WorldWideScience

Sample records for submerged-arc weld heat-affected

  1. The modeling of heat affected zone (HAZ in submerged arc welding (SAW surfacing steel element

    Directory of Open Access Journals (Sweden)

    J. Winczek

    2016-04-01

    Full Text Available In the work the bimodal heat source model in the description of the temperature field is presented. The electric arc was treated physically as one heat source, whose heat was divided: part of the heat is transferred by the direct impact of the electric arc, but another part of the heat is transferred to the weld by the melted material of the electrode. Computations of the temperature field during SAW surfacing of S355 steel element are carried out. The macrographic and metallographic analysis of the weld confirmed the depth and shapes of the fusion line and HAZ defined by the numerical simulation.

  2. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    Science.gov (United States)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-06-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  3. Laser Beam Submerged Arc Hybrid Welding

    Science.gov (United States)

    Reisgen, Uwe; Olschok, Simon; Jakobs, Stefan; Schleser, Markus; Mokrov, Oleg; Rossiter, Eduardo

    The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The high deposition rate of the SA process in combination with the laser beam process offers, providing the appropriate choice of weld preparation, the possibility of welding plates with a thickness larger than 20° mm in a single pass, and also of welding thicker plates with the double-sided single pass technique.

  4. Critical Assessment of Temperature Distribution in Submerged Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Vineet Negi

    2013-01-01

    Full Text Available Temperature distribution during any welding process holds the key for understanding and predicting several important welding attributes like heat affected zone, microstructure of the weld, residual stress, and distortion during welding. The accuracy of the analytical approaches for modeling temperature distribution during welding has been constrained by oversimplified assumptions regarding boundary conditions and material properties. In this paper, an attempt has been made to model the temperature distribution during submerged arc welding process using finite element modeling technique implemented in ANSYS v12. In the present analysis, heat source is assumed to be double-ellipsoidal with Gaussian volumetric heat generation. Furthermore, variation of material properties with temperature and both convective and radiant heat loss boundary condition have been considered. The predicted temperature distribution is then validated against the experimental results obtained by thermal imaging of the welded plate, and they are found to be in a good agreement.

  5. Submerged arc welding of heavy plate

    Science.gov (United States)

    Wilson, R. A.

    1972-01-01

    The submerged arc process is particularly suitable for heavy plate welding because of its ability to combine very high deposit rates along with excellent quality. It does these things without the smoke and spatter often accompanying other processes. It is available today in several forms that are pointed to the fabricators of heavy sections with long, short or round about welds. Tandem arc full automatic equipment is particularly suitable for those long heavy welds where speed and deposit rate are of the first order. An attachment called long stick-out which makes use of the IR drop on long electrode extensions can be included on this equipment to increase deposition rates 50% or more.

  6. Hydrogen mitigation in submerged arc welding

    Science.gov (United States)

    Klimowicz, Steven

    With the role of hydrogen in weld metal well understood in its relation to cold cracking, there has been a push to produce welds with lower and lower diffusible hydrogen contents. The push for lower diffusible hydrogen contents has placed pressure on consumables manufactures to create consumables that can achieve the requirements for lower diffusible hydrogen content. Currently EM12K flux is produced so that it can achieve below 4 ml of diffusible hydrogen for every 100g of weld metal deposited (ml/100g) for submerged arc welding (SAW). The recent trend for industry is to preferentially achieve diffusible hydrogen contents below 3 ml/100g. Making it necessary to find a way to modify the flux to achieve a lower diffusible hydrogen content for the welds it produces. To achieve this goal a two phase plan was developed. The first phase was to characterize the entire welding system for hydrogen. Since the goal of the project is hydrogen mitigation, any amount of hydrogen that could be reduced is helpful and therefore must first be discovered. Sources of hydrogen may be found by analyzing the welding wire and base metal, as well as breaking the flux down into its components and production steps. The wire was analyzed for total hydrogen content as was the base metal. The flux and its components were analyzed using differential thermal analysis-simultaneous thermal analysis (DTA-STA) and later vacuum degassing for moisture content. The analysis of the wire showed that the copper coating on the wire was the largest contributor of hydrogen. There was lubricant present on the wire surface as well, but it did not contribute as much as the copper coating. It was found that a simple low temperature baking of the wire was enough to remove the lubricant and coating moisture. The base metal was found to have a similar total hydrogen content to that of the wire. The breakdown of the flux and production process for moisture content analysis revealed that the production process

  7. Peculiarities of thermal dissociation of oxides during submerged arc welding

    Directory of Open Access Journals (Sweden)

    Leonid Zhdanov

    2013-12-01

    Full Text Available A method of settlement of the process of thermal dissociation of oxides in reaction zone during the submerged arc welding and welding deposition is presented. Combined non-linear equations for definition of gas-vapour mixture composition were developed. They describe the dissociation of MeO, MeO2 and Me2O3 types of oxides. Calculations of the processes of oxide dissociation were performed for the oxides that are commonly included into welding fluxes. Their results and analysis are presented. The method proposed appeared to be adequate and applicable for analysis of processes during submerged arc operation that run in the gas phase.

  8. Implementation of Submerged Arc Welding Training. Final Report.

    Science.gov (United States)

    Bowick, Earl; Todd, John

    A unit on submerged arc welding (SAW) was developed and integrated into the welding program at Seattle Central Community College (Washington) during the period December 1983 through May 1984. During this time, 10 major users of SAW in the area were contacted and mailed questionnaires. Follow up consisted of telephone calls and personal contact as…

  9. Slag Metal Reactions during Submerged Arc Welding of Alloy Steels

    Science.gov (United States)

    Mitra, U.; Eagar, T. W.

    1984-01-01

    The transfer of Cr, Si, Mn, P, S, C, Ni, and Mo between the slag and the weld pool has been studied for submerged arc welds made with calcium silicate and manganese silicate fluxes. The results show a strong interaction between Cr and Si transfer but no interaction with Mn. The manganese silicate flux produces lower residual sulfur while the calcium silicate fluxes are more effective for removal of phosphorus. The effective oxygen reaction temperature lies between 1700 and 2000 °C for all elements studied. Evidence of Cr and Mn loss by metal vaporization is also presented.

  10. Arc characteristics of submerged arc welding with stainless steel wire

    Science.gov (United States)

    Li, Ke; Wu, Zhi-sheng; Liu, Cui-rong; Chen, Feng-hua

    2014-08-01

    The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carried out under the same preset arc voltage combined with different welding currents. By comparing the probability density distribution (PDD) curves of arc voltage and welding current, the changes were analyzed, the metal transfer mode in SAW was deduced, and the characteristics of a stable arc were summarized. The analysis results show that, with an increase of welding parameters, the short-circuiting peak in the PDD curves of arc voltage decreases gradually until it disappears, and the dominant metal transfer mode changes from flux-wall guided transfer to projected transfer and then to streaming transfer. Moreover, when the PDD curves of arc voltage are both unimodal and generally symmetrical, the greater the peak probability and the smaller the peak span, the more stable the arc becomes.

  11. Effect of Different Current Values on Microstructure and Mechanical Properties of Microalloyed Steels Joined by the Submerged Arc Welding Method

    Directory of Open Access Journals (Sweden)

    Hasan Karabulut

    2016-11-01

    Full Text Available In this study, microalloyed steels were joined by using the submerged arc welding method at different welding currents of 350 A, 400 A and 450 A. The effects of selected welding parameters on the microstructure and mechanical properties of welded materials were investigated. Tensile tests and microhardness measurements were performed. Microstructural changes have been identified in the welding zone. The results showed an increase in hardness and tensile strength depending on the current intensity. The heat affected zone was observed much wider with the increase in welding current.

  12. Slag-metal equilibrium during submerged arc welding

    Science.gov (United States)

    Chai, C. S.; Eagar, T. W.

    1981-09-01

    A thermodynamic model of the equilibria existing between the slag and the weld metal during submerged arc welding is presented. As formulated, the model applies only to fused neutral fluxes containing less than 20 pct CaF2, however some results indicate that the model may be useful in more general cases as well. The model is shown to be capable of predicting the gain or loss of both Mn and Si over a wide range of baseplate, electrode and flux compositions. At large deviations from the predicted equilibrium, the experimental results indicate considerable variability in the amount of Mn or Si transferred between the slag and metal phases, while closer to the calculated equilibrium, the extent of metal transfer becomes more predictable. The variability in metal transfer rate at large deviations from equilibrium may be explained by variations between the bulk and the surface concentrations of Mn and Si in both metal and slag phases.

  13. The Development of a Composite Consumable Insert for Submerged ARC Welding

    National Research Council Canada - National Science Library

    1980-01-01

    .... When the submerged arc process was utilized to weld the butt joint in large flat plate structures, the repositioning of the plate for welding of the reverse side was a costly time consuming procedure...

  14. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    Science.gov (United States)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  15. Meta Modelling of Submerged-Arc Welding Design based on Fuzzy Algorithm

    Science.gov (United States)

    Song, Chang-Yong; Park, Jonghwan; Goh, Dugab; Park, Woo-Chang; Lee, Chang-Ha; Kim, Mun Yong; Kang, Jinseo

    2017-12-01

    Fuzzy algorithm based meta-model is proposed for approximating submerged-arc weld design factors such as weld speed and weld output. Orthogonal array design based on the submerged-arc weld numerical analysis is applied to the proposed approach. The nonlinear finite element analysis is carried out to simulate the submerged-arc weld numerical analysis using thermo-mechanical and temperature-dependent material properties for general mild steel. The proposed meta-model based on fuzzy algorithm design is generated with triangle membership functions and fuzzy if-then rules using training data obtained from the Taguchi orthogonal array design data. The aim of proposed approach is to develop a fuzzy meta-model to effectively approximate the optimized submerged-arc weld factors. To validate the meta-model, the results obtained from the fuzzy meta-model are compared to the best cases from the Taguchi orthogonal array.

  16. Stainless steel submerged arc weld fusion line toughness

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

  17. Multi-Objective Optimization of Submerged Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Saurav Datta

    2010-06-01

    Full Text Available Submerged arc welding (SAW is an important metal fabrication technology specially applied to join metals of large thickness in a single pass. In order to obtain an efficient joint, several process parameters of SAW need to be studied and precisely selected to improve weld quality. Many methodologies were proposed in the past research to address this issue. However, a good number of past work seeks to optimize SAWprocess parameters with a single response only. In practical situations, not only is the influence of process parameters and their interactive effects on output responses are to be critically examined but also an attempt is to be made to optimize more than one response, simultaneously. To this end, the present study considers four process control parameters viz. voltage (OCV, wire feed rate, traverse speed and electrode stick-out. The selected weld quality characteristics related to features of bead geometry are depth of penetration, reinforcement and bead width. In the present reporting, an integrated approach capable of solving the simultaneous optimization of multi-quality responses in SAW was suggested. In the proposed approach, the responses were transformed into their individual desirability values by selecting appropriate desirability function. Assuming equal importance for all responses, these individual desirability values were aggregated to calculate the overall desirability values. Quadratic Response Surface Methodology (RSM was applied to establish a mathematical model representing overall desirability as a function involving linear, quadratic and interaction effect of process control parameters. This model was optimized finally within the experimental domain using PSO (Particle Swarm Optimization algorithm. A confirmatory test showed a satisfactory result. A detailed methodology of RSM, desirability function (DF and a PSO-based optimization approach was illustrated in the paper.

  18. Effect of Submerged Arc Welding Parameters on the Microstructure of SA516 and A709 Steel Welds

    Science.gov (United States)

    Amanie, James

    The effects of submerged arc welding (SAW) current and speed on the microstructures of SA516 grade 70 and A709 grade 50 steel welds were studied in this research. Steel plates 17 mm-thick were submerged arc welded using different welding currents (from 700 to 850 A) and welding speeds (from 5.3 to 15.3 mm/s). The effect of heat input on the weld metal chemistry, morphologies and chemistry of inclusions and nucleation of acicular ferrite (AF), grain boundary ferrite (GBF) and Widmanstatten ferrite (WF) were evaluated. Optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) microanalysis and transmission electron microscopy (TEM) were used to examine the microstructures of the developed weld joints. PAX-it image analysis software program was utilized for quantitative analysis of the microstructures. The results showed that it is difficult to ascribe changes in the microstructure that occurred in the heat affected zone (HAZ) and the weld metal regions to a single welding process parameter. Inclusion analysis revealed two types of inclusions formed in the weld metals for both steels. They are spherical and faceted inclusions. It was also observed that acicular ferrite nucleated only on the spherical inclusions. EDS analysis showed that the two inclusions have different chemical compositions. The results further showed that the total oxygen content of the weld metals of both steels generally increased with welding current, but decreased with increasing welding speed. The prior austenite grain width decreased with increasing welding speed, but increased with increasing welding current (increased heat input). For both SA516 and A709 steel welds, the proportion of acicular ferrite (AF) in the weld metals increased initially, while those of grain boundary ferrite (GBF) and Widmanstatten ferrite (WF) decreased with increasing welding current when welding current was increased from 700 A to 800 A. With further increase in the

  19. Possibilities of Application of Carbon-Fluorine Containing Additions in Submerged-Arc Welding

    Science.gov (United States)

    Kozyrev, N. A.; Kryukov, N. E.; Kryukov, R. E.; Igushev, V. F.; Kovalskii, I. I.

    2015-09-01

    The paper provides results of comparative analysis of the effect of carbonaceous components introduced into welding fluxes on molten metal - slag interaction. A positive influence of carbonaceous additives on gas content and mechanical properties of welds is demonstrated. Carbon and fluorine containing additives are emphasized to be promising for automatic submerged arc welding.

  20. Effect of Hot-Bending Process on Microstructure and Mechanical Property of K65 Submerged ARC Welded Pipe

    Science.gov (United States)

    Dong, Liming; Zhang, Yu; Pan, Xin; Wang, Yinbai

    Hot-bended pipes are essential parts in the construction of long distance pipeline. They are usually made from longitudinally submerged arc welding (LSAW) pipes subjected to hot bending process including quenching and tempering process, which often deteriorates the impact property of the welded pipe. A hot-bended LSAW pipe with a wall thickness of 30.8 mm was fabricated by double-sided four wires submerged arc welding with solid wire and fused flux. Microstructural and property of both as-weld and as-bended pipe were examined. The pipes in two states show a similar tensile strength of 665-670 MPa, and fail in the heat affected zone during the tensile test. The weld metal of as-welded pipe consists of acicular ferrite and small fraction bainite and M-A constituents, while mixture of polygonal ferrite, degenerate perlite and precipitated carbides of metal elements was found in the weld metal of the as-bended pipe. The hot bending process decreases the fraction of acicular ferrite from 66.4 to 47.5%, and the fraction of high angle grain boundary from 76.8 to 67.1%. Therefore, both the type of microstructure and the fraction of ductile microstructures were the influencing factors of weld metal impact toughness, which lead to a reduction from 162 J to 84 J at -40°C.

  1. Characterization of HAZ of API X70 Microalloyed Steel Welded by Cold-Wire Tandem Submerged Arc Welding

    Science.gov (United States)

    Mohammadijoo, Mohsen; Kenny, Stephen; Collins, Laurie; Henein, Hani; Ivey, Douglas G.

    2017-05-01

    High-strength low-carbon microalloyed steels may be adversely affected by the high-heat input and thermal cycle that they experience during tandem submerged arc welding. The heat-affected zone (HAZ), particularly the coarse-grained heat-affected zone (CGHAZ), i.e., the region adjacent to the fusion line, has been known to show lower fracture toughness compared with the rest of the steel. The deterioration in toughness of the CGHAZ is attributed to the formation of martensite-austenite (M-A) constituents, local brittle zones, and large prior austenite grains (PAG). In the present work, the influence of the addition of a cold wire at various wire feed rates in cold-wire tandem submerged arc welding, a recently developed welding process for pipeline manufacturing, on the microstructure and mechanical properties of the HAZ of a microalloyed steel has been studied. The cold wire moderates the heat input of welding by consuming the heat of the trail electrode. Macrostructural analysis showed a decrease in the CGHAZ size by addition of a cold wire. Microstructural evaluation, using both tint etching optical microscopy and scanning electron microscopy, indicated the formation of finer PAGs and less fraction of M-A constituents with refined morphology within the CGHAZ when the cold wire was fed at 25.4 cm/min. This resulted in an improvement in the HAZ impact fracture toughness. These improvements are attributed to lower actual heat introduced to the weldment and lower peak temperature in the CGHAZ by cold-wire addition. However, a faster feed rate of the cold wire at 76.2 cm/min adversely affected the toughness due to the formation of slender M-A constituents caused by the relatively faster cooling rate in the CGHAZ.

  2. Parameter optimization of flux-aided backing-submerged arc welding by using Taguchi method

    Science.gov (United States)

    Pu, Juan; Yu, Shengfu; Li, Yuanyuan

    2017-07-01

    Flux-aided backing-submerged arc welding has been conducted on D36 steel with thickness of 20 mm. The effects of processing parameters such as welding current, voltage, welding speed and groove angle on welding quality were investigated by Taguchi method. The optimal welding parameters were predicted and the individual importance of each parameter on welding quality was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The importance order of the welding parameters for the welding quality of weld bead was: welding current > welding speed > groove angle > welding voltage. The welding quality of weld bead increased gradually with increasing welding current and welding speed and decreasing groove angle. The optimum values of the welding current, welding speed, groove angle and welding voltage were found to be 1050 A, 27 cm/min, 40∘ and 34 V, respectively.

  3. Effect of Post-Welding Heat Treatment on Mechanical Properties of Joints of Steel P92 Formed by Submerged Arc Welding

    Science.gov (United States)

    Mohyla, P.; Foldynová, K.

    2014-07-01

    Results of mechanical tests and metallographic studies of welded joints of steel P92 obtained by submerged arc welding are presented. The effect of the post-welding heat treatment on the mechanical properties of the welds is described.

  4. XRD and DTA Analysis of Developed Agglomerated Fluxes for Submerged Arc Welding

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2013-01-01

    Full Text Available A unique study of structural and chemical analysis of crystalline phases in developed agglomerated fluxes was carried out. Thirty-two fluxes were developed by using a mixture of oxides, halides, carbonates, silicates, and ferroalloys for submerged arc welding. The present paper focuses on only ten (out of thirty-two fluxes which were analyzed by X-ray diffraction (XRD to know the different types of oxides formed and changed in oxidation number of metallic centers after sintering process at around 850∘C. To know the effect of temperature over phase transformation and melting of different compounds, differential thermal analysis (DTA was carried out from 1000 to 1400∘C. This study aims to know the quantity of ions present (percentage and melting behavior of developed agglomerated fluxes for submerged arc welding process.

  5. The Effect of Welding Parameters on Microstructural and Mechanical Properties of HSLA S960QL Type Steel with Submerged Arc Welding

    Directory of Open Access Journals (Sweden)

    Mehmet TÜRKER

    2017-08-01

    Full Text Available In this study, S960QL steels were welded with submerged arc welding process in order to examine microstructural and mechanical properties. For the microstructural investigation, microscopical examination methods were used for weld zones. Tensile, impact toughness and micro hardness tests were made for different samples obtained from the weld zone and the base metal. The examinations of fracture surfaces were made by using optical microscope and scanning electron microscope. The flat type tensile strength values were near to the base materials. Charpy impact toughness tests were made for the base metal, the weld metal center line, the fusion line, the zone between weld metal centerline and the fusion line. Impact energy of the weld metal was obtained lower than the base metal. The lowest impact energy was obtained at the fusion line. Heat affected zone had the highest value in micro hardness tests. In microstructure evaluation, the interface of the fusion zone-heat affected zone and heat affected zone had coarser grain structure than the base metal. Alloy carbides dissolved because of the high temperature values occurred at heat affected zone.

  6. Study the Effect of SiO2 Based Flux on Dilution in Submerged Arc Welding

    Science.gov (United States)

    kumar, Aditya; Maheshwari, Sachin

    2017-08-01

    This paper highlights the method for prediction of dilution in submerged arc welding (SAW). The most important factors of weld bead geometry are governed by the weld dilution which controls the chemical and mechanical properties. Submerged arc welding process is used generally due to its very easy control of process variables, good penetration, high weld quality, and smooth finish. Machining parameters, with suitable weld quality can be achieved with the different composition of the flux in the weld. In the present study Si02-Al2O3-CaO flux system was used. In SiO2 based flux NiO, MnO, MgO were mixed in various proportions. The paper investigates the relationship between the process parameters like voltage, % of flux constituents and dilution with the help of Taguchi’s method. The experiments were designed according to Taguchi L9 orthogonal array, while varying the voltage at two different levels in addition to alloying elements. Then the optimal results conditions were verified by confirmatory experiments.

  7. Laser Submerged Arc Welding (LUPuS) with Solid State Lasers

    Science.gov (United States)

    Reisgen, Uwe; Olschok, Simon; Jakobs, Stefan

    The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The newly developed hybrid welding process allows the welding of plates with a thickness larger than 20 mm in a single pass and the welding of thicker plates with the double-sided single pass technique. In this special hybrid process, the use of CO2-lasers causes problems when forward sliding flux of slag meets the laser beam path and forms an uncontrollable plasma plume in the beam path. This plasma then shields the work piece from the laser power and thus provokes the collapse of the laser keyhole and leads to process instability. The substitution of the CO2-laser with a modern solid-state laser significantly improves the performance and the stability of the hybrid process. This contribution will demonstrate the latest results and improvements by means of welding results gained with steel plates with a thickness of up to 40mm.

  8. Characterisation of submerged arc welding process using infrared imaging technique

    CSIR Research Space (South Africa)

    Zondi, MC

    2017-09-01

    Full Text Available Infrared (IR) thermography is a technique used to measure temperature distribution of heat generation in manufacturing processes such as welding. IR thermography is a non-destructive and non-contact method, which makes it favoured for the arc...

  9. Thermal Behavior of an HSLA Steel and the Impact in Phase Transformation: Submerged Arc Welding (SAW) Process Approach to Pipelines

    Science.gov (United States)

    Costa, P. S.; Reyes-Valdés, F. A.; Saldaña-Garcés, R.; Delgado, E. R.; Salinas-Rodríguez, A.

    Heat input during welding metal fusion generates different transformations, such as grain growth, hydrogen cracking, and the formation of brittle structures, generally associated with the heat-affected zone (HAZ). For this reason, it is very important to know the behavior of this area before welding. This paper presents a study of the thermal behavior and its effect on phase transformations in the HAZ, depending on cooling rates (0.1-200 °C/s) to obtain continuous cooling transformation (CCT) curves for an high-strength low-alloy (HSLA) steel. In order to determine the formed phases, optical microscopy and Vickers microhardness measurement were used. The experimental CCT curve was obtained from an HSLA steel, and the results showed that, with the used cooling conditions, the steel did not provide formation of brittle structures. Therefore, it is unlikely that welds made by submerged arc welding (SAW) may lead to hydrogen embrittlement in the HAZ, which is one of the biggest problems of cracking in gas conduction pipelines. In addition, with these results, it will be possible to control the microstructure to optimize the pipe fabrication with SAW process in industrial plants.

  10. Development of Process Maps in Two-Wire Tandem Submerged Arc Welding Process of HSLA Steel

    Science.gov (United States)

    Kiran, D. V.; Alam, S. A.; De, A.

    2013-04-01

    Appropriate selection of welding conditions to guarantee requisite weld joint mechanical properties is ever difficult because of their complex interactions. An approach is presented here to identify suitable welding conditions in typical two-wire tandem submerged arc welding (SAW-T) that involves many welding variables. First, an objective function is defined, which depicts the squared error between the mechanical properties of weld joint and of base material. A set of artificial neural network (ANN)-based models are developed next to estimate the weld joint properties as function of welding conditions using experimentally measured results. The neural network model-based predictions are used next to create a set of process map contours that depict the minimum achievable values of the objective function and the corresponding welding conditions. In typical SAW-T of HSLA steel, welding speed from 9.0 to 11.5 mm/s, leading wire current from 530 to 580 A, and trailing wire negative current from 680 to 910 A are found to be the most optimal.

  11. The influence of plate thickness on the welding residual stresses from submerged arc welding in offshore steel structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2017-01-01

    to an improved design, which consequently may be included in future norms and standards. Submerged Arc Welding (SAW) was used to make a fully penetrated butt weld in 10 mm and 40 mm thick steel plates with the same welding parameters as used in the production procedures. The base material is thermomechanical hot......Welding-induced residual tensile stresses and distortion have become a major concern in relation to the structural integrity of welded structures within the offshore wind industry. The stresses have a negative impact on the integrity of the welded joint, as they promote distortion, reduce fatigue...... life, and attribute to the corrosion cracking and brittle fracture in the weld components. This study investigates the influence of plate thickness on the welding-induced residual stresses. The residual stresses are investigated through experiments and in accordance with existing production procedures...

  12. Numerical simulation of temperature field in multiple-wire submerged arc welding of X80 pipeline steel

    Science.gov (United States)

    Yan, Chunyan; Jiang, Han; Wu, Lichao; Kan, Chenxia; Yu, Wen

    2018-01-01

    Three dimensional (3D) finite element (FE) simulation was implemented to predict the temperature distribution during multiple-wire submerged arc welding (SAW) throughout the welded joint of X80 pipeline steel. A moving heat source model based on Goldak’s double-ellipsoid heat flux distribution was applied in the simulation to capture the heating effect of the welding arc. Effects of welding speed, wire spacing and leading wire current on temperature distribution were further investigated. The simulation results show that both welding speed and wire spacing have significant effects on welding temperature distribution in X80 pipeline steel welded joint.

  13. Joining of Materials with Diferent Properties Through Submerged Arc Welding Process and Destructive and Non-Destructive Testing of the Joints

    Directory of Open Access Journals (Sweden)

    Yakup Kaya

    2013-01-01

    Full Text Available In this study, X60, X65 and X70 steels used in petroleum and natural gas pipeline were joined with Submerged Arc Welding by using different type of welding fluxes (LN761 and P223 and wires (S1 and S2Mo. Initially, visual and radiographic inspection techniques were subjected to welded joints for determining surface and subsurface defects. After that, spectral analyses were carried out in order to determine the compositions of wire-flux-base metal on the joints. Impact toughness test were performed for determining toughness properties the joints. Furthermore, hardness and microstructure studies were also carried out on the samples. As a result of the visual and radiographic inspection on the welded samples, there were no weld defects on joints were observed. It was clearly understood that carbon ratio in the compositions of weld metal higher than base metal but lower than filler metal in terms of spectral analyses results. According to impact toughness test results, the joints obtained by using S2Mo welding wire and P223 welding flux had better impact toughness value than the joints obtained by S1 welding wire and LN 761 welding flux. With respect to hardness test, the highest hardness values were measured on weld metal. When the microstructure images were examined, it is clearly understood that similar images for all the joints were shown adjacent zones to weld metals heat affected zones and welding boundary, due to heat input constant.

  14. Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R. Venkata; Rai, Dhiraj P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)

    2017-05-15

    Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).

  15. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    Science.gov (United States)

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  16. Effects of flux composition on the element transfer and mechanical properties of weld metal in submerged arc welding

    Science.gov (United States)

    Bang, Kook-soo; Park, Chan; Jung, Hong-chul; Lee, Jong-bong

    2009-06-01

    Submerged arc welding was performed using metal-cored wires and fluxes with different compositions. The effects of wire/flux combination on the chemical composition, tensile strength, and impact toughness of the weld metal were investigated and interpreted in terms of element transfer between the slag and the weld metal, i.e., Δ quantity. Both carbon and manganese show negative Δ quantity in most combinations, indicating the transfer of the elements from the weld metal to the slag during welding. The amount of transfer, however, is different depending on the flux composition. More basic fluxes yield less negative Δ C and Δ Mn through the reduction of oxygen content in the weld metal and presumably higher Mn activity in the slag, respectively. The transfer of silicon, however, is influenced by Al2O3, TiO2 and ZrO2 contents in the flux. Δ Si becomes less negative and reaches a positive value of 0.044 as the oxides contents increase. This is because Al, Ti, and Zr could replace Si in the SiO2 network, leaving more Si free to transfer from the slag to the weld metal. Accordingly, the Pcm index of weld metals calculated from chemical compositions varies from 0.153 to 0.196 depending on the wire/flux combination, and it almost has a linear relationship with the tensile strength of the weld metal.

  17. Effect of Flux Composition on the Percentage Elongation and Tensile Strength of Welds in Submerged Arc Welding

    Directory of Open Access Journals (Sweden)

    Singh Brijpal

    2016-09-01

    Full Text Available This experimental study reveals the effects of CaF2, FeMn and NiO additions to the base fluxes on tensile strength and percentage elongation of the weld metal. The aim of this study is to develop suitable flux for mild steel for high tensile strength, impact strength and ductility. Bead on plate welds were made using submerged arc welding process. Mathematical model for percentage elongation and UTS of mild steel welds were made. The elements transfer to the welds have been correlated with the above mechanical performance characteristics. The effect of oxygen content on weld elongation and UTS also has been deduced. This study shows that CaF2 and NiO are the significant factors for tensile strength while FeMn is not significant for tensile strength. However, for elongation besides CaF2, the interaction of CaF2 and FeMn was also found significant. The effects of basicity index of the flux and carbon equivalent of the welds on tensile strength and percentage elongation of the welds have also been evaluated.

  18. Submerged-arc welding slags: characterization and leaching strategies for the removal of aluminum and titanium.

    Science.gov (United States)

    Annoni, Raquel; Souza, Poliana Santos; Petrániková, Martina; Miskufova, Andrea; Havlík, Tomáš; Mansur, Marcelo Borges

    2013-01-15

    In the present study, submerged-arc welding slags were characterized by applying a variety of methods, including X-ray fluorescence, X-ray diffraction, particle size, Raman spectroscopy, and scanning electron microscope with energy dispersive X-ray analysis. The content of Al proved to be quite similar within neutral and acid slags (10-14%), while that of Ti proved to be much higher in acid slags (approximately 10%) than in neutral slags (<1%). The presence of spinel structures associated with Al species could also be identified in the analyzed samples. This characterization study was accompanied by leaching tests performed under changing operating conditions in an attempt to evaluate to what extent the Al and Ti bearing components could be removed from the slags. The leaching work involved three distinct strategies: (i) NaOH leaching followed by H(2)SO(4) leaching, (ii) acid leaching (HCl and H(2)SO(4)) using oxidizing/reducing agents, and (iii) slag calcination followed by H(2)SO(4) leaching. In the best result, 80% of Al was extracted in one single leaching stage after calcination of the acid slag with NaCl+C at 900 °C. By contrast, the removal of Ti proved to be unsatisfactory. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Optimization of Welding Parameters of Submerged Arc Welding Using Analytic Hierarchy Process (AHP) Based on Taguchi Technique

    Science.gov (United States)

    Sarkar, A.; Roy, J.; Majumder, A.; Saha, S. C.

    2014-04-01

    The present paper reports a new procedure using an analytic hierarchy process (AHP) based Taguchi method for the selection of the best welding parameters to fabricate submerged arc welding of plain carbon steel. Selection of best welding parameters is an unstructured decision problem involving process parameters for multiple weldments. In the present investigation, three process parameter variables i.e. wire feed rate (Wf), stick out (So) and traverse speed (Ts) and the three response parameters i.e. penetration, bead width and bead reinforcement have been considered. The objective of the present work is thus to improve the quality of the welded elements by using AHP analysis based Taguchi method. Taguchi L16 orthogonal array is used to perform with less number of experimental runs. Taguchi approach is insufficient to solve a multi response optimization problem. In order to overcome this limitation, a multi criteria decision making method, AHP is applied in the present study. The optimal condition to have a quality weld (i.e. bead geometry) is found at 210 mm/min of wire feed rate, 15 mm of stick out and 0.75 m/min of traverse speed and also observed that the effect of wire feed rate on the overall bead geometry properties is more significant than other welding parameters. Finally, a confirmatory test has been carried out to verify the optimal setting so obtained.

  20. Control of Softening Processes in the Heat-Affected Zone During Welding of High-Strength Steels

    Science.gov (United States)

    Efimenko, L. A.; Kapustin, O. E.; Ramus', A. A.; Ramus', R. O.

    2016-11-01

    The hardness and the structure of the heat-affected zone (HAZ) under welding of tube steels of strength category K60 - K70 are studied. The steels are treated by regimes imitating the thermal cycles of different welding processes applied to tubes starting with manual arc welding and ending with energy-intensive automatic submerged-arc welding. The welding modes causing maximum decrease in the hardness of HAZ regions are determined. The conditions preventing softening under one-pass and multipass welding of high-strength steels are presented.

  1. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  2. Experimental Investigation for Multi-Response Optimization of Bead Geometry in Submerged Arc Welding using Grey Analysis

    Science.gov (United States)

    Bhattacharya, A.; Batish, A.; Kumar, P.

    2012-06-01

    The present study was aimed at studying the effect of type and composition of flux, welding current, arc voltage, and travel speed on depth of penetration, bead height and bead width (bead geometry responses) and to optimize the process considering multi-response criteria in a submerged arc welding process. Using the grey relational analysis technique three responses were combined into a single grey relational grade and was analyzed using Analysis of Variance. Since the three responses had conflicting requirements, optimization of the complicated multiple performance characteristics was greatly simplified through this approach. The emperical relationship between the multi-response grey relational grade and the input parameters was developed using regression analysis which was used to predict the value of the grey relational grade using the optimal parameter levels.

  3. Development of API 5L X80 pipes by UOE process, using SAW (Submerged Arc Welding) welding; Desenvolvimento de tubos API 5L X80 pelo processo UOE, utilizando soldagem SAW (Submerged Arc Welding)

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sergio S.; Roza, Juliana E. [Tenaris Confab, Pindamonhangaba, SP (Brazil)

    2004-07-01

    High strength API X80 grade pipe constitute a new class of product manufactured either by the TMCP or TMCR process, which aim to obtain high values of yield strength, tensile strength and good toughness required by line pipe specifications, which are becoming more rigorous everyday. High strength steels have many advantages, due to low overall project costs associated principally with reduced wall thickness causing low transport and pipe installation costs. X80 material can be used in Onshore and Offshore constructions. This paper deals with X80 material produced by TMCR and welded by the longitudinal SAW process (submerged arc welding) by TENARIS CONFAB. The material was characterized by conducting tensile and Charpy impact tests, hardness measurements and metallographic analysis. The mechanical properties and microstructural features of the material are discussed and the advantages of using X80 grade steels in offshore projects are highlighted. The results obtained were found to be in accordance with the requirements of API 5L Standard (2000), 42nd edition. (author)

  4. Numerical analysis on temperature field in single-wire flux-aided backing-submerged arc welding

    Science.gov (United States)

    Pu, Juan; Wu, Ming Fang; Pan, Haichao

    2017-07-01

    Single-wire flux-aided backing-submerged arc welding (FAB-SAW) technology has been widely used to weld thick steel plate due to its easy assembly and high heat input. The microstructure and property of welded joint are closely related to the thermal field of FAB-SAW process. In this research, the feature of thermal field for single-wire FAB-SAW was investigated. Based on the heat transfer mechanism, a three-dimensional transient model for thermal field was developed based on the influence of steel thickness, groove angle and ceramic backing. The temperature profile in single-wire FAB-SAW of D36 steel under different welding conditions was simulated by ANSYS. The characteristic of thermal field was analyzed and the influences of groove angle on temperature field for different plate thicknesses were discussed. The calculated geometries and dimensions of weld cross-section under different conditions show a good agreement with the experimental results. This newly built model can describe the thermal field accurately, which would be helpful to understanding the thermophysical mechanism of FAB-SAW and optimizing the welding process.

  5. Environmental cracking behavior of submerged arc-welded supermartensitic stainless steel weldments

    Science.gov (United States)

    Srinivasan, P. Bala; Sharkawy, S. W.; Dietzel, W.

    2004-04-01

    Supermartensitic stainless steel welds produced by submerged are welding were assessed for their microstructure and properties. Slow strain rate tests conducted on these specimens revealed that both the parent material and the weld metals are susceptible to cracking under conditions of hydrogen (H) charging.

  6. STUDY OF THE INFLUENCE OF THE HEAT INPUT ON MECHANICAL PROPERTIES OF C-Mn STEEL WELD METALS OBTAINED BY SUBMERGED ARC PROCESS

    Directory of Open Access Journals (Sweden)

    Erick de Sousa Marouço

    2013-06-01

    Full Text Available The present work is part of a research program that aims to evaluate the technical feasibility of increasing productivity in the manufacturing of tubular components for offshore oil industry, which are fully welded by automatic submerged arc welding process, with high heat input, but with no impairment on the impact toughness of the weld metal. Multipass welds were produced by the submerged arc welding process, with a combination of F7A4-EM12K (wire/flux, by using a 3.2 mm-diameter wire, preheating at 80°C, with direct current, in flat position, with heat input varying from 3.5 kJ/mm to 12 kJ/mm. After welding, tensile tests and Charpy-V impact tests at –60°C, –40°C, –20°C, 0°C and 20°C were carried out, as well as metallographic examination by both optical (OM and scanning electron microscopy (SEM, of specimens obtained entirely from the weld metal, allowing the discussion over the toughness X microstructure relationship. The weld metals have shown higher toughness levels in relation to the minimum required for use with low-alloy C-Mn steels welding with requirements of impact toughness of 27 J at 0°C for heat input up to 12 kJ/mm allowing an increase in productivity of 58% on the effective manufacturing time.

  7. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  8. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    OpenAIRE

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen; Guerrero-Mata, Martha Patricia

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature fail...

  9. A Study on the Application of Submerged Arc Welding for Thin Plate of A-Grade 3.2 Thickness Steel in Ship Structure

    Science.gov (United States)

    Lee, Jeong-Soo; Yun, Jin-Oh; Lim, Dong-Yong; Jang, Yong-Won; Kim, Bong-Joon; Oh, Chong-In

    2010-06-01

    This paper is focused on application submerged arc welding process, which offers many advantages compared to conventional CO2 welding process, for thin plate in ship structure. For this purpose, optimized welding conditions are determined according to combination of wire & flux, relationship between welding parameters, bead shapes and mechanical tests such as tensile, bend and hardness. Also finite element(FE) based numerical simulation of thermal history and welding residual stress in welded joint of A-grade 3.2 thickness steel has been checked to qualitative tendency in this paper. In conclusion our company applied to this method in work piece and it was no problem. From the result of this study, it makes substantial saving of time and manufacturing cost and raises the welding quality of product.

  10. The application of imperialist competitive algorithm for optimization of deposition rate in submerged arc welding process using TiO{sub 2} nano particle

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, Mohammad Reza; Eslampanah, Amirhossein; Ghaderi, Kianoosh [Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Aghakhani, Masood [Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-01-15

    We used a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the deposition rate in the submerged arc welding (SAW) process. This algorithm offers some advantages such as simplicity, accuracy and time saving. Experiments were conducted based on a five factor, five level rotatable central composite design (RCCD) to collect welding data for deposition rate as a function of welding current, arc voltage, contact tip to plate distance, welding speed and thickness of TiO{sub 2} nanoparticles coated on the plates of mild steel. Furthermore, regression equation for deposition rate was obtained using least squares method. The regression equation as the cost function was optimized using ICA. Ultimately, the levels of input variables to achieve maximum deposition rate were obtained using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the cost function.

  11. Irradiation behavior of a submerged arc welding material with different copper content; Bestrahlungsverhalten einer UP-Versuchsschweissnaht mit unterschiedlichen Kupfergehalten

    Energy Technology Data Exchange (ETDEWEB)

    Langer, R. [Siemens AG Energieerzeugung KWU, Erlangen (Germany); Bartsch, R. [Kernkraftwerk Obrigheim GmbH (Germany)

    1998-11-01

    Che report presents results of an irradiation program on specimens of submerged arc weldings with copper contents of 0.14% up to 0.42% and a fluence up to 2.2E19 cm{sup -2} (E>1MeV). Unirradiated and irradiated tensile- Charpy-, K{sub lc}- and Pellini-specimens were tested of material with a copper content of 0.22%. On the other materials Charpy tests and tensile tests were performed. The irradiation of the specimens took place in the KWO - ``RPV, a PWR with low flux and in the VAK - RPV, a small BWR with high flux. - The irradiation induced embrittlemnt shows a copper dependence up to about 30%. The specimens with a copper content higher than 0.30% show no further embrittlement. Irradiation in different reactors with different flux (factor > 33) shows the same state of embrittlement. Determination of a K{sub lc}, T-curve with irradiated specimens is possible. The conservative of the RT{sub NDT} - concept could be confirmed by the results of Charpy-V, drop weight- and K{sub lc}-test results. [Deutsch] Zur zusaetzlichen Absicherung des KWO-RDB wurde Ende 1979 eine UP-Versuchsschweissnaht mit vergleichbarer chemischer Zusammensetzung und vergleibaren mechanisch-technologischen Werkstoffen im unbestrahlten Ausgangszustand wie die RDB Core-Rundnaht hergestellt. Teile der Naht wurden durch Verkupfern der Schweissdraehte auf unterschiedliche Gehalte von Cu=0,14% bis 0,42% eingestellt. Aus dieser Schweissverbindung wurden Proben im VAK und KWO-RDB bestrahlt. Im Rahmen der Aktivitaeten zur Absicherung des KWO-RDBs erfolgte 1995 die Pruefung der bestrahlten Proben. Die mechanisch technologischen Werkstoffwerte vor und nach Bestrahlung werden gegenuebergestellt und praesentiert. Mit dem Ergebnis wurde ein weiterer Nachweis fuer die Konservativitaet des RT{sub NDT}-Konzeptes erbracht. Es wurde nachgewiesen, dass fuer den untersuchten Bereich kein Dose-Rate Effekt bzw. Bestrahlungszeiteinfluss existiert. Fuer UP-Schweissungen mit den vorliegenden Fertigungsparametern und bei

  12. Pengaruh Perubahan Arus dan Kecepatan serta Kelembapan Flux Terhadap Hasil Impact dan Kekerasan serta Macrostructure Fillet Weld Hasil Pengelasan Submerged Arc Welding (SAW

    Directory of Open Access Journals (Sweden)

    Famessa Fitria Lestari

    2014-03-01

    Full Text Available Submerged Arc Welding (SAW adalah salah satu jenis pengelasan busur listrik elektroda terumpan (consumable electrode yang prosesnya berlangsung dalam rendaman flux. Hasil pengelasan menggunakan SAW yang baik akan didapatkan jika dilakukan pemilihan parameter arus dan kecepatan serta kelembapan flux yang tepat selama proses pengelasan. Pengelasan dilakukan dengan mesin SAW tipe S6TF F2 yang diproduksi oleh ESAB dengan posisi 1F sebanyak dua layer. Percobaan pertama, dilakukan dengan memvariasikan parameter arus dan kecepatan untuk menghasilkan heat input yang sama sedangkan potensial dibuat sama. Percobaan kedua, dilakukan dengan memvariasikan kecepatan sedangkan parameter lain dibuat konstan sehingga menghasilkan heat input yang berbeda. Sedangkan untuk percobaan ketiga, dilakukan dengan memvariasikan kelembapan. Dari pengujian didapatkan bahwa dengan memvariasikan arus dan kecepatan untuk mendapatkan heat input yang sama menghasilkan dimensi HAZ yang berbeda. Dengan menggunakan flux yang lembap, maka akan terbentuk cacat berupa porositas. Hasil uji impact didapat  impact stregth tertinggi pengelasan terdapat pada kecepatan 33 cm/min, arus 350 A dan kelembapan flux 0 %. Nilai kekerasan di daerah weld metal dan HAZ untuk seluruh specimen menunjukkan tipikal yang sama kecuali pada spesimen F2.

  13. Modeling and Analysis of the Weld Bead Geometry in Submerged Arc Welding by Using Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Nuri Akkas

    2013-01-01

    Full Text Available This study is aimed at obtaining a relationship between the values defining bead geometry and the welding parameters and also to select optimum welding parameters. For this reason, an experimental study has been realized. The welding parameters such as the arc current, arc voltage, and welding speed which have the most effect on bead geometry are considered, and the other parameters are held as constant. Four, three, and five different values for the arc current, the arc voltage, and welding speed are used, respectively. So, sixty samples made of St 52-3 material were prepared. The bead geometries of the samples are analyzed, and the thickness and penetration values of the weld bead are measured. Then, the relationship between the welding parameters is modeled by using artificial neural network (ANN and neurofuzzy system approach. Each model is checked for its adequacy by using test data which are selected from experimental results. Then, the models developed are compared with regard to accuracy. Also, the appropriate welding parameters values can be easily selected when the models improve.

  14. Investigation of the Effects of Submerged Arc Welding Process Parameters on the Mechanical Properties of Pressure Vessel Steel ASTM A283 Grade A

    Directory of Open Access Journals (Sweden)

    Prachya Peasura

    2017-01-01

    Full Text Available The pressure vessel steel is used in boilers and pressure vessel structure applications. This research studied the effects of submerged arc welding (SAW process parameters on the mechanical properties of this steel. The weld sample originated from ASTM A283 grade A sheet of 6.00-millimeter thickness. The welding sample was treated using SAW with the variation of three process factors. For the first factor, welding currents of 260, 270, and 280 amperes were investigated. The second factor assessed the travel speed, which was tested at both 10 and 11 millimeters/second. The third factor examined the voltage parameter, which was varied between 28 and 33 volts. Each welding condition was conducted randomly, and each condition was tested a total of three times, using full factorial design. The resulting materials were examined using tensile strength and hardness tests and were observed with optical microscopy (OM and scanning electron microscopy (SEM. The results showed that the welding current, voltage, and travel speed significantly affected the tensile strength and hardness (P value < 0.05. The optimum SAW parameters were 270 amperes, 33 volts, and 10 millimeters/second travel speed. High density and fine pearlite were discovered and resulted in increased material tensile strength and hardness.

  15. Effect of B2O3 containing fluxes on the microstructure and mechanical properties in submerged arc welded mild steel plates

    Science.gov (United States)

    Gupta, P.; Roy, J.; Rai, R. N.; Prasada Rao, A. K.; Saha, S. C.

    2016-02-01

    This paper represents a study on the effect of B2O3 additions in fluxes on the microstructure and mechanical properties of the weld metal formed during Submerged Arc Welding of Mild Steel plates. Five fluxes with about 2.5, 5, 7.5, 10 and 12.5% B2O3 were used with a low carbon electrode. Welding process parameters were kept constant for all the conditions. The microstructure of weld metal for each flux consisted mainly of acicular ferrite, polygonal ferrite, grain boundary ferrites and equiaxed pearlite. It was noted that the Vicker's hardness value was a function of boron content and shows a mixed trend. Impact Energy and Tensile Strength were increased with the increase in boron content in welds this can be attributed to relation with the higher acicular ferrite percentage. However an optimum level of toughness and tensile strength was available with 7.5% and 5% of B2O3 respectively. A qualitative comparison has also be done with fresh flux by means of full metallography and mechanically.

  16. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI Series 5. Volume 1, Main report and Appendices A, B, C, and D

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O. [Oak Ridge National Lab., TN (United States); Menke, B.H. [Materials Engineering Associates, Inc., Lanham, MD (United States)

    1992-10-01

    The Fifth Irradiation Series in the Heavy-Section Steel Irradiation Program obtained a statistically significant fracture toughness data base on two high-copper (0.23 and 0.31 wt %) submerged-arc welds to determine the shift and shape of the K{sub Ic} curve as a consequence of irradiation. Compact specimens with thicknesses to 101.6 mm (4 in) in the irradiated condition and 203.2 mm (8 in) in the unirradiated condition were tested, in addition to Charpy impact, tensile, and drop-weight specimens. Irradiations were conducted at a nominal temperature of 288{degree}C and an average fluence of 1.5 {times} 10{sup 19} neutrons/cm{sup 2} (>l MeV). The Charpy 41-J temperature shifts are about the same as the corresponding drop-weight NDT temperature shifts. The irradiated welds exhibited substantial numbers of cleavage pop-ins. Mean curve fits using two-parameter (with fixed intercept) nonlinear and linearized exponential regression analysis revealed that the fracture toughness 100 MPa{lg_bullet}{radical}m shifts exceeded the Charpy 41-J shifts for both welds. Analyses of curve shape changes indicated decreases in the slopes of the fracture toughness curves, especially for the higher copper weld. Weibull analyses were performed to investigate development of lower bound curves to the data, including the use of a variable K{sub min} parameter which affects the curve shape.

  17. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    Science.gov (United States)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  18. Predicting the combined effect of TiO{sub 2} nano-particles and welding input parameters on the hardness of melted zone in submerged arc welding by fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Aghakhani, Masood; Ghaderi, Mohammad Reza; Jalilian, Maziar Mahdipour; Derakhshan, Ali Ashraf [Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-07-15

    Submerged arc welding (SAW) is a high-quality arc welding process used in heavy industries for welding thick plates. In this process, selecting appropriate values for the input parameters is required for high productivity and cost effectiveness. A very important weld quality characteristic affected by welding input parameters is the hardness of melted zone (HMZ). This paper reports the applicability of fuzzy logic (FL) to predict HMZ in the SAW process which is affected by the combined effect of TiO{sub 2} nano-particles and welding input parameters. The arc voltage, welding current, welding speed, contact tip-to-plate distance, and TiO{sub 2} nano-particles were used as input parameters and HMZ as the response to develop FL model. A five-level five-factor central composite rotatable design (CCRD) was used in the experiments to generate experimental data. Experiments were performed, and HMZs were measured. The predicted results from FL were compared with the experimental data. The correlation factor value obtained was 99.99% between the measured and predicted values of HMZ. The results showed that FL is an accurate and reliable technique for predicting HMZ because of its low error rate.

  19. Effect of heat input on dilution and heat affected zone in submerged ...

    Indian Academy of Sciences (India)

    Submerged arc welding (SAW) is a fusion joining process, known for its high deposition capabilities. This process is useful in joining thick section components used in various industries. Besides joining, SAW can also be used for surfacing applications. Heat Affected Zone (HAZ) produced within the base metal as a result of ...

  20. Effect of heat input on dilution and heat affected zone in submerged ...

    Indian Academy of Sciences (India)

    Effect of heat input on dilution and heat affected zone in submerged arc welding process. HARI OM1,∗ and SUNIL PANDEY2. 1Department of Mechanical Engineering, YMCA University of Science and. Technology, Sector 06, Faridabad 121 006, India. 2Department of Mechanical Engineering, Indian Institute of Technology ...

  1. Influence of the welding parameters on the heat affected zone for aluminium welding

    Directory of Open Access Journals (Sweden)

    Meseguer-Valdenebro José L.

    2016-01-01

    Full Text Available This work analyzes the Heat Affected Zone in an aluminum alloy welded assembly using the Metal Inert Gas welding technique. Making use of numerical simulations of the involved thermal processes, the aluminum alloy cooling curve is calculated and the extension of the Heat Affected Zone is evaluated. The connection between this last parameter, the cooling rate, and the maximum obtained temperature is assessed. Additionally, the response surface method is exploited to fit the dependence of the Heat Affected Zone with the welding parameters and to optimize these parameters in order to minimize that region.

  2. Static and dynamic fracture toughness of 25mm thick single edge notch bend (SENB) specimen of C-Mn pressure vessel submerged arc weld metal and flaw assessment under dynamic loading

    Science.gov (United States)

    Xu, W.; Wiesner, C. S.

    2003-09-01

    Although there are well established procedures for assessing the significance of defects in welded structures in a number of countries, such as BS7910 and R6 procedures in the UK, the Japanese WES 2807 procedure, the API and MPC procedures in the USA and the recently completed SINT AP procedure resulting from European collaboration, there are no clear guidelines for assessment of the effects of dynamic loading. In principle, the standard procedure can be applied for any rate of loading but there is little or no experience of how to allow for the effects of dynamic loading on load magnitude and material properties. Submerge arc weldments of 100mm thick have been manufactured. The effect of loading rate was investigated by testing 25mm thick SENB specimens. The fracture toughness of the weld metal exhibited marked loading rate sensitivity; shift in fracture toughness transition temperature for high loading rate tests of up to 115^{circ}C for 25mm specimens. Finite element (FE) analyses have been carried out to obtain plastic collapse load solutions for SENB fracture mechanics test piece. A simple equation for estimate of dynamic plastic yielding load has been suggested. Flaw assessment under dynamic loading has been demonstrated using the results of dynamic fracture toughness and plastic yiending load. The general methods of assessment of the significance of defects in BS7910 is shown to be applicable to assessments under dynamic loading up to impact.

  3. Experimental modeling of weld thermal cycle of the heat affected zone (HAZ

    Directory of Open Access Journals (Sweden)

    J. Kulhánek

    2016-10-01

    Full Text Available Contribution deals with experimental modeling of quick thermal cycles of metal specimens. In the introduction of contribution will be presented measured graphs of thermal cycle of heat affected zone (HAZ of weld. Next will be presented experimental simulation of measured thermal cycle on the standard specimens, useable for material testing. This approach makes possible to create material structures of heat affected zone of weld, big enough for standard material testing.

  4. Estudo microestrutural de aço carbono soldado com o processo arco submerso e adições de Fe-Ti Microstructural study of carbon steel welded with the submerged arc process and additions of Fe-Ti

    Directory of Open Access Journals (Sweden)

    Aleir Fontana de Paris

    2012-03-01

    Full Text Available Os cordões de solda apresentam normalmente uma estrutura colunar grosseira, o que diminui as propriedades mecânicas do conjunto soldado. No caso da soldagem com arco submerso, o emprego de alta energia proporciona uma solda com características peculiares como a elevada taxa de fusão e consequentemente grande volume de metal fundido. Foi comprovado que a redução no tamanho e/ou modificações na forma dos cristais obtidos aumenta a tenacidade da junta soldada. Estudos realizados mostraram que a adição de titânio, até certo limite, modificaria a microestrutura obtida bem como o tamanho dos grãos solidificados. Neste trabalho, foi empregada uma liga metálica de Fe-Ti adicionada no momento de soldagem, tipo bead-on-plate, sobre aço estrutural ASTM A 36, com espessura de 10 mm. As adições de titânio variaram entre 0,48 ppm e 29,1 ppm, e a soldagem foi executada com uma energia de 1170 kJ/m. Os resultados mostraram modificações da fase ferrita acicular bem como da ferrita poligonal presentes na solda.The welds usually have a coarse columnar structure, which reduces the mechanical properties of welded assembly. In the case of submerged arc welding, the use of high-energy provides a weld with specific characteristics such as high melting rate and consequently a large volume of molten metal. It was established that the reduction in size and/or changes in the shape of the crystals obtained increases the toughness of the weld. Studies have shown that the addition of titanium to a certain limit, modify the microstructure obtained and the size of the grains solidified. In this study, we used an alloy of Fe-Ti added at the time of welding-type bead-on-plate on structural steel ASTM A 36 with a thickness of 10 mm. The additions of titanium ranged between 0.48 ppm and 29.1 ppm, and welding was performed with an energy of 1170 kJ/m The results showed changes in the phase acicular ferrite and polygonal ferrite present in the weld.

  5. ANALISA ELECTRODE CONSUMABLE TYPE OK AUTROD 12.10 DENGAN PENGELASAN SUBMERGED ARC WELDING (SAW PADA BLOCK KAPAL DCV 18500 DWT DI PT. JASA MARINA INDAH SEMARANG

    Directory of Open Access Journals (Sweden)

    Kiryanto Kiryanto

    2012-02-01

    Full Text Available In this of globalization is growing very rapidly advancing technology. As well as in shipyard industry is toshipbuilding process. Submerged Arch Welding (SAW is as joint methode of ship construction. Purpose ofresearch know number of electrodes wich requirement on block welding the ship DCV 18500 DWT in JasaMarina Indah Shipyard Semarang.The specimen experiment used is ST 42 low carbon steel. Variation of plates tickness is 12, 13, 14, 17, 19 and24 mm. Research step is carried out by making the specimen with variation thickness respectively. Specimendimensions length x width is 500 mm x 50 mm. The number of each specimen was made of three pieces. Thendo the measurement welding length, length and weight electrodes and slag welding.The analysis result of data welding on the specimen can be known number of electrode s and fluxs inSubmerged Arch Welding (SAW. The aplication of this research is the block DB 5(p/c/s, SS5A(p/s, SS5B(p/s, UD 5C, and TB 102 (p/c/s. Weight of consumable electrodes is 2185.31 kg (73 roll and number offlux used wight is 2967.95 kg (119 bag.

  6. Analysis of Heat Affected Zone in Welded Aluminum Alloys Using Inverse and Direct Modeling

    Science.gov (United States)

    Zervaki, A. D.; Haidemenopoulos, G. N.; Lambrakos, S. G.

    2008-06-01

    The concept of constructing parameter spaces for process control and the prediction of properties within the heat affected zone (HAZ) of welds using inverse modeling is examined. These parameter spaces can be, in principle, either independent or a function of weld process conditions. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories using inverse heat transfer analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with either a specific process control parameter or physical property of the weld that is measurable. Two quantitative case study analyses based on inverse modeling are presented. One analysis examines the calculation of temperature histories as a function of process control parameters. For this case, the specific process control parameter adopted as prototypical is the electron beam focal point. Another analysis compares some general characteristics of inverse and direct modeling with respect to the prediction of properties of the HAZ for deep penetration welding of aluminum alloys. For this case, the specific property adopted as prototypical is hardness. This study provides a foundation for an examination of the feasibility of constructing a parameter space for the prediction of weld properties using weld cross-section measurements that are independent of weld process conditions.

  7. Microstructural investigation of the heat-affected zone of simulated welded joint of P91 steel

    Directory of Open Access Journals (Sweden)

    T. Vuherer

    2013-07-01

    Full Text Available In the process of testing real components exposed to elevated temperature, it is not possible to neglect cracks. The most significant cracks can be induced by welding, which is applied for joining of structural components. Pressure equipment in service is also exposed to high pressure and high stresses. Materials for their manufacturing are designed to resist high stress at elevated temperature, and to meet requirements regarding creep resistance. The objective of this study is to investigate microstructure of different regions of the heat affected zone in T/P91 steels by using thermal simulation instead of welding.

  8. FE analysis of cruciform welded joints considering different mechanical properties for base material, heat affected zone and weld metal

    Directory of Open Access Journals (Sweden)

    Pasqualino Corigliano

    2014-10-01

    Full Text Available The aim of this scientific work was to investigate the behaviour of cruciform welded joints under static loading using a full-field technique: Digital Image Correlation. The material curves, relative to different zones (base material, heat affected zone, weld, were obtained by hardness measurements, which were done by means of a fully automated hardness scanner with high resolution. This innovative technique, based on the UCI method, allowed to identify the different zones and to assess their different mechanical properties, which were considered in the finite element model. Finally the finite element model was validated experimentally, comparing the results with the measurements obtained using the Digital Image Correlation technique.

  9. Survey of welding processes.

    Science.gov (United States)

    2003-07-01

    The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....

  10. The influence of manual metal arc multiple repair welding of long operated waterwall on the structure and hardness of the heat affected zone of welded joints

    Directory of Open Access Journals (Sweden)

    Pikuła J.

    2017-03-01

    Full Text Available Welded installations failures of power plants, which are often result from a high degree of wear, requires suitable repairs. In the case of cracks formed in the weld bead of waterwall, weld bead is removed and new welded joint is prepared. However, it is associated with consecutive thermal cycles, which affect properties of heat affected zone of welded joint. This study presents the influence of multiple manual metal arc welding associated with repair activities of long operated waterwall of boiler steel on properties of repair welded joints. The work contains the results of macro and microscopic metallographic examination as well as the results of hardness measurements.

  11. Analysis of thermal cycles and microstructure of heat affected zone for a low alloy carbon steel pipe under multipass weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woan; Ha, Joon Wook; Kim, Dong Jin; Kim, Jeong Tae [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of)

    2002-03-01

    The purpose of this study is to analyze thermal cycles and to investigate microstructures of heat affected zones for a low alloy carbon steel pipe under a multipass weld. The commercial finite element code SYSWELD is used to compute thermal cycles during multipass weld. The numerical results such as thermal cycles and size of heat affected zone are compared with those of the experiment and the two results show a good agreement. In addition, the microstructure and hardness and investigated from the weldment in detail. The weakest location is founded at intercritical region near the base metal.

  12. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    OpenAIRE

    B. Vargas-Arista; J. Teran-Guillen; Solis, J.; García-Cerecero,G.; Martínez-Madrid,M.

    2013-01-01

    The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ) of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughne...

  13. Identification of plasticity model parameters of the heat-affected zone in resistance spot welded martensitic boron steel

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Meinders, Vincent T.; van den Boogaard, Antonius H.; Merklein, M.

    2014-01-01

    A material model is developed that predicts the plastic behavior of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which

  14. Identification of plasticity model parameters of the heat-affected zone in resistance spot welded martensitic boron steel

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Meinders, Vincent T.; van den Boogaard, Antonius H.; Duflou, J.; Leacock, A.; Micari, F.; Hagenah, H.

    2015-01-01

    A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which

  15. The softened heat-affected zone in resistance spot welded tailor hardened boron steel: a material model for crash simulation

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Geijselaers, Hubertus J.M.; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2016-01-01

    A hardness-based model for tailor hardened boron steel is presented that takes into account the softened heat-affected zone of resistance spot welds. The computational model is designed for crashworthiness simulation of fully and partially hardened components obtained by tailored tooling. Five

  16. Analytical model for the extent of the heat-affected zone occurring during overlap laser welding of dissimilar materials

    Science.gov (United States)

    Jarwitz, M.; Weber, R.; Graf, T.

    2017-10-01

    An analytical model to predict the extent of the heat-affected zone in laser-welded dissimilar materials with strongly differing thermal properties is presented. The model applies to the joining of two materials, where the heat-affected zone occurs in the joining partner with low thermal responsivity. Heat is supplied to the joining partner with high thermal responsivity and heat conduction is the only mechanism of heat transfer. The model is applied to the laser welding of solid nickel sheets to sheets of nickel foam. With a deviation of less than 1.5%, the extent of the heat-affected zone predicted by the model is in excellent agreement with the ones determined experimentally.

  17. An Investigation of TIG welding parameters on microhardness and microstructure of heat affected zone of HSLA steel

    Science.gov (United States)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2018-01-01

    Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.

  18. effect of post-weld heat treatment on the microstructure

    African Journals Online (AJOL)

    user

    among others are shielded metal arc welding, submerge arc welding, gas metal arc welding, plasma arc welding, gas ... welding (SMAW) technique is preferable to the other techniques ..... studies''International Journal of Innovative Research.

  19. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    Science.gov (United States)

    2016-10-12

    Parametric Envelopes for Stable Keyhole Plasma Arc Welding of a Titanium Alloy,” Journal of Strain Analysis for Engineering Design, 47(5), pp. 266- 275, 2012...welding, is simulation of the coupling of the heat source, which involves melting, fluid flow in the weld meltpool and heat transfer from the...generation of the solidification boundary, the surface from which heat is transferred into the HAZ, which is the region of most probable weld

  20. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    Science.gov (United States)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  1. New Tendencies in Development of Carbonaceous Additives for Welding Fluxes

    Science.gov (United States)

    Kozyrev, N. A.; Kryukov, R. E.; Kozyreva, O. A.

    2015-09-01

    The paper provides results of comparative analysis of the effect of carbonaceous components introduced into welding fluxes on molten metal - slag interaction. Thermodynamical calculations of dehydrogenization are presented for submerged arc welding. A positive influence of carbonaceous additives on gas content and mechanical properties of welds is demonstrated. Carbon and fluorine containing additives are emphasized to be promising for automatic submerged arc welding.

  2. Mechanical Characteristics of Submerged Arc Weldment in API Gas Pipeline Steel of Grade X65

    Science.gov (United States)

    Hashemi, S. H.; Mohammadyani, D.

    2011-01-01

    The mechanical properties of submerged arc weldment (SAW) in gas transportation pipeline steel of grade API X65 (65 ksi yield strength) were investigated. This steel is produced by thermo mechanical control rolled (TMC), and is largely used in Iran gas piping systems and networks. The results from laboratory study on three different regions; i.e. base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) were used to compare weldment mechanical characteristics with those specified by API 5L (revision 2004) standard code. Different laboratory experiments were conducted on test specimens taken from 48 inch outside diameter and 14.3 mm wall thickness gas pipeline. The test results showed a gradient of microstructure and Vickers hardness data from the centerline of FZ towards the unaffected MB. Similarly, lower Charpy absorbed energy (compared to BM) was observed in the FZ impact specimens. Despite this, the API specifications were fulfilled in three tested zones, ensuring pipeline structural integrity under working conditions.

  3. An experimental method for investigating phase transformations in the heat affected zone of welds using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J.W.; Wong, J.; Froba, M.; Waide, P.A.; Larson, E.M.

    1995-05-26

    Although welding is an established technology used in many industrial settings, it is least understand terms of the phases that actually exist, the variation of their spatial disposition with time, and the rate of transformation from one phase to another at various thermal coordinates in the vicinity of the weld. With the availability of high flux and, more recently, high brightness synchrotron x-radiation sources, a number of diffraction and spectroscopic methods have been developed for structural characterization with improved spatial and temporal resolutions to enable in-situ measurements of phases under extreme temperature, pressure and other processing conditions not readily accessible with conventional sources. This paper describes the application of spatially resolved x-ray diffraction (SRXRD) for in-situ investigations of phase transformations in the heat affected zone (HAZ) of fusion welds. Results are presented for gas tungsten (GTA) welds in commercially pure titanium that show the existence of the high temperature bcc {beta}-phase in a 3.3 {plus_minus} 0.3 mm wide HA band adjacent to the liquid weld pool. Phase concentration profiles derived from the SRXRD data further show the co-existence of both the low temperature hcp ({alpha}-phase and the {beta}-phase in the partially, transformed region of the HA. These results represent the first direct observations of solid state phase transformations and mapping of phase boundaries in fusion welds. SRXRD experiments of this type are needed as experimental input for modeling of kinetics of phase transformations and microstructural evolution under the highly non-isothermal conditions produced during welding.

  4. Development of Heat-Affected Zone Hardness Limits for In-Service Welding

    Science.gov (United States)

    2009-09-29

    Welding onto in-service pipelines is frequently required to facilitate a repair or to install a branch connection using the "hot tapping" technique. Welds made in-service cool at an accelerated rate as the result of the ability of the flowing content...

  5. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  6. Strength Evaluation of Heat Affected Zone in Electron Beam Welded ARAA for HCCR TBM in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. S.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Lee, D. W. [KAERI, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been developed for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, called advanced reduced activation alloy (ARAA), has also been developed for a structural material of the HCCR TBM. One case of limited optimized electron beam (EB) welding conditions was selected based on previous work, and the weldability of an EB weld was evaluated for TBM fabrication. The micro-hardness was measured from the base to the weld region, and the microstructures were also observed. A small punch (SP) test considering the HAZ was carried out at room and high (550 .deg. C) temperatures. The empirical mechanical properties of HAZ in the EB weld were evaluated, and the fracture behavior was investigated after the SP test. The SP results show that the estimated yield and tensile strength of the HAZ were higher than the base metal at both temperatures. Korean RAFM steel, ARAA, was developed as a TBM structural material. Using one of the program alloys in ARAA (F206), one case of a limited optimized EB welding condition was selected based on previous works, and the weldability of an EB weld using the SP test was evaluated for TBM fabrication at room and high (550 .deg. C) temperatures. From a micro-Vickers hardness evaluation, the HAZ gave the highest values compared with the other regions. The irregular grain boundaries in the HAZ were observed, but its width was narrower than the TIG weld from the previous results. The optimized welding methods such as the TIG, EB, and laser weld, and the welding procedure considering the PWHT are being established, and the weldability evaluation is also progressing according to the development of the ARAA for the fusion material application in Korea.

  7. New welding information system on the internet (Prediction of the properties of weld heat-affected zones

    Directory of Open Access Journals (Sweden)

    M Fujita

    2003-08-01

    Full Text Available To promote continuous transfer and development of welding technology, a new system for predicting the microstructures and mechanical properties of welded joins has been built on the Internet. It combines a database system containing continuous cooling transformation diagrams (CCT diagrams for welding and an expert system for computing weld thermal histories. In addition, this system employs a technique which was invented during the development of another distributed database system called "Data-Free-Way" , which was designed to contain information advanced nuclear materials and materials obtained from other programs of welding research at NIMS in the past. This paper describes the current state of our new system for computing weld thermal histories to predict the properties of welded joints using the CCT diagrams database, which is now available on the Internet. Some problems encountered with the database used in such a system are also referred to.

  8. The influence of electron-beam welding parameters on heat-affected-zone microfissuring in INCOLOY 903

    Science.gov (United States)

    Richards, N. L.; Nakkalil, R.; Chaturvedi, M. C.

    1994-08-01

    The microfissuring in the heat-affected zone (HAZ) of electron-beam-(EB-) welded thermomechanically processed INCOLOY 903 has been studied with a view to reducing the incidence of microfissuring and to obtaining a better understanding of the influence of EB welding parameters on it. For a given heat of material, microfissuring susceptibility has been quantitatively related to EB welding parameters and the shape of the weld pool. Fractional factorial experimental study of welding parameters showed that a reduction in welding speed and an increase in EB current for a given heat input would minimize HAZ microfissuring in the alloy. It was observed that with lower travel speeds, bccause of the shallower temperature gradients in the HAZ, the amount of liquated grain boundary area is less, thus leading to decreased microfissuring. Considerable HAZ microfissuring was observed on the coarse grain boundaries of warm-worked grains. The microfissures appeared to initiate in regions slightly removed from the fusion line. Minimal microfissuring was observed on the grain boundaries of fine recrystallized grains. These boundaries, however, had a thickened appearance bccause of the formation of Nb-enriched y phase by the process of grain boundary liquid film migration (LFM). The origin of the liquid on the grain boundaries is suggested to be due to the constitutional liquation of preexisting primary carbides (partial), fine MC carbides, and MNP-type phosphides. It is suggested that substantial occurrence of LFM in the HAZ minimizes microfissuring by decreasing the total temperature range of solidification and also by enabling the grain boundary liquid to solidify without the occurrence of low-melting terminal eutectic reaction.

  9. Hydrogen-induced cold cracking in heat-affected zone of low-carbon high-strength steel

    Science.gov (United States)

    Lan, Liangyun; Kong, Xiangwei; Hu, Zhiyong; Qiu, Chunlin

    2014-12-01

    The Y-groove cracking test by submerged arc welding was employed to study the susceptibility of a low-carbon high-strength steel to hydrogen-induced cold cracking (HICC). The morphology of hydrogen cracks was observed using an electron probe microscope. The results showed that the heat-affected zone (HAZ) has a higher susceptibility to HICC than the weld metal and that increasing heat input can improve the HICC resistance of the weldment. The intergranular microcracking is the main HICC mode at the lowest heat input condition, accompanied with some transgranular microcracks attached to complex inclusions. In combination with phase transformation behaviour in sub-zones, the effect of the phase transformation sequence is proposed to try to illustrate the fact that the fine-grained HAZ has higher probability of hydrogen cracking than the coarse-grained HAZ owing to the occurrence of hydrogen enrichment in the fine-grained HAZ after the transformation.

  10. Secondary ledeburite formation during various welding techniques

    Directory of Open Access Journals (Sweden)

    Tonkovič M.P.

    2015-01-01

    Full Text Available The occurrence and formation sequence of secondary ledeburite in the heat affected zone of chromium ledeburitic tool steel W.Nr. 1.2379 (OCR12 VM after welding with SAW, TIG, microplasma and laser welding techniques is presented in this paper. Special attention was paid on the behaviour of carbides. The occurrence of secondary ledeburite is a result of local enrichment of the austenite matrix with alloying elements, due to partial or complete dissolution of primary/eutectic carbides. The results show that the largest amount of secondary ledeburite is formed during submerged arc welding, followed by TIG and microplasma welding technique. Welding by laser technique, with appropriate technological parameters, could prevent secondary ledeburite formation.

  11. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: achamanfar@gmail.com [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Jahazi, M. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Bonakdar, A.; Morin, E. [Siemens Canada Limited, 9545 Côte-de-Liesse, Dorval, Québec, Canada H9P 1A5 (Canada); Firoozrai, A. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada)

    2015-08-26

    Electron beam welding (EBW) of shrouds in Inconel-713LC low pressure gas turbine blades was associated with cracking in fusion zone (FZ) and heat affected zone (HAZ) leading to a high scrap rate in manufacturing of gas turbine blades. In this study, in order to develop a detailed map of cracks and understand the root cause of cracking, a comprehensive microstructural and numerical analysis was performed. The elemental mapping in scanning electron microscope (SEM)-energy dispersive spectral analysis revealed segregation of alloying elements in the cracked area of FZ and HAZ. In other words, one of the cracking mechanisms in FZ and HAZ was found to be segregation induced liquation and subsequent cracking due to thermal and mechanical tensile stresses generated during EBW. Cracking in FZ also occurred because of low strength of the solidifying weld metal as well as solidification contraction. As well, γ′ dissolution and reprecipitation in HAZ leading to decreased ductility and generation of contraction stresses was another mechanism for cracking in HAZ. The numerical model was capable to predict the cracking location as well as cracking orientation with respect to the weld line.

  12. Effects of Heat-Affected Zone Microstructure on Fracture Toughness of Two X70 Pipe Girth Welds

    Science.gov (United States)

    Park, Dong-Yeob; Amirkhiz, Babak Shalchi; Gravel, Jean-Philippe; Wang, Yiyu; Li, Leijun; Zavadil, Renata; Liang, Jie; Liu, Pei; He, Anqiang; Arafin, Muhammad

    2017-07-01

    In the previous study, unstable brittle crack extensions were observed during ductile tearing from all the single-edge notched bend [SE(B)] specimens with an initial crack placed in heat-affected zone (HAZ), machined from one of the two studied X70 pipe girth welds, performed at 258 K (-15 °C). Thus their microstructures and properties have been investigated using optical microscopy, microhardness measurement, and advanced scanning electron microscopy and transmission electron microscopy so as to (1) characterize their metallographic properties including crystallographic texture and (2) correlate them with the unstable brittle crack occurrence and propagation. The results suggest that HAZ softening—strength loss—is a major factor responsible for the cleavage occurrence in the given HAZ specimens as it could induce a large local strain concentration by limiting plasticity in base metal when a ductile crack crosses from the HAZ to the base metal. The HAZ softening seems to be associated with the disappearance of pearlite packets in the HAZ region, which presumably occurred during welding, for the given material. High angle grain boundaries in the fine-grained HAZ appear to affect the direction of cleavage propagation at the point of cleavage initiation ( i.e., pop-in).

  13. The use of submerged-arc welding flux slag as raw material for the fabrication of multiple-use mortars and bricks Uso de escória de fluxo de soldagem a arco submerso como matéria-prima para a fabricação de argamassas de múltiplo uso e tijolos

    Directory of Open Access Journals (Sweden)

    Caroline Espinosa Viana

    2009-09-01

    Full Text Available This work has as objective to analyze the recycling possible uses of the slag of welding flux (SWF in the civil construction. It was searched the liability of SWF as substitute of sand in the production of multiple-use mortars and clay for the production of ceramic bricks. SWF has origin in the submerged-arc welding (SAW, and have been used slags of the acid, neutral and basic types, according to its neutrality. Mortars have been made containing the three types of SWF and in addition a reference mortar made with sand. Physical and mineralogical characteristics of each SWF were studied, and the physical properties (consistency and density and mechanical properties (compressive and tensile strengths of the mortars were analyzed. Ceramic pieces have been made containing kaolinitic sedimentary clay up to 10 wt. % of SWF. The pieces were prepared by uniaxial pressing and fired at 950ºC. The following properties after firing were determined: linear shrinkage, water absorption, apparent porosity, apparent density, and flexural strength. The results show that for multiple-use mortars, SWF reached excellent results, being an overall substitute for sand as fine aggregate. For ceramic bricks, SWF can also be used as partial substitute for red clay. Both applications of SWF significantly contributes for the reduction of the ambient impact: on one hand, reducing the extraction of natural sand and clay, on other hand, contributing for the reduction of the risk of ground water contamination due to the inadequate disposal of the SWF.Este trabalho tem como objetivo avaliar possíveis usos para a reciclagem da escória de fluxo de soldagem (EFS na construção civil. Foi pesquisada a possibilidade do uso da EFS como substituto da areia na produção de argamassas de múltiplo-uso e substituição da argila na produção de tijolos. A EFS tem origem na soldagem a arco submerso (SAS, e foram usadas escórias dos tipos ácida, neutra e básica, conforme sua

  14. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    Science.gov (United States)

    Phung-On, Isaratat

    2007-12-01

    Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing

  15. Heat-affected zone and phase composition of 0.09 C-2 Mn-1 Si-Fe steel depending on welding technique

    Science.gov (United States)

    Popova, Natalya; Ozhiganov, Eugeniy; Nikonenko, Elena; Ababkov, Nikolay; Smirnov, Aleksander; Koneva, Nina

    2017-11-01

    The paper presents the transmission electron microscopy (TEM) investigations of the structure and phase composition of the heat-affected zone (HAZ) in welded joint modified by four types of welding, namely: electrode welding and electropercussive welding both with and without the introduction of artificial flaws. Artificial flows are aluminum pieces. TEM investigations are carried out within HAZ between the deposited and base metal at 1 mm distance to the latter. The type 0.09C-2Mn-1Si-Fe steel is used as weld material. It is shown that the welding process has an effect on the material morphology, phase composition, faulted structure and its parameters. Long-range stresses are divided into plastic and elastic components. It is demonstrated that the type of welding does not change the structural quality of welded joint represented by perlite and ferrite as contrasted with their volume fraction. According to observations, any type of welding with the introduction of artificial flaws results in the destruction of perlite. Polarization of the dislocation structure occurs. The amplitude of mean internal stresses does not practically depend on the welding type. It is shown that the introduction of artificial flaws both during electrode and electropercussive welding reduce the quantitative parameters of the faulted structure.

  16. The geometry of the strip electrode used in the process of submerged arc hardfacing of continuous casting rolls

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2015-03-01

    Full Text Available The results of the investigation of the influence of the size of the strip electrode on the dilution of the base metal used in the process of submerged arc hardfacing of continuous casting rolls are presented. Increasing the thickness and decreasing the width of the strip electrode (60´0,5 mm, 45´0,7 mm, 30´1,0 mm results in the changing of the shape and dimensions of the fusion zone of the base metal to enhance the depth and reduce the non-uniformity of fusion penetration. The experimental data show that the dilution ratio of the base metal using the strip electrode 45´0,7 mm, containing 13,5 % chromium, made it possible to obtain more than 11 % chromium in the chemical composition of the third deposited layer. In the process of submerged arc hardfacing increasing the travel speed of the strip electrode (heat source up to 12 m/hour enhance the dilution ratio of the base metal. Despite this, the chromium content of the third layer is not less than 11 %. At the same time, the improved parameters of the hardfacing process allowed to achieve the better weld shape and to reduce the number of welding defects. When deposited on continuous casting rolls, the chemical composition of the deposited metal insures the corrosion resistance of the rolls and increases their longevity

  17. Caracterização e avaliação da resistência à corrosão na soldagem de tubulação de aço inoxidável duplex UNS S31803 pelo processo a arco submerso Characterization and evaluation of corrosion resistance of welded joint of duplex stainless steel pipe UNS S31803 by submerged arc process

    Directory of Open Access Journals (Sweden)

    Juan Manuel Pardal

    2011-12-01

    Full Text Available O presente trabalho apresenta os resultados da caracterização e avaliação da resistência à corrosão de uma junta soldada correspondente a uma tubulação de aço inoxidável duplex (AID UNS S31803 de 35 mm de espessura de parede soldada pelos processos de soldagem TIG (GTAW na raiz e arco submerso (SAW no enchimento e acabamento. Foram empregados como consumíveis de soldagem metais de adição de liga 25Cr-9Ni-4Mo (% em peso. Os resultados da caracterização das propriedades mecânicas, composição química e resistência à corrosão em diversas regiões da junta soldada foram comparados com os obtidos para o metal de base da tubulação, assim como com os valores mínimos exigidos pelas normas de projeto. Os resultados obtidos demonstram claramente a possibilidade da implementação do processo SAW na pré fabricação de tubulações de paredes espessas de AID, tendo em vista os resultados das propriedades analisadas e a grande demanda na construção e montagem de tubulações desta família de aço inoxidáveis na indústria offshore.This work presents the mechanical properties, microstructural and corrosion resistance evaluation of a welded joint of duplex stainless steel (DSS pipe with 35 mm wall thickness. The joint was welded by gas tungsten arc welding (GTAW process in the root passes and submerged arc welding (SAW in the filling and cap passes using filler metals with composition 25Cr-9Ni-4Mo (%wt.. The results of mechanical properties, chemical composition and corrosion resistance characterization in different regions of the welded joint were compared to the base metal and to the specifications required by the standards applied in the project. The main focus of this work was to show the successful utilization of SAW process in the welding of thick wall pipes of DSS. The application of high productivity process such as SAW has a crescent demand in offshore industry.

  18. Process Modeling and Optimization of a Submerged Arc Furnace for Phosphorus Production

    NARCIS (Netherlands)

    Scheepers, E.; Yang, Y.; Adema, A.T.; Boom, R.; Reuter, M.A.

    2010-01-01

    This article presents a process model of a phosphorus-producing, submerged arc furnace. The model successfully incorporates accurate, multifield thermodynamic, kinetic, and industrial data with computational flow dynamic calculations and thus further unifies the sciences of kinetics and equilibrium

  19. In-Situ Nondestructive Examination of Weld Penetration

    National Research Council Canada - National Science Library

    Chin, Bryan

    1998-01-01

    The objective of this program is to develop infrared sensing techniques to monitor and control welding penetration in gas tungsten arc and submerged arc welding processes used by the US Navy in the construction of ships...

  20. Microstructure and mechanical property in heat affected zone (HAZ in F82H jointed with SUS316L by fiber laser welding

    Directory of Open Access Journals (Sweden)

    S. Kano

    2016-12-01

    Full Text Available This study investigates the microstructure and mechanical property in heat affected zone (HAZ between F82H and SUS316L jointed by 4 kW fiber laser welding at different parameters such as laser scan rate and beam position. OM/FE-SEM observation, EPMA analysis and nano-indentation hardness test were utilized to characterize the microstructure and evaluate the mechanical property. Results show that the HAZ width is dependent on the welding condition. The precipitation of M23C6 particle in HAZ is found to be closely related to the distance from WM/HAZ interface. Decrease in Cr and C concentration in M23C6 depended on the welding condition; the decrease was relatively milder in the case of shifting the beam position to SUS side. Furthermore, the rapid increment in nano-indentation hardness, i.e. ≈2500 MPa, at HAZ/F82H interface was observed regardless of welding parameters. The temperatures at HAZ/F82H interface were estimated from Cr and C concentration change of M23C6 by EPMA. It was revealed that the temperature of HAZ/F82H interface increased with increasing HAZ width, and that the presence of over-tempered HAZ (THAZ region is confirmed only in the specimens welded right on the F82H/SUS interface (no-shift at the laser scan rate of 3 m/min.

  1. On the development of a new pre-weld thermal treatment procedure for preventing heat-affected zone (HAZ) liquation cracking in nickel-base IN 738 superalloy

    Science.gov (United States)

    Ola, O. T.; Ojo, O. A.; Chaturvedi, M. C.

    2014-10-01

    Hot cracking in the heat-affected zone (HAZ) of precipitation strengthened nickel-base superalloys, such as IN 738, during fusion welding remains a major factor limiting reparability of nickel-base gas turbine components. The problem of HAZ intergranular cracking can be addressed by modifying the microstructure of the pre-weld material through thermal treatment, which requires significant understanding of the critical factors controlling cracking behaviour. The decomposition of Mo-Cr-W-and Cr-rich borides in the alloy, among other factors, has been observed to contribute significantly to non-equilibrium intergranular liquation and, hence, intergranular liquation cracking during welding. Gleeble physical simulation of HAZ microstructure has also shown that non-equilibrium liquation is more severe in the vicinity of decomposed borides in the alloy and can occur at temperatures as low as 1,150 °C. Although currently existing pre-weld heat treatments for IN 738 superalloy minimize the contributions of dissolution of second phases, including borides, to HAZ intergranular liquation, these heat treatments are not industrially feasible due to process-related difficulties. Therefore, a new industrially feasible and effective pre-weld thermal treatment process, designated as FUMT, was developed during the present research by controlling both the formation of borides and the segregation of boron at the grain boundaries in the pre-weld heat-treated material. This thermal treatment was observed to very significantly reduce intergranular HAZ cracking in welded IN 738 superalloy. The details of the development process and developed procedure are presented in this paper.

  2. Plasticity and fracture modeling of the heat-affected zone in resistance spot welded tailor hardened boron steel

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Geijselaers, Hubertus J.M.; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2016-01-01

    tFive hardness grades of 22MnB5 are considered, covering the full strength-range from 600 MPa in theferritic/pearlitic range to 1500 MPa in the fully hardened, martensitic state. These five grades form thebasis for a hardness-based material model for the heat-affected zone found around resistance

  3. Factorial Analysis of Welding Current Influence on Heat Affected Zone Hardness of Cast Iron, Aluminium, and Mild Steel Weldments Cooled in Palm Oil

    Directory of Open Access Journals (Sweden)

    C. I. Nwoye

    2013-01-01

    Full Text Available Factorial analysis of heat affected zone hardness of some metals was evaluated. Three models were derived and used as tools for evaluating the welding current influence on the predictability of HAZ hardness in aluminium, cast iron, and mild steel weldments similarly cooled in palm oil. It was discovered that on welding these materials, and similarly cooling their respective weldments in palm oil, the model predicts aluminium weldment HAZ hardness by multiplying the determined general current product rule (GCPR with the ratio: HAZ hardness product of cast iron and mild steel/HAZ hardness sum of cast iron and mild steel . Computational analysis of experimental and model-predicted results indicates that aluminium, cast iron, and mild steel weldment HAZ hardness per unit welding current as evaluated from experiment and derived model are 3.3917, 4.8333, and 2.7944 and 3.3915, 4.8335, and 2.7946 (VHN A−1, respectively. Deviational analysis shows that the maximum deviation of model-predicted HAZ hardness from the experimental results is less than 0.007%. This invariably implies over 99.99 % confidence level for the derived models.

  4. Microstructure characterization and weldability evaluation of the weld heat affected zone (HAZ) in 310HCbN tubing

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-08-01

    Metallographic evaluation on the Gleeble simulated HAZ samples of 310HCbN tubing material was performed in order to reveal potential degradation in mechanical properties and corrosion resistance. The carbide evolutionary process in the HAZ samples was studied. It is indicated that 310HCbN material showed a weld HAZ sensitization tendency that is associated with the formation of Cr{sub 23}C{sub 6}.

  5. The Effect of Chemical Composition on Microstructure and Properties of Intercritically Reheated Coarse-Grained Heat-Affected Zone in X70 Steels

    Science.gov (United States)

    Zhu, Zhixiong; Kuzmikova, Lenka; Li, Huijun; Barbaro, Frank

    2013-12-01

    The current study investigates the effect of different levels of Ti, N, and Ti/N ratios on microstructure and properties in the intercritically reheated coarse-grained heat-affected zone (ICCGHAZ) of two-pass submerged arc welds in API 5L grade X70 pipe. Gleeble simulation was employed to reproduce the ICCGHAZ of actual welds. Hardness and Charpy V-notch (CVN) tests were performed on the simulated samples. The microstructure of simulated ICCGHAZ was characterized by optical microscopy and scanning electron microscopy (SEM). LePera color etching technique was employed to identify and quantify the martensitic-austenitic (M-A) constituent. Results show that the simulated ICCGHAZ exhibited extremely low toughness, but in the studied range of Ti and N, there was no correlation with Ti/N ratio. The beneficial effect of near-stoichiometric Ti/N ratio observed in coarse-grained heat-affected zone (CGHAZ) did not translate to ICCGHAZ. This was because of the negative effect of the blocky M-A constituent formed on prior austenite grain boundaries.

  6. Effect of Welding Thermal Cycles on Microstructure and Mechanical Properties of Simulated Heat Affected Zone for a Weldox 1300 Ultra-High Strength Alloy Steel

    Directory of Open Access Journals (Sweden)

    Węglowski M. St.

    2016-03-01

    Full Text Available In the present study, the investigation of weldability of ultra-high strength steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on microstructure and mechanical properties of heat affected zone (HAZ for a Weldox 1300 ultra-high strength steel. In the frame of these investigation the microstructure was studied by light and transmission electron microscopies. Mechanical properties of parent material were analysed by tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 ÷ 300 sec. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The microstructure of ultra-high strength steel is mainly composed of tempered martensite. The results show that the impact toughness and hardness decrease with increase of t8/5 under condition of a single thermal cycle in simulated HAZ. The increase of cooling time to 300 s causes that the microstructure consists of ferrite and bainite mixture. Lower hardness, for t8/5 ≥ 60 s indicated that low risk of cold cracking in HAZ for longer cooling time, exists.

  7. Characterization of the Multi-Pass Weld Metal and the Effect of Post-Weld Heat Treatment on Its Microstructure and Toughness

    Science.gov (United States)

    Wang, Xuelin; Shang, Chengjia; Wang, Xuemin

    In multi-pass welding process, various thermal cycle of both weld metal (WM) and heat affected zone (HAZ) will be subjected several times. This will make the initial microstructure occur an irreversible transformation. As the transformed microstructure become extremely complex, the mechanical properties, especially the low temperature toughness are very much fluctuant. In this research, the microstructure and low temperature toughness of WM obtained from a real multi-pass weld joint (up to 55 mm) by submerged arc welding have been elaborated. The results indicated that the necklace-type coarse martensite-austenite (M-A) constituent formed in interlayer heat affected zone (IHAZ) of WM and the impact energy of WM at -40 °C was only 39 J. Furthermore, by conventional tempering with holding time of 30 min, the toughness of WM can't be effectively improved. However, by a new developed heat treatment process, the toughness of WM could be significantly improved, and it is believed to be caused by the composition of weld metal and the post-welding heat treatment process. It also shows that the decomposition of M-A constituent and formation of the retained austenite are the mechanism of the improvement of low temperature toughness.

  8. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    Science.gov (United States)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-01-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering (QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  9. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    Science.gov (United States)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  10. Investigation on Mechanical Properties of 9%Cr/CrMoV Dissimilar Steels Welded Joint

    Science.gov (United States)

    Liu, Xia; Lu, Fenggui; Yang, Renjie; Wang, Peng; Xu, Xiaojin; Huo, Xin

    2015-04-01

    Advanced 9%Cr steel with good heat resistance and CrMoV with good toughness were chosen as candidate materials to fabricate combined rotor for steam turbine operating at over 620 °C. But the great difference in base metals properties presents a challenge in achieving sound defect-free joint with optimal properties in dissimilar welded rotor. In this paper, appropriate selection of filler metal, welding parameters, and post-weld heat treatment was combined to successfully weld 1100-mm-diameter 9%Cr/CrMoV dissimilar experimental rotor through ultra-narrow gap submerge arc welding. Some properties such as hardness, low-cycle fatigue (LCF), and high-cycle fatigue (HCF) combined with microstructural characterization qualify the integrity of the weld. Microstructural analysis indicated the presence of high-temperature tempered martensite as the phase responsible for the improved properties obtained in the weld. The Coffin-Manson parameters were obtained by fitting the data in LCF test, while the conditional fatigue strength was derived from the HCF test based on S-N curve. Analysis of hardness profile showed that the lowest value occurred at heat-affected zone adjacent to base metal which represents the appropriate location of fracture for the samples after LCF and HCF tests.

  11. Numerical prediction of heat affected zone (HAZ) grain refinement for multiples weld-beads deposits during SMAW welding process of Cr-Mo-V steel; Prediccion numerical del afino de los granos en la zona afectada por la temperature (ZAC) para aportes de multipasadas durante el proceso de soldeo SMAW en el acero al Cr-Mo-V

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Z.; Gonzalez, G.; Urquiza, G.; Salazar, O.; Marino, C.; Hernandez, A.

    2002-07-01

    The methodology of prediction of the heat-affected zone (HAZ) microstructure in a multiple-bead wields of the two layers of 1.25 Cr-1 Mo-0.25V steel using SMAW deposition process is presented. A computer program was developed to calculate extension zones of interest of two layer multipass weld-beads HAZ and predict a percentage of HAZ coarse grains refinement for determined welding parameters, preheating temperature and weld bead overlap. The computer model has been validated by experiment depositing a series of two-year weld-beads getting reasonable concordance of model prediction and measured during experiment structural HAZ distribution. (Author) 5 refs.

  12. Fingerprint of a submerged-arc furnace : Optimising energy consumption through data mining, dynamic modelling and computational fluid dynamics

    NARCIS (Netherlands)

    Scheepers, E.

    2008-01-01

    This study imparts a scientific perception of a phosphorous-producing submerged arc furnace never seen before; a proverbial fingerprint that can improve problem identification, disturbance diagnostics, process prediction, dynamic modelling and model predictive control of this type of furnace. It

  13. Dissipation of Electrical Energy in Submerged Arc Furnaces Producing Silicomanganese and High-Carbon Ferromanganese

    Science.gov (United States)

    Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Nzima, Thabo Witness

    2017-09-01

    Submerged-arc furnace technology is applied in the primary production of ferroalloys. Electrical energy is dissipated to the process via a combination of arcing and resistive heating. In processes where a crater forms between the charge zone and the reaction zone, electrical energy is dissipated mainly through arcing, e.g., in coke-bed based processes, through resistive heating. Plant-based measurements from a device called "Arcmon" indicated that in silicomanganese (SiMn) production, at times up to 15% of the electrical energy used is transferred by arcing, 30% in high-carbon ferromanganese (HCFeMn) production, compared with 5% in ferrochromium and 60% in ferrosilicon production. On average, the arcing is much less at 3% in SiMn and 5% in HCFeMn production.

  14. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  15. Low temperature friction stir welding of P91 steel

    OpenAIRE

    Kalvala, Prasad Rao; Akram, Javed; Misra, Mano; Ramachandran, Damodaram; Gabbita, Janaki Ram

    2016-01-01

    Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the s...

  16. Effects of heating and cooling rate on transformation behaviors in weld heat affected zone of low carbon steel; Teitanso koban no yosetsu netsu eikyobu no hentai kyodo ni oyobosu kanetsu reikyaku sokudo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kanetsuki, Y.; Katsumata, M. [Kobe Steel, Ltd., Kobe (Japan)

    1998-01-25

    Discussions were given on effects of welding heat cycles on transformation behaviors in a weld heat affected zone (HAZ). Test pieces are low-carbon fine ferrite pearlite organization steel sheets, which have been treated with a thermomechanical control process (TMCP). The heat cycling was experimented at a maximum temperature of 1350 degC by using a high-frequency heating coil, heating rates from 0.15 to 200 degC/s, cooling rates from 10 to 80 degC/s at an elevated temperature region (higher than 900 degC), and transformation regions (lower than 900 degC) from 0.5 to 6 degC. A transformation curve in actual welding heat cycling was interpreted from these results. Shear-type inverse transformation (from ferrite to austenite) occurs in a rate region corresponding to the heating rate realized during welding. Austenite containing internal stress and a lower structure formed by this inverse transformation accelerates transformation into grain boundary ferrite (GBF) and acerous ferrite (AF). On the other hand, slow cooling in the elevated temperature region releases the internal stress, restores the lower structure, and suppresses the GBF and AF transformation. The GBF tends to precipitate pearlite in adjacent regions and deteriorates the HAZ tenacity. 17 refs., 8 figs., 1 tab.

  17. Study on the Toughness of X100 Pipeline Steel Heat Affected Zone

    Science.gov (United States)

    Li, Xueda; Shang, Chengjia; Ma, Xiaoping; Subramanian, S. V.

    Microstructure-property correlation of heat affected zone (HAZ) in X100 longitudinal submerged arc welding (LSAW) real weld joint was studied in this paper. Coarse grained (CG) HAZ and intercritically reheated coarse grained (ICCG) HAZ were characterized by optical microscope (OM), electron backscattered diffraction (EBSD). The microstructure of CGHAZ is mostly composed of granular bainite with low density of high angle boundaries (HAB). Prior austenite grain size is 80μm. In ICCGHAZ, coarse prior austenite grains were decorated by coarse necklacing martensite-austenite (M-A) constituents. Different layers were observed within M-A constituent, which may be martensite and austenite layers. Charpy absorbed energy of two different HAZ regions (ICCGHAZ containing and non-containing regions) was recorded using instrumental Charpy impact test machine. The results showed that the existence of ICCGHAZ resulted in the sharp drop of Charpy absorbed energy from 180J to 50J, while the existence of only CGHAZ could still lead to good toughness. The fracture surface was 60% brittle in the absence of ICCGHAZ, and 100% brittle in the presence of ICCGHAZ in the impact tested samples. The underlying reason is the microstructure of ICCGHAZ consisted of granular bainite and upper bainite with necklace-type M-A constituent along the grain boundaries. Cleavage fracture initiated from M-A constituent, either through cracking of M-A or debonding from the matrix, was observed at the fracture surface of ICCGHAZ. The presence of necklace type M-A constituent in ICCGHAZ notably increases the susceptibility of cleavage microcrack nucleation. Furthermore, the study of secondary microcracks beneath the CGHAZ and the ICCGHAZ through EBSD suggested that the fracture mechanism changes from nucleation-controlled in the CGHAZ to propagation-controlled in the ICCGHAZ because of the presence of necklace-type M-A constituent in the ICCGHAZ region. Both fracture mechanism contribute to the poor

  18. Effect of Zr Addition on the Microstructure and Toughness of Coarse-Grained Heat-Affected Zone with High-Heat Input Welding Thermal Cycle in Low-Carbon Steel

    Science.gov (United States)

    Shi, Ming-hao; Yuan, Xiao-guang; Huang, Hong-jun; Zhang, Si

    2017-07-01

    Microstructures and toughness of coarse-grained heat-affected zone (CGHAZ) with high-heat input welding thermal cycle in Zr-containing and Zr-free low-carbon steel were investigated by means of welding thermal cycle simulation. The specimens were subjected to a welding thermal cycle with heat inputs of 100, 400, and 800 kJ cm-1 at peak temperature of 1673 K (1400 °C) using a thermal simulator. The results indicate that excellent impact toughness at the CGHAZ was obtained in Zr-containing steel. The Zr oxide is responsible for AF transformation, providing the nucleation site for the formation AF, promoting the nucleation of AF on the multi-component inclusions. High fraction of acicular ferrite (AF) appears in Zr-containing steel, acting as an obstacle to cleavage propagation due to its high-angle grain boundary. The morphology of M-A constituents plays a key role in impact toughness of CGHAZ. Large M-A constituents with lath form can assist the micro-crack initiation and seriously decrease the crack initiation energy. The relationship of AF transformation and M-A constituents was discussed in detail.

  19. High Temperature Corrosion and Characterization Studies in Flux Cored Arc Welded 2.25Cr-1Mo Power Plant Steel

    Science.gov (United States)

    Kumaresh Babu, S. P.; Natarajan, S.

    2010-07-01

    Higher productivity is registered with Flux cored arc welding (FCAW) process in many applications. Further, it combines the characteristics of shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. This article describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 387 Gr.22 (2.25Cr-1Mo) steel weldments prepared by FCAW process with four different heat inputs exposed to hydrochloric acid medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal, and heat-affected zone are chosen as regions of exposure for the study carried out at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel) and linear polarization resistance (LPR) have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, hardness survey, surface characterization, and morphology using scanning electron microscope (SEM) and x-ray diffraction (XRD) have been made on samples to highlight the nature and extent of film formation. The film is found to contain Fe2Si, FeSi2, FeMn3, Fe7Mo3, Fe3O4, FeO, FeCr, AlO7Fe3SiO3, and KFe4Mn77Si19.

  20. Some Aspects of Oxidation-Reduction Reactions under Carbon-Bearing Flux Welding

    Science.gov (United States)

    Kryukov, R. E.; Kozyrev, N. A.; Galevsky, G. V.; Bendre, Y. V.; Goryushkin, V. F.; Valuev, D. V.

    2015-09-01

    The authors have completed thermodynamic calculations of oxidation-reduction processes under submerged arc welding with application of carbon containing additive. The calculations have shown that carbon, due to its high reducing properties under T = 1950 - 2200 K, introduced into the system can significantly decrease the amount of non-metallic inclusions in the weld metal and so improve its mechanical properties.

  1. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  2. Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear

    Science.gov (United States)

    Velkavrh, Igor; Kafexhiu, Fevzi; Klien, Stefan; Diem, Alexander; Podgornik, Bojan

    2017-01-01

    Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.

  3. Detrimental Cr-rich Phases Precipitation on SAF 2205 Duplex Stainless Steels Welds After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Argelia Fabiola Miranda Pérez

    Full Text Available Abstract The austeno-ferritic Stainless Steels are commonly employed in various applications requiring structural performances with enhanced corrosion resistance. Their characteristics can be worsened if the material is exposed to thermal cycles, since the high-temperature decomposition of ferrite causes the formation of detrimental secondary phases. The Submerged Arc Welding (SAW process is currently adopted for joining DSS owing to its relatively simple execution, cost savings, and using molten slag and granular flux from protecting the seam of atmospheric gases. However, since it produces high contents of δ-ferrite in the heat affected zone and low content of γ-austenite in the weld, high-Ni filler materials must be employed, to avoid excessive ferritization of the joint. The present work is aimed to study the effect of 3 and 6 hours isothermal heat treatments at 850°C and 900°C in a SAF 2205 DSS welded joint in terms of phases precipitation. The results showed the presence of σ-phase at any time-temperature combination, precipitating at the δ/γ interphases and often accompanied by the presence of χ-phase. However, certain differences in secondary phases amounts were revealed among the different zones constituting the joint, ascribable both to peculiar elements partitioning and to the different morphology pertaining to each microstructure.

  4. Weld heat-affected zone in Ti-6Al-4V alloys. Part 1: Computer simulation of the effect of weld variables on the thermal cycles in the HAZ

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.K. [Naval Dockyard, Bombay (India). Naval Chemical and Metallurgical Lab.; Kulkarni, S.D.; Gopinathan, V. [Indian Inst. of Technology, Bombay (India). Dept. of Metallurgical Engineering; Krishnan, R. [Gas Turbine Research Establishment, Bangalore (India)

    1995-09-01

    The weld thermal cycles encountered in the HAZ of titanium alloys have been characterized using modified Rosenthal equations. The results are shown in the form of axonometric plots depicting the effect of two weld variables keeping the other variables fixed. Computer simulation results show that the heat input and the plate thickness are the major variables affecting the thermal cycles in the HAZ. The effects of changes in welding speed are reflecting in the variation in the heat input. The electrode radius has minimal effect and can be termed as the minor variable. Preheat or interpass temperatures have an intermediate effect. An increase in electrode radius or decrease in plate thickness requires large apparent displacement of the heat source above the plate surface to be incorporated in the analytical solutions. The melt pool width increases sharply with an increase in the heat input (a/v) or a decrease in plate thickness (d); however, preheat temperature (T{sub 0}) has negligible effect. The effect of weld variables on the effective heat input is also similar. The t{sub 8/5} parameter increases sharply with reducing plate thickness or increasing heat input.

  5. Sunil Pandey

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Sunil Pandey. Articles written in Sadhana. Volume 38 Issue 6 December 2013 pp 1369-1391. Effect of heat input on dilution and heat affected zone in submerged arc welding process · Hari Om Sunil Pandey · More Details Abstract Fulltext PDF. Submerged arc welding (SAW) is a fusion joining ...

  6. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Hari Om. Articles written in Sadhana. Volume 38 Issue 6 December 2013 pp 1369-1391. Effect of heat input on dilution and heat affected zone in submerged arc welding process · Hari Om Sunil Pandey · More Details Abstract Fulltext PDF. Submerged arc welding (SAW) is a fusion joining process ...

  7. Improvement of Energy and Materials Efficiencies by Introducing Multiple-Wire Welding

    Directory of Open Access Journals (Sweden)

    Bajcer, B.

    2007-01-01

    Full Text Available The paper deals with a study and comparison between welding with several wires in different shielding atmospheres and single-wire welding. The first part treats the equipment for multiple-wire electrode welding and a comparison between single-wire welding and twin-wire welding. The second part deals with the melting rate as a basis for determining the productivity of welding processes, and the third one with the energy efficiency as a criterion of cost-effectiveness of welding. Some results obtained regarding strength of submerged arc welded joints are shown.

  8. New materials for welding and surfacing

    Science.gov (United States)

    Kozyrev, N. A.; Galevsky, G. V.; Kryukov, R. E.; Titova, D. A.; Shurupov, V. M.

    2016-09-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and deposited metal carried out in the research and production centre “Welding processes and technologies”. New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK.10.71 and carbon-fluorine containing additives; new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed.

  9. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    Science.gov (United States)

    2013-06-01

    May 2007. [36] P. J. Konkol and M. F. Mruczek, ―Comparison of Friction Stir Weldments and Submerged Arc Weldments in HSLA-65 Steel,‖ Welding ... WELDING OF HT9 FERRITIC- MARTENSITIC STEEL: AN ASSESSMENT OF MICROSTRUCTURE AND PROPERTIES by Lara L. Ray June 2013 Thesis Advisor: Luke N...2013 3. REPORT TYPE AND DATES COVERED Master‘s Thesis 4. TITLE AND SUBTITLE FRICTION STIR WELDING OF HT9 FERRITIC-MARTENSITIC STEEL: AN

  10. Critical Analysis of Moving Heat Source Shape for ARC Welding Process of High Deposition Rate

    Czech Academy of Sciences Publication Activity Database

    Ghosh, A.; Hloch, Sergej; Chattopadhyaya, S.

    2014-01-01

    Roč. 21, č. 1 (2014), s. 95-98 ISSN 1330-3651 Institutional support: RVO:68145535 Keywords : Gaussian heat distribution * oval heat source shape * Submerged Arc Welding Subject RIV: JQ - Machines ; Tools Impact factor: 0.579, year: 2014 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=172337

  11. On the use of slag from silicomanganese production for welding flux manufacturing

    Science.gov (United States)

    Kozyrev, N. A.; Kryukov, R. E.; Lipatova, U. I.; Kozyreva, O. E.

    2016-09-01

    The technologies for manufacturing of welding fluxes with the use of slag from silicomanganese production and dust of gas purification from aluminum production are developed. The new compositions and production technology of welding fluxes are offered. The comparative evaluation of the new compositions and widely used AN-348 flux is provided. It is shown that the quality of submerged arc welding with the use of the developed flux composition is significantly better than the submerged arc welding with AN-348 flux. The effect of fractional composition on high-quality performance of the weld is investigated. The macro- and microstructures, nonmetallic inclusions and the mechanical properties of the weld are examined. It is shown that the introduction of carbon-fluorine containing additive into the flux, based on the dust of gas purification from aluminum production, can significantly improve the whole complex of mechanical properties of the weld, especially characteristics of impact hardness at low temperatures. The conducted research served as a basis for development of submerged arc welding technologies protected by the patents of the Russian Federation.

  12. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    Science.gov (United States)

    Liaw, P. K.; Logsdon, W. A.; Begley, J. A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.

  13. Development of New Materials and Technologies for Welding and Surfacing at Research and Production Center "Welding Processes and Technologies"

    Science.gov (United States)

    Kozyrev, N. A.; Kryukov, R. E.; Galevsky, G. V.; Titov, D. A.; Shurupov, V. M.

    2015-09-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and added metal carried out at research and production center «Welding processes and technologies». New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK. 10.71 and carbon-fluorine containing additives, new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed.

  14. High quality and efficiency arc welding for steel frames of high-rise buildings; Chokoso biru tekkotsumuke kohinshitsu koseino yosetsu gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurehashi, T.; Taniyama, N.; Nakanishi, Y.; Katayama, N. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-03-01

    High current density narrow gap submerged arc welding method has been developed, high in quality and efficiency, for the preparation of steel frames for high-rise buildings. The conventional method is a heavy current, great heat input welding method using plural large-diameter wires. It demands huge facilities for power supply whose installation and management are quite complicated, and often gives rise to the anxiety that the produced weld may be defective, contain cracks, or reduced in toughness. In the method introduced here, the time-proved submerged arc welding method is applied to all the layers. In the newly developed high current density submerged arc welding technology, deep penetration and rich deposition protect toughness from deterioration, the quantity of input heat can be limited without lowering efficiency, and gaps can be made narrower for a reduction in the gap area. Penetration shapes are stable, welding heat input is appropriately specified for each welding pass, and fluctuation is reduced in the welding current and voltage. Thanks to heat input conditioned for each welding pass, welds are excellent in quality. The slag is easier to peel off, and incurs less defects, and the high melting speed results in excellent joint performance. 6 refs., 7 figs., 3 tabs.

  15. Application of Expectation Maximization Method for Purchase Decision-Making Support in Welding Branch

    Directory of Open Access Journals (Sweden)

    Kujawińska Agnieszka

    2016-06-01

    Full Text Available The article presents a study of applying the proposed method of cluster analysis to support purchasing decisions in the welding industry. The authors analyze the usefulness of the non-hierarchical method, Expectation Maximization (EM, in the selection of material (212 combinations of flux and wire melt for the SAW (Submerged Arc Welding method process. The proposed approach to cluster analysis is proved as useful in supporting purchase decisions.

  16. SURFACE CHARACTER OF IRON OXIDE/CARBON NANOPARTICLES SYNTHESIZED BY SUBMERGED ARC DISCHARGE METHOD IN ETHANOL/UREA MEDIUM

    Directory of Open Access Journals (Sweden)

    Teguh Endah Saraswati

    2017-08-01

    Full Text Available Synthesis of iron oxide nanoparticles modified with carbon has been successfully performed by submerged arc-discharge method in ethanol/urea medium. Iron oxide used in the fabrication process was prepared by iron electrolysis in an electrolyte solution of NaCl. Fabrication of nanoparticles in this method uses two graphite electrodes. One of them was made in a pointed shape and the other graphite electrodes hollowed out and filled with a mixture of iron oxide, graphite and glue silica (as binder with a ratio of 1:3:1 (w/w/w. The liquid medium used in this method is a mixture solution of ethanol 50% and urea (0%, 10%, 25% and 50% with a volume ratio of 1:1 (v/v. The crystalline of iron oxide was characterized using X-Ray Diffraction (XRD, compared to JCPDS No. 89-0597, No. 89-0691 and No. 39-1346. Variations in the urea concentration in the liquid medium provided the changes of the surface character of the synthesized nanoparticles. The changes of surface character were analyzed by the Fourier Transform Infra Red (FTIR spectra and nanoparticle dispersion in water and ethanol. FTIR spectra showed the absorption of Fe-O, CH, CN, C = O, OH and NH at 460-555 cm-1, 650-1000 cm-1, 1000-1350 cm-1, 1640-1680 cm-1, 2400-3400 cm-1, 3200-3400 cm-1, 3100-3500 cm-1, respectively. The best hydrophilic surface character achieved when the nanoparticle was synthesized in medium of ethanol 50% with the addition of urea50%. The existence of a functional group attached on the surface of nanoparticles synthesized in ethanol/urea makes these nanoparticles had better dispersion than nanoparticles synthesized in ethanol medium without urea addition.

  17. Welding.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  18. An analysis of the joints’ properties of thick-grained steel welded by the SAW and ESW methods

    Directory of Open Access Journals (Sweden)

    Krawczyk R.

    2017-03-01

    Full Text Available The article presents an analysis of properties of welded joints of thick-grained steel of P460NH type used more and more often in the modern constructions. A process of examining a technology of welding has been carried out on the thick-walled butt joints of sheet metal by two methods of welding namely submerged arc welding (SAW - 121 and electroslag (ESW - 722. The article deals with a topic of optimizing a process of welding thick-walled welded joints of fine-grained steel due to their mechanical properties and efficiency.

  19. Experimental investigation of the thickness effect for large as-welded SAW S355 steel specimens

    DEFF Research Database (Denmark)

    Ólafsson, Ólafur Magnús; Jensen, Jørgen Juncher; Berggreen, Christian

    2016-01-01

    The presented work aims to investigate and establish a pre-cise, thorough and detailed database from series of experi-mental testing of submerged arc welded (SAW) specimens of various thicknesses typically applied in ships and offshore structures and foundations. Welded structures of all sizes...... and shapes exhibit fatigue failure primarily in the welded region, rather than in the base material, due to imperfections and flaws relating to the welding procedure. The welded region has therefore received much attention from universities, re-search institutions along with industry as it is of significant...

  20. Hardness analysis of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  1. Optimization of welding parameters for gas transportation steel pipes

    Directory of Open Access Journals (Sweden)

    S. Cvetkovski

    2010-10-01

    Full Text Available The aim of this paper is to define optimization of welding conditions for Submerged Arc Welding (SAW of steel pipes for gas transportation. Fine grain steel X-52 with thickness of 8 mm were used as a base material. Welding was performed from inner and outer side. Two wires, inclined under different angles, were feed separately. Eleven samples divided in three series were experimentally welded. Performed investigations indicated that the best properties showed weldments from series III, welded with the highest heat input. On the contrary of our expectations, welds from series II, using self made equipment, showed pretty bead properties and improper geometry. So, improving of this this equipment and obtaining welds with better properties is the target in future investigations.

  2. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  3. Initial Evaluation of the Heat-Affected Zone, Local Embrittlement Phenomenon as it Applies to Nuclear Reactor Vessels

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.E.

    1999-09-01

    The objective of this project was to determine if the local brittle zone (LBZ) problem, encountered in the testing of the heat-affected zone (HAZ) part of welds in offshore platform construction, can also be found in reactor pressure vessel (RPV) welds. Both structures have multipass welds and grain coarsening along the fusion line. Literature was obtained that described the metallurgical evidence and the type of research work performed on offshore structure welds.

  4. Multi Objective Optimization of Weld Parameters of Boiler Steel Using Fuzzy Based Desirability Function

    Directory of Open Access Journals (Sweden)

    M. Satheesh

    2014-01-01

    Full Text Available The high pressure differential across the wall of pressure vessels is potentially dangerous and has caused many fatal accidents in the history of their development and operation. For this reason the structural integrity of weldments is critical to the performance of pressure vessels. In recent years much research has been conducted to the study of variations in welding parameters and consumables on the mechanical properties of pressure vessel steel weldments to optimize weld integrity and ensure pressure vessels are safe. The quality of weld is a very important working aspect for the manufacturing and construction industries. Because of high quality and reliability, Submerged Arc Welding (SAW is one of the chief metal joining processes employed in industry. This paper addresses the application of desirability function approach combined with fuzzy logic analysis to optimize the multiple quality characteristics (bead reinforcement, bead width, bead penetration and dilution of submerged arc welding process parameters of SA 516 Grade 70 steels(boiler steel. Experiments were conducted using Taguchi’s L27 orthogonal array with varying the weld parameters of welding current, arc voltage, welding speed and electrode stickout. By analyzing the response table and response graph of the fuzzy reasoning grade, optimal parameters were obtained. Solutions from this method can be useful for pressure vessel manufacturers and operators to search an optimal solution of welding condition.

  5. Study of verification and validation of standard welding procedure specifications guidelines for API 5L X-70 grade line pipe welding

    Directory of Open Access Journals (Sweden)

    Qazi H. A. A.

    2017-12-01

    Full Text Available Verification and validation of welding procedure specifications for X-70 grade line pipe welding was performed as per clause 8.2, Annexure B and D of API 5L, 45th Edition to check weld integrity in its future application conditions. Hot rolled coils were imported from China, de-coiling, strip edge milling, three roller bending to from pipe, inside and outside submerged arc welding of pipe, online ultrasonic testing of weld, HAZ and pipe body, cutting at fixed random length of pipe, visual inspection of pipe, Fluoroscopic inspection of pipe, welding procedure qualification test pieces marking at weld portion of the pipe, tensile testing, guided bend testing, CVN Impact testing were performed. Detailed study was conducted to explore possible explanations and variation in mechanical properties, WPS is examined and qualified as per API 5L 45th Edition.

  6. Creep properties of simulated heat-affected zone of HR3C austenitic steel

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Kuchařová, Květa; Kvapilová, Marie; Svoboda, Milan; Král, Petr; Dvořák, Jiří

    2017-01-01

    Roč. 128, JUN (2017), s. 238-247 ISSN 1044-5803 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : HR3C steel * Welding * Heat affected zone * Creep * Microstructure * Fractography Subject RIV: JG - Metallurgy Impact factor: 2.714, year: 2016

  7. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  8. Variant analysis in coarse grain heat affected zone of low carbon steel

    Science.gov (United States)

    Razab, Mohammad Khairul Azhar Abdul; Mamat, Sarizam; Ahmad, Muhammad Iqbal; Nasir, Nurul Syahida Mohd

    2017-09-01

    Coarse Grain Heat Affected Zone (CGHAZ) is a part of Heat Affected Zone (HAZ) that affected by heat during welding process. Application of different heat input dramatically varies CGHAZ microstructures without a noticeable changing in prior austenite grain size. The unique coarse microstructure and crack initiated at CGHAZ show there were possibility changes in crystallographic structure which may relate to the variant selection phenomenon. The aims of this study are to find the effects of heat input to the variant selection especially to the biggest grain at CGHAZ, hence correlate to the toughness and properties of the welded steel. The results show that heat input affected the variant selection at the biggest CGHAZ grain of low carbon steel. As heat input increase, grain area was increased and becomes coarser. Variant selection phenomenon present at low carbon steel due to the increase in grain diameter and high angle value. It was found that variant selections had occurred during the transformation.

  9. Fracture toughness of weld metal samples removed from a decommissioned Magnox reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, C.J.; Bischler, P.J.E.; Wootton, M.R.; Moskovic, R.; Morri, J.R.; Pegg, H.C.; Haines, A.B.; Smith, R.F.; Woodman, R

    2002-08-01

    Submerged-arc welds in Magnox RPVs are expected to show substantial shifts in ductile-to-brittle transition temperature (DBTT), due to their high copper content, and also because of a contribution from intergranular fracture. For structural integrity arguments, the fracture toughness of irradiated welds is predicted by applying an irradiation shift in DBTT to a start-of-life toughness curve. The shift is obtained from a trend curve derived from Charpy impact data. An uncertainty allowance is obtained by combining uncertainty contributions in start-of-life fracture toughness and shifts, including a contribution from uncertainties in neutron dose. Through-thickness samples were removed from four submerged-arc welds in a decommissioned Magnox RPV at Trawsfynydd. Fracture toughness tests were made on pre-cracked Charpy geometry specimens made from the samples, in order to compare the measured toughnesses with those predicted for irradiated material. Specimens were tested from several positions along the welds and also at four different through-thickness locations with dpa doses varying by a factor of more than 2. The paper presents the results of nearly 400 toughness measurements and demonstrates that the prediction methodology is sound.

  10. Numerical aspects for efficient welding computational mechanics

    Directory of Open Access Journals (Sweden)

    Aburuga Tarek Kh.S.

    2014-01-01

    Full Text Available The effect of the residual stresses and strains is one of the most important parameter in the structure integrity assessment. A finite element model is constructed in order to simulate the multi passes mismatched submerged arc welding SAW which used in the welded tensile test specimen. Sequentially coupled thermal mechanical analysis is done by using ABAQUS software for calculating the residual stresses and distortion due to welding. In this work, three main issues were studied in order to reduce the time consuming during welding simulation which is the major problem in the computational welding mechanics (CWM. The first issue is dimensionality of the problem. Both two- and three-dimensional models are constructed for the same analysis type, shell element for two dimension simulation shows good performance comparing with brick element. The conventional method to calculate residual stress is by using implicit scheme that because of the welding and cooling time is relatively high. In this work, the author shows that it could use the explicit scheme with the mass scaling technique, and time consuming during the analysis will be reduced very efficiently. By using this new technique, it will be possible to simulate relatively large three dimensional structures.

  11. Research on stress corrosion behavior of CCSE40 welded by underwater wet welding with austenitic welding rod in seawater

    Science.gov (United States)

    Zou, Y.; Bai, Q.; Dong, S.; Yang, Z. L.; Gao, Y.

    2017-09-01

    The stress corrosion behavior of CCSE40 welded by underwater wet welding with austenitic welding rod in seawater was studied. Microstructure, mechanical property and stress corrosion cracking susceptibility of the underwater wet welding joint were analyzed by metallographic observation, tensile and bending tests, slow strain rate test (SSRT) and SEM. The results indicated that the weld zone (WZ) and the heat affected zone (HAZ) were all sensitive to the stress corrosion, and the WZ was more sensitive than the HAZ.

  12. Flow Accelerated Corrosion of Carbon Steel in the Feedwater System of PWR Plants - Behaviour of Welds and Weld Assemblies

    Science.gov (United States)

    Mansour, C.; Pavageau, E. M.; Faucher, A.; Inada, F.; Yoneda, K.; Miller, C.; Bretelle, J.-L.

    Flow Accelerated Corrosion (FAC) of carbon steel is a phenomenon that has been studied for many years. However, to date, the specific behavior of welds and weld assemblies of carbon steel towards this phenomenon has been scarcely examined. An experimental program of FAC of welds and weld assemblies is being conducted by EDF and CRIEPI. This paper describes the results obtained on the behavior of weld metal independently of its behavior in a weld assembly as well as the sensitivity to FAC of various weld assembly configurations. Tests are performed, at EDF, in the CIROCO loop which permits to follow the FAC rate by gammametry measurements, and at CRIEPI, in the PRINTEMPS loop where FAC is measured by laser displacement sensor. Welds are performed by two different methods: Submerged Arc Welding (SAW) and Gas Tungsten Arc Welding (GTAW). The influence of several parameters on FAC of welds is examined: welding method, chromium content and temperature. For weld assemblies, only the impact of chromium content is studied. All the tests are conducted in ammonia medium at pH 9.0 and oxygen concentration lower then 1 ppb. Chemical parameters, as the pH, the conductivity and oxygen concentration, are measured in situ during the test and surface characterizations are performed after the test. The results show that, with more than 0.15% chromium, no FAC is detected on the weld metal, which is similar to the base metal behaviour. For the same and lower chromium content, the two types of metal have the same FAC rate. Concerning the temperature effect, for both metals FAC rate decreases with temperature increase above 150°C. Below 150 °C, their behaviour seems to be different. For weld assemblies, the study of different configurations shows that the chromium content is the main parameter affecting the behaviour of the specimens. Additional tests and modeling studies will be conducted in order to complete the results.

  13. Use of flux welding slag of the Mn-O-SiO{sub 2} system for the obtaining of a new alloyed agglomerated flux; Empleo de escorias de soldadura del sistema MnO-SiO{sub 2} para la obtencion de un nuevo fundente aglomerado aleado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, A.; Quintana, R.; Garcia, L. L.; Perdomo, L.; Jimenez, G.; Gomez, C. R.; Alguacil, F. J.; Cores, A.

    2005-07-01

    This paper deals with the use of welding slags of the MnO-SiO{sub 2} system fluxes, coming from the recovering by means of the submerged arc welding in the manufacturing of agglomerated fluxes for surfacing with the same propose. the composition of the matrix is studied by means of an experimental design in a restricted area of the Mc Lean Anderson kind, the technological behaviour of the different mixtures is checked, and the results of the best types that have alloy charges included are analysed by a characterization of the weld. (Author) 20 refs.

  14. Effect of neutron irradiation on the mechanical properties of weld overlay cladding for reactor pressure vessel

    Science.gov (United States)

    Tobita, Tohru; Udagawa, Makoto; Chimi, Yasuhiro; Nishiyama, Yutaka; Onizawa, Kunio

    2014-09-01

    This study investigates the effects of high fluence neutron irradiation on the mechanical properties of two types of cladding materials fabricated using the submerged-arc welding and electroslag welding methods. The tensile tests, Charpy impact tests, and fracture toughness tests were conducted before and after the neutron irradiation with a fluence of 1 × 1024 n/m2 at 290 °C. With neutron irradiation, we could observe an increase in the yield strength and ultimate strength, and a decrease in the total elongation. All cladding materials exhibited ductile-to-brittle transition behavior during the Charpy impact tests. A reduction in the Charpy upper-shelf energy and an increase in the ductile-to-brittle transition temperature was observed with neutron irradiation. There was no obvious decrease in the elastic-plastic fracture toughness (JIc) of the cladding materials upon irradiation with high neutron fluence. The tearing modulus was found to decrease with neutron irradiation; the submerged-arc-welded cladding materials exhibited low JIc values at high temperatures.

  15. Multiple exposure to metals in eight types of welding.

    Science.gov (United States)

    Apostoli, P; Porru, S; Brunelli, E; Alessio, L

    1997-01-01

    This article evaluates multiple exposures to metals in different types of metal welding such as manual metal arc for mild and stainless steel, continuous wire, submerged arc, laser and brazing. Environmental monitoring was carried out in eight different occupational situations and the inductively coupled plasma mass spectrometry technique was adopted in order to characterize exposure to several elements simultaneously and with high accuracy. The results showed that up to 23 elements could be measured. The highest concentrations were found for Al, Mn, Fr, Ni, Cr, Cu and Zn. For some elements such as In, Nd, I, Rb the concentrations were very low. A qualitative and quantitative variation in fume composition was observed at a certain distance from the welding point, which should be to taken into account when evaluating indirect exposures. It would also be possible, with this technique, to identify specific elements in the mixture which could also be measured in biological fluids.

  16. Microgalvanic corrosion of laser-welded HSLA steels

    NARCIS (Netherlands)

    De Wit, J.H.; Looi, Y.M.

    Laser welding of galvanized high strength low alloy (HSLA) steels leads to the evaporation of zinc at the weld and the formation of a heat-affected-zone (HAZ). High heat input due to welding generates macro galvanic coupling between the weld and the parent metal as well as micro galvanic corrosion

  17. Microgalvanic corrosion of laser-welded HSLA steels

    NARCIS (Netherlands)

    Looi, Y.M.

    2008-01-01

    Laser welding of galvanized high strength low alloy (HSLA) steels leads to the evaporation of zinc at the weld and the formation of a heat-affected-zone (HAZ). High heat input due to welding generates macro galvanic coupling between the weld and the parent metal as well as micro galvanic corrosion

  18. Effect of molybdenum addition on microstructure and mechanical properties of plain carbon steel weld

    Directory of Open Access Journals (Sweden)

    Jyoti Menghani

    2016-12-01

    Full Text Available The present investigation has two main objectives; first is optimization of welding process parameters of submerged arc welding (SAW using Taguchi philosophy and second is to improve the mechanical properties such as strength and microhardness of weld joint by alloying with varying amounts of molybdenum. For optimization of welding process, parameters Taguchi philosophy have been applied on a mild steel plate (AISI C- 1020 of 10 mm thickness with 60o groove angle with arc voltage and welding speed as variables and bead width as output variables. A mathematical relationship between bead width, arc voltage and welding speed has also been found using multiple regression analysis for the present base metal plate geometry. After optimizing welding parameters, molybdenum has been added individually to the welding area in varying percentages. The properties of alloyed and unalloyed weld metal bead are compared. The mechanical characterization of weld has been done in terms of microhardness, tensile strength, whereas microstructural characterization has been performed using optical microscopy, XRD and EDS. The presence of molybdenum resulted in bainite structure in weld bead having a refined grain structure, enhancement in tensile strength and microhardness. The XRD results showed the formation of molybdenum carbides justifying the increase in microhardness value.

  19. Carbothermic reduction of pyrolusite for obtaining carbon bearing ferromanganese and slags, adequated to the development of welding materials; Reduccion carbotermica de pirolusita para la obtencion de ferromanganeso y escoria, adecuados al desarrollo de materiales de soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Crespo, A.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Perdomo Gonzalez, L.; Gomez-Perez, C. R.; Jimenez-Vielsa, G. E.; Cores-Sanchez, A.

    2004-07-01

    The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. the ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW) is established. Calculation for charge components (pyrolusite, coke, steel wool, lime, rutile and fluorite) for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO{sub 2}-MnO-CaO system. Change materials reduction experiments to obtain FeMn and slag are used to develop a SAW flux. (Author) 21 refs.

  20. Prediction of the weld pool geometry of TIG arc welding by using ...

    African Journals Online (AJOL)

    The present paper describes fuzzy logic simulation of tungsten inert gas welding (TIG) process to predict the weldment macrostructure zones' shape profile characteristics. The prediction of the weld pool geometry together with the shape of the heat affected zone (HAZ) was accomplished taking into account of TIG welding ...

  1. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Martinez, D.I., E-mail: dorairma@yahoo.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Perez, A., E-mail: betinperez@hotmail.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Guajardo, H., E-mail: hguajardo@frisa.com [FRISA Aerospace, S.A. de C.V., Valentin G. Rivero No. 200, Col. Los Trevino, C.P. 66150, Santa Caterina N.L. (Mexico); Garza, A., E-mail: agarza@comimsa.com [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V. (COMIMSA), Ciencia y Tecnologia No.790, Saltillo 400, C.P. 25295 Saltillo Coah. (Mexico)

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  2. The use of neutron diffraction for the determination of the in-depth residual stresses profile in weld coatings; A utilizacao da difracao de neutroes na determinacao do perfil de tensoes residuais em revestimentos por soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Maria Jose; Batista, A.C.; Nobre, J.P. [Universidade de Coimbra (Portugal). Dept. de Fisica. Centro de Estudos de Materiais por Difraccao de Raios X (CEMDRX); Loureiro, Altino [Universidade de Coimbra (Portugal). Dept. de Engenharia Mecanica. Centro de Engenharia Mecanica (CEMUC); Kornmeier, Joana R., E-mail: mjvaz@fe.up.pt [Technische Universitaet Muenchen, Garching (Germany). FRM II

    2013-04-15

    The neutron diffraction is a non-destructive technique, particularly suitable for the analysis of residual stress fields in welds. The technique is used in this article to study ferritic samples, coated by submerged arc welding using stainless steel filler metals. This procedure is often used for manufacturing process equipment for chemical and nuclear industries, for ease of implementation and economic reasons. The main disadvantage of that processes is the cracking phenomenon that often occurs at the interface between the base material and coatings, which can be minimized by performing post-weld stress relief heat treatments. The samples analyzed in this study were made of carbon steel plates, coated by submerged arc welding two types of stainless steel filler metals. For the first layer was used one EN 12 072 - S 2 U 23 12 electrode, while for the second and third layers were used an EN 12 072 - 19 12 3 S L electrode. After cladding, the samples were submitted to a post-weld heat treatment for 1 hour at 620 deg C. The residual stress profiles obtained by neutron diffraction evidence the relaxation of residual stress given by the heat treatment. (author)

  3. Fundamental Studies of Phase Transformations and Mechanical Properties in the Heat Affected Zone of 10 wt% Nickel Steel

    Science.gov (United States)

    Barrick, Erin J.

    United States naval applications require the use of steels with high strength and resistance to fracture at low temperatures to provide good ballistic properties. In recent years, 10 wt% Ni steel has been developed with strength and toughness values exceeding those of steels currently used, and is now being considered as a candidate material to replace existing high-strength, low alloy steels. This steel has excellent toughness from the mechanically induced transformation of interlath austenite films to martensite. These austenite films are formed via a carefully developed quenching, lamellarizing, and tempering heat treatment. However, before 10 wt% Ni steel can be implemented for full-scale applications, the effects of the rapid heating and cooling rates associated with welding thermal cycles on phase transformations and mechanical properties must be understood. In this research, a fundamental understanding of phase transformations and mechanical properties in the heat-affected zone of fusion welds in 10 wt% Ni steel was developed through heating and cooling rate dilatometry experiments, gas tungsten arc welding, and simulation of gas metal arc welding. First, an investigation into the effects of heating and cooling rate on the phase transformations in 10 wt% Ni steel was performed. The Ac1 and Ac3 temperatures during heating were determined as a function of heating rate, and sluggish transformation during fast heating rates manifested itself as a high Ac3 temperature of 1050°C as opposed to a temperature of 850°C at slow heating rates. A continuous cooling transformation diagram produced for 10 wt% Ni steel reveals that martensite will form over a very wide range of cooling rates, which reflects a very high hardenability of this alloy. This is significant because the range of cooling rates for which the diagram was constructed over easily covers the range associated with fusion welding, so there would not be the need for precise control over the weld

  4. Study on impact properties of creep-resistant steel thermally simulated heat affected zone

    Directory of Open Access Journals (Sweden)

    Mitrović Radivoje M.

    2012-01-01

    Full Text Available The steam pipe line (SPL and steam line material, along with its welded joints, subject to damage that accumulates during operation in coal power plants. As a result of thermal fatigue, dilatation of SPL at an operating temperature may lead to cracks initiation at the critical zones within heat affected zone (HAZ of steam pipe line welded joints. By registration of thermal cycle during welding and subsequent HAZ simulation is possible to obtain target microstructure. For the simulation is chosen heat resisting steel, 12H1MF (designation 13CrMo44 according to DIN standard. From the viewpoint of mechanical properties, special attention is on impact toughness mostly because very small number of available references. After simulation of single run and multi run welding test on instrumented Charpy pendulum. Metallographic and fractographic analysis is also performed, on simulated 12H1MF steel from service and new, unused steel. The results and correlation between microstructure and impact toughness is discussed, too.

  5. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  6. Potential Benefits of Ultrasonically Assisted Fusion Welding ...

    African Journals Online (AJOL)

    Many of the processes in which ultrasonic oscillations have been beneficial are similar to fusion welding process where the quality of welds depends on porosity, crystallisation rate, inclusions, inter-metallic compounds, depth of penetration, heat affected zone, etc. Some preliminary tests were performed to assess the effects ...

  7. QUALITY OF WELD CLADS APPLIED BY SAW METHOD IN ADHESIVE WEAR CONDITIONS

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2012-11-01

    Full Text Available This contribution deals with the analysis of the renovation layer quality of continuous casting steel rolls, developed through the submerged arc surfacing method (SAW. The continuous casting roll was analysed via the degradation phenomena which act during the operation. Four kinds of filler materials were used for the renovation of the worn roll. Surfacing was carried out as a three-layer in order to eliminate the need for intermediate layer formation. The quality of weld deposits was evaluated in terms of the structure, hardness and wear resistance of weld deposits at 23°C and 400 °C using pin-on-disc wear test. The best properties showed newly developed filler material W8-WLDC8 from the point of view of the hardness, together with wear resistance of the deposited layers in room and elevated temperatures.

  8. Quality of weld clads applied by SAW method in adhesive wear conditions

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2012-11-01

    Full Text Available This contribution deals with the analysis of the renovation layer quality of continuous casting steel rolls, developed through the submerged arc surfacing method (SAW. The continuous casting roll was analysed via the degradation phenomena which act during the operation. Four kinds of filler materials were used for the renovation of the worn roll. Surfacing was carried out as a three-layer in order to eliminate the need for intermediate layer formation. The quality of weld deposits was evaluated in terms of the structure, hardness and wear resistance of weld deposits at 23°C and 400 °C using pin-on-disc wear test. The best properties showed newly developed filler material W8-WLDC8 from the point of view of the hardness, together with wear resistance of the deposited layers in room and elevated temperatures.

  9. Mechanical properties and microstructure of F-82H welded joints using CO{sub 2} laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Yamanouchi, N.; Shiba, K.

    1996-10-01

    The laser welding of F-82H was successfully conducted. The heat affected zone of the welding, was about 21 mm width. It was quite adequate to make small specimens, such as SS-3 type sheet tensile specimen.

  10. Obtaining in an electric arc furnace alloys of the Fe-Mn-Cr-C system and slag destined to the development of welding consumables

    Directory of Open Access Journals (Sweden)

    Lorenzo Perdomo-González

    2018-01-01

    Full Text Available The production of chromium manganese ferroalloys for the use in the development of alloying loads of welding consumables is presented. On the basis of variations in the proportions of the chromium and manganese minerals in the loads, different combinations are established, which allow obtaining multicomponent ferroalloys with composition ranging from 9 to 32 % chromium and from 24 to 65 % manganese. The melting-reduction process is carried out in an electric arc furnace with a graphite crucible and with the presence of coke as a reducing component which guarantees the obtaining of high carbon alloys (5–6 %. The use of the multicomponent ferroalloy in the formulation of welding consumables simplifies and makes cheaper the obtaining of these materials. As result of metallurgical processing, slag formed by the silicon, aluminum, magnesium, manganese and calcium oxides are obtained, which are feasible to use in the production of flux matrices for submerged arc welding process.

  11. Weld bead profile of laser welding dissimilar joints stainless steel

    Science.gov (United States)

    Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.

    2017-10-01

    During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.

  12. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  13. Use of Friction Stir Processing for Improving Heat-Affected Zone Liquation Cracking Resistance of a Cast Magnesium Alloy AZ91D

    Science.gov (United States)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-10-01

    In this work, a cast magnesium alloy AZ91D was friction stir processed. Detailed microstructural studies and Gleeble hot ductility tests were conducted on the as-cast and the FSPed samples to comparatively assess their heat-affected zone liquation cracking behavior. The results show that the use of FSP as a pretreatment to fusion welding can strikingly improve the heat-affected zone liquation cracking resistance of alloy AZ91D by reducing the amount and size of the low-melting eutectic β (Mg17Al12) as well as by refining the matrix grain size.

  14. Cold metal transfer welding of AA1050 aluminum thin sheets

    OpenAIRE

    İrizalp,Alaattin Ozan; Durmuş,Hülya; Yüksel, Nilay; Türkmen,İlyas

    2016-01-01

    ABSTRACT This study was aimed to investigate the welding parameters on mechanical behavior of 2 mm thick AA1050 sheet materials joined by cold metal transfer (CMT) method. Macro structural examination showed that decreasing heat input decreased the pore size in the weld metal. Tensile test was applied and failure occurred in heat affected zone of aluminum sheet metal. Maximum tensile strength was found in the sample with minimum heat input. Heat affected zone was observed explicitly in the sa...

  15. Novel Process Revolutionizes Welding Industry

    Science.gov (United States)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  16. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  17. Effects of Notch Location on Heat-affected Zone Impact Properties of SA-516 Steels

    Science.gov (United States)

    Hong, Jaekeun; Park, Jihong; Kang, Chungyun

    In case of welding for pressure retaining parts on nuclear components, the verifications of heat affected zone (HAZ) impact properties are required according to application codes such as ASME Sec. III, RCC-M, KEPIC (Korea Electric Power Industry Code) MN, and JEA (Japan Electric Association) Code. Especially in case of Charpy V-notch tests of HAZ, the requirements of notch location and specimen direction have greatly impact on the reliability and consistency of the test results. For the establishment of newly adequate impact test requirements, the requirements about the HAZ impact tests of ASME Section III, RCC-M, KEPIC MN and JEA code were researched in this study. And also the HAZ impact test requirements about surveillance tests in nuclear reactor vessels were compared and investigated. For the effects of the notch location and specimen direction on the impact properties, SA-516 Gr.70 materials were investigated. The specimens were fabricated with using shielded metal-arc welding, and maximum heat inputs were controlled within the range of 16˜27 kJ/cm. Especially, this research showed the lateral expansion values and absorbed energies were not compatible and the impact test results were varied depending on notch location and specimen direction. Based on this study, newly adequate impact test requirements of HAZ were proposed.

  18. ANALISA ELECTRODE CONSUMABLE TYPE OK AUTROD 12.10 PENGELASAN SUBMERGED ARC WELDING PADA BLOK-BLOK KAPAL DCV 18500 DWT DI PT. JASA MARINA INDAH UNIT II SEMARANG

    Directory of Open Access Journals (Sweden)

    Sukanto Jatmiko

    2012-07-01

    Full Text Available In this globalization era technological advances growed very fast. In shipping industry of development process shipbuilding of principal feedstock to used steel plate, with construction tacking on using welder method.In this research purpose of lifted is know number of requirement (consumable electrode for welder SAW at block-block ship DCV 18500 DWT in PT. Jasa Marina Indah Semarang.At this experiment specimen applied is low carbon steel of type ST 42 with thickness of 12, 13, 14, 17, 19 dan 24 mm. Research is done by the way of making specimen at every plate thickness. Then is done path measurement of length, used electrode length, and weight flux applied at the welder.From result of gauging and data calculation welder at block DB 5(p/c/s, SS5A(p/s, SS 5B(p/s, UD 5C, and TB 102 (p/c/s will be known number of electrodes applied in welder SAW and number of flux used.

  19. Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints

    Science.gov (United States)

    Zhan, Xiaohong; Peng, Qingyu; Wei, Yanhong; Ou, Wenmin

    2017-09-01

    Laser beam welding technique offers obvious advantages over other fusion welding processes in terms of joining titanium alloy. The microstructure of welded seam and heat affected zone resulted from diverse welding speeds and laser powers were investigated after simulating welding heat treatment. The analysis of the thermal transport properties successfully explained the morphology. Optimal process parameters were obtained. The simulation results were consistent with the corresponding experimental observations.

  20. Numerical simulation of welding

    DEFF Research Database (Denmark)

    Hansen, Jan Langkjær; Thorborg, Jesper

    Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...

  1. Simultaneous obtention of multicomponent ferroalloy and slag from black sands for the development of electrical arc welding consumables; Obtencion simultanea de ferroaleacion multicomponents y escoria a partir de areas negras, para el desarrollo de consumibles de doldadura por arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Crespo, A.; Gomez-Rodriguez, L.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Cerpa-Naranjo, A.; Cores-Sanchez, A.

    2004-07-01

    In this paper, chemical and mineralogical characterizations of the black sands of the Mejias placer of Sagua de Tanamo (the most important beach littoral placer of the northwest of oriental Cuba) are exposed. Starting from these characterizations a calculation strategy is developed for the making of the metallurgical load that allows to obtain simultaneously, when processed by carbothermic reduction in an electrical arc furnace, a multicomponent ferroalloy and a useful slag for the making of electric arch welding consumables. The powder of the obtained slag is agglomerated with liquid glass. The resulting pellets, due to their behavior on the submerged arc welding (SAW) present technological and metallurgical properties that correspond with the requirements of an agglomerated flux matrix. The chemical composition of the multicomponent ferroalloy is constituted by metallic elements of high metallurgical and alloyed values (V, Cr, Mo, Ti, Nb). It is appropriate for the formulation of consumables for manual welding (SMAW) and SAW, as well. (Author) 15 refs.

  2. Welding of stainless and nickel based materials in the chemical industry. Consumables and procedures. Soldadura de aceros inoxidables y de materiales de base niquel en la industria quimica. Consumibles y procedimientos

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, J.; Budgifvars, S. (The ESA Grouo, Geoteborg (Sweden))

    1994-01-01

    In the chemical and petrochemical process industry a large range of various stainless and nickel based materials are used to meet high demands on corrosion resistance for optimum service performance. These materials include standard stainless steels, duplex and super duplex steels, super austenitic steels and nickel based alloys. Many components are being welded in the construction stage or may later on have to be repaired by welding. The design of components also often calls for joining or cladding of dissimilar materials to optimize the use of the material properties and for economical reasons to reduce the amount of expensive materials. Consumables and procedures have been developed to give weld metals to match the corrosion and strength requirements of the materials. There is a wide selection of MM electrodes with different coatings available and new types of stainless flux cored wires are being introduced. Especially for cladding of large surfaces the submerged arc strip cladding process offer high productivity solutions. (Author) 6 ref.

  3. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    Science.gov (United States)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  4. Mechanical Properties of Steel P92 Welded Joints Obtained By TIG Technology

    Science.gov (United States)

    Mohyla, P.; Havelka, L.; Schmidová, E.; Vontorová, J.

    2017-11-01

    Mechanical properties of P92 steel welded joints obtained using the TIG (141) technology have been studied upon post-welding heat treatment (PWHT). The microhardness, tensile strength, and impact toughness of metal in the weld and heat-affected zone are determined. The PWHT is shown to be obligatory.

  5. Bead-On-Plate Welding on S235JR Steel by Underwater Local Dry Chamber Process

    Directory of Open Access Journals (Sweden)

    Rogalski Grzegorz

    2014-04-01

    Full Text Available The article presents the results of the effect of parameters of underwater local dry chamber welding on the properties of padding welds. The effect of heat input and the type of shielding gas on the structure and hardness of welds was established. the functions for estimating the maximum hardness of the heat affected zone have been also elaborated

  6. Factors Affecting Impact Toughness in Stabilized Intermediate Purity 21Cr Ferritic Stainless Steels and Their Simulated Heat-Affected Zones

    Science.gov (United States)

    Anttila, Severi; Alatarvas, Tuomas; Porter, David A.

    2017-12-01

    The correlation between simulated weld heat-affected zone microstructures and toughness parameters has been investigated in four intermediate purity 21Cr ferritic stainless steels stabilized with titanium and niobium either separately or in combination. Extensive Charpy V impact toughness testing was carried out followed by metallography including particle analysis using electron microscopy. The results confirmed that the grain size and the number density of particle clusters rich in titanium nitride and carbide with an equivalent circular diameter of 2 µm or more are statistically the most critical factors influencing the ductile-to-brittle transition temperature. Other inclusions and particle clusters, as well as grain boundary precipitates, are shown to be relatively harmless. Stabilization with niobium avoids large titanium-rich inclusions and also suppresses excessive grain growth in the heat-affected zone when reasonable heat inputs are used. Thus, in order to maximize the limited heat-affected zone impact toughness of 21Cr ferritic stainless steels containing 380 to 450 mass ppm of interstitials, the stabilization should be either titanium free or the levels of titanium and nitrogen should be moderated.

  7. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  8. Defect detection of partially complete SAW and TIG welds using the ultrasonic time-of-flight diffraction method

    Science.gov (United States)

    Lawson, Shaun W.; Bonser, Gary R.

    1998-03-01

    An application of machine vision applied to the analysis of ultrasonic images formed using the time-of-flight diffraction (TOFD) method on incomplete weld geometries is described. The rationale of the work being to identify weld defects as soon as they are produced, thereby reducing the costs of any subsequent repairs. The analysis uses TOFD scans as input to a filtering and 'window' based variance operator for the segmentation of suspect defect areas inside the weld region. A suite of pc based software and a high temperature TOFD data acquisition system have been benchmarked through a series of demonstration trials on both 80mm thick carbon steel submerged arc welded testpieces, and 25mm thick carbon steel tungsten inert gas welded testpieces. The range of intentionally implanted defects, from root cracks to lack of side wall fusion, were detected with an overall accuracy of 79 percent on a data set of 174 defects on scans performed at 10-90 percent weld completion.

  9. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  10. Thermal insulation of wet shielded metal arc welds

    Science.gov (United States)

    Keenan, Patrick J.

    1993-06-01

    Computational and experimental studies were performed to determine the effect of static thermal insulation on the quality of wet shielded metal arc welds (SMAW). A commercially available heat flow and fluid dynamics spectral-element computer program was used to model a wet SMAW and to determine the potential effect on the weld cooling rate of placing thermal insulation adjacent to the weld line. Experimental manual welds were made on a low carbon equivalent (0.285) mild steel and on a higher carbon equivalent (0.410) high tensile strength steel, using woven fabrics of alumina-boria-silica fibers to insulate the surface of the plate being welded. The effect of the insulation on weld quality was evaluated through the use of post-weld Rockwell Scale hardness measurements on the surface of the weld heat affected zones (HAZ's) and by visual inspection of sectioned welds at 10 X magnification. The computational simulation demonstrated a 150% increase in surface HAZ peak temperature and a significant decrease in weld cooling rate with respect to uninsulated welds, for welds in which ideal insulation had been placed on the base plate surface adjacent to the weld line. Experimental mild steel welds showed a reduction in surface HAZ hardness attributable to insulation at a 77% significance level. A visual comparison of the cross-sections of two welds made in 0.410 carbon equivalent steel-with approximately equivalent heat input-revealed underbead cracking in the uninsulated weld but not in the insulated weld.

  11. Investigation of Micro Hardness, Cooling Rate and Microstructure of ATIG Welded samples of Al-SiC composite

    Directory of Open Access Journals (Sweden)

    Pichumani Sivachidambaram

    2018-01-01

    Full Text Available Activated TIG welding has been performed on Al – 8% SiC composite 5mm plate with various fluxes such as Al2O3, MnO2, CaO, MgO, SiO2 & TiO2, to study & analyze the Microstructure, Micro hardness and cooling rate. Correlation study between micro hardness, microstructure and cooling rate for Constant Current TIG welding and Activated TIG welding on Al-SiC composite are also carried out to analyze the relation between the effect of cooling rate on microstructure & the effect of microstructure on micro hardness. The experimental results of ATIG welding on Al-SiC composite shows fine grain weld microstructure on ATIG – SiO2 & ATIG – TiO2, which results in higher micro hardness. Micro hardness values are taken in different locations of weld surface at 1mm, 2mm & 3mm below the weld surface and the same is also observed along the weld zone to heat affected zone upto 12mm for the center of the weldment. Minimum micro hardness values found in ATIG – MnO2, ATIG – CaO & ATIG – MgO are due to intermediate micro structure between coarse and fine in heat affected zone. ATIG – Al2O3 weld zone & heat affected zone and heat affected zone of ATIG – MnO2, ATIG – CaO & ATIG – MgO shows coarse microstructure leading to reduction in micro hardness value. Cooling rate for the different CCTIG & ATIG welding are recorded and correlation between the micro structures are studied. Coarse micro structure in weld zone and heat affected zone have least cooling rate whereas fine micro structure in weld zone resulted at higher cooling rate. Heat affected zone strongly depends on temperature gradient between the weld center and weldment’s heat affected zone.

  12. Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques

    Science.gov (United States)

    Chatterjee, Anjan; Kumar, Santosh; Tewari, Raghvendra; Dey, Gautam Kumar

    2016-03-01

    In the current study, welding of TZM (molybdenum-based alloy) plates in square-butt configuration was carried out using electron beam and laser-GTAW hybrid power sources. Microstructures of weld joint containing three zones—parent metal, heat-affected zone, and fusion zone—were clearly identified when examined through optical and scanning electron microscopy. The weld joints were found to be sound with very wide fusion and heat-affected zones. The microstructure of the fusion zone was coarse-grained. as-solidified microstructure, while the microstructure of heat-affected zone was the recrystallized microstructure with reduction in grain size as distance from the fusion line increased. Microhardness profile using Vickers hardness tester was obtained across the weld region, and the tensile properties of the weld joints were evaluated by performing room temperature tensile test and fracture was examined using scanning electron microscope. Joint coefficient of the weld joints were ~40 to 45 pct of that of the parent metals with nonmeasurable tensile ductility with predominantly transgranular mode of fracture indicating weakness along the grain boundary. Detailed orientation imaging and transmission electron microscopy were carried out to understand the most dominating factor in introducing weld joint brittleness.

  13. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  14. Improved simulation method of automotive spot weld failure with an account of the mechanical properties of spot welds

    Science.gov (United States)

    Wu, H.; Meng, X. M.; Fang, R.; Huang, Y. F.; Zhan, S.

    2017-12-01

    In this paper, the microstructure and mechanical properties of spot weld were studied, the hardness of nugget and heat affected zone (HAZ) were also tested by metallographic microscope and microhardness tester. The strength of the spot weld with the different parts' area has been characterized. According to the experiments result, CAE model of spot weld with HAZ structure was established, and simulation results of different lap-shear CAE models were analyzed. The results show that the spot weld model which contained the HAZ has good performance and more suitable for engineering application in spot weld simulation.

  15. Femtosecond fiber laser welding of dissimilar metals.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  16. Thermomechanical model of hydrogen cracking at heat affected cannon bore surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, J.H.; Vigilante, G.N.; Troiano, E. [US Army Armament RD and E Center, Watervliet, NY (United States)

    1999-07-01

    Hydrogen cracking in weldments presents major challenges, and two examples were discussed concerning hydrogen cracking in the heat-affected region of a fired cannon. The authors described the metallographic evidence of damage at different depths in the vicinity of the bore surface. The verification of near-bore temperature distributions and transient and residual stress distributions calculated using classic one-dimensional heat flow analysis was effected by way of depth of steel transformation due to firing. The results indicated that the predictions as to the depths of thermal change and hydrogen cracks agreed well with the observed depths for various crack orientations and firing temperatures. A description of laboratory fracture mechanics tests using bolt-load compact specimens was included, as well as crack growth and blunt notched tests in acid hydrogen environments. The specific instances of welding for cannons as they relate to the utility of thermal and fracture mechanics analyses and the laboratory fracture mechanics tests were discussed. 9 refs., 2 tabs., 8 figs.

  17. Direct observation of phase transformations in the simulated heat-affected zone of a 9Cr martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, P. [Graz Univ. of Tech. (Austria). IWS; Palmer, T.A.; Elmer, J.W. [Lawrence Livermore National Lab., Livermore (United States); Specht, E.D. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2008-04-15

    An experimental test melt of a boron alloyed 9Cr-3W-3Co-V,Nb steel for high temperature applications in the thermal power generation industry was produced by vacuum induction melting. This grade of steel typically displays a homogeneous tempered martensitic microstructure in the as-received, i.e. normalised and tempered, condition. However, after welding, this microstructure is significantly altered, resulting in a loss of its desired properties. The phase transformations during simulated thermal cycles typical of those experienced in the weld heat-affected zone were directly observed by in-situ X-ray diffraction experiments using synchrotron radiation. Heating rates of 10 K s{sup -1} and 100 K s{sup -1} up to a peak temperature of 1300 C are investigated here. The final microstructures observed after both simulated weld thermal cycles are primarily composed of martensite with approximately 4% retained delta ferrite and 4% retained austenite, by volume. With the temporal resolution of the in-situ X-ray diffraction technique, phase transformations from tempered martensite to austenite to delta ferrite during heating and to martensite during cooling were monitored. With this technique, the evolution of the final microstructure through both heating and cooling is monitored, providing additional context to the microstructural observations. (orig.)

  18. Suppression of grain refinement in heat-affected zone of 9Cr–3W–3Co–VNb steels

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Tetsuya, E-mail: MATSUNAGA.Tetsuya@nims.go.jp; Hongo, Hiromichi, E-mail: HONGO.Hiromichi@nims.go.jp; Tabuchi, Masaaki, E-mail: TABUCHI.Masaaki@nims.go.jp; Sahara, Ryoji, E-mail: SAHARA.Ryoji@nims.go.jp

    2016-02-08

    Prompt phase transformations make grains in the heat-affected zone (HAZ) smaller during welding of 9% chromium (9Cr) heat-resistant steels leading to premature failure under creep conditions, which is well known as a type IV fracture. Because the type IV fracture shortens the creep lifetime of the steels, suppressing the fracture is an urgent task in the energy industry. The present study shows that boron addition and nitrogen reduction inhibit grain refinement after welding because of a change in the morphology of the precipitate at prior austenite grain boundaries. In conventional 9Cr steel (ASME Gr. 92 steel), a high amount of MX was unable to pin interface migration of the phase transformation and generated fine grains in the HAZ. In the new B-added steels, B-stabilized M{sub 23}C{sub 6} became the dominant precipitate and showed a larger pinning effect of the phase transformation than MX, which resulted in coarse grains in the HAZ. This suggests that designing stabilized M{sub 23}C{sub 6} forms a superior welded microstructure and results in a longer creep lifetime of 9Cr steels.

  19. Heat affected zone in surfacing chromium ledeburitic steel

    Directory of Open Access Journals (Sweden)

    M. Tonkovič Prijanovič

    2010-07-01

    Full Text Available Tools get failured during work; wear is a major factor that contributes to failures. Damaged tools are replaced or filed. This paper describes typical changes that occur in the heat affected zone of tool (HAZ, which was repaired by surfacing with a TIG and with micro-plasma procedure. Microstructure of the steel on the repaired tool was analysed by an optical and scanning electron microscope. The tool was made of chromium ledeburitic steel type W.N. 1.2379 and it was repaired by surfacing steel type W.N. 1.4718. Changes in the HAZ also depend on the type of surfacing. Besides microstructural changes, dissolution of carbides, especially primary carbides. This way the concentration of the carbide-forming elements and carbon is increased in the base around the primary carbides in the HAZ so the result is so-called secondary eutectic or secondary ledeburite.

  20. Study of Laser Welding of HCT600X Dual Phase Steels

    Directory of Open Access Journals (Sweden)

    Švec Pavol

    2014-12-01

    Full Text Available The effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.

  1. Methodology for Estimating Thermal and Neutron Embrittlement of Austenitic Stainless Steel Welds During Service in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Rao, A. S.

    2016-04-28

    The effect of thermal aging on the degradation of fracture toughness and Charpy-impact properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures. The solidification behavior and the distribution and morphology of the ferrite phase in SS welds are described. Thermal aging of the welds results in moderate decreases in Charpy-impact strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds decreases by 50–80 J/cm2. The decrease in fracture toughness J-R curve, or JIc is relatively small. Thermal aging has minimal effect on the tensile strength. The fracture properties of SS welds are insensitive to filler metal; the welding process has a significant effect. The large variability in the data makes it difficult to establish the effect of the welding process on fracture properties of SS welds. Consequently, the approach used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated and irradiated, SS welds. The existing fracture toughness J-R curve data for SS welds have been reviewed and evaluated to define lower-bound J-R curve for submerged arc (SA)/shielded metal arc (SMA)/manual metal arc (MMA) welds and gas tungsten arc (GTA)/tungsten inert gas (TIG) welds in the unaged and aged conditions. At reactor temperatures, the fracture toughness of GTA/TIG welds is a factor of about 2.3 higher than that of SA/SMA/MMA welds. Thermal aging decreases the fracture toughness by about 20%. The potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also described. Lower-bound curves are presented that define the change in coefficient C and exponent n of the power-law J-R curve and the JIc value for SS welds as a function of neutron dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic SS welds are also discussed.

  2. Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M.; Abbasi, M.; Poursina, D.; Gheysarian, A. [University of Kashan, Kashan (Iran, Islamic Republic of); Bagheri, B. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2017-03-15

    Welding dissimilar metals by fusion welding is challenging. It results in welding defects. Friction stir welding (FSW) as a solid-state joining method can overcome these problems. In this study, 304L stainless steel was joined to copper by FSW. The optimal values of the welding parameters traverse speed, rotational speed, and tilt angle were obtained through Response surface methodology (RSM). Under optimal welding conditions, the effects of welding pass number on the microstructures and mechanical properties of the welded joints were investigated. Results indicated that appropriate values of FSW parameters could be obtained by RSM and grain size refinement during FSW mainly affected the hardness in the weld regions. Furthermore, the heat from the FSW tool increased the grain size in the Heat-affected zones (HAZs), especially on the copper side. Therefore, the strength and ductility decreased as the welding pass number increased because of grain size enhancement in the HAZs as the welding pass number increased.

  3. Hot cracking of welded joints of the 7CrMoVTiB 10-10 (T/P24) steel

    Science.gov (United States)

    Adamiec, J.

    2011-05-01

    Bainitic steel 7CrMoVTiB10-10 is one the newest steels for waterwalls of modern industrial boilers [1]. In Europe, attempts have been made to make butt welded joints of pipes made of this steel of the diameter up to 51 mm and thickness up to 8 mm. Many cracks have been observed in the welded joint, both during welding and transport and storage [2-4]. The reasons of cracking and the prevention methods have not been investigated. No comprehensive research is carried out in Europe in order to automate the welding process of the industrial boiler elements made of modern bainitic steel, such as 7CrMoVTiB10-10. There is no information about its overall, operative and local weldability, influence of heat treatment, as well as about resistance of the joints to cracking during welding and use. The paper presents experience of Energoinstal SA from development of technology and production of waterwalls of boilers made of the 7CrMoVTiB 10-10 steel on a multi-head automatic welder for submerged arc welding.

  4. Laser welding of fused quartz

    Science.gov (United States)

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  5. Microstructure development of welding joints in high Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubushiro, Keiji; Takahashi, Satoshi; Morishima, Keiko [IHI Corporation (Japan). Research Lab.

    2010-07-01

    Creep failure in high Cr ferritic steels welding joints are Type IV failure. Type IV-failure was ruptured in fine grained region of heat affected zone, microstructure and phase transformation process at welding in fine grained region were very important to clarify. Microstructure difference of heat affected zone was investigated in Gr.91, Gr.92, Gr.122 welding joint. The fraction of 60 degree block boundary, packet boundary, random boundary (including prior gamma boundary) length was compared in three ferritic steels by EBSP(Electron Backscatter Diffraction Pattern) analysis. HAZ was almost fully martensite phase in Gr.122 weld joint. On the other hand, HAZ in Gr.91 welding joint were some equiaxial grain and martensite structure. (orig.)

  6. Microstructural Aspects of Bifocal Laser Welding of Trip Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2017-06-01

    Full Text Available This work is concerned with comparative tests involving single-spot and twin-spot laser welding of thermomechanically rolled TRIP steel. The welding tests were carried out using keyhole welding and a solid state laser. In the case of twin-spot laser beam welding, the power distribution of beams was 50%:50%. The changes in macro- and microstructures were investigated using light and scanning electron microscopy. Three main zones subjected to the tests included the fusion zone, the heat affected zone and the intercritical heat affected zone (transition zone between the base material and the HAZ. Special attention was paid to the effect of various thermal cycles on the microstructure of each zone and on martensite morphology. The tests involved hardness measurements carried out in order to investigate the effect of different microstructures on mechanical properties of welds.

  7. FE analysis of cruciform welded joints considering different mechanical properties for base material, heat affected zone and weld metal

    National Research Council Canada - National Science Library

    Pasqualino Corigliano; Vincenzo Crupi; Eugenio Guglielmino; Wolfgang Fricke

    2014-01-01

    .... This innovative technique, based on the UCI method, allowed to identify the different zones and to assess their different mechanical properties, which were considered in the finite element model...

  8. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    Science.gov (United States)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-04-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  9. Influence of Column Axial Load and Heat Affected Zone on the Strength of Aluminium Column Web in Tension

    Directory of Open Access Journals (Sweden)

    Gianfranco De Matteis

    2014-05-01

    Full Text Available The component method for aluminium joints has been recently introduced in some codes and guidelines. Nevertheless, it is still in need of some development and improvement, as in some cases it was obtained by adapting the existing formulations that are valid for steel. The current paper presents the main outcomes of a parametric analysis carried out by means of finite element (FE numerical models for determining the influence of both column axial load and heat affected zone—in the case of welded details—on the structural response of the column web in a tension component. The proposed study integrates previous research carried out by the authors, where the influence of the assumed alloy was investigated and interpreted by corrective parameters expressed as a function of both the material strain hardening and ductility.

  10. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Directory of Open Access Journals (Sweden)

    G. Asala

    2016-01-01

    Full Text Available The susceptibility of heat affected zone (HAZ to cracking in Tungsten Inert Gas (TIG welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  11. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  12. Continuous cooling transformation behavior and impact toughness in heat-affected zone of Nb-containing fire-resistant steel

    Science.gov (United States)

    Wang, Hong Hong; Qin, Zhan Peng; Wan, Xiang Liang; Wei, Ran; Wu, Kai Ming; Misra, Devesh

    2017-09-01

    Simulated heat-affected zone continuous cooling transformation diagram was developed for advanced fireresistant steel. Over a wide range of cooling rates, corresponding to t8/5 from 6 s to 150 s, granular bainite was the dominant transformation constituent, while the morphology of less dominant martensite-austenite (M-A) constituent changed from film-like to block-type constituent; but the hardness remained similar to the average value of 190-205 HV (0.2). The start and finish transformation temperature was high at 700 °C and 500 °C, and is different from the conventional high strength low alloy steels. It is believed that the high-content (0.09 wt%) of Nb may promote bainite transformation at relatively high temperatures. Martenistic matrix was not observed at high cooling rate and the film-like M-A constituent and blocky M-A constituent with thin film of retained austenite and lath martensite were observed on slow cooling. Excellent impact toughness was obtained in the heat-affected zone with 15-75 kJ/cm welding heat input.

  13. A parametric study of the electroslag welding process

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, W.S.; Eagar, T.W.

    1982-12-01

    Screening experiments were conducted on electroslag welds to statistically evaluate the effect of independent process variables upon dependent process responses consisting of heat affected zone size, dilution, form factor, welding speed and heat input. The results of multiple electrode electroslag welds made with and without the use of a supplementary filler material are presented as well. Methods of reducing the size of the heat affected zone while maintaining an acceptable form factor were determined. It can be concluded that significant reductions in heat affected zone size, with resultant improvements in weldment impact properties, are not to be expected when the heat input to the process is reduced by as much as a factor of five.

  14. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  15. Laser welding of selected aerospace alloys

    Science.gov (United States)

    Ebadan, Gracie E.

    The study was aimed at developing an understanding of the microstructural effects of the laser welding process on the alloys, and assessing the structural integrity of the resultant welds. The effect of laser processing parameters such as laser power, laser beam traverse speed, lens focal length, and the manipulation of these parameters on the welding efficiency and weld area integrity was also investigated. Other tasks within the project included a study on the possibility of using an anodic film to enhance the laser weld ability of Al 6061. Finally, attempts were made to identify phases observed in the weld area of the composite materials. Nimonics C263 and PE11 exhibited laser welds free of cracks and porosity. The difference in composition between the two alloys did not result in any significant dissimilarities in their response to the laser welding process. The welds in both alloys exhibited a fine columnar dendritic microstructure, and while carbides were observed in the interdendritic regions of the welds, electron optical analysis did not reveal any gamma' precipitates in this region. It was concluded that for the welding of thin gage materials above a threshold laser power the resultant welding efficiency shows a greater dependence on laser beam mode, and laser spot size, than on laser power, and beam traverse speed. Aluminum 6061 was not easily welded with a laser in its as received form, and the welds showed some degree of porosity. Anodizing was found to improve the welding efficiency in this material. While the presence of an anodic film on the metal surface increased the welding efficiency of the alloy, no relationship was found between the thickness of the anodic film and welding efficiency in the range of film thicknesses investigated. Weld regions were observed to be cellular dendritic in structure, with narrow heat affected zones. No precipitates or low melting point phases could be identified in the weld region. Melt zones were successfully

  16. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  17. WOOD WELDING

    OpenAIRE

    Marcos Theodoro Muller; Rafael Rodolfo de Melo; Diego Martins Stangerlin

    2010-01-01

    The term "wood welding" designates what can be defined as "welding of wood surfaces". This new process, that it provides the joint of wood pieces without the use of adhesives or any other additional material, provokes growing interest in the academic environment, although it is still in laboratorial state. Linear friction welding induced bymechanical vibration yields welded joints of flat wood surfaces. The phenomenon of the welding occurs in less time than 10 seconds, with the temperature in...

  18. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  19. Verification of Strength of the Welded Joints by using of the Aramis Video System

    Directory of Open Access Journals (Sweden)

    Pała Tadeusz

    2017-03-01

    Full Text Available In the paper are presented the results of strength analysis for the two types of the welded joints made according to conventional and laser technologies of high-strength steel S960QC. The hardness distributions, tensile properties and fracture toughness were determined for the weld material and heat affect zone material for both types of the welded joints. Tests results shown on advantage the laser welded joints in comparison to the convention ones. Tensile properties and fracture toughness in all areas of the laser joints have a higher level than in the conventional one. The heat affect zone of the conventional welded joints is a weakness area, where the tensile properties are lower in comparison to the base material. Verification of the tensile tests, which carried out by using the Aramis video system, confirmed this assumption. The highest level of strains was observed in HAZ material and the destruction process occurred also in HAZ of the conventional welded joint.

  20. Flexural testing of weld site and HVOF coating characteristics

    CERN Document Server

    Yilbas, Bekir Sami; Sahin, Ahmet

    2014-01-01

    This book provides fundamental understanding and practical application of characteristics of flexural motion in the assessment of the weld size and coating thickness. Some formulations of heat transfer and flexural motion are introduced while displacement and load correlation are used to estimate elastic modules and the size of the heat affected zone as well as the coating thickness. The case studies presented give a practical understanding of weld size and coating thickness characterizations.

  1. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  2. Experimental Characterization of Electron Beam Welded SAE 5137H Thick Steel Plate

    Science.gov (United States)

    Kattire, Prakash; Bhawar, Valmik; Thakare, Sandeep; Patil, Sachin; Mane, Santosh; Singh, Rajkumar, Dr.

    2017-09-01

    Electron beam welding is known for its narrow weld zone with high depth to width ratio, less heat affected zone, less distortion and contamination. Electron beam welding is fusion welding process, where high velocity electrons impinge on material joint to be welded and kinetic energy of this electron is transformed into heat upon impact to fuse the material. In the present work electron beam welding of 60 mm thick SAE 5137H steel is studied. Mechanical and metallurgical properties of electron beam welded joint of SAE 5137H were evaluated. Mechanical properties are analysed by tensile, impact and hardness test. Metallurgical properties are investigated through optical and scanning electron microscope. The hardness traverse across weld zone shows HV 370-380, about 18% increase in the tensile strength and very low toughness of weld joint compared to parent metal. Microstructural observation shows equiaxed dendrite in the fusion zone and partial grain refinement was found in the HAZ.

  3. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  4. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  5. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  6. Superconducting accelerator cavity with a heat affected zone having a higher RRR

    Energy Technology Data Exchange (ETDEWEB)

    Brawley, John (Grafton, VA); Phillips, H. Lawrence (Hayes, VA)

    2000-01-01

    An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.

  7. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    Science.gov (United States)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  8. Friction stir welding (FSW process of copper alloys

    Directory of Open Access Journals (Sweden)

    M. Miličić

    2016-01-01

    Full Text Available The present paper analyzes the structure of the weld joint of technically pure copper, which is realized using friction stir welding (FSW. The mechanism of thermo-mechanical processes of the FSW method has been identified and a correlation between the weld zone and its microstructure established. Parameters of the FSW welding technology influencing the zone of the seam material and the mechanical properties of the resulting joint were analyzed. The physical joining consists of intense mixing the base material along the joint line in the “doughy” phase. Substantial plastic deformations immediately beneath the frontal surface of tool provide fine-grained structure and a good quality joint. The optimum shape of the tool and the optimum welding regime (pressure force, rotation speed and the traverse speed of the tool in the heat affected zone enable the achievement of the same mechanical properties as those of the basic material, which justifies its use in welding reliable structures.

  9. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  10. Weld microstructure and hardness prediction for in-service hot-tap welds

    Energy Technology Data Exchange (ETDEWEB)

    Wentao Cheng; Yong-Yi Wang [Engineering Mechanics Corporation of Columbus, OH (United States)]. E-mail: wcheng@emc-sq.com; ywang@emc-sq.com; Amend, William [Southern California Gas Co., Los Angeles, CA (United States)]. E-mail: bamend@semprautilities.com

    2005-07-01

    Welding onto an in-service pipeline is frequently required to repair damaged areas and for system modifications. There are often significant economic and environmental incentives to perform in-service welding, including the ability to maintain operations during welding and to avoid venting the contents to the atmosphere. Welds made onto in-service pipelines tend to cool at an accelerated rate. These welds are likely to have high heat-affected zone (HAZ) hardness which increases their susceptibility to hydrogen cracking. Accurate prediction of HAZ hardness is critical in developing successful welding procedures for in-service hot-tap welds. The present PRCI thermal analysis software for hot-tap welding uses an empirical-formula-based HAZ hardness prediction procedure. This paper describes an effort funded by PRCI to produce a significantly improved HAZ hardness prediction procedure over the procedure in the current PRCI thermal analysis software. A markedly improved hardness prediction procedure was developed and systematically validated using extensive experimental data of actual welds. The underlying hardness calculation algorithms were based on the proven state-of-the-art phase transformation models. Although on the average the procedure under-predicts the measured hardness by a small amount, the new hardness prediction procedure is a significant improvement in overall accuracy over the procedure in the current PRCI thermal analysis software. The procedure developed here lays the foundation for a much more accurate hardness prediction module in the future version of the PRCI thermal analysis software. (author)

  11. Microhardness Testing of Aluminum Alloy Welds

    Science.gov (United States)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still

  12. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  13. Quality control on crimping of large diameter welding pipe

    Science.gov (United States)

    Fan, Lifeng; Gao, Ying; Li, Qiang; Xu, Hongshen

    2012-11-01

    Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.

  14. Analysis of the Charpy V-notch test for welds

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    strength variations in a weldment in a HY100 steel. The predicted work to fracture shows a strong sensitivity to the location of the notch relative to the weld, with the most brittle behavior for a notch close to the narrow heat affected zone. The analyses illustrate the strong dependence of the transition...

  15. Upsetting Butt Edge Increases Weld-Joint Strength

    Science.gov (United States)

    Vesco, D.

    1964-01-01

    Mechanical upsetting /a mode of cold forging/ of butt edges to be welded is accomplished by the use of hydraulic rams and pressure rollers. The mechanical upsetting increases the thickness of the material in the heat-affected zone and compensates for the lower specific strength per unit thickness common to this area.

  16. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  17. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  18. Parameters of wood welding: A study with infrared thermography

    OpenAIRE

    Ganne-Chédeville, Christelle; Properzi, Milena; Pizzi, Antonio; Leban, Jean-Michel; Pichelin, Frédéric

    2017-01-01

    Welding of wood is a well-known joining procedure that offers several advantages over traditional mechanical fasteners or gluing. During welding, extensive solid-state transformation phases occur in the so-called melting zone and the heat-affected zone. The nature and the extension of such transformations are correlated to the energy input and thus to the heat generated during the process at the wood joint interface. In the present work the influence of the welding parameters and wood grain o...

  19. Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy

    Directory of Open Access Journals (Sweden)

    Mohamed Sobih

    2016-01-01

    Full Text Available Aiming to reduce the weight of components, thus allowing a profit in terms of energy saving, automotive industry as well as aircraft industry extensively uses aluminum alloys. The most widely used joining technology in aircraft industry is riveting, while welding seems to be used in the car industry in the case of aluminum alloys. However, welding technology is characterized by many defects, such as gas porosity; oxide inclusions; solidification cracking (hot tearing; and reduced strength in both the weld and the heat affected zones which could limit its development. Many techniques are used for aluminum alloys welding, among them is electron beam welding (EBW, which has unique advantages over other traditional fusion welding methods due to high-energy density, deep penetration, large depth-to-width ratio, and small heat affected zone. The welding parameters that yield to optimal weld joint have been previously obtained. These optimal parameters were validated by welding a specimen using these parameters. To evaluate this optimal weld joint, complete, microstructural observations and characterization have been carried out using scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. This evaluation leads to description and quantification of the solidification process within this weld joint.

  20. Structure and Phase Composition of 09G2S Steel Modified by Different Types of Welding

    Science.gov (United States)

    Smirnov, Aleksandr N.; Popova, Natal’ya A.; Nikonenko, Elena L.; Ozhiganov, Evgenii A.; Ababkov, Nikolai V.; Koneva, Nina A.

    2017-10-01

    The paper presents the transmission electron microscopy (TEM) investigations of the structure and phase composition of the type 09G2S weld steel modified by four types of welding, namely: electrode welding and electropercussive welding both with and without the introduction of artificial flaws. Artificial flows are aluminum pieces. TEM investigations are carried out within the heat-affected zone, i.e. between the deposited and base metal, at 0.5 mm distance to the former. Welding electrode of the type E50A is used for welding 09G2S steel specimens. It is shown how the type of welding affects the steel morphology, phase composition, defect structure and its parameters. After each type of welding, the dislocation structure is polarized. This, however, does not cause internal stresses which can destroy the specimen.

  1. Analysis of the heat affected zone in CO2 laser cutting of stainless steel

    Directory of Open Access Journals (Sweden)

    Madić Miloš J.

    2012-01-01

    Full Text Available This paper presents an investigation into the effect of the laser cutting parameters on the heat affected zone in CO2 laser cutting of AISI 304 stainless steel. The mathematical model for the heat affected zone was expressed as a function of the laser cutting parameters such as the laser power, cutting speed, assist gas pressure and focus position using the artificial neural network. To obtain experimental database for the artificial neural network training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameter. Using the 27 experimental data sets, the artificial neural network was trained with gradient descent with momentum algorithm and the average absolute percentage error was 2.33%. The testing accuracy was then verified with 6 extra experimental data sets and the average predicting error was 6.46%. Statistically assessed as adequate, the artificial neural network model was then used to investigate the effect of the laser cutting parameters on the heat affected zone. To analyze the main and interaction effect of the laser cutting parameters on the heat affected zone, 2-D and 3-D plots were generated. The analysis revealed that the cutting speed had maximum influence on the heat affected zone followed by the laser power, focus position and assist gas pressure. Finally, using the Monte Carlo method the optimal laser cutting parameter values that minimize the heat affected zone were identified.

  2. Performance of repair welds on aged Cr-Mo piping girth welds

    Science.gov (United States)

    Viswanathan, R.; Gandy, D. W.

    1999-10-01

    This article documents the results of an industry survey of weld repair practices and describes the results of experimental evaluations performed on service-aged 21/4 Cr-1Mo steel piping using SMAW with both conventional postweld heat treatments and temper bead repair techniques. The overall results of this program provide substantial evidence that service-aged piping systems can be successfully weld repaired with and without postweld heat treatments and that life extension by several decades is achievable under the right design and repair conditions. Weld repairs performed on degraded exservice welds resulted in restoration or improvement of tensile and creep properties. Microhardness test results within the heat-affected zone of each weldment indicated that the temper bead weld repairs produced only slightly higher peak hardness values than those measured for the fully postweld heat treated repairs. Finally, in terms of toughness, temper bead weld repairs consistently produced higher impact properties than those measured for the postweld heat treated weldments. Gas tungsten arc weld repairs with postweld heat treatment resulted in the best combination of tensile strength, uniform microhardness distribution across the weld, Charpy toughness, and creep rupture life.

  3. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  4. Effect of thermal and thermo-mechanical cycling on the boron segregation behavior in the coarse-grained heat-affected zone of low-alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sanghoon; Kang, Yongjoon; Lee, Changhee, E-mail: chlee@hanyang.ac.kr

    2016-06-15

    The boron segregation behavior in the coarse-grained heat-affected zone (CGHAZ) of 10 ppm boron-added low-alloy steel during the welding cycle was investigated by taking the changes in the microstructure and hardness into account. Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress, and the boron segregation behavior was analyzed by secondary ion mass spectrometry (SIMS) and particle tracking autoradiography (PTA). The segregation of boron was found to initially increase, and then decrease with an increase in the heat input. This is believed to be due to the back-diffusion of boron with an increase in the exposure time at high temperature after non-equilibrium grain boundary segregation. The grain boundary segregation of boron could be decreased by an external stress applied during the welding cycle. Such behavior may be due to an increase in the grain boundary area as a result of the grain size reduction induced by the external stress. - Highlights: • Boron segregation behavior in the CGHAZ of low-alloy steel during a welding cycle was investigated. • Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress. • Boron segregation behavior was analyzed using SIMS and PTA techniques.

  5. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  6. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  7. The Application of Stress-Relaxation Test to Life Assessment of T911/T22 Weld Metal

    Science.gov (United States)

    Cao, Tieshan; Zhao, Jie; Cheng, Congqian; Li, Huifang

    2016-03-01

    A dissimilar weld metal was obtained through submerged arc welding of a T911 steel to a T22 steel, and its creep property was explored by stress-relaxation test assisted by some conventional creep tests. The creep rate information of the stress-relaxation test was compared to the minimum and the average creep rates of the conventional creep test. Log-log graph showed that the creep rate of the stress-relaxation test was in a linear relationship with the minimum creep rate of the conventional creep test. Thus, the creep rate of stress-relaxation test could be used in the Monkman-Grant relation to calculate the rupture life. The creep rate of the stress-relaxation test was similar to the average creep rate, and thereby the rupture life could be evaluated by a method of "time to rupture strain." The results also showed that rupture life which was assessed by the Monkman-Grant relation was more accurate than that obtained through the method of "time to rupture strain."

  8. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  9. Plasma arc welding weld imaging

    Science.gov (United States)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  10. Fusion Welding of AerMet 100 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  11. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    Science.gov (United States)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2018-01-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  12. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    Science.gov (United States)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2017-11-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  13. Microstructure and Failure Analysis of Flash Butt Welded HSLA 590CL Steel Joints in Wheel Rims

    Science.gov (United States)

    Lu, Ping; Xu, Zhixin; Shu, Yang; Ma, Feng

    2017-02-01

    The aim of the present investigation was to evaluate the microstructures, mechanical properties and failure behavior of flash butt welded high strength low alloy 590CL steel joints. Acicular ferrite, Widmanstatten ferrite and granular bainite were observed in the weld. The micro-hardness values of the welded joints varied between 250 HV and 310 HV. The tensile strength of the welded joints met the strength standard of the wheel steel. The Charpy V-notch impact absorbing energy of the welded joints was higher than the base metal, and the impact fracture of the welded joints was composed of shearing and equiaxed dimples. The fracture mode of the wheel rim in the flaring and expanding process was brittle fracture and ductile fracture, respectively. A limited deviation was found in the terminal of the crack for the wheel in the flaring process. A transition from the weld to the Heat Affected Zone was observed for the wheel in the expanding process.

  14. Gas and RRR distribution in high purity Niobium EB welded in Ultra-High Vacuum

    Science.gov (United States)

    Anakhov, S.; Singer, X.; Singer, W.; Wen, H.

    2006-05-01

    Electron beam (EB) welding in UHV (ultra-high vacuum, 10-5÷10-8 mbar) is applied in the standard fabrication of high gradient niobium superconducting radio frequency (SRF) cavities of TESLA design. The quality of EB welding is critical for cavity performance. Experimental data of gas content (H2, O2, N2) and RRR (residual resistivity ratio) measurements in niobium (Nb) welding seams are presented. EB welding in UHV conditions allow to preserve low gas content (1÷3 wt. ppm hydrogen and 5÷7 ppm oxygen and nitrogen), essential for high values of RRR — 350÷400 units. Gas content redistribution in the electron beam welded and heat affected region take place in the welding process. Correlation between gas solubility parameters, RRR and thermal conductivity are presented. Mechanisms of gas solubility in EB welding process are discussed.

  15. Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    QIN Ren-yao

    2016-06-01

    Full Text Available The ZM5 magnesium alloy plates were welded by TIG welding method. The microstructural characteristics and mechanical properties of ZM5 magnesium alloy joint were studied by optical microscopy, microhardness and tensile testers. The results show that the TIG weld joint of ZM5 magnesium alloy is composed of heat affected zone, partially melted zone and weld metal. The heat affected zone is consisted of primary α-Mg phase and eutectic phase that is composed of eutectic α-Mg and eutectic β-Mg17Al12 phase and mainly precipitated at grain boundaries. In the partially melted zone, the eutectic phase is not only increasingly precipitated at grain boundaries, but also dispersed in grains, and the growth of the β-Mg17Al12 phase is obviously observed. The microstructure in the weld is the typical dendritic morphology. The dendrites are considered as primary α-Mg phase, and the interdendritic regions are α+β eutectic phase. The difference in the microstructure of the heat affected zone, partially melted zone and weld results in their various microhardness values, and leads to the smaller tensile strength and ductility in the ZM5 alloy weld joint than parent metal.

  16. Appropriate welding conditions of temper bead weld repair for SQV2A pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, R.; Matsuda, F. [NDE Center, Japan Power Engineering and Inspection Corp. (Japan); Brziak, P. [Welding Research Inst. - Industrial Inst. of Slovak Republic (Slovakia); Lomozik, M. [Inst. of Welding (Poland)

    2004-07-01

    Temper bead welding technique is one of the most important repair welding methods for large structures for which it is difficult to perform the specified post weld heat treatment. In this study, appropriate temper bead welding conditions to improve the characteristics of heat affected zone (HAZ) are studied using pressure vessel steel SQV2A corresponding to ASTM A533 Type B Class 1. Thermal/mechanical simulator is employed to give specimens welding thermal cycles from single to quadruple cycle. Charpy absorbed energy and hardness of simulated CGHAZ by first cycle were degraded as compared with base metal. Improvability of these degradations by subsequent cycles is discussed and appropriate temper bead thermal cycles are clarified. When the peak temperature lower than Ac1 and near Ac1 in the second thermal cycle is applied to CGAHZ by first thermal cycle, the characteristics of CGHAZ improve enough. When the other peak temperatures (that is, higher than Ac1) in the second thermal cycle are applied to the CGHAZ, third or more thermal cycle temper bead process should be applied to improve the properties. Appropriate weld condition ranges are selected based on the above results. The validity of the selected ranges is verified by the temper bead welding test. (orig.)

  17. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  18. Hydrogen permeation characteristics of welded 316 stainless steel using nickel welding filler

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T.; Ikeshoji, T.T.; Suzumura, A.; Kobayashi, D.; Naito, T. [Tokyo Inst. of Technology, Tokyo (Japan)

    2007-07-01

    Low carbon stainless steel of 316L has been utilized for an ultra high vacuum chamber assembled by welding, and it contains 12-15% nickel. We investigate the work of nickel element with hydrogen atoms as the hydrogen catalysis near heat affected zone. Hydrogen permeation tests for welded specimens using nickel filler were performed to prevent from hydrogen embrittlement cracking in the heat affected zone. In this study, the hydrogen permeation technique using an orifice and a quadrupole mass spectrometer (QMS) is utilized to measure the hydrogen gas flux in the stainless steel. A stationary hydrogen flux from the stainless steel surface was measured by using a system with an orifice. The hydrogen pressure difference which applied to the specimen was enabled us to maintain constant by constant gas flow rate from the orifice in low pressure vessel. The value of hydrogen permeability, K, at 620K for welded specimen using the nickel filler is 3.62 times 10{sup -12} m{sup 2}s{sup -1}Pa{sup 1/2}. It is 1.9 times grater than that of normal non-welded 316 stainless steel substrate. The value at 520 K for the welded specimen is 7.31 times 10{sup -14} m{sup 2}s{sup -1}Pa{sup 1/2}. It is as same as that of the non-welded substrate. It is considered that the role of nickel at high temperature near 620K is to release hydrogen atom, and the role of nickel at temperature below 520K is to trap hydrogen atoms, and that the weld metal become hydrogen diffusion path. (orig.)

  19. Effects of varying subatmospheric pressure on stationary plasma arc welds

    Science.gov (United States)

    Chin, J. J.; Rubinsky, B.

    1991-01-01

    An experimental study was performed examining the variation of penetration, fluid behavior, heat-affected zone and arc in plasma arc welding (PAW) with respect to subatmospheric ambient pressure. The results reveal nonlinear variation of keyhole size, time of penetration, and size of the heat-affected zone with pressure. In a restricted range of pressure, dynamic components of fluid flow directed out of the molten pool appear and have a profound effect on keyhole formation. The generated plasma arc is observed to decrease in intensity with decreasing pressure, resulting in a reduction of penetration at lower pressures.

  20. Statistical analyses of fracture toughness results for two irradiated high-copper welds

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, R.K.; McCabe, D.E.; Haggag, F.M.; Bowman, K.O.; Downing, D.J.

    1990-01-01

    The objectives of the Heavy-Section Steel Irradiation Program Fifth Irradiation Series were to determine the effects of neutron irradiation on the transition temperature shift and the shape of the K{sub Ic} curve described in Sect. 6 of the ASME Boiler and Pressure Vessel Code. Two submerged-arc welds with copper contents of 0.23 and 0.31% were commercially fabricated in 215-mm-thick plates. Charpy V-notch (CVN) impact, tensile, drop-weight, and compact specimens up to 203.2 mm thick (1T, 2T, 4T, 6T, and 8T C(T)) were tested to provide a large data base for unirradiated material. Similar specimens with compacts up to 4T were irradiated at about 288{degrees}C to a mean fluence of about 1.5 {times} 10{sup 19} neutrons/cm{sup 2} (>1 MeV) in the Oak Ridge Research Reactor. Both linear-elastic and elastic-plastic fracture mechanics methods were used to analyze all cleavage fracture results and local cleavage instabilities (pop-ins). Evaluation of the results showed that the cleavage fracture toughness values determined at initial pop-ins fall within the same scatter band as the values from failed specimens; thus, they were included in the data base for analysis (all data are designated K{sub Jc}).

  1. Mechanical properties of TIG and EB weld joints of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takanori, E-mail: hirose.takanori@jaea.go.jp; Sakasegawa, Hideo; Nakajima, Motoki; Tanigawa, Hiroyasu

    2015-10-15

    Highlights: • Narrow groove TIG minimized volume of F82H weld. • Mechanical properties of TIG and EB welds of F82H have been characterized. • Post weld heat treatment successfully moderate the toughness of weld metal without softening the base metal. - Abstract: This work investigates mechanical properties of weld joints of a reduced activation ferritic/martensitic steel, F82H and effects of post weld heat treatment on the welds. Vickers hardness, tensile and Charpy impact tests were conducted on F82H weld joints prepared using tungsten-inert-gas and electron beam after various heat treatments. Although narrow groove tungsten-inert-gas welding reduced volume of weld bead, significant embrittlement was observed in a heat affected zone transformed due to heat input. Post weld heat treatment above 993 K successfully moderated the brittle transformed region. The hardness of the brittle region strongly depends on the heat treatment temperature. Meanwhile, strength of base metal was slightly reduced by the treatment at temperature ranging from 993 to 1053 K. Moreover, softening due to double welding was observed only in the weld metal, but negligible in base metal.

  2. Influence of Surface Roughness in Electron Beam Welding

    Science.gov (United States)

    Wiednig, C.; Stiefler, F.; Enzinger, N.

    2016-03-01

    The requirements of welded components are rising continuously through increasing demands in engineering. But in engineering not only the quality of welds is important also an economic and timesaving production is crucial. Especially in welding of large cross sections economization potential is existing and significant. Beside the welding technique itself the joint preparation is a major part of work. Electron beam welding has some major advantages in this area. Due the high energy density a very short welding time as well as a small heat affected zone can be achieved. Furthermore the joint preparation can be held simple. Nevertheless, a careful machining and cleaning of the joint surfaces is recommended in literature. In addition to geometric tolerances a specific surface roughness should be kept. These statements are quite general and unspecific. In this contribution a systematic investigation on the influence of joint preparation on the joint properties is presented. By performing several welding experiments with different surface roughness this study provides empirical conclusions. Beside the microscopic investigation of different cross sections and mechanical tests of the welded samples also the process stability during welding was reviewed.

  3. Hot cracking of Structural Steel during Laser Welding

    Science.gov (United States)

    Pineda Huitron, Rosa M.; Vuorinen, Esa

    2017-10-01

    Laser welding is an important technique in many industries due to its high precision in operation, its local and fast processing, narrow welds and its good weld surface quality. However, the process can involve some complications due to the rapid heating and cooling of the material processed, resulting in physical and metallurgical effects as thermal contraction during solidification, giving as a result the presence of residual stresses in the narrow weld. Formation of defects during the process is an important topic to be evaluated in order to achieve better performance of the steels in use. In the present work, defects formed during laser welding of a structural steel have been investigated. The defects formed have been identified and the causes of the defects are discussed. Possible strategies for improvement of the welding procedure and final weld result are proposed. The defects were analysed by optical and scanning electron microscopy and hardness measurement. Cracks were located in the middle of the fusion zone and followed both inter-granular and trans-granular paths. Impurities as manganese sulphides were found along the welding direction, and could act as sites for crack formation. The cracks formed during solidification of the weld are identified as solidification cracks. This kind of cracks is usually caused by solidification shrinkage and thermal contractions during the process, which appear in the fusion zone and sometimes in the heat affected zone.

  4. GMAW (Gas Metal Arc Welding) process development for girth welding of high strength pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Vaidyanath; Daniel, Joe; Quintana, Marie [The Lincoln Electric Company, Cleveland, OH (United States); Chen, Yaoshan [Center for Reliable Energy Systems (CRES), Dublin, OH (United States); Souza, Antonio [Lincoln Electric do Brasil, Guarulhos, SP (Brazil)

    2009-07-01

    This paper highlights some of the results and findings from the first phase of a consolidated program co-funded by US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) and Pipeline Research Council Inc (PRCI) to develop pipe weld assessment and qualification methods and optimize X 100 pipe welding technologies. One objective of the program is to establish the range of viable welding options for X 100 line pipe, and define the essential variables to provide welding process control for reliable and consistent mechanical performance of the weldments. In this first phase, a series of narrow gap girth welds were made with pulsed gas metal arc welding (GMAW), instrumented with thermocouples in the heat affected zone (HAZ) and weld metal to obtain the associated thermal profiles, and instrumented to measure true energy input as opposed to conventional heat input. Results reveal that true heat input is 16%-22% higher than conventional heat input. The thermal profile measurements correlate very well with thermal model predictions using true energy input data, which indicates the viability of treating the latter as an essential variable. Ongoing microstructural and mechanical testing work will enable validation of an integrated thermal-microstructural model being developed for these applications. Outputs from this model will be used to correlate essential welding process variables with weld microstructure and hardness. This will ultimately enable development of a list of essential variables and the ranges needed to ensure mechanical properties are achieved in practice, recommendations for controlling and monitoring these essential variables and test methods suitable for classification of welding consumables. (author)

  5. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de [Instituto Politecnico do Rio e Janeiro (IPRJ), Nova Friburgo, RJ (Brazil); Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C., E-mail: sturibus@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-08-15

    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  6. Microstructures and mechanical properties of bonding layers between low carbon steel and alloy 625 processed by gas tungsten arc welding

    Science.gov (United States)

    Lou, Shuai; Lee, Seul Bi; Nam, Dae-Geun; Choi, Yoon Suk

    2017-11-01

    A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.

  7. A Monte Carlo model for 3D grain evolution during welding

    Science.gov (United States)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-09-01

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.

  8. Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Paddea, S., E-mail: s.paddea@open.ac.uk [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Francis, J.A. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Paradowska, A.M. [ISIS Facility, Rutherford-Appleton Laboratory, Didcot OX11 0QX, Oxon (United Kingdom); Bouchard, P.J. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Shibli, I.A. [European Technology Development Ltd., Leatherhead KT22 7RD, Surrey (United Kingdom)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Residual stresses in a pipe girth weld in P91 steel have been measured in both the as-welded and PWHT conditions. Black-Right-Pointing-Pointer The highest tensile residual stresses coincided with the HAZ boundary and the microstructural region that is prone to type IV cracking. Black-Right-Pointing-Pointer Compressive residual stresses were measured in the weld metal, in a location corresponding to the final weld pass. Black-Right-Pointing-Pointer The location of the peak compressive stresses can be explained by the effect of solid-state phase transformation. - Abstract: In this study the residual stresses in a pipe girth weld in a ferritic-martensitic power plant steel were measured by neutron diffraction and compared with the corresponding metallurgical zones in the weld region. It was found that, in both the as-welded and post-weld heat treated condition, the highest tensile stresses resided near the outer boundary of the heat-affected zone (HAZ), and towards the weld root region. Substantial tensile direct and hydrostatic stresses existed across the HAZ, including the fine-grained and intercritically annealed regions, where premature type IV creep failures manifest in 9-12 Cr steel welds. Compressive stresses were found in the weld metal coinciding with the last weld bead to be deposited. Constrained cooling tests on test coupons illustrated that these compressive stresses can be explained in terms of the influence that solid-state phase transformations have on the accumulation of stress in welds.

  9. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  10. Pragmatic analysis of the electric submerged arc furnace continuum

    Science.gov (United States)

    Karalis, K.; Karkalos, N.; Antipas, G. S. E.; Xenidis, A.

    2017-09-01

    A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible.

  11. Similarity of Ferrosilicon Submerged Arc Furnaces With Different Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    Machulec B.

    2017-12-01

    Full Text Available In order to determine reasons of unsatisfactory production output regarding one of the 12 MVA furnaces, a comparative analysis with a furnace of higher power that showed a markedly better production output was performed. For comparison of ferrosilicon furnaces with different geometrical parameters and transformer powers, the theory of physical similarity was applied. Geometrical, electrical and thermal parameters of the reaction zones are included in the comparative analysis. For furnaces with different geometrical parameters, it is important to ensure the same temperature conditions of the reaction zones. Due to diverse mechanisms of heat generation, different criteria for determination of thermal and electrical similarity for the upper and lower reaction zones were assumed contrary to other publications. The parameter c3 (Westly was assumed the similarity criterion for the upper furnace zones where heat is generated as a result of resistive heating while the parameter J1 (Jaccard was assumed the similarity criterion for the lower furnace zones where heat is generated due to arc radiation.

  12. An investigation of the weld region of the SAE 1020 joined with metal active gas and determination of the mismatch factor

    Science.gov (United States)

    Meric, C.; Tokdemir, M.

    1999-10-01

    In this study, the joining process of SAE 1020 low carbon steel, generally used in the industry, has been completed using the metal active gas (MAG) weld method. The goal of this study was to examine the mismatch between base and weld metal. After the joining process, mechanical properties of the samples of the base metal (BM), the heat affected zone (HAZ), and the weld metal (WM) were investigated, and the crack tip opening displacement (CTOD) test was performed.

  13. Mechanical Behaviour Investigation Of Aluminium Alloy Tailor Welded Blank Developed By Using Friction Stir Welding Technique

    Science.gov (United States)

    Dwi Anggono, Agus; Sugito, Bibit; Hariyanto, Agus; Subroto; Sarjito

    2017-10-01

    The objective on the research was to investigate the mechanical properties and microstructure of tailor welded blank (TWB) made from AA6061-T6 and AA1100 using friction stir welding (FSW) process. Due to the dissimilar mechanical properties of the two aluminium alloys, microhardness test was conducted to measure the hardness distribution across the weld nugget. The mixing of two distinct materials was influenced by tool rotation speed. Therefore, microstructure analysis was carried out to investigate the grain size and shape. The grain size of AA6061-T6 has increased in the heat affected zone (HAZ) while for AA1100 has decreased. In the weld nugget, it has found a hook defects in the dissimilar aluminium joining. By using monotonic tensile load, the different weld line direction was observed with the expansion in tool rotation. The joints failure were consistently on the area of AA1100 series. Furthermore, two specimens were investigated, one through the dissimilar aluminium and the other through similiar material. Inspection of the weld nugget hardness was shown that nonhomogen material intermixing during the stiring process as confirmed by microhardness measurement.

  14. Analysis on Development of Transverse - Sectioned Weld Zone using FEM Verified with Multipulsed Resistance Seam Welding

    Directory of Open Access Journals (Sweden)

    N Muhammad

    2013-12-01

    Full Text Available This paper details an investigation, through an experimental study, of the development of weld nuggets and a heat-affected zone (HAZ in resistance seam welding(RSEW using a numerical simulation approach. SYSWELD software for the simulation of heat treatment, welding, and welding assembly was utilized for the simulation process. The integrated Spot Weld Advisor (SWA in SYSWELD was applied to simulate the RSEW model using a two-dimensional axis-symmetric FE model with customized electrode meshing. The thermal-mechanical-electrical characteristic and contact condition were taken into account throughout this study. The developed model comprised a transverse cross section for welding two layers of low carbon steel with a thickness of 1 mm. For the experimental verification, three-pulsed RSEW with two different current stages was carried out. It was discovered that this program code, Spotweld Advisor, when used with the meshing method, was capable of offering results that were in agreement with physical experiments.

  15. Interface Phenomena and Bonding Mechanism in Magnetic Pulse Welding

    Science.gov (United States)

    Stern, A.; Shribman, V.; Ben-Artzy, A.; Aizenshtein, M.

    2014-10-01

    Magnetic pulse welding (MPW) is a solid-state impact welding technology that provides metallurgical joints while exhibiting a negligible heat-affected zone. The MPW process is a high speed single shot welding technique used mainly for joining tubular components in a lap configuration and characteristic length scales of few millimeters to centimeters. It is similar in operation to explosive welding and shares the same physical principles. The nature of bonding in MPW is not sufficiently understood yet and some controversial explanations are reported in the literature. The two major ideas are based on either solid state bonding or local melting and solidification. The present work summarizes our current understanding of the bonding mechanism and the structure in various similar and dissimilar metal pairs joined by MPW.

  16. Rapid solidification in laser welding of stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, A. (Univ. di Padova (Italy)); Bonollo, F.

    1994-04-30

    The microstructural characterization of both weld beads and heat affected zones (HAZ) was carried out on austenitic (AISI 304, 316) and duplex (UNS 31803) stainless steels, laser welded under various working parameters (power, traverse speed, shielding gas), by means of light microscopy, SEM, TEM, and image analysis, with the aim of pointing out changes in the amounts of the present phases, with respect to those predicted by equilibrium diagrams. Moreover, an analytical thermal model of laser beam welding was employed in order to evaluate the cooling rates involved in the process. The thermal field analysis, checked by comparing the calculated and the actual weld beads, has been used as a tool aimed at correlating cooling rates and microstructural characteristics. (orig.)

  17. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  18. Fine structure in the inter-critical heat-affected zone of HQ130 super ...

    Indian Academy of Sciences (India)

    Unknown

    ponding to the quenched coarse grained region, the fine grained region, the ICHAZ and the sub-critical tempered region. The cooling time (t8/5) from 800°C to 500°C of the simulated HAZ was 5 s ~ 40 s, and the test process was controlled by a computer program. Weld joint was prepared by CO2 gas shielded arc welding.

  19. Modeling the damage of welded steel, using the GTN model

    Directory of Open Access Journals (Sweden)

    El-Ahmar Kadi

    2014-11-01

    Full Text Available The aim of our work is the modeling of the damage in the weld metal according to the finite element method and the concepts of fracture mechanics based on local approaches using the code ABAQUS calculates. The use of the Gurson-Tvergaard-Needleman model axisymmetric specimens AE type to three different zones (Base metal, molten metal and heat affected Zone with four levels of triaxiality (AE2, AE4, AE10 and AE80, we have used to model the behavior of damage to welded steel, which is described as being due to the growth and coalescence of cavities with high rates of triaxiality

  20. Numerical Simulation of Mechanical Property of Post Friction Stir Weld Artificial Ageing of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WAN Zhenyu

    2017-08-01

    Full Text Available KWN model was used to establish the precipitation evolution model of friction stir welding of Al-Mg-Si alloy. The yield strength was divided into three parts:the contribution from grain size, the contribution from solid solution and the contribution from the precipitations. Based on this model, the yield strength and hardness of friction stir weld was predicted. The effect of post weld artificial ageing on mechanical properties of friction stir weld was further investigated. The results indicate that longer holding time can be beneficial to the recovery of mechanical properties in the stirring zone. Higher temperature can lead to quick recovery of mechanical properties in the stirring zone, but when the holding temperature is higher than 200℃, longer holding time can lead the base metal softened, which is harmful to the service of friction stir welds. The mechanical property in the heat affected zone cannot be improved by post weld artificial ageing.

  1. Microstructural changes in welded joints of 316 SS by dual-ion irradiation

    Science.gov (United States)

    Kohyama, A.; Kohno, Y.; Baba, K.; Katoh, Y.; Hishinuma, A.

    1992-09-01

    As a part of the activity to establish joining methods to fabricate in-vessel components and to evaluate their performance under fusion environment, microstructural evolution was studied by means of the dual-ion irradiation method. The base material used in this study was solution annealed 316 stainless steel. Welded joints were made by the tungsten inert gas (TIG) welding method and electron beam (EB) welding method. For the prospective improvement of swelling in welded joints, modified TIG or EB welding procedures utilizing titanium or nickel foil insertions were investigated. TEM disk specimens from various positions of welded joints were irradiated to 25 dpa at 673, 773 and 873 K. He/dpa ratio in Ni/He dual-ion irradiation was 15 appm He/dpa. The present results indicate some concern about the microstructures which result in the fusion zone and heat affected zones.

  2. Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Minerva Dorta-Almenara

    2016-09-01

    Full Text Available Gas Tungsten Arc Welding (GTAW is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength.

  3. The National Shipbuilding Research Program. Emission Factors for Flux Core Rod Used in Gas Shielded Processes

    National Research Council Canada - National Science Library

    2000-01-01

    ...), shielded metal arc welding (SMAW), and submerged arc welding (SAW). There are presently some emission factors for welding operations that have been developed by the United States Environmental Protection Agency (USEPA...

  4. On the evolution of local material properties and residual stress in a three-pass SA508 steel weld

    OpenAIRE

    Mark, A. F.; Francis, J. A.; Dai, H.; Turski, M.; Hurrell, P R; Bate, S. K.; Kornmeier, J.R.; Withers, P.J.

    2012-01-01

    In multi-pass welds, the development of residual stress generally depends on the response of the weld metal, heat-affected zone (HAZ) and nearby parent material to complex thermo-mechanical cycles. Here, the evolution of local material properties and residual stress was investigated for each of these zones during the manufacture of a three-pass groove weld in SA508 steel. Residual stress distributions were measured by neutron diffraction for a sample in which only one weld bead had been depos...

  5. The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy

    Science.gov (United States)

    Moore, T. J.; Titran, R. H.; Grobstein, T. L.

    1986-01-01

    Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.

  6. Effect of weld heat input on toughness and structure of HAZ of a new ...

    Indian Academy of Sciences (India)

    Unknown

    lysed by using H-800 transmission electron microscope and electron diffraction technique. 3. Results and analysis. 3.1 Toughness and fracture morphology in the heat-affected zone. Effect of the weld heat input (E) on the impact energy in the HAZ of HQ130 super-high strength steel is shown in. *Author for correspondence ...

  7. Mathematical modeling for prediction and optimization of TIG welding pool geometry

    Directory of Open Access Journals (Sweden)

    U. Esme

    2009-04-01

    Full Text Available In this work, nonlinear and multi-objective mathematical models were developed to determine the process parameters corresponding to optimum weld pool geometry. The objectives of the developed mathematical models are to maximize tensile load (TL, penetration (P, area of penetration (AP and/or minimize heat affected zone (HAZ, upper width (UW and upper height (UH depending upon the requirements.

  8. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  9. Simulation of the welding of irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hua Tay

    1989-07-01

    Helium was uniformly implanted using the ''tritium trick'' technique to levels of 0.18, 2.5, 27, 105 and 256 atomic part per million (appm) for type 316 stainless steel, and 0.3 and 1 appm for Sandvik HT-9 (12 Cr-1MoVW). Both full penetration as well as partial penetration welds were then produced on control and helium-containing materials using the autogenous gas tungsten arc (GTA) welding process under full constraint conditions. For full penetration welds, both materials were successfully welded when they contained less than 0.3 appm helium. However, welds of both materials, when containing greater than 1 appm helium, were found to develop cracks during cooling of the weld. Transmission and scanning electron microscopy indicated that the HAZ cracking was caused by the growth and coalescence of grain boundary (GB) helium bubbles. This cracking occurred as a result of the combination of high temperatures and high shrinkage tensile stresses. The cracking in the fusion zone was found to result from the precipitation of helium along dendrite interfaces. A model based on the kinetics of diffusive cavity growth is presented to explain the observed results. The model proposes a helium bubble growth mechanism which leads to final intergranular rupture in the heat-affected zone. Results of the present study demonstrate that the use of conventional fusion welding techniques to repair materials degraded by exposure to irradiation environments may be difficult if the irradiation results in the generation of helium equal to or greater than 1 appm.

  10. Residual stresses and deformation in dissimilar girth welds: numerical simulations and experimental verifications

    Energy Technology Data Exchange (ETDEWEB)

    Pasquale, P.; Burget, W.; Pfeiffer, W. [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2001-03-01

    Weld fabrication of dissimilar girth welds made of the austenitic steel X3 CrNiMoN 17-13, the ferritic 9% Cr-steel X10 CrMoVNb 9-1 and a Ni-weld metal was simulated numerically based on the application of the program system SYSWELD+. A three-dimensional (3D) and an axisymmetrical finite element model of the girth weld were established. According to the real dissimilar weld the model is divided into three different material zones, the austenitic, the ferritic and the Ni-weld metal zone neglecting the heat-affected zone in the ferritic base metal. The results obtained in this study are presented in terms of temperature distributions during welding and just after welding. The residual stresses calculated for the dissimilar girth welds are shown both for the axial and the circumferential orientations. The calculated residual stress distributions are compared to residual stresses measured by X-ray diffraction. It is shown that the calculated residual stresses are in good agreement with the residual stresses determined experimentally. Residual stress distributions in dissimilar girth welds are discussed on the basis of variable weld fabrication conditions and different boundary conditions selected for the numerical calculations. (orig.)

  11. Neutron Diffraction Evaluation of Near Surface Residual Stresses at Welds in 1300 MPa Yield Strength Steel

    Science.gov (United States)

    Harati, Ebrahim; Karlsson, Leif; Svensson, Lars-Erik; Pirling, Thilo; Dalaei, Kamellia

    2017-01-01

    Evaluation of residual stress in the weld toe region is of critical importance. In this paper, the residual stress distribution both near the surface and in depth around the weld toe was investigated using neutron diffraction, complemented with X-ray diffraction. Measurements were done on a 1300 MPa yield strength steel welded using a Low Transformation Temperature (LTT) consumable. Near surface residual stresses, as close as 39 µm below the surface, were measured using neutron diffraction and evaluated by applying a near surface data correction technique. Very steep surface stress gradients within 0.5 mm of the surface were found both at the weld toe and 2 mm into the heat affected zone (HAZ). Neutron results showed that the LTT consumable was capable of inducing near surface compressive residual stresses in all directions at the weld toe. It is concluded that there are very steep stress gradients both transverse to the weld toe line and in the depth direction, at the weld toe in LTT welds. Residual stress in the base material a few millimeters from the weld toe can be very different from the stress at the weld toe. Care must, therefore, be exercised when relating the residual stress to fatigue strength in LTT welds. PMID:28772953

  12. Neutron Diffraction Evaluation of Near Surface Residual Stresses at Welds in 1300 MPa Yield Strength Steel

    Directory of Open Access Journals (Sweden)

    Ebrahim Harati

    2017-05-01

    Full Text Available Evaluation of residual stress in the weld toe region is of critical importance. In this paper, the residual stress distribution both near the surface and in depth around the weld toe was investigated using neutron diffraction, complemented with X-ray diffraction. Measurements were done on a 1300 MPa yield strength steel welded using a Low Transformation Temperature (LTT consumable. Near surface residual stresses, as close as 39 µm below the surface, were measured using neutron diffraction and evaluated by applying a near surface data correction technique. Very steep surface stress gradients within 0.5 mm of the surface were found both at the weld toe and 2 mm into the heat affected zone (HAZ. Neutron results showed that the LTT consumable was capable of inducing near surface compressive residual stresses in all directions at the weld toe. It is concluded that there are very steep stress gradients both transverse to the weld toe line and in the depth direction, at the weld toe in LTT welds. Residual stress in the base material a few millimeters from the weld toe can be very different from the stress at the weld toe. Care must, therefore, be exercised when relating the residual stress to fatigue strength in LTT welds.

  13. 49 CFR 195.106 - Internal design pressure.

    Science.gov (United States)

    2010-10-01

    ... and is subsequently heated, other than by welding or stress relieving as a part of welding, to a... Seamless 1.00 ASTM A 333/A 333M Seamless 1.00 Welded 1.00 ASTM A381 Double submerged arc welded 1.00 ASTM... 1.00 API 5L Seamless 1.00 Electric resistance welded 1.00 Electric flash welded 1.00 Submerged arc...

  14. The feasibility of welding irradiated materials

    Science.gov (United States)

    Lin, H. T.; Chin, B. A.

    1991-03-01

    Helium was implanted into solution-annealed (SA) 316 stainless steel, 20% cold-worked (CW) 316 stainless steel and titanium-modified Primary Candidate Alloy (PCA) through tritium decay to levels ranging from 0.18 to 256 appm. Full penetration welds were then made on helium-doped materials using gas tungsten arc welding (GTAW) under fully constrained conditions. Intergranular heat-affected zone (HAZ) cracking was observed in all of the materials containing greater than 1 appm He. Electron microscopy showed that the HAZ cracking originated from the growth and coalescence of grain boundary (GB) helium bubbles. Bubble growth kinetics in the HAZ is explained by stress-enhanced diffusive cavity growth. Results suggest that the propensity for HAZ cracking can be reduced by the pre-existing cold-worked structure and by finely-distributed MC precipitates that refine the distribution of helium bubbles and minimize the flow of vacancies in grain boundaries.

  15. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints

    Science.gov (United States)

    Yuhua, Chen; Yuqing, Mao; Weiwei, Lu; Peng, He

    2017-06-01

    Dissimilar metals of NiTiNb shape memory alloy and Ti6Al4V alloy with a same thickness of 0.2 mm were joined by micro laser welding. The effect of laser power on crack sensitivity of the weld was investigated. The results show that full penetrated welds are obtained when the laser power of 7.2 W is used, many cracks are observed in the weld. With increasing the laser power to 12 W, the number of all cracks and cracking width first increase and then decrease. By XRD analysis, three different kinds of Ti2Ni, NbNi3 and AlNbTi2 intermetallic compounds are found in the weld. According to the formation enthalpy and binary phase diagram, brittle Ti2Ni phase with more contents is existed in the weld due to final solidification, and which is the main reason of crack formation along with large stress concentration. Moreover, the welding cracks like the weld center longitudinal solidification cracks, weld metal toe transversal liquid cracks, heat-affected-zone hot cracks and crater cracks are classified in the laser welded joints. A brittle cleavage fracture with cleavage planes and river patterns in the joints is presented from the fracture surface.

  16. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-11-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  17. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  18. Physical Nature of the Processes in Structure Forming, Phase and Chemical Composition of pipe Permanent Joints when MMA Welding

    Science.gov (United States)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Danilov, V. I.; Sadykov, I. D.

    2016-04-01

    The paper outlines peculiarities of structure formation, phase and chemical composition in regard to heat content in molten electrode metal beads when pipe steel (steel 09G2S) welding using power sources with various energy characteristics. Mathematical calculations indicate an inverter power source provides minor heat content into the bead of electrode metal when welding. Experimental research has pointed at 4-9 % increase in impact strength of joints produced using an inverter power source in comparison with samples produced applying a diode rectifier. The following factors can possibly give rise to the increasing impact strength: difference in microstructures of weld joints, up to 50% shortening ferritic plates in metal of weld joint, change in dimensions of ferritic grains in the heat-affected zone by as much as 17.5 %, and decrease in the extent of heat-affected zone by 50%.

  19. Optimization of Gas Metal Arc Welding Process Parameters

    Science.gov (United States)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  20. Alternative welding reconditioning solutions without post welding heat treatment of pressure vessel

    Science.gov (United States)

    Cicic, D. T.; Rontescu, C.; Bogatu, A. M.; Dijmărescu, M. C.

    2017-08-01

    In pressure vessels, working on high temperature and high pressure may appear some defects, cracks for example, which may lead to failure in operation. When these nonconformities are identified, after certain examination, testing and result interpretation, the decision taken is to repair or to replace the deteriorate component. In the current legislation it’s stipulated that any repair, alteration or modification to an item of pressurised equipment that was originally post-weld heat treated after welding (PWHT) should be post-weld heat treated again after repair, requirement that cannot always be respected. For that reason, worldwide, there were developed various welding repair techniques without PWHT, among we find the Half Bead Technique (HBT) and Controlled Deposition Technique (CDT). The paper presents the experimental results obtained by applying the welding reconditioning techniques HBT and CDT in order to restore as quickly as possible the pressure vessels made of 13CrMo4-5. The effects of these techniques upon the heat affected zone are analysed, the graphics of the hardness variation are drawn and the resulted structures are compared in the two cases.

  1. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  2. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    Science.gov (United States)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  3. Influence of use of ultrasound on metallographic structure of plated pieces by welding in ultrasonic field

    Directory of Open Access Journals (Sweden)

    Gh. Amza

    2015-07-01

    Full Text Available To optimize the plating process is necessary to know the behavior of surfaces plated during the exploitation and in particular susceptibility to cracking, the formation of cracks from the inside to outside or reverse, embrittlement in the heat affected zone. Research has been realized considering several samples plated by welding without ultrasonic activation and with ultrasonic activation, and these samples were made of AISI 4130 steel, and as filler material was used Inconel 625 Fe developed as electrode wire ø 1,2 / mm. The plating process was realized by a WIG welding process in Ar100 /% environment with non-consumable tungsten electrode, in two versions, respectively with and without the use of ultrasonic energy. Four pieces played by welding there were analyzed the metallographies structure in the base material, the deposited material and the material from the heat affected zone.

  4. Different types of cracking of P91 steel weld joints after long-term creep tests

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Kasl, J.; Chvostova, E. (SKODA VYZKUM s.r.o., Plzen (Czech Republic))

    2010-05-15

    This paper deals with creep testing and microstructural investigation of trial weld joints prepared of wrought and cast 9Cr-1Mo-V steels using GTAW & SMAW method. Creep testing was carried out at temperature range from 525 degC to 625 degC, the longest time to rupture of 45 811 hrs was achieved. The creep strengths of weld joints for 100 000 hrs were calculated. Different types of cracking were observed in dependency on conditions of creep test and the type of weld joint. Type 1 and Type 2 fractures occurred at high applied stress at relatively low temperatures in the tube weld joint and also in two speciments of the cast plate weld joint after creep test at the lowest temperature and the highest temperature. All other fractures were of the Type 4. Causes of different fracture location in tested weld joints were elucidated on the base of substructure evolution in individual zones - the weld metal, the heat affected zone and the base material. Two processes occur simultaneously, which result in the creep damage: (i) softening of solid solution as a result of Laves phase precipitation and (ii) formation and coalescence of cavities in the soft fine grained parts of heat affected zone. (orig.)

  5. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    Science.gov (United States)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  6. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    Science.gov (United States)

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  7. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Directory of Open Access Journals (Sweden)

    Atcharawadi Thong-On

    2016-11-01

    Full Text Available Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  8. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Science.gov (United States)

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone. PMID:28774014

  9. Basic study of heat flow in fusion welding. Progress report, March 1, 1980-February 28, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Szekely, J.; Eagar, T.W.

    1981-01-01

    During the past year the study of electroslag welding was essentially completed with good agreement between the experimental and the theoretical results. It is concluded that the ESW process has certain inherent limitations which were not appreciated previously. The study has expanded into a more complete analysis of heat and fluid flow in arc welding. It has been shown that the heat affected zone and fusion zone sizes are not simple functions of the net heat input as predicted by all current theories. This will affect the choice of welding parameters. For example, in single pass arc welds, the smallest HAZ is usually desirable, while in multipass welding large HAZ's may be desirable to provide tempering of the previous weld beads. It may be possible to achieve both these goals at equivalent heat input by proper adjustment of the welding parameters (such as voltage, current and travel speed). Goal of the current study is to predict which combinations of parameters maximize or minimize the size of the heat affected zone and fusion zone at equal heat input.

  10. Laser welding of NiTi wires

    Energy Technology Data Exchange (ETDEWEB)

    Gugel, H. [Institute for Materials, Materials Technology, Ruhr-University Bochum, Bochum (Germany)], E-mail: hajo.gugel@rub.de; Schuermann, A.; Theisen, W. [Institute for Materials, Materials Technology, Ruhr-University Bochum, Bochum (Germany)

    2008-05-25

    The special properties of nickel-titanium shape memory alloys are currently used in micro-engineering and medical technology. In order to integrate NiTi components into existing parts and modules, they often need to be joined to other materials. For this reason, the present contribution deals with the laser welding of thin pseudoelastic NiTi wires (100 {mu}m) with an Nd:YAG laser. Based on extensive parameter studies, faultless joints were produced. This study deals with the structural changes occurring in the fusion and heat-affected zones, the performance of the joints in static tensile tests and their functional fatigue. It can be shown that NiTi/NiTi joints reach about 75% of the ultimate tensile strength of pure NiTi wires. For welding NiTi to steel, no interlayer was used. The dissimilar NiTi/steel joints provide a bonding strength in the fusion and heat-affected zones higher than the plateau stress level. NiTi/steel joints of thin wires, as a new aspect, enable the possibility to benefit from the pseudoelastic properties of the NiTi component.

  11. Distortion Control during Welding

    OpenAIRE

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ methods to control welding distortion. In these methods local heating and/or cooling strategies are applied during welding. Additional heating and/or cooling sources can be implemented either stationa...

  12. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes

    Science.gov (United States)

    Ahiale, Godwin Kwame; Oh, Yong-Jun; Choi, Won-Doo; Lee, Kwang-Bok; Jung, Jae-Gyu; Nam, Soo Woo

    2013-09-01

    This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen's resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.

  13. Butt Welding of 2205/X65 Bimetallic Sheet and Study on the Inhomogeneity of the Properties of the Welded Joint

    Science.gov (United States)

    Gou, Ning-Nian; Zhang, Jian-Xun; Wang, Jian-Long; Bi, Zong-Yue

    2017-04-01

    The explosively welded 2205 duplex stainless steel/X65 pipe steel bimetallic sheets were butt jointed by multilayer and multi-pass welding (gas tungsten arc welding for the flyer and gas metal arc welding for the transition and parent layers of the bimetallic sheets). The microstructure and mechanical properties of the welded joint were investigated. The results showed that in the thickness direction, microstructure and mechanical properties of the welded joint exhibited obvious inhomogeneity. The microstructures of parent filler layers consisted of acicular ferrite, widmanstatten ferrite, and a small amount of blocky ferrite. The microstructure of the transition layer and flyer layer consisted of both austenite and ferrite structures; however, the transition layer of weld had a higher volume fraction of austenite. The results of the microhardness test showed that in both weld metal (WM) and heat-affected zone (HAZ) of the parent filler layers, the average hardness decreased with the increasing (from parent filler layer 1 to parent filler layer 3) welding heat input. The results of hardness test also indicated that the hardness of the WM and the HAZ for the flyer and transition layers was equivalent. The tensile test combined with Digital Specklegram Processing Technology demonstrated that the fracturing of the welded joint started at the HAZ of the flyer, and then the fracture grew toward the base metal of the parent flyer near the parent HAZ. The stratified impact test at -5 °C showed that the WM and HAZ of the flyer exhibited lower impact toughness, and the fracture mode was ductile and brittle mixed fracture.

  14. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man [Korea Maritime University, Dong Sam-Dong,Yong Do-ku, Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2015-04-15

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H{sub 2}SO{sub 4} solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

  15. Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by Tig-Mig Hybrid Welding

    Science.gov (United States)

    Ogundimu, Emmanuel O.; Akinlabi, Esther T.; Erinosho, Mutiu F.

    Stainless steel is a family of Fe-based alloys having excellent resistance to corrosion and as such has been used imperatively for kitchen utensils, transportation, building constructions and much more. This paper presents the work conducted on the material characterizations of a tungsten inert gas (TIG)-metal inert gas (MIG) hybrid welded joint of type 304 austenitic stainless steel. The welding processes were conducted in three phases. The phases of welding employed are MIG welding using a current of 170A, TIG welding using a current of 190A, and a hybrid TIG-MIG welding with currents of 190/170A, respectively. The MIG, TIG, and hybrid TIG-MIG weldments were characterized with incomplete penetration, full penetration and excess penetration of weld. Intergranular austenite was created toward transition and heat affected zones. The thickness of the delta ferrite (δ-Fe) formed in the microstructures of the TIG weld is more than the thickness emerged in the microstructures of MIG and hybrid TIG-MIG welds. A TIG-MIG hybrid weld of specimen welded at the currents of 190/170A has the highest ultimate tensile strength value and percentage elongation of 397.72MPa and 35.7%. The TIG-MIG hybrid welding can be recommended for high-tech industrial applications such as nuclear, aircraft, food processing, and automobile industry.

  16. Microstructures and Mechanical Properties of Friction Tapered Stud Overlap Welding for X65 Pipeline Steel Under Wet Conditions

    Science.gov (United States)

    Xu, Y. C.; Jing, H. Y.; Han, Y. D.; Xu, L. Y.

    2017-08-01

    This paper exhibits a novel in situ remediation technique named friction tapered stud overlap welding (FTSOW) to repair a through crack in structures and components in extremely harsh environments. Furthermore, this paper presents variations in process data, including rotational speed, stud displacement, welding force, and torque for a typical FTSOW weld. In the present study, the effects of welding parameters on the microstructures and mechanical properties of the welding joints were investigated. Inapposite welding parameters consisted of low rotational speeds and welding forces, and when utilized, they increased the occurrence of a lack of bonding and unfilled defects within the weld. The microstructures with a welding zone and heat-affected zone mainly consisted of upper bainite. The hardness value was highest in the welding zone and lowest in the base material. During the pull-out tests, all the welds failed in the stud. Moreover, the defect-free welds broke at the interface of the lap plate and substrate during the cruciform uniaxial tensile test. The best tensile test results at different depths and shear tests were 721.6 MPa and 581.9 MPa, respectively. The favorable Charpy impact-absorbed energy was 68.64 J at 0 °C. The Charpy impact tests revealed a brittle fracture characteristic with a large area of cleavage.

  17. Similar and Dissimilar Nd:YAGlaser Welding of NiTi Shape Memory Alloy to AISI 420Stainless Steel

    Directory of Open Access Journals (Sweden)

    Jassim Mohammed Salman Al-Murshdy

    2017-03-01

    Full Text Available Similar NiTi shape memory alloy(SMA plates, 420 Martensitic stainless steelplates and dissimilar NiTi shape memory alloy with Martensiticstainless steel were welded by a pulsed Nd:YAGlaser welding method.The nature microstructure of the base metal (BM, weld zone (WZ, interface and the heat affected zones(HAZ were showedby in a scanning electron microscope (SEM and optical microscope.Vickers hardness tests wasconducted to specifythe properties of the weld. The outcomes showed that the hardness of dissimilar NiTi-Stainless steel (St.St. weld is higher than that in similar NiTi-NiTi and St.St.-St.St. weld.TheMicrostructural examination in both NiTi-St.St. and NiTi-NiTi welds illustrates that the solidification process in the fusion zone changed the kind of plan to the cell type as well as the changes that occur in the cell to dentritic kind of intra- region of the weld through the weld center in the welded sample sides but in the St.St.-St.St. weld showed dendrite microstructure. In this study it is found that the increase of the welding speed leads to a decrease in hardness in all jointsNiTi-NiTi, NiTi-St.St. and St.St.-St.St.

  18. In situ Weak Magnetic-Assisted Thermal Stress Field Reduction Effect in Laser Welding

    Science.gov (United States)

    Liang, Lvjie; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Jiang, Ping; Chen, Xin

    2018-01-01

    For decades, post-welding magnetic treatment has been used to reduce residual stress of welds by improving the crystal structure of solid-state welds. In this paper, we propose a new magnetic treatment method, which can reduce the time-dependent thermal stress field in situ and reduce the final residual stress of welds by simply exerting an assisted weak magnetic field perpendicular to the welding direction and workpiece during laser welding. A new finite-element model is developed to understand the thermal-mechanical physical process of the magnetic-assisted laser welding. For the widely used 304 austenite stainless steel, we theoretically observed that this method can reduce around 10 pct of the time-dependent thermal stress field, and finally reduce approximately 20 MPa of residual stress near the heat-affected zone with a 415-mT magnetic field for typical welding process parameters. A new mechanism based on magneto-fluid dynamics is proposed to explain the theoretical predications by combining high-speed imaging experiments of the transient laser welding process. The developed method is very simple but surprisingly effective, which opens new avenues for thermal stress reduction in laser welding of metals, particularly heat-sensitive metallic materials.

  19. Characterization of the Microstructures and the Cryogenic Mechanical Properties of Electron Beam Welded Inconel 718

    Science.gov (United States)

    Kwon, Soon Il; Bae, Sang Hyun; Do, Jeong Hyeon; Jo, Chang Yong; Hong, Hyun Uk

    2016-02-01

    The microstructures and the cryogenic mechanical properties of electron beam (EB) welds between cast and forged Inconel 718 superalloys with a thickness of 10 mm were investigated in comparison with gas tungsten arc (GTA) welds. EB welding with a heat input lower than 250 J/mm caused the formation of liquation microfissuring in the cast-side heat-affected-zone (HAZ) of the EB welds. HAZ liquation microfissuring appeared to be associated with the constitutional liquation of primary NbC carbides at the grain boundaries. Compared with the GTA welding process, the EB welding produced welds with superior microstructure, exhibiting fine dendritic structure associated with the reduction in size and fraction of the Laves phase due to the rapid cooling rate. This result was responsible for the superior mechanical properties of the EB welds at 77 K (-196 °C). Laves particles in both welds were found to provide the preferential site for the crack initiation and propagation, leading to a significant decrease in the Charpy impact toughness at 77 K (-196 °C). Crack initiation and propagation induced by Charpy impact testing were discussed in terms of the dendrite arm spacing, the Laves size and the dislocation structure ahead of the crack arisen from the fractured Laves phase in the two welds.

  20. Optimization of operator and physical parameters for laser welding of dental materials.

    Science.gov (United States)

    Bertrand, C; le Petitcorps, Y; Albingre, L; Dupuis, V

    2004-04-10

    Interactions between lasers and materials are very complex phenomena. The success of laser welding procedures in dental metals depends on the operator's control of many parameters. The aims of this study were to evaluate factors relating to the operator's dexterity and the choice of the welding parameters (power, pulse duration and therefore energy), which are recognized determinants of weld quality. In vitro laboratory study. FeNiCr dental drawn wires were chosen for these experiments because their properties are well known. Different diameters of wires were laser welded, then tested in tension and compared to the control material as extruded, in order to evaluate the quality of the welding. Scanning electron microscopy of the fractured zone and micrograph observations perpendicular and parallel to the wire axis were also conducted in order to analyse the depth penetration and the quality of the microstructure. Additionally, the micro-hardness (Vickers type) was measured both in the welded and the heat-affected zones and then compared to the non-welded alloy. Adequate combination of energy and pulse duration with the power set in the range between 0.8 to 1 kW appears to improve penetration depth of the laser beam and success of the welding procedure. Operator skill is also an important variable. The variation in laser weld quality in dental FeNiCr wires attributable to operator skill can be minimized by optimization of the physical welding parameters.

  1. Effect of Travel Speed and Beam Focus on Porosity in Alloy 690 Laser Welds

    Science.gov (United States)

    Tucker, Julie D.; Nolan, Terrance K.; Martin, Anthony J.; Young, George A.

    2012-12-01

    Advances in laser welding technology, including fiber optic delivery and high power density, are increasing the applicability of this joining technique. The inherent benefits of laser welding include small heat-affected zones, minimal distortion, and limited susceptibility to cracking. These advantages are of special interest to next-generation nuclear power systems where welding solute-rich alloys is expected to increase. Alloy 690 (A690) is an advanced corrosion-resistant structural material used in many replacement components and in construction of new commercial power plants. However, the application of A690 is hindered by its difficult weldability using conventional arc welding, and laser welding is a promising alternate. This work studies the effects of travel speed and beam focus on porosity formation in partial penetration, autogenous A690 laser welds. Porosity has been characterized by light optical microscopy and x-ray computed tomography to quantify its percent volume in the welds. This work describes the tradeoff between weld penetration and defect density as a function of beam defocus and travel speed. Additionally, the role of shield gas in porosity formation is discussed to provide a mitigation strategy for A690 laser welding. A process map is provided that shows the optimal combinations of travel speed and beam defocus to minimize porosity and maximize weld penetration at a laser power of 4 kW.

  2. In situ Weak Magnetic-Assisted Thermal Stress Field Reduction Effect in Laser Welding

    Science.gov (United States)

    Liang, Lvjie; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Jiang, Ping; Chen, Xin

    2017-11-01

    For decades, post-welding magnetic treatment has been used to reduce residual stress of welds by improving the crystal structure of solid-state welds. In this paper, we propose a new magnetic treatment method, which can reduce the time-dependent thermal stress field in situ and reduce the final residual stress of welds by simply exerting an assisted weak magnetic field perpendicular to the welding direction and workpiece during laser welding. A new finite-element model is developed to understand the thermal-mechanical physical process of the magnetic-assisted laser welding. For the widely used 304 austenite stainless steel, we theoretically observed that this method can reduce around 10 pct of the time-dependent thermal stress field, and finally reduce approximately 20 MPa of residual stress near the heat-affected zone with a 415-mT magnetic field for typical welding process parameters. A new mechanism based on magneto-fluid dynamics is proposed to explain the theoretical predications by combining high-speed imaging experiments of the transient laser welding process. The developed method is very simple but surprisingly effective, which opens new avenues for thermal stress reduction in laser welding of metals, particularly heat-sensitive metallic materials.

  3. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  4. Residual stresses in laser welded ASTM A387 Grade 91 steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh, E-mail: santosh@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India); Kundu, A. [Materials Engineering, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Venkata, K.A. [Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR (United Kingdom); Evans, A. [Institut Laue Langevin, Grenoble (France); Truman, C.E. [Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR (United Kingdom); Francis, J.A. [University of Manchester, Manchester, M13 9PL (United Kingdom); Bhanumurthy, K. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India); Bouchard, P.J. [Materials Engineering, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Dey, G.K. [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400094 (India)

    2013-07-15

    Residual stresses in 9 mm thick ASTM A387 Grade 91 steel plates, joined using constant power (8 kW) low and high heat input laser welding processes, are characterised using neutron diffraction. The measured longitudinal and normal components of residual stress show a bimodal distribution across the welded joint with a low tensile or compressive trough at the weld centre flanked by high magnitude tensile peaks in parent metal adjacent to the heat affected zone boundaries. The width of the central trough and spread of the outboard tensile zones are significantly greater for the high heat input weld. In both cases, the stress distributions can be explained by the strains associated with the austenite to martensite solid-state transformation as the joint cools after welding.

  5. Mechanical Characteristics of 9% Ni Steel Welded Joint for Lng Storage Tank at Cryogenic

    Science.gov (United States)

    Yoon, Yong-Keun; Kim, Jae-Hoon; Shim, Kyu-Taek; Kim, Young-Kyun

    To confirm the safety performance of LNG storage tank, the change in fatigue crack growth rate and fracture toughness within X-grooved weld heat-affected zone (HAZ) of newly developed 9% Ni steel, which was SMAW welded, was investigated. These materials were produced by QT (quenching, tempering) heat treatment. The weld metal specimens were prepared by taking the same weld procedure applied in actual inner shell of LNG storage tank. All tests were performed in the temperature ranging from R.T. and -162°C. The fatigue crack growth behavior was carried out using CT specimen. Investigation has been carried out to study the influence of temperature and weld effect on fatigue crack growth behavior. Also, Fracture surfaces after tests were observe by scanning electron microscope (SEM).

  6. Susceptibility testing for welding of AlMg alloys intended for extrusion

    Directory of Open Access Journals (Sweden)

    J. Borowski

    2016-07-01

    Full Text Available The objective of research was to determine the weldability, using Tungsten Inert Gas (TIG of extruded sections made of hard-deformable 5xxx series aluminum alloys with differing magnesium content, i.e. AlMg3, AlMg4,5, AlMg5, AlMg7. Welded joints were obtained as a result of a welding process consisting of several steps. Only welds characterized by very good appearance and quality were selected for tests. As a result of conducted research, TIG welding parameters were determined for sections with a thickness of 8 mm. It was observed that alloys of differing Mg content are characterized by high weldability and do not exhibit a significant reduction of the yield point. Moreover, joints exhibit uniform hardness distribution in the welded joint and heat-affected zone. Tensile strength is reduced.

  7. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  8. Microstructure alterations in the base material, heat affected zone and weld metal of a 440-VVER-reactor pressure vessel caused by high fluence irradiation during long term operation: material: 15 Ch2MFA {approx} 0, 15 C-2,5 Cr-0, 7Mo-0,3 V; Veraenderungen der Mikrostruktur in Grundwerkstoff, WEZ und Schweissgut eines 440-VVER-Reaktordruckbehaelters, verursacht durch Neutronenbestrahlung im langzeitigen Betrieb; Werkstoff: 15 Ch2MFA {approx} 0,15 C-2,5 Cr-0, 7Mo-0,3 V

    Energy Technology Data Exchange (ETDEWEB)

    Maussner, G.; Scharf, L.; Langer, R. [Siemens AG Energieerzeugung KWU, Erlangen (Germany); Gurovich, B. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    1998-11-01

    Within the scope of the Tacis `91/1.1 project of the European Community, ``Reactor Vessel Embrittlement``, specimens were taken from the heavily irradiated circumferential welds of a VVER pressure vessel. The cumulated fast neutron fluence in the specimens amounts to up to 6.5 x 10{sup 19} cm{sup -}2 (E > 0.5 MeV). For the multi-laboratory, coordinated study, the specimens were cutted for mechanical testing as well as analytical, microstructural and microanalytical examinations in the base metal, HAZ and weld metal with respect to the effects of reactor operatio and post-irradiation annealing as well as thermal treatment (475 C, 560 C). The analytical transmission electron microscopy (200 kV) revealed the alterations found in the mechanical properties to be due to the formation of black dots and irradiation-induced segregations and accumulations of copper and carbides. These effects, caused by operation, (neutron radiation, temperature), are much more significant in the HAZ than in the base metal. (orig./CB) [Deutsch] Im Rahmen des von der Europaeischen Union beauftragten Tacis `91/1.1 Programms `Reactor Vessel Embrittlement` wurden Bohrkerne aus dem hochbestrahlten Rundnahtbereich eines VVER-Reaktordruckbehaelters entnommen. Die kumulierte schnelle Neutronenfluenz in diesen Proben betraegt bis zu 6,5 x 10{sup 19} cm{sup -2} (E>0,5 MeV). In einer gemeinschaftlichen Untersuchung wurden mechanisch-technologische, chemische sowie mirkostrukturelle Untersuchungen an Grundwerkstoff-, WEZ- und Schweissgutproben im vergleichbaren Ausgangs-, bestrahlten und anschliessend waermebehandelten (475 C, 560 C) Werkstoffzustand durchgefuehrt. Die analytische Durchstrahlelektronenmikroskopie (200 kV) laesst als Ursache fuer die festgestellten Veraenderungen der mechanischen Eigenschaften die Bildung von Versetzungsringen (black dots) sowie von bestrahlungsinduzierten Ausscheidungen und Anreicherungen von Kupfer in den Karbiden erkennen. Diese Effekte, als Folge der betrieblichen

  9. Thermal Modeling of Resistance Spot Welding and Prediction of Weld Microstructure

    Science.gov (United States)

    Sheikhi, M.; Valaee Tale, M.; Usefifar, GH. R.; Fattah-Alhosseini, Arash

    2017-11-01

    The microstructure of nuggets in resistance spot welding can be influenced by the many variables involved. This study aimed at examining such a relationship and, consequently, put forward an analytical model to predict the thermal history and microstructure of the nugget zone. Accordingly, a number of numerical simulations and experiments were conducted and the accuracy of the model was assessed. The results of this assessment revealed that the proposed analytical model could accurately predict the cooling rate in the nugget and heat-affected zones. Moreover, both analytical and numerical models confirmed that sheet thickness and electrode-sheet interface temperature were the most important factors influencing the cooling rate at temperatures lower than about T l/2. Decomposition of austenite is one of the most important transformations in steels occurring over this temperature range. Therefore, an easy-to-use map was designed against these parameters to predict the weld microstructure.

  10. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  11. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    Science.gov (United States)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  12. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    Science.gov (United States)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  13. An Investigation of the CSC-MIG Welding Process for Deposition of Conventional, Ultrafine and Nanostructured MMC Coatings

    Science.gov (United States)

    Vespa, Patrick

    heat input weldment. The hardness of the deposited coatings decreased from 587 HV10 to 410 HV 10 when the energy input was increased from 10.1 J/mm to 108.7 J/mm. Using a pre-placed powder method, as in submerged arc welding, several coatings were embedded with either conventional, ultrafine or nanostructured WC powder. In the analysis of these tests, it was found that the method of embedding the WC particles into the coating had an effect on the overall dissolution of the reinforcing phase. Although the loss of the nanostructure was observed in coatings embedded with the nanostructured WC feedstock, the precipitation of ultrafine WC single crystals is likely to increase the wear resistance compared with conventional sized WC additions. This thesis contains the first journal articles submitted for publication using results from experiments conducted with a CSC-MIG welding system.

  14. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  15. The structure and phase composition of welded joint after deformation

    Science.gov (United States)

    Smirnov, Aleksander; Popova, Natalya; Ozhiganov, Eugeniy; Nikonenko, Elena; Ababkov, Nikolay; Kalashnikov, Mark; Koneva, Nina; Kozlov, Eduard

    2017-01-01

    The paper addresses the issue of the structure and phase composition of welded joint and focuses on their investigation after plastic deformation. The contribution of internal stresses to the formation of phase composition and fine structure of welded joint is shown herein. Electrode welding is used to obtain welded joint in St3 steel. Specimens are subjected to a quasi-static tensile deformation ranging from 0 to 5% under 370 MPa loading. TEM investigations on thin foil specimens allow studying the structure and phase composition within the heat-affected zone at 1 mm distance from base material and 0.5 mm from welding material. The degree of plastic deformation is shown for both base and welding materials and includes their morphology, phase composition, defect structure and its parameters. Long-range stresses are divided into plastic and elastic. Plastic deformation has no qualitative effect on the material structure, however, it modifies its quantitative parameters. With the increase of deformation degree, the perlite component becomes more imperfect and transforms, first, to a fractured perlite and then to ferrite, thereby decreasing the volume ratio of perlite. Polarization of the dislocation structure is observed. The amplitude of internal stress fields grows. Unlike the shear stresses, long-range stresses manifest their intensive growth. The elastic component makes the major contribution to the long-range stresses resulting in the formation of microcracks.

  16. The Structure and Properties of Microcrystalline and Submicrocrystalline Titanium Alloy VT1-0 in the Area of the Electron Beam Welding Seam

    Science.gov (United States)

    Klimenov, V. A.; Gnyusov, S. F.; Potekaev, A. I.; Klopotov, A. A.; Abzaev, Yu. A.; Kurgan, K. A.; Marzol, M. R.; Galsanov, S. V.; Tsellermayer, V. Ya.; Marchenko, E. S.

    2017-10-01

    An investigation of the welding seam structure of micro- and submicrocrystalline specimens of VT1-0 alloy is reported. Special features are revealed in the formation of the heat-affected zone in the alloy as a result of electron-beam action due to its structural state. Particular attention is given to the role of α→β-transformations characterizing titanium alloys subjected to thermal impacts. It is found that the structural features of all welding-joint zones, considering the phase transformations, determine the character of hardness value distribution and the respective strength properties of the weld joints. A comparison is given between the structure formation in microcrystalline alloys and in welding seams formed by laser-beam welding. The welding of submicrocrystalline titanium is also compared to another high-energy impact - resistance welding.

  17. Basic study of heat flow in fusion welding. Progress report to the US Department of Energy, October 1, 1980-October 1, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Szekely, J.; Eagar, T.W.

    1981-10-15

    Progress is reported in an investigation whose purpose is the development of a fundamental understanding of heat and fluid flow in fusion welding operations and of the role played by heat and fluid flow in determining the mechanical and structural properties of the welds produced. To date, a good quantitative description has been developed of the temperature profiles for electroslag welding systems and an understanding has been derived of factors that determine the size of the heat-affected zone (HAZ). Mathematical models of heat and fluid flow in the weld pool and of the temperature distribution in weldments using a moving heat source were developed. Experiments were performed to determine the effects of welding process parameters on the size and shape of the weld pool and of the HAZ. An unexpected finding was that the size of the HAZ was not markedly dependent on any of the welding process parameters. (LCL)

  18. Simulated heat affected zone hardness limits of C-Mn steels used in offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Mihi, A.; Benbouta, R.; Abbassi, A. [Corrosion Laboratory, Faculty of Engineering Science, University of Batna, 05000 Batna (Algeria); Cottis, R. [Corrosion and Protection Centre, University of Manchester, P.O. Box 88, Manchester, M60 1QD (United Kingdom)

    2006-10-15

    The detrimental effect which hydrogen produces in metals, generally known as hydrogen embrittlement (HE), has always been one of the central problems of practical material technology of corrosion and protection of metals. In the present research, the influence of simulated heat affected zone (HAZ) hardness on susceptibility of a structural steel to hydrogen embrittlement was investigated mainly under slow strain rate testing (SSRT), although limited tests were carried out by means of small amplitude, cyclic (ripple) loading. These tests have been supported by detailed scanning electron fractography and hydrogen permeation measurements. A good correlation is observed between the degree of embrittlement in slow strain rate tests and the steady state hydrogen permeation current density. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  19. Prediction of laser cutting heat affected zone by extreme learning machine

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Skrijelj, Hivzo; Nedić, Bogdan

    2017-01-01

    Heat affected zone (HAZ) of the laser cutting process may be developed based on combination of different factors. In this investigation the HAZ forecasting, based on the different laser cutting parameters, was analyzed. The main goal was to predict the HAZ according to three inputs. The purpose of this research was to develop and apply the Extreme Learning Machine (ELM) to predict the HAZ. The ELM results were compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and by using several statistical indicators. Based upon simulation results, it was demonstrated that ELM can be utilized effectively in applications of HAZ forecasting.

  20. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  1. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  2. CO2 laser welding of magnesium alloys

    Science.gov (United States)

    Dhahri, Mohammed; Masse, Jean Eric; Mathieu, J. F.; Barreau, Gerard; Autric, Michel L.

    2000-02-01

    Metallic alloys with a low mass density can be considered to be basic materials in aeronautic and automotive industry. Magnesium alloys have better properties than aluminum alloys in respect of their low density and high resistance to traction. The main problems of magnesium alloy welding are the inflammability, the crack formation and the appearance of porosity during the solidification. The laser tool is efficient to overcome the difficulties of manufacturing by conventional processing. Besides, the laser processing mainly using shielding gases allows an effective protection of the metal against the action of oxygen and a small heat affected zone. In this paper, we present experimental results about 5 kW CO2 laser welding of 4 mm-thick magnesium alloy plates provided by Eurocopter France. The focused laser beam has about 0.15 mm of diameter. We have investigated the following sample: WE43, alloy recommended in aeronautic and space applications, is constituted with Mg, Y, Zr, rare earth. More ductile, it can be used at high temperatures until 250 degrees Celsius for times longer than 5000 hours without effects on its mechanical properties. A sample of RZ5 (French Norm: GZ4TR, United States Norm ZE41) is composed of Mg, Zn, Zr, La, rare earth. This alloy has excellent properties of foundry and it allows to the realization of components with complex form. Also, it has a good resistance and important properties of tightness. The parameters of the process were optimized in the following fields: laser power: 2 to 5 kW, welding speed: 1 to 4.5 m/min, focal position: -3 mm to +3 mm below or on the top of the metal surface, shielding gas: helium with a flow of 10 to 60 l/min at 4 bars. Metallurgical analyses and mechanical control are made (macroscopic structure, microscopic structure, interpretations of the structures and localization of possible defects, analyse phases, chemical composition, hardness, tensile test etc.) to understand the parameters influence of welding

  3. Effect of Welding Consumables on Fatigue Performance of Shielded Metal Arc Welded High Strength, Q&T Steel Joints

    Science.gov (United States)

    Magudeeswaran, G.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2009-02-01

    Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to their high strength-to-weight ratio and high hardness. These steels are prone to hydrogen-induced cracking in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel consumables to weld the above steel was the only remedy because of higher solubility for hydrogen in austenitic phase. Recent studies proved that high nickel steel and low hydrogen ferritic steel consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the effect of welding consumables on high cycle fatigue properties of high strength, Q&T steel joints. Three different consumables namely (i) austenitic stainless steel, (ii) low hydrogen ferritic steel, and (iii) high nickel steel have been used to fabricate the joints by shielded metal arc (SMAW) welding process. The joints fabricated using low hydrogen ferritic steel electrodes showed superior fatigue properties than other joints.

  4. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    Science.gov (United States)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  5. Heat input effect on the microstructural transformation and mechanical properties in GTAW welds of a 409L ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J. A.; Ambriz, R. R.; Cuenca-Alvarez, R.; Alatorre, N.; Curiel, F. F.

    2016-10-01

    Welds without filler metal and welds using a conventional austenitic stainless steel filler metal (ER308L) were performed to join a ferritic stainless steel with Gas Tungsten Arc Welding process (GTAW). Welding parameters were adjusted to obtain three different heat input values. Microstructure reveals the presence of coarse ferritic matrix and martensite laths in the Heat Affected Zone (HAZ). Dilution between filler and base metal was correlated with the presence of austenite, martensite and ferrite in the weld metal. Weld thermal cycles were measured to correlate the microstructural transformation in the HAZ. Microhardness measurements (maps and profiles) allow to identify the different zones of the welded joints (weld metal, HAZ, and base metal). Comparing the base metal with the weld metal and the HAZ, a hardness increment (∼172 HV{sub 0}.5 to ∼350 HV{sub 0}.5 and ∼310 HV{sub 0}.5, respectively) was observed, which has been attributed to the martensite formation. Tensile strength of the welded joints without filler metal increased moderately with respect to base metal. In contrast, ductility was approximately 25% higher than base metal, which provided a toughness improvement of the welded joints. (Author)

  6. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-03-01

    Full Text Available Quenched and Tempered (Q&T steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC in the heat affected zone (HAZ after welding. The use of austenitic stainless steel (ASS consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW and Flux cored arc welding (FCAW were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.

  7. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process

    Directory of Open Access Journals (Sweden)

    Farhad Gharavi

    2015-07-01

    Full Text Available In this work, the corrosion behavior of welded lap joints of AA6061-T6 aluminum alloy produced by friction stir welding process has been investigated. Corrosion properties of welded lap joints were studied by cyclic polarization and electrochemical impedance spectroscopy tests. All tests were performed in an aerated 0.6 mol L−1 NaCl aqueous solution with pH = 6.5 at a temperature of 30 °C to characterize corrosion morphology and realize corrosion features of weld regions as opposed to the parent alloy. The microstructure of weld nugget (WN, heated affected zone (HAZ, and parent alloy were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The experimental results indicated that the welding process has a major effect on the corrosion resistance, which possibly associated to the break-down and dissolution of intermetallic particles. It is supposed that an increasing in intermetallic distributed throughout the matrix of weld regions increases the galvanic corrosion couples. Furthermore, by decreasing the grain size in the weld regions, the susceptibility to corrosion is enhanced. The pitting corrosion and intergranular attack are the dominant corrosion types in the weld regions and the parent alloy.

  8. Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds

    Science.gov (United States)

    Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.

    2017-04-01

    Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.

  9. Microstructure change in the interface of co2 laser welded zirconium alloys

    Science.gov (United States)

    Boutarek, N.; Azzougui, B.; Saidi, D.; Neggache, M.

    2009-11-01

    Welding is a joining procedure that offers some benefits over mechanical fasteners such as weight reduction and absence of notches induced by machining operations. CO2 laser beam welding with a continuous wave is a high energy density and low heat input process. The result of this is a small heat-affected zone (HAZ), which cools very rapidly with very little distortion, and a high depth-to-width ratio for the Welding is a necessary process during fabricating fuel rods and fuel assemblies with Zircaloy-4 cladding, and electron beam welding is one of the commonly- used method. In this work, the joining of zirconium alloys was attempted by laser beam welding. A 2 kW CO2 laser is used and the joints are obtained from similar materials, which are plates of Zircaloy-4 (2 mm thick). A series of zirconium alloys were welded and investigated in a tow-fold approach: (1) process optimisation: the laser processing parameters are optimized to obtain welds with minimum defects, and (2) material characterisation: weld microstructures were evaluated. The microstructure and the phases present in the resolidified zone of the laser -welded specimens were analyzed by optical and scanning electron microscopy, X-ray diffraction, and also by the realization of micro hardness diagrams. A particular attention was made to study the correlation between surface structure and mechanical behaviour.

  10. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    Science.gov (United States)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  11. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  12. Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties

    Science.gov (United States)

    Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing

    2016-03-01

    In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.

  13. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  14. Influence of structure on static cracking resistance and fracture of welded joints of pipe steels of strength class K60

    Science.gov (United States)

    Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2017-07-01

    The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.

  15. An evaluation of creep rupture strength of ferritic/austenitic dissimilar weld interfaces using cohesive zone modelling

    OpenAIRE

    Hu, Jia-nan; Fukahori, Takuya; Igari, Toshihide; Chuman, Yasuharu; Cocks, Alan C.F.

    2016-01-01

    Dissimilar metal welds between ferritic and austenitic alloys are used extensively in power generation plants. Failure of such welds can occur in the base metal, the heat-affected zone (HAZ), or the interface between the two materials, depending on the operating stress and temperature. Evaluation of the creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo (P22) and 9Cr-1MoVNb (P91) ferritic steels with INCONEL 82 filler metal are described, with the primary focus on failure at the...

  16. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  17. Effects of Porosity, Heat Input and Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of TIG Welded Joints of AA6082-T6

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-11-01

    Full Text Available Various heat input conditions and post-weld heat treatments were adopted to investigate the microstructure evolution and mechanical properties of tungsten inert gas (TIG welded joints of AA6082-T6 with porosity defects. The results show that the fracture location is uncertain when an as-welded joint has porosities in the weld zone (WZ, and overaging in the heat-affected zone (HAZ at the same time. When the fracture of the as-welded joint occurs in the HAZ, the total heat input has a linear relation with the tensile strength of the joint. An excess heat input induces the overgrowth of Mg2Si precipitates in HAZ and the coarsening of α-Al grains in WZ, resulting in a decrease in the microhardness of the corresponding areas. After artificial aging treatment, the tensile strength of the welded joint is increased by approximately 9–13% as compared to that of as-welded joint, and fracture also occurs in HAZ. In contrast, for solution treated and artificial aging treated joint, fracture occurs suddenly at the rising phase of the tensile curve due to porosity defects throughout the weld metal. Furthermore, the eutectic Si particles of WZ coarsen and spheroidize after solution treatment and artificial aging treatment, due to the diffusion of Si to the surface of the original Si phases when soaking at high temperature.

  18. A study of chromium carbide precipitation at interphase boundaries in stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Willis, C.F.

    1990-04-01

    Sensitization is a deleterious process which can occur in stainless steels. It is caused by grain boundary or phase boundary precipitation of chromium carbides and the resulting formation of a chromium depleted zone adjacent to these boundaries. The carbides in question actually have the composition (Cr,Fe){sub 23}C{sub 6} (usually written M{sub 23}C{sub 6}), and precipitate in the temperature range 450--900{degree}C. Since a minimum chromium content is required to maintain the passive film necessary for resistance to electrochemical attack, the result of chromium depletion is that the steel becomes sensitized'' to possible intergranular corrosion. Sensitization often occurs as a result of welding operations. The material close to the fusion line reaches temperatures within the sensitization range. This region is called the heat affected zone (HAZ). Since many welds are multi-pass welds, the actual weld bead of one pass may lie in the heat affected zone of the next pass. The weld bead of the first pass might therefore be sensitized. Furthermore there are applications where welds will be exposed to sensitizing temperatures for very long periods of time, such as welded labels on retrievable nuclear waste containers. For these reasons the sensitization behavior of the actual weld-bead microstructures must be understood. It has been known for many years that duplex stainless steels (steels with both ferrite and austenite phases present at room temperature) have superior resistance to intergranular corrosion. A model has been proposed to explain the sensitization behavior of these alloys. This work will be concerned with testing the validity of aspects of this model using transmission electron microscopy and further understanding of the sensitization process in duplex stainless steel welds. 52 refs., 23 figs.

  19. Fatigue Crack Growth Behavior of a New Type of 10% Cr Martensitic Steel Welded Joints with Ni-Based Weld Metal

    Science.gov (United States)

    Zhang, Qunbing; Zhang, Jianxun

    2017-08-01

    In the present work, the fatigue crack growth (FCG) behavior of a new type of 10% Cr martensitic steel welded joints with Ni-based weld metal was comparatively studied for different regions including base metal (BM), heat-affected zone (HAZ) and weld metal (WM). FCG results indicated that the tempered lath martensite BM has a higher fatigue crack growth resistance than the tempered granular martensite HAZ that without a typical lath structure. In comparison, the austenitic WM has the highest fatigue crack growth threshold. Meanwhile, due to the microstructural and chemical compositional differences between BM and WM, a clear interface existed in the welded joints. At the region of the interface, the microstructures were physically connected and an element transition layer was formed. Although the starter notch was positioned at the region of interface, the fatigue crack gradually deviated from the interface and ultimately propagated along the inter-critically heat-affected zone. The difference in microstructure is considered as the primary factor that resulted in the different fatigue crack growth behaviors of the welded joints. In addition, the continuous microstructure connection and composition transition at the interface contributed to the good fatigue resistance at this region.

  20. Global and local characteristics of an autogenous single pass electron beam weld in thick gage UNS S41500 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarafan, S., E-mail: Sheida.Sarafan.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada); National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Wanjara, P., E-mail: priti.wanjara@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Gholipour, J., E-mail: Javad.gholipour@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Champliaud, H., E-mail: henri.champliaud@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada)

    2016-06-01

    Electron beam welding of UNS S41500, a low carbon martensitic stainless steel utilized in hydroelectric turbine manufacturing, was investigated by applying a single pass autogenous process to penetrate a section thickness of 72 mm without preheating. In the as-welded and post-weld heat treated conditions, the evolution in microhardness and microstructure across the weldments, as well as the global and local tensile properties, were evaluated. In the as-welded condition, assessment of the microhardness and the associated microstructure across the welds led to the identification of six regions, including the fusion zone, four heat affected zones and the base metal; each of these regions consisted of different phase constituents, such as tempered martensite, untempered martensite, delta ferrite and retained austenite. Post-weld heat treatment, undertaken to temper the untempered martensite in the as-welded microstructure, was effective in homogenizing the hardness across the weldment. The mechanical response of the welds, determined through tensile testing at room temperature with an automated non-contact three-dimensional deformation measurement system, indicated that the global tensile properties in the as-welded and post-weld heat treated conditions met the acceptance criteria in the ASME Section IX standard. Also, evaluation of the local tensile properties in the fusion and heat affected zones of the as-welded samples allowed a more comprehensive understanding of the strength and ductility associated with the different microstructures in the “composite” nature of the weldment. Fractographic analysis demonstrated dimpled features on the tensile fracture surfaces and failure was associated with debonding between the martensitic matrix and the secondary phases (such as delta ferrite and retained austenite) that resulted in the formation, growth and coalescence of voids into a macroscale crack.

  1. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S.J.; Smith, P.A. [National Power plc, Swindon (United Kingdom)

    1998-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  2. Fiber laser welding of dual-phase galvanized sheet steel (DP590): traditional analysis and new quality assessment techniques

    Science.gov (United States)

    Miller, Stephanie; Pfeif, Erik; Kazakov, Andrei; Baumann, Esther; Dowell, Marla

    2016-03-01

    Laser welding has many advantages over traditional joining methods, yet remains underutilized. NIST has undertaken an ambitious initiative to improve predictions of weldability, reliability, and performance of laser welds. This study investigates butt welding of galvanized and ungalvanized dual-phase automotive sheet steels (DP 590) using a 10 kW commercial fiber laser system. Parameter development work, hardness profiles, microstructural characterization, and optical profilometry results are presented. Sound welding was accomplished in a laser power range of 2.0 kW to 4.5 kW and travel speed of 2000 mm/min to 5000 mm/min. Vickers hardness ranged from approximately 2 GPa to 4 GPa across the welds, with limited evidence of heat affected zone softening. Decreased hardness across the heat affected zone directly correlated to the appearance of ferrite. A technique was developed to non-destructively evaluate weld quality based on geometrical criteria. Weld face profilometry data were compared between light optical, metallographic sample, and frequency-modulated continuous-wave laser detection and ranging (FMCW LADAR) methods.

  3. Effects of the Hot Isostatic Pressing Process on Crack Healing of the Laser Repair-Welded CM247LC Superalloy

    Directory of Open Access Journals (Sweden)

    Keng-Tu Hsu

    2016-10-01

    Full Text Available This study investigated the effects of the hot isostatic pressing process on the crack healing, microstructure, and mechanical properties of the laser repair-welded CM247LC precipitation-hardened superalloy. To ensure the strength of the repair-welded area, this study used the direct re-melting approach, and simulated the repair welding with the filler addition, which has a chemical composition matching that of the base superalloy. As expected, different types of cracks, including the solidification crack in the weld fusion zone and various types of liquidation cracks in the heat-affected zone, were observed. Through a proper hot isostatic pressing healing process, all cracks in the weld fusion zone and the heat-affected zone of the repair-welded pieces were healed. At the same time, some nano- and micro-sized carbides tended to form discontinuously along the healed crack trace. A micro-hardness test was conducted in the repair-welded area, and the results were similar to that of the as-cast material.

  4. Laser Welding of Ultrahigh Strength Steels at Subzero Temperatures

    Science.gov (United States)

    Gerhards, Benjamin; Reisgen, Uwe; Olschok, Simon

    Ultrahigh strength steels like press hardened 22MnB5 and S1100QL make good construction materials, however when fusion welded they bring the disadvantage of softening in heat affected zones (HAZ). State of the art research of Laser welding ultrahigh strength steels shows that neither increasing the welding velocity, nor post weld heat treatment have an effect on the strength and hardness drop in the HAZ. The key to improving these material characteristics is to increase heat dissipation out of the workpiece. To do so, the cooling conditions while laser welding press hardened 22MnB5 and S1100QL were dramatically increased. Experiments were carried out at subzero temperatures down to -98°C by using a mixture of liquid and gaseous nitrogen. To further improve heat dissipation, the clamping jaws were entirely made of copper. Hardness measurements and tensile tests were conducted to compare joints welded at room temperature with those welded at -98°C. Whilst an improvement of the hardness values could be achieved for the press hardened 22MnB5 and the S1100, no change in the mechanical behavior regarding tensile tests could be observed. Thus, it can be noticed that there is no possibility to improve the strength levels of martensitic steels throughout varying process parameters (like welding velocity) or utilizing an active cooling, even if subzero temperatures down to -98°C are applied. A further improvement at lower temperatures is unlikely because heat dissipation in the work piece itself is the limiting factor.

  5. Degradation Processes of Al-Zn Welded Joints

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2014-01-01

    Full Text Available Welding of metal materials belongs to non-demountable joints. Current trend especially in an automotive industry is to join materials with a different melting temperature. Most of all, there are dural profiles with ferrite or austenite steel. The reason for this is the effort to lower the weight of the whole construction and at the same time preserve sufficient mechanical characteristics. However, there is a big risk of different electrical potentials of both of these metals in this type of non-demountable joints. The experimental part of this paper brings evaluation of mechanical-corrosion processes of overlapped joints produced by the CMT (cold metal transfer method. The base material for weld bead is dural sheet AlMg3 and dural sheet with a surface treatment aluzinc DX51D+AZ 150. Material AlSi5 in the form of a wire was used as an additional material for a welding bath. Method CMT was used in order to create a weld bead. Initial analysis of weld bead was done visually using a binocular microscope. Further, a metallographic analysis of weld bead and base material was processed. The aim was to identify the heat affected area around the welded joint. Microhardness of intermetallic aluminium phases was measured, after the identification of intermetallic phases a chemical analysis EDS was processed. Prepared samples underwent corrosion degradation in a salt spray environment in compliance with the norm ČSN EN ISO 9227. Visual and metallographic evaluation of the individual samples was processed after every week of exposition to the salt spray environment. The goal of this experiment was to record the initial impulse of galvanic corrosion which consists in corrosion degradation in the area of welded joint.

  6. Influence of the welding process on martensitic high strength steel

    Directory of Open Access Journals (Sweden)

    Petr Hanus

    2014-07-01

    Full Text Available The subject of the study is martensitic 22MnB5 steels, which are used in the automotive industry. The main purpose of the performed analyses is a study of strength differences in heat affected zones of the spot welding. For the needs of the strength decrease assessment, the critical layer of the heat affected area was experimentally simulated. The aim of the work is to determine the most suitable methodology for evaluating the local changes of the elastic-plastic material response. The aim of this work is to determine the optimal methods for the determination of the yield strength and to find a firming trend in these zones.

  7. Experimental characterization of fatigue strength in butt welded joint considering the geometry and the effect of cooling rate of the weld

    Science.gov (United States)

    Arzola, Nelson; Hernández, Edgar

    2017-05-01

    In this work the experimental characterization of fatigue strength in butt welded joints considering the geometry and the post-weld cooling cycle was performed. ASTM A-36 structural steel was used as the base metal for the shielded metal arc welding process, with welding electrode E6013. Two experimental factors were established: weld bead geometry and the post-weld cooling rate. Two levels for each factor, the welding reinforcement (1 and 3 mm), and the rate of cooling, slow (quiet air) and fast (immersion in water) are evaluated respectively. For the uniaxial fatigue tests, 8 samples were selected for each treatment for a total of 32 specimens. The mechanical and fractomechanical properties of fusion zone, heat affected zone and base metal in relation to the analysis of failure mechanisms were analysed. The fatigue crack growth rates were estimated based on the counting of microstrations. Furthermore, experimental tests, such as uniaxial tension, microindentation hardness, Charpy impact and metallographic analysis, were made to know the influence of the experimental factors in the fatigue strength. On this research, about the 78.13% of the samples obtained a resistance higher than the recommended one by class FAT 100. The results showed that the geometry of the joint is the factor of greatest influence on fatigue strength for butt welded joints; the greater the weld reinforcement the lower the fatigue strength of the joint. Although it is also important to consider other geometric factors of less impact as it is the weld toe radius and the welding chord width.

  8. The Laser Welding with Hot Wire of 316LN Thick Plate Applied on ITER Correction Coil Case

    CERN Document Server

    Fang, Chao; Wu, Weiyue; Wei, Jing; Zhang, Shuquan; Li, Hongwei; Dolgetta, N; Libeyre, P; Cormany, C; Sgobba, S

    2014-01-01

    ITER correction coil (CC) cases have characteristics of small cross section, large dimensions, and complex structure. The cases are made of heavy thick (20 mm), high strength and high toughness austenitic stainless steel 316LN. The multi-pass laser welding with hot wire technology is used for the case closure welding, due to its low heat input and deformation. In order to evaluate the reliability of this welding technology, 20 mm welding samples with the same groove structure and welding depth as the cases were welded. High purity argon was used as the shielding gas to prevent oxidation because of the narrowness and depth of the weld. In this paper investigation of, microstructure characteristics and mechanical properties of welded joints using optimized welding parameters are presented. The results show that the base metal, fusion metal, and heat affected zone (HAZ) are all have fully austenitic microstructure, and that the grain size of fusion metal was finer than that of the base metal. The welding resulte...

  9. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: marcogarciarenteria@uadec.edu.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: franciscocl7@yahoo.com.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); Curiel-López, F.F., E-mail: franciscocl7@yahoo.com.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico)

    2017-02-28

    Highlights: • Application of EMILI during welding 2205 Duplex stainless steel hindered the coarsening of δ grains in HTHAZ and promoted regeneration of γ. • Welds made with simultaneous EMILI presented TPI values at the HTHAZ similar to those for BM. • Welds made under 3, 12 and 15 mT presented a mass loss by anodic polarisation similar to that observed for the as-received BM. • This behaviour is due to changes in the dynamics of microstructural evolution during welding with EMILI. - Abstract: The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  10. Reprocessing weld and method

    Energy Technology Data Exchange (ETDEWEB)

    Killian, M.L.; Lewis, H.E.

    1993-08-03

    A process is described for improving the fatigue resistance of a small primary structural weld at a joint between structural members of a weldment, the weld having been made with the welding energy input of E[sub 1], the process comprising: applying a reprocessing weld on at least a portion of either one or both toes of the primary structural weld, thereby covering said toe portion, the reprocessing weld containing a filler metal and having a cross-sectional area which is less than the corresponding cross-sectional area of the primary structural weld, the reprocessing weld extending onto the face of the primary structural weld at one side of the toe portion covered and onto the structural member at the other side of the toe portion covered, and the total welding energy input, E[sub 2], used in said reprocessing the primary structural weld being less than the welding energy input E[sub 1] of the primary structural weld.

  11. Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints

    Directory of Open Access Journals (Sweden)

    Mohammed Asif. M

    2015-12-01

    Full Text Available Solid state joining techniques are increasingly employed in joining duplex stainless steel materials due to their high integrity. Continuous drive friction welding is a solid state welding technique which is used to join similar and dissimilar materials. This joining technique is characterized by short cycle time, low heat input and narrow heat affected zones. The simulation becomes an important tool in friction welding because of short welding cycle. In the present work, a three dimensional non-linear finite element model was developed. The thermal history and axial shortening profiles were predicted using ANSYS, a software tool. This numerical model was validated using experimental results. The results show that the frictional heating stage of the process has more influence on temperature and upsetting stage has more impact on axial shortening. The knowledge of these parameters would lead to optimization of input parameters and improvement of design and machine tools.

  12. Analysis of properties laser welded RAK 40/70 steel sheets

    Science.gov (United States)

    Evin, E.; Tomáš, M.; Fujda, M.

    2017-11-01

    Both, the ecological production and operation of vehicles demand using such materials for deformation zones’ structural parts, which show some specific properties and use innovative technologies to process them. Specific requirements for functionality (strength, stiffness, deformation work, fatigue properties) are closely linked to processability (formability). In the paper are presented results for multiphase TRIP steel RAK40/70 when welded by pulse solid-state fiber laser YLS-5000. Based on microstructure analysis in the fusion zone and heat affected zone the welding parameters were optimised. The influence of laser welding on the strength and deformation properties was verified by characteristics of strength, stiffness and deformation work, as they were calculated from mechanical properties measured by tensile test and three-point bending test. The knowledge gathered in the field of laser welding influence on the strength and deformation properties of multiphase TRIP steel RAK40/70 should help designers when design the lightweight structural parts of the car body.

  13. Finite element analysis of spot laser of steel welding temperature history

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2009-01-01

    Full Text Available Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

  14. Synergy of corrosion activity and defects in weld bonds

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2004-01-01

    Full Text Available Presented work evaluates synergism of atmosphere corrosive action and material defects. These defects appear not only during particular technological process of connecting of structural material but also during cooling and up to hundreds hours afterwards. The multiplication of degradation impact of defects in joint welds and heat-affected zone caused by activity of atmosphere acidic medium is simulated in condensation chambers. The verification is realized by use of mechanical uniaxial tension loading and following fractographic and metalgraphic analysis.The metal plasticity is sufficient factor to eliminate thermal stress in tough metal (11 373. This is reflected in more homogenous weld root area (with no cracks. The corrosion influence of environment is in case of such specimens limited to very slight decrease of weld maximum load. The ultimate strength value decreases approximately for 20MPa only in contrast to dramatic strength decrease in case of 11 503 material. Before metalographic examination was observed surprisingly great value of load capacity of spot welds. These welds were not ruptured nor in a single case even during maximum length of corrosion exploitation. The consequent material analysis discovered high qualitative material and strength properties of this kind of joint.

  15. Effects of Electron Beam Welding on Microstructure, Microhardness, and Electrical Conductivity of Cu-Cr-Zr Alloy Plates

    Science.gov (United States)

    Kanigalpula, P. K. C.; Chatterjee, Arya; Pratihar, D. K.; Jha, M. N.; Derose, J.

    2015-12-01

    In this study, the effects of electron beam welding on the microstructure, microhardness, and electrical conductivity of precipitation-hardened Cu-0.804%Cr-0.063%Zr (wt.%) alloy plates were investigated. Experiments were carried out following a central composite design of experiments. Five welding schedules yielding the higher hardness were chosen and then were subjected to standard metallographic and various microscopy techniques to reveal the type, morphology, and distribution of the precipitates and to obtain the sub-structural information from the weld zone. X-ray diffraction studies revealed predominant formation of intermetallic phases in the welded zones of some of the samples, which could have resulted in higher hardness and better electrical conductivity compared to those of other ones. Microhardness values in the fusion zone and heat-affected zone were found to be less than that of the parent material. The mechanism of damage in Cu-Cr-Zr plates due to welding was also explained.

  16. Creep rupture properties of P122 and P92 steel HAZs simulated by heat treatments and by a weld simulator

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.K. [IGCAR, Kalpakkam (India); Matsui, M. [Mitsubushi Heavy Industries, Nagasaki (Japan); Watanabe, T.; Hongo, H.; Kubo, K.; Tabuchi, M. [National Inst. for Materials Science, Ibaraki (Japan)

    2002-07-01

    In the present study, creep rupture properties of the heat affected zones (HAZs) of P122 and P92 steels, simulated by a heat treatments and by a weld simulator, are studied and compared with those of the actual weld joint. Specimen blanks cut out from steel plates were heated to different peak temperatures that corresponds to intercritical HAZ (ICHAZ), fine grained HAZ (FGHAZ) and coarse grained HAZ (CGHAZ) both by heat treatment and by employing a weld simulator. These were then subjected to post weld heat treatment (PWHT) and creep specimens prepared from these blanks were tested at 923 K for various stress levels. Microstructure was uniform for the specimens with HAZ simulated by heat treatment while for those produced by weld simulator, the uniform microstructures corresponding to the peak temperature of simulation was confined to only {proportional_to}10 mm at the center of the specimens. (orig.)

  17. Microstructural, Micro-hardness and Sensitization Evaluation in HAZ of Type 316L Stainless Steel Joint with Narrow Gap Welds

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Faisal Shafiqul; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kang, Shi Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    From Micro-hardness measurement HAZ zone was found approximately 1-1.5 mm in NGW and DL-EPR test confirmed that 316L NGW HAZ was not susceptible to sensitization as DOS <1% according to sensitization criteria based on reference. In nuclear power plants 316L stainless steels are commonly used material for their metallurgical stability, high corrosion resistance, and good creep and ductility properties at elevated temperatures. Welding zone considered as the weakest and failure initiation source of the components. For safety and economy of nuclear power plants accurate and dependable structural integrity assessment of main components like pressure vessels and piping are need as it joined by different welding process. In similar and dissimilar metal weld it has been observed that weld microstructure cause the variation of mechanical properties through the thickness direction. In the Heat Affected Zone (HAZ) relative to the fusion line face a unique thermal experience during welding.

  18. Application of electrochemical methods for the investigation of intergranular corrosion welded joint austenitic stainless steel 19Cr-9Ni

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2011-01-01

    Full Text Available Sensitization degree of the austenitic stainless steel welded joints was investigated by electrochemical methods of the double loop electrochemical potentiokinetic reactivation (DL EPR in H2SO4 + KSCN solution, and by the measurement of corrosion potential of the steel in the drop of the solution of HNO3 + FeCl3 + HCl. The welded joints were tested by X-ray radiographic method in order to check the presence of the weld defects. Grain size of the base metal and the welded joints were determined by optical microscopy. Good agreement between the results obtained by different electrochemical methods was obtained. Heat-affected zone (HAZ of the austenitic stainless steel welded joints has shown significant degree of sensitization. The double loop electrochemical potentiokinetic method gave quantitative evidence about susceptibility of the stainless steel to intergranular corrosion.

  19. Effect of Temperature on Microstructure and Fracture Mechanisms in Friction Stir Welded Al6061 Joints

    Science.gov (United States)

    Dorbane, A.; Ayoub, G.; Mansoor, B.; Hamade, R. F.; Imad, A.

    2017-05-01

    Aluminum and its alloys are widely used in different industries due to such attractive properties as adequate strength, ductility, and low density. It is desirable to characterize welds of aluminum alloys obtained using "friction stir welding" at high temperatures. Al-to-Al (both 6061-T6) butt joints are produced by friction stir welding at tool rotation speed of 1600 rpm and four levels of tool advancing speeds: 250, 500, 750, and 1000 mm/min. Microstructural properties of the different welds are investigated. Observed are noticeable differences in microstructure characteristics between the various weld zones. Mechanical properties of these welded joints are characterized under tensile tests at temperatures of 25, 100, 200, and 300 °C, at a constant strain rate of 10-3/s. The optimum microstructural and mechanical properties were obtained for the samples FS welded with 1600 rpm tool rotation speed at 1000 mm/min tool advancing speed. The studied welds exhibited yield strength, ultimate tensile strength, and strain to failure with values inferior of those of the base material. Observations of postmortem samples revealed that in the temperature range of 25-200 °C the locus of failure originates at the region between the thermo-mechanically affected zone and the heat-affected zones. However, at higher temperatures (300 °C), the failure occurs in the stir zone. A change in the crack initiation mechanism with temperature is suggested to explain this observation.

  20. Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels

    Science.gov (United States)

    Berretta, José Roberto; de Rossi, Wagner; David Martins das Neves, Maurício; Alves de Almeida, Ivan; Dias Vieira Junior, Nilson

    2007-09-01

    The technique to weld AISI 304 stainless steel to AISI 420 stainless steel with a pulsed Nd:YAG laser has been investigated. The main objective of this study was to determine the influence of the laser beam position, with respect to the joint, on weld characteristics. Specimens were welded with the laser beam incident on the joint and moved 0.1 and 0.2 mm on either side of the joint. The joints were examined in an optical microscope for cracks, pores and to determine the weld geometry. The microstructure of the weld and the heat affected zones were observed in a scanning electron microscope. An energy dispersive spectrometer, coupled to the scanning electron microscope, was used to determine variations in (weight %) the main chemical elements across the fillet weld. Vickers microhardness testing and tensile testing were carried out to determine the mechanical properties of the weld. The results of the various tests and examinations enabled definition of the best position for the incident laser beam with respect to the joint, for welding together the two stainless steels.

  1. Laser welding study for further development in essential power plant part repairs

    Directory of Open Access Journals (Sweden)

    Isarawit Chaopanich

    2015-06-01

    Full Text Available The objective of this research work was to study the effects of laser welding when compared with shield metal arc welding (SMAW process on the heat input, welded deposit rate, residual stress, distortion, microstructure and micro hardness. The martensitic stainless steel grade 431 specimens were overlay welded with the stainless steel filler metals. From the results, the heat input of 0.26 kJ/mm in laser welding calculated was significantly lower than that of 1.66 kJ/mm in SMAW, and contributed to low level residual stress, minimal distortion, very small penetration depth and heat affected zone (HAZ of less than 100 µm. The micro hardness results indicated that the maximum value from laser welding in the HAZ was 370.2 HV lower than the value from SMAW of 525.5 HV. The welded deposit rate for laser welding was with 26.5 mm3 /min remarkably lower than the rate for SMAW of 1,800 mm3 /min.

  2. Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy

    Science.gov (United States)

    Chowdhury, S. M.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2011-07-01

    The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.

  3. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  4. 2017 Accomplishments – Tritium Aging Studies on Stainless Steel Weldments and Heat-Affected Zones

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, Dale [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McNamara, Joy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duncan, Andrew [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-31

    In this study, the combined effects tritium and decay helium in forged and welded Types 304L and 21-6-9 stainless steels were studied. To measure these effects, fracture mechanic specimens were thermally precharged with tritium and aged for approximately 17 years to build in decay helium from tritium decay prior to testing. The results are compared to earlier measurements on the same alloys and weldments (4-5, 8-9). In support of Enhanced Surveillance, “Tritium Effects on Materials”, the fracture toughness properties of long-aged tritium-charged stainless-steel base metals and weldments were measured and compared to earlier measurements. The fracture-toughness data were measured by thermally precharging as-forged and as-welded specimens with tritium gas at 34.5 MPa and 350°C and aging for approximately 17 years to build-in decay helium prior to testing. These data result from the longest aged specimens ever tested in the history of the tritium effects programs at Savannah River and the fracture toughness values measured were the lowest ever recorded for tritium-exposed stainless steel. For Type 21-6-9 stainless steel, fracture toughness values were reduced to less than 2-4% of the as-forged values to 41 lbs / in specimens that contained more than 1300 appm helium from tritium decay. The fracture toughness properties of long-aged weldments were also measured. The fracture toughness reductions were not as severe because the specimens did not retain as much tritium from the charging and aging as did the base metals. For Type 304L weldments, the specimens in this study contained approximately 600 appm helium and their fracture toughness values averaged 750 lbs / in. The results for other steels and weldments are reported and additional tests will be conducted during FY18.

  5. Increasing Strength and Operational Reliability of Fixed Joints of Tubes by MMA Welding

    Science.gov (United States)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Danilov, V. I.; Schlyakhova, G. V.; Gotovschik, Y. M.

    2015-09-01

    This paper presents peculiar properties of structure formation, phase and chemical composition while welding of low-alloy steel 09MnSi2-l depending on the dynamic characteristics of power sources of different types. Proper selection of power sources enables to decrease burning of alloy elements in metal of weld (Mn by 14% and Si by 17% of the weight ratio), to obtain more homogenous structure of deposited metal, to reduce length of heat-affected zone by 50% and to improve impact strength by 4-9%.

  6. Fatigue behaviour of welded joints from magnesium alloy (AZ31) according to the local strain concept

    Energy Technology Data Exchange (ETDEWEB)

    Karakas, Oe.; Guelsoez, A. [Engineering Faculty, Department of Mechanical Engineering, University Pamukkale, Denizli (Turkey); Kaufmann, H.; Sonsino, C.M. [Fraunhofer - Institute for Structural Durability and System Reliability, LBF, Darmstadt (Germany)

    2010-02-15

    In the present study, the results of fatigue tests with the magnesium alloy AZ31 (ISO-MgAl3Zn1) in the material states base metal, heat affected zone and weld metal obtained under strain control at room temperature within a range from 2.10{sup 2} to 5 .10 {sup 6} cycles are presented. The fatigue behaviour was characterized by the Coffin-Manson-Basquin equations and the stress - strain behaviour by the Ramberg-Osgood equation. The data can be used to assess welded magnesium joints according to the local strain concept. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    Science.gov (United States)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  8. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    Science.gov (United States)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  9. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.; Seffens, Rob J.; Efsing, Pal G.

    2009-08-27

    Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problems related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions

  10. Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.

    Science.gov (United States)

    Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M

    2014-04-01

    The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of

  11. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz; Soldadura T.I.G. de acero inoxidable. Modelo numerico para el calculo de temperaturas en la ZAT

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-07-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  12. Joining of an Ni-Al alloy by means of laser beam welding

    Science.gov (United States)

    Adamiec, Janusz; Grabowski, Andrzej; Lisiecki, Aleksander

    2003-10-01

    Trials of wlding an alloy based on an Ni3Al phase matrix with a diode laser have been made. In the base metal of Ni3Al, typical casting structures have been found. The Heat Affected Zone consists of a fine-grained structure, whereas in the weld structure, columnar crystals have been observed. A possibility of joining intermetallic phase-based alloys by measn of a diode laser has been affirmed.

  13. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  14. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  15. Upgrading weld quality of a friction stir welded aluminum alloys AMG6

    Science.gov (United States)

    Chernykh, I. K.; Vasil’ev, E. V.; Matuzko, E. N.; Krivonos, E. V.

    2018-01-01

    In the course of introduction of FSW technology into the industry there is a keen interest in this process; there are issues such as how does joining take place, what is the structure of the joint, and where there are dangerous zones. The objective of this research is to obtain information about the structure of the joint, what are the temperatures that arise during the joining, what strength is apply to the tool when joining the material, what tensile strength of joint, and where fracture tended to occur. Specimens were produced at different modes of welding at a tool rotation speed of 315 to 625 rpm and tool travel speed of 40 to 125 mm/min. During the experiment, the strength applied to the tool was measured, which reached 800016000 N (Fz) and 400-1400 N (Fx) and the temperature on the surface of the tool, which is in the range 250-400°C. Before the welding process the tool was heated to a temperature in the range of 100-250 degrees, but the tensile strength is not had a tangible impact. The tensile strength is about 80 % of that of the aluminum alloy base metal tensile strength, and fracture tended is occur not at the line of joint but follow the shape of the tool. In the transverse cross section of a FSW material there is a microstructural regions such as weld nugget, thermomechanically affected zone and heat-affected zone with parent material.

  16. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  17. Evaluation of Mechanical Properties of Alloy 82/182 Weld Joint Between SA508 Gr.3 Nozzle and F316L Safe-End

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Weon [Chosun University, Gwangju (Korea, Republic of); Lee, Kyung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    This paper presents the distributions of the tensile and fracture properties of an alloy 82/182 dissimilar weld joint between an SA508 Gr.3 nozzle and F316L SS safe-end at ambient temperature. Tensile and J-R tests were conducted using specimens extracted from base metals, heat-affected zones (HAZs), buttering regions, and various regions of the weld metal. The results show that the root region of the weld has higher strength than the upper region. The yield and tensile strengths vary considerably within the root region of the weld. The buttering region had the lowest strengths. The strengths gradually increased as the F316L stainless steel weld boundary was approached. The variation of the strengths within the upper region of the weld is insignificant. The fracture toughness of the alloy 82/182 weld metal is less than those of both the base metals and both HAZs. Within the alloy 82/182 weld, the center of weld has a slightly lower fracture toughness than the weld boundary and buttering region, and the root region has greater toughness than the upper region of the weld.

  18. Distribution of mechanical properties in Alloy 82/182 dissimilar weld joint between SA508 Gr.3 nozzle and F316L safe-end

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Weon [Chosun Univ., Gwangju (Korea, Republic of)

    2009-07-01

    This paper presents the distribution of tensile properties and fracture toughness in Alloy 82/182 dissimilar weld joint between SA508 Gr.3 nozzle and F316L SS safe-end at ambient temperature. Tensile and J-R tests were conducted using the specimens extracted form both base metals, Heat Affected Zones (HAZs), buttering, and various regions of weld metal. It showed that root region of weld exhibits higher strengths than upper region. The yield and tensile strengths considerably varied within root region of weld, the lowest strengths appeared at buttering region and gradually increased with approaching boundary with F316L stainless steel, whereas the variation of strengths within the weld was insignificant at upper region of weld. It was also indicated that fracture toughness of Alloy 82/182 weld metal was lower than that of both base metals and both HAZs. Within the Alloy 82/182 weld, the center of weld showed slightly lower fracture toughness than weld boundary and buttering, and the root region showed higher toughness than upper region of weld.

  19. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part I: Microstructure Characterization

    Science.gov (United States)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Parry, Guillaume; Deschamps, Alexis

    2014-12-01

    This work presents a detailed, multiscale, spatially resolved study of the microstructure of an electron beam butt weld of the EN-AW 7020 (Al-Zn-Mg) alloy. Using a combination of optical, scanning and transmission electron microscopy, differential scanning calorimetry, and small-angle X-ray scattering, the distribution of phases in the different areas of the heat-affected zone and of the fusion zone is quantitatively characterized, for two different aging states: naturally aged after welding and artificially aged at 423 K (150 °C). The heat-affected zone consists of regions experiencing different levels of precipitate dissolution and coarsening during welding as well as new precipitation during post-welding heat treatment (PWHT). The microstructure of the fusion zone is typical from a fast solidification process, with a strong solute segregation in the interdendritic zones. The precipitate distribution after PWHT follows this solute distribution, and the resulting hardness is much lower than the relatively homogeneous value in the base metal and the heat-affected zone.

  20. Temperature based validation of the analytical model for the estimation of the amount of heat generated during friction stir welding

    Directory of Open Access Journals (Sweden)

    Milčić Dragan S.

    2012-01-01

    Full Text Available Friction stir welding is a solid-state welding technique that utilizes thermomechanical influence of the rotating welding tool on parent material resulting in a monolith joint - weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process, mechanical energy is partially transformed into heat. Generated heat affects the temperature of the welding tool and parent material, thus the proposed analytical model for the estimation of the amount of generated heat can be verified by temperature: analytically determined heat is used for numerical estimation of the temperature of parent material and this temperature is compared to the experimentally determined temperature. Numerical solution is estimated using the finite difference method - explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool, etc. The analytical model shows that 60-100% of mechanical power given to the welding tool is transformed into heat, while the comparison of results shows the maximal relative difference between the analytical and experimental temperature of about 10%.

  1. Physics of arc welding

    Science.gov (United States)

    Eagar, T. W.

    1982-05-01

    A discussion of the factors controlling the size and shape of the weld fusion zone is presented along with a description of current theories of heat and fluid flow phenomena in the plasma and the molten metal weld pool. Although experimental results confirm that surface tension, plasma jets, and weld pool convection all strongly influence the fusion zone shape; no comprehensive model is available from which to predict welding behavior. It is proposed that the lack of such an understanding is a major impediment to development of automated welding processes. In addition, sensors for weld torch positioning are reviewed in terms of the mechnical and electromagnetic energy spectra which have been used. New developments in this area are also needed in order to advance the technology of automated welding.

  2. Multiobjective optimization of GMAW process of the AA 6063-t5 alloy based on penetration and heat affected zone; Optimizacion multiobjetivo del proceso de soldeo GMAW de la aleacion AA 6063-T5 basado en la penetracion y en la zona afectada termicamente

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, V.; Marin-Ortiz, F.; Manjabacas, M. C.; Martinez-Conesa, E. J.; Martinez-Martinez, A.; Coello, J.

    2015-03-30

    The selection of technological parameters in a welding process must be led to the optimized results of the operation. Penetration is one of the most decisive factors for the success of the joint. Another important factor is the Heat Affected Zone (HAZ), when the mechanical properties of this one are modified respecting to the base material. The way in which the technological variables of the process affects to both them, penetration and HAZ, are inverse in each case. This work presents an optimization methodology based on the Design of Experiments (DOE) and the Response Surface Method (RSM) of the GMAW process applied to the aluminum alloy AA 6063-T5. This research is focused to obtain penetration rates that make HAZ values to be suitable in current applications. Welding rate has been found to be the most significant technological parameter for controlling the process. (Author)

  3. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    Science.gov (United States)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing

  4. Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys

    Science.gov (United States)

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Goodarzi, Massoud; Khodabakhshi, Meisam; Mapelli, Carlo; Barella, Silvia

    2014-04-01

    In the present research, the modern fiber laser beam welding of newly-designed precipitation-strengthened nickel-base superalloys using various welding parameters in constant heat input has been investigated. Five nickel-base superalloys with various Ti and Nb contents were designed and produced by Vacuum Induction Melting furnace. The fiber laser beam welding operations were performed in constant heat input (100 J mm-2) and different welding powers (400 and 1000 W) and velocities (40 and 100 mm s-1) using 6-axis anthropomorphic robot. The macro- and micro-structural features, weld defects, chemical composition and mechanical property of 3.2 mm weldments were assessed utilizing optical and scanning electron microscopes equipped with EDS analysis and microhardness tester. The results showed that welding with higher powers can create higher penetration-to-width ratios. The porosity formation was increased when the welding powers and velocities were increased. None of the welds displayed hot solidification and liquation cracks in 400 and 1000 W welding powers, but liquation phenomenon was observed in all the heat-affected zones. With increasing the Nb content of the superalloys the liquation length was increased. The changing of the welding power and velocity did not alter the hardness property of the welds. The hardness of welds decreased when the Ti content declined in the composition of superalloys. Finally, the 400 and 1000 W fiber laser powers with velocity of 40 and 100 m ms-1 have been offered for hot crack-free welding of the thin sheet of newly-designed precipitation-strengthened nickel-base superalloys.

  5. Dual wire weld feed proportioner

    Science.gov (United States)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  6. Component, Context and Manufacturing Model Library (C2M2L)

    Science.gov (United States)

    2013-03-01

    Welding Shielded-Metal Arc Welding (Stick), GMAW ( TIG ), GMAW (MIG), Flux-Cored Arc Welding , Submerged Arc Welding Forming Press Forming Roll...manufacturing models for Welding , Casting, Forging, Ausforming, Coatings (organic and inorganic), Sheet and Plate Metal Cutting, Material Handling...23 4.1 WELDING

  7. Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Farabi, N. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-01-21

    Research highlights: > Laser welding results in a significant hardness rise in the fusion zone, but the formation of a soft zone in the heat-affected zone. > A characteristic unsymmetrical hardness profile is observed across the dissimilar joint. > Yield point phenomenon with only stage III strain hardening occurs after welding. > Fatigue life at higher stress amplitudes is equivalent to that of DP600 steel despite slightly lower fatigue limit. - Abstract: The use of dual phase (DP) steels in the automobile industry unavoidably involves welding and dynamic loading. The aim of this investigation was to evaluate the microstructural change and mechanical properties of laser welded dissimilar DP600/DP980 steel joints. The dissimilar joints showed a significant microstructural change from nearly full martensite in the fusion zone (FZ) to the unchanged ferrite-martensite dual-phase microstructure in the base metal. The welding resulted in a significant hardness increase in the FZ but the formation of a soft zone in the heat-affected zone (HAZ). The dissimilar welded joints were observed to exhibit a distinctive unsymmetrical hardness profile, yield-point-like phenomenon, and single-stage work hardening characteristic, with yield strength and work hardening rate lying in-between those of DP600 and DP980 base metals, and ultimate tensile strength equivalent to that of DP600 base metal. Although the welded joints showed a lower fatigue limit than the base metals, the fatigue life of the welded joints at higher stress amplitudes was almost the same as that of the DP600 base metal. The welded joints failed in the soft zone at the DP600 side under tensile loading and fatigue loading at the higher stress amplitudes. Fatigue crack initiation occurred from the specimen surface and crack propagation was characterized by typical fatigue striation together with secondary cracks.

  8. Long-term creep testing and microstructure evaluation of P91 steel weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Kasl, J.; Kanta, V. [SKODA VYZKUM s.r.o., Plzen (Czech Republic)

    2007-06-15

    Trial weld joints were made from wrought and cast modified 9Cr-lMo-V steel using GTAW and SMAW methods. Creep testing was carried out at temperature range from 525 deg C to 625 deg C and stresses from 50 to 240 MPa. Time to rupture of welds made from tube segments and cast plates reached almost 30 000 hours and 20 000 hours respectively. Creep strength was evaluated according the Larson-Miller parametric equation and microstructure was investigated using both light and electron microscopy. Creep rupture strength of both weld joints tested at temperatures below 600 deg C falls into the {+-}20% scatter band of the creep rupture strength of the parent material. At 600 deg C and 625 deg C the creep strength dropped by 27% and 30% for the plate weld and the tube weld respectively. All ruptures occurred in fine grain and intercritically reheated heat affected zones either in the parent material or in the weld metal. Observation of thin foils prepared from selected regions of the weld joints revealed differences in precipitation processes and the structure recovery causing decrease of dislocation density in some regions. Fine ferritic grains with low density of fine carbonitride precipitate occurred in critical localities. Soft grains were deformed and cavities at grain boundaries initiated the crack propagation. (orig.)

  9. Characterization of the Micro-Welding Process for Repair of Nickel Base Superalloys

    Science.gov (United States)

    Durocher, J.; Richards, N. L.

    2007-12-01

    Micro-welding is a low-heat input process whereby a metal or cermet, is deposited by the generation of a low-power arc between a consumable electrode and a substrate. The low-heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. At present, the repair of turbine blades and vanes commonly involves gas tungsten arc welding and these components are susceptible to heat affected zone cracking during the weld repair process; vacuum brazing is also used but mainly on low-stress components such as stators. In this study, the low-heat input characteristic of micro-welding has been utilized to simulate repair of Inconel (Trade Mark of Special Metals) 625, Inconel 718, and Inconel 722 filler alloys to a cast Inconel 738 substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  10. The reliability of the repair weld joints of aged high temperature components in fossil power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Yokoyama, Tomomitsu; Nishimura, Nobuhiko [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Suzuki, Komei [Japan Steel Works Ltd., Tokyo (Japan)

    1998-11-01

    It is of fundamental engineering importance to be able to give reliable assessments of the effective service life of the critical components used within fossil power plants, particularly for those operating for prolonged periods. It is common practice for such assessments to have been estimated using destructive tests, typically the stress rupture test, this having been recognized as one of the most reliable evaluation methods available. Its only drawback is that it often does not permit the component to be in use following the sampling of the test specimen without repairing. The current piece of work focuses on the reliability of the repair welds of components for specimens taken from fossil power plants, having been in service for prolonged periods. Several such repairs to welds have been made to an old power boiler, in particular to a superheater header which is fabricated from 2.25Cr-1Mo steel. Under close examination the repairs to the girth weldment showed susceptibilities of weld cracking, similar to that observed in as-manufactured material. Within the repaired region of the welded joint the microstructure, tensile properties and toughness seemed to be unaffected. The hardness attained its minimum value within the heat affected zone, HAZ of the repair weld, overlapping that of original girth weld HAZ. Furthermore, the stress rupture strength achieved its minimum value at the same position taking on the same value as the strength associated with the aged girth welded joint. (orig.)

  11. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  12. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiao-Long; Liu, Jing; Zhang, Lin-Jie, E-mail: zhanglinjie@mail.xjtu.edu.cn; Zhang, Jian-Xun

    2014-07-01

    The effect of the overlapping factor on the microstructures and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V alloy sheets was investigated by microstructural observations, microhardness tests, tensile tests and fatigue tests. A microstructural examination shows that by increasing the overlapping factor, the grains in the fusion zone become coarser, and the width of the heat affected zone increases. As overlapping factor increases, the width of region composed completely of martensite α′ and the secondary α phase in the heat affected zone increases, consequently the gradient of microstructure along the direction from the fusion zone to base metal decreases, so does the gradient of microhardness. The results of tensile and fatigue tests reveal that the joints made using medium overlapping factor exhibit better mechanical properties than those welded with low and high overlapping factors. Based on the experimental results, it can be stated that a sound weld of Ti6Al4V alloy can be obtained if an appropriate overlapping factor is used. - Highlights: • The weld quality of Ti6Al4V alloy under various overlapping factors was assessed. • Tensile and fatigue tests were conducted with as-welded specimen. • Localized strain across the weld was measured using DIC photogrammetry system. • A sound weld of Ti6Al4V alloy is obtained by using right overlapping factor.

  13. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  14. Computerized adaptive control weld skate with CCTV weld guidance project

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  15. Tensile Behavior of Electron Beam-Welded and Post-Weld Vacuum-Annealed Nb-10% Hf-1% Ti Refractory Alloy Weldments

    Science.gov (United States)

    Anil Kumar, V.; Gupta, R. K.; Venkateswaran, T.; Ram Kumar, P.

    2018-01-01

    Nb-10% Hf-1% Ti refractory alloy is a high performance material extensively used for high temperature applications. Electron beam welding is one of the most widely used techniques to join refractory and reactive alloys. Bigger sizes of nozzles for rocket propulsion applications can be either made through deep drawing and flow turning route or by roll bending and welding route both using sheets/plates as input material for fabrication. The latter is a more economical option for mass production of the hardware using such exotic and expensive alloys. In view of this, both as-welded (AW) coupon and weld plus post-weld vacuum-annealed (AW + VA) coupon have been prepared to study their mechanical behavior. It has been observed that tensile strength and ductility have not been reduced in both these conditions vis-à-vis the base metal, confirming weld efficiency of the alloy to be 100%. Microhardness is found to be 150-160 VHN in the base metal and 200-225 VHN in the weld fusion zone in AW condition, which became uniform (145-155 VHN) throughout the weldment in AW + VA condition. Microstructure of the weldment in AW condition is found to be consisting of grains solidified by epitaxial mode from base metal toward the weld centre. In AW + VA condition, improvement in tensile elongation is observed, which is found to be due to the presence of homogenized grains/more uniform microstructure near the heat-affected zone as compared to the steep gradient in grain size in different zones in the weld in AW condition.

  16. Modern Methods of Rail Welding

    Science.gov (United States)

    Kozyrev, Nikolay A.; Kozyreva, Olga A.; Usoltsev, Aleksander A.; Kryukov, Roman E.; Shevchenko, Roman A.

    2017-10-01

    Existing methods of rail welding, which are enable to get continuous welded rail track, are observed in this article. Analysis of existing welding methods allows considering an issue of continuous rail track in detail. Metallurgical and welding technologies of rail welding and also process technologies reducing aftereffects of temperature exposure are important factors determining the quality and reliability of the continuous rail track. Analysis of the existing methods of rail welding enable to find the research line for solving this problem.

  17. Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Shanmugarajan B.

    2016-08-01

    Full Text Available Creep strength enhanced ferritic (CSEF steels are used in advanced power plant systems for high temperature applications. P92 (Cr–W–Mo–V steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis (GRA. Bead on plate (BOP trials were carried out using a 3.5 kW diffusion cooled slab CO2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone (HAZ width. Analysis of variance (ANOVA has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 kW, welding speed of 1 m/min and focal plane at −4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.

  18. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  19. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  20. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    Science.gov (United States)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone

  1. The effects of electron beam rotation upon electron beam welded copper-304 couples

    Science.gov (United States)

    Zysk, Kevin Tacy

    The United States Air Force, Arnold Engineering Development Center, has been using copper to 304 stainless steel couples made using the electron beam welding process during the fabrication of intrusive gas-path diagnostic probes for over five years. Only a limited physical analysis of the resulting welds had been done. The purpose of this investigation was to determine the effects that varying the rotation frequency of the electron beam had upon the mechanical characteristics of the copper to 304 stainless steel couples. All controllable weld process parameters were held constant with the exception of the electron beam rotation frequency; the rotation frequency was varied from 20 Hz to 180 Hz in steps of 20 Hz. Samples welded without electron beam rotation provided a baseline for comparison. Microhardness distributions showed that weld region homogeneity as evidenced by microhardness maps and optical microscopy was a function of the electron beam rotation frequency. There was no correlation between electron beam rotation frequency and weld tensile strength since each test coupon failed in the Cu base material outside of the weld region. The welds made at all electron beam rotation frequencies used for this study contained cracks within the weld region, heat affected zone (HAZ), or both. The relative number, length, and location of the individual cracks changed with electron beam rotation frequency. Cracking in the HAZ due to liquid metal embrittlement (LME) was not evident in those samples welded with the electron beam rotation frequencies below 100 Hz, Cracking due to LME outside of the weld region in the HAZ was observed to increase with the electron beam rotation frequency above 80 Hz. The relationship between weld region cracking and residual stress within the weld region was shown to be dependent on the electron beam rotation frequency. Cracking in the weld region was not observed in samples welded with the electron beam rotation frequency above 80 Hz

  2. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  3. Studies of welded joints

    Directory of Open Access Journals (Sweden)

    J. M. Krupa

    2010-07-01

    Full Text Available Studies of a welded joint were described. The joint was made as a result of the reconstruction of a truss and one of the possible means to make a repair. The studies were of a simulation character and were targeted at the detection of welding defects and imperfections thatshould be eliminated in a real structure. A model was designed and on this model the tests and examinations were carried out. The modelwas made under the same conditions as the conditions adopted for repair. It corresponded to the real object in shape and dimensions, and in the proposed technique of welding and welding parameters. The model was composed of five plates joined together with twelve beads.The destructive and non-destructive tests were carried out; the whole structure and the respective welds were also examined visually. Thedefects and imperfections in welds were detected by surface methods of inspection, penetration tests and magnetic particle flaw detection.The model of the welded joint was prepared by destructive methods, a technique that would never be permitted in the case of a realstructure. For the investigations it was necessary to cut out the specimens from the welded joint in direction transverse to the weld run. The specimens were subjected to metallographic examinations and hardness measurements. Additionally, the joint cross-section was examined by destructive testing methods to enable precise determination of the internal defects and imperfections. The surface methods were applied again, this time to determine the severity of welding defects. The analysis has proved that, fabricated under proper conditions and with parameters of the welding process duly observed, the welded joint has good properties and repairs of this type are possible in practice.

  4. Effect of Heat Input on Microstructure and Hardness Distribution of Laser Welded Si-Al TRIP-Type Steel

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2014-01-01

    Full Text Available This study is concerned with issues related to laser welding of Si-Al type TRIP steels with Nb and Ti microadditions. The tests of laser welding of thermomechanically rolled sheet sections were carried out using keyhole welding and a solid-state laser. The tests carried out for various values of heat input were followed by macro- and microscopic metallographic investigations as well as by microhardness measurements of welded areas. A detailed microstructural analysis was carried out in the penetration area and in various areas of the heat affected zone (HAZ. Special attention was paid to the influence of cooling conditions on the stabilisation of retained austenite, the most characteristic structural component of TRIP steels. The tests made it possible to determine the maximum value of heat input preventing the excessive grain growth in HAZ and to identify the areas of the greatest hardness reaching 520 HV0.1.

  5. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  6. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  7. Aplicación de escoria granulada con aire a la soldadura automática//Application of slag granulated with air in the automatic welding

    Directory of Open Access Journals (Sweden)

    Daniel Pérez‐Pérez

    2015-01-01

    Full Text Available El objetivo del presente trabajo es evaluar las propiedades fundamentales de una escoria granulada con aire y su aplicación durante la soldadura automática con arco sumergido, comparándola con un fundente fundido granulado en agua. Para ello, se considera la influencia del procedimiento de fabricación de la escoria granulada con aire sobre sus propiedades físicas y la relación que tiene con su desempeño durante la soldadura y las propiedades mecánicas de las uniones obtenidas. Sedemuestra que las características de los tipos de granos evaluados (de escoria y de fundente son diferentes; sin embargo, esto no conduce a variaciones entre sus comportamientos operativos durante la soldadura, ni sobre las propiedades mecánicas de las uniones obtenidas; aunque se hace notar que el proceso de granulación de escorias con aire es más económico que el de granulacióncon agua.Palabras claves: escoria granulada, granulación seca, granulación húmeda, consumible de soldadura._______________________________________________________________________________AbstractThe objective of the present work is to evaluate the fundamentals properties of an air granulated slag and his use during the automatic submerged arc welding process, confront it to a water granulated fused flux. For it the manufacturing procedure influence of air granulated slag on its physical properties and this relation with its performance during the solder and mechanical properties ofwelding join obtained is considered. Is demonstrated that the characteristics of the types of evaluated grains (slag and fused flux are different; however, this does not conduce to variations among its operating behaviors during the welding process, neither on the welding joint mechanical properties obtained; but makes to be noticeable than the granulating process of slag with air is more economic than the of granulation with water.Key words: granulating slag, dry granulation, humid granulation, welding

  8. Changes in Precipitate Distributions and the Microstructural Evolution of P24/P91 Dissimilar Metal Welds During PWHT

    Science.gov (United States)

    Dawson, Karl E.; Tatlock, Gordon J.; Chi, Kuangnan; Barnard, Peter

    2013-11-01

    The effect of post-weld heat treatments (PWHTs) on the evolution of precipitate phases in dissimilar metal welds made between 9 pct Cr P91 alloy and 2.25 pct Cr T/P24-type weld metal has been investigated. Sections of multi-pass fusion welds were analyzed in their as welded condition and after PWHTs of 2 and 8 hour duration at 1003 K (730 °C). Thin foil specimens and carbon extraction replicas have been examined in transmission electron microscopes in order to identify precipitate phases and substantiate their distributions in close proximity to the fusion line. The findings of these studies confirm that a carbon-depleted region develops in the lower alloyed weld material, adjacent to the weld interface, during thermal processing. A corresponding carbon enriched region is formed, simultaneously, in the coarse grain heat affected zone of the P91 parent alloy. It has been demonstrated that carbon depletion from the weld alloy results in the dissolution of M7C3 and M23C6 chromium carbides. However, micro-alloying additions of vanadium and niobium which are made to both the P24 and P91 alloys facilitate the precipitation of stable, nano-scale, MX carbonitride particles. This work demonstrates that these particles, which are of key importance to the strength of ferritic creep resistant alloys, are retained in carbon-depleted regions. The microstructural stability which is conferred by their retention means that the pernicious effects of recrystallization are largely avoided.

  9. Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Yu Sik; Park, Young Whan [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2017-03-15

    A study on dissimilar friction-welded joints was performed for cam shaft applications using solid bar samples, 20mm in diameter, of forging steel(SF45) and carbon steel(SM45C). The main parameters of friction welding such as tensile tests, Vickers hardness surveys of the bond of area, the heat affected zone (HAZ), and the observation of microstructure were investigated to ensure a good quality of friction welding through visual observations. The specimens were tested as-welded and post weld heat treatment(PWHT). This paper deals with optimizing the welding conditions and analyzing various rotary bending fatigue test(RBFT) properties about heat-treated base metal(BM), as-welded and PWHT. Consequently, two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or any defect. Moreover, the fatigue limit of BM(SF45) and PWHT for the RBFT were observed as 180MPa and 250MPa, respectively. It was confirmed that the PWHT causes approximately 40% improvement in the fatigue limit when compared to the BM(SF45).

  10. Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy

    Science.gov (United States)

    Lei, Xuefeng; Deng, Ying; Peng, Yongyi; Yin, Zhimin; Xu, Guofu

    2013-09-01

    A new Al-Zn-Mg-Sc-Zr alloy with low Sc content was welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques. The microstructure and properties of those two welded joints were investigated by property tests and microstructural observations. The results show that the new Al-Zn-Mg-Sc-Zr alloy has desirable welding property. The ultimate tensile strength and welding coefficient of the TIG joint reach 405 MPa and 76.7%, respectively, and in FSW joint those property values reach 490 MPa and 92.6%, respectively. The studied base metal has a deformed fibrous subgrains structure, many nano-scaled Al3(Sc,Zr) particles, and very fine aging precipitates. In the TIG joint, the fusion zone consists of coarsened dendritic grains and the heat-affected zone (HAZ) has fibrous micro-scaled subgrains. The FSW welded joint is characterized by a weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. Due to plastic deformation around the rotating pin and anti-recrystallized effectiveness of Al3(Sc,Zr) particles, the weld nugget zone has a very fine subgrain structure. The TMAZ experiences some dissolution of aging precipitates. Coarsening of aging precipitates was observed in the HAZ. The better mechanical properties of the FSW joint are derived from a fine subgrain structure and homogeneous chemical compositions.

  11. Study on the welding continuous cooling transformation and weldability of SA508Gr4 steel for nuclear pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Qingwei; Ma, Yonglin; Xing, Shuqing; Chen, Zhongyi [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Material and Metallurgy; Kang, Xiaolan [Baotou Vocational and Technical College (China)

    2017-02-15

    SA508Gr4 is a newly developed high-strength steel for nuclear reactor pressure vessels. Its welding characteristics remain largely unexplored. In this work, the simulated heat affected zone continuous cooling transformation (SH-CCT) diagram of SA508Gr4 steel was constructed and the high-temperature cooling phase compositions and the properties of the heat affected zone (HAZ) were characterized using dilatometry and microscopic tests. The results show that the phase transformation in the HAZ was divided into bainite and martensite transformation stages. When 4.6 ≤ t{sub 8/5} (the HAZ cooling time from 800 C to 500 C) ≤ 15 s, lath-shaped martensite was fully developed, resulting in extensive hardening and cold cracking in the HAZ, while the cooling time required to form the bainite completely exceeds 1 200 s. Thus, to improve weld quality, preheating to 196 C or higher is recommended.

  12. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry; Matthews, Manyalibo; Rubenchik, Alexander; Rotter, Mark; Beach, Ray; Wu, Sheldon

    2017-01-01

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode laser power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.

  13. Microstructural Characterization and Mechanical Properties of Electron Beam Welded Joint of High Strength Steel Grade S690QL

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2016-06-01

    Full Text Available In the paper the results of metallographic examination and mechanical properties of electron beam welded joint of quenched and tempered steel grade S690QL are presented. Metallographic examination revealed that the concentrated electron beam significantly affect the changes of microstructure in the steel. Parent material as a delivered condition (quenched and tempered had a bainitic-martensitic microstructure at hardness about 290 HV0.5. After welding, the microstructure of heat affected zone is composed mainly of martensite (in the vicinity of the fusion line of hardness 420 HV0.5. It should be noted, however, that the microstructure of steel in the heat affected zone varies with the distance from the fusion line. The observed microstructural changes were in accordance with the CCT-S transformation diagram for the examined steel.

  14. A comparative evaluation of low-cycle fatigue behavior of type 316LN base metal, 316 weld metal, and 316LN/316 weld joint

    Science.gov (United States)

    Valsan, M.; Sundararaman, D.; Rao, K. Bhanu Sankara; Mannan, S. L.

    1995-05-01

    crack propagation resistance of the coarse-grained region in the heat-affected zone.

  15. Modeling of temperature field and fluid flow in hybrid welding process

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2009-07-01

    Full Text Available Mathematical and numerical model of the temperature field and the velocity field in melted zone concerning the hybrid laser – arc process was presented in this paper. The temperature field was determined by solution the transient heat transfer equation with activity of inner heat sources. Fluid flow in welding pool was determined by solution of the Navier – Stokes equation in Chorin’s projection. The fuzzy solidification front was assumed in a numerical algorithm with linear approximation of the solid phase in mushy zone. Fluid flow through porous medium was considered in mushy zone according to Darcy’s model. In the base of elaborated models and realized algorithms, results of computer simulations were presented in this study. Temperature distribution in the weld and velocity distribution in melted zone as well as welding pool shape and heat affected zone were illustrated.

  16. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    Science.gov (United States)

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  17. Creep properties and microstructure evaluation of weld joint of the pipe made of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kasl, Josef; Jandova, Dagmar; Chvostova, Eva [SKODA VYZKUM s.r.o., Plzen (Czech Republic); Folkova, Eva [SKODA POWER a.s., Plzen (Czech Republic)

    2010-07-01

    One-side weld joint of W type was prepared from P92 type steel using GTAW and SMAW method. Creep test to the rupture of smooth cross-weld samples has been carried out at temperatures ranging from 575 to 650 C and at stresses from 70 to 240 MPa. Fractographic analysis, hardness measurement and detailed study of submicrostructure have been performed using light, scanning and transmission electron microscopy. Changes of microstructure were correlated with the creep strength. Increase in size of secondary phases and cavities formation were evident after creep tests at temperatures above 575 C. Voids were concentrated in the fine prior austenite grain heat affected zones, where fracture occurred. In addition, a sporadic occurrence of individual cavities was found out in the base material and the weld metal after tests at 625 and 650 C. During creep exposures at temperatures above 600 C Laves phase precipitated. (orig.)

  18. An Experimental Evaluation of Electron Beam Welded Thixoformed 7075 Aluminum Alloy Plate Material

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2017-12-01

    Full Text Available Two plates of thixoformed 7075 aluminum alloy were joined using Electron Beam Welding (EBW. A post-welding-heat treatment (PWHT was performed within the semi-solid temperature range of this alloy at three temperatures, 610, 617 and 628 °C, for 3 min. The microstructural evolution and mechanical properties of EB welded plates, as well as the heat-treated specimens, were investigated in the Base Metal (BM, Heat Affected Zone (HAZ, and Fusion Zone (FZ, using optical microscopy, Scanning Electron Microscopy (SEM, EDX (Energy Dispersive X-ray Analysis, and Vickers hardness test. Results indicated that after EBW, the grain size substantially decreased from 67 µm in both BM and HAZ to 7 µm in the FZ, and a hardness increment was observed in the FZ as compared to the BM and HAZ. Furthermore, the PWHT led to grain coarsening throughout the material, along with a further increase in hardness in the FZ.

  19. Modelling the Heating Process in Simultaneous Laser Transmission Welding of Semicrystalline Polymers

    Directory of Open Access Journals (Sweden)

    Christian Hopmann

    2016-01-01

    Full Text Available Laser transmission welding is an established joining process for thermoplastics. A close-to-reality simulation of the heating process would improve the understanding of the process, facilitate and shorten the process installation, and provide a significant contribution to the computer aided component design. For these reasons a thermal simulation model for simultaneous welding was developed which supports determining the size of the heat affected zone (HAZ. The determination of the intensity profile of the laser beam after the penetration of the laser transparent semicrystalline thermoplastic is decisive for the simulation. For the determination of the intensity profile two measurement systems are presented and compared. The calculated size of the HAZ shows a high concordance to the dimensions of the HAZ found using light microscopy. However, the calculated temperatures exceed the indicated decomposition temperatures of the particular thermoplastics. For the recording of the real temperatures during the welding process a measuring system is presented and discussed.

  20. Basic study of electroslag welding. Progress report, January 1, 1979-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Eagar, T.W.; Szekely, J.

    1979-01-01

    During the initial contract period, a three dimensional model of the heat generation patterns and temperature profiles in the slag and liquid metal phases of the ESW process was formulated. During the present period this model has been refined and extended to include a three-dimensional transient model of melting, solidification and heat transport in the base plates. The experimental work has complemented the theoretical work both by providing input data to the model and by verifying the model predictions. During the current year the welding apparatus has been made fully operational and a series of experiments was carried out welding two inch thick plates. The principal finding of the experimental work was that the size of the heat affected zone is markedly affected by both the gap width and the welding voltage.

  1. Microstructure and mechanical properties of an electron beam welds in a spray-deposited Al-Zn-Mg-Cu alloy

    Science.gov (United States)

    Feng, Wang; Baiqing, Xiong; yongan, Zhang; Yuting, Zuo; Hongwei, Liu; ZHihui, Li; Xiwu, Li

    In this study, an electron beam welds produced in a spray-deposited Al-8.6Zn-2.6Mg-2.2Cu (wt,%) alloy were characterized by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and tensile tests. It is found that the joint of the alloy contained three distinctive regions, i.e. fusion zone, heat affected zone and base metal region. Tensile properties of the joints were obtained by testing flat transverse tensile specimens, and the results indicated that tensile strength of these welds approached 82.3 85.3% of the base metal.

  2. The influence of the reconditioning by welding processes on the hardness of crankshafts in the automotive industry

    Directory of Open Access Journals (Sweden)

    O. Chivu

    2016-04-01

    Full Text Available One of the aims of our modern society is to reduce the car maintenance costs. The part that most frequently breaks down in the engine block is the crankshaft - in the main journal and crankpin journal areas. This paper presents the effects of welding inert-gas (WIG and shielded metal arc welding (SMAW on the hardness of the material in the zones subject to reconditioning, more specifically the hardness values in the deposited material layer, in the fusion line and the heat-affected zone (HAZ.

  3. Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Fanny [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Martin, Guilhem, E-mail: guilhem.martin@simap.grenoble-inp.fr [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Lhuissier, Pierre; Bréchet, Yves; Tassin, Catherine [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Roch, François [Areva NP, Tour Areva, 92084 Paris La Défense (France); Todeschini, Patrick [EDF R& D, Avenue des Renardières, 77250 Moret-sur-Loing (France); Simar, Aude [Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2016-06-14

    In dissimilar welds between low-alloy steel and stainless steel, the post-weld heat-treatment results in a high variety of microstructures coexisting around the fusion line, due to carbon diffusion and carbides dissolution/precipitation. The local constitutive laws in the vicinity of the fusion zone were identified by micro tensile specimens for the sub-millimeter sized zones, equivalent bulk materials representing the decarburized layer using both wet H{sub 2} atmosphere and diffusion couple, and nano-indentation for the carburized regions (i.e. the martensitic band and the austenitic region). The decarburized zone presents only 50% of the yield strength of the low-alloy steel heat affected zone and a ductility doubled. The carburized zones have a yield strength 3–5 times higher than that of the low-alloy steel heat affected zone and have almost no strain hardening capacity. These properties result in heterogeneous plastic deformation happening over only millimeters when the weld is loaded perpendicularly to the weld line, affecting its overall behavior. The constitutive laws experimentally identified were introduced as inputs into a finite elements model of the transverse tensile test performed on the whole dissimilar weld. A good agreement between experiments and simulations was achieved on the global stress-strain curve. The model also well predicts the local strain field measured by microscale DIC. A large out-of-plane deformation due to the hard carburized regions has also been identified.

  4. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  5. Fine welding with lasers.

    Science.gov (United States)

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  6. Laser Welding in Space

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  7. DC arc weld starter

    Science.gov (United States)

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  8. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    Science.gov (United States)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-03-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  9. Microstructure and mechanical properties of laser welded DP600 steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Farabi, N. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Li, J.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Dong, S.J. [School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei (China)

    2010-02-15

    To reduce fuel consumption and greenhouse gas emissions, dual phase (DP) steels have been considered for automotive applications due to their higher tensile strength, better initial work hardening along with larger elongation compared to conventional grade of steels. In such applications welding and joining have to be involved, which would lead to a localized alteration of materials and create potential safety and reliability issues under cyclic loading. The aim of this investigation was to evaluate microstructural change after laser welding and its effect on the tensile and fatigue properties in DP600 steel. The welding resulted in a significant increase of hardness in the fusion zone, but also the formation of a soft zone in the outer heat-affected zone (HAZ). While the ductility decreased after welding, the yield strength increased and the ultimate tensile strength remained almost unchanged. Fatigue life at higher stress amplitudes was almost the same between the base metal and welded joints despite slightly lower fatigue limit after welding. Tensile fracture and fatigue failure at higher stress amplitudes occurred at the outer HAZ. Fatigue crack initiation was observed to occur from the specimen surface and crack propagation was characterized by the characteristic mechanism of striation formation. Dimples and deformation bands were observed in the fast propagation area.

  10. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-10-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  11. Metallurgical and Mechanical Research on Dissimilar Electron Beam Welding of AISI 316L and AISI 4340

    Directory of Open Access Journals (Sweden)

    A. R. Sufizadeh

    2016-01-01

    Full Text Available Dissimilar electron beam welding of 316L austenitic stainless steel and AISI 4340 low alloy high strength steel has been studied. Studies are focused on effect of beam current on weld geometry, optical and scanning electron microscopy, X-ray diffraction of the weld microstructures, and heat affected zone. The results showed that the increase of beam current led to increasing depths and widths of the welds. The optimum beam current was 2.8 mA which shows full penetration with minimum width. The cooling rates were calculated for optimum sample by measuring secondary dendrite arm space and the results show that high cooling rates lead to austenitic microstructure. Moreover, the metallography result shows the columnar and equiaxed austenitic microstructures in weld zone. A comparison of HAZ widths depicts the wider HAZ in the 316L side. The tensile tests results showed that the optimum sample fractured from base metal in AISI 316L side with the UTS values is much greater than the other samples. Moreover, the fractography study presents the weld cross sections with dimples resembling ductile fracture. The hardness results showed that the increase of the beam current led to the formation of a wide softening zone as HAZ in AISI 4340 side.

  12. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunming; Cai, Yuanzheng; Hu, Chongjing; Zhang, Xiong; Yan, Fei; Hu, Xiyuan [Huazhong University of Science and Technology, Wuhan (China)

    2017-05-15

    The experimental laser welding of GH909 alloy was conducted in this study. The morphology, microstructure, and mechanical properties of laser-welded joints were analyzed by scanning electron microscopy, energy diffraction spectroscopy, and other techniques. Results revealed that the microstructure of the welded joints mainly consisted of tiny cellular structures, dendritic structures, and equiaxed crystals. Pores appeared in the interdendritic regions because of the insufficient local feeding of molten metal during solidification. Nb segregation in the heat-affected zone caused liquation cracking, whereas C segregation further induced the formation of carbide precipitates along the grain boundaries during the welding thermal cycle. The instability of the keyhole significantly promoted the escape of the metal vapor/plasma from the hole; as a result, porosity defects formed in the weld. The average tensile strength of the test joints was 756 MPa, which is 93.1 % of that of the base metal. The average microhardness of the weld zone (250 HV) was higher than that of the GH909 alloy substrate (208 HV), peaking at 267 HV. Microcracks appeared along the grain boundaries, proving that the grain boundaries were the weakest areas in the joint.

  13. Acoustic emisson and ultrasonic wave characteristics in TIG-welded 316 stainless steel

    Science.gov (United States)

    Lee, Jin Kyung; Lee, Joon Hyun; Lee, Sang Pill; Son, In Su; Bae, Dong Su

    2014-05-01

    A TIG welded 316 stainless steel materials will have a large impact on the design and the maintenance of invessel components including pipes used in a nuclear power plant, and it is important to clear the dynamic behavior in the weld part of stainless steel. Therefore, nondestructive techniques of acoustic emission (AE) and ultrasonic wave were applied to investigate the damage behavior of welded stainless steel. The velocity and attenuation ratio of the ultrasonic wave at each zone were measured, and a 10 MHz sensor was used. We investigated the relationship between dynamic behavior and AE parameters analysis and derived the optimum parameters to evaluate the damage degree of the specimen. By measuring the velocity and the attenuation of an ultrasonic wave propagating each zone of the welded stainless steel, the relation of the ultrasonic wave and metal structure at the base metal, heat affected zone (HAZ) metal and weld metal is also discussed. The generating tendency of cumulated counts is similar to that of the load curve. The attenuation ratios from the ultrasonic test results were 0.2 dB/mm at the base zone, and 0.52 dB/mm and 0.61 dB/mm at the HAZ zone and weld zone, respectively.

  14. 'FOURCRACK' - An investigation of the creep performance of advanced high alloy steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J. [E.On-Uk, Materials and Welding Section, Power Technology, Ratcliffe on Soar, Nottingham NG11 0EE (United Kingdom)]. E-mail: David.Allen@eon-uk.com; Harvey, B. [Mitsui Babcock (United Kingdom); Brett, S.J. [RWE npower (United Kingdom)

    2007-01-15

    Creep failure by 'Type IV' cracking in the weld heat-affected zone (HAZ) is likely to be the life-limiting failure mechanism in high-alloy steel components for advanced power plant. A UK collaborative project, 'FOURCRACK', has therefore been carried out to investigate and compare the cross-weld creep rupture performance of several casts of the advanced steels E911, P92, and P122, and the established steel P91. The experimental matrix included both stress and temperature variations while minimising the testing required to characterise the comparative performance of different welded materials. The results clarify the interplay between weld metal and HAZ failure mechanisms, the relationships between parent material and cross-weld creep strength, and the relative merits of the alternative steels. Finally, problems which arise in the assessment of cross-weld creep test data are discussed, and recommendations put forward to address the risks of biased assessment when failure can take place in different locations within the weldment.

  15. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-09-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  16. Effect of the welding process on the microstructure and microhardness of API 5L X80 steel welded joint used for oil transportation pipeline; Efeito do processo de soldagem sobre a microestrutura e a microdureza de juntas soldadas de aco API 5L X80 usado em tubulacoes para transporte de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Alves, R.T.P.; Albuquerque, S.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Maciel, T.M.; Almeida, D.M.; Santos, M.A.

    2008-07-01

    This study had as objective to evaluate the microstructure and microhardness of API 5L X80 steel welded joints, used for pipelines to transport oil and gas, using the Shield Metal Arc Welding process with pre- heating temperature of 200 deg C and 400 deg C and the AWS E8010G electrode as filler metal. For this, besides the microhardness of the welded joint, the weld metals percentiles of micro-constituents and of columnar and regenerated grains and the medium size and extension of the heat affected zone were evaluated. The percentage of acicular ferrite in weld metal ranged from 13% to 33% which generated values of microhardness from 114 HV to 309 HV. (author)

  17. Effects of Heat Treatment on Grain-Boundary β-Mg17Al12 and Fracture Properties of Resistance Spot-Welded AZ80 Mg Alloy

    Science.gov (United States)

    Niknejad, Seyed Tirdad; Liu, Lei; Nguyen, Tam; Lee, Mok-Young; Esmaeili, Shahrzad; Zhou, Norman Y.

    2013-08-01

    The distribution and morphology of β-Mg17Al12 intermetallic phase in resistance spot-welded AZ80 Mg alloy were investigated by means of optical microscopy, scanning electron microscopy, and X-ray diffraction. The influence of intermetallic phase on mechanical strength was studied by tensile shear testing and fractography. The results showed that continuous networks of β-Mg17Al12 formed along grain boundaries in both the nugget and heat-affected zone of the spot-welded AZ80 Mg alloy. Those continuous grain-boundary β-Mg17Al12 networks acted as effective crack propagation paths, which had negative effects on the weld strength. Post-weld solution heat treatment effectively reduced the amount of β-Mg17Al12 and broke the grain-boundary intermetallic networks in both the nugget and heat-affected zone. This significantly increased the weld strength of AZ80 Mg alloy and changed the fracture mode from nugget pull-out in the as-welded condition to through-thickness after heat treatment.

  18. Standard practice for ultrasonic testing of the Weld Zone of welded pipe and tubing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes general ultrasonic testing procedures for the detection of discontinuities in the weld and adjacent heat affected zones of welded pipe and tubing by scanning with relative motion between the search unit and pipe or tube. When contact or unfocused immersion search units are employed, this practice is intended for tubular products having specified outside diameters ≥2 in. (≥50 mm) and specified wall thicknesses of 1/8to 11/16 in. (3 to 27 mm). When properly focused immersion search units are employed, this practice may also be applied to material of smaller diameter and thinner wall. Note 1—When contact or unfocused immersion search units are used, precautions should be exercised when examining pipes or tubes near the lower specified limits. Certain combinations of search unit size, frequency, thin–wall thicknesses, and small diameters could cause generation of unwanted sound waves that may produce erroneous examination results. 1.2 All surfaces of material to be examined in ...

  19. Effect of prior cold work on the degree of sensitisation of welded joints of AISI 316L austenitic stainless steel studied by using an electrochemical minicell

    Energy Technology Data Exchange (ETDEWEB)

    De Tiedra, Pilar [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain); Martin, Oscar, E-mail: oml@eis.uva.es [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain); Garcia, Cristina; Martin, Fernando; Lopez, Manuel [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Double loop shows greater sensitivity to interdendritic corrosion than single loop. Black-Right-Pointing-Pointer Fusion line sensitisation is lower than that of weld metal for all prior cold works. Black-Right-Pointing-Pointer Heat affected zone sensitisation is maximum at a prior cold work of 10%. Black-Right-Pointing-Pointer Heat affected zone sensitisation Much-Less-Than base material sensitisation for a prior cold work of 20%. - Abstract: This work aims to assess the effect of prior cold work on the degree of sensitisation of each of the four welding zones of welded joints of AISI 316L subjected to post-welding sensitisation. Electrochemical potentiokinetic reactivation and double loop electrochemical potentiokinetic reactivation tests are performed on each of the four zones by using a small-scale electrochemical cell (minicell). The results show that the degree of sensitisation of heat affected zone, which achieves its maximum at a prior cold work level of 10%, is significantly lower than that of base material for a prior cold work of 20%.

  20. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  1. Thermoplastic welding apparatus and method

    Science.gov (United States)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  2. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman

    2013-01-01

    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  3. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  4. Development of fuzzy logic system to predict the SAW weldment shape profiles

    Science.gov (United States)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2012-09-01

    A fuzzy model was presented to predict the weldment shape profile of submerged arc welds (SAW) including the shape of heat affected zone (HAZ). The SAW bead-on-plates were welded by following a full factorial design matrix. The design matrix consisted of three levels of input welding process parameters. The welds were cross-sectioned and etched, and the zones were measured. A mapping technique was used to measure the various segments of the weld zones. These mapped zones were used to build a fuzzy logic model. The membership functions of the fuzzy model were chosen for the accurate prediction of the weld zone. The fuzzy model was further tested for a set of test case data. The weld zone predicted by the fuzzy logic model was compared with the experimentally obtained shape profiles and close agreement between the two was noted. The mapping technique developed for the weld zones and the fuzzy logic model can be used for on-line control of the SAW process. From the SAW fuzzy logic model an estimation of the fusion and HAZ can also be developed.

  5. TERMS OF ENSURING QUALITY OF THE RAILWAY WHEELS BUILT UP BY WELDING

    Directory of Open Access Journals (Sweden)

    O. A. Haivoronskyi

    2016-10-01

    Full Text Available Purpose. The paper assumes to set the basic laws in determining the structure and physical-mechanical properties of wheel steels during arc welding technology and to develop the recommendations for reconstruction of railway wheel wear surfaces that will improve the reliability and safety of traffic in terms of increasing operating loads. Methodology. To achieve this purpose the paper studied 1 the influence of operating loads on structural changes and properties of metal wheels; 2 the impact of arc welding on structural and phase composition and properties of the metal heat-affected zone, its resistance to brittle and slow fracture; 3 the impact of welded metal on the formation of the stress state of the welds and their resistance to formation cracks; 4 wear resistance of built up metal during friction-slip of the «wheel-rail» pair. Findings. The most intense zone of the rolling profile of freight railway wheels during operation is a place of transition from rolling surface to the ridge. Therefore, the wheel building up by welding requires first of all the increased resistance to brittle fracture of metal in this area. It is established that welding in the metal of the wheel heat-affected zone cause formation of the hardened bainite-martensite structures. The minimum metal cooling rate, at which the martensite start forming is 8°C / s (in the range of 600…500°C when the content of carbon in steel is 0.58% and 2°C/s at 0.65% of carbon. It is shown that to increase resistance to cracking it is necessary to limit the cooling rate to 16.0°C/s when the carbon content is C < 0.60% and to 8.0°C / s when C = 0.60…0.65%. Under these conditions, the metal has rather high ability to mikroplastic deformation without cracking. It was founded that to improve the critical stress intensity factor К1С at brittle fracture it is necessary to provide conditions when welding would result in the built up structure that does not contain upper bainite and

  6. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  7. Prediction of weld data using process control based on surface temperature measurement for high-power energy flow processes

    Science.gov (United States)

    Brueggemann, Gunnar; Benziger, Thomas

    1996-09-01

    The main aim of this article is to obtain the correlation between the thermal cycle and the mechanical properties in the weld seam and the heat-affected zone of mild and stainless steels. Key targeted process is welding using electron beam, laser and plasma. Since these processes are characterized by high heating and cooling rates, wide temperature range, small heat affected zones, they are difficult to control and automize. As a consequence, the quality of the product varies over a large range. Because either temperature measurement on one spot or quasi steady- state surface temperature distribution in a large area are generally unsuitable, temperature gradients need to be controlled directly on-line with a high accuracy. This requires the use of a two dimensional temperature control. An infrared camera systems can be used in order to investigate the cooling process in the weld seam area as well as in the heat affected zone. On the one hand the aim of the experiments is the estimation of the microstructure, especially of the hardness distribution using welding-time- temperature-conversion-diagrams and equations of regression. On the other hand the observation of the cooling cycle allows trends of mechanical diagrams and equations of regression. On the other hand the observation of the cooing cycle allows trends of mechanical properties like stretch limit, tensile strength, breaking elongation to be predicted. Simultaneously it is possible to recognize and to localize pores, voids and bonding defects, losses in penetration, problems with gap and height, appearing during the cooling of the weld.

  8. A utilização da difração de neutrões na determinação do perfil de tensões residuais em revestimentos por soldadura The use of neutron diffraction for the determination of the in-depth residual stresses profile in weld coatings

    Directory of Open Access Journals (Sweden)

    Maria José Marques

    2013-06-01

    Full Text Available A técnica de difração de neutrões é usada neste artigo para estudar amostras ferríticas, revestidas comaços inoxidáveisausteníticos através de soldadura por arco submerso. Este procedimento é frequentemente usado no fabrico de equipamentos de processo para as indústrias química e nuclear, por facilidade de execução e razões económicas. A principal desvantagem deste processo de revestimento é a fissuração que frequentemente ocorre na interface material base/soldadura, potenciada pela presença de tensões residuais resultantes da operação de soldadura, a qual pode ser minimizada com a realização de tratamentos térmicos de relaxação de tensões. As amostras foram produzidas a partir de placas em aço ao carbono, tendo uma das superfícies sido revestida com dois tipos de aço inoxidável. Para a primeira camada foi usado um elétrodo EN 12072 - S 23 12 2 L e para a segunda e a terceira camadas foi usado um elétrodo EN 12072 - S 19 12 3 L. Após a soldadura, as amostras foram submetidas a um tratamento térmico de relaxação de tensões, durante 1 hora, à temperatura de 620ºC. Os perfis de tensões residuais obtidos por difração de neutrões evidenciam a relaxação de tensões residuais após o tratamento térmico realizado. A técnica de difração de neutrões revelou-se muito adequada na avaliação de tensões residuais neste tipo de ligações.The neutron diffraction is a non-destructive technique, particularly suitable for the analysis of residual stress fields in welds. The technique is used in this article to study ferritic samples, coated by submerged arc welding using stainless steel filler metals. This procedure is often used for manufacturing process equipment for chemical and nuclear industries, for ease of implementation and economic reasons. The main disadvantage of that processes is the cracking phenomenon that often occurs at the interface between the base material and coatings, which can be

  9. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    Science.gov (United States)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  10. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  11. A Microstructural Evaluation of Friction Stir Welded 7075 Aluminum Rolled Plate Heat Treated to the Semi-Solid State

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2018-01-01

    Full Text Available Two rolled plates of 7075 aluminum alloy were used as starting material. The plates were welded using a simultaneous double-sided friction stir welding (FSW process. One way of obtaining feedstock materials for Semi-solid processing or thixoforming is via deformation routes followed by partial melting in the semi-solid state. As both the base plate materials and the friction weld area have undergone extensive deformation specimens were subjected to a post welding heat-treatment in the semi-solid range at a temperature of 628 °C, for 3 min in order to observe the induced microstructural changes. A comparison between the microstructural evolution and mechanical properties of friction stir welded plates was performed before and after the heat-treatment in the Base Metal (BM, the Heat Affected Zone (HAZ, the Thermomechanically Affected Zone (TMAZ and the Nugget Zone (NZ using optical microscopy, Scanning Electron microscopy (SEM and Vickers hardness tests. The results revealed that an extremely fine-grained structure, obtained in the NZ after FSW, resulted in a rise of hardness from the BM to the NZ. Furthermore, post welding heat-treatment in the semi-solid state gave rise to a consistent morphology throughout the material which was similar to microstructures obtained by the thixoforming process. Moreover, a drop of hardness was observed after heat treatment in all regions as compared to that in the welded microstructure.

  12. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  13. Thermal stir welding process

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2012-01-01

    A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  14. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  15. Solar array welding developement

    Science.gov (United States)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  16. Review of Welding Terminology

    Directory of Open Access Journals (Sweden)

    Angelika Petrėtienė

    2011-04-01

    Full Text Available The paper discusses welding terms in accordance with the Lithuanian standard LST EN 1792 „Welding. The multilingual list of welding terms and similar processes”, „The Russian–Lithuanian dictionary of the terms of mechanical engineering technology and welding“ and the examples from postgraduates‘ final works. It analyses the infringement of lexical, word-building and morphological rules. First-year students should already be familiar with the standardized terms of their speciality. More active propagation of the terms should help to avoid terminology mistakes in various scientific spheres.

  17. Continuous EB welding of the reinforcement of the CMS conductor

    CERN Document Server

    Folch, R; Campi, D; Christin, R; Creton, J P; Curé, B; Hervé, A; Horváth, I L; Neuenschwander, J; Riboni, P; Sequeira-Lopes-Tavares, S; Sgobba, Stefano

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. In order to withstand the electro-mechanical forces during the operation of the CMS magnet, the superconducting cable embedded in a 99.998% pure aluminum matrix is reinforced with two sections of aluminum alloy EN AW-6082 assembled by continuous Electron Beam Welding (EBW). A dedicated production line has been designed by Techmeta, a leading company in the field of EBW. The production line has a total length of 70 m. Non-stop welding of each of the 20 lengths of 2.5 km, required to build the coil, will last 22 hours. EBW is the most critical process involved in the production line. The main advantage of the EBW process is to minimize the Heat Affected Zone; this is particularly important for avoiding damage to the superconducting cable located only 4.7 mm from the welded joints. Two...

  18. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  19. Microstructural evolutions of friction stir welded F82H steel for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hoon; Shim, Jae Won; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Tani Gawa, Hiro Yasu [JAEA, Rokasho (Japan); Fujii, Hideto Shi [Osaka Univ., Osaka (Japan); Kim Ura, Aki Hiko [Kyoto Univ., Kyoto (Japan)

    2012-10-15

    A blanket is the most important component functionalized as plasma confining, tritium breeding, heat exchanging, and irradiation shielding from severe thermo neutron loads in a fusion reactor. Its structure consists of first walls, side walls, a back board, and coolant channels mainly made of reduced activation ferritic/martensitic (RAFM) steel, which is the most promising candidate as a structural material for fusion reactors. To fabricate this blanket structure, some welding and joining methods have being carefully applied. However, when fusion welding, such as tungsten inert gas (TIG) welding, electron beam, and laser welding was performed between F82H and itself, the strength of welds significantly deteriorated due to the development of {delta} ferrite and precipitate dissolution. Post welding heat treatment (PWHT) should be followed to restore the initial microstructure. Nevertheless, microstructural discontinuity inevitably occurs between the weld metal, heat affected zone and base metal and this seriously degrades the entire structural stability under pulsed operation at high temperature in test blanket module (TBM). A phase transformation can also be an issue to be solved, which leads to a difficult replacement of the blanket module. Therefore, a reliable and field applicable joining technique should be developed not to accompany with PWHT after the joining process. Friction stir welding (FSW) is one of the solid state processes that does not create a molten zone at the joining area, so the degradation of the featured microstructures may be avoided or minimized. In this study, FSW was employed to join F82H steels to develop a potential joining technique for RAFM steel. The microstructural features on the joint region were investigated to evaluate the applicability of the FSW.

  20. Microstructure Characterization of Fiber Laser Welds of S690QL High-Strength Steels

    Science.gov (United States)

    Li, Baoming; Xu, Peiquan; Lu, Fenggui; Gong, Hongying; Cui, Haichao; Liu, Chuangen

    2018-02-01

    The use of fiber laser welding to join S690QL steels has attracted interest in the field of construction and assembly. Herein, 13-mm-thick S690QL welded joints were obtained without filler materials using the fiber laser. The as-welded microstructures and the impact energies of the joints were characterized and measured using electron microscopy in conjunction with high-resolution transmission electron images, X-ray diffraction, and impact tests. The results indicated that a single-sided welding technique could be used to join S690QL steels up to a thickness of 12 mm (fail to fuse the joint in the root) when the laser power is equal to 12 kW (scan speed 1 m/min). Double-side welding technique allows better weld penetration and better control of heat distribution. Observation of the samples showed that the fusion zone exhibited bainitic and martensitic microstructures with increased amounts of martensites (Ms) compared with the base materials. Also, the grains in the fusion zone increased in coarseness as the heat input was increased. The fusion zone exhibited increased hardness (397 HV0.2) while exhibiting a simultaneous decrease in the impact toughness. The maximum impact energy value of 26 J was obtained from the single-side-welded sample, which is greater than those obtained from the double-side-welded samples (maximum of 18 J). Many more dislocations and plastic deformations were found in the fusion zone than the heat-affected zone in the joint, which hardened the joints and lowered the impact toughness. The microstructures characterized by FTEM-energy-dispersive X-ray spectrometer also exhibited laths of M, as well as stacking faults and dislocations featuring high-density, interfacial structure ledges that occur between the high-angle grain boundaries and the M and bainite.

  1. The use of field indentation microprobe in measuring mechanical properties of welds

    Energy Technology Data Exchange (ETDEWEB)

    Haggag, F.M.; Wong, H.; Alexander, D.J.; Nanstad, R.K.

    1989-01-01

    A field indentation microprobe (FIM) was conceived for evaluating the structural integrity of metallic components (including base metal, welds, and heat-affected zones) in situ in a nondestructive manner. The FIM consists of an automated ball indentation (ABI) unit for determining the mechanical properties (yield strength, flow properties, estimates of fracture toughness, etc.) and a nondestructive evaluation (NDE) unit (consisting of ultrasonic transducers and a video camera) for determining the physical properties such as crack size, material pileup around indentation, and residual stress presence and orientation. The laboratory version used in this work performs only ABI testing. ABI tests were performed on stainless steel base metal (type 316L), heat-affected zone, and welds (type 308). Excellent agreement was obtained between yield strength and flow properties (true-stress/true-plastic-strain curve) measured by the ABI tests and those from uniaxial tensile tests conducted on 308 stainless steel welds, thermally aged at 343/degree/C for different times, and on the base material. 4 refs., 17 figs.

  2. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  3. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  4. Concurrent ultrasonic weld evaluation system

    Science.gov (United States)

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  5. Mechanical and Wear Properties of Friction Stir Welded 0–6Wt% nAl2O3 Reinforced Al-13Wt%Si Composites

    Directory of Open Access Journals (Sweden)

    Patel Vinay Kumar

    2017-04-01

    Full Text Available Friction Stir Welding (FSW of an Al-13%Si alloy matrix reinforced with 0, 3 and 6 wt% Al2O3 nanoparticles (nAl2O3 is performed and the optical microstructures, tensile strength, hardness and sliding wear properties of friction stir welded joints are investigated and compared to those of base materials. Four different zones of distinct appearances were observed during FSW, which exhibited altered microstructures in the nugget zone (NZ, thermo mechanically affected zone (TMAZ, heat affected zone (HAZ, and base material zone (BMZ. The ultimate tensile strength of the base materials and their welded joints were found to be increasing with increased wt% of nano-alumina reinforcements. High joint efficiency of 89-97% was achieved in FSW. Hardness and wear resistance of friction stir welded joints were found to be better than those of the base materials.

  6. Oxidation behavior of base metal, weld metal and HAZ regions of SMAW weldment in ASTM SA210 GrA1 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ravindra [Metallurgical and Materials Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: ravirs_2002@rediffmail.com; Tewari, V.K.; Prakash, Satya [Metallurgical and Materials Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2009-06-24

    Shielded metal arc welding (SMAW) was used to weld together ASTM SA210 GrA1 steel. The oxidation studies were conducted on different regions of shielded metal arc weldment i.e., base metal, weld metal and heat affected zone (HAZ) specimens after exposure to air at 900 deg. C under cyclic conditions. The thermo-gravimetric technique was used to establish kinetics of oxidation. X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) techniques were used to analyze the oxidation products. Base metal showed more weight gain than that of weld metal and HAZ. The HAZ specimen showed the least weight gain due to the formation of densely inner oxide scale.

  7. Tensometry technique for X-ray diffraction in applied analysis of welding; Tensometria por tecnica de difracao de raios X aplicada na analise de soldagens

    Energy Technology Data Exchange (ETDEWEB)

    Turibus, S.N.; Caldas, F.C.M.; Miranda, D.M.; Monine, V.I.; Assis, J.T., E-mail: snturibus@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2010-07-01

    This paper presents the analysis of residual stress introduced in welding process. As the stress in a material can induce damages, it is necessary to have a method to identify this residual stress state. For this it was used the non-destructive X-ray diffraction technique to analyze two plates from A36 steel jointed by metal inert gas (MIG) welding. The stress measurements were made by the sin{sup 2{psi}} method in weld region of steel plates including analysis of longitudinal and transverse residual stresses in fusion zone, heat affected zone (HAZ) and base metal. To determine the stress distribution along the depth of the welded material it was used removing of superficial layers made by electropolishing. (author)

  8. The Evolution of Microstructures and the Properties of Bulk Metallic Glass with Consubstantial Composition Laser Welding

    Directory of Open Access Journals (Sweden)

    Pingjun Tao

    2016-09-01

    Full Text Available A Zr55Cu30Ni5Al10 plate-like bulk metallic glass (BMG was prepared using copper mold suction casting. Additionally, alloy powders with the same nominal composition were synthesized. The alloy powders were welded or melted to the cleaned surface of the BMG with a laser beam acceleration voltage of 60 kV, a beam current range from 60 to 100 mA, a welding speed of 60 mm/s, as well as an impulse width of 3.0 ms. The effect of consubstantial composition welding on the microstructures and properties was investigated. The molten and subsequently solidified metallic mixtures remain an amorphous structure, but the enthalpy of the welded or melted position varies due to the combination of the micro-structural relaxation and nano-crystals precipitated during the energy inputs. The surface layers of the BMG can be significantly intensified after welding processes; however, the heat-affected zones (HAZs exhibit a slight degradation in mechanical properties with respect to the BMG matrix. This study has important reference value for specialists working on the promotion of applications of BMGs.

  9. Tensile properties and fracturing behavior of weld joints in the CLAM at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yucheng [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Xiao, Chengwen, E-mail: emoryxiao@163.com [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Xu; Yue, Jiajia; Zhu, Qiang [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-06-15

    Highlights: • We use the stress triaxiality theory to explain the plastic deformation and facture behavior of the joints during the short term tensile tests at high temperature. • The tensile strength of CLAM welded joint at high temperature is lower compared with that at room temperature. • We explained the formation of crack and the reason of fracture. - Abstract: The tensile properties and fracturing behavior of weld joints in the Chinese low activation martensitic steel (CLAM) at high temperatures were studied. The result revealed that the cracks of weld joints in the base metal would appear in the heat-affected zone, after post-weld heat treatment for the high-temperature tensile test. The microstructure in the fractured frontier had different deformation and directions, and the fractured surface had different angles, a result associating with the normal faulting and shear fracturing. The tri-axial theory of stress can well explain the deformation and fracturing behavior of weld joints in the high-temperature tensile.

  10. Sensitivity Analysis for Residual Stress on DVI (Direct Vessel Injection) Nozzle Welded Joint

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byeong Wook; Chung, Sung Ho; Lee, Jung Hun; Kim, Oak Sug [DOOSAN Heavy Industries and Construction Co. LTD, Reactor Design Team, 555 Guygok-dong Changwon (Korea, Republic of)

    2008-07-01

    Generally, any welding process produces high compressive or tensile residual stresses in the heat affected zone depending on the method, shape and procedures of the weldment. In particular, the tensile residual stresses have a considerable effect on the material strength, fatigue strength and corrosion cracking. For this reason, it is important that some knowledge of the internal stress state be deduced either from measurements or from modeling predictions. In this study, the residual stresses after a multi-pass welding process for DVI nozzle welding joint were evaluated by a numerical simulation method. The welding joint considered three weld joint angles of 40 deg., 6 deg. and 2 deg. Computations were made using a 2-D finite element model based on the simulation of cooling from the heat treatment temperature to room temperature with two cooling conditions at the inside surface. In these results, it is shown that the residual stress increased at the inner surface, when water cooling was applied to the inner surface, and axial compressive residual stress increased at the inner surface when the joint angle was decreased. (authors)

  11. Weld formation control at electron beam welding with beam oscillations

    OpenAIRE

    Trushnikov, Dmitriy; Koleva, Elena; Mladenov, Georgy; A. Shcherbakov

    2014-01-01

    Electron beam welding is used extensively to produce essential machine parts. The control of the basic beam parameters beam power or beam current at constant accelerating voltage, welding speed, current of focusing lens and distance between electron gun and welded sample surface is not enough to obtain at most of the regimes sound welds. Control of the focus position using analysis of the high frequency component of the current, collected by plasma, at periodic interactions on the beam (the o...

  12. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    Science.gov (United States)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  13. Metallurgical characteristics and failure mode transition for dissimilar resistance spot welds between ultra-fine grained and coarse-grained low carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2015-06-18

    We studied the microstructure and mechanical characteristics of spot welded specimens, fabricated from low carbon steel sheets with different microstructures. Both ultra-fine grained (UFG) steel sheet and coarse grained (CG) steel sheet were used. The refined microstructure of the UFG steel has been produced by severe plastic deformation (SPD) using the constrained groove pressing (CGP) method. The grain size of the base metals was approximately 260 nm and 30 µm in diameter, respectively, in the UFG and CG steels. Examining the microstructure of a cross section cut through the spot weld reveals a similar grain size and phase distribution in the nugget on both the sides of the initial interface between sheets. Some recrystallization is observed in the heat affected zone on the UFG side as previously reported after the welding of symmetrical UFG–UFG spot welded specimens. The same energy deposit produces larger nuggets after the spot welding of UFG steels. Moreover, the hardness distribution across the nugget changes after welding on both sides of the initial (UFG/CG) interface. This effect is presently attributed to a change in the solidification, cooling rate and tempering after welding, likely because the higher resistance of UFG steel sheets increases the heat release by the Joule effect during spot welding. These changes in the mechanical behavior modify the transition between the interfacial failure (IF) and pull out failure (PF) mode with respect to energy deposit.

  14. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  15. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  16. Welding defects at friction stir welding

    Directory of Open Access Journals (Sweden)

    P. Podržaj

    2015-04-01

    Full Text Available The paper presents an overview of different types of defects at friction stir welding. In order to explain the reasons for their occurrence a short theoretical background of the process is given first. The main emphasis is on the parameters that influence the process. An energy supply based division of defects into three disjoint groups was used. The occurring defects are demonstrated on various materials.

  17. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    CERN Document Server

    Hughes, D J; Heeley, E L

    2014-01-01

    Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  18. Workmanship standards for fusion welding

    Science.gov (United States)

    Phillips, M. D.

    1967-01-01

    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  19. Interfacial analysis of the ex-situ reinforced phase of a laser spot welded Zr-based bulk metallic glass composite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huei-Sen, E-mail: huei@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, 81148, Kaohsiung, Taiwan (China); Chen, Hou-Guang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China); Jang, Jason Shian-Ching [Institute of Materials Science and Engineering and Department of Mechanical Engineering, National Central University, Chung-Li 32001, Taiwan (China); Lin, Dong-Yih [Department of Chemical and Materials Engineering, National University of Kaohsiung, 81148, Kaohsiung, Taiwan (China); Gu, Jhen-Wang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China)

    2013-12-15

    To study the interfacial reaction of the ex-situ reinforced phase (Ta) of a Zr-based ((Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8})Si{sub 0.75} + Ta{sub 5}) bulk metallic glass composite after laser spot welding, the interfacial regions of the reinforced phases located at specific zones in the welds including the parent material, weld fusion zone and heat affected zone were investigated. Specimen preparation from the specific zones for transmission electron microscopy analysis was performed using the focused ion beam technique. The test results showed that the reinforced phases in the parent material, weld fusion zone and heat affected zone were all covered by an interfacial layer. From microstructure analysis, and referring to the phase diagram, it was clear that the thin layers are an intermetallic compound ZrCu phase. However, due to their different formation processes, those layers show the different morphologies or thicknesses. - Highlights: • An ex-situ Zr-based BMG composite was laser spot welded. • The interfacial regions of the RPs located at PM, WFZ and HAZ were investigated. • The RPs in the PM, WFZ and HAZ were all covered by a ZrCu interfacial layer. • Due to different formation processes, those layers show the different morphology.

  20. Welding and Brazing Silicon Carbide

    Science.gov (United States)

    Moore, T. J.

    1986-01-01

    Hot isostatic pressing and conventional furnace brazing effective under right conditions. Study performed showed feasibility of welding SiC using several welding and brazing techniques. Use of SiC improves engine efficiency by allowing increase in operating temperature. SiC successfully hot-pressure-welded at 3,550 degrees F (1,950 degrees C) in argon. Refinements of solid-state welding and brazing procedures used sufficient for some specific industrial applications.