to pass through plasmodesmata. While cytoplasmic streaming resumed 5-10 min after CaBAPTA treatment, cell-to-cell diffusion did not resume until 30-120 min later. These data support an involvement of calcium in the regulation of cell-to-cell communication in plants.

  5. T-cell tropism of simian T-cell leukaemia virus type 1 and cytokine profiles in relation to proviral load and immunological changes during chronic infection of naturally infected mandrills (Mandrillus sphinx).

    Science.gov (United States)

    Souquière, Sandrine; Mouinga-Ondeme, Augustin; Makuwa, Maria; Beggio, Paola; Radaelli, Antonia; De Giuli Morghen, Carlo; Mortreux, Franck; Kazanji, Mirdad

    2009-08-01

    Although a wide variety of non-human primates are susceptible to simian T-cell leukaemia virus type 1 (STLV-1), little is known about the virological or molecular determinants of natural STLV-1 infection. We determined STLV-1 virus tropism in vivo and its relation to the immune response by evaluating cytokine production and T-cell subsets in naturally infected and uninfected mandrills. With real-time PCR methods, we found that STLV-1 in mandrills infects both CD4(+) and CD8(+) T cells; however, proviral loads were significantly higher (P = 0.01) in CD4(+) than in CD8(+) cells (mean STLV-1 copies number per 100 cells (+/- SD) was 7.8 +/- 8 in CD4(+) T cells and 3.9 +/- 4.5 in CD8(+) T cells). After culture, STLV-1 provirus was detected in enriched CD4(+) but not in enriched CD8(+) T cells. After 6 months of culture, STLV-1-transformed cell lines expressing CD3(+), CD4(+) and HLADR(+) were established, and STLV-1 proteins and tax/rex mRNA were detected. In STLV-1 infected monkeys, there was a correlation between high proviral load and elevated levels of interleukin (IL)-2, IL-6, IL-10, interferon-gamma and tumour necrosis factor-alpha. The two monkeys with the highest STLV-1 proviral load had activated CD4(+)HLADR(+) and CD8(+)HLADR(+) T-cell subsets and a high percentage of CD25(+) in CD4(+) and CD8(+) T cells. Our study provides the first cellular, immunological and virological characterization of natural STLV-1 infection in mandrills and shows that they are an appropriate animal model for further physiopathological studies of the natural history of human T-cell leukaemia viruses.

  6. Fluoridated hydroxyapatite: Eu3+ nanorods-loaded folate-conjugated D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) micelles for targeted imaging of cancer cells

    Science.gov (United States)

    Wan, Dong; Liu, Weijiao; Wang, Lei; Wang, Hao; Pan, Jie

    2016-03-01

    In this study, fluoridated hydroxyapatite: Eu3+ nanorod-loaded folate-conjugated TPGS micelles were prepared by thin-film hydration. The findings in this study demonstrate that micelles show improved dispersion, high stability, and excellent fluorescent property in aqueous solutions, suitable for targeted imaging of cancer cells with over-expressing folate receptors on their surface. The micelles designed in this study will be a promising tool for early detection of cancer.

  7. Radioiodination of cyclin dependent kinase inhibitor Olomoucine loaded Fe rate at Au nanoparticle and evaluation of the therapeutic efficacy on cancerous cells

    Energy Technology Data Exchange (ETDEWEB)

    Takan, Gokhan; Guldu, Ozge Kozgus; Medine, Emin Ilker [Ege Univ., Izmir (Turkey). Dept. of Nuclear Applications

    2017-06-01

    Magnetic nanoparticles have promising biomedical applications such as drug delivery, novel therapeutics and diagnostic imaging. Magnetic drug delivery combination works on the delivery of magnetic nanoparticles loaded with drug to the target tissue by means of an external magnetic field. Gold coated iron oxide (Fe rate at Au) nanoparticles can provide useful surface chemistry and biological reactivity. Covalent conjugation to the Fe rate at Au nanoparticles through cleavable linkages can be used to deliver drugs to tumor cells, then the drug can be released by an external. In this paper, purine based cyclin dependent kinases (CDKs) inhibitor Olomoucine (Olo) [2-(Hydroxyethylamino)-6-benzylamino-9-methylpurine] was loaded on gold coated iron oxide (Fe rate at Au) nanoparticles and radiolabeled with {sup 131}I to combine magnetic targeted drug delivery and radiotherapy. Fe rate at Au nanoparticles were synthesized by microemulsion method. The characterization of nanoparticles was examined by TEM, VSM and XRD. Amine activation was utilized by cysteamine hydrochloride and then CDI was used for conjugation of Olomoucine. Antiproliferative effect and cytotoxicity of Olomoucine loaded Fe rate at Au nanoparticles (Fe rate at Au-Olo) were investigated on MCF7 and A549 cell lines. Proliferation rate was decreased while uptake of Fe rate at Au-Olo on both cell lines was high in comparison with Olomoucine. Also, enhanced incorporation ratio was observed under external magnetic field.

  8. Radioiodination of cyclin dependent kinase inhibitor Olomoucine loaded Fe rate at Au nanoparticle and evaluation of the therapeutic efficacy on cancerous cells

    International Nuclear Information System (INIS)

    Takan, Gokhan; Guldu, Ozge Kozgus; Medine, Emin Ilker

    2017-01-01

    Magnetic nanoparticles have promising biomedical applications such as drug delivery, novel therapeutics and diagnostic imaging. Magnetic drug delivery combination works on the delivery of magnetic nanoparticles loaded with drug to the target tissue by means of an external magnetic field. Gold coated iron oxide (Fe rate at Au) nanoparticles can provide useful surface chemistry and biological reactivity. Covalent conjugation to the Fe rate at Au nanoparticles through cleavable linkages can be used to deliver drugs to tumor cells, then the drug can be released by an external. In this paper, purine based cyclin dependent kinases (CDKs) inhibitor Olomoucine (Olo) [2-(Hydroxyethylamino)-6-benzylamino-9-methylpurine] was loaded on gold coated iron oxide (Fe rate at Au) nanoparticles and radiolabeled with "1"3"1I to combine magnetic targeted drug delivery and radiotherapy. Fe rate at Au nanoparticles were synthesized by microemulsion method. The characterization of nanoparticles was examined by TEM, VSM and XRD. Amine activation was utilized by cysteamine hydrochloride and then CDI was used for conjugation of Olomoucine. Antiproliferative effect and cytotoxicity of Olomoucine loaded Fe rate at Au nanoparticles (Fe rate at Au-Olo) were investigated on MCF7 and A549 cell lines. Proliferation rate was decreased while uptake of Fe rate at Au-Olo on both cell lines was high in comparison with Olomoucine. Also, enhanced incorporation ratio was observed under external magnetic field.

  9. Temporal changes in spatial patterns of submersed macrophytes in two impounded reaches of the Upper Mississippi River, USA, 1998-2009

    Science.gov (United States)

    De Jager, Nathan R.; Yin, Yao

    2011-01-01

    We examined temporal changes in spatial patterns of submersed aquatic macrophytes during a recent three-fold increase in macrophyte abundance and in response to the cumulative effects of management actions (island construction and water level management) and changes in regional environmental conditions (turbidity) in two navigation pools of the Upper Mississippi River, Pool 8 (managed) and Pool 13 (unmanaged). We used cross-correlograms to quantify changes in the degree and range of spatial correlation between submersed macrophytes and depth across the impounded portions of the two pools from 1998-2009. Along with increases in abundance, we observed gradual expansion of submersed macrophytes into deeper water in both pools. However, we detected no temporal change in spatial patterns in Pool 13, where the range of spatial correlation was ~ 1500-2500 m in length in the downriver direction and ~ 500-1000 m in length in the crossriver direction. We initially detected similar ranges of spatial correlation in Pool 8, but over time the range of correlation in the cross river direction increased from ~ 500 m in 1998 to ~ 2000 m by 2009. Thus, the expansion of submersed macrophytes into deeper water areas in Pool 8 appears to have occurred in the cross-river direction and led to increases in patch size and a more symmetrical patch configuration. Hence, very similar temporal changes in submersed macrophyte abundance corresponded with different diffusion dynamics and spatial patterns in the two pools. We hypothesize that management actions altered spatial patterns of depth, water flow and/or wind fetch and led to the differences in spatial patterns reported here.

  10. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo.

    Science.gov (United States)

    Mohiti-Asli, M; Saha, S; Murphy, S V; Gracz, H; Pourdeyhimi, B; Atala, A; Loboa, E G

    2017-02-01

    This article presents successful incorporation of ibuprofen in polylactic acid (PLA) nanofibers to create scaffolds for the treatment of both acute and chronic wounds. Nanofibrous PLA scaffolds containing 10, 20, or 30 wt % ibuprofen were created and ibuprofen release profiles quantified. In vitro cytotoxicity to human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) of the three scaffolds with varying ibuprofen concentrations were evaluated and compared to pure PLA nanofibrous scaffolds. Thereafter, scaffolds loaded with ibuprofen at the concentration that promoted human skin cell viability and proliferation (20 wt %) were evaluated in vivo in nude mice using a full thickness skin incision model to determine the ability of these scaffolds to promote skin regeneration and/or assist with scarless healing. Both acellular and HEK and HDF cell-seeded 20 wt % ibuprofen loaded nanofibrous bandages reduced wound contraction compared with wounds treated with Tegaderm™ and sterile gauze. Newly regenerated skin on wounds treated with cell-seeded 20 wt % ibuprofen bandages exhibited significantly greater blood vessel formation relative to acellular ibuprofen bandages. We have found that degradable anti-inflammatory scaffolds containing 20 wt % ibuprofen promote human skin cell viability and proliferation in vitro, reduce wound contraction in vivo, and when seeded with skin cells, also enhance new blood vessel formation. The approaches and results reported here hold promise for multiple skin tissue engineering and wound healing applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 327-339, 2017. © 2015 Wiley Periodicals, Inc.

  12. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater

    DEFF Research Database (Denmark)

    Wang, Kai; Moan, Torgeir; Hansen, Martin Otto Laver

    2016-01-01

    Floating vertical-axis wind turbines (FVAWTs) provide the potential for utilizing offshore wind resources in moderate and deep water because of their economical installation and maintenance. Therefore, it is important to assess the performance of the FVAWT concept. This paper presents a stochastic...... on the response is demonstrated by comparing the floating wind turbine with the equivalent land-based wind turbine. Additionally, by comparing the behaviour of FVAWTs with flexible and rigid rotors, the effect of rotor flexibility is evaluated. Furthermore, the FVAWT is also investigated in the parked condition...... dynamic response analysis of a 5MW FVAWT based on fully coupled nonlinear time domain simulations. The studied FVAWT, which is composed of a Darrieus rotor and a semi-submersible floater, is subjected to various wind and wave conditions. The global motion, structural response and mooring line tension...

  13. Diagnostic values for the viral load in peripheral blood mononuclear cells of patients with chronic active Epstein-Barr virus disease.

    Science.gov (United States)

    Ito, Yoshinori; Suzuki, Michio; Kawada, Jun-ichi; Kimura, Hiroshi

    2016-04-01

    Chronic active Epstein-Barr virus disease (CAEBV) is a distinct EBV-associated lymphoproliferative disease with a poor prognosis. Although the viral load in blood samples has been widely used for diagnosing CAEBV, well-defined viral load thresholds to guide clinicians are currently lacking. The aim of the present study was to determine standardized diagnostic values for EBV load in blood samples of CAEBV patients using the World Health Organization international standard for reporting. Levels of EBV DNA in 103 peripheral blood mononuclear cells (PBMCs) and 95 plasma/serum samples from 107 cases with CAEBV were quantified and expressed in international units. Receiver operating characteristic curves were analyzed to assess the most appropriate cut-off values for levels of EBV DNA to distinguish CAEBV from EBV-associated infectious mononucleosis (IM) and controls with past EBV infection. Levels of EBV DNA in PBMCs were significantly higher in the CAEBV group (median, 10(4.2) IU/μgDNA) compared to the IM (median, 10(2.1) IU/μgDNA) and control groups. An inconsistent qualitative result was seen in 13 of 86 CAEBV patients; in these, EBV-DNA was positive in PBMCs, but negative in plasma. Diagnostic cut-off values for viral load in PBMCs from CAEBV patients, as compared to those of healthy controls and IM patients, were 10(2.0) IU/μgDNA and 10(3.2) IU/μgDNA, respectively. For diagnostic purposes, the viral load of PBMCs was better than of plasma/serum. A diagnostic cut-off EBV load for CAEBV may be useful for the management of CAEBV patients. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  15. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    International Nuclear Information System (INIS)

    Joshy, K.S.; Sharma, Chandra P.; Kalarikkal, Nandakumar; Sandeep, K.; Thomas, Sabu; Pothen, Laly A.

    2016-01-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake

  16. Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection.

    Science.gov (United States)

    Erdmann, Michael; Dörrie, Jan; Schaft, Niels; Strasser, Erwin; Hendelmeier, Martin; Kämpgen, Eckhart; Schuler, Gerold; Schuler-Thurner, Beatrice

    2007-09-01

    Dendritic cell (DC) vaccination approaches are advancing fast into the clinic. The major obstacle for further improvement is the current lack of a simple functionally "closed" system to generate standardized monocyte-derived (mo) DC vaccines. Here, we significantly optimized the use of the Elutra counterflow elutriation system to enrich monocytic DC precursors by (1) developing an algorithm to avoid red blood cell debulking and associated monocyte loss before elutriation, and (2) by elutriation directly in culture medium rather than phosphate-buffered saline. Upon elutriation the bags containing the collected monocytes are simply transferred into the incubator to generate DC progeny as the final "open" washing step is no longer required. Elutriation resulted in significantly more (> or = 2-fold) and purer DC than the standard gradient centrifugation/adherence-based monocyte enrichment, whereas morphology, maturation markers, viability, migratory capacity, and T cell stimulatory capacity were identical. Subsequently, we compared RNA transfection, as this is an increasingly used approach to load DC with antigen. Elutra-derived and adherence-derived DC could be electroporated with similar, high efficiency (on average >85% green fluorescence protein positive), and appeared also equal in antigen expression kinetics. Both Elutra-derived and adherence-derived DC, when loaded with the MelanA peptide or electroporated with MelanA RNA, showed a high T cell stimulation capacity, that is, priming of MelanA-specific CD8+ T cells. Our optimized Elutra-based procedure is straightforward, clearly superior to the standard gradient centrifugation/plastic adherence protocol, and now allows the generation of large numbers of peptide-loaded or RNA-transfected DC in a functionally closed system.

  17. Methotrexate-Loaded Four-Arm Star Amphiphilic Block Copolymer Elicits CD8+ T Cell Response against a Highly Aggressive and Metastatic Experimental Lymphoma.

    Science.gov (United States)

    Hira, Sumit Kumar; Ramesh, Kalyan; Gupta, Uttam; Mitra, Kheyanath; Misra, Nira; Ray, Biswajit; Manna, Partha Pratim

    2015-09-16

    We have synthesized a well-defined four-arm star amphiphilic block copolymer [poly(DLLA)-b-poly(NVP)]4 [star-(PDLLA-b-PNVP)4] that consists of D,L-lactide (DLLA) and N-vinylpyrrolidone (NVP) via the combination of ring-opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Synthesis of the polymer was verified by 1H NMR spectroscopy and gel permeation chromatography (GPC). The amphiphilic four-arm star block copolymer forms spherical micelles in water as demonstrated by transmission electron microscopy (TEM) and 1H NMR spectroscopy. Pyrene acts as a probe to ascertain the critical micellar concentration (cmc) by using fluorescence spectroscopy. Methotrexate (MTX)-loaded polymeric micelles of star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer were prepared and characterized by fluorescence and TEM studies. Star-(PDLLA15-b-PNVP10)4 copolymer was found to be significantly effective with respect to inhibition of proliferation and lysis of human and murine lymphoma cells. The amphiphilic block copolymer causes cell death in parental and MTX-resistant Dalton lymphoma (DL) and Raji cells. The formulation does not cause hemolysis in red blood cells and is tolerant to lymphocytes compared to free MTX. Therapy with MTX-loaded star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer micelles prolongs the life span of animals with neoplasia by reducing the tumor load, preventing metastasis and augmenting CD8+ T cell-mediated adaptive immune responses.

  18. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiang GH

    2013-12-01

    Full Text Available Guang-Hua Xiang,1,2,* Guo-Bin Hong,2,3,* Yong Wang,2 Du Cheng,2 Jing-Xing Zhou,1 Xin-Tao Shuai21Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China; 2PCFM Laboratory of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China; 3Department of Radiology, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, People's Republic of China*These two authors contributed equally to this workObjective: To evaluate the cytotoxicity of poly(ethylene glycol-block-poly(D,L-lactic acid (PEG-PDLLA nanovesicles loaded with doxorubicin (DOX and the photosensitizer hematoporphyrin monomethyl ether (HMME on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms.Methods: PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME, and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX, HMME (PEG-PDLLA-HMME, or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined.Results: Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with

  19. Comparison of HTLV-I Proviral Load in Adult T Cell Leukemia/Lymphoma (ATL), HTLV-I-Associated Myelopathy (HAM-TSP) and Healthy Carriers.

    Science.gov (United States)

    Akbarin, Mohammad Mehdi; Rahimi, Hossein; Hassannia, Tahereh; Shoja Razavi, Ghazaleh; Sabet, Faezeh; Shirdel, Abbas

    2013-03-01

    Human T Lymphocyte Virus Type one (HTLV-I) is a retrovirus that infects about 10-20 million people worldwide. Khorasan province in Iran is an endemic area. The majority of HTLV-I-infected individuals sustain healthy carriers but small proportion of infected population developed two progressive diseases: HAM/TSP and ATL. The proviral load could be a virological marker for disease monitoring, therefore in the present study HTLV-I proviral load has been evaluated in ATL and compared to HAM/TSP and healthy carriers. In this case series study, 47 HTLV-I infected individuals including 13 ATL, 23 HAM/TSP and 11 asymptomatic subjects were studied. Peripheral blood mononuclear cells (PBMCs) were investigated for presence of HTLV-I DNA provirus by PCR using LTR and Tax fragments. Then in infected subjects, HTLV-I proviral load was measured using real time PCR TaqMan method. The average age of patients in ATL was 52±8, in HAM/TSP 45.52±15.17 and in carrier's 38.65±14.9 years which differences were not statistically significant. The analysis of data showed a significant difference in mean WBC among study groups (ATL vs HAM/TSP and carriers P=0.0001). Moreover, mean HTLV-I proviral load was 11967.2 ± 5078, 409 ± 71.3 and 373.6 ± 143.3 in ATL, HAM/TSP and Healthy Carriers, respectively. The highest HTLV-I proviral load was measured in ATL group that had a significant correlation with WBC count (R=0.495, P=0.001). The proviral load variations between study groups was strongly significant (ATL vs carrier P=0.0001; ATL vs HAM/TSP P= 0.0001 and HAM/TSP vs carriers P< 0.05). Conclusion : The present study demonstrated that HTLV-I proviral load was higher in ATL group in comparison with HAM/TSP and healthy carriers. Therefore, HTLV-I proviral load is a prognostic factor for development of HTLV-I associated diseases and can be used as a monitoring marker for the efficiency of therapeutic regime.

  20. Effects of non-fatiguing respiratory muscle loading induced by expiratory flow limitation during strenuous incremental cycle exercise on metabolic stress and circulating natural killer cells.

    Science.gov (United States)

    Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio

    2017-12-01

    Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.

  1. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhi Qun; Lim, San Hua; Poh, Chee Kok; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Xia, Zetao [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Luo, Zhiqiang; Shen, Zexiang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, and Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2011-11-15

    A simple method was developed to prepare ultra-low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra-low Pt loading down to 35 {mu}g cm{sup -2} which was comparable to that of the commercial Pt catalyst on carbon powder with 400 {mu}g cm{sup -2}. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order-structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    Science.gov (United States)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  3. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  4. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

    Science.gov (United States)

    Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda

    2018-01-01

    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations

  5. Optimal Load-Tracking Operation of Grid-Connected Solid Oxide Fuel Cells through Set Point Scheduling and Combined L1-MPC Control

    Directory of Open Access Journals (Sweden)

    Siwei Han

    2018-03-01

    Full Text Available An optimal load-tracking operation strategy for a grid-connected tubular solid oxide fuel cell (SOFC is studied based on the steady-state analysis of the system thermodynamics and electrochemistry. Control of the SOFC is achieved by a two-level hierarchical control system. In the upper level, optimal setpoints of output voltage and the current corresponding to unit load demand is obtained through a nonlinear optimization by minimizing the SOFC’s internal power waste. In the lower level, a combined L1-MPC control strategy is designed to achieve fast set point tracking under system nonlinearities, while maintaining a constant fuel utilization factor. To prevent fuel starvation during the transient state resulting from the output power surging, a fuel flow constraint is imposed on the MPC with direct electron balance calculation. The proposed control schemes are testified on the grid-connected SOFC model.

  6. Using super-capacitors in combination with Bi-directional DC/DC converters for active load management in residential fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Cacciato, M.; Giulii Capponi, F. [Rome Univ., ' La Sapienza' , Dept. of Electrical Engineering (Italy)

    2004-07-01

    Among innovative conversion systems for alternative energy, Fuel Cells (FCs) are ideal in applications as distributed power generation or automotive. The connection of FCs to domestic or industrial loads requires a DC/AC converter also acting as a energy buffer to match the different dynamics of FCs and loads. In the last years, a new type of electrolytic capacitors called Super- Capacitors (SCs), has been designed using double layers technology. Such components are able to store more energy than electrolytic capacitors maintaining the capability to swap it at high power levels. Firstly, different solution used to connect SCs to a FC based conversion system are considered. Then, a comparison of bi-directional DC/DC converters designed to manage SCs energy is performed. Finally, the converter design and a laboratory prototype of the adopted solution are reported. (authors)

  7. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan–alginate–STPP nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmadi F

    2017-11-01

    Full Text Available Fatemeh Ahmadi,1 Maryam Ghasemi-Kasman,2,3 Shahram Ghasemi,4 Maryam Gholamitabar Tabari,5 Roghayeh Pourbagher,2 Sohrab Kazemi,6 Ali Alinejad-Mir7 1Student Research Committee, Babol University of Medical Sciences, 2Cellular and Molecular Biology Research Center, 3Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; 4Faculty of Chemistry, University of Mazandaran, Babolsar, Iran; 5Infertility and Health Reproductive Research Center, Health Research Institute, 6Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; 7Department of Chemical Engineering, University of Mazandaran, Babolsar, Iran Abstract: Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan–alginate–sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs. Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM and atomic force microscopy (AFM were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR. FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was <50 nm. In vitro cytotoxicity assay suggested that curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of

  8. Study of the efficiency of transplantation of human neural stem cells to rats with spinal trauma: the use of functional load tests and BBB test.

    Science.gov (United States)

    Lebedev, S V; Karasev, A V; Chekhonin, V P; Savchenko, E A; Viktorov, I V; Chelyshev, Yu A; Shaimardanova, G F

    2010-09-01

    Human ensheating neural stem cells of the olfactory epithelium were transplanted to adult male rats immediately after contusion trauma of the spinal cord at T9 level rostrally and caudally to the injury. Voluntary movements (by a 21-point BBB scale), rota-rod performance, and walking along a narrowing beam were monitored weekly over 60 days. In rats receiving cell transplantation, the mean BBB score significantly increased by 11% by the end of the experiment. The mean parameters of load tests also regularly surpassed the corresponding parameters in controls. The efficiency of transplantation (percent of animals with motor function recovery parameters surpassing the corresponding mean values in the control groups) was 62% by the state of voluntary motions, 37% by the rota-rod test, and 32% by the narrowing beam test. Morphometry revealed considerable shrinking of the zone of traumatic damage in the spinal cord and activation of posttraumatic remyelination in animals receiving transplantation of human neural stem cells.

  9. In vitro evaluation of biocompatibility of uncoated thermally reduced graphene and carbon nanotube-loaded PVDF membranes with adult neural stem cell-derived neurons and glia

    Directory of Open Access Journals (Sweden)

    Çagla Defterali

    2016-12-01

    Full Text Available Graphene, graphene-based nanomaterials (GBNs and carbon nanotubes (CNTs are being investigated as potential substrates for the growth of neural cells. However, in most in vitro studies the cells were seeded on these materials coated with various proteins implying that the observed effects on the cells could not solely be attributed to the GBN and CNT properties. Here we studied the biocompatibility of uncoated thermally reduced graphene (TRG and poly-vinylidene fluoride (PVDF membranes loaded with multi walled CNTs (MWCNTs using neural stem cells (NSCs isolated from the adult mouse olfactory bulb (termed aOBSCs. When aOBSCs were induced to differentiate on coverslips treated with TRG or control materials (polyethyleneimine-PEI and polyornithine plus fibronectin-PLO/F in a serum-free medium, neurons, astrocytes, and oligodendrocytes were generated in all conditions, indicating that TRG permits the multi-lineage differentiation of aOBSCs. However, the total number of cells was reduced on both PEI and TRG. In a serum-containing medium, aOBSC-derived neurons and oligodendrocytes grown on TRG were more numerous than in controls; the neurons developed synaptic boutons and oligodendrocytes were more branched. In contrast, neurons growing on PVDF membranes had reduced neurite branching and on MWCNTs-loaded membranes, oligodendrocytes were lower in numbers than in controls. Overall, these findings indicate that uncoated TRG may be biocompatible with the generation, differentiation, and maturation of aOBSC-derived neurons and glial cells, implying a potential use for TRG to study functional neuronal networks.

  10. Enhanced anti-proliferative efficacy of epothilone B loaded with Escherichia coli Nissle 1917 bacterial ghosts on the HeLa cells by mitochondrial pathway of apoptosis.

    Science.gov (United States)

    Zhu, Wenxing; Hao, Lujiang; Liu, Xinli; Orlando, Borrás-Hidalgo; Zhang, Yuyu

    2018-03-20

    Epothilones constitute a new class of microtubule-stabilizing anti-cancer agents with promising preclinical and clinical activity. However, its systemic application still causes some toxic side effects. To reduce these undesired effects, advanced drug delivery systems based on cell targeting carriers are needed currently. In this study, the high quality bacterial ghosts of the probiotic Escherichia coli Nissle 1917 (EcN) were prepared in a large scale and retained fully intact surface structures for specific attachment to mammalian cells. The EcN ghosts could be efficiently loaded with the low hydrophilic drug Epothilone B (Epo B) and the maximal load efficiency was approximately 2.5% (w/w). Cytotoxicity assays revealed that Epo B-ghosts exhibited enhanced anti-proliferative properties on the HeLa cells. The Epo B associated with EcN ghosts was more cytotoxic at least 10 times than the free Epo B at the same concentrations. Apoptosis assays showed that both Epo B-ghosts and free Epo B induced time course-dependent apoptosis and necrosis in HeLa cells, respectively. While the former induced more apoptosis and necrosis than the latter. Furthermore, the cytochrome C release and the activation of caspase-3 were more remarkable after treatment with the Epo B-ghosts compared to the free Epo B, which implied that Epo B-ghosts might more effectively induce the apoptosis mediated by mitochondrial pathway in HeLa cells. Therefore, the higher anti-proliferative effects of the Epo B-ghosts on the HeLa cells were mediated by mitochondrial pathway of apoptosis. The EcN ghosts may provide a useful drug delivery carrier for drug candidates in cancer therapy.

  11. Central Experimental Oculina Research Reserve, Oculina Banks Clelia Dive 612 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  12. Epstein-Barr virus (EBV) load in cerebrospinal fluid and peripheral blood of patients with EBV-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Liu, Q-F; Ling, Y-W; Fan, Z-P; Jiang, Q-L; Sun, J; Wu, X-L; Zhao, J; Wei, Q; Zhang, Y; Yu, G-P; Wu, M-Q; Feng, R

    2013-08-01

    To evaluate the diagnostic and prognostic utility of monitoring the Epstein-Barr virus (EBV) load in the cerebrospinal fluid (CSF) and peripheral blood for the patients with EBV-associated central nervous system (CNS) diseases after allogeneic hematopoietic stem cell transplantation (allo-HSCT), 172 patients undergoing allo-HSCT were enrolled in the study. The EBV DNA levels of blood were monitored regularly in recipients of transplants for 3 years post transplantation. The EBV DNA levels of CSF were monitored in patients with EBV-associated CNS diseases before the treatment and at different points following the treatment. Post-transplant EBV-associated diseases developed in 27 patients, including 12 patients with EBV-associated CNS diseases. The 3-year cumulative incidences of EBV-associated diseases and EBV-associated CNS diseases were 19.5 ± 3.5% and 8.6 ± 2.4%, respectively. Patients with EBV-associated diseases showed higher loads of EBV DNA in their blood compared with patients with EBV DNA-emia. No difference was seen between the EBV DNA levels of blood in patients with CNS involvement and patients without CNS involvement. The EBV DNA loads of blood increased 3-14 days before the clinical manifestations of EBV-associated diseases emerged. The EBV DNA loads of CSF were higher than that of blood in patients with EBV-associated CNS diseases. In 12 patients with EBV-associated CNS diseases, EBV DNA levels were declining in both blood and CSF with the control of diseases, and the EBV DNA loads of CSF decreased faster than that of blood in 5 patients who responded to treatment, and the EBV DNA levels of CSF increased in 5 patients who were unresponsive to treatment. On multivariate analysis, the use of anti-thymocyte globulin and intensified conditioning regimens were independent risk factors for EBV-associated diseases and EBV-associated CNS diseases. EBV-associated CNS diseases are not rare after allo-HSCT. The EBV DNA loads of CSF could act as an important

  13. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma, E-mail: jperez@iqsc.usp.br [Instituto de Quimica de Sao Carlos, USP (Brazil); Antolini, Ermete [Scuola di Scienza dei Materiali (Italy)

    2012-09-15

    The effect of the relationship between particle size (d), inter-particle distance (x{sub i}), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x{sub i}/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x{sub i}/d can be always obtained. For y {>=} 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x{sub i}/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x{sub i}/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x{sub i}/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  14. CD4+ T cell count, HIV-1 viral loads and demographic variables of newly identified patients with HIV infection in Wuhan, China.

    Science.gov (United States)

    Liu, Man-Qing; Tang, Li; Kong, Wen-Hua; Zhu, Ze-Rong; Peng, Jin-Song; Wang, Xia; Yao, Zhong-Zhao; Schilling, Robert; Zhou, Wang

    2013-10-01

    In China, the rate of human immunodeficiency virus (HIV) testing is increasing among men who have sex with men. The purpose of the present study was to describe HIV-related biomarkers and selected demographic variables of persons with newly diagnosed HIV/AIDS, among men who have sex with men in particular, in Wuhan China. Demographic indicators, and CD4+ T cell counts and HIV-1 viral load were collected from individuals newly identified as HIV-1 antibody positive during 2011. Of 176 enrolled patients, 132 (75.0%) were men who have sex with men. This group was significantly younger and had higher CD4+ T cell counts than patients who were likely infected through heterosexual contact. Most men who have sex with men (56.6%) were discovered by initiative investigation. Among heterosexual patients CD4+ T cell counts and HIV-1 viral load were significantly correlated; among the group of men who have sex with men, no such association was found. Copyright © 2013 Wiley Periodicals, Inc.

  15. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    International Nuclear Information System (INIS)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-01-01

    The effect of the relationship between particle size (d), inter-particle distance (x i ), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5–3 nm) and x i /d (>5) values, was evaluated. It was found that for y i /d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y i /d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i /d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i /d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  16. Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid--in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells.

    Science.gov (United States)

    Kumar, Sathish Sundar Dhilip; Surianarayanan, Mahadevan; Vijayaraghavan, R; Mandal, Asit Baran; MacFarlane, D R

    2014-01-23

    The main focus of this study is to encapsulate hydrophobic drug curcumin in hydrophilic polymeric core such as poly(2-hydroxyethyl methacrylate) [PHEMA] nanoparticles from gelled ionic liquid (IL) to improve its efficacy. We have achieved 26.4% drug loading in a biocompatible hydrophilic polymer. Curcumin loaded PHEMA nanoparticles (C-PHEMA-NPs) were prepared by nano-precipitation method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were spherical in shape and free from aggregation. The size and zeta potential of prepared C-PHEMA-NPs were about 300 nm and -33.4 mV respectively. C-PHEMA-NPs were further characterized by FT-IR spectroscopy which confirmed the existence of curcumin in the nanoparticles. X-ray diffraction and differential scanning calorimetry studies revealed that curcumin present in the PHEMA nanoparticles were found to be amorphous in nature. The anticancer activity of C-PHEMA-NPs was measured in ovarian cancer cells (SKOV-3) in vitro, and the results revealed that the C-PHEMA-NPs had better tumor cells regression activity than free curcumin. Flow cytometry showed the significant reduction in G0/G1 cells after treatment with C-PHEMA-NPs and molecular level of apoptosis were also studied using western blotting. Toxicity of PHEMA nanoparticles were studied in zebrafish embryo model and results revealed the material to be highly biocompatible. The present study demonstrates the curcumin loaded PHEMA nanoparticles have potential therapeutic values in the treatment of cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Syphilis and HIV-1 co-infection: influence on CD4 T cell count, HIV-1 viral load and treatment response

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Gerstoft, Jan; Mathiesen, Lars Reinhardt

    2006-01-01

    OBJECTIVES: To assess the effect of human immunodeficiency virus (HIV)-1 and syphilis coinfection on HIV-ribonucleic acid (RNA) viral load, CD4 cell count, and the response in rapid plasmin reagin (RPR) to treatment of the syphilis infection. STUDY DESIGN: Cases of syphilis diagnosed during 1 year...... in HIV-infected patients in Copenhagen were included. HIV-RNA, CD4 cell counts, and RPR-serology were measured before, during, and after syphilis. RESULTS: Forty-one patients were included. CD4 cell count decreased significantly during infection in patients with primary and secondary stages of syphilis...... (mean 106 cells/mm, P = 0.03). Treatment of syphilis was associated with an increase in the CD4 cell count and a decrease in HIV-RNA in the overall group (mean 66 cells/mm and -0.261 RNA log10 copies/ml, P = 0.02 and 0.04). The serological response rates for 15 patients treated with penicillin and 25...

  18. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells

    Science.gov (United States)

    Oh, Yunok; Jin, Jun-O.; Oh, Junghwan

    2017-03-01

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  19. Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane fuel cell electrodes using low energy X-ray imaging

    DEFF Research Database (Denmark)

    Holst, T.; Vassiliev, Anton; Kerr, R.

    2014-01-01

    Low energy X-ray imaging (E <25 keV) is herein demonstrated to be a rapid, effective and non-destructive tool for the quantitative determination of the platinum loading and distribution over the entire geometric area of gas diffusion electrodes for polymer electrolyte membrane fuel cells. A linea...... of electrodes fabricated using an industrial spraying process. This technique proves to be an attractive option for the electrode performance study, the process optimization and quality control of electrode fabrication on an industrial scale....

  20. Establishment of induced pluripotent stem cell (iPSC line from a 75-year old patient with late onset Alzheimer's disease (LOAD

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Táncos

    2016-07-01

    Full Text Available Peripheral blood mononuclear cells (PBMCs were collected from a clinically characterised 75-year old woman with late onset Alzheimer's disease (LOAD. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus delivery system. The transgene-free iPSC showed pluripotency verified by immunocytochemistry for pluripotency markers and differentiated spontaneously towards the 3 germ layers in vitro. Furthermore, the iPSC line showed normal karyotype. Our model might offer a good platform to further study the pathomechanism of sporadic AD, to identify early biomarkers and also for drug testing and gene therapy studies.

  1. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres.

    Science.gov (United States)

    Chang, Run; Sun, Linlin; Webster, Thomas J

    2015-01-01

    Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane) has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs) with diameters of 10-20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective cytotoxicity against MG-63 osteosarcoma cells when compared with normal osteoblasts. We have demonstrated for the first time that APNPs can encapsulate hydrophobic curcumin in their hydrophobic cores, and curcumin-loaded APNPs could be an innovative treatment

  2. EXPERIMENTAL REPAIR OF DEEP CORNEAL DEFECTS USING A BIO-CONSTRUCT COMPRISING A COLLAGEN TYPE I MATRIX LOADED WITH BUCCAL EPITHELIAL CELLS

    Directory of Open Access Journals (Sweden)

    N. S. Egorova

    2017-01-01

    Full Text Available The  research  objective was  to study the  reparative effects of  the  collagen  type  I bio-construct loaded  with buccal epithelial cells, on the rabbit cornea after experimental keratectomy at various stages of treatment (on the 3rd, 7th, 14th, 3 0th days.Material  and methods.  The  experiments were  conducted on 20 rabbits  of  the  Chinchilla breed that  were  operated on cornea of both eyes aiming to inflict epithelial and stromal cornea defects. The collagen-based bio-construct bearing buccal epithelial cells was placed  over the cornea of the experimental eyes. The  cornea of the control  eyes was covered with smooth contact lens. After the surgery, a temporal blepharorrhaphy was performed and kept for 3 days. We studied macroand microscopic pattern of corneal regeneration at 3, 7, 14, and 30 days of experiment.Results. When  using the collaged-based bio-construct containing buccal epithelial cells, the complete epithelialization of the corneal defect occurred at mean 7 days earlier compared to that in the control eyes. Thus, the offered bio-construct stimulated the cell migration and proliferation at early stages of treatment (3–7 days reducing the inflammation activity.Conclusion. The bio-construct comprising a collagen type  I matrix loaded with buccal epithelial cells can provide an effective treatment option for corneal defects.

  3. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading.

    Science.gov (United States)

    Panadero, J A; Lanceros-Mendez, S; Ribelles, J L Gomez

    2016-03-01

    Chondrogenesis of dedifferentiated chondrocytes and mesenchymal stem cells is influenced not only by soluble molecules like growth factors, but also by the cell environment itself. The latter is achieved through both mechanical cues - which act as stimulation factor and influences nutrient transport - and adhesion to extracellular matrix cues - which determine cell shape. Although the effects of soluble molecules and cell environment have been intensively addressed, few observations and conclusions about the interaction between the two have been achieved. In this work, we review the state of the art on the single effects between mechanical and biochemical cues, as well as on the combination of the two. Furthermore, we provide a discussion on the techniques currently used to determine the mechanical properties of materials and tissues generated in vitro, their limitations and the future research needs to properly address the identified problems. The importance of biomechanical cues in chondrogenesis is well known. This paper reviews the existing literature on the effect of mechanical stimulation on chondrogenic differentiation of mesenchymal stem cells in order to regenerate hyaline cartilage. Contradictory results found with respect to the effect of different modes of external loading can be explained by the different properties of the scaffolding system that holds the cells, which determine cell adhesion and morphology and spatial distribution of cells, as well as the stress transmission to the cells. Thus, this review seeks to provide an insight into the interplay between external loading program and scaffold properties during chondrogenic differentiation. The review of the literature reveals an important gap in the knowledge in this field and encourages new experimental studies. The main issue is that in each of the few cases in which the interplay is investigated, just two groups of scaffolds are compared, leaving intermediate adhesion conditions out of study

  4. Framing 100-year overflowing and overtopping marine submersion hazard resulting from the propagation of 100-year joint hydrodynamic conditions

    Science.gov (United States)

    Nicolae Lerma, A.; Bulteau, T.; Elineau, S.; Paris, F.; Pedreros, R.

    2016-12-01

    Marine submersion is an increasing concern for coastal cities as urban development reinforces their vulnerabilities while climate change is likely to foster the frequency and magnitude of submersions. Characterising the coastal flooding hazard is therefore of paramount importance to ensure the security of people living in such places and for coastal planning. A hazard is commonly defined as an adverse phenomenon, often represented by a magnitude of a variable of interest (e.g. flooded area), hereafter called response variable, associated with a probability of exceedance or, alternatively, a return period. Characterising the coastal flooding hazard consists in finding the correspondence between the magnitude and the return period. The difficulty lies in the fact that the assessment is usually performed using physical numerical models taking as inputs scenarios composed by multiple forcing conditions that are most of the time interdependent. Indeed, a time series of the response variable is usually not available so we have to deal instead with time series of forcing variables (e.g. water level, waves). Thus, the problem is twofold: on the one hand, the definition of scenarios is a multivariate matter; on the other hand, it is tricky and approximate to associate the resulting response, being the output of the physical numerical model, to the return period defined for the scenarios. In this study, we illustrate the problem on the district of Leucate, located in the French Mediterranean coast. A multivariate extreme value analysis of waves and water levels is performed offshore using a conditional extreme model, then two different methods are used to define and select 100-year scenarios of forcing variables: one based on joint exceedance probability contours, a method classically used in coastal risks studies, the other based on environmental contours, which are commonly used in the field of structure design engineering. We show that these two methods enable one to

  5. Inhalable oridonin-loaded poly(lactic-co-glycolicacid large porous microparticles for in situ treatment of primary non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Lifei Zhu

    2017-01-01

    Full Text Available Non-small cell lung cancer (NSCLC accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glycolicacid (PLGA large porous microparticle (LPMP for in situ treatment of NSCLC with the emulsion/solvent evaporation/freeze-drying method. The LPMPs were smooth spheres with many internal pores. Despite a geometric diameter of ~10 µm, the aerodynamic diameter of the spheres was only 2.72 µm, leading to highly efficient lung deposition. In vitro studies showed that most of oridonin was released after 1 h, whereas the alveolar macrophage uptake of LPMPs occurred after 8 h, so that most of oridonin would enter the surroundings without undergoing phagocytosis. Rat primary NSCLC models were built and administered with saline, oridonin powder, gemcitabine, and oridonin-loaded LPMPs via airway, respectively. The LPMPs showed strong anticancer effects. Oridonin showed strong angiogenesis inhibition and apoptosis. Relevant mechanisms are thought to include oridonin-induced mitochondrial dysfunction accompanied by low mitochondrial membrane potentials, downregulation of BCL-2 expressions, upregulation of expressions of BAX, caspase-3 and caspase-9. The oridonin-loaded PLGA LPMPs showed high anti-NSCLC effects after pulmonary delivery. In conclusion, LPMPs are promising dry powder inhalations for in situ treatment of lung cancer.

  6. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Lojk J

    2015-02-01

    Full Text Available Jasna Lojk,1 Vladimir B Bregar,1 Maruša Rajh,1 Katarina Miš,2 Mateja Erdani Kreft,3 Sergej Pirkmajer,2 Peter Veranič,3 Mojca Pavlin1 1Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, 2Institute of Pathophysiology, Faculty of Medicine, 3Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia Abstract: Magnetic nanoparticles (NPs are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA in three cell types: Chinese Hamster Ovary (CHO, mouse melanoma (B16 cell line, and primary human myoblasts (MYO. We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better

  7. Experimental study on vortex-induced motions of a semi-submersible with square columns and pontoons at different draft conditions and current incidences

    Directory of Open Access Journals (Sweden)

    Mingyue Liu

    2017-05-01

    Full Text Available The Vortex-induced Motions (VIM phenomenon of semi-submersibles is relevant for the fatigue life of moorings and risers. Model tests regarding the VIM behavior of a semi-submersible with four square columns were conducted in order to investigate the effects of the current incidence and the aspect ratio of the immerged column. The experimental results show that the largest transverse amplitudes are around 70% of the column width at 30° and 45° incidences in a range of reduced velocities from 5 to 8 when the aspect ratio of the immerged column is 1.90. The largest yaw motion occurs at 0° incidence with the peak value around 4.5°. Similar characteristics of the VIM response are observed for the semi-submersible with aspect ratios of 1.90 and 1.73. When the aspect ratio decreases 50% to 0.87, 30% decrease in the peak transverse amplitudes can be seen.

  8. Investigation on flow pattern by submersible mechanical aerator aused in anaerobic-aerobic tank. Kenki koki ken'yo suichu aerator ni yoru sonai ryudo no chosa kensho

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, M; Inoue, H; Kamei, T; Kato, N [Ebara Corp., Tokyo (Japan)

    1994-01-20

    As explained in the present report, flow pattern was verified in a submersible aerator tank for both anaerobic and aerobic wastewater treatment (submersible plant for the mechanical agitation and aeration). The verification was made in a water passage of the sewage treatment plant. The flowing was conditioned as per the measurement of both flow velocity and activated sludge concentration. The submersible aerator was installed so that balance might be kept in ventilating pressure between it and the diffusing plate. The flowing on the tank bottom was stabilized by installing a special guide at the outlet of aerator. The result was as follows: in both tanks during the anaerobic operation, the flow velocity was 0.15m/s as a whole and higher than the standard of 0.1m/s on the tank bottom. Under the tank top and at the middle of tank height, the flow velocity is lower than that on the tank bottom and the intake of dissolved oxygen is weak. In both tanks during the aerobic operation, the flow velocity as a whole is higher than that during the anaerobic operation. It is attributable to the airlift effect. The flow pattern during the aerobic operation is characterized by the flow which is generated, by airlift effect, under the tank top toward the wall. Then, that flow effectively works for the flowing on the tank bottom. Hardly dispersed, the pollutant concentration indicates that the flowing is sufficient in the tank. 4 refs., 6 figs., 3 tabs.

  9. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.

    Science.gov (United States)

    Wang, Cailian; Zhang, Haijun; Chen, Yan; Shi, Fangfang; Chen, Baoan

    2012-01-01

    E26 transformation-specific sequence-1 (ETS1) transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles (GA-MNP-Fe(3)O(4)) on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells. The effects caused by GA-MNP-Fe(3)O(4) on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA), and VEGF (vascular endothelial growth factor) were examined by Western blot to elucidate the possible mechanisms involved. In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP-Fe(3)O(4) was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF. Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP-Fe(3)O(4) nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.

  10. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells.

    Science.gov (United States)

    Wang, Ling; An, Yanli; Yuan, Chenyan; Zhang, Hao; Liang, Chen; Ding, Fengan; Gao, Qi; Zhang, Dongsheng

    2015-01-01

    Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225)-conjugated, gemcitabine (GEM)-containing magnetic albumin nanospheres (C225-GEM/MANs) were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI), and double-targeted thermochemotherapy against pancreatic cancer cells. Fe3O4 nanoparticles (NPs) and GEM co-loaded albumin nanospheres (GEM/MANs) were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2) and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and flow cytometry (FCM) assay. When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal intensity was significantly lower when magnetic and C225 targeting were combined, rather than used alone. The inhibitory and apoptotic rates of each thermochemotherapy group were significantly higher than those of the chemotherapy-alone groups. Additionally, both MTT and FCM analysis verified that double-targeted thermochemotherapy had the highest targeted killing efficiency among all groups. The C225-GEM/MANs can distinguish various EGFR-expressing live pancreatic cancer cells, monitor diverse cellular targeting effects using targeted MRI imaging, and efficiently mediate double-targeted thermochemotherapy

  11. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line.

    Science.gov (United States)

    Akbarzadeh, Abolfazl; Samiei, Mohammad; Joo, Sang Woo; Anzaby, Maryam; Hanifehpour, Younes; Nasrabadi, Hamid Tayefi; Davaran, Soodabeh

    2012-12-18

    The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin. At first approach silane-grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX-loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox-loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM. The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm-MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx-loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible. IC50 of DOx-loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.

  12. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers.

    Science.gov (United States)

    Sun, Jian-Bo; Duan, Jin-Hong; Dai, Shun-Ling; Ren, Jun; Zhang, Yan-Dong; Tian, Jie-Sheng; Li, Ying

    2007-12-08

    Hepatocellular carcinoma (HCC) is the most common form of cancer although effective therapeutic strategy especially targeted therapy is lacking. We recently employed bacterial magnetosomes (BMs) as the magnetic-targeted drug carrier and found an antitumor effect of doxorubicin (DOX)-loaded BMs (DBMs) in EMT-6 and HL60 cell lines. The aim of this study was to evaluate the in vitro and in vivo anti-neoplastic effects of DBMs on hepatic cancer. DBMs, DOX and BMs displayed tumor suppression rates of 86.8%, 78.6% and 4.3%, respectively, in H22 cell-bearing mice. The mortality rates following administration of DBMs, DOX and BMs were 20%, 80% and 0%, respectively. Pathological examination of hearts and tumors revealed that both DBMs and DOX effectively inhibited tumor growth although DBMs displayed a much lower cardiac toxicity compared with DOX. The DBMs were cytotoxic to H22 cells manifested as inhibition of cell proliferation and c-myc expression, consistent with DOX. The IC(50) of DOX, DBMs and BMs in target cells were 5.309 +/- 0.010, 4.652 +/- 0.256 and 22.106 +/- 3.330 microg/ml, respectively. Our data revealed both in vitro and in vivo antitumor property of DBMs similar to that of DOX. More importantly, the adverse cardiac toxicity was significantly reduced in DBMs compared with DOX. Collectively, our study suggests the therapeutic potential of DBMs in target-therapy against liver cancer.

  13. A micromechanical approach To numerical modeling of yielding of open-cell porous structures under compressive loads

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.

    2016-01-01

    Today, interconnected open-cell porous structures made of titanium and its alloys are replacing the prevalent solid metals used in bone substitute implants. The advent of additive manufacturing techniques has enabled manufacturing of open-cell structures with arbitrary micro-structural geometry.