#### Sample records for submersible electric motors

1. INTENSITY SETTER FOR A DEVICE OF SMOOTH START OF SUBMERSIBLE PUMP ELECTRIC MOTOR

Directory of Open Access Journals (Sweden)

V.I. Lobov

2016-06-01

Full Text Available Purpose. Development of an intensity setter, which in a rational law changes the opening thyristor the voltage regulator and effectively to changing power supply voltage stator windings of the electric pump deepening, ensuring a smooth start in a wide range. Methodology. Electric submersible pump belongs to the small inertia electric, since it is not significant total moment of inertia, not exceeding two moments of inertia of the motor and static moment on the shaft does not exceed forty percent of the nominal torque. For technical requirements that electric acceleration time should have no less than twenty seconds or more. Office starting modes of electric submersible pumps economically justified using thyristor voltage regulator by forming the dial changes the intensity of the necessary legislation in time voltage feeding the stator windings. This ensures a smooth start right rotor of the electric submersible pump. Results. A block diagram of the intensity setter that is: with control unit, two units that form the exponential voltage supply emitter follower and regulatory elements. The mathematical expressions for voltage at the stator windings of the motor, changing exponentially, opening the angle of thyristor power unit thyristor the voltage regulator, which is determined through the initial angle of opening. Provided formula for pick-up voltage and minimum voltage, time constants, which are determined from the basic equations of motion and mechanical characteristics of the electric motor. Analytical investigated by the voltage dependence violation by changing the time constant flowing and growing exhibitor supply voltage stator electric circuit deepening pump. Originality. Proposed in the initial time on the stator windings of the electric pick-up voltage is applied. Under the influence of this voltage, motor rotor begins to accelerate. At the same time, pick-up voltage decreases the minimum startup voltage varies exponentially in which

2. Analysis of Electric Propulsion Performance on Submersible with Motor DC, Supply Power 10260AH at Voltage 115VDC

Directory of Open Access Journals (Sweden)

Indra Ranu Kusuma

2017-03-01

Full Text Available Electric propulsion is the ship system using propulsion motor to replace performance of main engine. The application of diesel engine as propulsion system have some problems and weaknesses such as diesel engine unability to operate when submersible vessel is operating under sea. To overcome that problems in submersible vessel, alternative solution of ship propulsion is required. DC Motor can be used as this alternative solution. Submersible vessel use electric propulsion system with DC Motor because DC Motor has advantages of easy rotation setting and does not cause noise when submersible vessel is diving. This bachelor thesis will study the application of DC Motor as an electric propulsion system on submersible vessel with length 59,57 m in series and parallel circuit by simulation using MATLAB software. The simulation data obtained are rotation and torque of DC Motor. From these simulation, it can be concluded that parallel circuit rotation is greater than series circuit rotation. It caused the greater speed and lower power in parallel circuit.

3. Cooling devices and methods for use with electric submersible pumps

Energy Technology Data Exchange (ETDEWEB)

Jankowski, Todd Andrew; Gamboa, Jose A

2017-10-25

Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

4. Cooling devices and methods for use with electric submersible pumps

Science.gov (United States)

Jankowski, Todd A; Hill, Dallas D

2014-12-02

Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

5. Experimental Problems of New Constructions of Portable Submersible Pumps for Mining with Electric Motor Cooled by Water Jacket

Directory of Open Access Journals (Sweden)

Andrzej KORCZAK

2014-12-01

Full Text Available The article presents a new construction of a submersible pumping engine where new original solutions in flowing system and control system where introduced It let obtain high efficiency and fulfill user’s expectations. The article also contains experiments of the new pumping engine and their results. The results of numerical analysis of the movement of liquid in flowing channel is described and the analytical characteristics are compared with ones measured in laboratory. The work also presents the problems with constructing, research and certification of new submersible pumping engine which construction fulfils ATEX requirements for machines working in explosive conditions areas

6. Performance evaluation of a transformerless multiphase electric submersible pump system

Directory of Open Access Journals (Sweden)

Ahmed A. Hakeem

2014-08-01

Full Text Available Using of low-voltage variable-frequency drive followed by a step-up transformer is the most preferable way to feed an electrical submersible pump motor. The existence of long feeder between the motor and drive systems usually causes over-voltage problems because of the travelling wave phenomenon, which makes the employment of filter networks on the motor or inverter terminals mandatory. The so-called boost-inverter inherently can solve this problem with filter-less operation as it offers a direct sinusoidal output voltage. As boost inverters have voltage boosting capability, it can provide a transformer-less operation as well. This study investigates the performance of a five-phase modular winding induction machine fed from a boost-inverter through a long feeder. A simulation study using a 1000 Hp system and experimental investigation on a 1 Hp prototype machine are used to support the presented approach.

7. The electric motor handbook

Energy Technology Data Exchange (ETDEWEB)

Hurst, R.W.; Feltham, P. (eds.)

2004-05-01

This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

8. Submersible microbial fuel cell for electricity production from sewage sludge

DEFF Research Database (Denmark)

Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

2010-01-01

A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...

9. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

Science.gov (United States)

Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

2012-01-01

An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

10. Electric motor handbook

CERN Document Server

Chalmers, B J

2013-01-01

Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

11. Electric Motor Thermal Management

Energy Technology Data Exchange (ETDEWEB)

Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

2017-09-01

Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

12. Dynamic Modeling and Simulation of Deep Geothermal Electric Submersible Pumping Systems

Directory of Open Access Journals (Sweden)

Julian Kullick

2017-10-01

Full Text Available Deep geothermal energy systems employ electric submersible pumps (ESPs in order to lift geothermal fluid from the production well to the surface. However, rough downhole conditions and high flow rates impose heavy strain on the components, leading to frequent failures of the pump system. As downhole sensor data is limited and often unrealible, a detailed and dynamical model system will serve as basis for deeper understanding and analysis of the overall system behavior. Furthermore, it allows to design model-based condition monitoring and fault detection systems, and to improve controls leading to a more robust and efficient operation. In this paper, a detailed state-space model of the complete ESP system is derived, covering the electrical, mechanical and hydraulic subsystems. Based on the derived model, the start-up phase of an exemplary yet realistic ESP system in the Megawatt range—located at a setting depth of 950 m and producing geothermal fluid of 140 ∘ C temperature at a rate of 0.145 m 3 s − 1 —is simulated in MATLAB/Simulink. The simulation results show that the system reaches a stable operating point with realistic values. Furthermore, the effect of self-excitation between the filter capacitor and the motor inductor can clearly be observed. A full set of parameters is provided, allowing for direct model implementation and reproduction of the presented results.

13. Optimization of operating costs in managing electrical submersible pumping systems

Science.gov (United States)

Kozlov, V. V.; Speranskaya, N. I.

2017-10-01

Using the methods of analysis, the task of minimizing the specific operating costs for oil production by submersible ESP units was formalized. The analysis of the multidimensional parameter space of the “ESP-well” system made it possible to isolate the vector of controlled parameters, determine the range of admissible parameters, and also to simplify the problem of finding an extremum up to the three-dimensional case. An application of the method of Lagrange multipliers to the solution of the problem is considered.

14. Dynamic Modeling and Simulation of Deep Geothermal Electric Submersible Pumping Systems

OpenAIRE

Julian Kullick; Hackl, Christoph M.

2017-01-01

Deep geothermal energy systems employ electric submersible pumps (ESPs) in order to lift geothermal fluid from the production well to the surface. However, rough downhole conditions and high flow rates impose heavy strain on the components, leading to frequent failures of the pump system. As downhole sensor data is limited and often unrealible, a detailed and dynamical model system will serve as basis for deeper understanding and analysis of the overall system behavior. Furthermore, it allows...

15. Electrically heated pipe in pipe combined with electrical submersible pumps for deepwater development

Energy Technology Data Exchange (ETDEWEB)

Silva, Sidnei Guerreiro da; Euphemio, Mauro Luiz Lopes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

2008-07-01

The general trend of deep water and ultra deep water field development is the requirement of highly insulated flow lines, as flow assurance has become one of the major considerations in designing and operating the sub sea system. If not adequately considered in the design phase, it can have significant and unexpected effects to the operational costs, increasing production lost time, decreasing efficiency. In this scenario, the use of pipe in pipe flow lines, with high passive insulation and/ or active heating (called the Electrically Heated Pipe in Pipe - EHPIP), emerges as an attractive method to prevent deposition, especially of waxes and hydrates, by actively maintaining or leading the temperature of the flow line above a critical limit. Besides, the recent heavy oil discoveries in Brazil have encouraged PETROBRAS to move a step forward in the artificial lift design and operation, by the use of Electrical Submersible Pumps (ESP) installed in deep water wells. The combination of EHPIP and ESP are particularly suitable for deep water, high viscosity and long tie back systems, but also can improve oil recovery and production efficiency by allowing the operator to drop down production losses associated Flow Assurance problems. (author)

16. Agricultural Electricity. Electric Motors. Student Manual.

Science.gov (United States)

Benson, Robert T.

Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

17. Mechanical design of electric motors

CERN Document Server

Tong, Wei

2014-01-01

Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well as maintenance personnel, undergraduate and graduate students, and academic researchers, Mechanical Design of Electric Motors provides in-depth knowledge of state-of-the-art design methods and developments of electric motors. From motor classificati

18. Electric vehicle motors and controllers

Science.gov (United States)

Secunde, R. R.

1981-01-01

Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

19. Algorithm to determine electrical submersible pump performance considering temperature changes for viscous crude oils

Energy Technology Data Exchange (ETDEWEB)

Valderrama, A. [Petroleos de Venezuela, S.A., Distrito Socialista Tecnologico (Venezuela); Valencia, F. [Petroleos de Venezuela, S.A., Instituto de Tecnologia Venezolana para el Petroleo (Venezuela)

2011-07-01

In the heavy oil industry, electrical submersible pumps (ESPs) are used to transfer energy to fluids through stages made up of one impeller and one diffuser. Since liquid temperature increases through the different stages, viscosity might change between the inlet and outlet of the pump, thus affecting performance. The aim of this research was to create an algorithm to determine ESPs' performance curves considering temperature changes through the stages. A computational algorithm was developed and then compared with data collected in a laboratory with a CG2900 ESP. Results confirmed that when the fluid's viscosity is affected by the temperature changes, the stages of multistage pump systems do not have the same performance. Thus the developed algorithm could help production engineers to take viscosity changes into account and optimize the ESP design. This study developed an algorithm to take into account the fluid viscosity changes through pump stages.

20. Ocean Economy and Fault Diagnosis of Electric Submersible Pump applied in Floating platform

Directory of Open Access Journals (Sweden)

Panlong Zhang

2017-04-01

Full Text Available Ocean economy plays a crucial role in the strengthening maritime safety industry and in the welfare of human beings. Electric Submersible Pumps (ESP have been widely used in floating platforms on the sea to provide oil for machines. However, the ESP fault may lead to ocean environment pollution, on the other hand, a timely fault diagnosis of ESP can improve the ocean economy. In order to meet the strict regulations of the ocean economy and environmental protection, the fault diagnosis of ESP system has become more and more popular in many countries. The vibration mechanical models of typical faults have been able to successfully diagnose the faults of ESP. And different types of sensors are used to monitor the vibration signal for the signal analysis and fault diagnosis in the ESP system. Meanwhile, physical sensors would increase the fault diagnosis challenge. Nowadays, the method of neural network for the fault diagnosis of ESP has been applied widely, which can diagnose the fault of an electric pump accurately based on the large database. To reduce the number of sensors and to avoid the large database, in this paper, algorithms are designed based on feature extraction to diagnose the fault of the ESP system. Simulation results show that the algorithms can achieve the prospective objectives superbly.

1. Electric motor for laser-mechanical drilling

Science.gov (United States)

Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

2017-10-10

A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

2. A Review of Experiments and Modeling of Gas-Liquid Flow in Electrical Submersible Pumps

Directory of Open Access Journals (Sweden)

Jianjun Zhu

2018-01-01

Full Text Available As the second most widely used artificial lift method in petroleum production (and first in produced amount, electrical submersible pump (ESP maintains or increases flow rate by converting kinetic energy to hydraulic pressure of hydrocarbon fluids. To facilitate its optimal working conditions, an ESP has to be operated within a narrow application window. Issues like gas involvement, changing production rate and high oil viscosity, greatly impede ESP boosting pressure. Previous experimental studies showed that the presence of gas would cause ESP hydraulic head degradation. The flow behaviors inside ESPs under gassy conditions, such as pressure surging and gas pockets, further deteriorate ESP pressure boosting ability. Therefore, it is important to know what parameters govern the gas-liquid flow structure inside a rotating ESP and how it can be modeled. This paper presents a comprehensive review on the key factors that affect ESP performance under gassy flow conditions. Furthermore, the empirical and mechanistic models for predicting ESP pressure increment are discussed. The computational fluid dynamics (CFD-based modeling approach for studying the multiphase flow in a rotating ESP is explained as well. The closure relationships that are critical to both mechanistic and numerical models are reviewed, which are helpful for further development of more accurate models for predicting ESP gas-liquid flow behaviors.

3. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

Science.gov (United States)

Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

2017-11-01

Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

4. ESP [electric submersible pump] performance in sand-laden fluids in the Bellshill Lake field

Energy Technology Data Exchange (ETDEWEB)

1992-06-01

Electric submersible pumps (ESPs) used by Petro-Canada in the Bellshill Lake basal quartz pool, were first used as a means of high volume lift in 1976. Traditionally used in areas of the reservoir with limited sand production, ESPs were run in the more permeable and porous areas of the reservoir consisting mainly of unconsolidated sandstones in 1987. Reservoir inflow and sand production was prolific, and ESPs in these wells typically ran for 2-3 days before catastrophic failure occurred, due to the high concentration of abrasives in the produced fluids. As a result of the failures a study was carried out to identify the problems associated with ESPs and abrasives and to determine economic solutions. As a result of the study, the following measures were implemented to improve the service lives of ESPs in the field. All wells that are converted to ESPs are reperforated at 39 shots/m to reduce the pressure drop across the perforations and thus reduce the inflow of sand. New and rebuilt ESPs are assembled without the conventional brass sleeves, instead using Ni-resist parts to avoid hydrogen sulfide attack and degradation. Rubber bearing radially stabilized design counteracts the effect of sand-laden fluid, and drawdown is limited for the first 2-4 weeks of production. Current ESP run-times range up to 2.5 years, and no rubber bearing ESPs have failed due to sand production. 8 refs., 10 figs.

5. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

Science.gov (United States)

2012-05-04

... finalized key provisions related to small electric motor testing in the July 2009 final rule, but opted to... for Electric Motors and Small Electric Motors; Final Rules #0;#0;Federal Register / Vol. 77, No. 87... Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors AGENCY: Office...

6. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

Science.gov (United States)

2011-01-05

... Energy 10 CFR Part 431 Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 3 / Wednesday, January 5, 2011... Procedures for Electric Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable...

7. Submerged electricity generation plane with marine current-driven motors

Science.gov (United States)

Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

2014-07-01

An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

8. Electrical system for a motor vehicle

Science.gov (United States)

Tamor, Michael Alan

1999-01-01

In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

9. Magnetic Signature of Brushless Electric Motors

National Research Council Canada - National Science Library

Clarke, David

2006-01-01

Brushless electric motors are used in a number of underwater vehicles. When these underwater vehicles are used for mine clearance operations the magnetic signature of the brushless motors is important...

10. Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly

DEFF Research Database (Denmark)

Min, Booki; Poulsen, Finn Willy; Thygesen, Anders

2012-01-01

Membrane electrode assemblies (MEAs) were incorporated into the cathode chamber of a submersible microbial fuel cell (SMFC). A close contact of the electrodes could produce high power output from SMFC in which anode and cathode electrodes were connected in parallel. In polarization test, the maxi......Membrane electrode assemblies (MEAs) were incorporated into the cathode chamber of a submersible microbial fuel cell (SMFC). A close contact of the electrodes could produce high power output from SMFC in which anode and cathode electrodes were connected in parallel. In polarization test......, the maximum power density was 631mW/m2 at current density of 1772mA/m2 at 82Ω. With 180-Ω external resistance, one set of the electrodes on the same side could generate more power density of 832±4mW/m2 with current generation of 1923±4mA/m2. The anode, inclusive a biofilm behaved ohmic, whereas a Tafel type...... behavior was observed for the oxygen reduction. The various impedance contributions from electrodes, electrolyte and membrane were analyzed and identified by electrochemical impedance spectroscopy. Air flow rate to the cathode chamber affected microbial voltage generation, and higher power generation...

11. Electric Motor Thermal Management R&D

Energy Technology Data Exchange (ETDEWEB)

Bennion, Kevin

2016-06-07

Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

12. Motor Torque Calculations For Electric Vehicle

National Research Council Canada - National Science Library

Saurabh Chauhan

2015-01-01

.... An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle...

13. Submersible Generator for Marine Hydrokinetics

Energy Technology Data Exchange (ETDEWEB)

Cinq-Mars, Robert S; Burke, Timothy; Irish, James; Gustafson, Brian; Kirtley, James; Alawa, Aiman

2011-09-01

A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: Identified the conditions and requirements for MHK generators. Defined a methodology for sizing and rating MHK systems. Selected an MHK generator topology and form factor. Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. Investigated MHK generator manufacturing requirements. Reviewed cost implications and financial viability. Completed final reporting and deliverables

14. Variable-Reluctance Motor For Electric Vehicles

Science.gov (United States)

Lang, Jeffrey H.

1987-01-01

Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

15. 77 FR 11598 - Thermal Overload Protection for Electric Motors on Motor-Operated Valves

Science.gov (United States)

2012-02-27

... COMMISSION Thermal Overload Protection for Electric Motors on Motor-Operated Valves AGENCY: Nuclear... for Electric Motors on Motor-Operated Valves.'' This regulatory guide describes a method acceptable to... devices that are integral with the motor starter for electric motors on motor-operated valves. ADDRESSES...

16. Quality electric motor repair: A guidebook for electric utilities

Energy Technology Data Exchange (ETDEWEB)

Schueler, V.; Douglass, J.

1995-08-01

This guidebook provides utilities with a resource for better understanding and developing their roles in relation to electric motor repair shops and the industrial and commercial utility customers that use them. The guidebook includes information and tools that utilities can use to raise the quality of electric motor repair practices in their service territories.

17. Propulsion Wheel Motor for an Electric Vehicle

Science.gov (United States)

Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor);

2016-01-01

A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

18. Directory of Open Access Journals (Sweden)

Saurabh Chauhan

2015-08-01

Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

19. Actions to promote energy efficient electric motors. Motors study group

Energy Technology Data Exchange (ETDEWEB)

Almeida, A.T. de [Coimbra Univ. (PT). Inst. of Systems and Robotics (ISR)

1996-10-01

Motor electricity consumption is influenced by many factors including: motor efficiency, motor speed controls, power supply quality, harmonics, systems oversizing, distribution network, mechanical transmission system, maintenance practices, load management and cycling, and the efficiency of the end-use device (e.g. fan, pump, etc.). Due to their importance, an overview of these factors is presented in this report. This study also describes the electricity use in the industrial and tertiary sectors and the electricity consumption associated with the different types of electric motors systems in the Member States of the European Union, as well as estimated future evolution until 2010. The studies for individual countries were carried out by the different partners of the motors study group at a previous stage. The study has found that there is a lack of accurate information about the motor electricity consumption, installed motor capacity and the motor market in almost all the European Union countries and only some general statistical sources are available. There is little field data, which is mainly available in Denmark, France, Italy and the Netherlands. Due to this lack of primary information, some common assumptions were made, based on the experience of the members of the study group. This lack of end-use characterisation data shows the need for improvement from the point of view of current knowledge. It is therefore recommended that further research is undertaken to arrive at more accurate figures. These could be the basis for a better understanding for motor use in practice and - as a consequence - for a more precise appraisal of potentials and barriers to energy efficiency. (orig.)

20. Axial Field Electric Motor and Method

National Research Council Canada - National Science Library

Cho, Chahee P

2007-01-01

.... A hybrid field, brushless, permanent magnet electric motor utilizing a rotor with two sets of permanent magnets oriented such that the flux produced by the two sets of magnets is perpendicular to each...

1. MODERN ELECTRIC CARS OF TESLA MOTORS COMPANY

Directory of Open Access Journals (Sweden)

O. F. Vynakov

2016-08-01

Full Text Available This overview article shows the advantages of a modern electric car as compared with internal combustion cars by the example of the electric vehicles of Tesla Motors Company. It (в смысле- статья describes the history of this firm, provides technical and tactical characteristics of three modifications of electric vehicles produced by Tesla Motors. Modern electric cars are not less powerful than cars with combustion engines both in speed and acceleration amount. They are reliable, economical and safe in operation. With every year the maximum range of an electric car is increasing and its battery charging time is decreasing.Solving the problem of environmental safety, the governments of most countries are trying to encourage people to switch to electric cars by creating subsidy programs, lending and abolition of taxation. Therefore, the advent of an electric vehicle in all major cities of the world is inevitable.

2. MODERN ELECTRIC CARS OF TESLA MOTORS COMPANY

National Research Council Canada - National Science Library

O. F. Vynakov; E. V. Savolova; A. I. Skrynnyk

2016-01-01

This overview article shows the advantages of a modern electric car as compared with internal combustion cars by the example of the electric vehicles of Tesla Motors Company. It (в смысле- статья...

3. Development of Ulta-Efficient Electric Motors

Energy Technology Data Exchange (ETDEWEB)

Shoykhet, B. (Baldor Comp.); Schiferl, R. (Baldor Comp.); Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

2008-05-01

Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in \$50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to \$1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air

4. Motor neuron disease after electric injury

Science.gov (United States)

Jafari, H; Couratier, P; Camu, W

2001-01-01

The occurrence of motor neuron disease after electrical injury in six patients is reported and compared with patients from the literature. The patients were five men with spinal onset and one woman with bulbar motor neuron disease after electric shock. Two patients were struck by lightning and four by industrial electric shock. For all six of them, the disease started at the site of the electrical trauma. The mean delay for onset of motor neuron disease was 44 months. In four of the spinal patients the disease progressed slowly with mild handicap after several years. For the fifth patient, improvement was noted progressively. The patient with bulbar disease died 26 months after onset. A link between electric shock and motor neuron disease is likely, given the homogenous profile of the patients both in the five spinal cases presented here and in the literature. Bulbar onset has not been reported to date. However, in this patient the long delay between the electrical injury and motor neuron disease, together with the rapid evolution may suggest a chance association.   PMID:11459909

5. Speed and position sensors for electric motors

Energy Technology Data Exchange (ETDEWEB)

Lyyjynen, M. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

1997-12-31

This paper gives an overview of speed and position measuring instruments for electric motors. The emphasis is on sensors that are designed to operate at industrial environment. In addition to that, some other, mostly magnetic sensors which are used, e.g., in automotive applications, are presented. Some of them are already applied in induction motors and some might be worth a try remembering the limitations. Automotive sensors are very cost-effective due to high production volumes. (orig.) 22 refs.

6. 21 CFR 882.4360 - Electric cranial drill motor.

Science.gov (United States)

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

7. Hall devices improve electric motor efficiency

Science.gov (United States)

Haeussermann, W.

1979-01-01

Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

8. Electric motors and actuators at cryogenic tempertures

Science.gov (United States)

Bugeat, J. P.; Macaigne, J.; Valentian, D.

A small electric motor and an actuating mechanism for use at temperatures around 4.2 K under ultra high vacuum was tested in order to assess the feasibility of such a driving mechanism working in the coldest part of a spacecraft cryostat. A variable reluctance stepping motor driving a simple screw nut mechanism was used. Dry lubrication was provided by polyimide slide bearings and nut and by composite retainer roller bearings. Motor and mechanism sustained extended tests at liquid helium temperature with continuous operation for 8 hr periods and faultless restart after 16 hr rest periods. Power consumption was reduced to 15 mV leading to low liquid helium comsumption. Post test analysis indicates no change in motor characteristics and no damage to bearings, screw and nut.

9. Electric machine for hybrid motor vehicle

Science.gov (United States)

Hsu, John Sheungchun

2007-09-18

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

10. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

Energy Technology Data Exchange (ETDEWEB)

Bennion, K.; Cousineau, J.; Moreno, G.

2014-09-01

Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

11. Ultra-Efficient and Power-Dense Electric Motors

Energy Technology Data Exchange (ETDEWEB)

None

2009-01-01

This factsheet describes a research project whose goal is to develop line-start and line-run constant-speed electric motors and simple-to-control electric motors with the goal of obtaining at least a 30% reduction in motor losses as compared to conventional energy-efficient induction motors and a 15% reduction in motor losses as compared to NEMA Premium® efficient induction motors.

12. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

DEFF Research Database (Denmark)

Zhang, Yifeng; Angelidaki, Irini

2015-01-01

High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...... and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative...

13. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol

DEFF Research Database (Denmark)

Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

2017-01-01

Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial...... community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power...... density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community...

14. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

Energy Technology Data Exchange (ETDEWEB)

Narumanchi, S.

2014-09-01

This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

15. 76 FR 17577 - Increased Scope of Coverage for Electric Motors

Science.gov (United States)

2011-03-30

... Part 431 RIN 1904-AC28 Increased Scope of Coverage for Electric Motors AGENCY: Office of Energy... rulemaking to set energy conservation standards for electric motors. Specifically, DOE seeks information to assist DOE in determining whether to develop energy conservation standards for certain types of electric...

16. Submersion and acute respiratory failure

Directory of Open Access Journals (Sweden)

Yu-Jang Su

2014-01-01

Conclusions: Submersion patients who are hypothermic on arrival of emergency department (ED are risky to respiratory failure and older, more hypothermic, longer hospital stay in suicidal submersion patients.

17. Electric Motor Thermal Management R&D. Annual Report

Energy Technology Data Exchange (ETDEWEB)

Bennion, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

2016-04-01

With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.

18. Alternating-Current Motor Drive for Electric Vehicles

Science.gov (United States)

Krauthamer, S.; Rippel, W. E.

1982-01-01

New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

19. Submersible pumping system with heat transfer mechanism

Science.gov (United States)

Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

2014-04-15

A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

20. Optimation Pressure Loss to Oil Production System with Electrical Submersible Pump (ESP) at the Well A SW Field Bojonegoro, East Java

Science.gov (United States)

Ilmah, A. M.; Hendrajaya, L.

2017-07-01

Study about oil and gas well A and SW fields have been conducted in Bojonegoro area, East Java Province. From the research, it is known that one of the constrain in oil and gas production process is a pressure drop, so that is necessary to set Electrical Submersible Pump (ESP) as an artificial lift pump at low pressure wells. It is needed to analyze the production well pressure as an effort to optimize the fluid production. It is in describe to relations between IPR (Inflow Performance Relationship ) curve with TPR (Tubing Performance Relationship), are getting down point cut TPR curve with IPR curve, fluid rate its optimal, so need tubing’s diameter variation and the number of stage pump ESP variation to can the most optimal fluid rate. Produced that to tubing variation are 2,441 ID is 876,729 bpd, 2,991 is 961,197 bpd, 3,476 id is 996, 26 Bpd, while on the number of stage pump esp variation The most high is stage 400 with fluid rate 961,197 by comparison stage 338 it has value fluid rate 921,165 bpd, stage 200 it has fluid rate 827,889 bpd, and stage 169 has fluid rate 774,646 bpd. Of some variation tubing and stage pumps that has the most influence to fluid rate optimalize is the change number of stage pump.

1. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol.

Science.gov (United States)

Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

2017-02-01

Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community compositions were nearly stable. Comparatively, after changing parallel to series connection, there was a lag period for the system to get stable again and the microbial community compositions became greatly different. This study is the first attempt to elucidate the influence of short-term changes in connection on the performance of MFC stack, and could provide insight to the practical utilization of MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.

2. System for Monitoring and Analysis of Vibrations at Electric Motors

Directory of Open Access Journals (Sweden)

Gabriela Rață

2014-09-01

Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.

3. Summary of electric vehicle dc motor-controller tests

Energy Technology Data Exchange (ETDEWEB)

McBrien, E F; Tryon, H B

1982-09-01

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

4. Sensorless induction motor drive for electric vehicle application ...

African Journals Online (AJOL)

This approach is applied to an existing commercial utility electric vehicle where previously used direct current (DC) series motor was replaced by the new AC induction ... induction motor, field oriented control, sensorless control. International Journal of Engineering, Science and Technology, Vol. 2, No. 10, 2010, pp. 20-34 ...

5. High-speed electrical motor evaluation

Energy Technology Data Exchange (ETDEWEB)

1989-02-03

Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

6. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

Energy Technology Data Exchange (ETDEWEB)

None

2012-01-01

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

7. Lightweight High Efficiency Electric Motors for Space Applications

Science.gov (United States)

Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

2011-01-01

Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

8. Cooling of Electric Motors Used for Propulsion on SCEPTOR

Science.gov (United States)

Christie, Robert; Dubois, Authur; Derlaga, Joseph

2016-01-01

Benefits of Electric Power: Reduced energy consumption, Lower emissions, Less noise. Traction motors: Permanent magnet, Synchronous, High torque at low rotational speeds, High power density, (High concentration of heat). Annular inlet: Very compatible with PM motors, (Provides cooling where needed, No need for complicated ducting, Leads to a larger motor diameter which is beneficial for motor torque) Effect of prop wash on heat transfer coefficients: Assumed propeller induced turbulence would increase heat transfer coefficients, Holmes, Obara Yip reported 'propeller slipstream showed little if any apparent effect of the slip stream', Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller.

9. High Torque, Direct Drive Electric Motor Project

Data.gov (United States)

National Aeronautics and Space Administration — Bear Engineering proposes to advance the development of an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such...

10. High Torque, Direct Drive Electric Motor Project

Data.gov (United States)

National Aeronautics and Space Administration — Bear Engineering proposes to develop an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such devices. Fundamentally,...

11. Slot Optimization Design of Induction Motor for Electric Vehicle

Science.gov (United States)

Shen, Yiming; Zhu, Changqing; Wang, Xiuhe

2018-01-01

Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.

12. Electric motor systems in developing countries: Opportunities for efficiency improvement

Energy Technology Data Exchange (ETDEWEB)

Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

1993-08-01

This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

13. The Magnetic Fields of Electric Motors and their EMC

Directory of Open Access Journals (Sweden)

Irena Kovacova

2008-01-01

Full Text Available This paper deals with the computer analysis of the electromagnetic compatibility (EMC problems focused on the area of electrical machines, which can also disclose the concerning startling facts. A problem of interference between electric motor and surrounding space caused by the electromagnetic field radiation is discussed too.

14. CALCULATION OF A MECHANICAL CHARACTERISTIC OF ELECTRIC TRACTION MOTOR OF ELECTRIC VEHICLE

OpenAIRE

Phuong Le Ngo; G. I. Gulkov

2017-01-01

The traction characteristic of an electric vehicle is the main characteristic of mechanical system that reflects its key performance indicators. Implementation of the traction characteristic is based on controlling angular speed and torque of electric traction motor in an automatic control system. The static mechanical characteristic of an electric traction motor in an automatic control system is the most important characteristic that determines weight, size and operating characteristics of a...

15. Omnidirectional sensory and motor volumes in electric fish.

Directory of Open Access Journals (Sweden)

James B Snyder

2007-11-01

Full Text Available Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume--the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals.

16. THE ANALISYS OF RAILWAY MULTI MOTORS ELECTRICAL DRIVE DYNAMIC

Directory of Open Access Journals (Sweden)

V. I. Khilmon

2015-01-01

Full Text Available The importance of multi motors electrical traction drive dynamic analysis is denoted by its large application in electrical driving railway vehicles. In this paper an analysis is presented for two inducton motors traction drive with frequency inverter, vector control, and speed sensors of each electrical drive. The goal of this work is the analysis of two induction motors electrical drive, taking into account parametric perturbations and also a limited moment of wheel-rail adhesion, by laboratory study and simulation. Because of difference between motor’s parameters, it is necessary for parallel work to select motors with identical resistances and inductive winding. For this purpose the parametric identification method was used for each electrical drive, and also for two parallel motors. The result of identification was used in control setting.The  slippage  of  the  traction  drives  is  difficult  to  reproduce  in  laboratory;  therefore a mathematical modeling and simulation of mechanical part with a traction force restriction, specific for railway transport, were carried out. The suggested simulation is built with account of elastic deformations in kinetic chain, transforming traction force. The model permits to study a dynamic system in various circumstances.The results of laboratory investigations and simulation of dynamic regimes for two motor electrical drives are presented in this article. The results of analysis show, that a minimal difference between any parameters of two motors, parallel connected to convertor, is important for the slippage stability.

17. Introduction to the Control of Electric Motors.

Science.gov (United States)

Spencer, Frederick

The fundamentals of electric circuits and electric machines are presented in the text, with an emphasis on the practical operation rather than on mathematical analyses of theories involved. The material contained in the text includes the fundamentals of both D.C. and A.C. circuits together with the principles of magnetism and electro-magnetic…

18. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

Science.gov (United States)

Boberg, Evan S.; Gebby, Brian P.

1999-09-28

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

19. Cooling of Electric Motors Used for Propulsion on SCEPTOR

Science.gov (United States)

Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

2017-01-01

NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

20. Oscillating electrical motors, application and theory

Energy Technology Data Exchange (ETDEWEB)

Kudarauskas, S. [Klaipeda University, Department of Electrical Engineering, Klaipeda (Lithuania)

2000-08-01

The article analyses classification of electrical machines by the temporal and spatial properties of mechanical movement. It is purposive to group the machines by movement temporal properties thus marking out an independent class of oscillating machines. The article demonstrates operation principles, design diversity and practical utilisation of these machines. Principles of theoretical analysis of main regime (i.e. steady oscillations) are presented. The appendix presents rationale of analogy between electrical circuit and magnetic circuit from energy standpoint. (orig.)

1. Motor integrated permanent magnet gear in a battery electrical vehicle

DEFF Research Database (Denmark)

Frandsen, Tommy; Mathe, Laszlo; Berg, Nick Ilsø

2013-01-01

This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV) and the......This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV...

2. Motor Integrated Permanent Magnet Gear in a Battery Electrical Vehicle

DEFF Research Database (Denmark)

Frandsen, Tommy; Mathe, Laszlo; Berg, Nick Ilsø

2015-01-01

This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV) and the......This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV...

3. Research on High-efficient Remanufacturing Technologies and Application of Electric Motor

Science.gov (United States)

Liu, Ren; Zhao, Yuejin; Yang, Xu; Wang, Gen

2017-09-01

The energy conservation of electric motor system is the key of industrial energy conservation. With the implementation and acceleration of electric motor energy efficiency improvement plan, more and more electric motors are knocked out. High-efficient remanufacturing of electric motor refers to improving the efficiency of electric motor and recycling the resources by replacing the winding, iron core and other components of electric motor on the basis of the low-efficient/outdated electric motors, which conforms to China’s policy of circular economy and resource recovery. The remanufacturing of electric motor not only maximizes the use of resources, but also reduces the energy consumption generated by reprocessing of cast iron, silicon steel sheet and other materials in dismantling of electric motor. However, structures and iron core materials used in design and manufacture of electric motors are different, and the degrees of wear of electric motors are also different under different operating conditions, which further result in diversified design schemes, increased remanufacturing cost and reduced remanufacturing efficiency. This paper analyzes the key process technologies for remanufacturing of electric motors are researched by analyzing the remanufacturing technologies of electric motors, and presents the feasibility to replace the cast-aluminum rotor with cast-copper rotor in high-efficient remanufacturing process of electric motor.

4. Nano-Magnets and Additive Manufacturing for Electric Motors

Science.gov (United States)

Misra, Ajay K.

2014-01-01

High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

5. CALCULATION OF A MECHANICAL CHARACTERISTIC OF ELECTRIC TRACTION MOTOR OF ELECTRIC VEHICLE

Directory of Open Access Journals (Sweden)

Phuong Le Ngo

2017-01-01

Full Text Available The traction characteristic of an electric vehicle is the main characteristic of mechanical system that reflects its key performance indicators. Implementation of the traction characteristic is based on controlling angular speed and torque of electric traction motor in an automatic control system. The static mechanical characteristic of an electric traction motor in an automatic control system is the most important characteristic that determines weight, size and operating characteristics of an electric traction motor and serves as the basis for design. The most common variants of constructive implementation of a traction electric drive are analyzed, and a scheme is chosen for further design. Lagrange’s equation for electric mechanical system with one degree of freedom is written in generalized coordinates. In order to determine the generalized forces, elementary operation of all moments influencing on a moving car has been calculated. The resulting equation of motion of the electric vehicle corresponding to the design scheme, as well as the expressions for calculation of characteristic points of static mechanical characteristics of traction motor (i.e. the maximum and minimum time, minimum power are obtained. In order to determine the nominal values of the angular velocity and the power of electric traction motor, a method based on ensuring the movement of the vehicle in the standard cycle has been developed. The method makes it possible to calculate characteristic points of the mechanical characteristic with the lowest possible power rating. The algorithm for calculation of mechanical characteristics of the motor is presented. The method was applied to calculate static mechanical characteristic of an electric traction motor for a small urban electric truck.

6. Electric Motor Thermal Management R&D (Presentation)

Energy Technology Data Exchange (ETDEWEB)

Bennion, K.

2014-11-01

Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

7. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

Energy Technology Data Exchange (ETDEWEB)

Michael J. Crowley; Prem N. Bansal

2004-10-01

This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow

8. Advanced Power Electronics and Electric Motors Annual Report -- 2013

Energy Technology Data Exchange (ETDEWEB)

Narumanchi, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bennion, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeVoto, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moreno, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waye, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

2015-01-01

This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

9. DSP-based electric power assisted steering using BLDC motor

Abstract. This paper introduces a design and implementation of electrically assisted power steering (EAS) using BLDC motor for a vehicle. The control archi- tecture consists of two layers of control, namely the vehicle speed associated control and the torque assist control. In the higher level of control architecture, the vehicle.

10. The facilitation of motor actions by acoustic and electric stimulation.

Science.gov (United States)

Marinovic, Welber; Milford, Magdalene; Carroll, Timothy; Riek, Stephan

2015-12-01

The presentation of a loud acoustic stimulus during the preparation of motor actions can both speed movement initiation and increase response vigor. Several recent studies have explored this phenomenon as a means to investigate the mechanisms and neural correlates of movement preparation. Here, we sought to determine the generality of this effect across sensory modalities, and in particular whether unexpected somatosensory stimulation can facilitate movements in a manner similar to loud sounds. We show that electric and acoustic stimuli can be similarly effective in inducing the early release of motor actions, in both reaction time and anticipatory timing tasks. Consistent with recent response activation models of motor preparation, we also demonstrate that increasing the intensity of electric stimuli induces both progressive decreases in reaction time and increases in response vigor. Additionally, we show that the early release of motor actions can be induced by electric stimuli targeting predominantly either muscle afferents or skin afferents. Finally, we show that simultaneous acoustic and electric stimulation leads to earlier releases of anticipatory actions than either unimodal stimulus. These findings may lead to new avenues for experimental and clinical exploitation of the effects of accessory sensory information on movement preparation and initiation. © 2015 Society for Psychophysiological Research.

11. 10 CFR 431.383 - Enforcement process for electric motors.

Science.gov (United States)

2010-01-01

... distribution of the basic model tested under the provisions of this paragraph from the time the manufacturer... 10 Energy 3 2010-01-01 2010-01-01 false Enforcement process for electric motors. 431.383 Section 431.383 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN...

12. Electric vehicle traction motors - The development of an advanced motor concept

Science.gov (United States)

Campbell, P.

1980-01-01

An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

13. Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans

NARCIS (Netherlands)

Veldman, M. P.; Zijdewind, I.; Solnik, S.; Maffiuletti, N. A.; Berghuis, K. M. M.; Javet, M.; Negyesi, J.; Hortobagyi, T.

2015-01-01

Purpose Sensory input can modify voluntary motor function. We examined whether somatosensory electrical stimulation (SES) added to motor practice (MP) could augment motor learning, interlimb transfer, and whether physiological changes in neuronal excitability underlie these changes. Methods

14. High-Temperature Switched-Reluctance Electric Motor

Science.gov (United States)

Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

2003-01-01

An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

15. Improvement the DTC system for electric vehicles induction motors

Directory of Open Access Journals (Sweden)

Arif Ali

2010-01-01

Full Text Available A three-phase squirrel-cage induction motor is used as a propulsion system of an electric vehicle (EV. Two different control methods have been designed. The first is based on the conventional DTC Scheme adapted for three level inverter. The second is based on the application of fuzzy logic controller to the DTC scheme. The motor is controlled at different operating conditions using a FLC based DTC technique. In the simulation the novel proposed technique reduces the torque and current ripples. The EV dynamics are taken into account.

16. Electrical motor/generator drive apparatus and method

Science.gov (United States)

Su, Gui Jia

2013-02-12

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

17. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

Science.gov (United States)

Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

2011-10-01

Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

18. 78 FR 38455 - Energy Conservation Program: Test Procedures for Electric Motors

Science.gov (United States)

2013-06-26

.... DOE finalized key provisions related to small electric motor testing in a 2009 final rule at 74 FR... for Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 78, No. 123 / Wednesday, June 26... Program: Test Procedures for Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy...

19. 78 FR 75961 - Energy Conservation Program: Test Procedures for Electric Motors

Science.gov (United States)

2013-12-13

... electric motors. 73 FR 78220. After considering comments from interested parties, DOE finalized key... for Electric Motors; Final Rule #0;#0;Federal Register / Vol. 78 , No. 240 / Friday, December 13, 2013... Program: Test Procedures for Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy...

20. Behavior of high efficiency electric motors; Comportamiento de motores electricos de alta eficiencia

Energy Technology Data Exchange (ETDEWEB)

Bonett, Austin H. [IEEE, (United States)

2001-09-01

1. DIAGNOSTIC FEATURES RESEARCH OF AC ELECTRIC POINT MOTORS

Directory of Open Access Journals (Sweden)

S. YU. Buryak

2014-05-01

Full Text Available Purpose.Considerable responsibility for safety of operation rests on signal telephone and telegraph department of railway. One of the most attackable nodes (both automation systems, and railway in whole is track switches. The aim of this investigation is developing such system for monitoring and diagnostics of track switches, which would fully meet the requirements of modern conditions of high-speed motion and heavy trains and producing diagnostics, collection and systematization of data in an automated way. Methodology. In order to achieve the desired objectives research of a structure and the operating principle description of the switch electric drive, sequence of triggering its main units were carried out. The operating characteristics and settings, operating conditions, the causes of failures in the work, andrequirements for electric drives technology and their service were considered and analyzed. Basic analysis principles of dependence of nature of the changes the current waveform, which flows in the working circuit of AC electric point motor were determined. Technical implementation of the monitoring and diagnosing system the state of AC electric point motors was carried out. Findings. Signals taken from serviceable and defective electric turnouts were researched. Originality. Identified a strong interconnectionbetween the technical condition of the track switchand curve shape that describes the current in the circuit of AC electric point motor during operation which is based on the research processes that have influence on it during operation. Practical value. Shown the principles of the technical approach to the transition from scheduled preventive maintenance to maintenance of real condition for a more objective assessment and thus more rapid response to emerging or failures when they occur gradually, damages and any other shortcomings in the work track switch AC drives.

2. Electrifying the construction process : Replacing diesel engines with electric motors

OpenAIRE

Willerström, Jakob; Linde, Adam; Fagrell, Johannes

2015-01-01

Diesel engines are commonly used in construction machines, for example excavators. In a diesel engine, the combustion of diesel is a process with a considerable environmental impact, with high amounts of emitted greenhouse gases. The bachelor thesis creates a model that investigates the potential of decreasing the environmental impact when replacing diesel engines with electric motors in the construction phase of the construction process of buildings. The model was made in three steps. In the...

3. The Control of Switched Reluctance Motor in Electric Vehicle

Directory of Open Access Journals (Sweden)

Zheng Liu

2014-05-01

Full Text Available The control of SRM was discussed: current chopping control, angle position control. This paper presents an inverter circuit and a fuzzy sliding mode control method to minimize the torque fluctuation and noise of the SRM. Based on the experimental results, Using the inverter circuit and fuzzy sliding mode control method can effectively minimize the torque fluctuation and noise of the SRM, For the switched reluctance motor applications in electric vehicles to provide a theoretical basis.

4. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

Directory of Open Access Journals (Sweden)

Jason B Carmel

2014-06-01

Full Text Available The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST—is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that ten days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay.

5. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

Science.gov (United States)

Carmel, Jason B.; Martin, John H.

2014-01-01

The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

6. Procedure for the energy evaluation of electric motors; Procedimiento para la evaluacion energetica de motores electricos

Energy Technology Data Exchange (ETDEWEB)

Feliz Quiroz, Marco Antonio [Universidad Autonoma Metropolitana (Mexico)

2002-06-01

The present article is not a complete treaty about motors, here it is simply tried to show a practical procedure to evaluate electric motors, in order to determine the economics of their possible replacement by others of high efficiency. With the former in mind, the included database is sustained in the information of a representative number of motors brands commercialized in Mexico, since to include all the brands sold in our country would not be practical and it would be outside the scope of this publication. [Spanish] El presente articulo no es todo un tratado acerca de motores, sencillamente aqui se pretende mostrar un procedimiento practico para evaluar los motores electricos, a fin de determinar la rentabilidad de su eventual reemplazo por otros de alta eficiencia. Por lo anterior, la base de datos incluida se sustente en la informacion de un numero representativo de marcas de motores comercializados en Mexico, ya que abarcar todas las marcas vendidas en nuestro pais no seria practico y quedaria fuera del alcance de esta publicacion.

7. Design, development and characterisation of a FPGA platform for multi-motor electric vehicle control

OpenAIRE

de castro, r; araujo, re; oliveira, h

2009-01-01

Two three-phase squirrel-cage induction motors are used as a propulsion system of an electric vehicle (EV). A simple XC3S1000 FPGA is used to simultaneously control both electric motors, with field oriented control and space vector modulation techniques. To electronically distribute the torque between the two electric motors, a simple, yet effective, strategy based on a uniform torque distribution has been implemented. Experimental results obtained with a multi-motor EV prototype demonstrate ...

8. How Efficient are Agitators in Biogas Digesters? Determination of the Efficiency of Submersible Motor Mixers and Incline Agitators by Measuring Nutrient Distribution in Full-Scale Agricultural Biogas Digesters

Directory of Open Access Journals (Sweden)

Andreas Lemmer

2013-12-01

Full Text Available The goal of this work was to evaluate the efficiency of two different agitation systems by measuring the nutrient distribution in a digester fed with renewable energy crops and animal manure. The study was carried out at the practical research biogas plant of Hohenheim University. A unique probe sampling system has been developed that allows probe sampling from the top of the concrete roof into different parts and heights of the digester. The samples were then analyzed in the laboratory for natural fatty acids concentrations. Three different agitation setups were chosen for evaluation at continuous stirring and feeding procedures. The results showed that the analysis approach for agitator optimization through direct measurement of the nutrients distribution in the digester is promising. The type of the agitators and the agitation regime showed significant differences on local concentrations of organic acids, which are not correlated to the dry matter content. Simultaneous measurements on electric energy consumption of the different agitator types verify that by using the slow-moving incline agitator with large propeller diameters in favor of the fast-moving submersible mixer with smaller propeller diameters, the savings potential rises up to 70% by maintaining the mixing quality.

9. The casualties from electric bike and motorized scooter road accidents.

Science.gov (United States)

Siman-Tov, Maya; Radomislensky, Irina; Israel Trauma Group; Peleg, Kobi

2017-04-03

The objective of this study was to describe demographic and injury characteristics of hospitalized injured patients involved in e-bike and motorized scooter accidents at a national level in Israel divided by different road user groups: riders and pedestrians. This was a retrospective study based on data from the National Trauma Registry, between January 1, 2013, and December 31, 2015. All hospitalized casualties due to the involvement of an e-bike or motorized scooter were included. The type of hospitalized road user was further categorized and described by different variables. During the study period, the Israel Trauma Registry identified 795 hospitalized patients due to an e-bike or motorized scooter accident, with a dramatic 6-fold increase from 2013 to 2015. Although the majority of the injured patients were riders, 8% were pedestrians. Among the total casualties, 33% were children aged 0-14 years and among pedestrians 42% were children and 33% were seniors (ages 60+). Five persons died in hospital, 3 riders and 2 pedestrians. E-bike and motorized scooter riders represent the majority of patients hospitalized due to related traffic incident. This finding questions the social and economic advantages of electric-powered 2-wheeled vehicles.

10. ELECTRIC MOTOR DIAGNOSTICS OF SWITCHES BASED ON THE NEURAL NETWORK DATA MODELING THE SPECTRAL DECOMPOSITION OF THE CURRENTS

Directory of Open Access Journals (Sweden)

O. M. Shvets

2009-07-01

Full Text Available The method of automated diagnostics of electric motors is offered. It uses a neural network revealing the electric motor faults on the basis of analysis of frequency spectrum of current flowing through the motor.

11. The bond-graph design of a motor used for electrical traction

Directory of Open Access Journals (Sweden)

2009-10-01

Full Text Available In this paper the asynchronous motorwith cage, used for electrical traction is studied andanalyzed. For this motor we realized the associatedbond-graph, we pointed out the equations thatdescribe this motor, and we analyzed the electricaland mechanical features of this motor, by using thesimulation program 20 SIM, in order to improve theperformances of this motor even from the early stageof design.

12. The Use of Current Generators in Electrical Converter Drives for Stepper Motors

Directory of Open Access Journals (Sweden)

Emanoil Toma

2014-09-01

Full Text Available This paper presents some ways to realize electrical converters for stepper motor drives. The first part analyzes aspects for unipolar stepper motor and use of constant current generators. The second part present current sources based on peak limiting current trough the inductance of motor coil. A complete drive module for bipolar stepper motor was conceived and simulation results confirm their functionability.

13. 77 FR 60672 - Grant of Authority for Subzone Status; Tesla Motors, Inc., (Electric Passenger Vehicles), Palo...

Science.gov (United States)

2012-10-04

... Foreign-Trade Zones Board Grant of Authority for Subzone Status; Tesla Motors, Inc., (Electric Passenger... electric passenger vehicles and related powertrain components at the Tesla Motors, Inc., facilities located... establish a special-purpose subzone at the electric passenger vehicle manufacturing facilities of Tesla...

14. 10 CFR 431.445 - Determination of small electric motor efficiency.

Science.gov (United States)

2010-01-01

... 10 Energy 3 2010-01-01 2010-01-01 false Determination of small electric motor efficiency. 431.445 Section 431.445 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN... electric motor efficiency. (a) Scope. When a party determines the energy efficiency of a small electric...

15. Electric motors with linear and composed displacement; Moteurs electriques a mouvement lineaire et compose

Energy Technology Data Exchange (ETDEWEB)

Kant, M. [Acdemie Europeenne des Sciences, 75 - Paris (France)

2004-02-01

The development of robotics and the replacement of complex mechanical gears by 'electronic axes' has led to the development of motors combining rotation and translation movements (linear rotating motors) and more generally of motors capable to perform multi-directional movements (composed displacement motors). This article presents this kind of motors: 1 - general presentation: theoretical recalls, possible configurations of electric motors, evolution; 2 - linear motor: configuration, basic operating principle, main differences between linear and rotating motors; 3 - special effects: end effects (finished length, finished width), penetration effect, resulting magnetic field configuration inside the air gap; 4 - motors with two mechanical degrees of freedom (rotation-translation); 5 - motors with three mechanical degrees of freedom (spherical motors); 6 - optimization of open magnetic circuit motors; 7 - different industrialized structures; 8 - applications; 9 - mathematical appendix. (J.S.)

16. Development of High-Speed Switched Reluctance Motor for Electric Power Tools

Science.gov (United States)

Nakamura, Kenji; Kumasaka, Yuya; Ichinokura, Osamu

2017-10-01

This paper presents design and experimental evaluation of a switched reluctance (SR) motor used for electric power tools. First, characteristics of a previous designed 6/4-pole SR motor is shown and compared to a permanent magnet (PM) motor used in present electric power tools. Next, to further improve characteristics, a 12/8-pole SR motor is designed and evaluated in experiment. It is proved that the performance of the prototype 12/8-pole SR motor is almost comparable or superior to the present PM motor.

17. MICROPROCESSOR-BASED PROTECTION DEVICE ELECTRIC MOTORS AGAINST SHORT CIRCUIT CURRENTS

Directory of Open Access Journals (Sweden)

D. V. Ustymenko

2010-03-01

Full Text Available The microprocessor device of protection of electric chains of electric motors from short circuit currents, in which switching-off of a short circuit current is carried out before it achieves a shock value, is presented.

18. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials.

Science.gov (United States)

Niazi, Imran Khan; Mrachacz-Kersting, Natalie; Jiang, Ning; Dremstrup, Kim; Farina, Dario

2012-07-01

This paper proposes the development and experimental tests of a self-paced asynchronous brain-computer interfacing (BCI) system that detects movement related cortical potentials (MRCPs) produced during motor imagination of ankle dorsiflexion and triggers peripheral electrical stimulations timed with the occurrence of MRCPs to induce corticospinal plasticity. MRCPs were detected online from EEG signals in eight healthy subjects with a true positive rate (TPR) of 67.15 ± 7.87% and false positive rate (FPR) of 22.05 ±9.07%. The excitability of the cortical projection to the target muscle (tibialis anterior) was assessed before and after the intervention through motor evoked potentials (MEP) using transcranial magnetic stimulation (TMS). The peak of the evoked potential significantly (P=0.02) increased after the BCI intervention by 53 ± 43% (relative to preintervention measure), although the spinal excitability (tested by stretch reflexes) did not change. These results demonstrate for the first time that it is possible to alter the corticospinal projections to the tibialis anterior muscle by using an asynchronous BCI system based on online motor imagination that triggered peripheral stimulation. This type of repetitive proprioceptive feedback training based on self-generated brain signal decoding may be a requirement for purposeful skill acquisition in intact humans and in the rehabilitation of persons with brain damage.

19. Design of a Load Torque Based Control Strategy for Improving Electric Tractor Motor Energy Conversion Efficiency

OpenAIRE

Mengnan Liu; Liyou Xu; Zhili Zhou

2016-01-01

In order to improve the electrical conversion efficiency of an electric tractor motor, a load torque based control strategy (LTCS) is designed in this paper by using a particle swarm optimization algorithm (PSO). By mathematically modeling electric-mechanical performance and theoretical energy waste of the electric motor, as well as the transmission characteristics of the drivetrain, the objective function, control relationship, and analytical platform are established. Torque and rotation spe...

20. SELECTION OF METHOD FOR REGULATION OF TRACTOR PROPULSION ASYNCHRONOUS ELECTRIC MOTOR AND CONSTRUCTION OF MECHANICAL CHARACTERISTICS

Directory of Open Access Journals (Sweden)

Ch. I. Zhdanovich

2015-01-01

Full Text Available Nowadays the work is in progress to develop wheeled and caterpillar tractors with electromechanical transmission. Range of changes in transmission gear ratio while using propulsion electric motor depends on mechanical characteristics of a tractor propulsion electric motor which is equipped with electromechanical transmission. In case when the range is rather high then it is possible to minimize number of gearings in the tractor gearing box or exclude its usage at all. Type of the applied propulsion electric motor and regulation method specify type of mechanical characteristics (characteristics family of the propulsion electric motor.The paper considers a propulsion asynchronous electric motor with frequency control. While using frequency control it is possible to regulate electric motor revolutions by mutual changes in voltage and voltage frequency. There are various laws of mutual changes in voltage and frequency (regulation laws. Selection of a regulation law influences on type of mechanical characteristics of a propulsion electric motor. Application of any law can be admissible only for some specific range of voltage frequency otherwise it is possible to exceed some parameters (for example, admissible voltage in the winding of electric motor stator. It is necessary to ensure the required moment within wide range for a tractor propulsion electric motor. In this case losses in the electric motor must be minimal. Losses in the rotor of the propulsion asynchronous electric motor are directly proportional to its sliding and its best propulsion and mechanical properties of a mobile machine will be ensured in the case when sliding is preserved at a constant value. According to these reasons selection of regulation laws has been carried out for operation of the propulsion asynchronous electric motor with nominal sliding and mechanical characteristics at nominal sliding is conventionally called a nominal characteristics.The paper analyzes the possible

1. Electric Motors Maintenance Planning From Its Operating Variables

Science.gov (United States)

Rodrigues, Francisco; Fonseca, Inácio; Farinha, José Torres; Ferreira, Luís; Galar, Diego

2017-09-01

The maintenance planning corresponds to an approach that seeks to maximize the availability of equipment and, consequently, increase the levels of competitiveness of companies by increasing production times. This paper presents a maintenance planning based on operating variables (number of hours worked, duty cycles, number of revolutions) to maximizing the availability of operation of electrical motors. The reading of the operating variables and its sampling is done based on predetermined sampling cycles and subsequently is made the data analysis through time series algorithms aiming to launch work orders before reaching the variables limit values. This approach is supported by tools and technologies such as logical applications that enable a graphical user interface for access to relevant information about their Physical Asset HMI (Human Machine Interface), including the control and supervision by acquisition through SCADA (Supervisory Control And data acquisition) data, also including the communication protocols among different logical applications.

2. Method and system for operating an electric motor

Science.gov (United States)

Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun

2013-01-22

Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.

3. ELECTRIC MOTORS MAINTENANCE PLANNING FROM ITS OPERATING VARIABLES

Directory of Open Access Journals (Sweden)

Francisco RODRIGUES

2017-07-01

Full Text Available The maintenance planning corresponds to an approach that seeks to maximize the availability of equipment and, conse-quently, increase the levels of competitiveness of companies by increasing production times. This paper presents a maintenance planning based on operating variables (number of hours worked, duty cycles, number of revolutions to maximizing the availability of operation of electrical motors. The reading of the operating variables and its sampling is done based on predetermined sampling cycles and subsequently is made the data analysis through time series algo-rithms aiming to launch work orders before reaching the variables limit values. This approach is supported by tools and technologies such as logical applications that enable a graphical user interface for access to relevant information about their Physical Asset HMI (Human Machine Interface, including the control and supervision by acquisition through SCADA (Supervisory Control And data acquisition data, also including the communication protocols among different logical applications.

4. Determination of the needed power of an electric motor on the basis of acceleration time of the electric car

Science.gov (United States)

Sapundzhiev, M.; Evtimov, I.; Ivanov, R.

2017-10-01

The paper presents an upgraded methodology for determination of the electric motor power considering the time for acceleration. The influence of the speed factor of electric motor on the value of needed power at same acceleration time is studied. Some calculations on the basis of real vehicle were made. The numeric and graphical results are given. They show a decrease of needed power with the increase of the speed factor of motor, because the high speed factor allows the use of a larger range of the characteristic with the maximum power of the motor. An experimental verification of methodology was done.

5. Air-gap effect on life boat arrangement for a semi-submersible FPU

OpenAIRE

Kim, Mun-Sung; Park, Hong-Shik; Jung, Kwang-Hyo; Chun, Ho-Hwan

2016-01-01

In the offshore project such as semi-submersible FPU and FPSO, the free fall type life boat called TEMPSC (Totally Enclosed Motor Propelled Survival Craft) has been installed for the use of an emergency evacuation of POB (People on Board) from the topside platform. For the design of life boat arrangement for semi-submersible FPU in the initial design stage, the drop height and launch angle are required fulfill with the limitation of classification society rule and Company requirement, includi...

6. Motor Skill Acquisition and Retention after Somatosensory Electrical Stimulation in Healthy Humans

NARCIS (Netherlands)

Veldman, Menno P; Zijdewind, Inge; Maffiuletti, Nicola A; Hortobágyi, Tibor

2016-01-01

Somatosensory electrical stimulation (SES) can increase motor performance, presumably through a modulation of neuronal excitability. Because the effects of SES can outlast the period of stimulation, we examined the possibility that SES can also enhance the retention of motor performance, motor

7. Utilization of computational simulator for comparison of correlations in multiphase flow in ESP (Electrical Submersible Pumping) systems; Utilizacao de simulador computacional para a comparacao das correlacoes de escoamento multifasico em sistemas BCS

Energy Technology Data Exchange (ETDEWEB)

Anjos, Roselaine M. dos; Maitelli, Carla Wilza S.P.; Maitelli, Andre L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Costa, Rutacio O. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

2012-07-01

Electrical Submersible Pumping (ESP) is an artificial lifting method which can be used both onshore and offshore for the production of high flow rates of liquid. By using the computational simulator for systems ESP developed by the AUTOPOC/LAUT - UFRN, this work aimed to evaluate empirical correlations for calculation of multiphase flow in tubing typical of artificial lifting systems operating by ESP. The parameters used for evaluating the correlations are some of the dynamic variables of the system such as head that indicates the lifting capacity of the system, the flow rate of fluid in the pump and the discharge pressure at the pump. Five (5) correlations were evaluated, from which only one considered slipping between phases, but does not take into account flow patterns and, four others considering slipping between the phases as well the flow patterns. The simulation results obtained for all these correlations were compared to results from a commercial computational simulator, extensively used in the oil industry. For both simulators, input values and simulation time, were virtually the same. The results showed that the simulator used in this work showed satisfactory performance, since no significant differences from those obtained with the commercial simulator. (author)

8. Electric motor-transformer aggregate in hermetic objects of transport vehicles

Science.gov (United States)

Zabora, Igor

2017-10-01

The construction and features of operation for new electrical unit – electric motor-transformer aggregate (DTA) are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees). Main objective of spent researches is the substantiation of possibility reliable and effective electric power transform with electric machine means directly in hermetic objects with extreme conditions environment by means of new DTA. The principle and job analysis of new disk induction motors of block-module type are observed.

9. Riemannian submersions and related topics

CERN Document Server

Falcitelli, Maria; Pastore, Anna Maria

2004-01-01

This book provides the first-ever systematic introduction to thetheory of Riemannian submersions, which was initiated by BarrettO''Neill and Alfred Gray less than four decades ago. The authorsfocus their attention on classification theorems when the total spaceand the fibres have nice geometric properties.

10. A flux-mnemonic permanent magnet brushless motor for electric vehicles

Science.gov (United States)

Yu, Chuang; Chau, K. T.; Liu, Xinhua; Jiang, J. Z.

2008-04-01

In this paper, a new permanent magnet (PM) brushless motor is proposed for electric vehicles. The key is to incorporate the concept of memory motors, namely, the online tunable flux-mnemonic PMs, into the stator doubly fed doubly salient PM motor, hence achieving effective air-gap flux control. By further employing the outer-rotor and double-layer-stator topology, the proposed motor takes the definite advantages of compact structure, low armature reaction, and direct-drive capability. Increasingly, this motor can offer the unique features of pole dropping and pole reversing. Finite element analysis and, hence, computer simulation are given to verify the validity of the proposed motor.

11. Development of a dynamometer for an integrated-starter-generator (ISG) motor used in electric vehicles

Science.gov (United States)

Wang, Zai-zhou; Zhang, Cheng-ning; Song, Qiang; Zhang, Chun-xiang

2008-12-01

Hybrid-Electric Vehicle (HEV) which combined the electric motor with auxiliary power unit in a car driven is introduced. Characteristic of Hybrid-Electric Vehicle are different from the other vehicle, in the structure of Hybrid-Electric Vehicle, Integrated Starter Generator (ISG) electrical system can achieve high efficient performance of driving and generating electricity simultaneously. These systems adopt the sum torque through engine and generator, the motor connected transmission through engine. According to the requirements of different conditions, the torque of motor and transmission are compound in various forms to achieve optimal driving efficiency.This study developed a dynamometer to measure the relationship between locked torques with temperature rises of an Integrated Starter Generator motor used in electrical vehicles. The dynamometer adopted an AC motor to obtain the relationship between drive and load functions, which developed in this study can perform real-time measurements and storage of measured data obtained from the dynamometer. Experiments for measuring temperature rise of ISG motor were performed at three different conditions, namely 56 Nm locked rotor torques and 18.8A locked rotor current; 57.1Nm constant torque at 1050rpm; constant power with 14.3Nm and 4050rpm, respectively. Based on the theory of temperature rise, the temperature rises of motor are 14K, 33.1K, and 16.01K for the tested cases respectively. Measured results show that the performance of motor system is satisfied with the design.

12. The Research on Full-speed Field Weakening Control Method of Electric Vehicle Interior Permanent Magnet Synchronous Motor

National Research Council Canada - National Science Library

Run-Ze Gao; Li Zhai; Li-Wei Su

2017-01-01

The motor drive system represents a key technology for development of the electrical vehicles, and the permanent magnet synchronous motor becomes the mainstream of the new energy vehicle drive motor...

13. Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study

DEFF Research Database (Denmark)

Jønsson, Iben; Hagstrøm, Søren; Siggaard, Charlotte

Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study......Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study...

14. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

Energy Technology Data Exchange (ETDEWEB)

Bennion, Kevin

2015-06-09

Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.

15. Implementation of a Non-Metallic Barrier in an Electric Motor

Science.gov (United States)

M?Sadoques, George; Carra, Michael; Beringer, Woody

2012-01-01

Electric motors that run in pure oxygen must be sealed, or "canned," for safety reasons to prevent the oxygen from entering into the electrical portion of the motor. The current canning process involves designing a metallic barrier around the rotor to provide the separation. This metallic barrier reduces the motor efficiency as speed is increased. In higher-speed electric motors, efficiency is greatly improved if a very thin, nonmetallic barrier can be utilized. The barrier thickness needs to be approximately 0.025-in. (.0.6-mm) thick and can be made of a brittle material such as glass. The motors, however, designed for space applications are typically subject to high-vibration environments. A fragile, non-metallic barrier can be utilized in a motor assembly if held in place by a set of standard rubber O-ring seals. The O-rings provide the necessary sealing to keep oxygen away from the electrical portion of the motor and also isolate the fragile barrier from the harsh motor vibration environment. The compliance of the rubber O-rings gently constrains the fragile barrier and isolates it from the harsh external motor environment. The use of a non-metallic barrier greatly improves motor performance, especially at higher speeds, while isolating the electronics from the working fluid with an inert liner.

16. Regarding the NVH Behaviour of the more Electric Vehicles. Study Case of a Small PM Motor

Directory of Open Access Journals (Sweden)

Florin Lazăr

2014-09-01

Full Text Available The noise and vibration behaviour of electric and hybrid vehicles is dramatically different from conventional vehicles. The noise and vibration mechanisms of the individual components (combustion engine, electric motor, transmission etc. are known in principle, but an electric or hybrid powertrain features additional and different components as well as new operation modes compared to a conventional powertrain. This results in new interactions which are uncommon in this form for conventional vehicles. In the case of the electric traction, the electric motor becomes an important noise and vibrations source. Depending on the design of the motor, the electromagnetic (EM pulses and corresponding torque pulses from the motor can be very strong. These can be radiated as noise directly from the motor housing and can also be transmitted structurally to the support structure through the motor mounts. However, the EM forces are generally lower than the combustion and reciprocating mass forces of an IC engine, and significantly, they are at a much higher frequency. On the other side, the electric drives are quite numerous in cars. Lot of smaller motors are involved in X-by-wire systems or other comfort oriented systems. As a study case, the paper is focused on the NVH produced by a 0.25kW PM motor.

17. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold.

Science.gov (United States)

Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

2015-09-01

To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength (r(2) = 0.95, p = 0.026). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume (r(2) > 0.96, p field models appropriately capture individual anatomical variability relevant to the dosing of TES/ECT. These findings are exploratory due to the small number of subjects. This study can contribute insight in NHP studies of ECT and other brain stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms.

18. Design Study for Controllable Electric Motor for Three Wheel Drive, In Wheel Mounting on Professional, Electric, Lawn Mower

DEFF Research Database (Denmark)

Lu, Kaiyuan

Design of a new generation of electric drive motor for professional lawnmowers forms the basic objective of this thesis. Modern drive concepts produces a growing demand for electrical machines featuring high torque density, and suitable for direct drive applications. Much attention is presently f...

19. Comparison the programs of energy efficiency for industrial electric motors; Comparacao de programas de eficiencia energetica para motores eletricos industriais

Energy Technology Data Exchange (ETDEWEB)

Mariotoni, Carlos Alberto; Naturesa, Jim Silva; Santos Junior, Joubert Rodrigues dos; Demanboro, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: cam@fec.unicamp.br; jimnaturesa@yahoo.com; joubert@fec.unicamp.br; anto1810@fec.unicamp.br

2006-07-01

This paper aims to present a comparison among the existing programs of energy efficiency for industrial electric motors in Brazil, in the United States of America and in the European Community. The analysis is restricted to the action of each program, considering that the mentioned countries present distinct economical, political and social characteristics. Therefore, it is intended to discuss the main barriers existing in the Brazilian industrial context which cause difficulties to develop a program of electric motors efficiency and to indicate some ways to overcome those barriers. (author)

20. System and method for motor speed estimation of an electric motor

Science.gov (United States)

Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN

2012-06-19

A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

1. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

Energy Technology Data Exchange (ETDEWEB)

Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

2013-12-04

This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

2. Manned submersible „JAGO“

Directory of Open Access Journals (Sweden)

Karen Hissmann

2017-04-01

Full Text Available The manned submersible „JAGO“ is a human occupied underwater vehicle (HOV designed for personal exploration and research in all types of aquatic systems and habitats. The seafloor along the continental shelf and slopes within the ocean twilight zone is JAGO’s main target area. The DNV-GL classed 2-person submersible has a maximum operating depth of 400 m. The two occupants, the pilot and one observer, are seated at 1 Atmosphere in a steel pressure hull with two large acrylic windows. The submersible’s small size and lightweight construction (3 T allows worldwide operations from on board a wide variety of vessels as well as transport in a single standard 20-foot container together with all support equipment. Typical applications include personal observation of the sea bed and water column, video and photo documentation, selective non-intrusive sampling, placement of sensors and experiments, underwater inspection, as well as location and recovery of objects

3. Diagnosis of traction electric motor at irregularity in speed of anchor rotation

Directory of Open Access Journals (Sweden)

D.V. Cyernyayev

2013-06-01

Full Text Available Purpose. To offer a complex diagnostic parameter (or system of parameters that would allow determining the fault of electric traction motor as well as electromagnetic and mechanical nature. Methodology. Technology transition to maintenance and repair of equipment in accordance with its actual condition are developed rapidly in the world practice in recent years. Control of equipment and forecasting of its technical condition with the use of non-destructive testing and diagnosis in-place methods is the basis of such technologies. In operation the reliability level of electrical machines including traction electric motor is very difficult to maintain. Analyzing failures of rolling stock, which arise from the operation, we can see that traction electric motors are the least reliable nodes. Diagnostics of traction electric motor at irregularity in speed of anchor rotation is proposed. A measurement device for irregularity in speed of anchor rotation was developed. Findings. An experimental research in order to determine the irregularity in speed of anchor armature shaft rotation and coupling of irregularity in speed of anchor rotation with traction electric motors nodes failures was executed. The experimental dependence of the waveform uneven rotation anchor for engines with different technical conditions. Originality. A method for diagnosis of traction electric motors at irregularity in speed of anchor armature shaft rotation was first proposed. This method after further improvement can be used at bench test of engines in their work without load and for the quality of the repair. Practical value. The device for detecting defects of the traction electric motor nodes as well as electromagnetic and mechanical nature without engine disassembly may be used for control of engine assembly after repair, and at testing of traction electric motor without load.

4. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

Science.gov (United States)

Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

2016-01-01

Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

5. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

Science.gov (United States)

Zhang, Han; Zhao, Wanzhong

2018-02-01

To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

6. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

Science.gov (United States)

Kliman, G. B.

1982-01-01

An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

7. Controlling your impulses: Electrical stimulation of the human supplementary motor complex prevents impulsive errors

NARCIS (Netherlands)

Spieser, L.; van den Wildenberg, W.; Hasbroucq, T.; Ridderinkhof, K.R.; Burle, B.

2015-01-01

To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy

8. A study on improvement of electric motor thermal performance using CFD

Energy Technology Data Exchange (ETDEWEB)

Yang, Pan Seok; Lee, Ho Jun; Jung, Won Bong [Hyosung Co., Ltd., Seoul (Korea, Republic of)

2003-07-01

As motor performance enhancement by improving electric design has reached its limit and downsizing issue has risen, the importance of thermal design is increasing. In this study, the flow and temperature distribution were reviewed with the help of CFD analysis and this result was compared with the experimental results. Furthermore, parametric analysis with thermal design structure showed that axial duct width but fan capacity is a critical factor to lower the hot spot temperature in electric motor.

9. DSP-based electric power assisted steering using BLDC motor

Generally, EAS having clutch to disconnect the motor in high speed or abnormal conditions from the gear box. In this implementation the motor is directly coupled to gearbox without clutch and all abnormalities are handled by the processor. This is implemented without modifying the vehicle supply system like changing the ...

10. An Alternative for All-Electric Ships Applications: The Synchronous Reluctance Motor

Directory of Open Access Journals (Sweden)

2013-01-01

Full Text Available The three-phase synchronous reluctance motor (SynRM is presented as a possible alternative in all-electric ship applications. The basic features of this motor with regard to the other types of motors are shown. The structure of the motor and specifically the structure of its rotor are analyzed, while the basic operating principles are presented and references on commonly used control strategies are made. In this paper, a demonstration of a reluctance motor fed by a voltage source inverter (VSI takes place. To demonstrate the operation of the motor fed by a VSI, an example using a scalar control method is implemented, where harmonic injection PWM (HIPWM is used to drive the VSI. Experimental results on a commercially available motor are shown, focusing on the harmonic content of the current.

11. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

Energy Technology Data Exchange (ETDEWEB)

Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

2015-01-12

The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

12. Contributions to the Transient Study of an Electric Motor with Shorted Moving Coil

Directory of Open Access Journals (Sweden)

Georgescu Daniel

2014-09-01

Full Text Available In this article is studied the transient regime of an electric motor with a shorted moving coil, into alternating current supplied. The authors present their contributions related to the conceiving, achieving and testing of experimental stands of an electric motor with a shorted moving coil and to the identification of the mathematical model, indexical function parameters and the coefficients of the mathematical equation of this engine. Finally, the authors' conclusions are presented on the results of experimental studies and moving coil motor behavior in transient regime.

13. AC electric motors control advanced design techniques and applications

CERN Document Server

2013-01-01

The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

14. Rebuilding motor function of the spinal cord based on functional electrical stimulation.

Science.gov (United States)

Shen, Xiao-Yan; Du, Wei; Huang, Wei; Chen, Yi

2016-08-01

Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury.

15. Rebuilding motor function of the spinal cord based on functional electrical stimulation

Directory of Open Access Journals (Sweden)

Xiao-yan Shen

2016-01-01

Full Text Available Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury.

16. Sensorless AC electric motor control robust advanced design techniques and applications

CERN Document Server

Glumineau, Alain

2015-01-01

This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

17. Direct Electrical Arc Ignition of Hybrid Rocket Motors

OpenAIRE

Judson, Michael I., Jr.

2015-01-01

Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven dicult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintrod...

18. 75 FR 12123 - Federal Motor Vehicle Safety Standards; Side Impact Protection; Fuel System Integrity; Electric...

Science.gov (United States)

2010-03-15

... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AK48 Federal Motor Vehicle Safety Standards; Side Impact Protection; Fuel System Integrity; Electric-Powered Vehicles: Electrolyte Spillage and Electrical Shock Protection AGENCY: National Highway Traffic Safety Administration (NHTSA...

19. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

Science.gov (United States)

Baidak, Y.; Smyk, V.

2017-08-01

Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

20. Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans.

Science.gov (United States)

Veldman, M P; Zijdewind, I; Solnik, S; Maffiuletti, N A; Berghuis, K M M; Javet, M; Négyesi, J; Hortobágyi, T

2015-12-01

Sensory input can modify voluntary motor function. We examined whether somatosensory electrical stimulation (SES) added to motor practice (MP) could augment motor learning, interlimb transfer, and whether physiological changes in neuronal excitability underlie these changes. Participants (18-30 years, n = 31) received MP, SES, MP + SES, or a control intervention. Visuomotor practice included 300 trials for 25 min with the right-dominant wrist and SES consisted of weak electrical stimulation of the radial and median nerves above the elbow. Single- and double-pulse transcranial magnetic stimulation (TMS) metrics were measured in the intervention and non-intervention extensor carpi radialis. There was 27 % motor learning and 9 % (both p Motor practice and SES each can produce motor learning and interlimb transfer and are likely to be mediated by different mechanisms. The results provide insight into the physiological mechanisms underlying the effects of MP and SES on motor learning and cortical plasticity and show that these mechanisms are likely to be different for the trained and stimulated motor cortex and the non-trained and non-stimulated motor cortex.

1. Technological management of efficient use of electric motors: an important tool in competitiveness

Energy Technology Data Exchange (ETDEWEB)

Quispe, E. [GIEN, Univ. Autonoma de Occidente, Cali (Colombia); Prias, O. [COLCIENCIAS, Bogota D.C. (Colombia); Viego, P. [CEEMA, Univ. de Cienfuegos, Cienfuegos (Cuba)

2005-07-01

Electric motors take near 80% of electricity energy used in an industry, then the efficient use of electric motors allows to reduce production costs and increase competitiveness of the industry. By other side technology management is an administration activity in order to increase productivity and competitiveness through the innovation and correct organization of technology, information and cost. Therefore it is important to establish a relation between the efficient use of electric motor technology and the technological management. The experience shows that the technologies of efficient use of electric motor applied to industry allows to obtain a decrease of the energy consume between 10 to 20 percent. However, the electric motor is only a part of the production process and it is not so important its influence with respect to the total cost of production. Starting from the segregation of all the activities of the productive process, it is shown that in order to improve business production and competitiveness, managers needs others additional indicators beside energy costs, indicators related with technological innovation and management. In this paper, the authors are proposing several indicators in order to be use by managers in taking decisions to improve the competitiveness of business in a global economy. (orig.)

2. Electric Motor Thermal Management Research: Annual Progress Report

Energy Technology Data Exchange (ETDEWEB)

Bennion, Kevin S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

2017-10-19

Past work in the area of active convective cooling provided data on the average convective heat transfer coefficients of circular orifice automatic transmission fluid (ATF) jets impinging on stationary targets intended to represent the wire bundle surface of the motor end-winding. Work during FY16 focused on the impact of alternative jet geometries that could lead to improved cooling over a larger surface of the motor winding. Results show that the planar jet heat transfer coefficients over a small (12.7-mm-diameter) target surface are not too much lower than for the circular orifice jet in which all of the ATF from the jet impinges on the target surface. The planar jet has the potential to achieve higher heat transfer over a larger area of the motor end winding. A new test apparatus was constructed to measure the spatial dependence of the heat transfer relative to the jet nozzle over a larger area representative of a motor end-winding. The tested planar flow geometry has the potential to provide more uniform cooling over the full end-winding surface versus the conventional jet configuration. The data will be used by motor designers to develop thermal management strategies to improve motor power density. Work on passive thermal design in collaboration with Oak Ridge National Laboratory to measure the thermal conductivity of wire bundle samples representative of end-winding and slot-winding materials was completed. Multiple measurement techniques were compared to determine which was most suitable for measuring composite wire bundle samples. NREL used a steady-state thermal resistance technique to measure the direction-dependent thermal conductivity. The work supported new interactions with industry to test new materials and reduce passive-stack thermal resistance in motors, leading to motors with increased power density. NREL collaborated with Ames Laboratory in the area of material characterization. The work focused on measuring the transverse rupture strength of

3. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

Energy Technology Data Exchange (ETDEWEB)

NONE

2011-07-01

This publication is the first global analysis of energy consumption and energy efficiency potential of EMDS (electric motor- driven system). The electric motors and systems they drive are the largest single electricity end use, accounting for more than 40% of global electricity consumption. Huge energy efficiency potential was found untapped in EMDS - around 25% of EMDS electricity use could be saved cost-effectively, reducing total global electricity demand by about 10%. However, the energy efficiency of EMDS has been relatively neglected in comparison with other sustainable energy opportunities. It is crucial to scale up the operations and resources committed to realizing the vast savings potential of optimized EMDS. This paper proposes a comprehensive package of policy recommendations to help governments realize the potential for energy savings in EMDS.

4. Research on motor braking-based DYC strategy for distributed electric vehicle

Science.gov (United States)

Zhang, Jingming; Liao, Weijie; Chen, Lei; Cui, Shumei

2017-08-01

In order to bring into full play the advantages of motor braking and enhance the handling stability of distributed electric vehicle, a motor braking-based direct yaw moment control (DYC) strategy was proposed. This strategy could identify whether a vehicle has under-steered or overs-steered, to calculate the direct yaw moment required for vehicle steering correction by taking the corrected yaw velocity deviation and slip-angle deviation as control variables, and exert motor braking moment on the target wheels to perform correction in the manner of differential braking. For validation of the results, a combined simulation platform was set up finally to simulate the motor braking control strategy proposed. As shown by the results, the motor braking-based DYC strategy timely adjusted the motor braking moment and hydraulic braking moment on the target wheels, and corrected the steering deviation and sideslip of the vehicle in unstable state, improving the handling stability.

5. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

OpenAIRE

Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani

2010-01-01

Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...

6. Design of a Load Torque Based Control Strategy for Improving Electric Tractor Motor Energy Conversion Efficiency

Directory of Open Access Journals (Sweden)

Mengnan Liu

2016-01-01

Full Text Available In order to improve the electrical conversion efficiency of an electric tractor motor, a load torque based control strategy (LTCS is designed in this paper by using a particle swarm optimization algorithm (PSO. By mathematically modeling electric-mechanical performance and theoretical energy waste of the electric motor, as well as the transmission characteristics of the drivetrain, the objective function, control relationship, and analytical platform are established. Torque and rotation speed of the motor’s output shaft are defined as manipulated variables. LTCS searches the working points corresponding to the best energy conversion efficiency via PSO to control the running status of the electric motor and uses logic and fuzzy rules to fit the search initialization for load torque fluctuation. After using different plowing forces to imitate all the common tillage forces, the simulation of traction experiment is conducted, which proves that LTCS can make the tractor use electrical power efficiently and maintain agricultural applicability on farmland conditions. It provides a novel method of fabricating a more efficient electric motor used in the traction of an off-road vehicle.

7. Direct electrical arc ignition of hybrid rocket motors

Science.gov (United States)

Judson, Michael I., Jr.

Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

8. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

Science.gov (United States)

Choi, Benjamin; Siebert, Mark

2008-01-01

The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

9. Feasibility study of a superconducting motor for electrical helicopter propulsion

NARCIS (Netherlands)

Simons, C.A.B.A.E.; Sanabria-Walter, C.; Polinder, H.

2014-01-01

During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter

10. Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function.

Science.gov (United States)

Curado, Marco; Fritsch, Brita; Reis, Janine

2016-02-04

Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.

11. An Evaluation of Electric Motors for Ship Propulsion

Science.gov (United States)

2003-06-01

22 C. TYPES OF PMSM ...nous Machines (FWSM), 2) Squirrel Cage Induction Machines (SCIM), 3) Permanent Magnet Synchronous Machines ( PMSM ), and 4) High Temperature...Superconducting AC Synchronous Machines (HTSAC) [3]. The SCIM, PMSM , and HTSAC motors will be discussed and their qualities and shortcomings will be compared

12. Information-Measuring System to Control the Electrical and Mechanical Motor Parameters

Directory of Open Access Journals (Sweden)

K. S. Ermakov

2015-01-01

Full Text Available The article considers the issue of creating an information-measuring system for an asynchronous motor. The presented system allows ensuring the failure-free protection of electromotor, considerably reducing costs of its unplanned repair, and reduced economical loss from idle time of the electric motor.The developed system comprises a mathematical model and two subsystems to measure electrical and mechanical parameters of the asynchronous motor.The electrical subsystem comprises a FLUKE company recording multi-meter a signal from which passes through the block of intervals and coding and comes to PC.The mechanical subsystem uses technical tools of phase-chronometric method. This method developed at the department of Metrology and Interchangeability allows an increasing efficiency of developed informative-measuring system. Mathematical modeling is used to link information from subsystems (electrical and mechanical to electromotor construction.The work conducted mathematical modeling of some defects of electric motor, namely: rupture of rotor winding and line surge.The mathematical model in Mathcad was based on a modified formula of Kloss. It allows us to tie the average current value of the torque of the induction motor with shaft speed and take into account the effect of the frequency and voltage.The Matlab Simulink (the package for visual programming environment was used to simulate a rupture of the rotor winding. Simulation results showed how the phase currents of the electric motor changed with the winding rupture.The developed information-measuring system has a number of advantages over traditional systems used in this field (vibration-based diagnostics systems. It will allow an increasing efficiency of the system for diagnostics of electrical machines created on the basis of this information-measuring system.

13. Data Acquisition System for Electric Vehicle's Driving Motor Test Bench Based on VC++

Science.gov (United States)

Qiang, Song; Chenguang, Lv

In order to solve such problems as great labor intensity, high cost, low efficiency and accuracy during the performance experiment for driving motor system of electric vehicles, and realize data acquisition automatically and synchronously, a data acquisition system for driving motor test bench based on visual instruments is designed. This data acquisition system can be used to obtain the driving motor's parameters of currents and voltages at the same time. This system's hardware is based on electric vehicle's motor test bench in Beijing Institute of Technology, and combined with PXI2010 data acquisition card from ADLINK Company. Visual c++ software is adopted as development tool. In this paper, the design and realization of the hardware and software are presented. Experiment results show that this system improves the efficiency and quality of testing task with high utility. And experiment data can be obtained accurately.

14. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

Science.gov (United States)

Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

2017-07-01

With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

15. Controlling Your Impulses: Electrical Stimulation of the Human Supplementary Motor Complex Prevents Impulsive Errors

OpenAIRE

Spieser, L.; Van den Wildenberg, W; Hasbroucq, T.; Ridderinkhof, K.R.; Burle, B.

2015-01-01

International audience; To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy humans leaves action urges unchanged but prevents them from turning into overt errors. Subjects performed a choice reaction-time task known to trigger impulsive responses, l...

16. Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle

Science.gov (United States)

Rani, J. Abd; Sulaiman, E.; Kumar, R.

2017-08-01

A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.

17. Comparison of Electrical and Ultrasound Neurostimulation in Rat Motor Cortex.

Science.gov (United States)

Gulick, Daniel W; Li, Tao; Kleim, Jeffrey A; Towe, Bruce C

2017-12-01

Ultrasound (US) is known to non-invasively stimulate and modulate brain function; however, the mechanism of action is poorly understood. This study tested US stimulation of rat motor cortex (100 W/cm2, 200 kHz) in combination with epidural cortical stimulation. US directly evoked hindlimb movement. This response occurred even with short US bursts (3 ms) and had short latency (10 ms) and long refractory (3 s) periods. Unexpectedly, the epidural cortical stimulation hindlimb response was not altered during the 3-s refractory period of the US hindlimb response. This finding suggests that the US refractory period is not a general suppression of motor cortex, but rather the recovery time of a US-specific mechanism. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

18. Design and Analysis of a Novel Speed-Changing Wheel Hub with an Integrated Electric Motor for Electric Bicycles

Directory of Open Access Journals (Sweden)

Yi-Chang Wu

2013-01-01

Full Text Available The aim of this paper is to present an innovative electromechanical device which integrates a brushless DC (BLDC hub motor with a speed-changing wheel hub stored on the rear wheel of an electric bicycle. It combines a power source and a speed-changing mechanism to simultaneously provide functions of power generation and transmission for electric bicycles. As part of the proposed integrated device, the wheel hub consists of a basic planetary gear train providing three forward speeds including a low-speed gear, a direct drive, and a high-speed gear. Each gear is manually controlled by the shift control sleeve to selectively engage or disengage four pawl-and-ratchet clutches based on its clutching sequence table. The number of gear teeth of each gear element of the wheel hub is synthesized. The BLDC hub motor is an exterior-rotor-type permanent-magnet synchronous motor. Two-dimensional finite-element analysis (FEA software is employed to facilitate the motor design and performance analysis. An analysis of the power transmission path at each gear is provided to verify the validity of the proposed design. The results of this work are beneficial to the embodiment, design, and development of novel electromechanical devices for the power and transmission systems of electric bicycles.

19. Electric Transfer Function Model of Switched Reluctance Motors and the Model-Based Current Control Design

Science.gov (United States)

Ishikawa, Hiroki; Komaki, Ryoko; Naitoh, Haruo; Yamaba, Akira; Katoh, Hiroki

This paper presents a current control design for switched reluctance motors (SRMs). The electric transfer characteristic of the motors is studied first. Their transfer function is brought out to be represented by a pure resistive component, which is not constant but varies depending on the motor current and speed. The current control design for SRMs follows the classical design technique used for dc machines, where the zero of PI controller cancels the pole of Ls+R. Because the transfer function of SRMs does not have any poles, an I controller is suitable for them. The integral gain should be adjusted in order to compensate the non-linearity, that is, the variation in the equivalent resistor of the SRMs' transfer function. The values of the integral gain are tuned and tabulated for the motor speed and current. Simulation and experiment demonstrate that the current and speed of the SRMs presents good responses without dependence on the motor speed and current.

20. Motor cortex electric stimulation for the treatment of neuropathic pain

Directory of Open Access Journals (Sweden)

Walter J. Fagundes-Pereyra

2010-12-01

Full Text Available OBJECTIVE: Motor cortex stimulation (MCS is considered to be an effective treatment for chronic neuropathic pain. The aim of the present study was to assess the efficacy of MCS for treating neuropathic pain. METHOD: 27 patients with chronic neuropathic pain were operated. Electrodes were implanted with the use of an stereotactic frame. Electrophysiological evaluations (motor stimulation and somatosensory evoked potentials were performed, with guidance by means of three-dimensional reconstruction of magnetic resonance images of the brain. 10 patients (37% presented central neuropathic pain (post-stroke pain and 17 others (63% presented peripheral neuropathic pain (brachial plexus avulsion, phantom limb pain or trigeminal pain. RESULTS: In 15 patients (57.7% the pain relief was 50% or more; while in ten patients (38.5%, more than 60% of the original pain was relieved. No differences were found in relation to central and peripheral neuropathic pain (p=0.90, pain location (p=0.81, presence of motor deficit (p=0.28 and pain duration (p=0.72. No major complications were observed. CONCLUSION: MCS was efficient for treating patients presenting chronic central or peripheral neuropathic pain.

1. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

Energy Technology Data Exchange (ETDEWEB)

Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

2013-03-12

2. Control Strategy for Power Distribution in Dual Motor Propulsion System for Electric Vehicles

Directory of Open Access Journals (Sweden)

2015-01-01

Full Text Available Electric Vehicles with more than one electric motor can offer advantages in saving energy from the batteries. In order to do that, the control strategy plays an important role in distributing the required torque between the electric motors. A dual motor propulsion system with a differential transmission is simulated in this work. A rule based control strategy for this propulsion system is proposed and analyzed. Two parameters related to the output speed of the transmission and the required torque are used to switch the two modes of operation in which the propulsion system can work under acceleration. The effect of these parameters is presented over the driving cycles of NEDC, UDDS, and NYCC, which are followed using a PID controller. The produced energy losses are calculated as well as an indicator of drivability, which is related to the difference between the desired speed and the actual speed obtained. The results show that less energy losses are present when the vehicle is maintained with one electric motor most of the time, switching only when the extended speed granted by the second motor is required. The propulsion system with the proposed control strategy represents a feasible alternative in the spectrum of sustainable transportation architectures with extending range capabilities.

3. Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle

Science.gov (United States)

Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao

2017-12-01

In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.

4. Vibration diagnostic system for evaluation of state interconnected electrical motors mechanical parameters

Science.gov (United States)

Vasilevskyi, Oleksandr M.; Kulakov, Pavlo I.; Dudatiev, Igor A.; Didych, Volodymyr M.; Kotyra, Andrzej; Suleimenov, Batyrbek; Assembay, Azat; Kozbekova, Ainur

2017-08-01

The paper presents the structural diagram and mathematical model of a vibration diagnostic system to measure angular velocities of two interconnected electric motors. The system is based on vibration signals and the control signals of the motor mechanical parameters. The measurement procedure of the rotor rotational speed is based on vibration signals during synchronization. The procedure presented allows simultaneous measurement and synchronization frequencies of rotation to diagnose of the motors' mechanical parts. The calculated reduced error of synchronizing frequencies of rotation of the rotors, which is 0.45% of the measurement range of frequencies of rotation from 0 to 80Hz.

5. Digital Control System of Two-Motor Ac Electrical Drive Built by Principles of Harland

Science.gov (United States)

Dochviri, J. N.; Turmanidze, G. R.

2017-08-01

In the paper, optimization of scalar control system of two-motor electrical ac drive with individual regulators of speed is investigated. Structural scheme of the drive is constructed via electromagnetic process agreement taking into account elasticitic shaft. The expressions for the optimal parameters of digital regulators for stator currents of the motors and speed of the drive are given. Modelling results obtained on the computer are given. The considered system of ac drive provides optimal dynamic character as well as automatic distribution of loading between the motors.

6. System Identification and Integration Design of an Air/Electric Motor

Directory of Open Access Journals (Sweden)

Shih-Yao Huang

2013-02-01

Full Text Available This paper presents an integration design and implementation of an air motor and a DC servo motor which utilizes a magnetic powder brake to integrate these two motors together. The dynamic model of the air/electric hybrid system will be derived and eventually leads to successful ECE-40 driving cycle tests with a FPGA-based speed controller. The testing results obtained by using the proposed experimental platform indicate that the total air consumption is about 256 L under air motor mode and the electric charge consumption is about 530 coulombs under DC servo motor mode. In a hybrid mode, the current reduction of the battery is about 18.5%, and then the service life of the battery can be improved. Furthermore, a prototype is built with a proportional-integral (PI speed controller based on a field-programmable gate array (FPGA in order to facilitate the entire analysis of the velocity switch experiment. Through the modular methodology of FPGA, the hybrid power platform can successfully operate under ECE-40 driving cycle with the PI speed controller. The experimental data shows that the chattering ranges of the air motor within ±1 km/h and ±0.2 km/h under DC servo motor drive. Therefore, the PI speed controller based on FPGA is successfully actualized.

7. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

Energy Technology Data Exchange (ETDEWEB)

Rogers, Susan A. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

2012-01-31

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

8. Straight and chopped dc performance data for a General Electric 5BY436A1 dc shunt motor with a General Electric EV-1 controller

Energy Technology Data Exchange (ETDEWEB)

Edie, P C

1981-10-01

Both straight and chopped dc motor performance data for a General Electric 5BY436A1 motor with a General Electric EV-1 controller are presented in tabular and graphical formats. Effects of motor temperature and operating voltage are also shown. The maximum motor efficiency is approximately 85% at low operating temperatures in the straight dc mode. Chopper efficiency can be assumed to be 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight dc mode.

9. Control allocation for for regenerative braking of electric vehicles with an electric motor at the front axle using the state-dependent Riccati equation control technique

NARCIS (Netherlands)

Kanarachos, S.A.; Alirezaei, M.; Jansen, S.T.H.; Maurice, J.P.

2014-01-01

In this paper the systematic development of an integrated braking controller for a vehicle driven by an electric motor on the front axle is presented. The objective is to engage the electric motor only during braking, up to the point at which the vehicle reaches its manoeuvrability and stability

10. Electrical energy saving in motors and frequency variators; Ahorro de energia electrica en motores y variadores de frecuencia

Energy Technology Data Exchange (ETDEWEB)

Garcia Neri, Roger [Comision Federal de Electricidad (CFE) (Mexico)

2005-07-01

The necessity of saving energy is urgent and undeniable. We must already begin with the rational use of energy. Which is obtaining the maximum benefit of the consumed energy and of the necessary facilities for its generation, transmission and use. Guaranteeing at the same time an operation free of interferences or interruptions for the users. The electricity in alternating current does not allow its storage, reason why it is necessary to generate and distribute it at the precise moment when it is required. This forces to determine the proportions of the generation facilities, to be able to feed the periods of maximum demand called {sup p}eaks{sup .} It is this very point where the problem of the inappropriate use of the electrical energy starts. The energy waste is self-evident during the periods of low demand because of the low efficiency of the sub-utilized facilities. Electrical motors of the induction type use approximately more than 60% of the energy in the industry. If we use high efficiency motors instead of standard motors, a better advantage of the energy demanded from Comision Federal de Electricidad (CFE) is obtained. [Spanish] Es impostergable e innegable la necesidad de ahorrar energia. Tenemos que empezar ya con el uso racional de la energia: Obtener el maximo beneficio de la energia consumida y de las instalaciones necesarias para su generacion, transmision y utilizacion. Garantizando a los usuarios un funcionamiento sin interferencias o interrupciones. La electricidad en corriente alterna no permite su almacenamiento, por lo que es necesario generarla y distribuirla en el momento preciso en que es requerida. Esto obliga a dimensionar las instalaciones de generacion, para poder alimentar los periodos de maxima demanda llamados pico. Desde esta parte inicia el problema de la mala utilizacion de la energia electrica. Ya que en los periodos de baja demanda, las instalaciones se encuentran subutilizadas y si su eficiencia es muy baja, el desperdicio de

11. Effects of motor imagery combined with functional electrical stimulation on upper limb motor function of patients with acute ischemic stroke

Directory of Open Access Journals (Sweden)

Shou-feng LIU

2015-03-01

Full Text Available Objective To explore the effects of motor imagery (MI combined with the third generation functional electrical stimulation (FES on upper limb motor function in acute ischemic stroke patients with hemiplegia.  Methods Forty acute ischemic stroke patients, within 48 h of onset, were randomly divided into FES group (N = 20 and combination group (FES combined with motor imagery, N = 20. All patients received basic routine rehabilitation training, for example, good limb positioning, accepting braces, balance training and training in the activities of daily living (ADL. FES group received the third generation FES therapy and the combination group also received motor imagery for 2 weeks. All of the patients were assessed with Fugl-Meyer Assessment (FMA, Action Research Arm Test (ARAT and active range of motion (AROM of wrist dorsiflexion before and after 2 weeks of treatment.  Results After 2 weeks of treatment, the 2 groups had significantly higher FMA score, ARAT score and AROM of wrist dorsiflexion than that in pre-treatment (P = 0.000, for all. Besides, the FMA score (t = - 2.528, P = 0.016, ARAT score (t = - 2.562, P = 0.014 and AROM of wrist dorsiflexion (t = - 2.469, P = 0.018 in the combination group were significantly higher than that in the FES group. There were interactions of treatment methods with observation time points (P < 0.05, for all.  Conclusions Motor imagery combined with the third generation FES can effectively promote the recovery of upper limb motor function and motion range of wrist dorsiflexion in patients with acute ischemic stroke. DOI: 10.3969/j.issn.1672-6731.2015.03.008

12. Modal Analysis of In-Wheel Motor-Driven Electric Vehicle Based on Bond Graph Theory

Directory of Open Access Journals (Sweden)

Di Tan

2017-01-01

Full Text Available A half-car vibration model of an electric vehicle driven by rear in-wheel motors was developed using bond graph theory and the modular modeling method. Based on the bond graph model, modal analysis was carried out to study the vibration characteristics of the electric vehicle. To verify the effectiveness of the established model, the results were compared to ones computed on the ground of modal analysis and Newton equations. The comparison shows that the vibration model of the electric vehicle based on bond graph theory not only is able to better compute the natural frequency but also can easily determine the deformation mode, momentum mode, and other isomorphism modes and describe the dynamic characteristics of an electric vehicle driven by in-wheel motors more comprehensively than other modal analysis methods.

13. FEATURES OF ELECTRIC MOTOR CHOICE FOR NUCLEAR POWER PLANT TECHNOLOGICAL OBJECTS

Directory of Open Access Journals (Sweden)

V.V. Shevchenko

2013-06-01

Full Text Available Nuclear power plants remain the basic power generating enterprises for Ukraine. Execution of works on their reliability control and operating conditions optimization is therefore of current importance. Trouble-free nuclear power plant operation is a vital technical, economical, and ecological problem, a solution to which is largely specified by reliable operation of electric equipment, namely, electric motors of nuclear power plant technological process drives.

14. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

Science.gov (United States)

Shipps, P. R.

1980-01-01

A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

15. Development of advanced winding condition control technology of electric motors based on pulsed method

Directory of Open Access Journals (Sweden)

Alexey V. Mytnikov

2017-09-01

Full Text Available More than 80 percent of all electrical energy customers are electric motors. Therefore one of the prospects of resource-effective technologies in power industry is control of rotating electric equipment condition. Winding defects are one of the main causes of electric motor failures. Reliable control of winding condition is an urgent task of modern electrical engineering technology. The present article is devoted to the research of pulsed method application of transformer winding control for electric motor winding condition control. The procedure of winding condition control technology is described. The proposed method is based on the known pulsed method. The essential difference between the two methods is that only one probing impulse is used which is a probing impulse and response signal at once. The results of diagnostic procedure research at different winding defects are given. It is established that the place of winding damage corresponds to characteristic impulse changes. The defect of definite types causes specific changes of the probing impulse form. Therefore, different winding defects could be found with high accuracy along winding.

16. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia.

Science.gov (United States)

Knutson, Jayme S; Fu, Michael J; Sheffler, Lynne R; Chae, John

2015-11-01

This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described, and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized. Copyright © 2015 Elsevier Inc. All rights reserved.

17. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

Science.gov (United States)

Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

2012-04-01

The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

18. Motor stator using corner scraps for additional electrical components

Science.gov (United States)

Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

2004-03-16

A method for making a motor and auxiliary devices with a unified stator body comprises providing a piece of material (10) having an area larger than a cross section of the stator (11), removing material from the piece of material (10) to form a pattern for a cross section of a core (11) for the stator, and removing material from the piece of material (10) outside the cross section of the core of the stator (11) to allow positioning of cores (22, 23, 24) for supporting windings (25, 26, 27) of least one additional electromagnetic device, such as a transformer (62) in a dc-to-dc converter (61, 62) that provides a low. voltage dc output. An article of manufacture made according to the invention is also disclosed and apparatus made with the method and article of manufacture are also disclosed.

19. 75 FR 17036 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction

Science.gov (United States)

2010-04-05

... CONTACT: James Raba, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Motors; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... and Renewable Energy published a final rule titled ``Energy Conservation Standards for Small Electric...

20. 10 CFR Appendix A to Subpart U of... - Sampling Plan for Enforcement Testing of Electric Motors

Science.gov (United States)

2010-01-01

... 10 Energy 3 2010-01-01 2010-01-01 false Sampling Plan for Enforcement Testing of Electric Motors A Appendix A to Subpart U of Part 431 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... mean energy efficiency of the first sample (X 1) is equal to or greater than the lower control limit...

1. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, INSTRUCTOR'S GUIDE.

Science.gov (United States)

SUTTON, MACK C.

THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND STEP-BY-STEP SOLUTIONS OF THE…

2. Predictive Model Based Battery Constraints for Electric Motor Control within EV Powertrains

NARCIS (Netherlands)

Roşca, B.; Wilkins, S.; Jacob, J.; Hoedemaekers, E.R.G.; Hoek, S.P. van den

2014-01-01

This paper presents a method of predicting the maximum power capability of a Li-Ion battery, to be used for electric motor control within automotive powertrains. As maximum power is highly dependent on battery state, the method consists of a pack level state observer coupled with a predictive

3. 75 FR 10873 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors

Science.gov (United States)

2010-03-09

...-Standard Horsepower and Kilowatt Ratings i. Summary 2. Product Classes B. Screening Analysis C. Engineering... Period Analysis 1. Installation Cost 2. Energy Prices 3. Energy Price Trend 4. Maintenance and Repair... program for ``Certain Industrial Equipment,'' which includes small electric motors, the subject of this...

4. COOPERATIVE MODE OF ELECTRIC MOTOR AND INTERNAL COMBUSTION ENGINE OPERATION IN THE CONVERSION HYBRID CAR

Directory of Open Access Journals (Sweden)

2016-12-01

Full Text Available In the given article the authors proposed a method to control the car, which is converted into a hybrid one. The electric motor and combustion engine operate alternately in the car. They proposed a device for implementing this method and a circuit design for the device in question. They also calculated the dynamics of the vehicle under the joint acceleration.

5. 77 FR 43015 - Energy Conservation Standards for Commercial and Industrial Electric Motors: Public Meeting and...

Science.gov (United States)

2012-07-23

...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC28 Energy Conservation Standards for Commercial and... commercial and industrial electric motors under section 342(b) of the Energy Policy and Conservation Act (EPCA), as amended; the analytical framework, models, and tools that DOE plans to use to evaluate...

6. Graphical User Interface Aided Online Fault Diagnosis of Electric Motor - DC motor case study

OpenAIRE

POSTALCIOGLU OZGEN, S.

2009-01-01

This paper contains graphical user interface (GUI) aided online fault diagnosis for DC motor. The aim of the research is to prevent system faults. Online fault diagnosis has been studied. Design of fault diagnosis has two main levels: Level 1 comprises a traditional control loop; Level 2 contains knowledge based fault diagnosis. Fault diagnosis technique contains feature extraction module, feature cluster module and fault decision module. Wavelet analysis has been used for the feature extract...

7. A thermal and electrical dynamic mathematical model for squirrel cage induction motors; Modelamento matematico dinamico termico e eletrico de motores de inducao

Energy Technology Data Exchange (ETDEWEB)

Sousa, Ronaldo Martins de

1996-01-01

A thermal and electrical dynamic mathematical model for squirrel cage induction motors is presented. The electrical model is described by Park equation and the torque equation, while the thermal model is described by a system of four first order differential equations that represent the motor heat transfer process. The model presented can be used to determine thermal and electrical performance for any operation condition. However, it is suitable mainly for machines operating under continuously transient condition. The presented mathematical model also incorporate variation of rotor winding electrical parameters due to skin effect. (author)

8. Design of a high-torque machine with two integrated motors axes reducing the electric vehicle consumption

Directory of Open Access Journals (Sweden)

M. Chaieb

2008-03-01

Full Text Available The motorization of electric vehicle needs to work at a constant power on a wide range of speed. In order to be able to satisfy these requirements, we describe in this paper a solution, which consists in modifying of a simple structure of a permanent magnet motor by a double rotor structure integrating two motor axes into the same machine. This article describes, then, a design methodology of a permanent magnet motor with double rotor, radial flux, and strong starting torque for electric vehicles. This work consists on the analytical dimensioning of the motor by taking into account several operation constraints followed by a modelling by the finite elements method. This study is followed by the comparison between this motor and a motor with one rotor. A global model of the motor- converter is developed for the purpose to answer several optimisation problems

9. Chemical Partitioning and Resultant Effects on Structure and Electrical Properties in Co-Containing Magnetic Amorphous Nanocomposites for Electric Motors

Science.gov (United States)

DeGeorge, Vincent G.

The chemical partitioning of Cobalt-containing soft magnetic amorphous and nanocomposite materials has been studied with particular focus on its consequences on these materials' nanostructure and electrical resistivity. Theory, models, and discussion in this regard are presented on this class of materials generally, and are detailed in particular on alloys of composition, (Fe65Co35)79.5+xB13Si2Nb4-xCu1.5, for X={0-4at%}, and Co-based, Co76+YFe4Mn4-YB14Si2Nb4, for Y={0-4at%}. The context of this work is within the ongoing efforts to integrate soft magnetic metal amorphous and nanocomposite materials into electric motor applications by leveraging material properties with motor topology in order to increase the electrical efficiency and decrease the size, the usage of rare-earth permanent magnets, and the power losses of electric motors. A mass balance model derived from consideration of the partitioning of glass forming elements relates local composition to crystal state in these alloys. The 'polymorphic burst' onset mechanism and a Time-Temperature-Transformation diagram for secondary crystallization are also presented in relation to the partitioning of glass forming elements. Further, the intrinsic electrical resistivity of the material is related to the formation of virtual bound states due to dilute amounts of the glass forming elements. And lastly, a multiphase resistivity model for the effective composite resistivity that accounts for the amorphous, crystalline, and glass former-rich amorphous regions, each with distinct intrinsic resistivity, is also presented. The presented models are validated experimentally on the Co-containing alloys by Atom Probe Tomography performed through collaboration with Pacific Northwestern National Laboratory.

10. Qualification of electric motors class 1E for supply of motors and its repair; Calificacion de motores electricos clase 1E para el suministro de motores alternativos a los orginales y su reparacion

Energy Technology Data Exchange (ETDEWEB)

Perez, E.; Gonzalez, J. J.; Fernandez, A.; Garcia, D.

2005-07-01

Different original suppliers of nuclear grade equipment have either disappeared or discontinued the manufacture of this kind equipment. Under this situation nuclear plants are experiencing difficulties when dealing with the substitution or maintenance of these equipment. Tecnatom and Cantarey have developed a new line of Class 1E qualified electric low voltage motors which can be used as an alternative to originally installed safety-related motors or for its repair and maintenance. (Author)

11. System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System

Directory of Open Access Journals (Sweden)

Chengming Zhang

2017-12-01

Full Text Available To improve the endurance mileage of electric vehicles (EVs, it is important to decrease the energy consumption of the Permanent Magnet Synchronous Motor (PMSM drive system. This paper proposes a novel loss optimization control strategy named system efficiency improvement control which can optimize both inverter and motor losses. A nonlinear power converter loss model is built to fit the nonlinear characteristics of power devices. This paper uses double Fourier integral analysis to analytically calculate the fundamental and harmonic components of motor current by which the fundamental motor loss and harmonic motor loss can be accurately analyzed. From these loss models, a whole-frequency-domain system loss model is derived and presented. Based on the system loss model, the system efficiency improvement control method applies the genetic algorithm to adjust the motor current and PWM frequency together to optimize the inverter and motor losses by which the system efficiency can be significantly improved without seriously influence on the system stability over the whole operation range of EVs. The optimal effects of system efficiency is verified by the experimental results in both Si-IGBT-based PMSM system and SiC-MOSFET-based system.

12. Control Algorithms of Propulsion Unit with Induction Motors for Electric Vehicle

Directory of Open Access Journals (Sweden)

PALACKY, P.

2014-05-01

Full Text Available The article deals with the research of algorithms for controlling electronic differential and differential lock of an electrically driven vehicle. The simulation part addresses the development of algorithms suitable for the implementation into a real system of a road vehicle. The algorithms are then implemented into a vehicle, a propulsion unit of which is consists of two separate electric drives with induction motors fed by voltage inverters with own control units using advanced signal processors. Communication among control units is provided by means of SPI interface. A method of vector control is used for the control of induction motors. The developed algorithms are experimentally verified for correct function in a laboratory using a roll test stand and while driving an electrically driven vehicle on the road.

13. Industry agreement on efficient electrical motors; Industrievereinbarung im Effizienzbereich Motoren (eff1, eff2, eff3)

Energy Technology Data Exchange (ETDEWEB)

Schnyder, G. [Schnyder Ingenieure AG, Huenenberg (Switzerland)

2004-07-01

This comprehensive final report presents the results of a project carried out on behalf of the Swiss Federal Office of Energy (SFOE) and the Swiss Automation Pool (SAP) concerning the efficiency of electrical drives. The main goal of the project was to conclude a target agreement between the federal government and the Swiss electric motors/drives industry. This involves the promotion of the highest, 'eff1' energy-efficiency category of the three categories defined by the European Committee of Manufacturers of Electrical Machines and Power Electronics (CEMP). The report presents the findings of the project and recommends the banning of the use of motors in the lowest, 'eff3' category. Comparisons are made between the CEMP standards and further standards and promotion programmes in the USA and in Great Britain. Associated measures to be taken to aid the promotion of the drive standard are discussed.

14. Study and review of permanent magnets for electric vehicle propulsion motors

Science.gov (United States)

Strnat, K. J.

1983-01-01

A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.

15. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle

Science.gov (United States)

Jiang, Chao; Qiao, Mingzhong; Zhu, Peng

2017-12-01

A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

16. Variable-reluctance motor drives for electric vehicle propulsion

Science.gov (United States)

Lang, J. H.; Vallese, F. J.

1985-05-01

A methodology is presented for the design of a variable reluctance motor drive having high specific torque, power output and efficiency. Models are developed that describe the magnetic terminal relations of the VRM. These models are based on a flux-tube analysis that is motivated by numerically obtained finite-difference magnetic simulations. The result is a model for the flux-linkage/phase-current characteristic of the VRM. Intrinsic to this model is the estimation of maximum and minimum inductance as well the incremental inductance during bulk saturation. Also fundamental is the behavior of the flux linkage during local pole-tip saturation and due to bulk core saturation. The drive-oriented treatment of modelling and design uncovered important design interactions between the VRM, its inverter, and its excitation. The experimental 3.8-kW drive operated as expected, verifying the models and the design optimizations developed for VRM drives. These experimental results were projected to the 60-kW level, indicating that a 60-kW drive could be constructed with a VRM having a mass of approximately 65 kg, and an efficiency in excess of 95% at and below peak power output.

17. A new two-phase homopolar switched reluctance motor for electric vehicle applications

Science.gov (United States)

Tsai, Mi-Ching; Huang, Chien-Chin; Huang, Zheng-Yi

2003-12-01

This paper presents a novel 2-phase homopolar switched reluctance motor (SRM), whose design successfully avoids dead-zone problems that afflict low cost 1- and/or 2-phase SRMs. Unlike conventional radial-winding-radial-gap motors, the proposed SRM has an interior stator that is of the pancake type with axial winding. Such a design allows for a high slot-fill factor and is suitable for implementation as a flat pancake-shaped stator. An efficient, compact prototype was produced with TMS320F240 DSP driving control unit. Experimental results indicate that the present SRM design has the potential to be used for electric bicycles and scooters.

18. Effects of coil orientation on the electric field induced by TMS over the hand motor area.

Science.gov (United States)

Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

2014-01-06

Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field).

19. Fluid electrodes for submersible robotics based on dielectric elastomer actuators

Science.gov (United States)

Christianson, Caleb; Goldberg, Nathaniel; Cai, Shengqiang; Tolley, Michael T.

2017-04-01

Recently, dielectric elastomer actuators (DEAs) have gathered interest for soft robotics due to their low cost, light weight, large strain, low power consumption, and high energy density. However, developing reliable, compliant electrodes for DEAs remains an ongoing challenge due to issues with fabrication, uniformity of the conductive layer, and mechanical stiffening of the actuators caused by conductive materials with large Young's moduli. In this work, we present a method for preparing, patterning, and utilizing conductive fluid electrodes. Further, when we submerse the DEAs in a bath containing a conductive fluid connected to ground, the bath serves as a second electrode, obviating the need for depositing a conductive layer to serve as either of the electrodes required of most DEAs. When we apply a positive electrical potential to the conductive fluid in the actuator with respect to ground, the electric field across the dielectric membrane causes charge carriers in the solution to apply an electrostatic force on the membrane, which compresses the membrane and causes the actuator to deform. We have used this process to develop a tethered submersible robot that can swim in a tank of saltwater at a maximum measured speed of 9.2 mm/s. Since saltwater serves as the electrode, we overcome buoyancy issues that may be a challenge for pneumatically actuated soft robots and traditional, rigid robotics. This research opens the door to low-power underwater robots for search and rescue and environmental monitoring applications.

20. Comparative analysis of energy economy among different types of electric motor driving; Analise comparativa de economia de energia entre diferentes tipos de acionamento de motores electricos

Energy Technology Data Exchange (ETDEWEB)

Silva, Marcelo Santos da; Oliveira, Carlos Henrique, e-mails: mcelo_sant@ig.com.br; caique1979@yahoo.com.br; Albuquerque, Carlos Jesivan Marques; Fortes, Marcio Zamboti [Universidade Severino Sombra (USS), Vassouras, RJ (Brazil)], e-mails: cjesivan@uss.br; mzamboti@uss.br

2008-07-01

The application of controlled drives loads of small power can cause undesirable disturbances for electrical installations, but it brings some benefits when comparing the energy consumption that this application has on its regular period of operation. This study analyses using comparatives, the electrical economy using the different types of drives for three phase electric induction motors of low voltage. Running up tests on the test bench didactic, the inverter drives, soft starter and contactor switch were analyzed for different loads (motor without load, 50% and 100% load), rating in S1 and S4. (author)

1. Graphical User Interface Aided Online Fault Diagnosis of Electric Motor - DC motor case study

Directory of Open Access Journals (Sweden)

POSTALCIOGLU OZGEN, S.

2009-10-01

Full Text Available This paper contains graphical user interface (GUI aided online fault diagnosis for DC motor. The aim of the research is to prevent system faults. Online fault diagnosis has been studied. Design of fault diagnosis has two main levels: Level 1 comprises a traditional control loop; Level 2 contains knowledge based fault diagnosis. Fault diagnosis technique contains feature extraction module, feature cluster module and fault decision module. Wavelet analysis has been used for the feature extraction module. For the feature cluster module, fuzzy cluster has been applied. Faults effects are examined on the system using statistical analysis. In this study Fault Diagnosis technique obtains fault detection, identification and halting the system. In the meantime graphical user interface (GUI is opened when fault is detected. GUI shows the measurement value, fault time and fault type. This property gives some information about the system to the personnel. As seen from the simulation results, faults can be detected and identified as soon as fault appears. In summary, if the system has a fault diagnosis structure, system dangerous situations can be avoided.

2. Control of a Dual-Stator Flux-Modulated Motor for Electric Vehicles

Directory of Open Access Journals (Sweden)

Xinhua Guo

2016-07-01

Full Text Available This paper presents the control strategies for a novel dual-stator flux-modulated (DSFM motor for application in electric vehicles (EVs. The DSFM motor can be applied to EVs because of its simple winding structure, high reliability, and its use of two stators and rotating modulation steels in the air gap. Moreover, it outperforms conventional brushless doubly-fed machines in terms of control performance. Two stator-current-oriented vector controls with different excitation in the primary winding, direct and alternating current excitation, are designed, simulated, and evaluated on a custom-made DSFM prototype allowing the decoupled control of torque. The stable speed response and available current characteristics strongly validate the feasibility of the two control methods. Furthermore, the proposed control methods can be employed in other applications of flux-modulated motors.

3. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

Energy Technology Data Exchange (ETDEWEB)

Rogers, Susan A. [Dept. of Energy (DOE), Washington DC (United States). Vehicle Technologies Office

2014-02-01

The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

4. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

Energy Technology Data Exchange (ETDEWEB)

Rogers, Susan A. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

2011-01-01

The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

5. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

Science.gov (United States)

Jeon, Namju; Lee, Hyeongcheol

2016-01-01

An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

6. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

Directory of Open Access Journals (Sweden)

Namju Jeon

2016-12-01

Full Text Available An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

7. Motor Skill Acquisition and Retention after Somatosensory Electrical Stimulation in Healthy Humans

Directory of Open Access Journals (Sweden)

Menno Pieter Veldman

2016-03-01

Full Text Available Somatosensory electrical stimulation (SES can increase motor performance, presumably through a modulation of neuronal excitability. Because the effects of SES can outlast the period of stimulation, we examined the possibility that SES can also enhance the retention of motor performance, motor memory consolidation, after 24 hours (Day 2 and 7 days (Day 7, that such effects would be scaled by SES duration, and that such effects were mediated by changes in aspects of corticospinal excitability, short-interval intracortical inhibition (SICI, and intracortical facilitation (ICF. Healthy young adults (n = 40 received either 20 (SES-20, 40 (SES-40, or 60 minutes (SES-60 of real SES, or sham SES (SES-0. The results showed SES-20 increased visuomotor performance on Day 2 (15% and Day 7 (17% and SES-60 increased visuomotor performance on Day 7 (11%; all p < 0.05 compared with SES-0. Specific responses to transcranial magnetic stimulation (TMS increased immediately after SES (p < 0.05 but not on Days 2 and 7. In addition, changes in behavioral and neurophysiological parameters did not correlate, suggesting that paths and structures other than the ones TMS can assay must be (also involved in the increases in visuomotor performance after SES. As examined in the present study, low-intensity peripheral electrical nerve stimulation did not have acute effects on healthy adults’ visuomotor performance but SES had delayed effects in the form of enhanced motor memory consolidation that were not scaled by the duration of SES.

8. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

Science.gov (United States)

Jeon, Namju; Lee, Hyeongcheol

2016-12-12

An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

9. Simulation and Implementation of Sensorless Control in Multi-Motors Electric Drives with High Dynamics

Directory of Open Access Journals (Sweden)

Marcel Nicola

2017-05-01

Full Text Available In this article we’ll tackle the control of multi-motors electric drives with high dynamic, with rapid changes in torque and speed, with rigid or flexible coupling of motors, where the control strategy is FOC (Field Oriented Control for each drives and the distributed control in local network using the CANopen protocol. In the surface mining industry, from which the electric drive application for this article is selected, the general trend is toward using asynchronous motors with short-circuit rotor, due to the advantages of this motor both in terms of design and operation. In order to achieve the variable speed, must be used the static frequency converters with sensorless control, where speed is estimated using a Model References Adaptive Control Estimator. The global control system proposed in this paper contain this type of MRAC estimator together with PI-control based, who ensures a good dynamic performance but in a lower complexity of structure such that are properly to implement in real time in a distributed control system with DSP in local network using the CANopen protocol with advantages in terms of software technology, as well as control cost and flexibility of use. Following these directions a functional application was implemented and tested in practice.

10. Theoretical Vibration Analysis Regarding Excitation due to Elliptical Shaft Journals in Sleeve Bearings of Electrical Motors

OpenAIRE

Ulrich Werner

2012-01-01

This paper shows a theoretical vibration analysis regarding excitation due to elliptical shaft journals in sleeve bearings of electrical motors, based on a simplified rotordynamic model. It is shown that elliptical shaft journals lead to kinematic constraints regarding the movement of the shaft journals on the oil film of the sleeve bearings and therefore to an excitation of the rotordynamic system. The solution of the linear differential equation system leads to the mathematical description ...

11. Fuzzy controllers in the control system of a brushless electric motor using HIL technology

Directory of Open Access Journals (Sweden)

2017-01-01

Full Text Available This article proposes a method for creation of a control system for a brushless electric motor based on a fuzzy logic apparatus. The use of a fuzzy controller in this case can increase stability and improve the quality of the system under consideration, which was implemented in the Simulink environment using HIL technology. This technology increases the chances of successfully passing the test phase, considering the control system in prototype.

12. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

Science.gov (United States)

Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

2017-01-01

The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

13. RATIONAL MODES DETERMINATION OF TRACTION MOTORS LOADING-BACK FOR ELECTRIC ROLLING STOCK IN MAINLINE AND INDUSTRIAL TRANSPORT

Directory of Open Access Journals (Sweden)

A. M. Afanasov

2014-05-01

14. Artificial motor control for electrically stimulated upper limbs of plegic or paretic people

Directory of Open Access Journals (Sweden)

Elgison da Luz dos Santos

Full Text Available Introduction: Functional Electrical Stimulation (FES is a technique used in the restoration and generation of movements performed by subjects with neuromuscular disorders such as spinal cord injury (SCI. The purpose of this article is to outline the state of the art and perspectives of the use of FES in artificial motor control of the upper limbs in paretic or plegic people. Methods The databases used in papers selection were Google Scholar and Capes’ Portals as well as proceedings of the Annual Conference of the International Functional Electrical Stimulation Society (IFESS. Results Approximately 85% of the reviewed studies showed FES profile with pulse duration ranging from 1 to 300 μs and modulating (burst frequency between 10 and 40 Hz. Regarding the type of electrodes, 88% of the studies employed transcutaneous electrodes. Conclusion We concluded that FES with closed-loop feedback and feedforward are the most used and most viable systems for upper limbs motor control, because they perform self-corrections slowing neuromuscular adaptation, allowing different planes and more range of movement and sensory-motor integration. One of the difficulties found in neuroprosthesis systems are electrical wires attached to the user, becoming uninteresting in relation to aesthetics and break. The future perspectives lead to a trend to miniaturization of the stimulation equipment and the availability of wireless networks, which allow the attachment of modules to other components without physical contact, and will become more attractive for daily use.

15. Characteristics of particulate matter emissions from toy cars with electric motors.

Science.gov (United States)

Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

2015-04-01

Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

16. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

Energy Technology Data Exchange (ETDEWEB)

McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

1997-12-31

Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

17. Somatosensory Electrical Stimulation Does Not Augment Motor Skill Acquisition and Intermanual Transfer in Healthy Young Adults - A Pilot Study

NARCIS (Netherlands)

Négyesi, János; Veldman, Menno P; Berghuis, Kelly M M; Javet, Marie; Tihanyi, József; Hortobágyi, Tibor

2017-01-01

Sensory input can modify motor function and magnify interlimb transfer. We examined the effects of low-intensity somatosensory electrical stimulation (SES) on motor practice-induced (MP) skill acquisition and intermanual transfer. Participants practiced a visuomotor skill for 25 minutes and received

18. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

NARCIS (Netherlands)

Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

1999-01-01

Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

19. The Submersible Threat to Maritime Homeland Security

Science.gov (United States)

2013-09-01

research would be how the HSE could possibly utilize small submersibles to enhance HS through such activities as using remotely operated subs to conduct...1 C. RESEARCH QUESTION AND METHODOLOGY ...................................4 D. SIGNIFICANCE TO THE FIELD...Technology ...................................................66 C. RECOMMENDATIONS FOR FUTURE RESEARCH .............................68 D. CONCLUSION

20. REDUNDANT ELECTRIC MOTOR DRIVE CONTROL UNIT DESIGN USING AUTOMATA-BASED APPROACH

Directory of Open Access Journals (Sweden)

Yuri Yu. Yankin

2014-11-01

Full Text Available Implementation of redundant unit for motor drive control based on programmable logic devices is discussed. Continuous redundancy method is used. As compared to segregated standby redundancy and whole system standby redundancy, such method provides preservation of all unit functions in case of redundancy and gives the possibility for continuous monitoring of major and redundant elements. Example of that unit is given. Electric motor drive control channel block diagram contains two control units – the major and redundant; it also contains four power supply units. Control units programming was carried out using automata-based approach. Electric motor drive control channel model was developed; it provides complex simulation of control state-machine and power converter. Through visibility and hierarchy of finite state machines debug time was shortened as compared to traditional programming. Control state-machine description using hardware description language is required for its synthesis with FPGA-devices vendor design software. This description was generated automatically by MATLAB software package. To verify results two prototype control units, two prototype power supply units, and device mock-up were developed and manufactured. Units were installed in the device mock-up. Prototype units were created in accordance with requirements claimed to deliverable hardware. Control channel simulation and tests results in the perfect state and during imitation of major element fault are presented. Automata-based approach made it possible to observe and debug control state-machine transitions during simulation of transient processes, occurring at imitation of faults. Results of this work can be used in development of fault tolerant electric motor drive control channels.

1. Adaptive regenerative braking for electric vehicles with an electric motor at the front axle using the state dependent Riccati equation control technique

NARCIS (Netherlands)

Jansen, S.; Alirezaei, M.; Kanarachos, S.

2014-01-01

In this paper a novel adaptive regenerative braking control concept for electric vehicles with an electric motor at the front axle is presented. It is well known that the "phased" type regenerative braking systems of category B maximize the amount of regenerative energy during braking. However,

2. Somatotopic organization of the white matter tracts underpinning motor control in humans: an electrical stimulation study.

Science.gov (United States)

Rech, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

2016-09-01

The somatotopic organization of the primary motor cortex is well documented. However, a possible somatotopy of the network involved in motor control, i.e., eliciting negative motor phenomena during electrostimulation, is unknown in humans, particularly at the subcortical level. Here, we performed electrical stimulation mapping in awake patients operated for gliomas, to study the distribution of the white matter tracts subserving movement control of the lower limb, upper limb(s), and speech. Eighteen patients underwent awake surgery for frontal low-grade gliomas, by using intraoperative subcortical electrostimulation mapping to search interference with movement of the leg, arm(s), and face. We assessed the negative motor responses and their distribution throughout the tracts located under premotor areas. The corresponding stimulation sites were reported on a standard brain template for visual analysis and between-subjects comparisons. During stimulation of the white matter underneath the dorsal premotor cortex and supplementary motor area, rostral to the corticospinal tracts, all patients experienced cessation of the movement of lower and upper limbs, of bimanual coordination, and/or speech. These subcortical sites were somatotopically distributed. Indeed, stimulation of the fibers from mesial to lateral directions and from posterior to anterior directions evoked arrest of movement of the lower limb (mesially and posteriorly), upper limb(s), and face/speech (laterally and anteriorly). There were no postoperative permanent deficits. This is the first evidence of a somatotopic organization of the white matter bundles underpinning movement control in humans. A better knowledge of the distribution of this motor control network may be helpful in neurosciences and neurosurgery.

3. The optimization of electric motors repair techniques as a mean for electric energy saving; La optimizacion de las tecnicas de reparacion de motores electricos como un medio para ahorrar energia electrica

Energy Technology Data Exchange (ETDEWEB)

Zagal Leon, Juan Ruben [Fideicomiso para el Ahorro de Energia Electrica (FIDE), Mexico, D. F. (Mexico)

1998-12-31

This paper presents, in a very concise, which are the techniques to optimize the electric motors repair made by the Fideicomiso para el Ahorro de Energia Electrica (FIDE), the loss of efficiency that might exist after repairing an electric motor, as well as the procedures to perform an optimum reparation of the electric motors. Furthermore, some recommendations are given for the selection of an adequate rewinding shop to guarantee that the motor does not suffer efficiency losses after its repair. [Espanol] Este trabajo presenta, de manera muy concreta, cuales son las tecnicas para optimizar las tecnicas de reparacion de motores electricos realizado por el Fideicomiso para el Ahorro de Energia Electrica (FIDE), el nivel de perdida de eficiencia que puede existir despues de reparar un motor electrico, asi como los procedimientos para realizar una optima reparacion en motores electricos. Asimismo, se proporcionan algunas recomendaciones para seleccionar un taller de reembobinado adecuado para garantizar que el motor no sufra perdidas de eficiencia despues de su reparacion.

4. Investigation of Heat Loss from the Finned Housing of the Electric Motor of a Vacuum Pump

Directory of Open Access Journals (Sweden)

Jacek Wernik

2017-11-01

Full Text Available Investigation of the heat transfer by conduction and convection through a finned housing of an electric motor rated 373 W operated in the drive unit of a vacuum pump was carried out. As the speed is changed, so is the velocity of air flow, and consequently, the coefficient of heat transfer across the housing surface is changed too. To predict the values of the average heat transfer coefficient and to determine the heat flow that was dissipated at variable motor speed is a complex task, for which no reliable tools can be found in the literature. Using finite element approximation, the heat transfer was numerically simulated and the temperature distribution on the housing surface was determined. In order to validate the simulation model, an experimental set-up was assembled, including the vacuum pump complete with its driving unit, that is, electrical motor and frequency converter, and FLIR SC7600 thermovision camera. Using the validated simulation model, the heat flux transferred through the housing to the environment and the share of heat dissipation in the power consumed by the vacuum pump drive was determined. The combination of numerical simulation and thermographic measurements is an effective tool.

5. RBFN Based Efficiency Optimization Method of Induction Motor Utilized in Electrically Driven Marine Propellers

Science.gov (United States)

Thruster controllers of electric propulsion system with fixed pitch propellers are conventionally aimed to control only the shaft speed without utilizing the capabilities of the controllers to apply any other control strategies. In fact, the dynamic operating conditions lead to the fluctuation of motor load. For this reason, utilizing conventional controllers is hard enough due to the critical constraints and limitation of the ship power source. The paper presents study and analysis of efficiency optimization strategy in thruster shaft speed controllers driven by induction motor. The control strategy based on intelligent method called radial basis function neural network (RBFN) is implemented. A set of training data derived from a loss model controller of the induction motor working under indirect field-oriented-control (IFOC) drives is used for training process of RBFN. The loss model controller utilizes schematically the flux generating current as controlling variable. Estimation of the flux generating current through the RBFN process shows significant improvement in motor efficiency especially for low speed and ship transit system.

6. Development of BLDC Electric Motor Control System In Hydraulic Servo Drive Based on Variable Hydrostatic Transmission

Directory of Open Access Journals (Sweden)

O. I. Tarasov

2014-01-01

Full Text Available Modern robotic systems require the use of servo drives. Owing to encoder and negative feedback these drives ensure highly accurate motion parameters. In case of autonomous systems drives must also have high power characteristics. Moreover, in most cases, it was impossible to select the motor so that the speed and torque on its shaft were in compliance with those of required by the actuator. To match these parameters different types of reducers are used. The article justifies and considers a selection criterion of the gear ratios for such transmission. For clarity, there is an example of selecting a motor and a gear for above transmission, taking into account the proposed criterion. In addition, the article discusses the advantages of using hydrostatic transmission in the drive, which monitors the angular position of the output level, in comparison with a mechanical gearbox. Due to the fact that, at the moment, BLDC motors have the best power characteristics, such a servo drive requires a special control system that will take into account the features of variable hydrostatic transmission and electric BLDC motor. Therefore, the paper proposes a structure of such a system and set out the principles of its construction. Various embodiments of sensor types that may be used in this system and their installation scheme explained.

7. Motor Skill Acquisition and Retention after Somatosensory Electrical Stimulation in Healthy Humans.

Science.gov (United States)

Veldman, Menno P; Zijdewind, Inge; Maffiuletti, Nicola A; Hortobágyi, Tibor

2016-01-01

Somatosensory electrical stimulation (SES) can increase motor performance, presumably through a modulation of neuronal excitability. Because the effects of SES can outlast the period of stimulation, we examined the possibility that SES can also enhance the retention of motor performance, motor memory consolidation, after 24 h (Day 2) and 7 days (Day 7), that such effects would be scaled by SES duration, and that such effects were mediated by changes in aspects of corticospinal excitability, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Healthy young adults (n = 40) received either 20 (SES-20), 40 (SES-40), or 60 min (SES-60) of real SES, or sham SES (SES-0). The results showed SES-20 increased visuomotor performance on Day 2 (15%) and Day 7 (17%) and SES-60 increased visuomotor performance on Day 7 (11%; all p stimulation (TMS) increased immediately after SES (p stimulation did not have acute effects on healthy adults' visuomotor performance but SES had delayed effects in the form of enhanced motor memory consolidation that were not scaled by the duration of SES.

8. Acceleration Slip Regulation Strategy for Distributed Drive Electric Vehicles with Independent Front Axle Drive Motors

Directory of Open Access Journals (Sweden)

Lingfei Wu

2015-05-01

Full Text Available This paper presents an acceleration slip regulation strategy for distributed drive electric vehicles with two motors on the front axle. The tasks of the strategy include controlling the slip ratio to make full use of the road grip and controlling the yaw rate to eliminate the lateral movement due to the difference between motor torques. The rate of the slip ratio change can be controlled by controlling the motor torque, so that the slip ratio can be controlled by applying a proportional-integral control strategy to control the rate of the slip ratio change. The yaw rate can be controlled to almost zero by applying torque compensation based on yaw rate feedback. A coordination control strategy for the slip ratio control and yaw rate control is proposed based on analysis of the priorities and features of the two control processes. Simulations were carried out using MATLAB/Simulink, and experiments were performed on a hardware-in-loop test bench with actual motors. The results of the simulations and experiments showed that the proposed strategy could improve the longitudinal driving performance and straight line driving stability of the vehicle.

9. Restoration of gait and motor recovery by functional electrical stimulation therapy in persons with stroke.

Science.gov (United States)

Sabut, Sukanta K; Sikdar, Chanda; Mondal, Ramkrishna; Kumar, Ratnesh; Mahadevappa, Manjunatha

2010-01-01

To evaluate the clinical efficacy of functional electrical stimulation (FES) therapy of the tibialis anterior (TA) muscle on gait restoration and enhancing motor recovery with stroke patients. Thirty hemiparetic participants with spastic foot-drop impairments who were at least 3 months post-stroke were recruited from a rehabilitation institute and were assigned either to a control group or a FES group. Both the groups participated in a conventional stroke rehabilitation program for 60 min per day, 5 days a week, for 12-weeks. The FES group received the electrical stimulation to the TA muscle for correction of foot-drop. Functional electric stimulation (FES) resulted in a 26.3% (p control group was only 11.5% (p control group in other gait parameters (e.g. cadence, step length), physiological cost index (PCI), ankle range of motion, spasticity of calf muscle, Fugl-Meyer scores, and the maximum value of the root mean square (RMS(max)), which reflects the capacity of the muscle output. These findings suggest that, the FES therapy combined with conventional therapy treatment more effectively improves the walking ability and enhances the motor recovery when compared with conventional therapy alone in stroke survivors.

10. Cloud-based shaft torque estimation for electric vehicle equipped with integrated motor-transmission system

Science.gov (United States)

Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen

2018-01-01

In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.

11. RESEARCH OF DYNAMIC PARAMETERS OF THE ELECTRIC DRIVE ON THE BASIS OF ROLLING ROTOR MOTOR

Directory of Open Access Journals (Sweden)

G. V. Kulinchenko

2016-12-01

Full Text Available Purpose. Development and investigation of a dynamic model of electric drive on the base of the rolling rotor motor (RRM which reflects the positioning of the actuator of the locking and regulating equipment in time. Methodology. Analytical description of electromagnetic and mechanical processes in the electric drive during the RRM shaft movement by using a system of differential equations. Numerical imitation modeling with the processes visualization in the Matlab environment of the RRM rotor displacement with mechanical load in time. Results. It is shown that the degree of influence of the value of the load inertia on the dynamics of the object obtained by the waveform changes the rotation angle of the rotor and motor speed in time. The degree of influence of the value of the electromagnetic time constant of the dynamics of the positioning of the actuator, and the nature of transients during acceleration and fixing position of the rotor with a predetermined moment of inertia for different values of inductance. The effect of the ratio of electromechanical and electromagnetic time constants of the nature of the transition processes accompanying jog mode angular displacement of the drive shaft on the base of RRM. Originality. The lack of technical means to ensure acceptable accuracy time measurement of angular displacement shaft of the actuator in jog mode offset by using a laser meter which gives the opportunity to assess the adequacy of the dynamic model of the RRM. Practical value. The results of investigations allow to create a tool for optimization of structural, technical and hardware and software solutions for the improvement and modernization of the projected electric locking and regulating equipment. The direction for improving the dynamics of the drive on the basis of RRM is indicated providing for an increase in its torque characteristics of the motor by reducing the influence of the parameters of transients.

12. Losses in electric motors caused by harmonics; Harmoniske overtoners betydning for tabene i elmotorer

Energy Technology Data Exchange (ETDEWEB)

Johansson, M. [Dansk Energi Analyse A/S, Glostrup (Denmark); Kehr, J.M. [ABB A/S, Skovlunde (Denmark); Hoejte Hansen, H. [Balslev A/S, Glostrup (Denmark)

2012-03-15

The purpose of the project was to provide evidence of power saving based on measurements in electric installations, in which the harmonics were reduced by active filters. The project has included knowledge building on the basis of literature and discussions with a Swedish and a Belgian producer of active filters. In connection with the project, tests have been made on a production line at the firm of Faerch Plast, where the distortion from the harmonics, measured as THDU, was 6 to 7 %. Measurements during two days with the active filter switched on and off with an interval of 10 minutes showed a very small difference in power input in the two situations. The power was 2.7 kW higher with connected filter than without filter. As the own consumption of the filter was 5.8 kW, the consumption of the installation itself was 3.1 kW lower, equal to 1 % of the load of the directly supplied induction motors. As a consequence of the very small differences, measured at Faerch Plast, it was decided to transfer the further work to a laboratory in order to measure under so controlled circumstances as possible. Measurements have been taken at KME (Copenhagen School of Marine Engineering and Technology Management) and at TI (Danish Technological Institute). The result of measurements on a 5.5 kW induction motor with a distortion from the harmonics (THDU) of 2.65 % shows no significant change in the input power compared to the situation with almost no distortion. Neither, it appears, is there a significant difference in the motor losses in a situation, where the measurement was taken with two rather distorted mains voltages with a THDU of 6.33 % and 7.66 %, respectively. Calculations on the basis of the equivalent diagram of the motor show that the additional motor losses in a 5.5 kW motor as a consequence of 5. harmonics of 5 % of the mains voltage (THDU 5 %) only is 2 W, while an experimentally derived formula results in a difference of approx 9 W or 0.2 % of the rated power of

13. Report on the feasibility study for improving electric motor service centers in Ghana

Energy Technology Data Exchange (ETDEWEB)

Hsu, J.S.; Jallouk, P.A.; Staunton, R.H.

1999-12-10

On March 3 and 4, 1998, a visit was made to Oak Ridge National Laboratory (ORNL) by two officials from Ghana: Mr. I.K. Mintah, Acting Executive Director, Technical Wing, Ministry of Mines and Energy (MOME) and Dr. A.K. Ofosu-Ahenkorah, Coordinator, Energy Efficiency and Conservation Program, MOME. As a result of this visit, Dr. John S. Hsu of ORNL was invited by MOME to visit the Republic of Ghana in order to study the feasibility of improving electric motor service centers in Ghana.

14. A Novel Concept of Short-Flux Path Switched Reluctance Motor for Electrical Vehicles

Directory of Open Access Journals (Sweden)

Milan Diko

2015-01-01

Full Text Available This paper deals with the design of a novel Switched Reluctance Motor (SRM with short flux path for electrical vehicles. Design consists of the segmented water cooled stator with the toroidal winding and the rotor with salient poles also in a form of segments. The SRM dimensions have been calculated on the base of input requirements. The static and dynamic parameters of SRM are obtained from simulation models based on Finite element method and torque, power versus speed characteristics are presented.

15. Language and motor function thresholds during pediatric extra-operative electrical cortical stimulation brain mapping.

Science.gov (United States)

Zea Vera, Alonso; Aungaroon, Gewalin; Horn, Paul S; Byars, Anna W; Greiner, Hansel M; Tenney, Jeffrey R; Arthur, Todd M; Crone, Nathan E; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

2017-10-01

16. Traffic collisions between electric mobility devices (wheelchairs) and motor vehicles: Accidents, hubris, or self-destructive behavior?

Science.gov (United States)

LaBan, Myron M; Nabity, Thomas S

2010-07-01

This study had its genesis in a personally observed collision between a motor vehicle and a motorized wheelchair (electric mobility device) on a busy street in the middle of the block at an unmarked crossing. To the observer, at the time, this appeared to be a suicidal act. This investigation was initiated to both delineate the number of these crashes nationally and understand this phenomena as a potentially planned act of self-destruction. An initial survey of police reports was immediately frustrated by an inability to separate motor vehicle and electric mobility device collisions from the much larger group that involved ambulatory citizens because both types were classified together as "pedestrian" accidents. Instead, the search engine NexisLexis was used to identify 107 newspaper articles each of which described a motor vehicle and electric mobility device accident. In the motor vehicle and electric mobility device collisions, men predominated women (3:1 ratio) with an average age of 56 yrs. Sixty of these accidents were fatal. Ninety-four percent involved an electric mobility device and 6% a manual wheelchair. In 50% of the cases, the motor vehicle was a truck, van, or sport utility vehicle. Fifty percent occurred at dusk or dawn or at night. The electric mobility device occupant was cited as the guilty party in 39% of the cases and the driver of the motor vehicle in 27%. Twenty percent were unwitnessed hit-and-run accidents, whereas "no fault" was found in 8% of the cases. Although many accidents do happen by chance, when an electric mobility device operator openly challenges busy traffic by attempting to traverse it in the middle of the block at an unmarked crossing, predisposing psychosocial factors must also be considered. Hubris or premeditated self-destructive behavior or both need to be explored as preeminent issues with reference to the prodromal of the "accident process."

17. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

Science.gov (United States)

Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

2016-05-01

[Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

18. Tire-road friction estimation and traction control strategy for motorized electric vehicle.

Science.gov (United States)

Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang

2017-01-01

In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).

19. Theoretical Vibration Analysis Regarding Excitation due to Elliptical Shaft Journals in Sleeve Bearings of Electrical Motors

Directory of Open Access Journals (Sweden)

Ulrich Werner

2012-01-01

Full Text Available This paper shows a theoretical vibration analysis regarding excitation due to elliptical shaft journals in sleeve bearings of electrical motors, based on a simplified rotordynamic model. It is shown that elliptical shaft journals lead to kinematic constraints regarding the movement of the shaft journals on the oil film of the sleeve bearings and therefore to an excitation of the rotordynamic system. The solution of the linear differential equation system leads to the mathematical description of the movement of the rotor mass, the shaft journals, and the sleeve bearing housings. Additionally the relative movements between the shaft journals and the bearing housings are deduced, as well as the bearing housing vibration velocities. The presented simplified rotordynamic model can also be applied to rotating machines, other than electrical machines. In this case, only the electromagnetic spring value cm has to be put to zero.

20. Driving modes for designing the cornering response of fully electric vehicles with multiple motors

Science.gov (United States)

De Novellis, Leonardo; Sorniotti, Aldo; Gruber, Patrick

2015-12-01

Fully electric vehicles with multiple drivetrains allow a significant variation of the steady-state and transient cornering responses through the individual control of the electric motor drives. As a consequence, alternative driving modes can be created that provide the driver the option to select the preferred dynamic vehicle behavior. This article presents a torque-vectoring control structure based on the combination of feedforward and feedback contributions for the continuous control of vehicle yaw rate. The controller is specifically developed to be easily implementable on real-world vehicles. A novel model-based procedure for the definition of the control objectives is described in detail, together with the automated tuning process of the algorithm. The implemented control functions are demonstrated with experimental vehicle tests. The results show the possibilities of torque-vectoring control in designing the vehicle understeer characteristic.

1. Controlling your impulses: electrical stimulation of the human supplementary motor complex prevents impulsive errors.

Science.gov (United States)

Spieser, Laure; van den Wildenberg, Wery; Hasbroucq, Thierry; Ridderinkhof, K Richard; Burle, Borís

2015-02-18

To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy humans leaves action urges unchanged but prevents them from turning into overt errors. Subjects performed a choice reaction-time task known to trigger impulsive responses, leading to fast errors that can be revealed by analyzing accuracy as a function of poststimulus time. Yet, such fast errors are only the tip of the iceberg: electromyography (EMG) revealed fast subthreshold muscle activation in the incorrect response hand in an even larger proportion of overtly correct trials, revealing covert response impulses not discernible in overt behavior. Analyzing both overt and covert response tendencies enables to gauge the ability to prevent these incorrect impulses from turning into overt action errors. Hyperpolarizing the supplementary motor complex using transcranial direct current stimulation (tDCS) preserves action impulses but prevents their behavioral expression. This new combination of detailed behavioral, EMG, and tDCS techniques clarifies the neurophysiology of impulse control, and may point to avenues for improving impulse control deficits in various neurologic and psychiatric disorders. Copyright © 2015 the authors 0270-6474/15/333010-06\$15.00/0.

2. Three-Dimensional Thermo Fluid Analysis of Large Scale Electric Motor

Directory of Open Access Journals (Sweden)

Debasish Biswas

2000-01-01

Full Text Available In the present work, the flow and temperature fields in large scale rotating electric motor are studied by solving the Navier–Stokes equations along with the temperature equation on the basis of finite difference method. All the equations are written in terms of relative velocity with respect to the rotating frame of reference. Generalized coordinate system is used so that sufficient grid resolution could be achieved in the body surface boundary layer region. Differential terms with respect to time are approximated by forward differences, diffusion terms are approximated by the implicit Euler form, convection terms in the Navier–Stokes equations are approximated by the third order upwind difference scheme. The results of calculation led to a good understanding of the flow behavior, namely, the rotating cavity flow in between the supporting bar of the motor, the flow stagnation and region of temperature rise due to flow stagnation, etc. Also the measured average temperature of the motor coil wall is predicted quite satisfactorily.

3. Vibration effect and control of In-Wheel Switched Reluctance Motor for electric vehicle

Science.gov (United States)

Sun, Wei; Li, Yinong; Huang, Jingying; Zhang, Nong

2015-03-01

The Switched Reluctance Motor (SRM) processes favorable driving capacity and great application potential in In-Wheel Motor (IWM) Electric Vehicle (EV). However vibration and noise problems are always the disadvantages of SRM. This paper investigates the vibration and noise issues and corresponding control methodology for the IWM application of SRM. By utilizing the analytical Fourier fitting method, a convenience method for modeling In-Wheel Switched Reluctance Motor (IW SRM) is proposed and the characteristics of the unbalanced residual lateral force related to vibration excitation are analyzed. Then the dynamic negative effect of IW SRM on vehicle is analyzed with a quarter driving and vibration vehicle model. It is found that the vertical shock occurs under the vehicle starting condition and high frequency force excitation exists under the constant speed condition. To address these issues, corresponding control methods are proposed, modified and compared. The proposed combined vibration feedback control of current chopping with PWM can effectively reduce the SRM residual force and ensure the required vehicle speed, though some slight low frequency forces are induced.

4. Highlighting the harmonic regime generated by electric locomotives equipped with DC motors

Science.gov (United States)

Baciu, I.; Cunţan, C. D.

2018-01-01

The paper presents the results of measurements made using the C.A. 8334 power quality analyzer on an electric locomotive equipped with DC motors. We carried out determinations of the current-voltage regime using a locomotive motor. The harmonic regime of the other motors being identical to the analysed one, we could easily deduce the effects caused by the entire locomotive. The data measured with the analyzer were firstly transferred into a computer system using the Qualistar software, followed by data processing in Excel, enabling therefore a graphical representation of the characteristic parameters of power quality. Based on the acquired data, we determined the power factor, as well as the active, reactive and apparent power. The measurements revealed high values of the current harmonics, fact that required some measures to be taken for reducing the values of these harmonics. For this, we ran a simulation using the PSCAD/EMTDC software, by introducing LC filters in tune with the harmonic frequencies. The result was a significant reduction in the harmonic regime, either in the harmonics values or the power factor and reactive power.

5. Final Report: MaRSPlus Sensor System Electrical Cable Management and Distributed Motor Control Computer Interface

Science.gov (United States)

Reil, Robin

2011-01-01

The success of JPL's Next Generation Imaging Spectrometer (NGIS) in Earth remote sensing has inspired a follow-on instrument project, the MaRSPlus Sensor System (MSS). One of JPL's responsibilities in the MSS project involves updating the documentation from the previous JPL airborne imagers to provide all the information necessary for an outside customer to operate the instrument independently. As part of this documentation update, I created detailed electrical cabling diagrams to provide JPL technicians with clear and concise build instructions and a database to track the status of cables from order to build to delivery. Simultaneously, a distributed motor control system is being developed for potential use on the proposed 2018 Mars rover mission. This system would significantly reduce the mass necessary for rover motor control, making more mass space available to other important spacecraft systems. The current stage of the project consists of a desktop computer talking to a single "cold box" unit containing the electronics to drive a motor. In order to test the electronics, I developed a graphical user interface (GUI) using MATLAB to allow a user to send simple commands to the cold box and display the responses received in a user-friendly format.

6. Submersible pumping, Long Beach Unit of East Wilmington Field: A 17-year review

Energy Technology Data Exchange (ETDEWEB)

Allis, D.H.; Capps, W.M.

1983-10-01

The electric submersible pump was selected as the primary form of lift when Thums Long Beach Company initiated production operations in August 1965. Deviated wells with ever-increasing volumes resulting from water flooding required a flexibility offered by this method of lift. Numerous problems have been solved in 17 years of these operations to provide a respectable run life and continue on a sound economic operational basis.

7. Submersible pumping--long beach unit of east wilmington field: A 17-year review

Energy Technology Data Exchange (ETDEWEB)

Allis, D.H.; Capps, W.M.

1984-08-01

The electric submersible pump (ESP) was selected as the primary form of lift when Thums Long Beach Co. initiated production operations in Aug. 1965. Deviated wells with ever increasing volumes resulting from waterflooding required the flexibility offered by this lift method. Many problems have been solved in the 17 years of these operations to provide a respectable run life and a sound economic operational basis.

8. Submersible pumping, Long Beach unit of East Wilmington field: a 17-year review

Energy Technology Data Exchange (ETDEWEB)

Allis, D.H.; Capps, W.M.

1983-01-01

The electric submersible pump was selected as the primary form of lift when THUMS Long Beach Co. initiated production operations in Aug. 1965. Deviated wells with ever-increasing volumes resulting from waterflooding required a flexibility offered by this method of lift. Numerous problems have been solved in 17 yr of these operations to provide a respectable run life and continue on a sound economic operational basis.

9. HARDNESS INDICES ESTIMATION OF SUPPORTING STRUCTURE ELEMENTS OF MOTOR BOGIES OF THE ELECTRIC TRAIN ED9M

Directory of Open Access Journals (Sweden)

O. M. Bondarev

2013-08-01

Full Text Available Purpose. The purpose of article is to develop the measures of hardness indices improvement of the supporting structures of motor cars of the electric trains ED9M. Methodology. In order to achieve the above stated aims the following measures had to be done: to develop a finite element model of the supporting structures of the motor bogie of the electric train ED9M, determine parameters of the developed model; perform the calculations to determine the stress-strain state during loads corresponding to different operating conditions with the search of geometric parameters reducing the highest stress levels. Findings. The obtained results of calculations (fields of stress distribution and strains in the elements of the motor bogie frame from the viewpoint of the strength and stiffness discovered the best geometric parameters of the bearings in the central suspension beams of the electric trains ED9M in the places of load transmission from the car body to the bogie frame. Originality. Based on the developed finite element models and the theoretical and experimental researches the scientifically grounded modernization measures of the construction elements of the central suspension beams for motor bogies of the electric trains ED9M were developed. Practical value. It was developed an engineering solution concerning the measures to improve the strength and stiffness characteristics of the central suspension beams for the motor cars of the electric trains ED9M. It was given to the Ukrzaliznytsya’s professionals to implement them during repairs.

10. Study on Adaptive Slid Mode Controller for Improving Handling Stability of Motorized Electric Vehicles

Directory of Open Access Journals (Sweden)

LiQiang Jin

2014-01-01

Full Text Available An adaptive slid mode controller was established for improving the handling stability of motorized electric vehicle (MEV. First and foremost, the structure and advantages of electric vehicle driven by in-wheel motors will be provided. Then, an ideal cornering model of vehicles will be brought and analyzed, after which a method to estimate side-slip angle was also proposed and three typical sensors were used in the theory. Besides, an idea for the recognition of road adhesion coefficient was derived based on MEV platform, which will be helpful for better control performances. Finally, the scheme of control method was given and some typical tests for observing handling properties were implemented based on Simulink and Carsim software. With the outcomes from the experiments, which vividly showed the merits of the controller, one can come to a conclusion that MEV that equips with the adaptive slid mode controller always enjoys better handling performances than the one without control. Furthermore, the controller researched is friendly to the real-time working conditions, which will hold practical values in the future.

11. Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles

Science.gov (United States)

Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.

1983-01-01

A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.

12. Development of an Electric Motor Powered Low Cost Coconut Deshelling Machine

Science.gov (United States)

Mondal, Imdadul Hoque; Prasanna Kumar, G. V.

2016-06-01

An electric motor powered coconut deshelling machine was developed in line with the commercially available unit, but with slight modifications. The machine worked on the principle that the coconut shell can be caused to fail in shear and compressive forces. It consisted of a toothed wheel, a deshelling rod, an electric motor, and a compound chain drive. A bevelled 16 teeth sprocket with 18 mm pitch was used as the toothed wheel. Mild steel round bar of 18 mm diameter was used as the deshelling rod. The sharp edge tip of the deshelling rod was inserted below the shell to apply shear force on the shell, and the fruit was tilted toward the rotary toothed wheel to apply the compressive force on the shell. The speed of rotation of the toothed wheel was set at 34 ± 2 rpm. The output capacity of the machine was found to be 24 coconuts/h with 95 % of the total time effectively used for deshelling. The labour requirement was found to be 43 man-h/1000 nuts. About 13 % of the kernels got scraped and about 7 % got sliced during the operation. The developed coconut deshelling machine was recommended for the minimum annual use of 200 h or deshelling of 4700 coconuts per year. The cost of operation for 200 h of annual use was found to be about ` 47/h. The developed machine was found to be simple, easy to operate, energy efficient, safe and reduce drudgery involved in deshelling by conventional methods.

13. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

Directory of Open Access Journals (Sweden)

Shaohua Wang

2016-01-01

Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

14. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.

Science.gov (United States)

Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B

2017-11-15

Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology

15. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

Energy Technology Data Exchange (ETDEWEB)

2007-11-30

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

16. Somatosensory Electrical Stimulation Does Not Augment Motor Skill Acquisition and Intermanual Transfer in Healthy Young Adults-A Pilot Study.

Science.gov (United States)

Négyesi, János; Veldman, Menno P; Berghuis, Kelly M M; Javet, Marie; Tihanyi, József; Hortobágyi, Tibor

2018-01-01

Sensory input can modify motor function and magnify interlimb transfer. We examined the effects of low-intensity somatosensory electrical stimulation (SES) on motor practice-induced skill acquisition and intermanual transfer. Participants practiced a visuomotor skill for 25 min and received SES to the practice or the transfer arm. Responses to single- and double-pulse transcranial magnetic stimulation were measured in both extensor carpi radialis. SES did not further increase skill acquisition (motor practice with right hand [RMP]: 30.8% and motor practice with right hand + somatosensory electrical stimulation to the right arm [RMP + RSES]: 27.8%) and intermanual transfer (RMP: 13.6% and RMP + RSES: 9.8%) when delivered to the left arm (motor practice with right hand + somatosensory electrical stimulation to the left arm [RMP + LSES]: 44.8% and 18.6%, respectively). Furthermore, transcranial magnetic stimulation measures revealed no changes in either hand. Future studies should systematically manipulate SES parameters to better understand the mechanisms of how SES affords motor learning benefits documented but not studied in patients.

17. Principle and operation of the new type motor consisted of piezo-electric device and strain wave gearing. Atsuden soshi to hado haguruma sochiw wo kumiawaseta shingata motor no genri to dosa

Energy Technology Data Exchange (ETDEWEB)

Ishida, M.; Hori, T. (Mie University, Mie (Japan)); Hamaguchi, J. (Mie Prefecture Enterprise Agency, Mie (Japan))

1990-12-15

A new type of motor called piezo-electric motor has been developed. This motor is composed of piezo-electric device and strain wave gearing, and this development is a first stage to realize a low speed motor which is small in size and light in weight. Concerning the principle of the motor, the traveling wave is produced by piezo-electric devices and displacement conversion devices without mechanical resonance and the torque to rotate the motor is generated by a mechanism of strain wave gearing without using friction. Because the motor is a synchronous one, it is operated in variable frequency and has its rotational position controlled in open-loop. From the experimental motor, it is found that the proposed piezo-electric motor is realizable, and the torque characteristics are clarified qualitatively. The generated torque of the experimental motor is small, requiring further improvement, but this motor makes a way to lighten the motor in weight in the future, because it can be made with nonmetallic material. 2 refs., 14 figs., 3 tabs.

18. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

Science.gov (United States)

Brown, Gerald V.; Choi, Benjamin B.

2005-01-01

Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

19. Electrically induced resistance training in individuals with motor complete spinal cord injury.

Science.gov (United States)

Ryan, Terence E; Brizendine, Jared T; Backus, Deborah; McCully, Kevin K

2013-11-01

To examine the effects of 16 weeks of electrically induced resistance training on insulin resistance and glucose tolerance, and changes in muscle size, composition, and metabolism in paralyzed muscle. Pre-post intervention. University-based trial. Participants (N=14; 11 men and 3 women) with chronic (>2y post spinal cord injury), motor complete spinal cord injury. Home-based electrically induced resistance exercise training twice weekly for 16 weeks. Plasma glucose and insulin throughout a standard clinical oral glucose tolerance test, thigh muscle and fat mass via dual-energy x-ray absorptiometry, quadriceps and hamstrings muscle size and composition via magnetic resonance imaging, and muscle oxidative metabolism using phosphorus magnetic resonance spectroscopy. Muscle mass increased in all participants (mean ± SD, 39%±27%; range, 5%-84%). The mean change ± SD in intramuscular fat was 3%±22%. Phosphocreatine mean recovery time constants ± SD were 102±24 and 77±18 seconds before and after electrical stimulation-induced resistance training, respectively (Pelectrical stimulation-induced resistance training increased muscle mass, but did not reduce intramuscular fat. Similarly, factors associated with insulin resistance or glucose tolerance did not improve with training. We did find a 25% improvement in mitochondrial function, as measured by phosphocreatine recovery rates. Larger improvements in mitochondrial function may translate into improved glucose tolerance and insulin resistance. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

20. Modeling and experimental investigation of thermal-mechanical-electric coupling dynamics in a standing wave ultrasonic motor

Science.gov (United States)

Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao

2017-09-01

Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.

1. Comparison of Output Current Ripple in Single and Dual Three-Phase Inverters for Electric Vehicle Motor Drives

Directory of Open Access Journals (Sweden)

Jelena Loncarski

2015-04-01

Full Text Available The standard solution for the traction system in battery powered electric vehicles (EVs is a two-level (2L inverter feeding a three-phase motor. A simple and effective way to achieve a three-level (3L inverter in battery-supplied electric vehicles consists of using two standard three-phase 2L inverters with the open-end winding connection of standard three-phase ac motors. The 3L inverter solution can be usefully adopted in EVs since it combines several benefits such as current ripple reduction, increment of phase motor voltage with limited voltage ratings of the two battery banks, improvement in system reliability, etc. The reduction in current ripple amplitude is particularly relevant since it is a source of electromagnetic interference and audio noise from the inverter-motor power connection cables and from the motor itself. By increasing the inverter switching frequency the ripple amplitude is reduced, but the drive efficiency decreases due to the proportionally increased switching losses. In this paper the peak-to-peak ripple amplitude of the dual-2L inverter is evaluated and compared with the corresponding ripple of the single-2L inverter, considering the same voltage and power motor ratings. The ripple analysis is carried out as a function of the modulation index to cover the whole modulation range of the inverter, and the theoretical results are verified with experimental tests carried out by an inverter-motor drive prototype.

2. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

Science.gov (United States)

Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

3. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

Energy Technology Data Exchange (ETDEWEB)

Pyrhoenen, O.

1998-12-31

4. The effects of various magnetic materials on lamination design for stator-rotor diecasting of induction motors for electric vehicle applications

Science.gov (United States)

Elkasabgy, N. M.; Di Pietro, C.

1994-05-01

In this paper we describe a novel technique to model induction motors with a diecast stator and rotor and to examine the effects of various magnetic materials on the electrical performance of the motor. For electric vehicle applications, a high volume production operation of the electric motor requires the motor to be small and inexpensive. The expensive labor and material used to manufacture the motor encouraged the researchers to find new methods and techniques to reduce the cost and improve the performance. Diecast rotor and stator windings reduce motor cost and size. For diecasting induction motors, the motor laminations should be designed to optimize the electromagnetic field distribution over the cross section and along the axial direction. The magnetic material used for the laminations should also reduce losses and improve the overall efficiency. A 100 hp four-pole induction motor was modeled with finite elements, the field distribution, the magnetic flux density, and the mechanical performance of the motor were computed using nonlinear magnetostatic and complex steady-state eddy current techniques. The difference in the electrical and mechanical performance of the motor were evaluated for copper and aluminum diecasting. The results show that copper diecasting of the rotor and the stator of the induction motor with magnetic material properties and identified slotting shape is the way to achieve better motor performance and low cost operation.

5. The effects of various magnetic materials on lamination design for stator-rotor diecasting of induction motors for electric vehicle applications

Energy Technology Data Exchange (ETDEWEB)

Elkasabgy, N.M.; Di Pietro, C. [Westinghouse Motor Co. Ltd., Hamilton, Ontario (Canada)

1994-05-15

In this paper the authors describe a novel technique to model induction motors with a diecast stator and rotor and to examine the effects of various magnetic materials on the electrical performance of the motor. For electric vehicle applications, a high volume production operation of the electric motor requires the motor to be small and inexpensive. The expensive labor and material used to manufacture the motor encouraged the researchers to find new methods and techniques to reduce the cost and improve the performance. Diecast rotor and stator windings reduce motor cost and size. For diecasting induction motors, the motor laminations should be designed to optimize the electromagnetic field distribution over the cross section and along the axial direction. The magnetic material used for the laminations should also reduce losses and improve the overall efficiency. A 100 hp four-pole induction motor was modeled with finite elements, and the field distribution, the magnetic flux density, and the mechanical performance of the motor were computed using nonlinear magnetostatic and complex steady-state eddy current techniques. The difference in the electrical and mechanical performance of the motor were evaluated for copper and aluminum diecasting. The results show that copper diecasting of the rotor and the stator of the induction motor with magnetic material properties and identified slotting shape is the way to achieve better motor performance and low cost operation. 5 refs.

6. Efficient electric motor systems for industry. Report on roundtable discussions of market problems and ways to overcome them

Energy Technology Data Exchange (ETDEWEB)

1993-11-01

Improving the efficiency of electric motor systems is one of the best energy-saving opportunities for the United States. The Department of Energy (DOE) Office of Industrial Technologies estimates that by the year 2010 in the industrial sector, the opportunities for savings from improved efficiency in electric motor systems could be roughly as follows: 240 billion kilowatthours per year. \$13 billion per year from US industry`s energy bill. Up to 50,000 megawatts in new powerplant capacity avoided. Up to 44 million metric tons of carbon-equivalent emissions mitigated per year, corresponding to 3 percent of present US emissions. Recognizing the benefits of this significant opportunity for energy savings, DOE has targeted improvements in the efficiency of electric motor systems as a key initiative in the effort to promote flexibility and efficiency in the way electricity is produced and used. Efficient electric motor systems will help the United States reach its national goals for energy savings and greenhouse gas emission reductions.

7. The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii

DEFF Research Database (Denmark)

Petersen, Nicolas Caesar; Taylor, Janet L; Gandevia, Simon C

2002-01-01

constructed for 15 single motor units following electrical stimulation of the corticospinal tract and for 11 units following electrical stimulation of large diameter afferents at the brachial plexus. Responses were assessed during weak voluntary contraction. Both types of stimulation produced a single peak...... at short latency in the PSTH (mean 8.5 and 8.7 ms, respectively) and of short duration (responses to electrical stimulation of the corticospinal tract in the relaxed muscle with that in the contracting muscle. The latency was the same......In healthy human subjects, descending motor pathways including the corticospinal tract were stimulated electrically at the level of the cervicomedullary junction to determine the effects on the discharge of motoneurones innervating the biceps brachii. Post-stimulus time histograms (PSTHs) were...

8. Concept of a nuclear powered submersible research vessel and a compact reactor

Energy Technology Data Exchange (ETDEWEB)

Kusunoki, Tsuyoshi; Odano, Naoteru; Yoritsune, Tsutomu; Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (Japan); Tokunaga, Sango [Japan Deep Sea Technology Association, Tokyo (Japan)

2001-07-01

A conceptual design study of a submersible research vessel navigating in 600 m depth and a compact nuclear reactor were carried out for the expansion of the nuclear power utilization. The mission of the vessel is the research of mechanism of the climate change to predict the global environment. Through conditions of the Arctic Ocean and the sea at high latitude have significant impacts on the global environmental change, it is difficult to investigate those areas by ordinary ships because of thick ice or storm. Therefore the research vessel is mainly utilized in the Arctic Ocean and the sea at high latitude. By taking account of the research mission, the basic specifications of the vessel are decided; the total weight is 500 t, the submersible depth is 600 m, the maximum speed is 12 knots (22.2 km/h), and the number of crews is 16. Nuclear power has an advantage in supplying large power of electricity in the sea for long period. Based on the requirements, it has been decided that two sets of submersible compact reactor, SCR, which is light-weighted and of enhanced safety characteristics of supply the total electricity of 500 kW. (author)

9. Safety Assessment for Electrical Motor Drive System Based on SOM Neural Network

Directory of Open Access Journals (Sweden)

Linghui Meng

2016-01-01

Full Text Available With the development of the urban rail train, safety and reliability have become more and more important. In this paper, the fault degree and health degree of the system are put forward based on the analysis of electric motor drive system’s control principle. With the self-organizing neural network’s advantage of competitive learning and unsupervised clustering, the system’s health clustering and safety identification are worked out. With the switch devices’ faults data obtained from the dSPACE simulation platform, the health assessment algorithm is verified. And the results show that the algorithm can achieve the system’s fault diagnosis and health assessment, which has a point in the health assessment and maintenance for the train.

10. Transient state study of electric motor heating and phase change solid-liquid cooling

Energy Technology Data Exchange (ETDEWEB)

Bellettre, J.; Sartre, V.; Lallemand, A. [Centre National de la Recherche Scientifique (CNRS), Centre de Thermique de Lyon, Villeurbanne, 69 (France); Biais, F. [AUXILEC, Chatou, 78 (France)

1997-01-01

This study reports on modelling of an autosynchronous electric motor stator, operating at transient state. The developed model, of the modal type, includes around 20 nodes. The simulations showed that hot spots are localized on the winding heads and led to the choice of a solid-liquid phase change cooling system. The comparison between simulation and experiment permitted the identification of unknown parameters. The model gives a good accuracy during steady-state and in the rising temperature phase. The modelling of the phase change cooling is realized by the addition of two nodes. The sensitivity analysis to PCM properties shows that the hot spot temperature decreases with increasing conductivities, inertia and latent heat of melting of the PCM and with decreasing melting temperature. Gallium (metal melting at 30{sup o}C) is the best PCM for the cooling of hot spots and P116 paraffin is the best non-metallic PCM. (author)

11. 46 CFR 129.320 - Generators and motors.

Science.gov (United States)

2010-10-01

... 46 Shipping 4 2010-10-01 2010-10-01 false Generators and motors. 129.320 Section 129.320 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.320 Generators and motors. (a) Each generator and motor, except a submersible-pump motor, must be— (1) In an accessible space, adequately ventilated and...

12. Measurement of Heat Losses on The Milking Machine Electric Motor at Various Regulations of Vacuum Using Methods of Thermal Imagery

Directory of Open Access Journals (Sweden)

Jan Kudělka

2014-01-01

Full Text Available To ensure the desirable vacuum in the milking machines, use is currently made predominantly of rotary vacuum pumps. These vacuum pumps are driven by a squirrel-cage induction motor. Until recently, the vacuum in the system to achieve the required value was controlled by a main control valve sucking in ambient air into the system. During the milking process itself and during other activities (flushing, sanitation, this control method consumed a large amount of electricity. The technical solution to electricity demand reduction was introduced with the emergence and development of frequency converters. The frequency converters control the operation of the asynchronous electric motor so that the actual delivery of the vacuum pumps equals the volume of air sucked into the vacuum pipe. The motor supply by the frequency converter brings about a host of adverse phenomena. This paper is dedicated to motor heating and heat losses on the surface of the electric motor at different regulations of vacuum in milking machines. The objective of the paper is to determine the immediate specific heat flows along the surface of the electric motor of the milking machine during milking using a control valve regulation and a control using the frequency converter, and compare the resulting value. The specific heat flows were determined by means of a non-traditional method of temperature field measurement using a system of thermal imagery. The calculated and measured data obtained from both these systems were statistically evaluated and compared. Use was made of a milking machine located in the cooperative Hospodářské obchodní družstvo (HOD Jabloňov.

13. Optimal Velocity Control for a Battery Electric Vehicle Driven by Permanent Magnet Synchronous Motors

Directory of Open Access Journals (Sweden)

Dongbin Lu

2014-01-01

Full Text Available The permanent magnet synchronous motor (PMSM has high efficiency and high torque density. Field oriented control (FOC is usually used in the motor to achieve maximum efficiency control. In the electric vehicle (EV application, the PMSM efficiency model, combined with the EV and road load system model, is used to study the optimal energy-saving control strategy, which is significant for the economic operation of EVs. With the help of GPS, IMU, and other information technologies, the road conditions can be measured in advance. Based on this information, the optimal velocity of the EV driven by PMSM can be obtained through the analytical algorithm according to the efficiency model of PMSM and the vehicle dynamic model in simple road conditions. In complex road conditions, considering the dynamic characteristics, the economic operating velocity trajectory of the EV can be obtained through the dynamic programming (DP algorithm. Simulation and experimental results show that the minimum energy consumption and global energy optimization can be achieved when the EV operates in the economic operation area.

14. Therapeutic effects of functional electrical stimulation on motor cortex in children with spastic Cerebral Palsy.

Science.gov (United States)

2015-01-01

In the present study we have evaluated the electroencephalogram (EEG) signal recorded during ankle dorsal and plantar flexion in children with spastic Cerebral Palsy (CP) after Functional Electrical Stimulation (FES) of the Tibialis Anterior (TA) muscles. The intervention group had 10 children with spastic diaplegic/hemiplegic CP within the age group of 5 to 14 years of age who received both FES for 30 minutes and the conventional physiotherapy for 30 minutes a day, while the control group had 5 children who received only conventional physiotherapy for 60(30 + 30) minutes a day only. Both group were treated for 5 days a week, up to 12 weeks. The EEG data were analyzed for Peak Alpha Frequency (PAF), sensorimotor rhythm (SMR), mu wave suppression and power spectral density (PSD) of all the bands. The results showed a decrease in SMR and mu wave suppression in the intervention group as compared to the control group, indicating a positive/greater improvement in performance of motor activities. Therefore, from this study we could conclude that FES combined with conventional physiotherapy improves the motor activity in children with spastic CP.

15. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

Energy Technology Data Exchange (ETDEWEB)

Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

2012-03-31

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

16. Dynamic parameter identification of robot arms with servo-controlled electrical motors

Science.gov (United States)

Jiang, Zhao-Hui; Senda, Hiroshi

2005-12-01

This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

17. Design and evaluation metrology for electric power supply in motor vehicles; Auslegungs- und Bewertungsmetrik fuer die elektrische Energieversorgung von Kraftfahrzeugen

Energy Technology Data Exchange (ETDEWEB)

Cierullies, J.

2006-07-01

Electric power systems in motor vehicles are subject to increasingly complex requirements. On the one hand, electricity consumption increases with the new comfort and safety systems which involve complex control algorithms. On the other hand, there is the problem of weight which prevents design of power generation and storage systems for maximum load. The publication attempts to estimate the required component size and assess the overall system of electronic components and intelligent algorithms. (orig.)

18. Methodology for quantifying the technological level of energy in electric motors; Metodologia para quantificacao do nivel tecnologico energetico de motores eletricos

Energy Technology Data Exchange (ETDEWEB)

Konopatzki, Evandro Andre; Bianchessi, Joel Marcos [Faculdade Assis Gurgacz (FAG), Cascavel, PR (Brazil); Oliveira, Celso Eduardo Lins de [Universidade de Sao Paulo (FZEA-USP), Pirassununga, SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos; Konopatzki, Angelica da Silva Lima [Faculdade de Ciencias Aplicadas de Cascavel (FACIAP), PR (Brazil). Curso de Ciencia da Computacao; Marim, Cesar [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil)

2006-07-01

The market competition created in agricultural industry because of its insertion in the domestic and foreign markets, verified by the increase in GDP share of agribusiness in the Brazilian GDP, led us to have better control of costs and inputs. Thus the final value of products sold by these agribusinesses can download increasing the space in the consumer market. Electricity is one of the inputs now being studied and this paper presents a model for determining the coefficients that allow the comparison of different existing technologies for electric motors inserting an indicator of technological innovation called Technological Level Energy (NTE). The NTE was developed and tested in Storage Units of Grain (UAG) in the region of Cascavel - Parana where data were collected in six UAG, analyzed in medium weighted, had levels of different energy technology development. The main elements used to create the NTE are the number of engines installed in UAG, the lifetime of the engine considered from its manufacture and motor plate data such as income and the power factor. As a comparative process, each region can create your NTE and analyze your situation in a national context. The UAG will use the NTE to technological innovation and planning projects such as depreciation, financing and cross-examination of financial resources for the exchange of electric motors. Thus the NTE will aid in comparative indication of the timing for replacement of electric motors. Moment from which the energy demand, according to the obsolescence of equipment, are considered excessive compared to other more modern UAG. (author)

19. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

Science.gov (United States)

Lv, Chen; Zhang, Junzhi; Li, Yutong

2014-11-01

Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

20. Development of Permanent Magnet Reluctance Motor Suitable for Variable-Speed Drive for Electric Vehicle

Science.gov (United States)

Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu

Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.

1. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity - A study of 145 patients

NARCIS (Netherlands)

Langeloo, DD; Lelivelt, A; Journee, HL; Slappendel, R; de Kleuver, M

2003-01-01

Study Design. A descriptive historic cohort study was conducted. Objectives. To determine intraoperative response amplitude criteria for transcranial electrical motor-evoked potential monitoring that warn of neurologic damage, and to determine the additional value of monitoring six instead of two

2. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART II, UNIT 6, INSTRUCTOR'S GUIDE.

Science.gov (United States)

SUTTON, MACK C.

THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, SUPPLEMENTARY…

3. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, INSTRUCTOR'S GUIDE.

Science.gov (United States)

SUTTON, MACK C.

THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND…

4. New Integrated Multilevel Converter for Switched Reluctance Motor Drives in Plug-in Hybrid Electric Vehicles with Flexible Energy Conversion

DEFF Research Database (Denmark)

Gan, Chun; Wu, Jianhua; Hu, Yihua

2017-01-01

This paper presents an integrated multilevel converter of switched reluctance motors (SRMs) fed by a modular front-end circuit for plug-in hybrid electric vehicle (PHEV) applications. Several operating modes can be achieved by changing the on-off states of the switches in the front-end circuit. I...

5. Criteria for transcranial electrical motor evoked potential monitoring during spinal deformity surgery - A review and discussion of the literature

NARCIS (Netherlands)

Langeloo, D. -D.; Journee, H. -L.; de Kleuver, M.; Grotenhuis, J. A.

2007-01-01

Transcranial electrical stimulated motor evoked potential monitoring (TES-MEP) has proven to be a successful and reliable neuromonitoring technique during spinal correction surgery. However, three criteria for TES-MEP monitoring have been described in the literature. This study aims at discussing

6. Effects of Electrical Stimulation, Exercise Training and Motor Skills Training on Strength of Children with Meningomyelocele: A Systematic Review

Science.gov (United States)

Dagenais, Liese M.; Lahay, Erin R.; Stueck, Kailey A.; White, Erin; Williams, Lindsay; Harris, Susan R.

2009-01-01

This systematic review provides a critical synthesis of research regarding the effects of electrical stimulation, exercise training, and motor skills training on muscle strength in children with meningomyelocele. Nine databases were searched using terms related to meningomyelocele and physical therapy interventions. Of 298 potentially relevant…

7. ANALYSIS OF THERMAL STATE OF TRACTION BRUSHLESS PERMANENT MAGNET MOTOR FOR MINE ELECTRIC LOCOMOTIVE

Directory of Open Access Journals (Sweden)

A. V. Matyuschenko

2016-12-01

Full Text Available Purpose. The study was conducted to analyze thermal state of the traction permanent magnet synchronous motor for mine electric battery locomotive when operating in continuous and short-time duty modes. These operating modes are selected for study, as they are typical for mine electric locomotives. Methodology. Thermal calculation was performed by means of FEM in three-dimensional formulation of problem using Jmag-Designer. Results. The modeling results of thermal state of the PMSM in continuous and short-time duty operation modes showed good agreement with experimental results. The results showed that the temperature of PM is higher than temperature of the stator winding in continuous operation mode. It was found that PM temperature might reach excessive values because of the high presence of eddy current losses in neodymium PM. Therefore, special attention in the design and testing of PMSM should be paid to the temperature of PM in various operation modes. Practical value. It was recommended to use high temperature permanent magnets in traction PMSM to avoid demagnetization of PM and performance degradation.

8. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

Directory of Open Access Journals (Sweden)

Gerasimos G. Rigatos

2011-12-01

Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor

9. Pilot project for evaluating motorized personal transportation devices : Segways and electric scooters

Energy Technology Data Exchange (ETDEWEB)

Lavallee, P. [Centre for Electric Vehicle Experimentation in Quebec, Saint-Jerome, PQ (Canada)

2004-05-01

This report presented information on the Segway and electric scooter, 2 types of motorized personal transportation devices (MPTDs) that are the subject of a 2-phase pilot project conducted by the Centre for Electric Vehicle Experimentation. A general literature review of MPTDs was presented, with a focus on pilot projects carried out in the United States and Europe, along with legislation in various countries regarding user safety, legal frameworks, and traffic conditions. The report also contained an analysis of existing safety regulations for Segways and scooters, the legal framework for using the vehicles, as well as information concerning traffic rules and incidents involving MPTDs in Canada. In addition, details of a group of tests conducted by groups of experts and a group of 50 participants were presented. Various ergonomic, technical and operational evaluations of the MPTDs were conducted on a closed indoor test track and in the laboratory. Results of the technical evaluation demonstrated that under normal use, Segways are stable, easy to manoeuvre, and can stop quickly in case of emergency. An ergonomic evaluation indicated that a wide range of users found Segways easy to use. Results of the behavioural study indicated that the parameters to be taken into account in Segway use included training by a recognized government-certified organization; a set minimum user age of 14; and the wearing of safety helmets. Survey results indicated that Segways may generate transfer to other alternatives to automobiles. Electric scooter evaluation results indicated that the scooters were safe in normal use situations. The addition of horns and helmets was recommended, as well as a minimum user age of 12. It was concluded that Phase 2 of the project be carried out according to procedures established by the project partners in order to evaluate their reliability and safety in urban areas, the social acceptability of scooters and Segways in Quebec, and the ability of the

10. Species-specific diversity of a fixed motor pattern: the electric organ discharge of Gymnotus.

Directory of Open Access Journals (Sweden)

Alejo Rodríguez-Cattaneo

Full Text Available Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a the variously timed neuronal inputs to different groups of electrocytes; b the appearance of both rostrally and caudally innervated electrocytes, and c changes in the responsiveness of the electrocyte membrane.

11. ASPECTS REGARDING THE DESIGN AND PERFORMANCE OF FLAMEPROOF ELECTRIC MOTORS SUPPLIED VIA STATIC FREQUENCY CONVERTERS FOR EXPLOSIVE ATMOSPHERES.

Directory of Open Access Journals (Sweden)

Mihai MAGYARI

2012-05-01

Full Text Available The electric power drive systems consisting of three phase induction motor and static frequency converter are designed to enhance the performance on site, by diminishing the energy consumption, optimization of the technological processes and the reduction of costs for the maintenance and repairs of the equipment. The paper presents some important issues concerning the selection of inverter fed flameproof electric drives in the field of potentially explosive atmospheres of gases and vapors by ensuring a correct risk management against the hazard of electric sparks as well as excessive temperatures.

12. Driving and braking control of PM synchronous motor based on low-resolution hall sensor for battery electric vehicle

Science.gov (United States)

Gu, Jing; Ouyang, Minggao; Li, Jianqiu; Lu, Dongbin; Fang, Chuan; Ma, Yan

2013-01-01

Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high

13. Adult rat motor neurons do not re-establish electrical coupling during axonal regeneration and muscle reinnervation.

Directory of Open Access Journals (Sweden)

Morgana Favero

Full Text Available Gap junctions (GJs between neurons are present in both the newborn and the adult nervous system, and although important roles have been suggested or demonstrated in a number of instances, in many other cases a full understanding of their physiological role is still missing. GJs are expressed in the rodent lumbar cord at birth and mediate both dye and electrical coupling between motor neurons. This expression has been proposed to mediate: (i fast synchronization of motoneuronal spike activity, in turn linked to the process of refinement of neuromuscular connections, and (ii slow synchronization of locomotor-like oscillatory activity. Soon after birth this coupling disappears. Since in the adult rat regeneration of motor fibers after peripheral nerve injury leads to a recapitulation of synaptic refinement at the target muscles, we tested whether GJs between motor neurons are transiently re-expressed. We found that in conditions of maximal responsiveness of lumbar motor neurons (such as no depression by anesthetics, decerebrate release of activity of subsets of motor neurons, use of temporal and spatial summation by antidromic and orthodromic stimulations, testing of large ensembles of motor neurons no firing is observed in ventral root axons in response to antidromic spike invasion of nearby counterparts. We conclude that junctional coupling between motor neurons is not required for the refinement of neuromuscular innervation in the adult.

14. Adult rat motor neurons do not re-establish electrical coupling during axonal regeneration and muscle reinnervation.

Science.gov (United States)

Favero, Morgana; Cangiano, Alberto; Busetto, Giuseppe

2015-01-01

Gap junctions (GJs) between neurons are present in both the newborn and the adult nervous system, and although important roles have been suggested or demonstrated in a number of instances, in many other cases a full understanding of their physiological role is still missing. GJs are expressed in the rodent lumbar cord at birth and mediate both dye and electrical coupling between motor neurons. This expression has been proposed to mediate: (i) fast synchronization of motoneuronal spike activity, in turn linked to the process of refinement of neuromuscular connections, and (ii) slow synchronization of locomotor-like oscillatory activity. Soon after birth this coupling disappears. Since in the adult rat regeneration of motor fibers after peripheral nerve injury leads to a recapitulation of synaptic refinement at the target muscles, we tested whether GJs between motor neurons are transiently re-expressed. We found that in conditions of maximal responsiveness of lumbar motor neurons (such as no depression by anesthetics, decerebrate release of activity of subsets of motor neurons, use of temporal and spatial summation by antidromic and orthodromic stimulations, testing of large ensembles of motor neurons) no firing is observed in ventral root axons in response to antidromic spike invasion of nearby counterparts. We conclude that junctional coupling between motor neurons is not required for the refinement of neuromuscular innervation in the adult.

15. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

OpenAIRE

Gerasimos G. Rigatos; Pierluigi Siano

2011-01-01

The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vec...

16. Walking the Torque: Proposed Work Plan for Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems

Energy Technology Data Exchange (ETDEWEB)

NONE

2011-07-01

Electric motor-driven system is the largest single energy end use accounting for more than 40% of global electricity consumption. This paper sets out an ambitious but achievable target with the global work plan to improve the energy efficiency of electric motor-driven system by 10% to 15% based on the finding of working paper ''Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems (Waide et al., 2011)''. If governments commit to the proposed work plan immediately and maintain resourcing levels, this could be achieved by 2030 and it would be equivalent to reducing total global electricity use by around 5%. The proposed work plan of this paper is to align regulatory settings within a globally applicable scheme. The IEA believes this target can only be achieved through global co-operation leading to aligned national policy settings that countries can unlock the economies of scale that will result from using more energy efficient EMDS.

17. Motor unit firing intervals and other parameters of electrical activity in normal and pathological muscle

DEFF Research Database (Denmark)

Fuglsang-Frederiksen, Anders; Smith, T; Høgenhaven, H

1987-01-01

of the motor units, as noted in previous studies. In the brachial biceps muscle we have studied the firing intervals of 164 motor units in 14 controls, 140 motor units in 13 patients with myopathy and 86 motor units in 8 patients with neurogenic disorders, and related the findings to those of the turns...... analysis and the analysis of properties of individual motor unit potentials. To ensure comparable conditions we have examined motor unit firing intervals and turns at a force of 10% of maximum. The average of motor unit firing intervals and of interval variability was the same in controls and in patients......The analysis of the firing intervals of motor units has been suggested as a diagnostic tool in patients with neuromuscular disorders. Part of the increase in number of turns seen in patients with myopathy could be secondary to the decrease in motor unit firing intervals at threshold force...

18. A contribution to the study of the thermal behavior and of the electric performance of squirrel-cage induction motors; Uma contribuicao ao estudo do comportamento termico e do desempenho eletrico de motores de inducao com rotor em gaiola

Energy Technology Data Exchange (ETDEWEB)

Avolio, Edwin

1992-03-01

A thermal-electric mathematical model for a squirrel cage induction motors which permits to specify the best motor for specific drive, under thermal and electric aspects based, only on manufacturer technical bulletins and technical information is presented. Changes of rotor parameters due Skin Effect and changes of winding resistances (both stator and rotor) with the temperature are considered. The accuracy of this model is appraised using experimental results. The thermal behavior and electric performance for some motors are obtained for continuos and intermittent duties with sinusoidal and non-sinusoidal voltages. (author)

19. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping

Science.gov (United States)

Shao, Xinxin; Naghdy, Fazel; Du, Haiping

2017-03-01

A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.

20. Analysis of electrical and magnetic bio-signals associated with motor performance and fatigue

Science.gov (United States)

Yao, Bing

This dissertation reports findings centered principally on comprehensive research related to human bio-signals (EEG, MEG, EMG and fMRI) acquired during repetitive maximal voluntary contractions (MVC) that induced severe fatigue. Fatigue is a common experience that reduces productivity and quality of life and increases chances of injury. Although abundant information has been gained in the last several decades regarding muscular and spinal-level mechanisms of muscle fatigue, very little is known about how cortical centers control and respond to fatigue. The main purpose of this study was to examine the fatigue effects on the central nervous system by analyzing the bio-signals collected in the designed experiments. Healthy human subjects were asked to perform a series of repetitive handgrip MVCs with their dominant hand until exhaustion. Handgrip forces, electrical activity (EMG) from primary and non-primary muscles, and EEG, MEG, or fMRI signals from different locations of the brain were recorded simultaneously. The time series data were segmented into several physiologically meaningful epochs (time phases), from rest to preparation to movement execution/sustaining. A series of studies, including motor-related cortical potential (MRCP) analysis, power spectrum analysis, time-frequency (spectrogram) analysis of EEG, EEG source localization and nonlinear analysis (fractal dimension and largest Lyapunov exponent), and fMRI analysis, was applied to the data. We hypothesized that the fatigue effects would act differently on brain signals of different phases. The MRCP results showed that the negative potential (NP) related to motor task preparation only had minimal changes with fatigue. The power of all EEG frequencies did not alter significantly during the preparation phase but decreased significantly during the sustained phase of the contraction. The fractal dimension and the largest Lyapunov exponent decreased significantly during the sustained phase as fatigue

1. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

Directory of Open Access Journals (Sweden)

Yong Wang

2014-01-01

Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

2. Análisis vibrodinámico de motores eléctricos // Vibrational and dynamic analysis of electric motors

Directory of Open Access Journals (Sweden)

Orestes González-Quintero

2010-01-01

Full Text Available ResumenEl artículo aborda el estudio vibrodinámico ejecutado en motores eléctricos de la fábrica de azúcar“Cristino Naranjo” durante la implementación del mantenimiento predictivo. En el mismo seexponen los trabajos realizados en las diferentes etapas de implementación del mantenimiento y eldiagnóstico de defectos mediante la utilización del análisis espectral de vibraciones. Se muestranespectros de motor con problemas y en funcionamiento normal.Palabras claves: Ingeniería de Mantenimiento, Mantenimiento Predictivo, análisis, vibraciones.__________________________________________________________________________________AbstractThis work is concerned with the vibrational and dynamic study of electrical motors located inCristino Naranjo sugar mill. It is done during the predictive maintenance implementation. At thesome time some works are shown during this process as well the failures diagnostic by means ofthe use of spectrum analysis of vibration. The spectrums shown are related to motors withdifficulties or well working.Key words: Maintenance Engineering, Predictive Maintenance, vibration, análisis.

3. Submersible purification system for radioactive water

Science.gov (United States)

Abbott, Michael L.; Lewis, Donald R.

1989-01-01

A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

4. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

Energy Technology Data Exchange (ETDEWEB)

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to

5. The Effect of Distributed Parameters on Conducted EMI from DC-Fed Motor Drive Systems in Electric Vehicles

Directory of Open Access Journals (Sweden)

Li Zhai

2016-12-01

Full Text Available The large dv/dt and di/dt outputs of power devices in DC-fed motor drive systems in electric vehicles (EVs always introduce conducted electromagnetic interference (EMI emissions and may lead to motor drive system energy transmission losses. The effect of distributed parameters on conducted EMI from the DC-fed high voltage motor drive systems in EVs is studied. A complete test for conducted EMI from the direct current fed(DC-fed alternating current (AC motor drive system in an electric vehicle (EV under load conditions is set up to measure the conducted EMI of high voltage DC cables and the EMI noise peaks due to resonances in a frequency range of 150 kHz–108 MHz. The distributed parameters of the motor can induce bearing currents under low frequency sine wave operation. However the impedance of the distributed parameters of the motor is very high at resonance frequencies of 500 kHz and 30 MHz, and the effect of the bearing current can be ignored, so the research mainly focuses on the distributed parameters in inverters and cables at 500 kHz and 30 MHz, not the effect of distributed parameters of the motor on resonances. The corresponding equivalent circuits for differential mode (DM and common mode (CM EMI at resonance frequencies of 500 kHz and 30 MHz are established to determine the EMI propagation paths and analyze the effect of distributed parameters on conducted EMI. The dominant distributed parameters of elements responsible for the appearing resonances at 500 kHz and 30 MHz are determined. The effect of the dominant distributed parameters on conducted EMI are presented and verified by simulation and experiment. The conduced voltage at frequencies from 150 kHz to 108 MHz can be mitigated to below the limit level-3 of CISPR25 by changing the dominant distributed parameters.

6. Design and development of split-parallel through-the road retrofit hybrid electric vehicle with in-wheel motors

Science.gov (United States)

Zulkifli, S. A.; Syaifuddin Mohd, M.; Maharun, M.; Bakar, N. S. A.; Idris, S.; Samsudin, S. H.; Firmansyah; Adz, J. J.; Misbahulmunir, M.; Abidin, E. Z. Z.; Syafiq Mohd, M.; Saad, N.; Aziz, A. R. A.

2015-12-01

One configuration of the hybrid electric vehicle (HEV) is the split-axle parallel hybrid, in which an internal combustion engine (ICE) and an electric motor provide propulsion power to different axles. A particular sub-type of the split-parallel hybrid does not have the electric motor installed on board the vehicle; instead, two electric motors are placed in the hubs of the non-driven wheels, called ‘hub motor’ or ‘in-wheel motor’ (IWM). Since propulsion power from the ICE and IWM is coupled through the vehicle itself, its wheels and the road on which it moves, this particular configuration is termed ‘through-the-road’ (TTR) hybrid. TTR configuration enables existing ICE-powered vehicles to be retrofitted into an HEV with minimal physical modification. This work describes design of a retrofit- conversion TTR-IWM hybrid vehicle - its sub-systems and development work. Operating modes and power flow of the TTR hybrid, its torque coupling and resultant traction profiles are initially discussed.

7. Optimization and Design for a Radial Flux Permanent Magnet Motor for Electric Vehicle

OpenAIRE

R. NEJI; S. TOUNSI; F. SELLAMI

2005-01-01

This paper deals with the design and the optimization of permanent magnet motors. Five trapezoidal and four sinusoidal wave-form motor configurations were investigated and analyzed. Firstly, an analytic sizing was led along with an electromagnetic modeling by finite element method. Secondly, a finer modeling with finite element was realized dynamically. The optimization of the traction motor cost under constraints by the genetic algorithms method has allowed choosing a motor with sinusoidal w...

8. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

Science.gov (United States)

Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

2016-06-01

Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

9. Software for optimal selection of places for installation of balancing devices in 0,4 kV electric power systems loaded with electric motors

Directory of Open Access Journals (Sweden)

Romanova Victoria

2017-01-01

Full Text Available This publication considers the issues of development of the software program for designing of 0,4 kV power supply systems with motor-actuated load under voltage unsymmetry conditions (using the example of the Trans-Baikal Territory. Voltage unsymmetry is practically constant phenomenon in the electric power networks of different voltage types. Voltage unsymmetry effects significantly the electric power consumers, including the supply mains itself. It has especially negative impact on the electrical equipment operation process and its lifetime. The urgency of the problem is confirmed by multiple research on the same topic and by significant number of damages suffered by the electric power consumers staying in service (especially in the Trans-Baikal Territory and in the Far-East regions. Voltage unsymmetry causes economic loss and reduction of the electromagnetic interference value by the voltage unsymmetry coefficient in negative-phase sequence (K2U gives inevitable economic effect accordingly. However, the payback period for the activities aimed at reduction of electromagnetic interference, will vary from some months to several years. The more accurate value of the payback period may be obtained using the developed software program. The developed software design program is implemented by means of the programming language C# in Microsoft Visual Studio environment, using the built-in cross-platform database SQLite. The software program shall allow making quick and accurate calculation of the power losses, to determine the economic feasibility of provision special measures for removal of the voltage unsymmetry, for determination of optimal application and location of the balancing devices. The software implementation in power systems loaded with electric motors will improve reliability and efficiency of asynchronous motors. The software is of interest for developers of projects on power supply systems for regions with non-linear loads.

10. Modulation of motor unit activity in biceps brachii by neuromuscular electrical stimulation applied to the contralateral arm.

Science.gov (United States)

Amiridis, Ioannis G; Mani, Diba; Almuklass, Awad; Matkowski, Boris; Gould, Jeffrey R; Enoka, Roger M

2015-06-15

The purpose of the study was to determine the influence of neuromuscular electrical stimulation (NMES) current intensity and pulse width applied to the right elbow flexors on the discharge characteristics of motor units in the left biceps brachii. Three NMES current intensities were applied for 5 s with either narrow (0.2 ms) or wide (1 ms) stimulus pulses: one at 80% of motor threshold and two that evoked contractions at either ∼10% or ∼20% of maximal voluntary contraction (MVC) force. The discharge times of 28 low-threshold (0.4-21.6% MVC force) and 16 high-threshold (31.7-56.3% MVC force) motor units in the short head of biceps brachii were determined before, during, and after NMES. NMES elicited two main effects: one involved transient deflections in the left-arm force at the onset and offset of NMES and the other consisted of nonuniform modulation of motor unit activity. The force deflections, which were influenced by NMES current intensity and pulse width, were observed only when low-threshold motor units were tracked. NMES did not significantly influence the discharge characteristics of tracked single-threshold motor units. However, a qualitative analysis indicated that there was an increase in the number of unique waveforms detected during and after NMES. The findings indicate that activity of motor units in the left elbow flexors can be modulated by NMES current and pulse width applied to right elbow flexors, but the effects are not distributed uniformly to the involved motor units. Copyright © 2015 the American Physiological Society.

11. Considerations for the selection of an applicable energy efficiency test procedure for electric motors in Malaysia: Lessons for other developing countries

Energy Technology Data Exchange (ETDEWEB)

Yanti, P.A.A. [Petronas Carigali Sdn. Bhd. Level 18, Tower 1, Petronas Twin Towers, 50088 Kuala Lumpur (Malaysia); Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)], E-mail: yanti_padli@petronas.com.my; Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)], E-mail: indra@um.edu.my

2009-09-15

Electric motors are a major energy-consuming appliance in the industrial sector. According to a survey, electric motors account for more than 70% of the total growth from 1991 to 2004 in electricity consumption in this sector in Malaysia. To reduce electricity consumption, Malaysia should consider resetting the minimum energy efficiency standards for electric motors sometime in the coming year. The first step towards adopting energy efficiency standards is the creation of a procedure for testing and rating equipment. An energy test procedure is the technical foundation for all energy efficiency standards, energy labels and other related programs. The test conditions in the test procedure must represent the conditions of the country. This paper presents the process for the selection of an energy test procedure for electric motors in Malaysia based on the country's conditions and requirements. The adoption of test procedures for electric motors internationally by several countries is also discussed in this paper. Even though the paper only discusses the test procedure for electric motors in Malaysia, the methods can be directly applied in other countries without major modifications.

12. Optimization and Design for a Radial Flux Permanent Magnet Motor for Electric Vehicle

Directory of Open Access Journals (Sweden)

R. NEJI

2005-12-01

Full Text Available This paper deals with the design and the optimization of permanent magnet motors. Five trapezoidal and four sinusoidal wave-form motor configurations were investigated and analyzed. Firstly, an analytic sizing was led along with an electromagnetic modeling by finite element method. Secondly, a finer modeling with finite element was realized dynamically. The optimization of the traction motor cost under constraints by the genetic algorithms method has allowed choosing a motor with sinusoidal wave-form, five pole pairs and twelve slots. This motor belongs to the second configuration with sinusoidal wave-form.

13. Testing new submersible pumps for proper sizing and reduced costs

Energy Technology Data Exchange (ETDEWEB)

O' Toole, W.P.; O' Brien, J.B.

1989-02-01

This paper describes an ongoing program to improve overall submersible pump performance by Thums Long Beach Co., acting as contractor for the City of Long Beach, operator of the Long Beach Unit. Thums Long Beach Co. currently operates 700 submersible pump installations located on four manmade islands and one landfill pier location. The program began with spot testing of submersible pumps for Thums' use. It has evolved to 100% pump testing and the stipulation that only pumps with newly manufactured parts are acceptable. The primary goals of this program are to increase well production and to lower lifting costs. Critical to these goals is increasing the average length of run by using accurate pump-performance data to design equipment and by rejecting defective pumps before they are run. Increased production is realized from better designs. Lower lifting costs result from using more efficient pumps and a reduced frequency of pulling submersible equipment.

14. Testing new submersible pumps for proper sizing and reduced costs

Energy Technology Data Exchange (ETDEWEB)

O' Toole, W.P.; O' Brien, J.B.

1986-01-01

This paper describes an ongoing program to improve overall submersible pump performance by Thums Long Beach Company, acting as Contractor of the City of Long Beach, Operator of the Long Beach Unit. Thums Long Beach Company currently operates 700 submersible pump installations located on four man-made islands and one land fill pier location. The program began with spot testing of submersible pumps for Thums' use. It has evolved to 100 percent pump testing and the stipulation that only pumps with newly manufactured parts are acceptable. The primary goals of this program are to increase well production and lower lifting costs. Critical to these goals is increasing the average length of run by using accurate pump performance data to design equipment and by rejecting defective pumps before they are run. Increased production is realized from better designs. Lower lifting costs result from utilizing higher efficiency pumps and a reduced frequency of pulling submersible equipment.

15. AWWA E102-17 submersible vertical turbine pumps

CERN Document Server

2017-01-01

This standard describes minimum requirements for submersible vertical turbine pumps utilizing a discharge column pipe assembly, 5 hp or larger, used in water service, including materials, design, manufacture, inspection, and testing.

16. The development of Inverter Fuzzy Logic Control for Induction Motor Control by Vector Control Method in Electric Vehicle

Directory of Open Access Journals (Sweden)

Era Purwanto

2010-10-01

Full Text Available In response to concerns about energy cost, energy dependence, and environmental damage, a rekindling of interest in electric vehicles (EV’s has been obvious. Thus, the development of power electronics technology for EV’s will take an accelerated pace to fulfill the market needs, regarding with the problem in this paper is presented development of fuzzy logic inverter in induction motor control for electric vehicle propulsion. The Fuzzy logic inverter is developed in this system to directed toward developing an improved propulsion system for electric vehicles applications, the fuzzy logic controller is used for switching process. This paper is describes the design concepts, configuration, controller for inverter fuzzy logic and drive system is developed for this high-performance electric vehicle.

17. Design of a spoke-type permanent-magnet motor with optimal winding configuration for electric vehicle applications

Science.gov (United States)

Chen, Qian; Liu, Guohai; Gong, Wensheng; Qu, Li; Zhao, Wenxiang; Shen, Yue

2012-04-01

The spoke-type motor has higher torque density than the conventional one resulting from its structure for concentrating flux from permanent magnets (PMs). However, this motor suffers from the serious distortion of back electromotive force (EMF). This paper proposes a cost-effective approach to design a spoke-type motor with lower harmonics of back-EMF for electric vehicle. The key is to superimpose the coil-EMF of one phase in such a way that the harmonics of the phase-EMF can be canceled, resulting in essentially sinusoidal waveforms. By using finite element method (FEM), an optimal coil-EMF vectors distribution for minimum harmonics of the phase-EMF is obtained and verified. In addition, the co-simulation technology is adopted to verify that the torque ripple under the optimal winding configuration can be significantly suppressed.

18. Study on Enhanceing Mechanisim and Policy on Energy Efficiency of Electrical Motor System in China

Science.gov (United States)

Liu, Ren; Zhao, Yuejin; Liu, Meng; Chen, Lili; Yang, Ming

2017-12-01

Motor is a kind of terminal energy-consumption equipment with the maximum power consumption in China every year; compared with international advanced level, the technical innovation of motor equipment, speed regulating system, drive system and automatic intelligent control technique in China still lag behind relatively; the standard technical service support system of motor system is not complete, the energy conserving transformation mode needs to be innovated, and the market development mechanism of motor industry is not perfect, etc. This paper analyzes the promotion mechanism and policy on energy efficiency of the motor system in China in recent years, studies the demonstration cases of successful promotion of high-efficiency motor, standard labeling, financial finance and tax policy, and puts forward suggestions on promotion of high-efficiency motor in China.

19. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

Energy Technology Data Exchange (ETDEWEB)

Ozpineci, Burak [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

2014-11-01

The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

20. 75 FR 33515 - Federal Motor Vehicle Safety Standards; Electric-Powered Vehicles; Electrolyte Spillage and...

Science.gov (United States)

2010-06-14

... Standards; Electric-Powered Vehicles; Electrolyte Spillage and Electrical Shock Protection AGENCY: National... electric-powered vehicle, and the next generation of hybrid and battery electric powered vehicles. It does... for electric-powered vehicles to align it more closely with the April 2005 version of the Society of...

1. 76 FR 45436 - Federal Motor Vehicle Safety Standards; Electric-Powered Vehicles; Electrolyte Spillage and...

Science.gov (United States)

2011-07-29

... Safety Standards; Electric-Powered Vehicles; Electrolyte Spillage and Electrical Shock Protection AGENCY... type of electric- powered vehicle) and the next generation of hybrid and battery electric powered... Fuel Cell Vehicles i. Low-Energy Compliance Option for Electrical Safety V. Rulemaking Analyses and...

2. Technology and Key Strategy of IE4 Permanent Magnet Brushless DC Motor Drive for Electric Vehicle Application

Directory of Open Access Journals (Sweden)

Nitin Subramonium A K

2017-03-01

Full Text Available Environmental protection and energy conservations are the main concern of 21st century Asia Pacific developing countries. This concern has compelled to design and develop zero pollution road transportation Electric Vehicles (EVs. The EV system consist of energy storage devices such as battery, fuel cell, ultra-capacitors along with electric propulsion, body of the vehicle and energy management system with the diversified technology of electrical, electronics, mechanical, automotive and chemical engineering. The objective of electric vehicle is to produce commercial viable range, efficient performance, and comfort with safety and reliable operations at cheaper price than its counterpart the Internal Combustion Engine Vehicle (ICEV. The PMBLDC motors are the present choice of automobile industries and researchers because of its high power density, compact size, reliability, with noise free and minimum maintenance requirements. The present state of art Permanent Magnet Brushless DC (PMBLDC Motor drive for the electric vehicle application is studied / reviewed in this paper.. In addition the study also reveals the advancement of the Power Processing Unit (PPU which consists of Microelectronics and Controls (Me and C to produce the super-premium efficiency PMBLDC drive system for EV applications.

3. The monitoring of transient regimes on machine tools based on speed, acceleration and active electric power absorbed by motors

Science.gov (United States)

Horodinca, M.

2016-08-01

This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.

4. Study on the Rollover Characteristic of In-Wheel-Motor-Driven Electric Vehicles Considering Road and Electromagnetic Excitation

Directory of Open Access Journals (Sweden)

Di Tan

2016-01-01

Full Text Available For in-wheel-motor-driven electric vehicles, the motor is installed in the wheel directly. Tyre runout and uneven load can cause magnet gap deformation in the motor, which will produce electromagnetic forces that further influence the vehicle rollover characteristics. To study the rollover characteristics, a verified 16-degree-of-freedom rollover dynamic model is introduced. Next, the vehicle rollover characteristics both with and without electromagnetic force are analyzed under conditions of the Fixed Timing Fishhook steering and grade B road excitation. The results show that the electromagnetic force has a certain effect on the load transfer and can reduce the antirollover performance of the vehicle. Therefore, the effect of the electromagnetic force on the rollover characteristic should be considered in the vehicle design. To this end, extensive analysis was conducted on the effect of the road level, vehicle speed, and the road adhesion coefficient on the vehicle rollover stability. The results indicate that vehicle rollover stability worsens when the above-mentioned factors increase, the most influential factor being the road adhesion coefficient followed by vehicle speed and road level. This paper can offer certain theory basis for the design of the in-wheel-motor-driven electric vehicles.

5. A study of novel regenerative braking system based on supercapacitor for electric vehicle driven by in-wheel motors

Directory of Open Access Journals (Sweden)

Li-qiang Jin

2015-03-01

Full Text Available Taking supercapacitor and battery pack as the energy storage unit, a novel type of regenerative braking system for electric vehicle driven by in-wheel motors is presented, and a braking energy regeneration control strategy is set up. Then, a co-simulation test based on CRUISE and Simulink is conducted. The results of simulation show that the novel type of system can ensure the safety of battery pack and significantly improve the rate of energy regeneration.

6. Design of a PC Based Mass Flow Indicator of an Electrical Motor Driven Water Lift Pump Using Motor Load Current as the Flow Sensing Parameter

Directory of Open Access Journals (Sweden)

S. C. BERA

2009-09-01

Full Text Available Mass flow rate of liquid at the outlet of a liquid lift pump is an important parameter to be measured and controlled in a process industry. In the present paper, the design of a PC based mass flow indicator of an electrical motor driven water lift pump using motor load current as the mass flow sensing parameter has been studied. The motor load current has been sensed by an opto-isolator based circuit and the output of this circuit has been displayed in a PC monitor using Labtech Note Book Pro software. A theoretical equation relating the output of opto-isolator circuit with mass flow rate has been derived and experimental study has been carried out to verify this theoretical equation, assuming the volume flow rate of water at constant room temperature to be proportional to mass flow rate. The experimental results are presented in the paper. It has been observed that the opto-isolator output and the on-line display in PC monitor both vary almost linearly with mass flow rate. Percentage deviation of the experimental results from ideal linearity and repeatability in terms of standard deviation are found to be within tolerable limit.

7. A High-Performance Control Method of Constant V/f-Controlled Induction Motor Drives for Electric Vehicles

Directory of Open Access Journals (Sweden)

Long Chen

2014-01-01

Full Text Available A three-phase induction motor used as a propulsion system for the electric vehicle (EV is a nonlinear, multi-input multi-output, and strong coupling system. For such a complicated model system with unmeasured and unavoidable disturbances, as well as parameter variations, the conventional vector control method cannot meet the demands of high-performance control. Therefore, a novel control strategy named least squares support vector machines (LSSVM inverse control is presented in the paper. Invertibility of the induction motor in the constant V/f control mode is proved to confirm its feasibility. The LSSVM inverse is composed of an LSSVM approximating the nonlinear mapping of the induction motor and two integrators. The inverse model of the constant V/f-controlled induction motor drive is obtained by using LSSVM, and then the optimal parameters of LSSVM are determined automatically by applying a modified particle swarm optimization (MPSO. Cascading the LSSVM inverse with the induction motor drive system, the pseudolinear system can be obtained. Thus, it is easy to design the closed-loop linear regulator. The simulation results verify the effectiveness of the proposed method.

8. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy “NANOMET®” cores

Directory of Open Access Journals (Sweden)

N. Nishiyama

2016-05-01

Full Text Available Recently updated nanocrystalline soft magnetic Fe-Co-Si-B-P-Cu alloys “NANOMET®” exhibit high saturation magnetic flux density (Bs > 1.8 T, low coercivity (Hc < 10 A/m and low core loss (W1.7/50 ∼ 0.4 W/kg even in a ribbon form with a thickness of up to 40 μm. By utilize excellent magnetic softness, several products such as motors or transformers for electrical appliances are now under developing by industry-academia collaboration. In particular, it is found that a brushless DC motor using NANOMET® core exhibited remarkable improvement in energy consumption. The prototype motor with an outer core diameter of 70 mm and a core thickness of 50 mm was constructed using laminated nano-crystallized NANOMET® ribbons. Core-loss for the constructed motor was improved from 1.4 W to 0.4 W only by replacing the non-oriented Si-steel core with NANOMET® one. The overall motor efficiency is evaluated to be 3% improvement. In this work, the relation between processing and resulting magnetic properties will be presented. In addition, feasibility for commercialization will also be discussed.

9. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

Directory of Open Access Journals (Sweden)

Sung Chul Kim

2013-11-01

Full Text Available If the integrated starter generator (ISG motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature increased from 25 °C to 95 °C, the coil temperature of the air-cooled motor increased by about 82 °C. Under the harsh-air condition of 95 °C, the coil of the air-cooled motor increased to a maximum temperature of about 158.5 °C. We also determined that the temperature of the metal-oxide-semiconductor field-effect transistor (MOSFET chip in the liquid-cooled inverter increased to a maximum temperature of about 96.8 °C under a coolant flow rate of 4 L/min and a coolant temperature of 65 °C. The observed thermal performance of the ISG motor and inverter using the proposed cooling structures was found to be sufficient for heat loads under various real driving conditions for a hybrid electric vehicle (HEV.

10. Selection of electric motors for industrial processes with the rational energy use criteria; Seleccion de motores electricos para procesos industriales con criterios de uso racional de la energia

Energy Technology Data Exchange (ETDEWEB)

Morales Collantes, Arturo [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

1992-12-31

Under the energy and ecological crisis we are now going through, but fundamentally because as human beings we can not keep on acting in such a thoughtless way, I write these notes, with the intention that we take more into consideration that whatever we do to improve the ways of energy consumption, will ease the human life preservation. The electric motors selection, plays an important roll in this respect, since it represents the highest percentage of electric energy consumption at national level. Therefore I will point out some basic criteria for an adequate selection. [Espanol] Ante la crisis energetica y ecologica por la que actualmente pasamos, pero fundamentalmente porque como seres humanos no podemos seguir actuando en forma tan irreflexiva, escribo estas notas, con la intencion de que tomemos mas en cuenta, que lo que hagamos para mejorar las formas de consumo de energia, facilitara la preservacion de la vida humana. La seleccion de motores electricos, juega un importante papel al respecto, ya que representa el mayor porcentaje del consumo de energia electrica a nivel nacional, por lo tanto senalare algunos criterios basicos para una adecuada seleccion.

11. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

Energy Technology Data Exchange (ETDEWEB)

Staunton, R.H.

2004-10-11

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting

12. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

Energy Technology Data Exchange (ETDEWEB)

Staunton, R.H.

2004-08-11

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance

13. An electrical gearbox by means of pole variation for induction and superconducting disc motor

Science.gov (United States)

Inácio, S.; Inácio, D.; Pina, J. M.; Valtchev, S.; Neves, M. V.; Rodrigues, A. L.

2008-02-01

In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque/speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque/speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.

14. Design and Optimization of a Novel Method for Assessment of the Motor Function of the Spinal Cord by Multipulse Transcranial Electrical Stimulation. in Horses

NARCIS (Netherlands)

Journee, Sanne Lotte; Journee, Henricus Louis; de Bruijn, Cornelis Marinus; Delesalle, Catherine John Ghislaine

2015-01-01

Compared to transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES) more specifically assesses the motor function of the spinal cord and excludes reproducibility errors from coil repositioning. Objective: to assess the applicability of multipulse TES in horses and retrieve

15. Electric drives

CERN Document Server

Boldea, Ion

2005-01-01

ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

16. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

Science.gov (United States)

Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

2017-01-01

Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

17. Torque linearizing hardware for the electric joint motors of a direct-drive robot

Science.gov (United States)

Muir, P. F.; Bryan, J. R.

Many emerging high-performance robot control algorithms require the command of the joint torques, yet no known commercial robots provide such a capability. We describe the design, development, testing, and application of a VMEbus-based torque linearizing joint interface board (JIB). One JIB resides between the robot control processor and each joint motor amplifier. The JIB provides the control processor with the capability to read the motor position and apply accurate motor torques. The torque command capability derives from the application of a 128k x 8 EPROM lookup table for each motor phase. Because joint motor torque is dependent upon the torque command and the motor position, the hardware is designed to utilize the torque command and the current motor position as the address to retrieve the proper pulse-width for the PWM motor amplifier. The table look-up cycle operates independently of the robot controller at a 40KHz rate to provide constant joint torque as the motor rotates. We identify the proper table entries by an automated in situ data collection procedure. Static torque generation results show that the torque deviations are reduced from as much as 76 percent to below 5 percent for each of the three direct-drive motors (two are variable reluctance motors and one is brushless DC) on an AdeptTwo robot. These torque deviations are reduced below 2.5 percent if only the upper 90 percent of the torque range is considered. The torque deviations of the non-direct-drive joint are reduced by 50 percent. Dynamic robot edge following experiments show that the robot speed of operation can be more than doubled for a given applied force accuracy by utilizing the joint torque linearizing boards.

18. Performance Evaluation of an In-Wheel Motor Cooling System in an Electric Vehicle/Hybrid Electric Vehicle

Directory of Open Access Journals (Sweden)

Dong Hyun Lim

2014-02-01

Full Text Available High power and miniaturization of motors in an in-wheel drive system, which is installed inside the wheels of a vehicle, are required for directly driving the wheels. In addition, an efficient cooling system is required to ensure high driving performance and durability. This study experimentally evaluated the heat dissipation performance of a 35-kW-class large-capacity in-wheel motor equipped with an internal-circulation-type oil-cooling system that exhibits high cooling performance and can be easily miniaturized to this motor. Temperatures of the coil and stator core of cooling systems with and without a radiator were measured in real time under in-wheel motor driving conditions. It was found that operating the cooling system at a continuous-rating maximum speed without the radiator was difficult. We confirmed that under continuous-rating base speed and continuous-rating maximum speed driving conditions, the cooling system with the radiator showed thermally stable operation. Furthermore, under maximum-rating base speed and maximum-rating maximum speed driving conditions, the cooling system with the radiator provided additional driving times of approximately 22 s and 2 s, respectively.

19. Motor unit firing intervals and other parameters of electrical activity in normal and pathological muscle

DEFF Research Database (Denmark)

Fuglsang-Frederiksen, Anders; Smith, T; Høgenhaven, H

1987-01-01

The analysis of the firing intervals of motor units has been suggested as a diagnostic tool in patients with neuromuscular disorders. Part of the increase in number of turns seen in patients with myopathy could be secondary to the decrease in motor unit firing intervals at threshold force of the ...

20. Standstill Estimation of Electrical Parameters in Induction Motors Using an Optimal Input Signal

DEFF Research Database (Denmark)

Børsting, H.; Knudsen, Morten; Vadstrup, P.

1995-01-01

The paper suggest a simple off-line method to obtain accurate estimates of the resistances and inductances of the induction motor.......The paper suggest a simple off-line method to obtain accurate estimates of the resistances and inductances of the induction motor....

1. Submersible microbial fuel cell for electricity production from sewage sludge

DEFF Research Database (Denmark)

Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

2011-01-01

chemical oxygen demand (TCOD) removal efficiency was 78.1±0.2% with initial TCOD of 49.7 g/L. The power generation of SMFC was depended on the sludge concentration, while dilution of the raw sludge resulted in higher power density. The maximum power density was saturated at sludge concentration of 17 g...

2. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

Directory of Open Access Journals (Sweden)

Gerasimos G. Rigatos

2011-12-01

Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vector. Additionally, a state estimation-based control loop is implemented using the Unscented Kalman Filter. Moreover, state estimation-based control is developed for the induction motor model using a nonlinear flatness-based controller and the state estimation that is provided by the Extended Kalman Filter. Unlike field oriented control, in the latter approach there is no assumption about decoupling between the rotor speed dynamics and the magnetic flux dynamics. The efficiency of the Kalman Filter-based control schemes, for both the DC and induction motor models, is evaluated through simulation experiments.

3. Electrical efficiency: case study of electric motors at machines room of a slaughterhouse in the state of Sao Paulo; Eficiencia eletrica: estudo de caso dos motores eletricos da sala de maquinas de um frigorifico no estado de Sao Paulo

Energy Technology Data Exchange (ETDEWEB)

Rossi, Luiz A. [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola. Conselho Integrado de Infraestrutura Rural], E-mail: rossi@agri.unicamp.br; Silva, Roberto P.B. da; Barros, Regiane S. de [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

2010-07-01

To estimate the potential for energy saving in cold compressor motor of a food industry, a study was conducted in a slaughterhouse in the state of Sao Paulo. It was analyzed only the engine room of the company because according to measurements this one corresponds approximately 97% of all electricity consumption of the unit. It was found that the electrical efficiency indices were low, demonstrating the possibilities for adoption of conservation measures and the rationalization of electric energy. It was evident that the establishment of an efficiency study to change the electrical equipment used was feasible and, therefore, was demonstrated and proposed a new arrangement for the current system. Soon after the diagnosis of the use of electricity was found that from the six Machinery, five were oversized. Then it was suggested to replace these machines by others with lower power and greater efficiency, as well as conducted an analysis of technical and economic feasibility of the project, demonstrating the possibilities for the rational use of energy and the optimization of financial resources company (author)

4. Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor

Directory of Open Access Journals (Sweden)

Mingchun Liu

2017-12-01

Full Text Available This paper presents an integration design scheme and an optimization control strategy for electric wheels to suppress the in-wheel vibration and improve vehicle ride comfort. The in-wheel motor is considered as a dynamic vibration absorber (DVA, which is isolated from the unsprung mass by using a spring and a damper. The proposed DVA system is applicable for both the inner-rotor motor and outer-rotor motor. Parameters of the DVA system are optimized for the typical conditions, by using the particle swarm optimization (PSO algorithm, to achieve an acceptable vibration performance. Further, the DVA actuator force is controlled by using the alterable-domain-based fuzzy control method, to adaptively suppress the wheel vibration and reduce the wallop acting on the in-wheel motor (IWM as well. In addition, a suspension actuator force is also controlled, by using the linear quadratic regulator (LQR method, to enhance the suspension performance and meanwhile improve vehicle ride comfort. Simulation results demonstrate that the proposed DVA system effectively suppresses the wheel vibration and simultaneously reduces the wallop acting on the IWM. Also, the alterable-domain-based fuzzy control method performs better than the conventional ones, and the LQR-based suspension exhibits excellent performance in vehicle ride comfort.

5. Lowering of sensory, motor, and pain-tolerance thresholds with burst duration using kilohertz-frequency alternating current electric stimulation.

Science.gov (United States)

Ward, Alex R; Lucas-Toumbourou, Stacey

2007-08-01

To determine the optimum burst duration for discrimination between sensory, motor, and pain-tolerance thresholds using 50-Hz bursts of kilohertz-frequency sinusoidal alternating current (AC) applied transcutaneously to human subjects. A repeated-measures randomized controlled trial. A research laboratory. Twenty-six healthy young adults. Bursts of AC electric stimulation at frequencies of 1 and 4kHz. Burst durations ranged from 250micros (for 1 cycle of 4kHz AC, ie, a single biphasic pulse) to 20ms (continuous AC). We measured sensory, motor, and pain-tolerance thresholds at frequencies of 1 and 4kHz. We found that threshold voltages decreased to a minimum with increasing burst duration. The minimum threshold identified the "utilization time" over which summation of subthreshold stimuli occurs. Above the utilization time, thresholds increased. Estimated utilization times differed for sensory ( approximately 7ms), motor (>10ms), and pain-tolerance (>or=20ms). As a consequence, relative thresholds varied with burst duration. A maximum separation between sensory, motor, and pain-tolerance thresholds was found to occur with bursts in the range 1 to 4ms. Short-duration kilohertz-frequency AC bursts might have a more useful role in rehabilitation than either pulsed current or the long duration bursts that characterize Russian and interferential currents. Further clinical studies are needed.

6. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

Science.gov (United States)

2013-01-14

... and Electric Vehicles; Draft Environmental Assessment for Rulemaking To Establish Minimum Sound Requirements for Hybrid and Electric Vehicles; Proposed Rules #0;#0;Federal Register / Vol. 78 , No. 9 / Monday... Requirements for Hybrid and Electric Vehicles AGENCY: National Highway Traffic Safety Administration (NHTSA...

7. State of the Art and Trends in the Monitoring, Detection and Diagnosis of Failures in Electric Induction Motors

Directory of Open Access Journals (Sweden)

Yuri Merizalde

2017-07-01

Full Text Available Despite the complex mathematical models and physical phenomena on which it is based, the simplicity of its construction, its affordability, the versatility of its applications and the relative ease of its control have made the electric induction motor an essential element in a considerable number of processes at the industrial and domestic levels, in which it converts electrical energy into mechanical energy. The importance of this type of machine for the continuity of operation, mainly in industry, is such that, in addition to being an important part of the study programs of careers related to this branch of electrical engineering, a large number of investigations into monitoring, detecting and quickly diagnosing its incipient faults due to a variety of factors have been conducted. This bibliographic research aims to analyze the conceptual aspects of the first discoveries that served as the basis for the invention of the induction motor, ranging from the development of the Fourier series, the Fourier transform mathematical formula in its different forms and the measurement, treatment and analysis of signals to techniques based on artificial intelligence and soft computing. This research also includes topics of interest such as fault types and their classification according to the engine, software and hardware parts used and modern approaches or maintenance strategies.

8. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles

Science.gov (United States)

Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang

2012-04-01

In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

9. Induction of long-term depression-like plasticity by pairings of motor imagination and peripheral electrical stimulation

Directory of Open Access Journals (Sweden)

2015-12-01

Full Text Available Long-term depression (LTD and long-term potentiation (LTP-like plasticity are models of synaptic plasticity which have been associated with memory and learning. The induction of LTD and LTP-like plasticity, using different stimulation protocols, has been proposed as a means of addressing abnormalities in cortical excitability associated with conditions such as focal hand dystonia and stroke. The aim of this study was to investigate whether the excitability of the cortical projections to the tibialis anterior muscle could be decreased when dorsiflexion of the ankle joint was imagined and paired with peripheral electrical stimulation of the nerve supplying the antagonist soleus muscle. The effect of stimulus timing was evaluated by comparing paired stimulation timed to reach the cortex before, at and after the onset of imagined movement. Fourteen healthy subjects participated in six experimental sessions held on non-consecutive days. The timing of stimulation delivery was determined offline based on the contingent negative variation (CNV of electroencephalography (EEG brain data obtained during imagined dorsiflexion. Afferent stimulation was provided via a single pulse electrical stimulation to the peripheral nerve paired, based on the CNV, with motor imagination of ankle dorsiflexion. A significant decrease (P=0.001 in the excitability of the cortical projection of tibialis anterior was observed when the afferent volley from the electrical stimulation of the tibial nerve (TN reached the cortex at the onset of motor imagination based on the CNV. When TN stimulation was delivered before (P=0.62, or after (P=0.23 imagined movement onset there was no significant effect. Nor was a significant effect found when electrical stimulation of the TN was applied independent of imagined movement (P=0.45. Therefore, the excitability of the cortical projection to a muscle can be inhibited when electrical stimulation of the nerve supplying the antagonist muscle

10. Vector Control Algorithm for Electric Vehicle AC Induction Motor Based on Improved Variable Gain PID Controller

Directory of Open Access Journals (Sweden)

Gang Qin

2015-01-01

Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.

11. United States industrial electric motor systems market opportunities assessment: Executive summary

Energy Technology Data Exchange (ETDEWEB)

None, None

1998-12-01

The Market Assessment is designed to be of value to manufacturers, distributors, engineers, and others in the supply channels for motor systems. It provides a detailed and highly differentiated portrait of their end-use markets.

12. Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications Project

Data.gov (United States)

National Aeronautics and Space Administration — QM Power will build and empirically test Space and Cryogenic qualified preproduction Parallel Magnetic Circuit [PMC] 1-5 HP motor/actuators with electronic...

13. Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke

NARCIS (Netherlands)

de Kroon, Joke R.; IJzerman, Maarten Joost; Chae, John; Lankhorst, Gustaaf J.; Zilvold, G.; Zilvold, Gerrit

Objective: Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. The aim of this review is to explore the relationship between characteristics of stimulation and the effect of electrical stimulation on the recovery of upper limb motor control

14. Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke

NARCIS (Netherlands)

de Kroon, J.R.; IJzerman, M.J.; Chae, J.; Lankhorst, G.J.; Zilvold, G.

2005-01-01

Objective: Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. The aim of this review is to explore the relationship between characteristics of stimulation and the effect of electrical stimulation on the recovery of upper limb motor control

15. Use of electric field sensors for recording respiration, heart rate, and stereotyped motor behaviors in the rodent home cage.

Science.gov (United States)

Noble, Donald J; MacDowell, Camden J; McKinnon, Michael L; Neblett, Tamra I; Goolsby, William N; Hochman, Shawn

2017-02-01

Numerous environmental and genetic factors can contribute significantly to behavioral and cardiorespiratory variability observed experimentally. Affordable technologies that allow for noninvasive home cage capture of physio-behavioral variables should enhance understanding of inter-animal variability including after experimental interventions. We assessed whether EPIC electric field sensors (Plessey Semiconductors) embedded within or attached externally to a rodent's home cage could accurately record respiration, heart rate, and motor behaviors. Current systems for quantification of behavioral variables require expensive specialty equipment, while measures of respiratory and heart rate are often provided by surgically implanted or chronically affixed devices. Sensors accurately encoded imposed sinusoidal changes in electric field tested at frequencies ranging from 0.5-100Hz. Mini-metronome arm movements were easily detected, but response magnitude was highly distance dependent. Sensors accurately reported respiration during whole-body plethysmography. In anesthetized rodents, PVC tube-embedded sensors provided accurate mechanical detection of both respiratory and heart rate. Comparable success was seen in naturally behaving animals at rest or sleeping when sensors were attached externally. Video-verified motor behaviors (sniffing, grooming, chewing, and rearing) were detectable and largely separable by their characteristic voltage fluctuations. Larger movement-related events had comparably larger voltage dynamics that easily allowed for a broad approximation of overall motor activity. Spectrograms were used to quickly depict characteristic frequencies in long-lasting recordings, while filtering and thresholding software allowed for detection and quantification of movement-related physio-behavioral events. EPIC electric field sensors provide a means for affordable non-contact home cage detection of physio-behavioral variables. Copyright © 2016 Elsevier B.V. All

16. Use of sediment CO2 by submersed rooted plants

DEFF Research Database (Denmark)

Winkel, Anders; Borum, Jens

2009-01-01

freshwater plants with different morphology and growth characteristics (Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana and Hydrocotyle verticillata) are able to support photosynthesis supplied by uptake of CO2 from the sediment. Methods: Gross photosynthesis was measured......Background and Aims: Submersed plants have different strategies to overcome inorganic carbon limitation. It is generally assumed that only small rosette species (isoetids) are able to utilize the high sediment CO2 availability. The present study examined to what extent five species of submersed......, the shoot to root ratio on an areal basis was the single factor best explaining variability in the importance of sediment CO2. For Ludwigia, diffusion barriers limited uptake or transport from roots to stems and transport from stems to leaves. Conclusions: Submersed plants other than isoetids can utilize...

17. Control electrónico de velocidad de un motor DC para vehículo eléctrico

OpenAIRE

Montalvo Ramírez, Luis; Banda Gamboa, Hugo A.

1983-01-01

Se presenta el análisis y diseño del circuito troceador tipo JONES, asÍ como del cir- cuito digital, que son empleados en el sistema electrónico que controla la velocidad del motor D.C. del vehículo eléctrico construido en la Politécnica Nacional. Los resultados experimentales obtenidos con el prototipo construido son presentados y analizados, llegándose a conclusiones muy importantes para el futuro desarrollo de estos sistemas.

18. About the Territorial Potential of the Construction of Battery-Charging Stations for Autonomous Electric Motor Vehicles in the Regions

Directory of Open Access Journals (Sweden)

Shilova Lyubov

2016-01-01

Full Text Available The article describes the main current trends in the development of electric motor vehicles with "zero emission" as well as the battery-charging stations concerned. The study is based on a preliminary comparative analysis of the RF regions with respect to five indices (average per capita income, number of private cars in the region, air pollution level, provision of the region with power supply and the potential use of local renewable energy resources, and it gives some recommendations on the prospects of possible construction of battery-charging stations in the regions.

19. Rationalisation of electricity consumption in electric motors. 2. updated interim report; Rationalisierung des Strombedarfs fuer elektrische Antriebe. 2. aktualisierter Zwischenbericht

Energy Technology Data Exchange (ETDEWEB)

Hellriegel, E.

1993-07-01

This is a study in three parts: (1.) Theoretical analysis of energy conservation possibilities; (2.) Laboratory experiments on control concepts for a gyro pump; (3.) Measurement and analysis of electric drives in selected industrial enterprises. (orig.) [Deutsch] Die Studie gliedert sich in folgende drei Hauptteile: - theoretische Ueberlegungen zu Energieeinsparmoeglichkeiten; - Laborversuch zu unterschiedlichen Regelkonzepten einer Kreiselpumpe; - Messtechnische Analysen von elektrischen Antrieben in ausgewaehlten Industriebetrieben. (orig.)

20. Prospects for Use of Synchronous Reluctance Motors in Low-Power Electrical Devices

Science.gov (United States)

Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

2015-04-01

This paper focuses on studying the synchronous reluctance motors as an alternative to low-power commutator motors. Analysis is done for the improved design of synchronous reluctance motor with a segmental external rotor. Relevant equations and a suitable method are proposed for calculating characteristics of the synchronous reluctance motors operating in a specific mode with electronic commutation as switched reluctance motors. It is concluded that synchronous reluctance motors in this mode can provide a wide range of characteristics and are quite competitive with commutator motors used in low-power devices. Aplūkoti sinhronie reaktīvie dzinēji kā mazjaudas kolektordzinēju alternatīva. Analizētas sinhrono reaktīvo dzinēju uzlabotas konstrukcijas ar segmentveida ārējo rotoru. Aprakstīti sinhrono reaktīvo dzinēju vienādojumi un raksturlīkņu aprēķināšanas metodika gadījumam, kad tie darbojas ventiļdzinēju sastāvā. Parādīts, ka sinhronie reaktīvie dzinēji šādos gadījumos var nodrošināt plašu mehānisko raksturlīkņu spektru un sekmīgi konkurēt ar kolektordzinējiem mazjaudas elektroierīcēs.

1. Effects of Transcutaneous Electrical Acupoint Stimulation on Motor Functions and Self-Care Ability in Children with Cerebral Palsy.

Science.gov (United States)

Zhang, Bei; Zhu, Yulan; Jiang, Congyu; Li, Ce; Li, Yingying; Bai, Yulong; Wu, Yi

2017-08-02

To observe the effects of transcutaneous electrical acupoint stimulation (TEAS) in improving motor functions and self-care abilities in children with cerebral palsy in their early childhood. A preliminary, prospective, cohort study. Multicenter. Children aged 2-6 years old. Twenty-three children were included in the study and randomly assigned to a control group ([CG] N = 11) or a therapeutic group ([TG] N = 12). In the TG, children were treated with TEAS (Shousanli [LI10] and Waiguan [SJ5]) plus the exercise therapy, while in the control group, they were treated with sham TEAS plus exercise therapy. Therapies were performed five days per week for eight weeks. The Gross Motor Function Measure (GMFM) and the Functional Independent Measurement for children (WeeFIM) were used to evaluate motor functions and self-care abilities before and after the therapies. Greater improvements were observed in the TG concerning all the measurements, although without statistical differences. The increments of the GMFM score and the WeeFIM motor, self-care and total scores were 36.08 ± 18.34 (26%), 16.17 ± 8.21 (33%), 7.67 ± 3.42 (40%) and 20.33 ± 10.08 (28%) in the TG, while 22.73 ± 16.54 (17%), 9.09 ± 9.43 (19%), 5.64 ± 6.73 (29%) and 12.82 ± 11.77 (18%) in the CG, respectively. No statistically significant correlations were shown between functional improvements and the demographics in the TG or the CG. The GMFM improvement was not statistically correlated with the improvements of the WeeFIM motor, self-care or total scores. However, the WeeFIM motor, self-care and total score were significantly positively correlated with one another in both groups (P motor functions and self-care abilities in children with cerebral palsy, in addition to conventional exercise therapy. Larger samples are required to confirm the efficacies.

2. Speed Sensorless Control of Permanent Magnet Synchronous Motors in Mine Electric Locomotive Drive

Directory of Open Access Journals (Sweden)

Yudong LI

2014-04-01

Full Text Available This paper presents a novel sensorless control method of permanent magnet synchronous motors a low speed based on a high-frequency voltage signal injection. The approach superimposes a persistent HF voltage signal into the estimated d-axis to get the rotor position error angle-related signal by detecting the corresponding voltage response and current response. Then the rotor position and motor speed are obtained. Theoretical analysis and simulation results demonstrate that the approach can achieve sensorless control of permanent magnet synchronous motors at zero and low speed, ensure good dynamic and static performances, and achieve effective control when applied to servo system. Finally, a test prototype system which used a digital signal processor and space vector pulse width modulation technology has been developed. Experimental results show that the system has better static, the effectiveness and dynamic performance of the adaptive test signals in a sensorless controlled surface-mounted permanent magnet synchronous machines.

3. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

Science.gov (United States)

Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

2015-11-01

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia. Copyright © 2015 Elsevier Inc. All rights reserved.

4. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP

Science.gov (United States)

Yi, Weibo; Qiu, Shuang; Wang, Kun; Qi, Hongzhi; Zhao, Xin; He, Feng; Zhou, Peng; Yang, Jiajia; Ming, Dong

2017-04-01

5. Computation of the Speed of Four In-Wheel Motors of an Electric Vehicle Using a Radial Basis Neural Network

Directory of Open Access Journals (Sweden)

M. Yildirim

2016-12-01

Full Text Available This paper presents design and speed estimation for an Electric Vehicle (EV with four in-wheel motors using Radial Basis Neural Network (RBNN. According to the steering angle and the speed of EV, the speeds of all wheels are calculated by equations derived from the Ackermann-Jeantand model using CoDeSys Software Package. The Electronic Differential System (EDS is also simulated by Matlab/Simulink using the mathematical equations. RBNN is used for the estimation of the wheel speeds based on the steering angle and EV speed. Further, different levels of noise are added to the steering angle and the EV speed. The speeds of front wheels calculated by CoDeSys are sent to two Induction Motor (IM drives via a Controller Area Network-Bus (CAN-Bus. These speed values are measured experimentally by a tachometer changing the steering angle and EV speed. RBNN results are verified by CoDeSys, Simulink, and experimental results. As a result, it is observed that RBNN is a good estimator for EDS of an EV with in-wheel motor due to its robustness to different levels of sensor noise.

6. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

Science.gov (United States)

Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

2015-05-01

In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

7. Application-Oriented Optimal Shift Schedule Extraction for a Dual-Motor Electric Bus with Automated Manual Transmission

Directory of Open Access Journals (Sweden)

Mingjie Zhao

2018-02-01

Full Text Available The conventional battery electric buses (BEBs have limited potential to optimize the energy consumption and reach a better dynamic performance. A practical dual-motor equipped with 4-speed Automated Manual Transmission (AMT propulsion system is proposed, which can eliminate the traction interruption in conventional AMT. A discrete model of the dual-motor-AMT electric bus (DMAEB is built and used to optimize the gear shift schedule. Dynamic programming (DP algorithm is applied to find the optimal results where the efficiency and shift time of each gear are considered to handle the application problem of global optimization. A rational penalty factor and a proper shift time delay based on bench test results are set to reduce the shift frequency by 82.5% in Chinese-World Transient Vehicle Cycle (C-WTVC. Two perspectives of applicable shift rule extraction methods, i.e., the classification method based on optimal operating points and clustering method based on optimal shifting points, are explored and compared. Eventually, the hardware-in-the-loop (HIL simulation results demonstrate that the proposed structure and extracted shift schedule can realize a significant improvement in reducing energy loss by 20.13% compared to traditional empirical strategies.

8. Electric-stepping-motor tests for a control-drum actuator of a nuclear reactor

Science.gov (United States)

Kieffer, A. W.

1972-01-01

Experimental tests were conducted on two stepping motors for application as reactor control-drum actuators. Various control-drum loads with frictional resistances ranging from approximately zero to 40 N-m and inertias ranging from zero to 0.424 kg-sq m were tested.

9. ProMot: a decision support tool for electric motor users; ProMot: ein Werkzeug zur Entscheidungsfindung fuer Motorenbetreiber

Energy Technology Data Exchange (ETDEWEB)

Tanner, T.

2006-07-01

Being supported by an international collaboration the project ProMot has developed and disseminated in the European Union a decision support tool for electric motor users helping them to choose energy efficient motor systems. During the first phase all necessary components to build the decision support tool have been selected, developed or improved and adapted. At the beginning it was assumed that the contribution of the author's company, Semafor would be the integration of the company's OPAL software components developed for pumps and variable speed drives (VSD) into the EuroDEEM package. In view of the deficiencies of EuroDEEM it was soon agreed to abandon this approach. Instead, the package IMSSA (International Motor Selection and Saving Analysis), developed at the Washington State University on the basis of MotorMaster was selected. IMSSA - which has been renamed to EuroDEEM International - and the pump and VSD module can now be used as standalone applications. The second phase integrated all collected and developed material into a comprehensive and user-friendly web site that was then demonstrated to key actors in the participating countries. Several requirements had to be considered. The platform had to allow the publication of the web pages in several languages and to enable the team members to place and modify their content without disturbing ongoing operation. It was therefore decided to evaluate a suitable Web Content Management System (CMS) which lead to Plone, a powerful and adaptable open-source system already in use at many web sites. The pages have then been created and published with this system. With some support from Semafor, German and French translations were created. Also a hardcopy brochure that gives an overview of the web site has been produced and distributed in the participating countries. (author)

10. The Research on Full-speed Field Weakening Control Method of Electric Vehicle Interior Permanent Magnet Synchronous Motor

Directory of Open Access Journals (Sweden)

Gao Run-Ze

2017-01-01

Full Text Available The motor drive system represents a key technology for development of the electrical vehicles, and the permanent magnet synchronous motor becomes the mainstream of the new energy vehicle drive motor for the superior performances in power density, low-speed torque density, efficiency and reliability. The paper studies the field weakening control strategy for the interior permanent magnet synchronous motor (IPMSM and provides a field weakening control strategy for the IPMSM at the full-speed range. By studying the mathematical IPMSM model and the methods of conventional vector control and analyzing the operating conditions of the IPMSM at the full-speed range, the paper divides the operating conditions into constant torque operation region I, constant torque operation region II, constant power field weakening operation region and high-speed field weakening operation region to confirm the control strategy algorithm in each region and the transition conditions between regions and provide the current control strategy that the d-axis current and q-axis current are confirmed by the reference torque and the feedback speed. Modeling of the field weakening control strategies in each region is made through the Matlab/Simulink, and simulation of the operating conditions with a steady-state load and a dynamic load is done to verify that the field weakening control strategy in each region is feasible. A co-simulation is made by combining the Matlab/Simulink-based control model, the RecurDyn-based virtual prototype and the RT-LAB to verify the feasible field weakening control strategy.

11. Submersible telemetry system downhole unit model for the petroleum industry

Science.gov (United States)

Rubtsova, O. O.; Trofimova, E. S.; Ishchenko, A. V.; Cherepanov, A. N.; Danilov, V. Yu.

2017-09-01

This article addresses the issue of increasing requirements for the oil industry: the need to develop new wells and control their profitability. The device under consideration (a submersible telemetry system that is capable of measuring well parameters and transferring them via the communication line to the ground based control system) will allow to avoid downtime when it is extracted for indicators check.

12. Effects of cold stratification, sulphuric acid, submersion in hot and ...

African Journals Online (AJOL)

STORAGESEVER

2009-07-06

Jul 6, 2009 ... This study was carried out to determine which pre-treatments should be preferred to overcome dormancy problems of Colutea armena seeds which were collected from three different provenances. Pre-treatments applied to the seeds were submersion in concentrated (98%) sulphuric acid for 30 min,.

13. Effects of cold stratification, sulphuric acid, submersion in hot and ...

African Journals Online (AJOL)

Effects of cold stratification, sulphuric acid, submersion in hot and tap water pretreatments in the greenhouse and open field conditions on germination of bladder-Senna ... This study was carried out to determine which pre-treatments should be preferred to overcome dormancy problems of Colutea armena seeds which were ...

14. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES)

National Research Council Canada - National Science Library

S. Selivanov; V. Filenko; А. Bazhynov; E. Budianskaya

2009-01-01

The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered...

15. Localization of Brain Electrical Activity Sources and Hemodynamic Activity Foci during Motor Imagery

Czech Academy of Sciences Publication Activity Database

Frolov, A. A.; Húsek, Dušan; Mokienko, O.; Bobrov, P.; Chernikova, L.; Konovalov, R.

2014-01-01

Roč. 40, č. 3 (2014), s. 273-283 ISSN 0362-1197 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : brain computer interface * independent component analysis * EEG pattern classification * motor imagery * inverse EEG problem Subject RIV: IN - Informatics, Computer Science

16. Some Aspects Regarding the Use of Digital Signal Controllers in Electrical Drivers for Stepper Motors

Directory of Open Access Journals (Sweden)

Emanoil Toma

2014-09-01

Full Text Available In the first part of this paper are presented and compared two practical implementation of unipolar stepper drives for didactical destination, one with 8 bit microcontroller and one with 16 bits digital signal controller. In the second part, a practical implementation of micro stepping drive for bipolar motor with a 16 bits digital signal controller designed for switching mode power supply. A physical prototype was realized and some experimental measurements are presented.

17. Field-based optimal-design of an electric motor: a new sensitivity formulation

Science.gov (United States)

Barba, Paolo Di; Mognaschi, Maria Evelina; Lowther, David Alister; Wiak, Sławomir

2017-12-01

In this paper, a new approach to robust optimal design is proposed. The idea is to consider the sensitivity by means of two auxiliary criteria A and D, related to the magnitude and isotropy of the sensitivity, respectively. The optimal design of a switched-reluctance motor is considered as a case study: since the case study exhibits two design criteria, the relevant Pareto front is approximated by means of evolutionary computing.

18. Field-based optimal-design of an electric motor: a new sensitivity formulation

Directory of Open Access Journals (Sweden)

Barba Paolo Di

2017-12-01

Full Text Available In this paper, a new approach to robust optimal design is proposed. The idea is to consider the sensitivity by means of two auxiliary criteria A and D, related to the magnitude and isotropy of the sensitivity, respectively. The optimal design of a switched-reluctance motor is considered as a case study: since the case study exhibits two design criteria, the relevant Pareto front is approximated by means of evolutionary computing.

19. Modulation of Cortical Motor Evoked Potential After Stroke During Electrical Stimulation of the Lateral Cerebellar Nucleus.

Science.gov (United States)

Park, Hyun-Joo; Furmaga, Havan; Cooperrider, Jessica; Gale, John T; Baker, Kenneth B; Machado, Andre G

2015-01-01

Deep brain stimulation (DBS) targeting the dentato-thalamo-cortical (DTC) pathway at its origin in the lateral cerebellar nucleus (LCN) has been shown to enhance motor recovery in a rodent model of cortical ischemia. LCN DBS also yielded frequency-specific changes in motor cortex excitability in the normal brain, indexed by motor evoked potential (MEP) amplitude. To investigate the effect of cortical stroke on cortical motor excitability in a rodent ischemia model and to measure the effects of LCN DBS on post-ischemia excitability as a function of stimulation parameters. Adult Sprague-Dawley rats were divided into two groups: naïve and stroke, with cortical ischemia induced through multiple, unilateral endothelin-1 injections. All animals were implanted with a bipolar electrode in the LCN opposite the affected hemisphere. MEPs were elicited from the affected hemisphere using intracortical microstimulation (ICMS) techniques. Multiple LCN DBS parameters were examined, including isochronal stimulation at 20, 30, 50, and 100 Hz as well as a novel burst stimulation pattern. ICMS-evoked MEPs were reduced in stroke (n = 10) relative to naïve (n = 12) animals. However, both groups showed frequency-dependent augmentation of cortical excitability in response to LCN DBS. In the naïve group, LCN DBS increased MEPs by 22-58%, while in the stroke group, MEPs were enhanced by 9-41% compared to OFF-DBS conditions. Activation of the DTC pathway increases cortical excitability in both naïve and post-stroke animals. These effects may underlie, at least partially, functional reorganization and therapeutic benefits associated with chronic LCN DBS in post-stroke animals. Copyright © 2015 Elsevier Inc. All rights reserved.

20. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

Energy Technology Data Exchange (ETDEWEB)

Hooker, Matthew; Hazelton, Craig; Kano, Kimi

2010-12-31

The development of highly reliable downhole equipment is an essential element in enabling the widespread utilization of Enhanced Geothermal Systems (EGS). The downhole equipment used in these systems will be required to operate at high voltages and temperatures on the order of 200 to 250°C (and eventually to 300°C). These conditions exceed the practical operating ranges of currently available thermoplastic wire insulations, and thus limit the operating lifetime of tools such as Electric Submersible Pumps (ESPs). In this work, high-temperature insulations based on composite materials were developed and demonstrated. The products of this work were found to exhibit electrical resistivities and dielectric breakdown strengths that PEEK at temperatures above 250C. In addition, sub-scale motor windings were fabricated and tested to validate the performance of this technology

1. Diseño e implementación del control electrónico digital del motor eléctrico en una cinta de correr

OpenAIRE

CAMPOS RODRÍGUEZ, LUCAS MIGUEL

2015-01-01

[ES] El trabajo consiste en el diseño del control de un aparato que utilice un motor eléctrico. El sistema de control deberá ser capaz de controlar la puesta en marcha y el apagado del aparato y la velocidad de giro del motor. Campos Rodríguez, LM. (2014). Diseño e implementación del control electrónico digital del motor eléctrico en una cinta de correr. http://hdl.handle.net/10251/49632. TFGM

2. Diseño e implementación del control electrónico digital del motor de un coche eléctrico

OpenAIRE

BACETE PÉREZ, MARIO

2015-01-01

[ES] El trabajo consiste en el diseño del control de un aparato que utilice un motor eléctrico. El sistema de control deberá ser capaz de controlar la puesta en marcha y el apagado del aparato y la velocidad de giro del motor. Bacete Pérez, M. (2014). Diseño e implementación del control electrónico digital del motor de un coche eléctrico. http://hdl.handle.net/10251/49635. TFGM

3. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method

Directory of Open Access Journals (Sweden)

Hai-peng Wang

2017-01-01

Full Text Available Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training.

4. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method.

Science.gov (United States)

Wang, Hai-Peng; Bi, Zheng-Yang; Zhou, Yang; Zhou, Yu-Xuan; Wang, Zhi-Gong; Lv, Xiao-Ying

2017-01-01

Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training.

5. Specific emission from electric and conventional car motors; Spezifische Emissionen bei elektrischen und konventionellen Pkw-Antrieben

Energy Technology Data Exchange (ETDEWEB)

Wagner, U.

1993-12-31

The constantly rising immission loading in built-up areas stems to a considerable extent from emission of individual motor traffic. The introduction of new, environmentally compatible traffic techniques is therefore an urgent measure for reducing traffic noise and air pollution in densely inhabited areas. The electric road vehicle represents this technology, which is quiet compared to conventional vehicles and is largely free of emission at the place of use. Including the previous electricity generation, the specific emission of nearly all harmful gases to the air and the greenhouse gas CO{sub 2} from electric cars is extraordinarily favourable. (orig.) [Deutsch] Die staendig steigende Immissionsbelastung der Ballungsraeume stammt zu erheblichen Teilen aus den Emissionen des motorisierten Individualverkehrs. Die Einfuehrung neuer, umweltvertraeglicherer Verkehrstechniken ist daher eine vordringliche Massnahme zur Minderung der verkehrsbedingten Laerm- und Luftbelastungen in den Verdichtungsraeumen. Eine solche Technik stellt das Elektro-Strassenfahrzeug dar, das im Vergleich zu konventionellen Fahrzeugen laermarm und weitestgehend frei von Emissionen am Einsatzort ist. Auch unter Einbezug der vorgelagerten Stromerzeugung liegen die spezifischen Emissionen nahezu aller Luftschadstoffe und des Klimagases CO{sub 2} beim Elektroauto ausserordentlich guenstig. (orig.)

6. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method

Science.gov (United States)

Wang, Hai-peng; Bi, Zheng-yang; Zhou, Yang; Zhou, Yu-xuan; Wang, Zhi-gong; Lv, Xiao-ying

2017-01-01

Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training. PMID:28250759

7. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

Science.gov (United States)

Abdelnour, Z.; Mildrun, H.; Strant, K.

1981-01-01

The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.

8. Control Methods of the Switched Reluctance Motor in Electric Vehicle During Acceleration

Directory of Open Access Journals (Sweden)

2012-08-01

Full Text Available In this paper, the equations describing the performance of the electric vehicle are derived. Performance characteristics for each part in the vehicle system are obtained when the vehicle is accelerated under voltage, turn on and turn off angle control. A comparison between the different methods of control is established.

9. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

Directory of Open Access Journals (Sweden)

S. Selivanov

2009-01-01

Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

10. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES)

OpenAIRE

S. Selivanov; V. Filenko; А. Bazhynov; E. Budianskaya

2009-01-01

The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

11. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae.

Science.gov (United States)

Bergquist, A J; Clair, J M; Collins, D F

2011-03-01

Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and can generate contractions by activating motor (peripheral pathway) and sensory (central pathway) axons. In the present experiments, we compared the peripheral and central contributions to plantar flexion contractions evoked by stimulation over the tibial nerve vs. the triceps surae muscles. Generating contractions through central pathways follows Henneman's size principle, whereby low-threshold motor units are activated first, and this may have advantages for rehabilitation. Statistical analyses were performed on data from trials in which NMES was delivered to evoke 10-30% maximum voluntary torque 2-3 s into the stimulation (Time(1)). Two patterns of stimulation were delivered: 1) 20 Hz for 8 s; and 2) 20-100-20 Hz for 3-2-3 s. Torque and soleus electromyography were quantified at the beginning (Time(1)) and end (Time(2); 6-7 s into the stimulation) of each stimulation train. H reflexes (central pathway) and M waves (peripheral pathway) were quantified. Motor unit activity that was not time-locked to each stimulation pulse as an M wave or H reflex ("asynchronous" activity) was also quantified as a second measure of central recruitment. Torque was not different for stimulation over the nerve or the muscle. In contrast, M waves were approximately five to six times smaller, and H reflexes were approximately two to three times larger during NMES over the nerve vs. the muscle. Asynchronous activity increased by 50% over time, regardless of the stimulation location or pattern, and was largest during NMES over the muscle belly. Compared with NMES over the triceps surae muscles, NMES over the tibial nerve produced contractions with a relatively greater central contribution, and this may help reduce muscle atrophy and fatigue when NMES is used for rehabilitation.

12. Learned EEG-based regulation of motor-related brain oscillations during application of transcranial electric currents: feasibility and limitations

Directory of Open Access Journals (Sweden)

2014-03-01

Full Text Available Objective: Transcranial direct current stimulation (tDCS improves motor learning and can influence emotional processing or attention. However, it remained unclear whether learned electroencephalography (EEG-based brain-machine interface (BMI control during tDCS is feasible and how application of transcranial electric currents during BMI control would interfere with feature-extraction of physiological brain signals. Here we tested this combination and evaluated stimulation-dependent artifacts across different EEG frequencies and stability of motor imagery-based BMI control. Approach: Ten healthy volunteers were invited to two BMI-sessions, each comprising two 60-trial blocks. During the trials, modulation of mu-rhythms (8-15Hz associated with motor imagery recorded over C4 was translated into online cursor movements on a computer screen. During block 2, either sham (session A or anodal tDCS (session B was applied at 1mA with the stimulation electrode placed 1cm anterior of C4. Main results: tDCS was associated with a significant signal power increase in the lower frequencies most evident in the signal spectrum of the EEG channel closest to the stimulation electrode. Stimulation-dependent signal power increase exhibited a decay of 12dB per decade, leaving frequencies above 9Hz unaffected. Analysis of BMI control performance did not indicate a difference between blocks and tDCS conditions. Conclusion: Application of tDCS during learned EEG-based self-regulation of brain oscillations above 9Hz is feasible and safe, and might improve applicability of BMI systems in patient populations.

13. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability.

Science.gov (United States)

Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

2017-01-01

Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 (n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 (n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability.

14. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion Project

Data.gov (United States)

National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

15. Improving the electromagnetic compatibility of track circuits with electric rolling stock of double power supply with induction traction motors and electrictraction network

Directory of Open Access Journals (Sweden)

N.G. Visin

2012-04-01

Full Text Available In this article the research results of many authors on the effect of current interference from the existing electric rolling stock with induction traction motors (ITM on the track circuits and the possibility of exceeding the train traffic safety standards are used. The new promising scheme of power circuit for electric locomotive of double power supply with an ITM applying the intermediary high-frequency transformer for reducing significantly the interference effects to SCB and communication devices is developed.

16. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

OpenAIRE

Naoto Miura; Takashi Watanabe

2016-01-01

Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between...

17. Optimal Design of an Axial-Flux Permanent-Magnet Middle Motor Integrated in a Cycloidal Reducer for a Pedal Electric Cycle

Directory of Open Access Journals (Sweden)

Yee-Pien Yang

2015-12-01

Full Text Available This paper proposes an optimal design of a middle motor integrated into a mid-drive unit for pedal electric cycles. This middle motor is an axial-flux permanent magnet brushless DC motor with a stator plate. Facing this plate is a rotor plate that acts as an eccentric component of a cycloidal reducer next to the stator. Both the middle motor and cycloidal reducer are easily installed on the same axle of the bike crankset. In the preliminary design, driving requirements are used to make the middle motor specifications. The numbers of stator slots and magnet poles on the rotor were chosen to achieve the best winding factor, and the winding layout was determined accordingly. A one-dimensional magnetic circuit model of the middle motor was built, and its shape was optimized utilizing a multifunctional optimization system tool. Finally, the resulting design was verified and refined by a finite element analysis. A prototype of the middle motor was fabricated with a stator made of a soft magnetic composite and integrated with a cycloidal reducer. Experimental results show that the motor has a sinusoidal back electromotive force. Additionally, it is easily controlled by sinusoidal currents with acceptable torque and speed curves.

18. Electric motor efficiency as parameter for sizing a directly connected into transformer feeder cable; Rendimento de motor eletrico como parametro de dimensionamento de bitola de alimentador conectado diretamente ao transformador

Energy Technology Data Exchange (ETDEWEB)

Oliveira Filho, Delly; Lacerda Filho, Adilio F.; Martins, Jose H.; Queiroz, Josue M. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: delly@ufv.br, alacerda@ufv.br, jhmartins@ufv.br, josue.queiroz@ufv.br; Teixeira, Carlos A. [Universidade Federal Rural de Pernambuco, Serra Talhada, PE (Brazil). Dept. de Agronomia], E-mail: carlos.teixeira@uast.ufrpe.br

2010-09-15

The feeder conductors sizing does not take into account criterion for rational use of electricity. This study is about feeder conductors sizing evaluation for motors connected directly to transformers used in rural electrification. In the feeder conductors sizing indicate that besides the attendance of the technical standard (i.e. sizing as a function of the feeder current capacity and the allowable voltage drop) is also to be considered: the number of working hours, the feeder's electrical characteristic and price, the installation characteristics as length and engine's rate. According to the above, in some situations it may be advantageous to increase the gauge of the conductor. It was proven that in some situations it is advantageous to increase the conductor gauge beyond that required by the standards in order to save energy and expenses by the lower feeder losses and by the electric motor higher efficiency. (author)

19. Estudo comparativo de métodos para estimativa do carregamento e rendimento de motores elétricos para auditoria energética Comparative study for estimation of load and performance of electric motors for energy audit

Directory of Open Access Journals (Sweden)

Saulo Campana

2000-01-01

Full Text Available Este artigo investiga a precisão de três métodos indiretos para a determinação do índice de carregamento e rendimento de motores elétricos. Determinou-se o erro da estimativa do índice de carregamento e rendimento de motores elétricos pela média aritmética e geométrica das correntes e pela média aritmética dos fatores de potência. Mostrou-se, também, a importância da determinação do decréscimo do rendimento de motores elétricos, decorrente da variação de tensão da rede elétrica. Verificou-se que a estimativa do índice de carregamento e do rendimento dos motores elétricos por meio da medição do fator de potência médio aritmético apresentou resultados com maiores erros percentuais, 24,5% e 2%, respectivamente; já estas estimativas apresentaram, pelos métodos da corrente média aritmética e média geométrica, resultados semelhantes entre si e com erros percentuais significativamente inferiores aos resultados anteriores, ou seja, 6,2% e 1%, respectivamente.This article investigates the precision of methods for the load and efficiency estimate of electric motors. The error was determined by the estimate of load and efficiency of electric motors using the arithmetic and geometric average of the currents and the arithmetic average of the power factor in each phase. The importance was shown of the determination of the decrease in the electric motors' performance due to the variation of feeder tension, when the motors' load and performance evaluation in the load condition is performed. It was verified that the estimate of the electric motors' load and performance by the arithmetic average power factor, presented results with larger errors, that is, 24.5% and 2%, respectively. These estimates by the arithmetic and geometric average current method presented similar results to each other and with percentage errors significantly inferior to the previous results, that is, 6.2% and 1%, respectively.

20. Motors for electric vehicles: Comparative assessment recommended; Motorenkonzepte fuer Elektroautos sind vergleichend zu bewerten

Energy Technology Data Exchange (ETDEWEB)

Freise, W. [Kaiserslautern Univ. (Germany). Fachbereich Elektrotechnik

1999-07-01

Although electric vehicles have advantages compared to internal combustion engines, e.g. in terms of efficiency, pollution, reliability, servicing, life and cost, they are still found only in a market niche. The author hopes for better prospects in the future. [German] Obgleich Elektromotoren gegenueber Verbrennungsmaschinen hinsichtlich Wirkungsgrad, Umweltverhalten, Zuverlaessigkeit, Wartungsaufwand, Lebensdauer und auch Kosten klare Vorzuege aufweisen, kommen sie als Antriebe fuer Kraftfahrzeuge kaum aus ihrem Nischendasein heraus. Dennoch ist die Hoffnung auf einen umweltfreundlichen Antrieb nicht vergebens. (orig.)

1. Simulated annealing algorithm for multi-objective optimization : application to electric motor design

Energy Technology Data Exchange (ETDEWEB)

Idoumghar, L. [Haute Alcace Univ., Mulhouse (France); Fodorean, D.; Mirraoui, A. [Univ. of Technology of Belfort-Montbeliard, Belfort (France). Dept. of Electrical Engineering and Control Systems

2010-03-09

Metaheuristics algorithms can solve complex optimization problems. A unique simulated annealing (SA) algorithm for multi-objective optimization was presented in this paper. The proposed SA algorithm was validated on five standard benchmark mathematical functions and improved the design of an inset permanent magnet motor with concentrated flux (IPMM-CF). The paper provided a description of the SA algorithm and discussed the results. The five benchmarks that were studied included Rastrigin's function; Rosenbrock's function; Michalewicz's function; Schwefel's function; and Noisy's function. The findings were also compared with results obtained by using the Ant Colony paradigm as well as with a particle swarm algorithm. Conclusions and further research options were also offered. It was concluded that the proposed approach has better performance in terms of accuracy, convergence rate, stability and robustness. 15 refs., 4 tabs., 9 figs.

2. Study on Differential Regenerative Braking Torque Control to Increase the Stability of the Small Electric Vehicle with Four In-Wheel Motors

Directory of Open Access Journals (Sweden)

Ali N. M.

2017-01-01

Full Text Available Based on the advantages of the electric motor such as fast and precise torque response, the performance of the electric vehicle (EV can be improved. During braking or driving on the cornering, the vehicle will over steer or under steer if a car turns by more or less than the amount commanded by the driver. To improve the stability of the small EV with four in-wheel motors, the differential regenerative braking torque control is proposed. In this system, the regenerative braking torque at each wheel will be controlled individually based on the value of slip ratio. If the slip ratio is greater than the optimum value, the regenerative brake will turn off. In this situation, the electric motor will not produce the regenerative braking torque. Conversely, if the slip ratio lower than the optimum value, the regenerative brake will turn on and the electric motor will generate the regenerative braking torque. In the numerical analysis, to investigate the effectiveness of the proposed model, the road condition is set to an icy road on the left tire and dry asphalt on the right tire. From the simulation results, the differential regenerative braking torque control can prevent the tire from lock-up and avoid the vehicle from skidding.

3. Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.

Science.gov (United States)

Jin, Hongyue; Afiuny, Peter; Dove, Stephen; Furlan, Gojmir; Zakotnik, Miha; Yih, Yuehwern; Sutherland, John W

2018-02-27

Neodymium-iron-boron (NdFeB) magnets offer the strongest magnetic field per unit volume, and thus, are widely used in clean energy applications such as electric vehicle motors. However, rare earth elements (REEs), which are the key materials for creating NdFeB magnets, have been subject to significant supply uncertainty in the past decade. NdFeB magnet-to-magnet recycling has recently emerged as a promising strategy to mitigate this supply risk. This paper assesses the environmental footprint of NdFeB magnet-to-magnet recycling by directly measuring the environmental inputs and outputs from relevant industries and compares the results with production from 'virgin' materials, using life cycle assessments. It was found that magnet-to-magnet recycling lowers environmental impacts by 64-96%, depending on the specific impact categories under investigation. With magnet-to-magnet recycling, key processes that contribute 77-95% of the total impacts were identified to be 1) hydrogen mixing & milling (13-52%), 2) sintering & annealing (6-24%), and 3) electroplating (6-75%). The inputs from industrial sphere that play key roles in creating these impacts were electricity (24-93% of the total impact) and nickel (5-75%) for coating. Therefore, alternative energy sources such as wind and hydroelectric power are suggested to further reduce the overall environmental footprint of NdFeB magnet-to-magnet recycling.

4. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

Directory of Open Access Journals (Sweden)

Bo Long

2013-12-01

Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.

5. Issues in offshore platform research - Part 1: Semi-submersibles

Science.gov (United States)

Sharma, R.; Kim, Tae-Wan; Sha, O. P.; Misra, S. C.

2010-09-01

Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor) or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

6. Issues in offshore platform research - Part 1: Semi-submersibles

Directory of Open Access Journals (Sweden)

R. Sharma

2010-09-01

Full Text Available Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

7. Development of Ultra-Efficient Electric Motors Final Technical Report Covering work from April 2002 through September 2007

Energy Technology Data Exchange (ETDEWEB)

Rich Schiferl

2008-05-30

High temperature superconducting (HTS) motors offer the potential for dramatic volume and loss reduction compared to conventional, high horspower, industrial motors. This report is the final report on the results of eight research tasks that address some of the issues related to HTS motor development that affect motor efficiency, cost, and reliability.

8. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

Energy Technology Data Exchange (ETDEWEB)

Davis, A.; Salameh, Z.M. [Univ. of Massachusetts, Lowell, MA (United States). Dept. of Electrical Engineering; Eaves, S.S. [Eaves Devices, Charlestown, RI (United States)

1999-06-01

A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

9. Control of Spacecraft Formations Around the Libration Points Using Electric Motors with One Bit of Resolution

Science.gov (United States)

Serpelloni, Edoardo; Maggiore, Manfredi; Damaren, Christopher J.

2015-02-01

This paper investigates a formation control problem for two space vehicles in the vicinity of the L 2 libration point of the Sun-Earth/Moon system. The objective is to accurately regulate the relative position vector between the vehicles to a desired configuration, under tight tolerances. It is shown that the formation control problem is solvable using six constant thrust electric actuators requiring only one bit of resolution, and bounded switching frequency. The proposed control law is hybrid, and it coordinates the sequence of on-off switches of the thrusters so as to achieve the control objective and, at the same time, avoid high-frequency switching.

10. Electric motors and drives. Pt. 15. D.c. motors. Part 1; Elektrische Maschinen und Antriebe. T. 15. Gleichstrommaschinen. T. 1

Energy Technology Data Exchange (ETDEWEB)

Biechl, H. [Werner-von-Siemens-Labor fuer Elektrische Antriebe und Mechatronik, Hochschule Kempten (Germany)

2008-07-15

This first contribution on d.c. motors starts by describing a very simple motor to illustrate its functional principle. The commutator, the starting and idle speed conditions are described. Some equations and characteristics are presented to illustrate the operating characteristics. (orig.)

11. Regional brain electrical activity in posttraumatic stress disorder after motor vehicle accident.

Science.gov (United States)

Rabe, Sirko; Beauducel, André; Zöllner, Tanja; Maercker, Andreas; Karl, Anke

2006-11-01

This study examined whether patients with posttraumatic stress disorder (PTSD) related to motor vehicle accidents (MVAs) would show an abnormal pattern of electroencephalographic (EEG) alpha asymmetries, which has been proposed for particular types of anxiety. Patients with PTSD (n = 22) or subsyndromal PTSD (n = 21), traumatized controls without PTSD (non-PTSD with MVA; n = 21), and healthy controls without MVA (n = 23) underwent measurement of EEG activity during baseline and exposure to a neutral, a positive, a negative, and an accident-related picture. Differences in brain asymmetry between groups were observed only during exposure to trauma-related material. PTSD and subsyndromal PTSD patients showed a pattern of enhanced right anterior and posterior activation, whereas non-PTSD with MVA participants showed the opposite pattern. Furthermore, posterior asymmetry in nontraumatized healthy controls varied with gender, with female participants showing a pattern of higher right posterior activation. The results support the hypothesis that symptomatic MVA survivors are characterized by a pattern of right hemisphere activation that is associated with anxious arousal and symptoms of PTSD during processing of trauma-specific information. (c) 2006 APA, all rights reserved.

12. Induction of Long-term Depression-like Plasticity by Pairings of Motor Imagination and Peripheral Electrical Stimulation.

Science.gov (United States)

Jochumsen, Mads; Signal, Nada; Nedergaard, Rasmus W; Taylor, Denise; Haavik, Heidi; Niazi, Imran K

2015-01-01

Long-term depression (LTD) and long-term potentiation (LTP)-like plasticity are models of synaptic plasticity which have been associated with memory and learning. The induction of LTD and LTP-like plasticity, using different stimulation protocols, has been proposed as a means of addressing abnormalities in cortical excitability associated with conditions such as focal hand dystonia and stroke. The aim of this study was to investigate whether the excitability of the cortical projections to the tibialis anterior (TA) muscle could be decreased when dorsiflexion of the ankle joint was imagined and paired with peripheral electrical stimulation (ES) of the nerve supplying the antagonist soleus muscle. The effect of stimulus timing was evaluated by comparing paired stimulation timed to reach the cortex before, at and after the onset of imagined movement. Fourteen healthy subjects participated in six experimental sessions held on non-consecutive days. The timing of stimulation delivery was determined oﬄine based on the contingent negative variation (CNV) of electroencephalography brain data obtained during imagined dorsiflexion. Afferent stimulation was provided via a single pulse ES to the peripheral nerve paired, based on the CNV, with motor imagination of ankle dorsiflexion. A significant decrease (P = 0.001) in the excitability of the cortical projection of TA was observed when the afferent volley from the ES of the tibial nerve (TN) reached the cortex at the onset of motor imagination based on the CNV. When TN stimulation was delivered before (P = 0.62), or after (P = 0.23) imagined movement onset there was no significant effect. Nor was a significant effect found when ES of the TN was applied independent of imagined movement (P = 0.45). Therefore, the excitability of the cortical projection to a muscle can be inhibited when ES of the nerve supplying the antagonist muscle is precisely paired with the onset of imagined movement.

13. Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment

Directory of Open Access Journals (Sweden)

Alm PA

2013-06-01

Full Text Available Per A Alm, Karolina DreimanisDepartment of Neuroscience, Uppsala University, Uppsala, SwedenObjectives: Electric motor cortex stimulation has been reported to be effective for many cases of neuropathic pain, in the form of epidural stimulation or transcranial direct current stimulation (tDCS. A novel technique is transcranial random noise stimulation (tRNS, which increases the cortical excitability irrespective of the orientation of the current. The aim of this study was to investigate the effect of tRNS on neuropathic pain in a small number of subjects, and in a case study explore the effects of different stimulation parameters and the long-term stability of treatment effects.Methods: The study was divided into three phases: (1 a double-blind 100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 µA, at intervals ranging from daily to fortnightly.crossover study, with four subjects; (2 a double-blind extended case study with one responder; and (3 open continued treatment. The motor cortex stimulation consisted of alternating current random noise (100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 μA, at intervals ranging from daily to fortnightly.Results: One out of four participants showed a strong positive effect (also compared with direct-current-sham, P = 0.006. Unexpectedly, this effect was shown to occur also for very weak (100 µA, P = 0.048 and brief (0.5 minutes, P = 0.028 stimulation. The effect was largest during the first month, but remained at a highly motivating level for the patient after 6 months.Discussion: The study suggests that tRNS may be an effective treatment for some cases of neuropathic pain. An important result was the indication that even low levels of stimulation may have substantial effects.Keywords: neuropathic pain, central pain, transcranial direct current stimulation, motor cortex stimulation, random noise stimulation

14. A Study on the Effect of Electrical Stimulation as a User Stimuli for Motor Imagery Classification in Brain-Machine Interface.

Science.gov (United States)

Bhattacharyya, Saugat; Clerc, Maureen; Hayashibe, Mitsuhiro

2016-06-13

Functional Electrical Stimulation (FES) provides a neuroprosthetic interface to non-recovered muscle groups by stimulating the affected region of the human body. FES in combination with Brain-machine interfacing (BMI) has a wide scope in rehabilitation because this system directly links the cerebral motor intention of the users with its corresponding peripheral muscle activations. In this paper, we examine the effect of FES on the electroencephalography (EEG) during motor imagery (left- and right-hand movement) training of the users. Results suggest a significant improvement in the classification accuracy when the subject was induced with FES stimuli as compared to the standard visual one.

15. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

Science.gov (United States)

Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

1983-01-01

The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

16. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.

Science.gov (United States)

García, Paul S; Wright, Terrence M; Cunningham, Ian R; Calabrese, Ronald L

2008-09-01

Previously we presented a quantitative description of the spatiotemporal pattern of inhibitory synaptic input from the heartbeat central pattern generator (CPG) to segmental motor neurons that drive heartbeat in the medicinal leech and the resultant coordination of CPG interneurons and motor neurons. To begin elucidating the mechanisms of coordination, we explore intersegmental and side-to-side coordination in an ensemble model of all heart motor neurons and their known synaptic inputs and electrical coupling. Model motor neuron intrinsic properties were kept simple, enabling us to determine the extent to which input and electrical coupling acting together can account for observed coordination in the living system in the absence of a substantive contribution from the motor neurons themselves. The living system produces an asymmetric motor pattern: motor neurons on one side fire nearly in synchrony (synchronous), whereas on the other they fire in a rear-to-front progression (peristaltic). The model reproduces the general trends of intersegmental and side-to-side phase relations among motor neurons, but the match with the living system is not quantitatively accurate. Thus realistic (experimentally determined) inputs do not produce similarly realistic output in our model, suggesting that motor neuron intrinsic properties may contribute to their coordination. By varying parameters that determine electrical coupling, conduction delays, intraburst synaptic plasticity, and motor neuron excitability, we show that the most important determinant of intersegmental and side-to-side phase relations in the model was the spatiotemporal pattern of synaptic inputs, although phasing was influenced significantly by electrical coupling.

17. Mirror Therapy with Neuromuscular Electrical Stimulation for improving motor function of stroke survivors: A pilot randomized clinical study.

Science.gov (United States)

Lee, DongGeon; Lee, GyuChang; Jeong, JiSim

2016-07-27

This study was to investigate the effects of Mirror Therapy (MT) combined with Neuromuscular Electrical Stimulation (NMES) on muscle strength and tone, motor function, balance, and gait ability in stroke survivors with hemiplegia. This study was a randomized controlled trial. Twenty-seven hemiplegic stroke survivors from a rehabilitation center participated in the study. The participants were randomly assigned to either an experimental or a control group. The experimental group (n = 14) underwent MT combined with NMES and conventional physical therapy, and the control group (n = 13) underwent conventional physical therapy alone. Muscle strength and tone, balance, and gait ability were examined at baseline and after 4 weeks of intervention. A hand-held dynamometer was used to assess muscle strength, the Modified Ashworth Scale (MAS) was used to assess muscle tone, the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) were used to ascertain balance, and the 6-m Walk Test (6mWT) was used to examine gait ability. After the intervention, compared to baseline values, there were significant improvements in muscle strength and MAS, BBS, TUG, and 6mWT values in the experimental group (Pstroke survivors. However, further studies are necessary to demonstrate brain reorganization after MT combined with NMES.

18. Excitation Method of Linear-Motor-Type Rail Brake without Using Power Sources by Dynamic Braking with Zero Electrical Output

Science.gov (United States)

Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

The eddy current rail brake is a type of braking system used in railway vehicles. Because of problems such as rail heating and problems associated with ensuring that power is supplied when the feeder malfunctions, this braking system has not been used for practical applications in Japan. Therefore, we proposed the use of linear induction motor (LIM) technology in eddy current rail brake systems. The LIM rail brake driven by dynamic braking can reduce rail heating and generate the energy required for self-excitation. In this paper, we present an excitation system and control method for the LIM rail brake driven by “dynamic braking with zero electrical output”. The proposed system is based on the concept that the LIM rail brake can be energized without using excitation power sources such as a feeder circuit and that high reliability can be realized by providing an independent excitation system. We have studied this system and conducted verification tests using a prototype LIM rail brake on a roller rig. The results show that the system performance is adequate for commercializing the proposed system, in which the LIM rail brake is driven without using any excitation power source.

19. Use of sediment CO2 by submersed rooted plants.

Science.gov (United States)

Winkel, Anders; Borum, Jens

2009-05-01

Submersed plants have different strategies to overcome inorganic carbon limitation. It is generally assumed that only small rosette species (isoetids) are able to utilize the high sediment CO(2) availability. The present study examined to what extent five species of submersed freshwater plants with different morphology and growth characteristics (Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana and Hydrocotyle verticillata) are able to support photosynthesis supplied by uptake of CO(2) from the sediment. Gross photosynthesis was measured in two-compartment split chambers with low inorganic carbon availability in leaf compartments and variable CO(2) availability (0 to >8 mmol L(-1)) in root compartments. Photosynthetic rates based on root-supplied CO(2) were compared with maximum rates obtained at saturating leaf CO(2) availability, and (14)C experiments were conducted for two species to localize bottlenecks for utilization of sediment CO(2). All species except Hydrocotyle were able to use sediment CO(2), however, with variable efficiency, and with the isoetid, Lobelia, as clearly the most effective and the elodeid, Ludwigia, as the least efficient. At a water column CO(2) concentration in equilibrium with air, Lobelia, Lilaeopsis and Vallisneria covered >75% of their CO(2) requirements by sediment uptake, and sediment CO(2) contributed substantially to photosynthesis at water CO(2) concentrations up to 1000 micromol L(-1). For all species except Ludwigia, the shoot to root ratio on an areal basis was the single factor best explaining variability in the importance of sediment CO(2). For Ludwigia, diffusion barriers limited uptake or transport from roots to stems and transport from stems to leaves. Submersed plants other than isoetids can utilize sediment CO(2), and small and medium sized elodeids with high root to shoot area in particular may benefit substantially from uptake of sediment CO(2) in low alkaline lakes.

20. Sodium dopants in helium clusters: Structure, equilibrium and submersion kinetics

Energy Technology Data Exchange (ETDEWEB)

Calvo, F. [Laboratoire Interdisciplinaire de Physique, Rue de La Piscine, Campus Saint Martin d’Hères, 38000 Grenoble (France)

2015-12-31

Alkali impurities bind to helium nanodroplets very differently depending on their size and charge state, large neutral or charged dopants being wetted by the droplet whereas small neutral impurities prefer to reside aside. Using various computational modeling tools such as quantum Monte Carlo and path-integral molecular dynamics simulations, we have revisited some aspects of the physical chemistry of helium droplets interacting with sodium impurities, including the onset of snowball formation in presence of many-body polarization forces, the transition from non-wetted to wetted behavior in larger sodium clusters, and the kinetics of submersion of small dopants after sudden ionization.

1. Considerations Regarding the Opportunity of Using Psychological Techniques to Stimulate Solutions Characterized by Novelty and Inventive Step in TISR Transformers and Electric Motors with Shorted Moving Coil

Directory of Open Access Journals (Sweden)

Georgescu Daniel Ștefan

2014-09-01

Full Text Available This paper presents the appreciations and contributions regarding the use of psychological techniques to stimulate technical creativity with special reference to consonant association technique and inversion technique. The study is performed in the field of TISR transformers and electric motors with limited movement, starting from the analogy between a transformer and an electric motor with shorted coil. It approached a particular aspect of inversion technique in relation with the transformation of negative effects and results of laws, phenomena and processes into useful applications. The matter reffered to is related to the question: ,,why disadvantages and no advantages ?". At the end of the paper are presented and discussed some experimental models produced and studied by the authors in the Research Laboratory of Machines, Equipment and Drives at the University of Suceava and are exposed conclusions drawn from the experimental study and directions for future research.

2. Recent Progress on Submersions: A Survey and New Properties

Directory of Open Access Journals (Sweden)

Gabriel Picavet

2013-01-01

Full Text Available This paper is a survey about recent progress on submersive morphisms of schemes combined with new results that we prove. They concern the class of quasicompact universally subtrusive morphisms that we introduced about 30 years ago. They are revisited in a recent paper by Rydh, with substantial complements and key results. We use them to show Artin-Tate-like results about the 14th problem of Hilbert, for a base scheme either Noetherian or the spectrum of a valuation domain. We look at faithfully flat morphisms and get “almost” Artin-Tate-like results by considering the Goldman (finite type points of a scheme. Bjorn Poonen recently proved that universally closed morphisms are quasicompact. By introducing incomparable morphisms of schemes, we are able to characterize universally closed surjective morphisms that are either integral or finite. Next we consider pure morphisms of schemes introduced by Mesablishvili. In the quasicompact case, they are universally schematically dominant morphisms. This leads us to a characterization of universally subtrusive morphisms by purity. Some results on the schematically dominant property are given. The paper ends with properties of monomorphisms and topological immersions, a dual notion of submersions.

3. Stepper motor

Science.gov (United States)

Dekramer, Cornelis

1994-01-01

The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

4. Clinical, neurological, and neurophysiological evaluation of the efficiency of motor rehabilitation in children with cerebral palsy using robotic mechanotherapy and transcutaneous electrical stimulation of the spinal cord

Directory of Open Access Journals (Sweden)

Galina A. Ikoeva

2016-12-01

Full Text Available Introduction. Rehabilitation of patients with cerebral palsy (CP remains a very difficult task. Stable and growing movement restrictions in such patients cause a life-long need for treatment and rehabilitation. Neurorehabilitation of children with CP at various stages includes not only traditional physical rehabilitation methods, but also extensive use of robotic mechanotherapy techniques and new technologies in the field of neurophysiology. One of such technology is non-invasive percutaneous electrical stimulation of the spinal cord. Aim of the study: To assess the effect of transcutaneous electrical stimulation of the spinal cord to improve the motor function of children with spastic diplegia using the “Lokomat” robotic mechanotherapy system. Materials and methods. A clinical rehabilitation study of 26 patients aged 6–12 years with CP was conducted. The treatment group included 11 patients who received one course of robotic mechanotherapy using the “Lokomat” system combined with transcutaneous electrical stimulation of the spinal cord. The control group included 15 patients who received one course of robotic mechanotherapy only. Results. A comparative analysis of the two groups based on the results of clinical examinations using specific scales (GMFCS, GMFM-88, Modified Ashworth Scale of Muscle Spasticity, locomotor tests (L-FORCE, L-ROM, and evaluations of muscle activity using electromyography showed that one course of rehabilitation resulted in improvement in motor function in all patients of both groups, but positive dynamics were more significant in the treatment group that underwent percutaneous electrical stimulation of the spinal cord. Conclusion. Based on clinical data, changes in indicators of the locomotor tests L-FORCE and L-ROM, as well as assessment of changes in muscle activity, showed that motor rehabilitation of children with spastic diplegia using the “Lokomat” robotic mechanotherapy system combined with

5. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

DEFF Research Database (Denmark)

Zhang, Yifeng; Angelidaki, Irini

2012-01-01

A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 m......L/L/d at the initial acetate concentration of 410 mg/L (5 mM), while the cathodic hydrogen recovery (RH2) and overall systemic coulombic efficiency (CEos) were 93% and 28%, respectively, and the systemic hydrogen yield (YH2) peaked at 1.27 mol-H2/mol-acetate. The hydrogen production increased along with acetate...... and buffer concentration. The highest hydrogen production rate of 32.2 mL/L/d and YH2 of 1.43 mol-H2/mol-acetate were achieved at 1640 mg/L (20 mM) acetate and 100 mM phosphate buffer. Further evaluation of the reactor under single electricity-generating or hydrogen-producing mode indicated that further...

6. Performances Comparison of Permanent Magnet Brushless DC and Doubly Salient Reluctance Motors for an Urban Electric Vehicle

OpenAIRE

Multon, Bernard; Hoang, Emmanuel; Camus, François

1993-01-01

International audience; In this paper, we carried out a dimensional parametric analysis of average torque and copper losses in the case of two synchronous brushless motors. These motors were, on the one hand, a Permanent-Magnet Brushless DC (PMBLDC) motor supplied by quasi-square currents, with surface magnet mounted rotor and trapezoidal e.m.f. waveform, and, on the other hand, a Doubly Salient Variable Reluctance (DSVR) motor fed by quasi-square currents at low speed, and by full wave squar...

7. Automotive Electric Motors Innovation

OpenAIRE

Šimko, František

2012-01-01

V automobilech se vyskytuje velké množství motorků pro nejrůznější aplikace - některé typy aut obsahují i více než 50 motorků. Většinu tvoří stejnosměrné stroje, resp. stejnosměrné motorky. V této bakalářské práci jsou jednak popsány všechny typy motorků a jejich použití ve vozech, jednak jsou zde uvedeny směry vývoje motorků pro automobilovou elektrotechniku pro blízkou budoucnost. Je zde rozebrána problematika použití permanentních magnetů a návrh stejnosměrného motorku s permanentními magn...

8. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.

Science.gov (United States)

Zhang, Yifeng; Angelidaki, Irini

2012-05-15

A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 mL/L/d at the initial acetate concentration of 410 mg/L (5 mM), while the cathodic hydrogen recovery ( [Formula: see text] ) and overall systemic coulombic efficiency (CE(os)) were 93% and 28%, respectively, and the systemic hydrogen yield ( [Formula: see text] ) peaked at 1.27 mol-H(2)/mol-acetate. The hydrogen production increased along with acetate and buffer concentration. The highest hydrogen production rate of 32.2 mL/L/d and [Formula: see text] of 1.43 mol-H(2)/mol-acetate were achieved at 1640 mg/L (20 mM) acetate and 100 mM phosphate buffer. Further evaluation of the reactor under single electricity-generating or hydrogen-producing mode indicated that further improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens. Furthermore, 16S rRNA genes analysis showed that this special operation strategy resulted same microbial community structures in the anodic biofilms of the two cell units. The simple, compact and in situ applicable SMEC offers new opportunities for reactor design for a microbial electricity-assisted biohydrogen production system. Copyright © 2012 Elsevier Ltd. All rights reserved.

9. Rendimento de motor elétrico como parâmetro de dimensionamento de bitola de alimentador conectado diretamente ao transformador Electric motor efficiency as parameter for sizing a directly connected into transformer feeder cable

Directory of Open Access Journals (Sweden)

Delly Oliveira Filho

2010-10-01

10. Development of a motor driven rowing machine with automatic functional electrical stimulation controller for individuals with paraplegia; a preliminary study.

Science.gov (United States)

Jung, Da-Woon; Park, Dae-Sung; Lee, Bum-Suk; Kim, Min

2012-06-01

To examine the cardiorespiratory responses of patients with spinal cord injury (SCI) paraplegia using a motor driven rowing machine. Ten SCI patients with paraplegia [A (n=6), B (n=1), and C (n=3) by the American Spinal Injury Association impairment scale] were selected. Two rowing techniques were used. The first used a fixed seat with rowing achieved using only upper extremity movement (fixed rowing). The second used an automatically moving seat, facilitating active upper extremity movement and passive lower extremity movement via the motorized seat (motor rowing). Each patient performed two randomly assigned rowing exercise stress tests 1-3 days apart. The work rate (WR), time, respiratory exchange ratio (R), oxygen consumption (VO(2)), heart rate (HR), metabolic equivalents (METs), and rating of perceived exertion (RPE) were recorded. WR, time, VO(2), and METs were significantly higher after the motor rowing test than after fixed motor rowing test (prowing was significantly lower than fixed rowing (prowing for people with paraplegic SCI.

11. Short-TERM Neuromuscular Electrical Stimulation Training of the Tibialis Anterior Did Not Improve Strength and Motor Function in Facioscapulohumeral Muscular Dystrophy Patients.

Science.gov (United States)

Doix, Aude-Clémence M; Roeleveld, Karin; Garcia, Jérémy; Lahaut, Pauline; Tanant, Véronique; Fournier-Mehouas, Manuella; Desnuelle, Claude; Colson, Serge S; Sacconi, Sabrina

2017-04-01

The aim of this study was to investigate the effects on motor function, muscle strength, and endurance of short-term neuromuscular electrical stimulation training of the tibialis anterior muscles in patients with facioscapulohumeral muscular dystrophy type 1 (FSHD1) in comparison with healthy controls. This prospective study included 10 patients with FSHD1 and 10 healthy participants. Maximal voluntary isometric contraction of ankle dorsiflexion and a 2-min sustained dorsiflexion maximal voluntary contraction with surface electromyography recordings of the tibialis anterior and the soleus muscles were measured and motor function clinical tests were performed before and after the training period. No significant short term training effect was found in any of the investigated variables for either group, although a tendency towards an increase was noted for the manual muscle testing of the FSHD1. Patients with FSHD1 showed lower maximal voluntary contraction force and lower maximal tibialis anterior surface electromyography amplitude than healthy participants. During the 2-min sustained maximal voluntary contraction, the percentage of force loss was lower for the FSHD1 patients, suggesting that they were experiencing a lower amount of muscle fatigue compared to the healthy participant group. The present neuromuscular electrical stimulation protocol was not strenuous enough and/or the parameters of stimulation were not adequate to improve dorsiflexion strength, muscle endurance, and motor function in FSHD1 patients and healthy participants.

12. Positioning of semi-submersibles with roll and pitch damping

Energy Technology Data Exchange (ETDEWEB)

Sorensen, A.J. [ABB Industri AS, Oslo (Norway); Strand, J.P. [Norwegian University of Science and Technology, Trondheim (Norway). Dept. of Engineering Cybernetics

1999-07-01

Dynamic positioning and thruster assisted position mooring of ships and floating marine constructions include different control functions for automatic positioning in the horizontal plane. A three degrees of freedom multivariable controller with feedback signals from surge, sway and yaw, either of linear or nonlinear type, can be regarded as adequate for the control objective for most surface vessels. However, for certain marine constructions with discernible coupling characteristics in the dynamics between the horizontal plane (surge, sway and yaw) and vertical plane (heave, roll and pitch), undesirably large roll and pitch oscillations may be induced by the thruster actions. Especially for constructions with natural periods in roll and pitch within the bandwidth of the positioning controller, the thruster induced oscillations in roll and pitch may become limitable on the operation. In this paper a new multivariable control law accounting for both horizontal and vertical motions is proposed. Simulations with a semi-submersible demonstrate the effect of the proposed control strategy. (author)

13. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

Science.gov (United States)

SanSoucie, Michael P.; Rogers, Jan R.

2016-01-01

The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

14. Invited commentary on comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial.

Science.gov (United States)

Kwakkel, Gert; van Wegen, Erwin E; Meskers, Carel M

2015-06-01

In this issue of Archives of Physical Medicine and Rehabilitation, Jessica McCabe and colleagues report findings from their methodologically sound, dose-matched clinical trial in 39 patients beyond 6 months poststroke. In this phase II trial, the effects of 60 treatment sessions, each involving 3.5 hours of intensive practice plus either 1.5 hours of functional electrical stimulation (FES) or a shoulder-arm robotic therapy, were compared with 5 hours of intensive daily practice alone. Although no significant between-group differences were found on the primary outcome measure of Arm Motor Ability Test and the secondary outcome measure of Fugl-Meyer Arm motor score, 10% to 15% within-group therapeutic gains were on the Arm Motor Ability Test and Fugl-Meyer Arm. These gains are clinically meaningful for patients with stroke. However, the underlying mechanisms that drive these improvements remain poorly understood. The approximately \$1000 cost reduction per patient calculated for the use of motor learning (ML) methods alone or combined with FES, compared with the combination of ML and shoulder-arm robotics, further emphasizes the need for cost considerations when making clinical decisions about selecting the most appropriate therapy for the upper paretic limb in patients with chronic stroke. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

15. DEVELOPMENT OF CORES FOR MINI MOTORS FROM LAMINATED SHEETS OF ELECTRIC STEEL ABNT (Brazilian Association of Technical Standards 35F 420M WITH THERMAL TREATMENT

Directory of Open Access Journals (Sweden)

Halston Mozetic

2016-06-01

Full Text Available The purposes of this paper were to study the thermal treatment of Fe-Si sheet, as well as the sheet cutting concerning the topology of a mini stepper motor and mini motor simulation using finite element software. The research consisted of the execution of an "Inductive Reheating" thermal treatment of Iron Silicon sheets, NM71-2000/35F 420M with GNO (Grain Non Oriented, and 0.35mm width. The new technique has the benefit of minimizing magnetic losses produced by the cut on the edge of electric sheets. To carry out the process, the system includes a furnace, an induction coil, and a power supply that, when activated in a controlled way, causes relevant changes to the crystalline structure of the material. Related to the cut of the sheets, the topology of a three phase mini stepper motor was considered. The sheets were initially cut using the geometry of the rotor and stator cores. Firstly, a die cutting process was used and later a wire electroerosion cutting process was employed, which provided parts with excellent finishing. Finally, the mini motor was simulated using the finite element software FEMM 4.2 in order to analyze the airgap flow and torque development of the axis end, in comparison to a solid block of the same material (Fe-Si

16. Utility of intracerebral theta burst electrical stimulation to attenuate interhemispheric inhibition and to promote motor recovery after cortical injury in an animal model.

Science.gov (United States)

Barry, Melissa D; Boddington, Laura J; Igelström, Kajsa M; Gray, Jason P; Shemmell, Jon; Tseng, Kuei Y; Oorschot, Dorothy E; Reynolds, John N J

2014-11-01

Following a cerebral cortex injury such as stroke, excessive inhibition around the core of the injury is thought to reduce the potential for new motor learning. In part, this may be caused by an imbalance of interhemispheric inhibition (IHI); therefore, treatments that relieve the inhibitory drive from the healthy hemisphere to the peri-lesional area may enhance motor recovery. Theta burst stimulation delivered by transcranial magnetic stimulation has been tested as a means of normalizing IHI, but clinical results have been variable. Here we use a new rat model of synaptic IHI to demonstrate that electrical intracranial theta burst stimulation causes long-lasting changes in motor cortex excitability. Further, we show that contralateral intermittent theta burst stimulation (iTBS) blocks IHI via a mechanism involving cannabinoid receptors. Finally, we show that contralesional iTBS applied during recovery from cortical injury in rats improves the recovery of motor function. These findings suggest that theta burst stimulation delivered through implanted electrodes may be a promising avenue to explore for augmenting rehabilitation from brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

17. Control electrónico de un banco de ensayos para motores de combustión interna alternativos

OpenAIRE

López Groba, Sonia

2017-01-01

La realización de ensayos a los motores de combustión interna alternativos es de gran importancia para su desarrollo. Se realizan en bancos de pruebas, para poder simular distintas condiciones de carga. Para estos ensayos, se utiliza un freno dinamométrico unido al eje de salida del motor, que aporta un par resistente y absorbe la potencia. Este elemento es, en esencia, un rotor, acoplado al eje del motor, que proporciona un par resistente inducido por el estator. En el banco de pruebas...

18. 77 FR 2269 - Foreign-Trade Zone 18-San Jose, CA, Application for Subzone, Tesla Motors, Inc. (Electric...

Science.gov (United States)

2012-01-17

... products) include: Oils, greases, fluids, refrigerants, adhesives, sealants, anti-freeze/ coolants..., handles, motors, pump parts, mechanical seals, plastic o-rings/clips, rubber o-rings/seals/grommets...

19. Measurement of Heat Losses on The Milking Machine Electric Motor at Various Regulations of Vacuum Using Methods of Thermal Imagery

National Research Council Canada - National Science Library

Kudělka, Jan; Fryč, Jiří; Trávníček, Petr

2014-01-01

.... These vacuum pumps are driven by a squirrel-cage induction motor. Until recently, the vacuum in the system to achieve the required value was controlled by a main control valve sucking in ambient air into the system...

20. Cold Saline Injection Attenuates Motor-evoked Potential in the Spinal Cord by Cortical Electrical Stimulation in the Dog

OpenAIRE

Kumagai, Hajime; Sugawara, Yuji; Isaka, Mitsuhiro; Okada, Kenji; Orihashi, Kazumasa; Sueda, Taijiro

2005-01-01

Changes in the motor-evoked potential of the spinal cord with transcranial stimulation are monitored for spinal cord function during thoracoabdominal aortic aneurysm surgeries. We examined the effects of changes in motor-evoked potential with cold saline injected into the clamped segment of the aorta, and compared the effects to lidocaine and warm saline injection.　　 Eighteen dogs were divided into three groups according to the injected agents: Warm saline group (37°C, 20 ml), Cold saline...

1. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell.

Science.gov (United States)

Zhang, Yifeng; Angelidaki, Irini

2015-07-01

Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m(2) /day and current density of 4.33 A/m(2) were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic benefits of biogas enhancement and possible wastewater treatment, the SMDC may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues. © 2015 Wiley Periodicals, Inc.

2. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

Science.gov (United States)

Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

2017-10-01

During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

3. Submersible Data (Dive Trackpoints) for Operation Deep Scope 2007 - Office of Ocean Exploration

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II along its track during nineteen dives of the 2007 "Operation Deep Scope" expedition sponsored...

4. Submersible Data (Dive Waypoints) for Bioluminescence 2009 - Office of Ocean Exploration and Research

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during seventeen dives of the 2009 "Bioluminescence" expedition...

5. Submersible Data (Dive Trackpoints) for Life on the Edge 2004 - Office of Ocean Exploration

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link I along its track during twenty-five dives of the 2004 "Life on the Edge" expedition sponsored by...

6. Submersible Data (Dive Waypoints) for Life on the Edge 2005 - Office of Ocean Exploration

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link I at waypoints along its track during nineteen dives of the 2005 "Life on the Edge" expedition...

7. Submersible Data (Dive Waypoints) for Investigating the Charleston Bump 2003 - Office of Ocean Exploration

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during fourteen dives of the 2003 "Investigating the Charleston...

8. Hybrid vehicle motor alignment

Science.gov (United States)

Levin, Michael Benjamin

2001-07-03

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

9. Diseño e implementación del control electrónico de dosificación de combustible para un motor de motocicleta

OpenAIRE

Arévalo Santamaría, Telmo Xavier

2014-01-01

El presente proyecto tiene como objetivo diseñar e implementar un sistema de inyección electrónico de combustible para un motor de combustión interna a gasolina que funciona con carburador el mismo que es utilizado en una motocicleta de marca Sukida, la cual tiene similares características a las motocicletas de procedencia china que han tenido gran acogida en el país. En concordancia con el objetivo planteado, el alcance del proyecto ha sido definido en base a las siguientes actividades: Se ...

10. Vomiting is not associated with poor outcomes in pediatric victims of unintentional submersions.

Science.gov (United States)

Farr, Kimberley M; Camp, Elizabeth A; Yusuf, Shabana; Shenoi, Rohit P

2015-05-01

11. Submersible Unmanned Aerial Vehicle: Configuration Design and Analysis Based on Computational Fluid Dynamics

Directory of Open Access Journals (Sweden)

Wang Qinyang

2017-01-01

Full Text Available Submersible aerial vehicle is capable of both flying in the air and submerging in the water. Advanced Research Project Agency (DARPA outlined a challenging set of requirements for a submersible aircraft and solicited innovative research proposals on submersible aircraft since 2008. In this paper, a conceptual configuration design scheme of submersible unmanned aerial vehicle is proposed. This submersible UAV lands on the surface of water, then adjusts its own density to entry water. On the contrary, it emerges from water by adjusting its own density and then takes off from the surface of water. Wing of the UAV is whirling wing. It is set along aircraft’s fuselage while submerging for lift reduction. We analysis aerodynamic and hydrodynamic performance of this UAV by CFD method, especially compare the hydrodynamic performance of the whirling wing configuration and normal configuration. It turns out that whirling wing is beneficial for submerging. This result proves that the configuration design scheme proposed in this paper is feasible and suitable for a submersible unmanned aerial vehicle.

12. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

Directory of Open Access Journals (Sweden)

Naoto Miura

2016-01-01

Full Text Available Clinical studies on application of functional electrical stimulation (FES to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES.

13. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation.

Science.gov (United States)

Miura, Naoto; Watanabe, Takashi

2016-01-01

Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES.

14. New Algorithm for the Smoothing Speed Control of Induction Motor in Electric Car based on Self-Tuning Parameter PID-Fuzzy Logic

Directory of Open Access Journals (Sweden)

Dedid Cahya Happyanto

2012-05-01

Full Text Available Driving system of electric car for low speed has a performance of controller that is not easily set up on large span so it does not give a comfort to passengers. The study has been tested in the bumpy road conditions, by providing disturbances in the motor load, it is to describe the condition of the road. To improve the system performance, the speed and torque controller was applied using Field Oriented Control (FOC method. In this method, On-Line Proportional Integral Derivative Fuzzy Logic Controller (PID-FLC is used to give dynamic response to the change of speed and maximum torque on the electric car and this results the smooth movement on every change of car performance both in fast and slow movement when breaking action is taken. Optimization of membership functions in Fuzzy PID controller is required to obtain a new PID parameter values which is done in autotuning in any changes of the input or disturbance. PID parameter tuning in this case using the Ziegler-Nichols method based on frequency response. The mechanism is done by adjusting the PID parameters and the strengthening of the system output. The test results show that the controller Fuzzy Self-Tuning PID appropriate for Electric cars because they have a good response about 0.85% overshoot at to changes in speed and braking of electric cars.

15. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats

Directory of Open Access Journals (Sweden)

Yu-Ting Zhang

2017-01-01

Full Text Available Spinal cord injury (SCI often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES has been shown to activate the central pattern generator (CPG and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3 in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy.

16. Development of an Android OS Based Controller of a Double Motor Propulsion System for Connected Electric Vehicles and Communication Delays Analysis

Directory of Open Access Journals (Sweden)

2015-01-01

Full Text Available Developments of technologies that facilitate vehicle connectivity represent a market demand. In particular, mobile device (MD technology provides advanced user interface, customization, and upgradability characteristics that can facilitate connectivity and possibly aid in the goal of autonomous driving. This work explores the use of a MD in the control system of a conceptual electric vehicle (EV. While the use of MD for real-time control and monitoring has been reported, proper consideration has not been given to delays in data flow and their effects on system performance. The motor of a novel propulsion system for an EV was conditioned to be controlled in a wireless local area network by an ecosystem that includes a MD and an electronic board. An intended accelerator signal is predefined and sent to the motor and rotational speed values produced in the motor are sent back to the MD. Sample periods in which the communication really occurs are registered. Delays in the sample periods and produced errors in the accelerator and rotational speed signals are presented and analyzed. Maximum delays found in communications were of 0.2 s, while the maximum error produced in the accelerator signal was of 3.54%. Delays are also simulated, with a response that is similar to the behavior observed in the experiments.

17. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats

Science.gov (United States)

Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang

2017-01-01

Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy. PMID:28744378

18. Modelling the influence of thermal effects induced by radio frequency electric field on the dynamics of the ATPase nano-biomolecular motors.

Science.gov (United States)

2012-07-01

We model the dynamics of the F(0) component of the F(0)F(1)-ATPase mitochondrion-based nano-motor operating in a stochastically-fluctuating medium that represents the intracellular environment. The stochastic dynamics are modeled via Langevin equation of motion wherein fluctuations are treated as white noise. We have investigated the influence of an applied alternating electric field on the rotary motion of the F(0) rotor in such an environment. The exposure to the field induces a temperature rise in the mitochondrion's membrane, within which the F(0) is embedded. The external field also induces an electric potential that promotes a change in the mitochondrion's transmembrane potential (TMP). Both the induced temperature and the change in TMP contribute to a change in the dynamics of the F(0). We have found that for external fields in the radio frequency (RF) range, normally present in the environment and encountered by biological systems, the contribution of the induced thermal effects, relative to that of the induced TMP, to the dynamics of the F(0) is more significant. The changes in the dynamics of the F(0) part affect the frequency of the rotary motion of the F(0)F(1)-ATPase protein motor which, in turn, affects the production rate of the ATP molecules. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

19. The power supply system model of the process submersible device with AC power transmission over the cable-rope

OpenAIRE

Rulevskiy, V. M.; Bukreev, Viktor Grigorievich; Kuleshova, Elena Olegovna; Shandarova, Elena Borisovna; Shandarov, S.M.; Vasilyeva, Yu. Z.

2017-01-01

A practical problem of power supply system modeling for the process submersible device with AC power transmission over the cable-rope was considered. The problem is highly relevant in developing and operation of submersible centrifugal pumps and submersibles. The results of modeling a symmetrical three-phase power supply system and their compliance with the real data are given at the paper. The obtained results in the mathematical and simulation models were similar.

20. Life extension of semi-submersible drilling unit

Energy Technology Data Exchange (ETDEWEB)

Hadley, I.; Sinclair, C.I.K. [TWI, Cambridge (United Kingdom). Structural Integrity Dept.; Magne, E. [Schlumberger Sedco Forex, Montrouge (France)

1995-12-31

This paper describes the life extension of a semi-submersible drilling rig built in the early 1970`s. A nominal design life of 20 years was estimated at the time of building; however, in the interim period, numerous improvements have been made in fatigue life estimation ad life improvement techniques, raising the possibility that a further 20 years of operation could be considered. The life extension strategy made use of a number of aspects of offshore technology which were not available at the time of construction of the rig. Finite element studies and results from offshore research programs were used to gauge the effect of fatigue life improvement techniques. The program demonstrated the feasibility of extending the operation of the rig for a further 20 years, with the interval between in-service inspection increased to every five years. It also provided a valuable database of fracture toughness data for the rig materials, which may be used in future work to address reliability issues.

1. Submersible Spectrofluorometer for Real-Time Sensing of Water Quality.

Science.gov (United States)

Puiu, Adriana; Fiorani, Luca; Menicucci, Ivano; Pistilli, Marco; Lai, Antonia

2015-06-18

In this work, we present a newly developed submersible spectrofluorometer (patent pending) applied to real-time sensing of water quality, suitable for monitoring some important indicators of the ecological status of natural waters such as chlorophyll-a, oil and protein-like material. For the optomechanical realization of the apparatus, a novel conceptual design has been adopted in order to avoid filters and pumps while maintaining a high signal-to-noise ratio. The elimination of filters and pumps has the advantage of greater system simplicity and especially of avoiding the risk of sample degradation. The use of light-emitting diodes as an excitation source instead of Xe lamps or laser diodes helped save on size, weight, power consumption and costs. For sensor calibration we performed measurements on water samples with added chlorophyll prepared in the laboratory. The sensor functionality was tested during field campaigns conducted at Albano Lake in Latium Region of Italy as well as in the Herzliya Harbor, a few kilometers North East of Tel Aviv in Israel. The obtained results are reported in the paper. The sensitivity achieved for chlorophyll-a detection was found to be at least 0.2 µg/L.

2. Cost of electricity generated in motor-generator set using biogas of swine; Custo da eletricidade gerada em conjunto motor gerador utilizando biogas da suinocultura

Energy Technology Data Exchange (ETDEWEB)

Souza, Samuel N. Melegari de; Pavan, Andre Aparecido [Faculdade Assis Gurgacz - FAG, Cascavel, PR (Brazil)], e-mail: ssouza@unioeste.br; Pereira, William Caldart [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas. Programa Institucional de Bolsas de Iniciacao Cientifica

2004-07-01

One of the largest available sources of energy in the rural areas and agroindustrial is the biomass. The same appears in the form of vegetable residues and you encourage, such as crop remains, animal manure, energy plantations and agroindustrial effluents. These residues can be used by the rural producer or agroindustry for it burns it direct, seeking the production of heat or biogas production in biodigestor. Close to some agricultural properties, where there is a swine production, it happens the readiness of these residues, being characterized in a great energy potential. In this work it was objectified to determine the cost and viability of electricity production using biogas as fuel an engine generator. (author)

3. Lowering of sensory, motor, and pain-tolerance thresholds with burst duration using kilohertz-frequency alternating current electric stimulation: part II.

Science.gov (United States)

Ward, Alex R; Chuen, Wendy Lee Hung

2009-09-01

To determine the optimum burst duration for discrimination between sensory, motor, and pain tolerance thresholds using 20-Hz bursts of kilohertz-frequency sinusoidal alternating current (AC) applied transcutaneously to human participants. A within-subject, repeated-measures trial. A research laboratory. Healthy young adults (N=20). Bursts of AC electric stimulation at frequencies of 1 and 4 kHz. The burst frequency was 20 Hz. Burst durations ranged from 250 microseconds (for 1 cycle of 4-kHz AC) and 1 millisecond (for 1 cycle of 1-kHz AC) to 50 milliseconds (continuous AC). Measurement of sensory, motor, and pain-tolerance thresholds. Thresholds decreased to a minimum with increasing burst duration. The minimum threshold identified the utilization time over which summation of subthreshold stimuli occurs. Utilization times were different for sensory (approximately 20 ms), motor (approximately 30 ms), and pain (>50 ms) and were much higher than found in a previous study that used a higher burst frequency (50 Hz). As with the previous study, relative thresholds were found to vary with burst duration. Despite the very different utilization times, maximum separation between sensory, motor, and pain thresholds was found to occur with bursts in the range of 1 to 4 milliseconds, the same range found in the previous study. Our conclusions concur with those reported previously and support the contention that short-duration kilohertz-frequency AC bursts (1-4 ms) have a more useful role in rehabilitation than the long-duration kilohertz-frequency bursts that characterize Russian and interferential currents.

4. COMPARATIVE ANALYSIS OF CONVERTER STRUCTURES OF THE TRACTION DRIVE PROSPECTIVE MULTI-SYSTEM ELECTRIC LOCOMOTIVES WITH DC TRACTION MOTORS

Directory of Open Access Journals (Sweden)

A. M. Muha

2009-03-01

Full Text Available In the article the structured schemes of steady-state converter are offered for traction drive of promising multisystem electric locomotives with traction engines of direct current and their comparative analysis is conducted.

5. Internal combustion engine to electric vehicle. Four alternative techniques; Del motor de combustion internal al vehiculo electrico. Cuatro alternativas tecnicas

Energy Technology Data Exchange (ETDEWEB)

Alaez, R.; Barneto, M.; Gil, C.; Longas, J. C.; Lucea, J.; Ullibarri, M.; Bilbao, J.; Camino, V.; Intxaurburu, G.

2010-07-01

Auto makers are now developing alternatives to internal combustion engines. The present paper provides an analysis of four alternative vehicles: electric hybrids, full electric vehicles, hydrogen fuel cells and hydrogen vehicles. The paper focuses on the adoption dynamics for alternative vehicles. The spatial implications of this process for the organization of the value chain and the auto makers alliances linked to the alternatives development are also considered. (Author) 14 refs.

6. Performance Analysis of DTC-SVM Sliding Mode Controllers-Based Parameters Estimator of Electric Motor Speed Drive

Directory of Open Access Journals (Sweden)

Fatma Ben Salem

2014-01-01

Full Text Available This paper is concerned with a framework which unifies direct torque control space vector modulation (DTC-SVM and variable structure control (VSC. The result is a hybrid VSC-DTC-SVM controller design which eliminates several major limitations of the two individual controls and retains merits of both controllers. It has been shown that obtained control laws are very sensitive to variations of the stator resistance, the rotor resistance, and the mutual inductance. This paper discusses the performances of adaptive controllers of VSC-DTC-SVM monitored induction motor drive in a wide speed range and even in the presence of parameters uncertainties and mismatching disturbances. Better estimations of the stator resistance, the rotor resistance, and the mutual inductance yield improvements of induction motor performances using VSC-DTC-SVM, thereby facilitating torque ripple minimization. Simulation results verified the performances of the proposed approach.

7. High efficiency motors; Motores de alta eficiencia

Energy Technology Data Exchange (ETDEWEB)

Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

1992-12-31

This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

8. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms

Science.gov (United States)

Gangsar, Purushottam; Tiwari, Rajiv

2017-09-01

This paper presents an investigation of vibration and current monitoring for effective fault prediction in induction motor (IM) by using multiclass support vector machine (MSVM) algorithms. Failures of IM may occur due to propagation of a mechanical or electrical fault. Hence, for timely detection of these faults, the vibration as well as current signals was acquired after multiple experiments of varying speeds and external torques from an experimental test rig. Here, total ten different fault conditions that frequently encountered in IM (four mechanical fault, five electrical fault conditions and one no defect condition) have been considered. In the case of stator winding fault, and phase unbalance and single phasing fault, different level of severity were also considered for the prediction. In this study, the identification has been performed of the mechanical and electrical faults, individually and collectively. Fault predictions have been performed using vibration signal alone, current signal alone and vibration-current signal concurrently. The one-versus-one MSVM has been trained at various operating conditions of IM using the radial basis function (RBF) kernel and tested for same conditions, which gives the result in the form of percentage fault prediction. The prediction performance is investigated for the wide range of RBF kernel parameter, i.e. gamma, and selected the best result for one optimal value of gamma for each case. Fault predictions has been performed and investigated for the wide range of operational speeds of the IM as well as external torques on the IM.

9. 30 CFR 18.34 - Motors.

Science.gov (United States)

2010-07-01

... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motors. 18.34 Section 18.34 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in underground...

10. Torque-Summing Brushless Motor

Science.gov (United States)

Vaidya, J. G.

1986-01-01

Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

11. High-performance motor drives

OpenAIRE

Kazmierkowski, Marian P.; García Franquelo, Leopoldo; Rodríguez, José; Pérez, Marcelo; León Galván, José Ignacio

2011-01-01

This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from...

12. Multi-functional Converter with Integrated Motor Control, Battery Charging and Active Module Balancing for Electric Vehicular Application

DEFF Research Database (Denmark)

Mathe, Laszlo; Schaltz, Erik; Teodorescu, Remus

2014-01-01

In order to reduce the fuel consumption and the acoustical noise generated by refuse lorries, electrification of the waste compactor unit is a very promising solution. For the electrical energy storage Lithium-Sulfur (Li-S) battery technology has been selected with potential for reducing the cost...

13. Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner.

Science.gov (United States)

Ferrante, S; Pedrocchi, A; Ferrigno, G; Molteni, F

2008-06-01

The aim of this study was to investigate the effectiveness of cycling induced by functional electrical stimulation (FES) in patients with postacute stroke. Twenty postacute inpatients were recruited and were randomly shared in a control group (56+/-9.2 years old, 50.8+/-24.5 days post-stroke) performing the standard rehabilitation (SR) and a FES group (51+/-12 years old, 56.1+/-22.8 days post-stroke) performing FES cycling in addition to SR. Both the groups performed 3 hours of rehabilitation per day for 4 weeks. The FES cycling was applied daily for 35 minutes and quadriceps, hamstring, gluteus maximus and tibialis anterior of both the legs were stimulated. The two groups were compared by the following outcome measurements before and after treatment: maximum isometric voluntary contraction (MVC) of quadriceps, walking and sit-to-stand ability, motricity index, upright motor control test and trunk control test. After the treatment, the U-Mann-Whitney test demonstrated that the FES group produced a significantly higher increase of the muscular force produced by both the quadriceps during MVC with respect to the control group (Pdevelop the ability to perform the task properly. Rehabilitation including FES cycling was more effective in promoting muscle strength and motor recovery of the lower extremity than therapist-assisted SR alone. Tests on an enlarged number of patients are necessary for generalization before proposing FES cycling in the clinical rehabilitation of post-acute stroke patients.

14. Can biophysical properties of submersed macrophytes be determined by remote sensing?

Energy Technology Data Exchange (ETDEWEB)

Malthus, T.J. [Univ. of Edinburgh (United Kingdom); Ciraolo, G.; La Loggia, G. [Univ. of Palermo, Sicily (Italy)] [and others

1997-06-01

This paper details the development of a computationally efficient Monte Carlo simulation program to model photon transport through submersed plant canopies, with emphasis on Seagrass communities. The model incorporates three components: the transmission of photons through a water column of varying depth and turbidity; the interaction of photons within a submersed plant canopy of varying biomass; and interactions with the bottom substrate. The three components of the model are discussed. Simulations were performed based on measured parameters for Posidonia oceanica and compared to measured subsurface reflectance spectra made over comparable seagrass communities in Sicilian coastal waters. It is shown that the output is realistic. Further simulations are undertaken to investigate the effect of depth and turbidity of the overlying water column. Both sets of results indicate the rapid loss of canopy signal as depth increases and water column phytoplankton concentrations increase. The implications for the development of algorithms for the estimation of submersed canopy biophysical parameters are briefly discussed.

15. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

Energy Technology Data Exchange (ETDEWEB)

Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Damiano, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehta, Chaitanya [Univ. of Tennessee, Knoxville, TN (United States); Collins, Price [Univ. of Tennessee, Knoxville, TN (United States); Lish, Matthew [Univ. of Tennessee, Knoxville, TN (United States); Cady, Brian [Univ. of Tennessee, Knoxville, TN (United States); Lollar, Victor [Univ. of Tennessee, Knoxville, TN (United States); de Wet, Dane [Univ. of Tennessee, Knoxville, TN (United States); Bayram, Duygu [Univ. of Tennessee, Knoxville, TN (United States)

2015-12-15

The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

16. A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

Energy Technology Data Exchange (ETDEWEB)

Le, T. D.; Kim, J. H.; Hyeon, C. J.; Kim, H. M.; Kim, D. K. [Jeju National University, Jeju (Korea, Republic of); Kim, Y. S. [Shin Ansan University, Ansan (Korea, Republic of); Lee, J.; Park, Y. G.; Jeon, H. [Yonsei University, Seoul (Korea, Republic of); Quach, H. L. [Electronic and Telecommunication Engineering, Can Tho University of Technology, Can Tho (Viet Nam)

2016-12-15

The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

17. Cold saline injection attenuates motor-evoked potential in the spinal cord by cortical electrical stimulation in the dog.

Science.gov (United States)

Kumagai, Hajime; Sugawara, Yuji; Isaka, Mitsuhiro; Okada, Kenji; Orihashi, Kazumasa; Sueda, Taijiro

2005-09-01

Changes in the motor-evoked potential of the spinal cord with transcranial stimulation are monitored for spinal cord function during thoracoabdominal aortic aneurysm surgeries. We examined the effects of changes in motor-evoked potential with cold saline injected into the clamped segment of the aorta, and compared the effects to lidocaine and warm saline injection. Eighteen dogs were divided into three groups according to the injected agents: Warm saline group (37 degrees C, 20 ml), Cold saline group (4 degrees C, 20 ml), and Lidocaine group (5.0 mg/kg of lidocaine in 20 ml of warm saline), (n=6, each group). Changes in the peak-to-peak MEP amplitude and the indirect wave (I wave) amplitude were measured during aortic cross-clamping. In the peak-to-peak MEP amplitude, the cold saline and lidocaine groups attenuated to 80% of the control value but were not significantly changed. In the I wave amplitude, the cold saline group showed a significant attenuation 1 min after injection (psaline group. Attenuation of the I wave amplitude in the cold saline group was significantly larger than that in the lidocaine group (p=0.0003). Changes in the I wave amplitude appeared within 4 min in both the cold saline and lidocaine groups. Cold saline injection into the clamped segment of the aorta is a diagnostic procedure for determining presiding critical arteries in the segment without experiencing the pharmacological side effects observed with lidocaine injection.

18. [Electrical stimulation therapy and its effects on the general activity of motor impaired cerebral palsied children; a comparative study of the Bobath physiotherapy and its combination with the Hufschmidt electrical stimulation therapy (author's transl)].

Science.gov (United States)

Leyendecker, C

1975-08-01

The purpose of this study was to answer the following questions: (1) Is it more effective to treat spastic cerebral palsy with the Hufschmidt electrical stimulation therapy combined with the Bobath neuro-development treatment or only with the Bobath therapy? (2) Can a general increase in activity be obtained by the electrotherapeutic muscle stimulation? A test group (combined Hufschmidt/Bobath therapy) and a control group (Bobath), both consisting of 10 subjects, were observed for four months. The duration of observation was divided into two four months treatment periods with a rest interval of two months in between. At the start of therapeutic measures, motor activity and psychic condition were tested with corresponding motormetric and psychodiagnostic techniques; three check-up examinations were carried out at the end of the first, and at the beginning and end of the second period of treatment. The motor-metric control examination showed that at the end of the first period the test group had achieved by far the better results, but at the end of the second therapeutic period, both groups were equally successful. The combined electrophysiotherapy hence reached in a relatively shorter time - as it were by leaps and bounds - the optimal obtainable state of functional improvements which, with the Bobath therapy alone, can be effected more slowly but with more continuity. The psychodiagnostic controls clearly indicate that the electrical stimulation produced an unspecified increase in activity, especially after the first phase of treatment, whereas in the second phase this could only be proven in a graded form. The report closes with an examination of the results and their consequences for the implementation of the treatment for cerebral palsied children.

19. Sensorless Speed Control with Initial Rotor Position Estimation for Surface Mounted Permanent Magnet Synchronous Motor Drive in Electric Vehicles

Directory of Open Access Journals (Sweden)

Xuan Wu

2015-10-01

Full Text Available The accurate information of the initial rotor position is very critical for successful starting of the Surface-mounted Permanent Magnet Synchronous Motor (SPMSM. In order to solve the problems of low accuracy and unreliability in the conventional estimation strategy, in this paper, an improved initial rotor position estimation strategy without any position sensor for SPMSM at standstill is proposed based on rectangular pulse voltage injection. In the work, when the second series of pulse voltages were applied. By the ways of strengthening the effect of weakening or strengthening magnetic fields and increasing the difference between each current of the vector. The improved strategy enhanced reliability and raised the initial position estimation accuracy from 7.5° to 1.875°. The improved strategy does not need any additional hardware. Experimental results demonstrate the validity and usefulness of the improved strategy.

20. Impact of Silicon Carbide Devices on the Dynamic Performance of Permanent Magnet Synchronous Motor Drive Systems for Electric Vehicles

Directory of Open Access Journals (Sweden)

Xiaofeng Ding

2017-03-01

Full Text Available This paper investigates the impact of silicon carbide (SiC metal oxide semiconductor field effect transistors (MOSFETs on the dynamic performance of permanent magnet synchronous motor (PMSM drive systems. The characteristics of SiC MOSFETs are evaluated experimentally taking into account temperature variations. Then the switching characteristics are firstly introduced into the transfer function of a SiC-inverter fed PMSM drive system. The main contribution of this paper is the investigation of the dynamic control performance features such as the fast response, the stability and the robustness of the drive system considering the characteristics of SiC MOSFETs. All the results of the SiC-drive system are compared to the silicon-(Si insulated gate bipolar transistors (IGBTs drive system counterpart, and the SiC-drive system manifests a higher dynamic performance than the Si-drive system. The analytical results have been effectively validated by experiments on a test bench.