WorldWideScience

Sample records for submerged slurry pump

  1. An Enhanced Factor Analysis of Performance Degradation Assessment on Slurry Pump Impellers

    Directory of Open Access Journals (Sweden)

    Shilong Sun

    2017-01-01

    Full Text Available Slurry pumps, such as oil sand pumps, are widely used in industry to convert electrical energy to slurry potential and kinetic energy. Because of adverse working conditions, slurry pump impellers are prone to suffer wear, which may result in slurry pump breakdowns. To prevent any unexpected breakdowns, slurry pump impeller performance degradation assessment should be immediately conducted to monitor the current health condition and to ensure the safety and reliability of slurry pumps. In this paper, to provide an alternative to the impeller health indicator, an enhanced factor analysis based impeller indicator (EFABII is proposed. Firstly, a low-pass filter is employed to improve the signal to noise ratios of slurry pump vibration signals. Secondly, redundant statistical features are extracted from the filtered vibration signals. To reduce the redundancy of the statistic features, the enhanced factor analysis is performed to generate new statistical features. Moreover, the statistic features can be automatically grouped and developed a new indicator called EFABII. Data collected from industrial oil sand pumps are used to validate the effectiveness of the proposed method. The results show that the proposed method is able to track the current health condition of slurry pump impellers.

  2. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  3. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    International Nuclear Information System (INIS)

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities

  4. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  5. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX MISCIBLE AND IMMISCIBLE LIQUIDS IN TANK 50H

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.

    2011-06-15

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). At present, Tank 50H contains two standard slurry pumps and two Quad Volute slurry pumps. Current requirements and mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste would like to move one or both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that are failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to blend miscible and immiscible liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Salt Disposition Integration Project (SDIP) and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters needed to blend the tank contents. The conclusions from this analysis are: (1) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will be able to blend miscible liquids (i.e., salt solution) in Tank 50H within 4.4 hours. (2) Two rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 3.1 hours. (3) Three rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 2.5 hours. (4) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will disperse Isopar L{reg_sign} droplets that are less than or equal to 15 micron in diameter. If the droplets are less than 15 micron, they will be dispersed within 4.4 hours. Isopar L{reg_sign} provides a lower bound on the maximum size of droplets that will be dispersed by the slurry pumps in Tank 50H. (5) Two rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron

  6. Improved system for pumping slurry of gel explosives into boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, T K; Clay, R B; Udy, L L

    1967-05-16

    A method is described for injecting an explosive slurry into a borehole containing water. The slurry is heavier than water and is pumped through the tubing to a depth close to the bottom of the well. Injection is continued until all water has been displaced above the lower end of the tubing. This type of immiscible displacement results in substantially no mixing between the water and the explosive. (15 claims)

  7. On-line vibration monitoring for submerged vertical shaft pumps: Final report

    International Nuclear Information System (INIS)

    Walter, T.J.; Marchione, M.M.

    1988-03-01

    The overall goal of this project was to extend to vertical pumps the capability that presently exists to monitor and diagnose vibration problems in horizontal pumps. Specific objectives included the development of analytical techniques to interpret vibration measurements, the verification of these techniqeus by in-plant tests, and the development of recommendations for procuring submergible vibration sensors. A concurrent analytical and experimental approach was used to accomplish these objectives. Rotordynamic analyses of selected pumps were accomplished, and each pump was instrumented and monitored for extended periods of time. The models were used to determine important frequencies and optimum sensor locations and to predict the effect that wear, imbalance, misalighment, and other mechanical changes would have on measured vibration. The predictive ability of the models was confirmed by making changes to instrumented pumps and observing actual changes in pump vibration. Simplified guidelines have been developed to assist the interested user to develop a computer model that realistically predicts the rotordynamic performance of the installed pump. Based on the work accomplished, typical sensor locations have been established. Experience gained in application of commercially available submergible sensors is also related. 11 refs., 11 figs

  8. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    Science.gov (United States)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  9. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX SOLIDS WITH LIQUIDS IN TANK 50H

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.

    2011-11-11

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). In the summer of 2011, Tank 50H contained two standard slurry pumps and two quad volute slurry pumps. Current requirements for mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste moved both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that were failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National Laboratory (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to mix solids with liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Small Column Ion Exchange Process (SCIX), SRNL computational fluid dynamics (CFD) modeling, Tank 50H operating experience, and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters of pumps needed to mix the solid particles with the liquid in Tank 50H. The analysis determined pump requirements to suspend the solids with no 'dead zones', but did not determine the pump requirements to produce a homogeneous suspension. In addition, the analysis determined the pump requirements to prevent the accumulation of a large amount of solid particles under the telescoping transfer pump. The conclusions from this analysis follow: (1) The analysis shows that three Quad Volute pumps should be able to suspend the solid particles expected ({approx}0.6 g/L insoluble solids, {approx}5 micron) in Tank 50H. (2) Three standard slurry pumps may not be able to suspend the solid particles in Tank 50H; (3) The ability of two Quad Volute pumps to fully suspend all of the solid particles in Tank 50H is marginal; and (4) One standard slurry pump should be able to

  10. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    International Nuclear Information System (INIS)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank's structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was ∼4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel

  11. A methodology to predict the uniformity of double-shell waste slurries based on mixer pump operation

    International Nuclear Information System (INIS)

    Liljegren, L.M.; Bamberger, J.A.

    1992-08-01

    Dimensional analysis is used to determine the similarity parameters that describe the uniformity of radioactive slurry wastes to be suspended by mixer pumps. The results of this analysis are applied to the design of scaled experiments that will determine the operating parameters that will ensure an adequately uniform feed stream during waste retrieval from Hanford double-shell tanks. Ten dimensionless parameters describing the slurry mixing process were identified. Of these, three describe purely geometric features, three describe slurry properties only, one is a dimensionless time scale, and three describe important dynamic factors. The three parameters describing the dynamic features are the Reynolds number, which describes the degree of turbulence in the tank; the Froude number, which describes the effects of stratification on the circulation patterns; and the gravitational settling number, which describes the balance between the work done by gravity to cause settling and the work done by the pump to resuspend particles

  12. PHYSICAL PROPERTIES OF KAOLIN/SAND SLURRY USED DURING SUBMERSIBLE MIXER PUMP TESTS AT TNX

    International Nuclear Information System (INIS)

    HANSEN, ERICH

    2005-01-01

    The purpose of this task is to characterize the physical properties of the kaolin/sand slurries used during the testing of a new submersible mixer pump (SMP) which had undergone performance testing at the TNX Waste Tank mockup facility from July 2004 through May 2005. During this time period, four identical SMPs were subjected to various water tests and four different tests using different batches of kaolin/sand slurries. The physical properties of the kaolin/sand slurries were measured for three of the four tests. In these tests, three different sample locations were used to pull samples, the SMP cooling water exit (CWE), the SMP fluid flow field (FFF), and SMP effective cleaning radius (ECR). The physical properties measured, though not for each sample, included rheology, weight percent total solids (wt% TS), density, kaolin/sand slurry particle size distribution (PSD), weight percent and particles size distribution of material greater than 45 microns

  13. Piston membrane pumps for slurries transport; Kolbenmembranpumpen fuer den Schlammtransport

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, F. [Abel GmbH und Co. KG, Buechen (Germany)

    2006-03-15

    As raw materials prices are rising, ore and coal mines in remote parts of the world have become profitable. Local infrastructures in these regions are not comparable with Europe. There are no rods or railways, and pipelines must be constructed parallel to rivers through deserts, mountains and rainforests. As a rule, pipelines do not follow favourable geological conditions but are constructed along the shortest possible rout to the nearest port or the nearest processing plant. Slurries are transported by pumping. (orig.)

  14. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-12-15

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  15. System and method for continuous solids slurry depressurization

    Science.gov (United States)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    2017-07-11

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resist a backflow of the slurry from the first outlet to the first inlet.

  16. Rheology of tetraphenylborate precipitate slurry

    International Nuclear Information System (INIS)

    Goren, I.D.; Martin, H.D.; McLain, M.A.

    1985-01-01

    The rheological properties of tetraphenylborate precipitate slurry were determined. This nonradioactive slurry simulates the radioactive tetraphenylborate precipitate generated at the Savannah River Plant by the In-Tank Precipitation Process. The data obtained in this study was applied in the design of slurry pumps, transfer pumps, transfer lines, and vessel agitation for the Defense Waste Processing Facility and other High Level Waste treatment projects. The precipitate slurry behaves as a Bingham plastic. The yield stress is directly proportional to the concentration of insoluble solids over the range of concentrations studied. The consistency is also a linear function of insoluble solids over the same concentration range. Neither the yield stress nor the consistency was observed to be affected by the presence of the soluble solids. Temperature effects on flow properties of the slurry were also examined: the yield stress is inversely proportional to temperature, but the consistency of the slurry is independent of temperature. No significant time-dependent effects were found. 4 refs., 4 figs., 3 tabs

  17. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  18. Single stage high pressure centrifugal slurry pump

    Science.gov (United States)

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  19. Radioactive waste slurry dehydrating and drum filling device

    International Nuclear Information System (INIS)

    Ichihashi, Toshio; Abe, Kazuaki; Hasegawa, Akira

    1981-01-01

    Purpose: To obtain a device for simultaneously filling and dehydrating radioactive waste in a waste can without the necessity of a special device for dehydration. Constitution: This device includes a radioactive waste storage tank, a pump for supplying the waste from the tank to a can, a drain tube having a filter at the lower end and installed displaceable in the axial direction of the can, and a drain pump. The slurry stored in the radioactive waste storage tank is supplied by the pump to the can, and the feedwater in the slurry is removed by another pump through a drain pipe having a filter which does not pass solid content from the can. Accordingly, as the slurry is filled in the can, the feedwater contained therein is removed. Consequently, it can simultaneously dehydrate and fill the dehydrated waste in the can. (Yoshihara, H.)

  20. Overview of the long distance iron ore slurry pipeline from Anglo Ferrous Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adarlan M.; Passos, Aline C.; Santos, Daniel; Orban, Eduardo M.; Lisboa, Helder D.; Goncalves, Nilton; Guimaraes, Robson C. [Anglo Ferrous Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The objective of this paper is to present an overview of the long distance iron ore slurry pipeline from Anglo Ferrous Brazil. Anglo Ferrous Brazil is a company of Anglo American plc that is one of the world's largest mining and natural resource company. Minas-Rio is a world class iron ore project which has been developed in Brazil aiming to produce 26.6 million tons per year of concentrate. The mine, concentrator and pump station 1 will be located in Conceicao do Mato Dentro, Minas Gerais state, and the terminal station will be located at Acu Port in Sao Joao da Barra, Rio de Janeiro state. The long distance iron ore slurry pipeline will be one of major differentials of Minas-Rio Project and its useful life was initially estimated in 20 years. The slurry pipeline has a total length of 525 kilometers and will be constructed from predominately 26 inches external diameter API 5L X70 pipes. From kilometer 314 to kilometer 480, 24 inches pipe will be installed to prevent slack flow downstream pump station 2. The pump station 1 is designed to provide the hydraulic head necessary to transport the concentrate iron ore slurry with 8 positive displacement pumps to pump station 2. The pump station 2, located 240 kilometers downstream pump station 1, is designed to operate with 10 positive displacement pumps. The valve station will be located at kilometer 347 and will be used to break the static head between pump station 2 and the terminal station during a slurry pipeline shutdown. (author)

  1. Slurry pipeline technology: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jay P. [Pipeline Systems Incorporated (PSI), Belo Horizonte, MG (Brazil); Lima, Rafael; Pinto, Daniel; Vidal, Alisson [Ausenco do Brasil Engenharia Ltda., Nova Lima, MG (Brazil). PSI Div.

    2009-12-19

    Slurry pipelines represent an economical and environmentally friendly transportation means for many solid materials. This paper provides an over-view of the technology, its evolution and current Brazilian activity. Mineral resources are increasingly moving farther away from ports, processing plants and end use points, and slurry pipelines are an important mode of solids transport. Application guidelines are discussed. State-of-the-Art technical solutions such as pipeline system simulation, pipe materials, pumps, valves, automation, telecommunications, and construction techniques that have made the technology successful are presented. A discussion of where long distant slurry pipelines fit in a picture that also includes thickened and paste materials pipe lining is included. (author)

  2. Medical ice slurry production device

    Science.gov (United States)

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  3. Testing of In-Line Slurry Monitors and Pulsair Mixers with Radioactive Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Bayne, C.K.

    1999-08-01

    Three in-line slurry monitoring instruments were demonstrated, tested, and evaluated for their capability to determine the transport properties of radioactive slurries. The instruments included the Endress + Hauser Promass 63M Coriolis meter for measuring density, the Lasentec M600P for measuring particle size distribution, and a prototype ultrasonic monitor that was developed by Argonne National Laboratory for measuring suspended solids concentration. In addition, the power consumption of the recirculation pump was monitored to determine whether this parameter could be used as a tool for in-line slurry monitoring. The Promass 63M and the M600P were also evaluated as potential indicators of suspended solids concentration. In order to use the Promass 63M as a suspended solids monitor, the densities of the fluid phase and the dry solid particle phase must be known. In addition, the fluid phase density and the dry solids density must remain constant, as any change will affect the correlation between the slurry density and the suspended solids concentration. For the M600P, the particle size distribution would need to remain relatively constant. These instruments were demonstrated and tested at the Gunite and Associated Tanks Remediation Project at the Oak Ridge National Laboratory. The testing of the instruments was conducted in parallel with the testing of a Pulsair mixing system, which was used to mix the contents of the selected tank. A total of six tests were performed. A submersible pump was positioned at two depths, while the Pulsair system was operated at three mixing rates.

  4. Prediction of centrifugal pump-cleaning ability in waste sludge

    International Nuclear Information System (INIS)

    Churnetski, B.V.

    1981-01-01

    Radioactive waste at the Savannah River Plant (SRP) is being transferred from older waste tanks to new, stress-relieved tanks for more effective waste management. The technology developed for waste removal involves the use of long-shaft, recirculating, centrifugal pumps (slurry pumps). Testing completed at the Savannah River Laboratory's 30-meter-diameter mock-up waste tank related the effective cleaning radius (ECR) of a slurry pump to critical pump and materials characteristics. Presently, this theory is being applied to radioactive waste at SRP. However, the technology can be applied to other remote handling situations where the slurry rheology can be determined. For SRP waste, an equation of the form: ECR α DV 0 (rho/tau 0 )/sup 1/2/ was determined where D is the nozzle diameter, V 0 is the average initial velocity, rho is the density of the slurry, and tau 0 is the yield stress of the slurry. Using this relationship, the cleaning performance of a pump operating in any SRP sludge environment can be predicted. Specifically, yield stress and density measurements on sludge samples can be used to predict the required number and effective location for slurry pumps in actual SRP waste tanks

  5. Pump transients in FGD slurry systems

    International Nuclear Information System (INIS)

    Ponce-Campos, C.D., Thoy, C.T.

    1990-01-01

    In this paper, the start-up transient of a limestone slurry system used for a power plant scrubber is discussed. Particular characteristics of these kind of systems are pointed out and incorporated into an ad-hoc numerical model. Three possible start-up scenarios are discussed and compared with field experimental data. The results illustrate well the importance of air pocket purging prior to system start-up

  6. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.

    2012-11-01

    The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required to prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.

  7. Performance and membrane fouling of a step-fed submerged membrane sequencing batch reactor treating swine biogas digestion slurry.

    Science.gov (United States)

    Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao

    2018-01-02

    To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.

  8. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    International Nuclear Information System (INIS)

    Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.

    2000-01-01

    Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation

  9. Bauxite slurry pipeline: start up operation

    Energy Technology Data Exchange (ETDEWEB)

    Othon, Otilio; Babosa, Eder; Edvan, Francisco; Brittes, Geraldo; Melo, Gerson; Janir, Joao; Favacho, Orlando; Leao, Marcos; Farias, Obadias [Vale, Rio de Janeiro, RJ (Brazil); Goncalves, Nilton [Anglo Ferrous Brazil S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The mine of Miltonia is located in Paragominas-PA, in the north of Brazil. Bauxite slurry pipeline starts at the Mine of Miltonia and finishes in the draining installation of Alunorte refinery at the port of Barcarena-PA, located approximately 244km away from the mine. The pipeline runs over seven cities and passes below four great rivers stream beds. The system was designed for an underground 24 inches OD steel pipe to carry 9.9 million dry metric tonnes per annum (dMTAs) of 50.5% solid concentration bauxite slurry, using only one pumping station. The system is composed by four storage tanks and six piston diaphragm pumps, supplying a flow of 1680 m3/h. There is a cathodic protection system along the pipeline extension to prevent external corrosion and five pressure monitoring stations to control hydraulic conditions, there is also a fiber optic cable interconnection between pump station and terminal station. Pipeline Systems Incorporated (PSI) was the designer and followed the commissioning program of the start up operations. This paper will describe the beginning of the pipeline operations, technical aspects of the project, the operational experiences acquired in these two years, the faced problems and also the future planning. (author)

  10. Design and performance of feed-delivery systems for simulated radioactive waste slurries

    International Nuclear Information System (INIS)

    Perez, J.M. Jr.

    1983-02-01

    Processes for vitrifying simulated high-level radioactive waste have been developed at the Pacific Northwest Laboratory (PNL) over the last several years. Paralleling this effort, several feed systems used to deliver the simulated waste slurry to the melter have been tested. Because there had been little industrial experience in delivering abrasive slurries at feed rates of less than 10 L/min, early experience helped direct the design of more-dependable systems. Also, as feed delivery requirements changed, the feed system was modified to meet these new requirements. The various feed systems discussed in this document are part of this evolutionary process, so they have not been ranked against each other. The four slurry feed systems discussed are: (1) vertical-cantilevered centrifugal pump system; (2) airlift feed systems; (3) pressurized-loop systems; and (4) positive-displacement pump system. 20 figures, 11 tables

  11. Slurry Ice as a Cooling System on 30 GT Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Alam Baheramsyah

    2017-06-01

    Full Text Available Indonesia is the largest archipelago country in the world that has a sea area that is very spacious. Indonesian sea area is 5.8 million square kilometers and a coastline of 95 181 km has huge potential in the fisheries sector. In line with the need to further improve on the quality of the fish catch. One way to preserve fish is to use a slurry of ice. Slurry ice proved more effective preserving fishery products instead of using ice cubes. Ice slurry cooling system was designed and applied to the fishing vessel 30 GT. The cooling system uses a simple vapor compression system consists of five major components consisting of evaporator, condenser, compressor, and two pumps.In designing this system determined the type of refrigerant used in advance which type of refrigerant R-507a. Then do the design or selection of its main components. The design is only done on the evaporator. As for the other major components such as condensers, compressors, and pumps election in accordance with the specification of the power needed. After that dialakukan depiction of each system component. Then subsequently designing the laying of ice slurry cooling system components on a fishing vessel 30 GT.            Through calculations using simple thermodynamic equations obtained cooling load on this system amounted to 32.06 kW. Condenser with a power of 40 kW. Compressor with power 12 kW. Pump with capacity 10 m3 / h. With memepertimbangkan space left on the ship in the ice slurry system design on the main deck of the ship to the efficient use of space on board. The power requirements of the generator vessel increases due to the addition of ice slurry system components therefore do replacement generator into the generator with a power of 100 kW and penambahn fuel tank to 6,000 L.

  12. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs

  13. Influence of coal slurry particle composition on pipeline hydraulic transportation behavior

    Science.gov (United States)

    Li-an, Zhao; Ronghuan, Cai; Tieli, Wang

    2018-02-01

    Acting as a new type of energy transportation mode, the coal pipeline hydraulic transmission can reduce the energy transportation cost and the fly ash pollution of the conventional coal transportation. In this study, the effect of average velocity, particle size and pumping time on particle composition of coal particles during hydraulic conveying was investigated by ring tube test. Meanwhile, the effects of particle composition change on slurry viscosity, transmission resistance and critical sedimentation velocity were studied based on the experimental data. The experimental and theoretical analysis indicate that the alter of slurry particle composition can lead to the change of viscosity, resistance and critical velocity of slurry. Moreover, based on the previous studies, the critical velocity calculation model of coal slurry is proposed.

  14. Numerical and Experimental Study of Pump Sump Flows

    Directory of Open Access Journals (Sweden)

    Wei-Liang Chuang

    2014-01-01

    Full Text Available The present study analyzes pump sump flows with various discharges and gate submergence. Investigations using a three-dimensional large eddy simulation model and an acoustic Doppler velocimeter are performed. Flow patterns and velocity profiles in the approaching flow are shown to describe the flow features caused by various discharges and gate submergence. The variation of a large-scale spanwise vortex behind a sluice gate is examined and discussed. The suction effect on approaching flow near the pipe column is examined using numerical modeling. To gain more understanding of the vortices variation, a comparison between time-averaged and instantaneous flow patterns is numerically conducted. Additionally, swirl angle, a widely used index for evaluating pump efficiency, is experimentally and numerically examined under various flow conditions. The results indicate that the pump becomes less efficient with increasing discharge and gate submergence. The fluctuation of the free surface over the pump sump is also discussed.

  15. Rheology of sludge-slurry grouts

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1980-10-01

    A series of rheograms was developed that relates the critical velocity (velocity where flow changes from laminar to turbulent) of a cementitious grout that incorporates a suspended sludge-slurry to the critical velocity of a reference grout made with a simulated waste solution. The sludge that is now in the Gunite waste tanks at the Oak Ridge National Laboratory (ORNL) will be suspended and pumped to the new waste storage tanks in Melton Valley. The sludge will then be blended with a cement mix base to form a grout which will be injected underground by the shale fracturing process. This report describes the materials, equipment, and techniques used in the laboratory studies to suspend sludges and mix sludge-slurry grouts that have flow properties similar to those of current shale fracturing grouts. Bentonite clay is an effective suspender in dilute NaNO 3 solutions; 15 wt % solids can be suspended with 2.0 wt % bentonite in a 0.1 M NaNO 3 solution. Other suspending materials were evaluated, but bentonite gave the best results. If a slurry grout becomes too viscous to pump, methods must be available to thin the mixture. A number of thinners, friction reducers, and plasticizers were examined. Q-Broxin, a thinner supplied by Baroid, reduced the velocity of a grout required for turbulent flow in a 5.0-cm (2-in.)-diam tube from 1.76 to 1.20 m/s (5.79 to 3.95 ft/s); FX-32C, a plasticizer supplied by Fox Industries, Inc., reduced the velocity from 1.76 to 0.75 m/s

  16. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  17. Submergible barge retrievable storage and permanent disposal system for radioactive waste

    Science.gov (United States)

    Goldsberry, Fred L.; Cawley, William E.

    1981-01-01

    A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

  18. The CO{sub 2} hydrate slurry; Le coulis de glace

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Brun, F. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Sari, O.; Hu, J. [Clean Cooling Solutions, spin off of University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec Ltd, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2007-12-15

    A new, very promising refrigerant was developed, which could be used in industrial processes as well as air conditioners: the CO{sub 2} hydrate slurry. Replacing hydrochlorofluorocarbon HCFC refrigerants has a high priority, due to the strong negative environmental impact of these fluids. New refrigerants have to be environment friendly, non-inflammable, cheap and made of natural materials. CO{sub 2} hydrate slurries and/or a mixture of ice slurry and CO{sub 2} hydrate slurry meet these requirements. The University of Applied Sciences of Western Switzerland in Yverdon, together with industrial partners, investigated the properties of such slurries. The slurries were created using the Coldeco process: the refrigerating fluid is directly injected into the liquid brine. The evaporation of the refrigerating fluid cools the liquid down to its freezing point and homogeneously distributed small crystals appear in the liquid. A test rig was built to measure the physical and chemical properties of the slurries obtained in this way. CO{sub 2} hydrate slurries have a higher energy storage capacitance (500 kJ/kg) than ice slurries (333 kJ/kg). The production of CO{sub 2} hydrate slurries in large quantities in a continuous process was demonstrated. The solid particle concentration was 10%, the pressure amounted to 30 bar and the temperature 2 to 4 {sup o}C. Such slurries can be pumped and circulated in pipe networks. Stainless steel is the appropriate material for such networks. However, the main advantage of the new refrigerant will be, according to the authors, a reduced energy consumption compared to traditional refrigerating cycles: the difference between the temperature required by the user and the refrigerant temperature is reduced, thanks to the use of the latent heat in the new process.

  19. Slurry walls and slurry trenches - construction quality control

    International Nuclear Information System (INIS)

    Poletto, R.J.; Good, D.R.

    1997-01-01

    Slurry (panel) walls and slurry trenches have become conventional methods for construction of deep underground structures, interceptor trenches and hydraulic (cutoff) barriers. More recently polymers mixed with water are used to stabilize the excavation instead of bentonite slurry. Slurry walls are typically excavated in short panel segments, 2 to 7 m (7 to 23 ft) long, and backfilled with structural materials; whereas slurry trenches are fairly continuous excavations with concurrent backfilling of blended soils, or cement-bentonite mixtures. Slurry trench techniques have also been used to construct interceptor trenches. Currently no national standards exist for the design and/or construction of slurry walls/trenches. Government agencies, private consultants, contractors and trade groups have published specifications for construction of slurry walls/trenches. These specifications vary in complexity and quality of standards. Some place excessive emphasis on the preparation and control of bentonite or polymer slurry used for excavation, with insufficient emphasis placed on quality control of bottom cleaning, tremie concrete, backfill placement or requirements for the finished product. This has led to numerous quality problems, particularly with regard to identification of key depths, bottom sediments and proper backfill placement. This paper will discuss the inspection of slurry wall/trench construction process, identifying those areas which require special scrutiny. New approaches to inspection of slurry stabilized excavations are discussed

  20. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  1. Calculations of slurry pump jet impingement loads

    International Nuclear Information System (INIS)

    Wu, T.T.

    1996-01-01

    This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented

  2. The anaerobic digestion of organic matter in sugarbeet mud

    NARCIS (Netherlands)

    Keizer, M.G.; Haan, de F.A.M.; Blom, J.J.C.; Knaapen, J.W.P.M.

    1981-01-01

    Storage of sugar-beet mud in the traditional way, i.e., direct dewatering after pumping the slurry in storage basins, may cause odor nuisance because of digestion of organic substances. In order to prevent these bad odor problems the mud should remain submerged during the digestion period. No

  3. Low-pressure hydraulic technique for slurrying radioactive sludges in waste tanks

    International Nuclear Information System (INIS)

    Bradley, R.F.; Parsons, F.A.; Goodlett, C.B.; Mobley, R.M.

    1977-11-01

    Present technology for the removal of sludges from radioactive liquid waste storage tanks at the Savannah River Plant (SRP) requires large volumes of fresh water added through high-pressure (approx.3000 psig) nozzles positioned to resuspend and slurry the sludge. To eliminate the cost of storing and evaporating these large volumes of water (several hundred thousand gallons per tank cleaned), a technique was developed at the Savannah River Laboratory (SRL) to use recirculating, radioactive, supernate solution to resuspend the sludge. The system consists in part of a single-stage centrifugal pump operating in the sludge at approx.100 psia. Recirculating supernate is drawn into the bottom of the pump and forced out through two oppositely directed nozzles to give liquid jets with a sludge-slurrying capability equal to that obtained with the present high-pressure system. In addition to eliminating the addition of large quantities of water to the tanks, the low-pressure recirculating technique requires only approximately one-sixth of the power required by the high-pressure system. Test results with clay (as a simulant for sludge) in a waste tank mockup confirmed theoretical predictions that jets with the same momentum gave essentially the same sludge-slurrying patterns. The effective cleaning radius of the recirculating jet was directly proportional to the product of the nozzle velocity and the nozzle diameter (U 0 D). At the maximum U 0 D developed by the pump (approx.14 ft 2 /s), the effective cleaning radius in the tank mockup was approx.20 feet

  4. Yield Stress Reduction of DWPF Melter Feed Slurries

    International Nuclear Information System (INIS)

    Stone, M.E.; Smith, M.E.

    2007-01-01

    , then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process. Yield stress reduction was measured by preparing melter feed slurries (using nonradioactive HLW simulants) that contain beads and comparing the yield stress with melter feed containing frit. A second set of tests was performed with beads of various diameters to determine if a decrease in diameter affected the results. Smaller particle size was shown to increase yield stress when frit is utilized. The settling rate of the beads was required to match the settling rate of the frit, therefore a decrease in particle size was anticipated. Settling tests were conducted in water, xanthan gum solutions, and in non-radioactive simulants of the HLW. The tests used time-lapse video-graphy as well as solids sampling to evaluate the settling characteristics of beads compared to frit of the same particle size. A preliminary melt rate evaluation was performed using a dry-fed Melt Rate Furnace (MRF) developed by SRNL. Preliminary evaluation of the impact of beading the frit on the frit addition system were completed by conducting flow loop testing. A recirculation loop was built with a total length of about 30 feet. Pump power, flow rate, outlet pressure, and observations of the flow in the horizontal upper section of the loop were noted. The recirculation flow was then gradually reduced and the above items recorded until settling was noted in the recirculation line. Overall, the data shows that the line pressure increased as the solids were increased for the same flow rate. In addition, the line pressure was higher for Frit 320 than the beads at the same solids level and flow. With the observations, a determination of minimum velocity to prevent settling could be done, but a graph of the line pressures versus velocity for the various tests was deemed to more objective. The graph shows that the inflection point in pressure drop is about the same for the beads and Frit 320. This

  5. An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries

    International Nuclear Information System (INIS)

    Hylton, T.D.

    2000-01-01

    The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the tanks, transferred to treatment facilities (or other storage locations), and processed to stable waste forms. The sludge wastes will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the respective supernatants to create slurries that can be transferred by pipeline to the desired destination. Depending on the DOE site, these slurries may be transferred up to six miles. Since the wastes are radioactive, it is critically important for the transfers to be made without plugging a pipeline. To reduce such a risk, the relevant properties of the slurry (e.g., density, suspended solids concentration, viscosity, and particle size distribution) should be determined to be within acceptable limits prior to transfer. These properties should also be continuously monitored and controlled within specified limits while the transfer is in progress. The baseline method for determining the transport properties of slurries involves sampling and analysis; however, this method is time-consuming, and costly, and it does not provide real-time information. In addition, personnel who collect and analyze the samples are exposed to radiation. It is also questionable as to whether a laboratory analyst can obtain representative aliquots from the sample jar for these solid-liquid mixtures. The alternative method for determining the transport properties is in-line analysis. An in-line instrument is one that is connected to the process, analyzes the slurry as it flows through or by the instrument, and provides the results within seconds. This instrument can provide immediate feedback to operators so that, when necessary, the operators can respond

  6. Liquid metal pump for nuclear reactors

    International Nuclear Information System (INIS)

    Allen, H.G.; Maloney, J.R.

    1975-01-01

    A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank

  7. Remote process cell mercury transfer pumps for DWPF

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Vaughn, V.G.

    1986-01-01

    Final design and the results of the testing performed thus far show that the water displacement of mercury to a height of 40 feet is feasible with just 6 gallons of motive water. Control of the transfer is achieved by monitoring the pump discharge pressure. An air actuated plug valve configuration successfully contained the required discharge pressure of 260 psi. The requirements of low flow and maximum separation of mercury from particulates are achieved due to the configuration of the pressure canister. The pump is capable of transferring a discrete amount of mercury with little additional slurry particulates. The success of this new pumping configuration is highlighted by the fact that it was the inspiration for other remote transfer applications tested at SRP. These application include the dual canister sample pump shown in Figure 7, as well as a successful prototype pump designed at Pacific Northwest Laboratories (PNL). The PNL pump was designed for the purpose of metering waste slurries to an electric melter. Upon completion of final pump fabrication, the Defense Waste Processing facility (DWPF) facility will have a simple and highly reliable method of remotely transferring small discrete batches of mercury as required from radioactive process vessels. 3 refs., 7 figs., 1 tab

  8. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    Science.gov (United States)

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  9. Evaluation of Ice Slurries as a Control for Postharvest Growth of Vibrio spp. in Oysters and Potential for Filth Contamination.

    Science.gov (United States)

    Lydon, Keri Ann; Farrell-Evans, Melissa; Jones, Jessica L

    2015-07-01

    Raw oyster consumption is the most common route of exposure for Vibrio spp. infections in humans. Vibriosis has been increasing steadily in the United States despite efforts to reduce the incidence of the disease. Research has demonstrated that ice is effective in reducing postharvest Vibrio spp. growth in oysters but has raised concerns of possible contamination of oyster meat by filth (as indicated by the presence of fecal coliform bacteria or Clostridium perfringens). This study examined the use of ice slurries (oysters, from 23.9°C (75°F) to 10°C (50°F) within 12 min. The initial bacterial loads in the ice slurry waters were near the limits of detection. Following repeated dipping of oysters into ice slurries, water samples exhibited significant (P oyster meat, however, was unchanged after 15 min of submergence, with no significant differences (P oysters to minimize Vibrio growth.

  10. A methodology to define the flow rate and pressure requirements for transfer of double-shell tank waste slurries

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Liljegren, L.M.

    1993-04-01

    This document presents an analysis of the pressure drop and flow rate double-shell tank slurries. Experiments to requirements for transport of characterize the transport of double-shell tank slurries through piping networks and to resuspend materials that settle during pump outages are proposed. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the flow regimes that are likely to occur during transport. The results of these evaluations indicate that the slurry will be pseudohomogeneous during transport and that the slurry rheology is sufficiently non-Newtonian to affect both the pressure drop achieved during transport and the critical Reynolds number. The transport data collected in the non-Newtonian experiment will be used to determine whether a non-Newtonian correlation developed by Hanks (1978) adequately describes the experimental results

  11. Design of a new abrasive slurry jet generator

    Science.gov (United States)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  12. Isothermal pumping analysis for high-altitude tethered balloons.

    Science.gov (United States)

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.

  13. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  14. Studies of coal slurries property; Slurry no seijo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, M.; Aihara, Y.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Sakaki, T.; Shibata, M.; Hirosue, H. [Kyushu National Industrial Research Institute, Saga (Japan)

    1996-10-28

    It was previously found that the increase of slurry temperature provides a significant effect of slurry viscosity reduction for the coal slurry with high concentration of 50 wt%. To investigate the detailed influence of slurry temperature for the coal slurry with concentration of 50 wt%, influence of temperature on the successive change of apparent viscosity was observed at the constant shear rate. When the concentration of coal was increased from 45 wt% to 50 wt%, viscosity of the slurry was rapidly increased. When heated above 70{degree}C, the apparent viscosity decreased during heating to the given temperature, but it increased successively after reaching to the given temperature. The apparent viscosity showed higher value than that of the initial viscosity. The coal slurry with concentration of 50 wt% showed the fluidity of Newtonian fluid at the lower shear rate region, but showed the fluidity of pseudo-plastic fluid at the higher shear rate region. The slurry having high apparent viscosity by the successive change showed higher apparent viscosity with increasing the higher even by changing the shear rate. 1 ref., 4 figs.

  15. Submersible fans and pumps for cryogenic fluids

    International Nuclear Information System (INIS)

    Mark, J.W.

    1986-01-01

    Submersible electric motor driven fans of three sizes have been designed, built and operated at 21 0 K at the Stanford Linear Accelerator Center. The largest is a 100-mm diameter, 2 stage vaneaxial fan with a nominal capacity of 6 L/s at 2 m head. It is driven by a 4 pole, 3 phase induction motor that runs at 1750 rpm. The next smaller one is an 85-mm diameter centrifugal pump. It pumps 3 L/s at a head of 5 m. The third is a 75-mm single stage vaneaxial fan with a nominal capacity is 3 L/s at a head of 2 m. The 85-mm pump and the 75-mm fan are driven by 2 pole, 3 phase induction motors running at 3550 rpm. The motors were modified to operate submerged in the cryogenic fluid. The pumps have been operated in liquid hydrogen, liquid deuterium, and pressurized helium gas at 21 0 K. They can also operate with denser fluids such as liquid nitrogen, but rotational speed, capacity, and head will be reduced. They have been operated while submerged in liquid helium

  16. Visualizing test on the pass-through and collision characteristics of coarse particles in a double blade pump

    Directory of Open Access Journals (Sweden)

    Minggao Tan

    2018-01-01

    Full Text Available As the key equipment in deep ocean mining, the slurry pump suffers from wear and blocking problems. In this paper, high-speed photography technique is applied to track the movement rule of single particle of the coarse particle solid–liquid two-phase flow in a double blade slurry pump. The influences of particle diameter and particle density on the pass-through and collision characteristics of particles are analyzed as well. The results show that the average of the passing pump time first decreases and then increases when the particle diameter increases. The average of the passing pump time decreases by 22.7%, when the particle density increases from 1.09 g/cm3 to 1.75 g/cm3. Besides, the particle density has great influence on the location where the particle hits the tongue. Most particles of 1.09 g/cm3 hit the tongue on the left side, while collision location of particles of 1.75 g/cm3 is mainly on the top and at the right side of the tongue. The research can provide a basis for the optimization design of slurry pump in deep ocean mining system.

  17. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    Directory of Open Access Journals (Sweden)

    MAJID ALI

    2013-04-01

    Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  18. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)

    2013-04-15

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  19. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na 2 S 2 O 3 ) in water to remove the gaseous iodine (I 2 ) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber

  20. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  1. Fluid structure interaction in piston diaphragm pumps

    NARCIS (Netherlands)

    van Rijswick, R.J.A.

    2017-01-01

    Piston diaphragm pumps are used world-wide to transport abrasive and/or aggressive slurries against high discharge pressures in the mining, mineral processing and power industries. Limitation of excessive deformation of the diaphragm is of utmost importance for eliminating fatigue failures of the

  2. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  3. The differences between soil grouting with cement slurry and cement-water glass slurry

    Science.gov (United States)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  4. Study of the Parametric Performance of Solid Particle Erosion Wear under the Slurry Pot Test Rig

    Directory of Open Access Journals (Sweden)

    S.R. More

    2017-12-01

    Full Text Available Stainless Steel (SS 304 is commonly used material for slurry handling applications like pipelines, valves, pumps and other equipment's. Slurry erosion wear is a common problem in many engineering applications like process industry, thermal and hydraulic power plants and slurry handling equipments. In this paper, experimental investigation of the influence of solid particle size, impact velocity, impact angle and solid concentration parameters in slurry erosion wear behavior of SS 304 using slurry pot test rig. In this study the design of experiments was considered using Taguchi technique. A comparison has been made for the experimental and Taguchi technique results. The erosion wear morphology was studied using micro-graph obtained by scanning electron microscope (SEM analysis. At shallow impact angle 30°, the material removal pattern was observed in the form of micro displacing, scratching and ploughing with plastic deformation of the material. At 60° impact angle, mixed type of micro indentations and pitting action is observed. At normal impact angle 90°, the material removal pattern was observed in form of indentation and rounded lips. It is found that particle velocity was the most influence factor than impact angle, size and solid concentration. From this investigation, it can be concluded that the slurry erosion wear is minimized by controlling the slurry flow velocity which improves the service life of the slurry handling equipments. From the comparison of experimental and Taguchi experimental design results it is found that the percentage deviation was very small with a higher correlation coefficient (r2 0.987 which is agreeable.

  5. Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Ma, Xiaoli; Zhao, Xudong; Li, Peng; Ali, Samira

    2016-01-01

    Highlights: • An experimental investigation to a novel MPCM slurry based PV/T system was conducted. • The system had the reduced solar efficiency at a higher solar radiation. • The system had the increased solar efficiency at a higher slurry Reynolds number. • The most favourite MPCM concentration was around 10%. • The experimental results approved the accuracy of the established computer model. - Abstract: As a follow-on work of the authors’ theoretical study, the paper presented an experimental investigation into the energy performance of a novel PV/T thermal and power system employing the Micro-encapsulated Phase Change Material (MPCM) slurry as the working fluid. A prototype PV/T module of 800 mm × 1600 mm × 50 mm was designed and constructed based on the previous modelling recommendation. The performance of the PV/T module and associated thermal and power system were tested under various solar radiations, slurry Reynolds numbers and MPCM concentrations. It was found that (1) increasing solar radiation led to the increased PV/T module temperature, decreased solar thermal and electrical efficiencies and reduced slurry pressure drop; (2) increasing the slurry Reynolds number led to the increased solar thermal and electrical efficiencies, decreased module temperature, and increased pressure drop; and (3) increasing the MPCM concentration led to the reduced module temperature and increased pressure drop. The experimental results were used to examine the accuracy of the established computer model, giving a derivation scale ranging from 1.1% to 6.1% which is an acceptable error level for general engineering simulation. The recommended operational conditions of the PV/T system were (1) MPCM slurry weight concentration of 10%, (2) slurry Reynolds number of 3000, and (3) solar radiation of 500–700 W/m"2; at which the system could achieve the net overall solar efficiencies of 80.8–83.9%. To summarise, the MPCM slurry based PV/T thermal and power system

  6. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  7. Slurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuerten, H; Zehner, P [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1979-08-01

    Slurry reactors are designed on the basis of empirical data and model investigations. It is as yet not possible to calculate the flow behavior of such reactors. The swarm of gas bubbles and cluster formations of solid particles and their interaction in industrial reactors are not known. These effects control to a large extent the gas hold-up, the gas-liquid interface and, similarly as in bubble columns, the back-mixing of liquids and solids. These hydrodynamic problems are illustrated in slurry reactors which constructionally may be bubble columns, stirred tanks or jet loop reactors. The expected effects are predicted by means of tests with model systems modified to represent the conditions in industrial hydrogenation reactors. In his book 'Mass Transfer in Heterogeneous Catalysis' (1970) Satterfield complained of the lack of knowledge about the design of slurry reactors and hence of the impossible task of the engineer who has to design a plant according to accepted rules. There have been no fundamental changes since then. This paper presents the problems facing the engineer in designing slurry reactors, and shows new development trends.

  8. Improved, Low-Stress Economical Submerged Pipeline

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi

    2011-01-01

    A preliminary study has shown that the use of a high-strength composite fiber cloth material may greatly reduce fabrication and deployment costs of a subsea offshore pipeline. The problem is to develop an inexpensive submerged pipeline that can safely and economically transport large quantities of fresh water, oil, and natural gas underwater for long distances. Above-water pipelines are often not feasible due to safety, cost, and environmental problems, and present, fixed-wall, submerged pipelines are often very expensive. The solution is to have a submerged, compliant-walled tube that when filled, is lighter than the surrounding medium. Some examples include compliant tubes for transporting fresh water under the ocean, for transporting crude oil underneath salt or fresh water, and for transporting high-pressure natural gas from offshore to onshore. In each case, the fluid transported is lighter than its surrounding fluid, and thus the flexible tube will tend to float. The tube should be ballasted to the ocean floor so as to limit the motion of the tube in the horizontal and vertical directions. The tube should be placed below 100-m depth to minimize biofouling and turbulence from surface storms. The tube may also have periodic pumps to maintain flow without over-pressurizing, or it can have a single pump at the beginning. The tube may have periodic valves that allow sections of the tube to be repaired or maintained. Some examples of tube materials that may be particularly suited for these applications are non-porous composite tubes made of high-performance fibers such as Kevlar, Spectra, PBO, Aramid, carbon fibers, or high-strength glass. Above-ground pipes for transporting water, oil, and natural gas have typically been fabricated from fiber-reinforced plastic or from more costly high-strength steel. Also, previous suggested subsea pipeline designs have only included heavy fixed-wall pipes that can be very expensive initially, and can be difficult and expensive

  9. Superconducting bearings for a LHe transfer pump

    Science.gov (United States)

    Kloeppel, S.; Muehsig, C.; Funke, T.; Haberstroh, C.; Hesse, U.; Lindackers, D.; Zielke, S.; Sass, P.; Schoendube, R.

    2017-12-01

    Superconducting bearings are used in a number of applications for high speed, low loss suspension. Most of these applications suspend a warm shaft and thus require continuous cooling, which leads to additional power consumption. Therefore, it seems advantageous to use these bearings in systems that are inherently cold. One respective application is a submerged pump for the transfer of liquid helium into mobile dewars. Centrifugal pumps require tight sealing clearances, especially for low viscosity fluids and small sizes. This paper covers the design and qualification of superconducting YBCO bearings for a laboratory sized liquid helium transfer pump. Emphasis is given to the axial positioning, which strongly influences the achievable volumetric efficiency.

  10. Conductivity and electrochemical performance of LiFePO4 slurry in the lithium slurry battery

    Science.gov (United States)

    Feng, Caimei; Chen, Yongchong; Liu, Dandan; Zhang, Ping

    2017-06-01

    Lithium slurry battery is a new type of energy storage technique which uses the slurry of solid active materials, conductive additions and liquid electrolyte as the electrode. The proportion of conductive addition and the active material has significant influence on the conductivity and electrochemical performance of the slurry electrode. In the present work, slurries with different volume ratios of LiFePO4 (LFP) and Ketjenblack (KB) were investigated by the electrochemical workstation and charge-discharge testing system (vs. Li/Li+). Results show that the conductivity of the slurry increases linearly with the addition of KB, and the measured specific capacity of the slurry reaches its theoretical value when the volume ratio of KB to LFP is around 0.2. Based on this ratio, a slurry battery with higher loading of LFP (19.1 wt.% in the slurry) was tested, and a specific capacity of 165 mAh/g at 0.2 mA/cm2 and 102 mAh/g at 5 mA/cm2 was obtained for LFP.

  11. Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems

    Science.gov (United States)

    Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.

    1992-01-01

    The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.

  12. System and method for slurry handling

    Science.gov (United States)

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  13. Recommendations for rheological testing and modelling of DWPF melter feed slurries

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1994-08-01

    The melter feed in the DWPF process is a non-Newtonian slurry. In the melter feed system and the sampling system, this slurry is pumped at a wide range of flow rates through pipes of various diameters. Both laminar and turbulent flows are encountered. Good rheology models of the melter feed slurries are necessary for useful hydraulic models of the melter feed and sampling systems. A concentric cylinder viscometer is presently used to characterize the stress/strain rate behavior of the melter feed slurries, and provide the data for developing rheology models of the fluids. The slurries exhibit yield stresses, and they are therefore modelled as Bingham plastics. The ranges of strain rates covered by the viscometer tests fall far short of the entire laminar flow range, and therefore hydraulic modelling applications of the present rheology models frequently require considerable extrapolation beyond the range of the data base. Since the rheology models are empirical, this cannot be done with confidence in the validity of the results. Axial pressure drop versus flow rate measurements in a straight pipe can easily fill in the rest of the laminar flow range with stress/strain rate data. The two types of viscometer tests would be complementary, with the concentric cylinder viscometer providing accurate data at low strain rates, near the yield point if one exists, and pipe flow tests providing data at high strain rates up to and including the transition to turbulence. With data that covers the laminar flow range, useful rheological models can be developed. In the Bingham plastic model, linear behavior of the shear stress as a function of the strain rate is assumed once the yield stress is exceeded. Both shear thinning and shear thickening behavior have been observed in viscometer tests. Bingham plastic models cannot handle this non-linear behavior, but a slightly more complicated yield/power law model can

  14. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    Science.gov (United States)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  15. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  16. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    International Nuclear Information System (INIS)

    Lee, Da Sol; Jeong, Hae Do; Lee, Hyun Seop

    2015-01-01

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  17. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    International Nuclear Information System (INIS)

    Williams, J.R.; Dudka, S.; Miller, W.P.; Johnson, D.O.

    1997-01-01

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10 -8 to 10 -1 cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems

  18. Effect of clone size on submergence tolerance and post-submergence growth recovery in Carex brevicuspis (Cyperaceae

    Directory of Open Access Journals (Sweden)

    Zhengmiao Deng

    2016-12-01

    Full Text Available Clonal plants are prevalent in wetlands and play important roles in maintaining the functions of the ecosystem. In the present study, we determined the effect of clone sizes (R1, R2, and R3 comprising 1, 3, and 5clumping ramets on the tolerance of Carex brevicuspis growing under 30-cm-deep water to three different periods (one, two, and three months of submergence and its growth recovery one month after de-submergence. Our results showed that the relative growth rate (RGR of C. brevicuspis significantly declined with increasing submergence time, and was higher in R3 and R5 than in R1 plants under both submergence and post-submergence conditions. The concentration of water-soluble carbohydrates (WSCs was highest in R3, intermediate in R5, and the lowest in R1 plants during the first two months of submergence, indicating an optimal trade-off between energy investment and vegetative growth (i.e., buds and ramets production in C. brevicuspis. WSCs were significantly reduced with increasing submergence time, while the starch content was significantly reduced only during the third month of submergence, implying that WSCs were a direct energy source for C. brevicuspis during submergence. The number of buds was higher in R5 than in R3 and R1 plants after two and three months of submergence, which directly resulted in a significantly higher post-submergence ramet production in R5 plants. These results indicated that plants with relatively larger clone sizes display better tolerance to submergence stress and post-submergence growth recovery. Therefore, we speculate that the large clone size in C brevicuspis might be an effective adaptive mechanism to survive under submergence stress in floodplain wetlands.

  19. Slurry discharge management-beach profile prediction

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Nawrot, J.R. [Southern Illinois University at Carbondale, Carbondale, IL (United States). Dept. of Civil Engineering

    1996-11-01

    Mine tailings dams are embankments used by the mining industry to retain the tailings products after the mineral preparation process. Based on the acid-waste stereotype that all coal slurry is acid producing, current reclamation requires a four foot soil cover for inactive slurry disposal areas. Compliance with this requirement is both difficult and costly and in some case unnecessary, as not all the slurry, or portions of slurry impoundments are acid producing. Reduced costs and recent popularity of wetland development has prompted many operators to request reclamation variances for slurry impoundments. Waiting to address slurry reclamation until after the impoundment is full, limits the flexibility of reclamation opportunities. This paper outlines a general methodology to predict the formation of the beach profile for mine tailings dams, by the discharge volume and location of the slurry into the impoundment. The review is presented under the perspective of geotechnical engineering and waste disposal management emphasizing the importance of pre-planning slurry disposal land reclamation. 4 refs., 5 figs.

  20. Overview of slurry pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, R L

    1982-01-01

    Slurry pipelines have proven to be a technically feasible, environmentally attractive and economic method of transporting finely divided particles over long distances. A pipeline system normally consists of preparation, pipeline and utilization facilities and requires optimization of all three components taken together. A considerable amount of research work has been done to develop hydraulic design of a slurry pipeline. Equipment selection and estimation of corrosion-erosion are considered to be as important as the hydraulic design. Future applications are expected to be for the large-scale transport of coal and for the exploitation of remotely located mineral deposits such as iron ore and copper. Application of slurry pipelines for the exploitation of remotely located mineral deposits is illustrated by the Kudremukh iron concentrate slurry pipeline in India.

  1. CFD simulation and experimental analysis of erosion in a slurry tank test rig

    Directory of Open Access Journals (Sweden)

    Bart Hans-Jörg

    2013-04-01

    Full Text Available Erosion occurring in equipment dealing with liquid-solid mixtures such as pipeline parts, slurry pumps, liquid-solid stirred reactors and slurry mixers in various industrial applications results in operational failure and economic costs. A slurry erosion tank test rig is designed and was built to investigate the erosion rates of materials and the influencing parameters such as flow velocity and turbulence, flow angle, solid particle concentration, particles size distribution, hardness and target material properties on the material loss and erosion profiles. In the present study, a computational fluid dynamics (CFD tool is used to simulate the erosion rate of sample plates in the liquid-solid slurry mixture in a cylindrical tank. The predictions were made in a steady state and also transient manner, applying the flow at the room temperature and using water and sand as liquid and solid phases, respectively. The multiple reference frame method (MRF is applied to simulate the flow behavior and liquid-solid interactions in the slurry tank test rig. The MRF method is used since it is less demanding than sliding mesh method (SM and gives satisfactory results. The computational domain is divided into three regions: a rotational or MRF zone containing the mixer, a rotational zone (MRF containing the erosion plates and a static zone (outer liquid zone. It is observed that changing the MRF zone diameter and height causes a very low impact on the results. The simulated results were obtained for two kinds of hard metals namely stainless steel and ST-50 under some various operating conditions and are found in good agreement with the experimental results.

  2. Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Goldstein, Harvey [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Dooher, John [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2013-09-30

    This study investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO2 is much lower than water. This means it should take less energy to pump liquid CO2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO2/coal slurry properties.

  3. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  4. Case study to remove radioactive hazardous sludge from long horizontal storage tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1995-01-01

    The removal of radioactive hazardous sludge from waste tanks is a significant problem at several US Department of Energy (DOE) sites. The use of submerged jets produced by mixing pumps lowered into the supernatant/sludge interface to produce a homogeneous slurry is being studied at several DOE facilities. The homogeneous slurry can be pumped from the tanks to a treatment facility or alternative storage location. Most of the previous and current studies with this method are for flat-bottom tanks with vertical walls. Because of the difference in geometry, the results of these studies are not directly applicable to long horizontal tanks such as those used at the Oak Ridge National Laboratory. Mobilization and mixing studies were conducted with a surrogate sludge (e.g., kaolin clay) using submerged jets in two sizes of horizontal tanks. The nominal capacities of these tanks were 0.87 m 3 (230 gal) and 95 m 3 (25,000 gal). Mobilization efficiencies and mixing times were determined for single and bidirectional jets in both tanks with the discharge nozzles positioned at two locations in the tanks. Approximately 80% of the surrogate sludge was mobilized in the 95-m 3 tank using a fixed bidirectional jet (inside diameter = 0.035 m) and a jet velocity of 6.4 m/s (21 ft/s)

  5. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  6. Predicting transport requirements for radioactive-waste slurries

    International Nuclear Information System (INIS)

    Motyka, T.; Randall, C.T.

    1983-01-01

    A method for predicting the transport requirements of radioactive waste slurries was developed. This method involved preparing nonradioactive sludge slurries chemically similar to the actual high-level waste. The rheological and settling characteristics of these synthetic waste slurries were measured and found to compare favorably with data on actual defense waste slurries. Pressure drop versus flow rate data obtained fom a 2-in. slurry test loop confirmed the Bingham plastic behavior of the slurry observed during viscometry measurements. The pipeline tests, however, yielded friction factors 30 percent lower than those predicted from viscometry data. Differences between the sets of data were attributed to inherent problems in interpreting accurate yield-stress values of slurry suspensions with Couette-type viscometers. Equivalent lengths of fittings were also determined and found to be less than that of water at a specified flow rate

  7. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  8. US State Submerged Lands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submerged Lands Act (43 U.S.C. Section 1301 et seq.) grants coastal states title to natural resources located within their coastal submerged lands and navigable...

  9. An oilwell cement slurry additivated with bisphenol diglycidil ether/isophoronediamine-Kinetic analysis and multivariate modelings at slurry/HCl interfaces

    International Nuclear Information System (INIS)

    Cestari, Antonio R.; Vieira, Eunice F.S.; Tavares, Andrea M.G.; Andrade, Marcos A.S.

    2009-01-01

    Loss of zonal isolation in oilwell cementing operations leads to safety and environmental problems. The use of new cement slurries can help to solve this problem. In this paper, an epoxy-modified cement slurry was synthesized and characterized. The features of the modified slurries were evaluated in relation to a standard cement slurry (w/c = 0.50). A kinetic study of HCl interaction with the slurries was carried out using cubic molds. The Avrami kinetic model appears to be the most efficient in describing kinetic isotherms obtained from 25 to 55 deg. C. Type of slurry, HCl concentration and temperature effects were also evaluated in HCl adsorption onto cement slurries considering a 2 3 full factorial design. From the statistical analysis, it is inferred that the factor 'HCl concentration' has shown a profound influence on the numerical values of the Avrami kinetic constants. However, the best statistical fits were found using binary and tertiary interactive effects. It was found that the epoxy-modified cement slurry presents a good potential to be used in environmental-friendly oilwell operations.

  10. Bio-slurry as fertilizer : is bio-slurry from household digesters a better fertilizer than manure? : a literature review

    NARCIS (Netherlands)

    Bonten, L.T.C.; Zwart, K.B.; Rietra, R.P.J.J.; Postma, R.; Haas, de M.J.G.; Nysingh, S.L.

    2014-01-01

    In many developing countries manure is anaerobically digested to produce biogas. The residue of manure digestion, bio-slurry, can be used as fertilizer for crop production and aquaculture. This study compared bio-slurry and manure as fertilizers. Nutrients in bio-slurry, especially nitrogen, are

  11. TNX/HLW Long Shaft Pumps 1995-2000

    International Nuclear Information System (INIS)

    VanPelt, B.

    2002-01-01

    Problems with long shaft pumps are becoming clearer due to increased use, better instrumentation, more analysis, and increased testing activity. The problems are with reliability and not with hydraulic performance. The root cause of reliability problems is usually excessive vibration caused by design. The outlook for satisfactory pumps is improved as understanding of problems increases. Promising developments are emerging such as the tilt pad bearing. Alternative configurations, such as gas filled columns and submerged motor pumps, will require development. Continued development, in general, should be expected due to changing technology and industry changes. This report describes thirteen distinct pump programs starting with leakage of original mixer pumps in the 1980s and ending with the testing of tilt pad bearings now in progress. Eight of the programs occurred from 1996 to 2000. All involve long shaft pumps; all involve testing at TNX; and all involve a problem of some kind. The co mmon technical issue among the activities is vibration and shaft (or rotor) instability due to journal bearings. In every case, excessive shaft vibration is a reasonable and probable explanation for some or all of the problems

  12. Technical Development of Slurry Three-Dimensional Printer

    Science.gov (United States)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  13. Comparative testing of slurry monitors

    International Nuclear Information System (INIS)

    Hylton, T.D.; Bayne, C.K.; Anderson, M.S.; Van Essen, D.C.

    1998-05-01

    The US Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks, transferred to treatment facilities, and processed to a final waste form. The wastes will be removed from the current storage tanks by mobilizing the sludge wastes and mixing them with the liquid wastes to create slurries. Each slurry would then be transferred by pipeline to the desired destination. To reduce the risk of plugging a pipeline, the transport properties (e.g., density, suspended solids concentration, viscosity, particle size range) of the slurry should be determined to be within acceptable limits prior to transfer. These properties should also be monitored and controlled within specified limits while the slurry transfer is in progress. The DOE issued a call for proposals for developing on-line instrumentation to measure the transport properties of slurries. In response to the call for proposals, several researchers submitted proposals and were funded to develop slurry monitoring instruments. These newly developed DOE instruments are currently in the prototype stage. Before the instruments were installed in a radioactive application, the DOE wanted to evaluate them under nonradioactive conditions to determine if they were accurate, reliable, and dependable. The goal of this project was to test the performance of the newly developed DOE instruments along with several commercially available instruments. The baseline method for comparison utilized the results from grab-sample analyses

  14. Slurry flow principles and practice

    CERN Document Server

    Shook, C A; Brenner, Howard

    2015-01-01

    Slurry Flow: Principles and Practice describes the basic concepts and methods for understanding and designing slurry flow systems, in-plan installations, and long-distance transportation systems. The goal of this book is to enable the design or plant engineer to derive the maximum benefit from a limited amount of test data and to generalize operating experience to new situations. Design procedures are described in detail and are accompanied by illustrative examples needed by engineers with little or no previous experience in slurry transport.The technical literature in this field is extensive:

  15. Process for heating coal-oil slurries

    Science.gov (United States)

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  16. Biogas slurry pricing method based on nutrient content

    Science.gov (United States)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  17. Investigation of flammable gas and thermal safety issues for retrieval of waste from Tank 241-AN-105

    Energy Technology Data Exchange (ETDEWEB)

    Caley, S.M.; Stewart, C.W.; Antoniak, Z.I.; Cuta, J.M.; Mahoney, L.A.; Panisko, F.E.

    1998-09-01

    The primary purpose of this report is to identify and resolve some of the flammable gas and thermal safety issues potentially associated with the retrieval of waste from Tank 241-AN-105 (AN-105), which is the first double-shell tank scheduled for waste retrieval at Hanford. The planned retrieval scenario includes the following steps in AN-105: (1) degas the tank using two submerged mixing pumps, (2) turn off the mixer pump(s) and allow any suspended solids to settle, (3) decant the supernatant to the intermediate feed staging tank(s) (IFSTs) (AP-102 and/or AP-104) using water/caustic dilution at the transfer pump inlet, (4) add the remaining dilution water/caustic to the slurry remaining in AN-105, (5) mix the tank with the mixer pump(s) until the soluble solids dissolve, (6) turn off the mixer pump(s) and let the insoluble solids settle, and (7) decant the new supernatant to the IFST(s), leaving the insoluble solids behind. Three waste retrieval safety issues are addressed in this report. They are (1) the controlled degassing of AN-105 to ensure that the headspace remains <25% of the lower flammability limit (LFL), (2) an assessment of how dissolved gas (mainly ammonia) released during the transfer of the supernatant in AN-105 to the IFSTs and the water/caustic dilution of the remaining slurry in AN-105 will affect the flammability in these tanks; and (3) an assessment of the maximum waste temperatures that might occur in AN-105 during retrieval operations.

  18. Investigation of flammable gas and thermal safety issues for retrieval of waste from Tank 241-AN-105

    International Nuclear Information System (INIS)

    Caley, S.M.; Stewart, C.W.; Antoniak, Z.I.; Cuta, J.M.; Mahoney, L.A.; Panisko, F.E.

    1998-09-01

    The primary purpose of this report is to identify and resolve some of the flammable gas and thermal safety issues potentially associated with the retrieval of waste from Tank 241-AN-105 (AN-105), which is the first double-shell tank scheduled for waste retrieval at Hanford. The planned retrieval scenario includes the following steps in AN-105: (1) degas the tank using two submerged mixing pumps, (2) turn off the mixer pump(s) and allow any suspended solids to settle, (3) decant the supernatant to the intermediate feed staging tank(s) (IFSTs) (AP-102 and/or AP-104) using water/caustic dilution at the transfer pump inlet, (4) add the remaining dilution water/caustic to the slurry remaining in AN-105, (5) mix the tank with the mixer pump(s) until the soluble solids dissolve, (6) turn off the mixer pump(s) and let the insoluble solids settle, and (7) decant the new supernatant to the IFST(s), leaving the insoluble solids behind. Three waste retrieval safety issues are addressed in this report. They are (1) the controlled degassing of AN-105 to ensure that the headspace remains <25% of the lower flammability limit (LFL), (2) an assessment of how dissolved gas (mainly ammonia) released during the transfer of the supernatant in AN-105 to the IFSTs and the water/caustic dilution of the remaining slurry in AN-105 will affect the flammability in these tanks; and (3) an assessment of the maximum waste temperatures that might occur in AN-105 during retrieval operations

  19. Submerged Grove in Lake Onogawa

    OpenAIRE

    Sato, Yasuhiro; Nakamura, Soken; Ochiai, Masahiro

    1996-01-01

    Abstract : The first record by ultrasonic echo sounding on the distribution of the submerged standing trees on the bottom of Lake Onogawa is presented. Lake Onogawa is a dammed lake formed at the time of the eruption of the volcano Mt.Bandai in 1888. Since then the original vegetation of the dammed valley has remained submerged. Many submerged standing trees are distributed on the bottom within about 600m from the northeast end of the lake. The density of the trees in this area is sufficient ...

  20. Submerged AUV Charging Station

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  1. Physico-chemical principles of slurries

    Energy Technology Data Exchange (ETDEWEB)

    Leiber, C.O.

    1984-12-01

    Spectacular accidents have occurred in mining with products considered non-explosive. In view of the disastrous consequences of these accidents, the old 'Anfo' idea has been revived (= ammonium nitrate and fuel oil). Experiments in wet wells have led to the development of a new type of non-explosive blasting agents, i.e. the so-called slurries. Detonation of these slurries is divided into an energy release process and an energy conversion process. The basic mechanisms are described with a view to practical problems, e.g. detonation control, temperature dependence of the blasting characteristics, pressure dependence of the ignition process, critical diameter, slurry state problems, and sensitivity.

  2. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha D.

    2016-01-01

    sections with 30-32 pigs with or without daily adjustment of slurry pH to below 6. Ammonia losses from reference sections with untreated slurry were between 9.5 and 12.4% of N excreted, and from sections with acidified slurry between 3.1 and 6.2%. Acidification reduced total emissions of NH3 by 66 and 71......% in spring and autumn experiments, and by 44% in the summer experiment. Regression models were used to investigate sources and controls of NH3 emissions. There was a strong relationship between NH3 emissions and ventilation rate during spring and autumn, but less so during summer where ventilation rates were...

  3. Optimization of submerged vane parameters

    Indian Academy of Sciences (India)

    H Sharma

    the height or length of the submerged vane, no effective change in bed profile .... easily and again vanes will be ineffective, which is what. Odgaard and .... [3] Odgaard A J and Wang Y 1991a Sediment management with submerged vanes.

  4. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  5. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  6. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  7. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo

    2014-08-11

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  8. SCOPING STUDIES TO DEVELOP A METHOD TO DETERMINE PARTICLE SIZE IN SIMULANT SLUDGE SLURRIES BY SIEVING

    International Nuclear Information System (INIS)

    DAMON, CLICK

    2005-01-01

    experimental results for the slurries are below with Microtrac data. The design of the experimental equipment was sufficient initially, but some pieces of the equipment began failing over time due to the caustic nature of the supernate and the vibrations from the sieve shaker. It is therefore recommended that upgrades to the experimental equipment be done before implementation into the SRNL shielded cells. Theses upgrades include using manipulator friendly connections, changing brass parts for stainless steel parts, using Teflon rather than polycarbonate, and possibly a change of pumps used to re-circulate the sieving fluid

  9. Fluid-structure interaction of submerged structures

    International Nuclear Information System (INIS)

    Tang, H.T.; Becker, E.B.; Taylor, L.M.

    1979-01-01

    The purpose of the paper is to investigate fluid-structure interaction (FSI) of submerged structures in a confined fluid-structure system. Our particular interest is the load experienced by a rigid submerged structure subject to a pressure excitation in a fluid domain bounded by a structure which is either flexible or rigid. The objective is to see whether the load experienced by the submerged structure will be influenced by its confinement conditions. This investigation is intended to provide insight into the characteristics of FSI and answer the question as to whether one can obtain FSI independent data by constructing a small scale rigid submerged structure inside a flexible fluid-structure system. (orig.)

  10. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia.

    Science.gov (United States)

    Calvet, Salvador; Hunt, John; Misselbrook, Tom H

    2017-07-01

    Low frequency aeration of slurries may reduce ammonia (NH 3 ) and methane (CH 4 ) emissions without increasing nitrous oxide (N 2 O) emissions. The aim of this study was to quantify this potential reduction and to establish the underlying mechanisms. A batch experiment was designed with 6 tanks with 1 m 3 of pig slurry each. After an initial phase of 7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of the tanks to aeration (2 min every 6 h, airflow 10 m 3  h -1 ), whereas the other three tanks remained as a control. A final phase of 9 days was established with no aeration in any tank. Emissions of NH 3 , CH 4 , carbon dioxide (CO 2 ) and N 2 O were measured. In the initial phase no differences in emissions were detected, but during the second phase aeration increased NH 3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m -3  [slurry] d -1 , P emissions were 40% lower in the aerated tanks (2.04 vs. 3.39 g m -3  [slurry] d -1 , P emissions remained after the aeration phase had finished. No effect was detected for CO 2 , and no relevant N 2 O emissions were detected during the experiment. Our results demonstrate that low frequency aeration of stored pig slurry increases slurry pH and increases NH 3 emissions.

  11. Radio-frequency slurry-density measurement for dredging pipelines

    NARCIS (Netherlands)

    van Eeten, M.J.C.

    2011-01-01

    Hydraulic dredgers make use of a density meter to measure the instantaneous density in the slurry transport pipeline, primarily for process control and production calculation. the current ‘golden’ standard for slurry density measurement is the radioactive density meter. It is based on a slurry

  12. Non-aqueous slurries used as thickeners

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, J C

    1982-04-07

    A non-aqueous slurry is described that is suitable for use as a thickener or viscosifier in oil or gas drilling, fracturing, flow diversion completion or workover fluids. The slurry comprises a water-soluble cellulose ether polymer, a water-insoluble liquid hydrocarbon, a non-ionic surfactant having an HLB of from 7 to 14, and an organo modified clay. There also is described a process for thickening or viscosifying a drilling, fracturing, flow diversion, completion or workover fluid. The use of the slurry prevents bumping during addition to aqueous fluids. (27 claims)

  13. Sorption of 17b-Estradiol to Pig Slurry Separates and Soil in the Soil-Slurry Environment

    DEFF Research Database (Denmark)

    Amin, Mostofa; Petersen, Søren O; Lægdsmand, Mette

    2012-01-01

    to agricultural soils, to different size fractions of pig slurry separates, and to soils amended with each size fraction to simulate conditions in the soil–slurry environment. A crude fiber fraction (SS1) was prepared by sieving (solids removed by an on-farm separation process. Three other size...... fractions (SS2 > SS3 > SS4) were prepared from the liquid fraction of the separated slurry by sedimentation and centrifugation. Sorption experiments were conducted in 0.01 mol L−1 CaCl2 and in natural pig urine matrix. Sorption in 0.01 mol L−1 CaCl2 was higher than that in pig urine for all solids used....... Sorption of E2 to soil increased with its organic carbon content for both liquid phases. The solid–liquid partition coefficients of slurry separates were 10 to 30 times higher than those of soils, but the organoic carbon normalized partition coefficient values, reflecting sorption per unit organic carbon...

  14. Oxygen dynamics in submerged rice (Oryza sativa L.)

    DEFF Research Database (Denmark)

    Colmer, Timothy D.; Pedersen, Ole

    2008-01-01

    Complete submergence of plants prevents direct O2 and CO2 exchange with air. Underwater photosynthesis can result in marked diurnal changes in O2 supply to submerged plants. Dynamics in pO2 had not been measured directly for submerged rice (Oryza sativa), but in an earlier study, radial O2 loss...... from roots showed an initial peak following shoot illumination.  O2 dynamics in shoots and roots of submerged rice were monitored during light and dark periods, using O2 microelectrodes. Tissue sugar concentrations were also measured.  On illumination of shoots of submerged rice, pO2 increased rapidly...... of magnitude higher than in darkness, enhancing also pO2 in roots.The initial peak in pO2 following illumination of submerged rice was likely to result from high initial rates of net photosynthesis, fuelled by CO2 accumulated during the dark period. Nevertheless, since sugars decline with time in submerged...

  15. Method of transporting radioactive slurry-like wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Yusa, H; Sugimoto, Y

    1975-06-30

    The object is to prevent blockage of a transporting tube to positively and effectively transport radioactive slurry wastes. A method of transporting radioactive slurry-like wastes produced in an atomic power plant, wherein liquid wastes produced in the power plant are diluted to form into a driving liquid, by which said radioactive slurry-like wastes are transported within the pipe, and said driving liquid is recovered as the liquid waste.

  16. Impeller Submergence Depth for Stirred Tanks

    Directory of Open Access Journals (Sweden)

    Thiyam T. Devi

    2011-11-01

    Full Text Available Impeller submergence governs the performance of mixing tanks employed in oxygen transfer operation. Present work experimentally investigates the effect of impeller submergence depths on oxygen transfer and corresponding power consumption. It has been found that at higher range of impeller submergence, mixing tanks consume less power and gives higher values of oxygen transfer coefficient. Optimal range of submergence depth is 0.7 to 0.9 times the impeller diameter. Copyright ©2011 BCREC UNDIP. All rights reserved.(Received: 4th March 2011; Revised: 12nd July 2011; Accepted: 14th July 2011[How to Cite: T.T. Devi, A.P. Sinha, M. Thakre, and B. Kumar. (2011. Impeller Submergence Depth for Stirred Tanks. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 123-128. doi:10.9767/bcrec.6.2.826.123-128][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.826.123-128 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/826] | View in 

  17. Drought and submergence tolerance in plants

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hewei; Zhou, Yufan; Oksenberg, Nir; Ronald, Pamela

    2017-11-14

    The invention provides methods of genetically modified plants to increase tolerance to drought and/or submergence. The invention additionally provides plants having increased drought and/or submergence tolerance engineered using such methods.

  18. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    OpenAIRE

    MAJID ALI; YAN CHANGQI; SUN ZHONGNING; GU HAIFENG; WANG JUNLONG; KHURRAM MEHBOOB

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na2S2O3) in water to remove the gaseous iodine (I2) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine...

  19. State of the art on phase change material slurries

    International Nuclear Information System (INIS)

    Youssef, Ziad; Delahaye, Anthony; Huang Li; Trinquet, François; Fournaison, Laurence; Pollerberg, Clemens; Doetsch, Christian

    2013-01-01

    Highlights: ► A bibliographic study on PCM slurries. ► Clathrate Hydrate slurry, Microencapsulated PCM Slurry, shape-stabilized PCM slurries and Phase Change Material Emulsions. ► Formation, thermo-physical, rheological, heat transfers properties and applications of these four PCS systems. ► The use of thermal energy storage and distribution based on PCM slurries can improve the refrigerating machine performances. - Abstract: The interest in using phase change slurry (PCS) media as thermal storage and heat transfer fluids is increasing and thus leading to an enhancement in the number of articles on the subject. In air-conditioning and refrigeration applications, PCS systems represent a pure benefit resulting in the increase of thermal energy storage capacity, high heat transfer characteristics and positive phase change temperatures which can occur under low pressures. Hence, they allow the increase of energy efficiency and reduce the quantity of thermal fluids. This review describes the formation, thermo-physical, rheological, heat transfer properties and applications of four PCS systems: Clathrate hydrate slurry (CHS), Microencapsulated Phase Change Materials Slurry (MPCMS), shape-stabilized PCM slurries (SPCMSs) and Phase Change Material Emulsions (PCMEs). It regroups a bibliographic summary of important information that can be very helpful when such systems are used. It also gives interesting and valuable insights on the choice of the most suitable PCS media for laboratory and industrial applications.

  20. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2001-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Transfer Pump Subsystem that supports the first phase of waste feed delivery (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and/or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Waste Treatment Plant where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  1. Studies on rheological and leaching characteristics of heavy metals through selective additive in high concentration ash slurry.

    Science.gov (United States)

    Senapati, P K; Mohapatra, R; Pani, G K; Mishra, B K

    2012-08-30

    The generation and disposal level of thermal power plant ash in India is a challenging task. The conventional mode of dilute phase ash slurry (10-20% solids by weight) transport through pipelines being practiced in majority of these plants not only consumes huge amount of precious water and pumping energy but also causes serious environmental problem at the disposal site. The present study investigates the rheological and leaching characteristics of an Indian ash samples at high solids concentrations (>50% by weight) using sodium silicate as an additive. The flow behaviour of ash slurry in the concentration range of 50-60% by weight is described by a Bingham-plastic model. It was indicated that the addition of sodium silicate (0.2-0.6% of the total solids) could able to reduce both the slurry viscosity and the yield stress. The analysis of the ash samples for the presence of heavy metals such as Fe, Cd, Ni, Pb, Zn, Cu, Co, As and Hg were carried out following Hansen and Fisher procedure. The addition of sodium silicate affected the leaching characteristics of the ash samples over a period of 300 days resulting in the reduction of leaching of heavy metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem

    2016-01-01

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  3. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo

    2016-10-27

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  4. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  5. Heterogeneous ice slurry flow and concentration distribution in horizontal pipes

    International Nuclear Information System (INIS)

    Wang, Jihong; Zhang, Tengfei; Wang, Shugang

    2013-01-01

    Highlights: • A Mixture CFD model is applied to describe heterogeneous ice slurry flow. • The ice slurry rheological behavior is considered piecewise. • The coupled flow and concentration profiles in heterogeneous slurry flow is acquired. • The current numerical model achieves good balance between precision and universality. -- Abstract: Ice slurry is an energy-intensive solid–liquid mixture fluid which may play an important role in various cooling purposes. Knowing detailed flow information is important from the system design point of view. However, the heterogeneous ice slurry flow makes it difficult to be quantified due to the complex two phase flow characteristic. The present study applies a Mixture computational fluid dynamics (CFD) model based on different rheological behavior to characterize the heterogeneous ice slurry flow. The Mixture CFD model was firstly validated by three different experiments. Then the validated Mixture CFD model was applied to solve the ice slurry isothermal flow by considering the rheological behavior piecewise. Finally, the numerical solutions have displayed the coupled flow information, such as slurry velocity, ice particle concentration and pressure drop distribution. The results show that, the ice slurry flow distribution will appear varying degree of asymmetry under different operating conditions. The rheological behavior will be affected by the asymmetric flow distributions. When mean flow velocity is high, Thomas equation can be appropriate for describing ice slurry viscosity. While with the decreasing of mean flow velocity, the ice slurry behaves Bingham rheology. As compared with experimental pressure drop results, the relative errors of numerical computation are almost within ±15%. The Mixture CFD model is validated to be an effective model for describing heterogeneous ice slurry flow and could supply plentiful flow information

  6. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian K.; Sørensen, Jan; Aamand, Jens

    2012-01-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14 C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  7. Investigation of aqueous slurries as fusion reactor blankets

    International Nuclear Information System (INIS)

    Schuller, M.J.

    1985-01-01

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  8. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    LESHIKAR, G.A.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Transfer Pump Subsystem which supports the first phase of Waste Feed Delivery (WFD). This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the DST Transfer Pump Subsystem that supports the first phase of (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  9. Detection of cavitation inception by acoustic technique in centrifugal pumps for nuclear application

    International Nuclear Information System (INIS)

    Prakash, V.; Prabhakar, R.; Rao, A.S.L.K.; Kale, R.D.

    1994-01-01

    The primary centrifugal pumps in a pool type reactor like the proposed Prototype Fast Breeder Reactor (PFBR) are required to operate at low values of available net positive suction head due to the limited submergence available in the pool. Pump hydraulics are designed to ensure that there is no cavitation or only minimum cavitation in the pump impeller in order to minimise long term erosion damage. Rigorous cavitation tests are usually carried out during development and final testing phase and a promising cavitation detection technique lies in acoustic noise measurements on the pump. As part of PFBR pump development programme, cavitation noise measurements were initially carried out on an experimental sodium pump in a water rig to establish detection procedures. Recently cavitation noise measurements were carried out on a 1/3 scale model impeller of PFBR pump along with visual observation of impeller passages to establish a correlation between visual and acoustic technique. Accelerometer responding to structure borne noise seems to give the best result. (author). 4 refs., 6 figs

  10. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination...... of technologies) having the largest potential for reducing the overall environmental impacts....

  11. Availability of phosphorus in cow slurry using isotopic labelling technique

    International Nuclear Information System (INIS)

    Pongsakul, P.; Bertelsen, F.; Gissel-Nielsen, G.

    1988-01-01

    A pot experiment was conducted to evaluate the influence of cow slurry on P uptake by corn and to estimate the readily available P in the slurry by using an isotopic labelling techique. Water-soluble P in soil was increased and isotopic equilibrium of available P was attained after labelled slurry was mixed thoroughly throughout the soil. Labelled slurry applied at planting increased the P uptake by corn, whereas the same amount applied one week before harvest did not affect the P uptake. It was estimated that 46-54% of the total P uptake in plants is derived from the slurry. The readily available P (the L-value) in the slurry was at least 26 mg/kg which equals 3.7% of the total P. (author)

  12. Simulation of water column separation in Francis pump-turbine draft tube

    International Nuclear Information System (INIS)

    Nicolet, C; Alligne, S; Bergant, A; Avellan, F

    2012-01-01

    The paper presents the modelling, simulation and analysis of the transient behaviour of a 340 MW pump-turbine in case of emergency shutdown in turbine mode with focus on possible draft tube water column separation. The model of a pumped storage power plant with simplified layout is presented. This model includes a penstock feeding one 340MW pump-turbine with the related rotating inertia and a tailrace tunnel. The model of the tailrace tunnel allowing for water column separation simulation is introduced. The simulation results of the transient behaviour of the pump-turbine in case of emergency shutdown in generating mode, with and without downstream water column separation model are presented for different degree of severity triggered by the submergence and the tailrace tunnel length. The amplitudes of the pressure peaks induced by the cavity collapse are analysed with respect to the pressure drop magnitude and tailrace dimensions. The maximum and minimum pressure amplitudes obtained along the tailrace tunnel are analysed for different test case conditions.

  13. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  14. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  15. Viability of Ascaris suum eggs in stored raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Katakam, Kiran Kumar; Roepstorff, Allan Knud; Popovic, Olga

    2013-01-01

    SUMMARY Separation of pig slurry into solid and liquid fractions is gaining importance as a way to manage increasing volumes of slurry. In contrast to solid manure and slurry, little is known about pathogen survival in separated liquid slurry. The viability of Ascaris suum eggs, a conservative...... indicator of fecal pollution, and its association with ammonia was investigated in separated liquid slurry in comparison with raw slurry. For this purpose nylon bags with 6000 eggs each were placed in 1 litre bottles containing one of the two fractions for 308 days at 5 °C or 25 °C. Initial analysis...... of helminth eggs in the separated liquid slurry revealed 47 Ascaris eggs per gramme. At 25 °C, egg viability declined to zero with a similar trend in both raw slurry and the separated liquid slurry by day 308, a time when at 5 °C 88% and 42% of the eggs were still viable in separated liquid slurry and raw...

  16. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  17. Rotary drum dryers for coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Baunack, F

    1983-04-01

    The suitability, sizing and internal equipment of rotary drum dryers for high-ash coal slurries are discussed. Rotary dryers will handle also difficult slurries; by suitable drum sizes, lifter blades and chains not only high specific evaporation capacities can be achieved but also very high throughputs of up to 400 tons/h of finished product and high evaporation capacities of 60 tons/h.

  18. Slurry growth: the characterization of a unique phenomenon at the Hanford Site

    International Nuclear Information System (INIS)

    Jansky, M.T.

    1985-01-01

    Slurry growth, unique to the Hanford Site, is a significant increase in the volume of waste contained in a waste storage tank without the addition of new waste. Slurry growth is caused by gas entrapment within waste slurries which causes the slurry to swell, like bread dough. The surface of the slurry rises until either gas pressure is great enough or the weight of the slurry over the gases is great enough to cause the surface of the slurry to collapse. The gases causing slurry growth are generated from decomposition of organics present in high-level nuclear waste (HEDTA, EDTA, GLY). Predominant gases are H 2 , N 2 , N 2 O, NO/sub x/, and CO 2 . More gas is generated, and at a faster rate, as the temperature increases. Slurry growth, although not completely eliminated, is being safely and effectively controlled. The parameters affecting slurry growth have been defined, and predictive equations have been established. The knowledge gained through laboratory experiments contributes to continued safe and efficient high-level waste management practices at the Hanford Site

  19. Physical properties, fuel characteristics and P-fertilizer production related to animal slurry and products from separation of animal slurry

    DEFF Research Database (Denmark)

    Thygesen, Ole; Johnsen, Tina; Triolo, Jin Mi

    The purpose of this study was twofold: firstly to examine the relationship between dry matter content (DM) and specific gravity (SG) and viscosity in slurry and the liquid fraction from slurry separation, and secondly to investigate the potential of energy production from combustion of manure fibre...... from slurry separation and phosphorus (P) fertilizer production from recycling of the ash. Manure fibre has a positive calorific value and may be used as a CO2-neutral fuel for combustion. The ashes from combustion are rich in P, an essential fertilizer compound. The study is based on samples of animal...

  20. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  1. Biovailability of copper and zinc in pig and cattle slurries

    NARCIS (Netherlands)

    Jakubus, M.; Dach, J.; Starmans, D.A.J.

    2013-01-01

    Slurry is an important source of macronutrients, micro-nutrients and organic matter. Despite the considerable fertilizer value of slurry, it may be abundant in amounts of copper and zinc originating from dietary. The study presents quantitative changes in copper and zinc in individual slurries (pig

  2. Vitrification of SRP waste by a slurry-fed ceramic melter

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Savannah River Plant (SRP) high-level waste (HLW) can be vitrified by feeding a slurry, instead of a calcine, to a joule-heated ceramic melter. Potential advantages of slurry feeding include (1) use of simpler equipment, (2) elimination of handling easily dispersed radioactive powder, (3) simpler process control, (4) effective mixing, (5) reduced off-gas volume, and (6) cost savings. Assessment of advantages and disadvantages of slurry feeding along with experimental studies indicate that slurry feeding is a promising way of vitrifying waste

  3. Drag reduction of dense fine-grained slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Štern, Petr

    2010-01-01

    Roč. 58, č. 4 (2010), s. 261-270 ISSN 0042-790X R&D Projects: GA ČR(CZ) GAP105/10/1574 Institutional research plan: CEZ:AV0Z20600510 Keywords : kaolin slurry * drag reduction * experimental investigation * peptization * slurry rheology Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  4. Anaerobic digestion as a slurry management strategy : a consequential life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H.; Petersen, B.M. [Southern Denmark Univ. (Denmark). Inst. of Chemical Engineering, Biotechnology and Environmental Technology

    2010-07-01

    Anaerobic digestion of slurry represents an environmental opportunity for both slurry management and renewable energy production in countries with high animal density. This study evaluated the environmental impacts of 4 biogas production alternatives in which slurry was the only input in the process, without supplementary addition of easily degradable carbon. This was achieved by exposing the slurry to different separation technologies. The biomass mixture input for biogas production included solid fraction from slurry separation as well as raw slurry, proportioned in order to achieve economical methane yield. The separation processes considered in this study were mechanical separation; mechanical separation combined with the addition of flocculants; and mechanical separation combined with a thermal treatment. Four biogas alternatives were compared to a reference slurry management scenario, notably to use the slurry as a fertilizer without prior treatment. The modelling was based on Danish conditions and used the consequential life cycle assessment methodology. The produced biogas was used for production of heat and power and the degassed slurry was used as an organic fertilizer.

  5. Submergence tolerance in Hordeum marinum

    DEFF Research Database (Denmark)

    Pedersen, Ole; Malik, Al I.; Colmer, Timothy D.

    2010-01-01

    Floodwaters differ markedly in dissolved CO(2), yet the effects of CO(2) on submergence responses of terrestrial plants have rarely been examined. The influence of dissolved CO(2) on underwater photosynthesis and growth was evaluated for three accessions of the wetland plant Hordeum marinum Huds....... All three accessions tolerated complete submergence, but only when in CO(2) enriched floodwater. Plants submerged for 7 days in water at air equilibrium (18 mM CO(2)) suffered loss of biomass, whereas those with 200 mM CO(2) continued to grow. Higher underwater net photosynthesis at 200 mM CO(2......) increased by 2.7- to 3.2-fold sugar concentrations in roots of submerged plants, compared with at air equilibrium CO(2). Leaf gas films enhancing gas exchange with floodwater, lack of a shoot elongation response conserving tissue sugars and high tissue porosity (24-31% in roots) facilitating internal O(2...

  6. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroyuki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth under submerged condition divided by the cutting depth in air at the same standoff distance. The relative cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  7. Heavy cement slurries; Pastas pesadas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Avelar da; Conceicao, Antonio C. Farias [PETROBRAS, XX (Brazil). Distrito de Perfuracao do Nordeste. Div. de Tecnicas de Perfuracao; Marins, Carlos Cesar Silva [PETROBRAS, XX (Brazil). Dept. de Perfuracao. Div. de Revestimento e Cimentacao

    1990-12-31

    When going deeper in a high pressure well, the only way to successfully cement your casing or linear is through the use of heavy cement slurry. In 1987 PETROBRAS geologists presented to the Drilling Department a series of deep, hot and high pressure wells to be drilled. The Casing and Cement Division of this department then started a program to face this new challenge. This paper introduces the first part of this program and shows how PETROBRAS is dealing with heavy weight slurries. We present the slurry formulations tested in laboratory, the difficulties found in mixing them in the field, rheology measurements, API free water and API fluid loss from both laboratory and field samples. (author) 3 tabs.

  8. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    International Nuclear Information System (INIS)

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles

  9. A simple biofilter for treatment of pig slurry in Malaysia.

    Science.gov (United States)

    Sommer, S G; Mathanpaal, G; Dass, G T

    2005-03-01

    On commercial pig production farms in South East (SE) Asia, the liquid effluent is often discharged into rivers. The discharge is a hazard to the environment and to the health of people using water from the river either for consumption or for irrigation. Therefore, a simple percolation biofilter for treatment of the liquid effluent was developed. Pig slurry was treated in test-biofilters packed with different biomass for the purpose of selecting the most efficient material, thereafter the efficiency of the biofilter was examined at farm scale with demo biofilters using the most efficient material. The effect of using "Effective Microorganisms" (EM) added to slurry that was treated with biofilter material mixed with Glenor KR+ was examined. Slurry treatment in the test-biofilters indicated that rice straw was better than coconut husks, wood shavings, rattan strips and oil palm fronds in reducing BOD. Addition of EM and Glenor KR+ to slurry and biofilter material, respectively, had no effect on the temperature of the biofilter material or on the concentrations of organic and inorganic components of the treated slurry. The BOD of slurry treated in test biofilters is reduced to between 80 and 637 mg O2 I(-1) and in the demo biofilter to between 3094 and 3376 mg O2 l(-1). The concentration of BOD in the effluent is related to the BOD in the slurry being treated and the BOD concentration in slurry treated in test biofilters was lower than BOD of slurry treated in demo biofilters. The demo biofilter can reduce BOD to between 52 an 56% of the original value, and TSS, COD (chemical oxygen demand) and ammonium (NH4+) to 41-55% of the original slurry. The treated effluent could not meet the standards for discharge to rivers. The composted biofilter material has a high content of nitrogen and phosphorus; consequently, the fertilizer value of the compost is high. The investments costs were 123 US dollar per SPP which has to be reduced if this method should be a treatment option

  10. Effect of operating conditions on the performance of the bubble pump of absorption-diffusion refrigeration cycles

    Directory of Open Access Journals (Sweden)

    Benhmidene Ali

    2011-01-01

    Full Text Available The mathematical model will be able to predict the operated condition (required tube diameters, heat input and submergence ratio….. That will result in a successful bubble pump design and hence a refrigeration unit. In the present work a one-dimensional two-fluid model of boiling mixing ammonia-water under constant heat flux is developed. The present model is used to predict the outlet liquid and vapor velocities and pumping ratio for different heat flux input to pump. The influence of operated conditions such as: ammonia fraction in inlet solution and tube diameter on the functioning of the bubble pump is presented and discussed. It was found that, the liquid velocity and pumping ratio increase with increasing heat flux, and then it decreases. Optimal heat flux depends namely on tube diameter variations. Vapour velocity increases linearly with increasing heat flux under designed conditions.

  11. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China).

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Shi, Qiao; Hao, Beibei; Liu, Han; Wang, Zhixiu; Liu, Guihua

    2015-05-13

    Stoichiometric homeostasis of element composition is one of the central concepts of ecological stoichiometry. We analyzed concentrations of macroelements (C, N, P, Ca, K, Mg, S), microelements (Cu, Fe, Mn, Mo, Ni, Zn) and beneficial elements (Na, Se, Si) in submerged macrophytes, water and sediments across 20 Yunnan plateau lakes. We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements. Canonical discriminant analyses successfully discriminated among trophic level groups and taxa groups. Of all the elements, C, N, P and S most effectively discriminated among trophic level groups across 20 lakes, revealing lake trophic level mostly affect tissue macroelement composition in submerged macrophytes; while Ca, K and Se most effectively discriminated among submerged macrophytes taxa groups, suggesting taxonomy mostly affect compositions of macroelements and beneficial elements in submerged macrophytes. In addition, the stoichiometric homeostatic coefficient of 1/HCa:C for all five taxa of submerged macrophytes were less than zero, suggesting submerged macrophytes in Yunnan plateau lakes have strong Ca stoichiometric homeostasis. Our findings, not only broaden the knowledge of multielement stoichiometric homeostasis, but also help to choose most appropriate lake management strategy.

  12. Effect of alkaline slurry on the electric character of the pattern Cu wafer

    International Nuclear Information System (INIS)

    Hu Yi; Liu Yuling; Liu Xiaoyan; He Yangang; Wang Liran; Zhang Baoguo

    2011-01-01

    For process integration considerations, we will investigate the impact of chemical mechanical polishing (CMP) on the electrical characteristics of the pattern Cu wafer. In this paper, we investigate the impacts of the CMP process with two kinds of slurry, one of which is acid slurry of SVTC and the other is FA/O alkaline slurry purchased from Tianjin Jingling Microelectronic Material Limited. Three aspects were investigated: resistance, capacitance and leakage current. The result shows that after polishing by the slurry of FA/O, the resistance is lower than the SVTC. After polishing by the acid slurry and FA/O alkaline slurry, the difference in capacitance is not very large. The values are 0.1 nF and 0.12 nF, respectively. The leakage current of the film polished by the slurry of FA/O is 0.01 nA, which is lower than the slurry of SVTC. The results show that the slurry of FA/O produced less dishing and oxide loss than the slurry of SVTC. (semiconductor technology)

  13. Rheological properties of concentrated alumina slurries: influence of ph and dispersant agent

    International Nuclear Information System (INIS)

    Ewais, E.M.M.

    2004-01-01

    The relationship between the ph, the electrolyte concentrations and the rheological properties of high concentrated alumina slurries in aqueous medium is of great importance because it is considered to be the key to control the stability of the slurries from flocculation. Zeta potential of alumina slurries with and without Duramax C (dispersant agent) as a function of ph was studied. Two ph around the zero point of charge of alumina slurries were selected for the investigation of rheological properties. The rheological properties of aqueous alumina slurries with respect to different parameters, e.g.: viscosity, elastic modulus (storage modulus G) and viscous modulus (loss modulus G), were investigated. Viscosity measurements of the slurries as a function of Duramax C content at both ph 8.4 and 9.4) were used to determine the state of slurries. Three states of slurries, termed flocculated, partially de flocculated and fully de flocculated, were selected for further investigation. The viscosity of the three slurries at both ph as a function of shear rate was determined. Fully de flocculated slurry shows Newtonian behavior at all shear rates at both tested ph compared by the partial de flocculated and flocculated system. Results of investigation of G and G at ph of 9.4 as a function of applied stress explored the critical stress

  14. Use of radiation-induced polymers in cement slurries

    International Nuclear Information System (INIS)

    Knight, B.L.; Rhudy, J.S.; Gogarty, W.B.

    1976-01-01

    Water loss from cement slurries is reduced by incorporating within a cement slurry a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in 10-60 percent aqueous monomer solution with gamma radiation. The aqueous monomer solution preferably contains 25-99 percent acrylamide and 75-1 percent sodium acrylate. The polymer can be present in concentration of about 0.001 to about 3.0 weight percent, based on the aqueous phase of the slurry

  15. Methane Fermentation of Slurry with Chemical and Biological Additive

    Directory of Open Access Journals (Sweden)

    Anna Smurzyńska

    2017-12-01

    Full Text Available The problem of proper slurry management is primarily present in intensive livestock production. Industrialized livestock farms generate enormous quantities of manure droppings in a livestock-litter-free system. The traditional management of slurry is made by using it as a fertilizer. Alternative techniques used for neutralizing the detrimental effect of slurry are based on the use of chemical and biological additives, as well as by introducing aerobic environment through aerobic or anaerobic digestion, leading to methane fermentation. In the experiment, cattle manure was used, which came from the Przybroda farm belonging to the University of Life Sciences in Poznan. The aim of the study was to determine the biogas yield of slurry using the chemical and biological additive available on the Polish market. Mesophilic and thermophilic fermentation was used for the indication of the effectiveness of the employed fermentation process. The slurry was supplemented by a biological and chemical additive, i.e. effective microorganisms and – PRP, respectively. The experiment allowed to achieve a higher biogas yield during the use of effective microorganisms.

  16. Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress

    Directory of Open Access Journals (Sweden)

    Malay Kumar ADAK

    2011-06-01

    Full Text Available The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation. It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield. The detrimental effects of the complete submergence were recorded in generation of sucrose, starch, sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e. non-submerged condition. The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity. Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity. However, under normal or control condition, there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity. Still, photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield. Finally, plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues. It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles, in this case as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.

  17. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    Directory of Open Access Journals (Sweden)

    Wenyan Chen

    2014-07-01

    Full Text Available Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri, larvae and embryos of zebrafish (Danio rerio were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v and 1.95% (v/v respectively, and embryonic development was inhibited at just 1% (v/v. Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR, while the LC50 of larvae was 75.23% (v/v and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent.

  18. Time Deployment Study for Annulus Pumping

    International Nuclear Information System (INIS)

    REBERGER, D.W.

    2000-01-01

    Radioactive wastes from processing irradiated uranium fuels have been stored as alkaline slurries in underground tanks at the Hanford Site. Single-shell tanks (SST) and double-shell tanks (DST) of various sizes were used for waste storage. Of the total 177 tanks, there are 28 DSTs. DSTs are located in AN, AP, AW, AY, AZ, and SY tank farms in the 200 East (200E) and 200-West (200W) Areas. The storage capacities of the DSTs vary from 980,000 to 1,140,000 gal. DSTs are designed and constructed as an integral steel structure, i.e., an inner shell within an outer shell, so that any leak from the inner shell is confined within the annulus without impacting the environment. The inner shell provides primary containment for the wastes and the outer shell provides secondary containment in the form of an annulus. The annulus of a DST is equipped with a pump pit, leak detection probes, and other accessories. The existing annulus pumps in the DSTs need to be revamped with a new system to reduce operating costs and reduce the time to deploy a pumping system. The new pumping system will minimize the likelihood of a release of waste into the environment; improve capability of waste removal to the maximum extent possible to comply with Washington Administrative Code (WAC) 173-303-640 and Code of Federal Regulations (CFR) 40 CFR 265.193. This study addresses the time required to deploy an annulus pumping system designed to fit any DST after detection of a leak in the inner shell of the DST

  19. Flow and scour around vertical submerged structures

    Indian Academy of Sciences (India)

    The safety of the foundations of submerged hydraulic structures due to excessive local scour is threatened by the erosive action of the waves and currents passing around these structures. Fish and aquatic habitat is seriously affected due to the modification of the flow field caused by these submerged structures. Hence, the ...

  20. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    International Nuclear Information System (INIS)

    Skeel, V.A.; Nawrot, J.R.

    1998-01-01

    Since the Cooperative Wildlife Research Laboratory's (CWRL) Mined Land Reclamation Program's first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surface (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow (≤12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled

  1. Environmental consequences of future biogas technologies based on separated slurry.

    Science.gov (United States)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  2. Effect of lapping slurry on critical cutting depth of spinel

    International Nuclear Information System (INIS)

    Wang, Zhan-kui; Wang, Zhuan-kui; Zhu, Yong-wei; Su, Jian-xiu

    2015-01-01

    Highlights: • Measured spinel wafers’ hardness and crack length in different slurries. • Evaluated the softened layer thickness in different slurries. • Discussed the effect of slurries on critical cutting depth of spinel. - Abstract: The critical cutting depth for lapping process is very important because it influences the mode of material removal. In this paper, a serial of microscopic indentation experiments were carried out for measuring spinel wafers’ hardness and crack length in different lapping slurries. Their critical cutting depth and fracture toughness were calculated. X-ray photoelectron spectroscopy (XPS) was also employed to study the surface chemical composition and softened layer thickness of wafers in different slurries. Experimental results indicate that the softened layers of spinel wafers are formed due to the corrosion of lapping slurries, which leads to a lower hardness and a larger fracture toughness of samples, and increases the critical cutting depth. Among them, the critical cutting depth in ethylene glycol solution is the largest and up to 21.8 nm. The increase of critical cutting depth is helpful to modify the surface quality of the work-piece being lapped via ductile removal mode instead of brittle fracture mode

  3. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    Science.gov (United States)

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  4. Effect of flotation on preparation of coal-water slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada)

    2009-07-01

    In order to study the effect of flotation reagents on the properties of coal-water slurry, a sub-bituminous coal was cleaned via either forward flotation or reverse flotation. The froth product from the forward flotation, obtained with the use of diesel oil and MIBC, and the tailings of the reverse flotation, carried out with dextrin-tannic acid depressants and dodecyltrimethylammonium chloride collector, were used in the preparation of coal-water slurries. It was shown that while it was possible to obtain the coal-water slurry with a high-solids content from the coal rendered hydrophilic (tailings from the coal reverse flotation), in the case of the hydrophobic product (froth product from the forward flotation) a dispersing agent was required to obtain the coal-water slurry of the same high-solids content.

  5. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  6. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    International Nuclear Information System (INIS)

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the open-quote normal close-quote configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge

  7. Development of Syringe/Bottle Hybrids for Sampling Slurries

    International Nuclear Information System (INIS)

    Coleman, C.J.

    1998-01-01

    A convenient and effective sample bottle system based on simple modifications of disposable plastic syringes and bottles has been devised and tested for slurry samples. Syringe/ bottle hybrids (hereafter referred to as syringe bottles) have the convenience of regular flat-bottom bottles with screw cap closures. In addition, the syringe imparts a sliding and adjustable bottom to the bottle that forces the entire contents from the bottle. The system was designed especially to collect samples for high temperature work-ups of DWPF slurry samples. The syringe bottles together with fixed-bottom sample vial inserts would provide the DWPF with convenient and reliable methods for dealing with slurry samples

  8. Design of extended length submerged traveling screen and submerged bar screen fish guidance equipment

    International Nuclear Information System (INIS)

    Bardy, D.; Lindstrom, M.; Fechner, D.

    1991-01-01

    The hydropower projects on the Snake and lower Columbia Rivers in the Pacific Northwest are unique because these rivers are also the spawning grounds for migratory salmon. The salmon swim upstream from the ocean, lay their eggs, and die. The newly hatched fingerlings must then make their way past the hydroelectric dams to the ocean. Two separate bypass systems are needed, one to pass the adult fish going upstream, and one to pass the fingerlings going downstream. This paper addresses the design considerations for two of the components of the downstream migrant fish passage facilities, the extended Submerged Traveling Screen and Submerged Bar Screen

  9. Manganese nodule mining system. Summary of research and development in fiscal 1985; Mangan dankai saiko system 1985 nendo kenkyu kaihatsu no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-01

    With an objective to ensure stable supply of non-ferrous metal resources, and enhance the ocean development technologies, research and development has been performed on an ore mining system to mine the manganese nodules existing in deep ocean bottoms by using the fluid dredge system. This paper summarizes the achievements in fiscal 1985. In the research and development of the total system, simulations were performed in order to identify the transportation characteristics of slurries in pipes under the comprehensive ocean experiment conditions. Reviews were given on the main items and basic performance of the ore mining experiment vessel. In the research and development of the ore collecting system, evaluations were made on the take-in performance, separating and crushing performance, and nodule blow-up performance through an experiment using a water current tank. In the research and development of the ore lifting system, experiments and evaluations were given on the pump lift device with regard to the submerged transformer, submerged switches, shaft sealing, and pump wear and tear. In addition, the air lift device was given a functional test, and the air blow-in valve a function verification test. Furthermore, tests and researches were carried out on joints of the ore lifting pipes, and on pipe wear. (NEDO)

  10. [Algal control ability of allelopathically active submerged macrophytes: a review].

    Science.gov (United States)

    Xiao, Xi; Lou, Li-ping; Li, Hua; Chen, Ying-xu

    2009-03-01

    The inhibitory effect of allelochemicals released by submerged macrophytes on phytoplankton is considered as one of the mechanisms that contribute to the stabilization of clear-water status in shallow lakes. This paper reviewed the research progress in the allelopathy of submerged macrophytes on algae from the aspects of the occurrence frequency and coverage of allelopathically active submerged macrophytes in lakes, and the kinds and allelopathical effects of the allelochemicals released from the macrophytes. The previous researches indicated that allelopathically active submerged macrophyte species such as Myriophyllum, Ceratophyllum, and Elodea were efficient to control phytoplankton, especially when their biomass was high enough, and the dominant algae were sensitive species. The allelochemicals such as hydroxybenzene released by the submerged macrophytes could inhibit the growth of algae. Different phytoplankton species exhibited different sensitivity against allelochemicals, e.g., cyanobacteria and diatom were more sensitive than green algae, while epiphytic species were less sensitive than phytoplankton. Environmental factors such as light, temperature, and nutrients could significantly affect the allelopathical effect of submerged macrophytes. The research of the allelopathy of submerged macrophytes is still at its beginning, and further researches are needed on the effects of environmental factors on the allelopathy, extraction and identification of allelochemicals, selective algal control mechanisms, and metabolism of the allelochmicals.

  11. Association of Candidate Genes With Submergence Response in Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Xicheng Wang

    2017-05-01

    Full Text Available Perennial ryegrass is a popular cool-season grass species due to its high quality for forage and turf. The objective of this study was to identify associations of candidate genes with growth and physiological traits to submergence stress and recovery after de-submergence in a global collection of 94 perennial ryegrass accessions. Accessions varied largely in leaf color, plant height (HT, leaf fresh weight (LFW, leaf dry weight (LDW, and chlorophyll fluorescence (Fv/Fm at 7 days of submergence and in HT, LFW and LDW at 7 days of recovery in two experiments. Among 26 candidate genes tested by various models, single nucleotide polymorphisms (SNPs in 10 genes showed significant associations with traits including 16 associations for control, 10 for submergence, and 8 for recovery. Under submergence, Lp1-SST encoding sucrose:sucrose 1-fructosyltransferase and LpGA20ox encoding gibberellin 20-oxidase were associated with LFW and LDW, and LpACO1 encoding 1-aminocyclopropane-1-carboxylic acid oxidase was associated with LFW. Associations between Lp1-SST and HT, Lp6G-FFT encoding fructan:fructan 6G-fructosyltransferase and Fv/Fm, LpCAT encoding catalase and HT were also detected under submergence stress. Upon de-submergence, Lp1-SST, Lp6G-FFT, and LpPIP1 encoding plasma membrane intrinsic protein type 1 were associated with LFW or LDW, while LpCBF1b encoding C-repeat binding factor were associated with HT. Nine significant SNPs in Lp1-SST, Lp6G-FFT, LpCAT, and LpACO1 resulted in amino acid changes with five substitutions found in Lp1-SST under submergence or recovery. The results indicated that allelic diversity in genes involved in carbohydrate and antioxidant metabolism, ethylene and gibberellin biosynthesis, and transcript factor could contribute to growth variations in perennial ryegrass under submergence stress and recovery after de-submergence.

  12. Fischer-Tropsch Slurry Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Gamwo, I.K.; Harke, F.W. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  13. Evaluation of plant available nitrogen in concentrated pig slurry

    International Nuclear Information System (INIS)

    Ramirez, M.; Comas, J.; Pujola, M.

    2009-01-01

    In Northeast Spin the expansion of the pig industry has brought as a result the production of vast amounts of pig slurry that exceeds field crops fertilization needs and consequently has contributed to the environmental deterioration of the region particularly ground water with NO 3 pollution. Under such circumstances, it is needed to treat and/or export pig slurry. During the last year the implantation of cogeneration plants that take advantage of the surplus of energy to produce concentrate pig slurry by water evaporation that could easily transported. (Author)

  14. The Settling and Compaction of Nuclear Waste Slurries

    International Nuclear Information System (INIS)

    MACLEAN, G.T.

    1999-01-01

    The settling and compaction of simulated and real nuclear waste slurries were extensively studied. Experiments were carried out with simulated wastes at laboratory and large-scale sizes, and the results compared. A model of settling was derived and a method developed to correlate and scale-up settling data for different slurries and vessel sizes

  15. Agronomic valuing of slurry for management in common

    International Nuclear Information System (INIS)

    Gomez, M.; Estevez, M. D.; Faz, A.; Olivares, A. B.; Climent, V.

    2009-01-01

    Due to the intensification of livestock production and the concentration of holdings in specific areas, has disrupted the balance between production and utilization of swine waste in agriculture. given the volume of slurry generated in Murcia, and the total cultivable area and considering the legislation, RD 261/1996, which allows a maximum application of 170 kg N/ha year in areas designated as vulnerable, it is estimated that to implement the slurry generated in the region in a year, would require only half the arable land devoted to irrigation. In this way, this study has included detailed monitoring of the effect of the application of ping slurry at a concentration recommended on the properties and chemical, physical and biological properties of soil, water and plant to determine the influence of slurry on the reserve of organic matter in each of these crops, as well as contaminated soils, through the creation of a pilot system for managing livestock waste in accordance with preventive measures that allow for their optimal use, without risk of contamination for the system water-soil-plant. (Author 6 refs.

  16. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  17. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry was studied as a function of the microstructure developed by austempering at 380 and 300°C for different exposure time in the slurry. The corrosion rates of the ADI balls immersed in the iron ore slurry was determined using weight loss method.

  18. Rheological behaviour of Portland G and polyurethane slurries applied to oil wells submitted a steam injection; Comportamento reologico de pastas de cimento Portland G e poliuretana para cimentacao de pocos sujeitos a injecao de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, U.; Martinelli, A.E.; Melo, D.M.; Silva, L.; Lima, F. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Araujo, R.G. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Two point of view can be focused with respect to the behavior of slurries for cementing. The first refers to the rheological properties, they should submit to the established limits by the standards. A second point of view refers to the problems originated from the use of the secondary recovery by steam injection, that wakes up tensile tension in the sheath. A solution for this problem is the addition of thermal stronger polymer to the cement slurry, increasing your tensile strength. However, this practice is usually accompanied by the increase of the viscosity of the slurry, that make difficult the pumping. Studies involving rheological aspects and thickening time were accomplished with slurries additivated with polyurethane for evaluation of your pumpability. Correlations were observed among polyurethane concentration, viscosity and thickening time. Mathematical models are proposed correlating the three parameters. A good values were found for concentrations among 1,5 % and 2,5 % of polyurethane. The polyurethane actuated as a charge reducing the slurry fluidity, then the increase of the viscosity. In the condition of setting of cement, the polyurethane stimulated a better dispersion and approach of the particles of the cement with water, accelerating the typical precipitation process of the cement hydration. (author)

  19. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination...

  20. Experimental investigation of combustion of biomass slurry in an oil fired furnace

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, S.V. [Mechanical Dept., M.S. Ramaiah Inst. of Tech., Bangalore (India); Shankapal, S.R. [M.S. Ramaiah School of Advanced Studies, Bangalore (India)

    2008-07-01

    An experimental investigation of combustion of biomass slurry in an oil fired furnace was carried out using pulverized coconut shell (CSP), LDO and water. The effect of equivalence ratio on the slurry composition, calorific value and the effect of exhaust gas percentage are presented. The calorific value of the biomass slurry increases with equivalence ratio initially, attains a peak value and then decreases with the increase in equivalence ratio. It is also observed that with the increase in composition of biomass slurry, the cost of the fuel and the percentage emission of CO decreases. It was found that CSP up to a blend of 20% was more convenient to be used as a slurry fuel in the furnace. (orig.)

  1. Gas migration through cement slurries analysis: A comparative laboratory study

    Directory of Open Access Journals (Sweden)

    Arian Velayati

    2015-12-01

    Full Text Available Cementing is an essential part of every drilling operation. Protection of the wellbore from formation fluid invasion is one of the primary tasks of a cement job. Failure in this task results in catastrophic events, such as blow outs. Hence, in order to save the well and avoid risky and operationally difficult remedial cementing, slurry must be optimized to be resistant against gas migration phenomenon. In this paper, performances of the conventional slurries facing gas invasion were reviewed and compared with modified slurry containing special gas migration additive by using fluid migration analyzer device. The results of this study reveal the importance of proper additive utilization in slurry formulations. The rate of gas flow through the slurry in neat cement is very high; by using different types of additives, we observe obvious changes in the performance of the cement system. The rate of gas flow in neat class H cement was reported as 36000 ml/hr while the optimized cement formulation with anti-gas migration and thixotropic agents showed a gas flow rate of 13.8 ml/hr.

  2. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    Science.gov (United States)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  3. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures

    Science.gov (United States)

    Salem, Talal; Hamadna, Sameer; Darsanasiri, A. G. N. D.; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan

    2018-01-01

    Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm3 with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated. PMID:29649163

  4. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  5. Experimental study on the rheological behaviour of coal ash slurries

    Directory of Open Access Journals (Sweden)

    Assefa K.M.

    2015-12-01

    Full Text Available Extensive experimental investigations were carried out to evaluate the rheological behaviour of fly ash (FA slurry without and with the addition of bottom ash (BA and BA slurry without and with the addition of FA. The FA slurries exhibited Bingham behaviour at solid mass concentrations ranging from 60–65% and mixing proportions from 10– 40%. A substantial reduction in yield stress was observed except for mixing proportion of 40% on which the yield stress and viscosity were increased drastically for all solid concentrations. Hence, it can be concluded that the yield stress and viscosity of FA slurry were very much influenced by adding BA up to the mixing proportion of 30%. The rheological behaviour of BA slurries with and without the addition of FA in proportions of 10–50% was investigated and exhibited Newtonian behaviours for solid mass concentrations ranging from 30–50% without and with the addition of FA. The viscosity increases with increasing the solid concentrations and proportion of FA. Based on these experimental data, a correlation was developed to predict the relative viscosity of BA slurries as a function of solid volume fraction and FA mass proportion of 0–50% and the RMSE and R2 values showed good agreement between the experimental and the predicted data.

  6. Impact of Spherical Frit Beads on Simulated DWPF Slurries

    International Nuclear Information System (INIS)

    SMITH, MICHAEL

    2005-01-01

    It has been shown that the rheological properties of simulated Defense Waste Processing Facility (DWPF) melter feed with the glass former frit as mostly (90 weight percent) solid spherical particles (referred to as beads) were improved as the feed was less viscous as compared to DWPF melter feed that contained the normal irregular shaped frit particles. Because the physical design of the DWPF Slurry Mix Evaporator (SME), Melter Feed Tank (MFT), and melter feed loop are fixed, the impact of changing the rheology might be very beneficial. Most importantly, higher weight percent total solids feed might be processed by reducing the rheological properties (specifically yield stress) of the feed. Additionally, if there are processing problems, such as air entrainment or pumping, these problems might be alleviated by reducing the rheological properties, while maintaining targeted throughputs. Rheology modifiers are chemical, physical, or a combination of the two and can either thin or thicken the rheology of the targeted slurry. The beads are classified as a physical rheological modifier in this case. Even though the improved rheological properties of the feed in the above mentioned DWPF tanks could be quite beneficial, it is the possibility of increased melt rate that is the main driver for the use of beaded glass formers. By improving the rheological properties of the feed, the weight percent solids of the feed could be increased. This higher weight percent solids (less water) feed could be processed faster by the melter as less energy would be required to evaporate the water, and more would be available for the actual melting of the waste and the frit. In addition, the use of beads to thin the feed could possibly allow for the use of a lower targeted acid stoichiometry in the feed preparation process (if in fact acid stoichiometry is being driven by feed rheology as opposed to feed chemistry). Previous work by the Savannah River National Laboratory (SRNL) with the lab

  7. Flash pyrolysis of coal-solvent slurry prepared from the oxidized coal and the coal dissolved in solvent; Ichibu yokaishita sanka kaishitsutan slurry no jinsoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Maki, T.; Mae, K.; Okutsu, H.; Miura, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-28

    In order to develop a high-efficiency coal pyrolysis method, flash pyrolysis was experimented on slurry prepared by using liquid-phase oxidation reformed coal and a methanol-based solvent mixture. Australian Morwell coal was used for the experiment. The oxidized coal, into which carboxyl groups have been introduced, has the condensation structure relaxed largely, and becomes highly fluid slurry by means of the solvent. Char production can be suppressed by making the oxidation-pretreated coal into slurry, resulting in drastically improved pyrolytic conversion. The slurry was divided into dissolved solution, dried substance, extracted residue, and residual slurry, which were pyrolized independently. The dissolved solution showed very high conversion. Improvement in the conversion is contributed by separating the dissolved substances (coal macromolecules) at molecular levels, coagulating the molecules, suppressing cross-link formation, and reducing molecular weight of the dissolved substances. Oxidized coal can be dissolved to 80% or higher by using several kinds of mixed solvents. As a result of the dissolution, a possibility was suggested on pyrolysis which is easy in handling and high in conversion. 7 refs., 6 figs., 2 tabs.

  8. Survey of state water laws affecting coal slurry pipeline development

    Energy Technology Data Exchange (ETDEWEB)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  9. Environmental Consequences of Future Biogas Technologies based on Separated Slurry

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik

    2011-01-01

    different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate......This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving...... the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises...

  10. Effects of different treatments of cattle slurry manure on water-extractable phosphorus

    NARCIS (Netherlands)

    Chapuis-Lardy, L.; Temminghoff, E.J.M.; Goede, de R.G.M.

    2003-01-01

    Cattle slurry manure applied to land increases the risk of phosphorus (P) movement to surface waters, which may lead to eutrophication. The water-extractable fraction of P in slurry manure is correlated with P concentration in runoff from soils amended with slurry smanure, and thus is an effective

  11. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review).

    Science.gov (United States)

    Elisashvili, Vladimir

    2012-01-01

    Medicinal mushrooms belonging to higher Basidiomycetes are an immensely rich yet largely untapped resource of useful, easily accessible, natural compounds with various biological activities that may promote human well-being. The medicinal properties are found in various cellular components and secondary metabolites (polysaccharides, proteins and their complexes, phenolic compounds, polyketides, triterpenoids, steroids, alkaloids, nucleotides, etc.), which have been isolated and identified from the fruiting bodies, culture mycelium, and culture broth of mushrooms. Some of these compounds have cholesterol-lowering, anti-diabetic, antioxidant, antitumor, immunomodulating, antimicrobial, and antiviral activities ready for industrial trials and further commercialization, while others are in various stages of development. Recently, the submerged cultivation of medicinal mushrooms has received a great deal of attention as a promising and reproducible alternative for the efficient production of mushroom mycelium and metabolites. Submerged cultivation of mushrooms has significant industrial potential, but its success on a commercial scale depends on increasing product yields and development of novel production systems that address the problems associated with this technique of mushroom cultivation. In spite of many researchers' efforts for the production of bioactive metabolites by mushrooms, the physiological and engineering aspects of submerged cultures are still far from being thoroughly studied. The vast majority of studies have focused on polysaccharide and ganoderic acid production in submerged cultivation of medicinal mushrooms, and very little has been written so far on the antioxidant and hemagglutinating activity of submerged mushroom cultures. The purpose of this review is to provide an update of the present state of the art and future prospects of submerged cultivation of medicinal mushrooms to produce mycelium and bioactive metabolites, and to make a

  12. Coal slurries: An environmental bonus?

    International Nuclear Information System (INIS)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-01-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference

  13. Slurry explosive containing an improved thickening agent

    Energy Technology Data Exchange (ETDEWEB)

    Wakazono, Y.; Otsuka, Y.

    1970-08-18

    A slurry explosive having stable physical properties and a thickening agent which when blended with a slurry explosive, maintains it in a uniform and stable state as a good suspended dispersion condition over a long period of time, are described. The slurry explosive has a composition consisting essentially of ammonium nitrate, or a mixture of ammonium nitrate and an alkali metal nitrate, or a mixture of ammonium nitrate and an alkaline earth metal nitrate, or a mixture of ammonium nitrate and an alkali metal nitrate and an alkaline earth metal nitrate, at least one member selected from the group consisting of 2,4,6-trinitrotoluene, aluminum, smokeless powder and fuels, and water, 0.1 to 2.0% guar gum, not more than 0.3% of a borate or borates, and/or not more than 20% of hexamethylene tetramine, and 0.02 to 2.0% of an antimony compound or compounds, all percents being by weight. (6 claims)

  14. Submerged Pond Sand Filter—A Novel Approach to Rural Water Supply

    Directory of Open Access Journals (Sweden)

    Mia Øhlenschlæger

    2016-06-01

    Full Text Available This study describes the new design and function of a modified version of a traditional slow sand filter. The Submerged Pond Sand Filter is built inside a pond and has a vertical as well as a horizontal flow of water through a sloped filter opening. The filter provides treated drinking water to a rural Indian village. The filter has functioned with minimal maintenance for five years without being subject to the typical scraping off and changing of sand as needed in traditional slow sand filters every few months. This five-year study showed bacterial removal efficiency of 97% on average with a level of faecal coliforms of 2 ± 2 colony forming units (CFU/100 mL measured in the treated water. Turbidity was visibly removed during treatment. When water was retrieved from the filter through a manual pump for long consistent time intervals (60 min, faecal coliform counts increased from four to 10 CFU/100 mL on average compared to shorter pumping intervals (5 min. Though the treated water did not comply with the World Health Organization standards of 0 CFU/100 mL, the filter significantly improved water quality and provided one of the best sources of drinkable water in a water-depleted area, where only surface water was available. Furthermore, it is a sustainable treatment method due to low maintenance requirements.

  15. Life cycle assessment of biogas from separated slurry

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H. (Univ. of Southern Denmark, Odense (Denmark)); Molt Petersen, B. (Aarhus Univ.. Faculty of Agricultural Sciences, Aarhus (Denmark))

    2010-07-01

    The environmental aspects of biogas production based on pre-treated slurry from fattening pigs and dairy cows have been investigated in a life cycle perspective. The pre-treatment consists of concentrating the slurry using a separation technology. Significant environmental benefits, compared to the status quo slurry management, can be obtained for both pig and cow slurry, especially regarding reductions of the contributions to global warming, but the results depend to a large extent on the efficiency of the separation technology. Adding separation after the biogas plant can contribute to a more efficient management of the phosphorus, and this has also been investigated. Based on the results of the study it can be concluded that: 1) The environmental benefits of biogas from separated slurry are very dependent upon the separation efficiency (for carbon, nitrogen and phosphorous). This particularly applies for carbon, as the separation efficiency defines the extent to which the degradable carbon contained in the slurry is transferred to the biogas plant. Efficient separation can be obtained by using polymer, but also by using a suitable separation technology. It could be mentioned that the decanter centrifuge used has a rather high efficiency of transferring volatile solids (VS) to the fibre fraction also without the use of polymer. 2) Biogas production from separated slurry can lead to significant reductions in the contributions to global warming, provided that the 'best available technologies' described in the report are used. That includes, among others: - a covered and short time storage of the fibre fraction before entering the biogas plant, - a 2-step biogas production where the post-digestion tank is covered with air-tight cover, - a covered storage of the degassed fibre fraction The benefits are also highly dependent upon the source of energy substituted by the biogas. 3) Based on evidences from reviewed studies, the cationic polyacrylamide polymer

  16. [Effects of light on submerged macrophytes in eutrophic water: research progress].

    Science.gov (United States)

    Li-Sha, Zou; Ze-Yu, Nie; Xiao-Yan, Yao; Ji-Yan, Shi

    2013-07-01

    The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while light is the main limiting factor. This paper summarized the factors affecting the light extinction in water and the mechanisms of light intensity affecting the physiology of submerged macrophytes, with the focuses on the metabolic mechanisms of carbon, nitrogen, and phosphorus, the responses of antioxidant enzyme system, and the feedbacks of pigment composition and concentration in the common submerged macrophytes under low light stress. Several engineering techniques applied in the ecological restoration of submerged macrophytes were presented, and the framework of the restoration of submerged macrophytes in eutrophic water was proposed. Some problems in current research and several suggestions on future research were addressed, which could help the related research and engineering practices.

  17. Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment.

    Science.gov (United States)

    Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng

    2017-12-01

    This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  19. Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    2017-10-01

    Full Text Available Submergence stress is a limiting factor for rice growing in rainfed lowland areas of the world. It is known that the phytohormone gibberellin (GA has negative effects on submergence tolerance in rice, while its inhibitor paclobutrazol (PB does the opposite. However, the physiological and molecular basis underlying the GA- and PB-regulated submergence response remains largely unknown. In this study, we reveal that PB could significantly enhance rice seedling survival by retaining a higher level of chlorophyll content and alcohol dehydrogenase activity, and decelerating the consumption of non-structure carbohydrate when compared with the control and GA-treated samples. Further transcriptomic analysis identified 3936 differentially expressed genes (DEGs among the GA- and PB-treated samples and control, which are extensively involved in the submergence and other abiotic stress responses, phytohormone biosynthesis and signaling, photosynthesis, and nutrient metabolism. The results suggested that PB enhances rice survival under submergence through maintaining the photosynthesis capacity and reducing nutrient metabolism. Taken together, the current study provided new insight into the mechanism of phytohormone-regulated submergence response in rice.

  20. Fluidization mechanisms in slurry flow

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C. S.

    1989-01-01

    There are two mechanisms by which heavy settling particles may be suspended in a horizontal slurry flow: (1) by particle-particle interactions (e.g. Bagnold dispersive stresses) and (2) by particle-fluid interactions (e.g. entrainment of the particles by turbulent eddies.) The purpose of this investigation is to determine to what extent each fluidization mechanism is active and the effect of the fluidization mechanism on the global properties of the slurry. The technique employs the understanding that the particles entrained in the turbulence of the fluid will appear as an increased hydrostatic head across the channel. This may be directly measured and can be related to the fraction of the mass of particles that are supported by fluid-particle forces. (The rest must therefore be supported by particle-particle forces.) 17 refs., 26 figs.

  1. Slurry burner for mixture of carbonaceous material and water

    Science.gov (United States)

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  2. Prospects for coal slurry pipelines in California

    Science.gov (United States)

    Lynch, J. F.

    1978-01-01

    The coal slurry pipeline segment of the transport industry is emerging in the United States. If accepted it will play a vital role in meeting America's urgent energy requirements without public subsidy, tax relief, or federal grants. It is proven technology, ideally suited for transport of an abundant energy resource over thousands of miles to energy short industrial centers and at more than competitive costs. Briefly discussed are the following: (1) history of pipelines; (2) California market potential; (3) slurry technology; (4) environmental benefits; (5) market competition; and (6) a proposed pipeline.

  3. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Petersen, Heidi Huus; Enemark, Heidi L.; Olsen, Annette

    2012-01-01

    to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether application of separated liquid slurry to agricultural land may represent higher risks for ground water contamination as compared to application of raw slurry.......The potential for transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a four week period......, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method although recovery rates were low (liquid slurry leached 73% and 90% more oocysts compared with columns with injected and surface applied raw slurry, respectively...

  4. Submerged Pond Sand Filter-A Novel Approach to Rural Water Supply

    DEFF Research Database (Denmark)

    Øhlenschlæger, Mia; Christensen, Sarah Christine Boesgaard; Bregnhøj, Henrik

    2016-01-01

    This study describes the new design and function of a modified version of a traditional slow sand filter. The Submerged Pond Sand Filter is built inside a pond and has a vertical as well as a horizontal flow of water through a sloped filter opening. The filter provides treated drinking water...... to a rural Indian village. The filter has functioned with minimal maintenance for five years without being subject to the typical scraping off and changing of sand as needed in traditional slow sand filters every few months. This five-year study showed bacterial removal efficiency of 97% on average...... to 10 CFU/100 mL on average compared to shorter pumping intervals (5 min). Though the treated water did not comply with the World Health Organization standards of 0 CFU/100 mL, the filter significantly improved water quality and provided one of the best sources of drinkable water in a water...

  5. Predicting wear of hydrotransport pipelines in oil sand slurries

    Energy Technology Data Exchange (ETDEWEB)

    Been, J.; Lu, B.; Wolodko, J. [Alberta Research Council, Edmonton, AB (Canada); Kiel, D. [Coanda Research and Development Corp., Burnaby, BC (Canada)

    2008-07-01

    An overview of erosion and corrosion methods and techniques was presented. Wear to pipelines is influenced by slurry flow and chemistry; solids loading; and electrochemical interactions. While several experimental techniques have been developed to rank the performance of different pipeline materials, experiments do not currently provide accurate quantitative prediction of pipeline wear in the field. Rotating cylinder electrodes (RCE) and jet impingement methods are used to study the effect of flow velocity on corrosion rate. Slurry pot erosion-corrosion testers are used to rank materials for use in more dilute, less turbulent slurries. Coriolois slurry erosion testers are used to rank the erosion resistance of different pipeline materials. A pilot-scale flow loop is now being constructed by the Alberta Research Council (ARC) in order to replicate wet erosion phenomena in oil sands applications. The flow loop will be used to simulate the field conditions of oil sands pipelines and develop predictive wear data and models. Coulombic shear stress and characteristic wall velocities have been determined using a 2-layer model designed to represent flow as 2 distinct layers. To date, the flow loop pilot study has demonstrated that wear rates in smaller diameter flow loops are not significantly different than larger diameter field installations. Preliminary calculations have demonstrated that the flow loop can be used to accurately simulate the hydrodynamics and wear typically experienced in field slurry flows. 67 refs., 2 tabs., 7 figs.

  6. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    Science.gov (United States)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  7. Spread of Hepatitis E virus from pig slurry to the water environment

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Forslund, Anita; Breum, Solvej Østergaard

    Objectives: Spread of pig slurry as an organic fertilizer is commonly used in Danish agriculture. The slurry is spread untreated so pathogens able to survive in slurry tanks will be widely distributed in the environment. The objective of this study was to examine if hepatitis E virus (HEV), which......), and hence could present a risk for virus transmission to wildlife and shellfish. We tested the presence of HEV in water drained from a test field where slurry from a Danish pig farm had been applied and in mussels from different regions in Denmark with fields in close proximity. Methods: Slurry from......). In addition, samples of water collected from wells located along the field and groundwater. Archived mussels from different regions in Denmark were included in the study. Virus was concentrated from water using Poly Ethylene Glycol precipitation and virus from the digestive tissue of the mussels was extracted...

  8. Flow velocity analysis for avoidance of solids deposition during transport of Hanford tank waste slurries

    International Nuclear Information System (INIS)

    ESTEY, S.D.

    1999-01-01

    This engineering analysis calculates minimum slurry transport velocities intended to maintain suspensions of solid particulate in slurries. This transport velocity is also known as the slurry flow critical velocity. It is not universally recognized that a transfer line flow velocity in excess of the slurry critical velocity is a requirement to prevent solids deposition and possible line plugging. However, slurry critical velocity seems to be the most prevalent objective measure to prevent solids deposition in transfer lines. The following critical velocity correlations from the literature are investigated: Durand (1953), Spells (1955), Sinclair (1962), Zandi and Gavatos (1967), Babcock (1968), Shook (1969), and Oroskar and Turian (1980). The advantage of these critical velocity correlations is that their use is not reliant upon any measure of bulk slurry viscosity. The input parameters are limited to slurry phase densities and mass fractions, pipe diameter, particle diameter, and viscosity of the pure liquid phase of the slurry. Consequently, the critical velocity calculation does not require determination of system pressure drops. Generalized slurry properties can, therefore, be recommended if the slurry can be adequately described by these variables and if the liquid phase viscosity is known. Analysis of these correlations are presented, indicating that the Oroskar and Turian (1980) models appear to be more conservative for smaller particulate sizes, typically those less than 100 microns diameter. This analysis suggests that the current Tank Farms waste compatibility program criteria may be insufficient to prevent particulate solids settling within slurry composition ranges currently allowed by the waste compatibility program. However, in order to relate a critical velocity associated with a certain slurry composition to a system limit, a means of relating the system capabilities to the slurry composition must be found. Generally, this means expressing the bulk

  9. Fluid dynamic studies for a simulated Melton Valley Storage Tank slurry

    International Nuclear Information System (INIS)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-07-01

    The Melton Valley Storage Tanks (MVSTs), are used for the collection and storage of remote-handled radioactive liquid wastes. These wastes, which were typically acidic when generated, were neutralized with the addition of sodium hydroxide to protect the storage tanks from corrosion, but this caused the transuranic and heavy metals to precipitate. These wastes will eventually need to be removed from the tanks for ultimate disposal. The objective of the research activities discussed in this report is to support the design of a pipeline transport system between the MVSTs and a treatment facility. Since the wastes in the MVSTs are highly radioactive, a surrogate slurry was developed for this study. Rheological properties of the simulated slurry were determined in a test loop in which the slurry was circulated through three pipeline viscometers of different diameters. Pressure drop data at varying flow rates were used to obtain shear stress and shear rate data. The data were analyzed, and the slurry rheological properties were analyzed by the Power Law model and the Bingham plastic model. The plastic viscosity and yield stress data obtained from the rheological tests were used as inputs for a piping design software package, and the pressure drops predicted by the software compared well with the pressure drop data obtained from the test loop. The minimum transport velocity was determine for the slurry by adding known nominal sizes of glass spheres to the slurry. However, it was shown that the surrogate slurry exhibited hindered settling, which may substantially decrease the minimum transport velocity. Therefore, it may be desired to perform additional tests with a surrogate with a lower concentration of suspended solids to determine the minimum transport velocity

  10. Advanced computational model for three-phase slurry reactors

    International Nuclear Information System (INIS)

    Goodarz Ahmadi

    2000-11-01

    In the first year of the project, solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions are compared with the experimental data and good agreement was found. Progress was also made in analyzing the gravity chute flows of solid-liquid mixtures. An Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is being developed. The approach uses an Eulerian analysis of gas liquid flows in the bubble column, and makes use of the Lagrangian particle tracking procedure to analyze the particle motions. Progress was also made in developing a rate dependent thermodynamically consistent model for multiphase slurry flows in a state of turbulent motion. The new model includes the effect of phasic interactions and leads to anisotropic effective phasic stress tensors. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The formulation of a thermodynamically consistent model for chemically active multiphase solid-fluid flows in a turbulent state of motion was also initiated. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also to establish the material parameters of the model. (2) To provide experimental data for phasic fluctuation and mean velocities, as well as the solid volume fraction in the shear flow devices. (3) To develop an accurate computational capability incorporating the new rate-dependent and anisotropic model for analyzing reacting and

  11. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

    Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  12. Properties of sodium lignosulfonate as dispersant of coal water slurry

    International Nuclear Information System (INIS)

    Yang, Dongjie; Qiu, Xueqing; Zhou, Mingsong; Lou, Hongming

    2007-01-01

    In order to use lignosulfonates (a by-product of pulp and paper processes) as an effective dispersant of coal water slurry five purified sodium lignosulfonate (SL) samples with different molecular weights were prepared by fractionation using ultrafiltration and dialysis. The effect of SL on the apparent viscosity of coal water slurry (CWS) was investigated. The adsorption behavior of the SL on the coal water interface has much greater effect on the viscosity of coal water slurry. The higher adsorption amount and compact adsorption film of SL on the coal surface help reduce the viscosity of CWS, and the zeta potential is also an important factor, which is influenced by the sulfonic and carboxyl group contents of the lignosulfonate molecule. Furthermore, the SL with its molecular weight ranging from 10,000 to 30,000 has both a higher adsorbed amount and zeta potential on the coal surface and the best effect on reducing the viscosity of the coal water slurry

  13. Progress on radioactive waste slurry incineration with oxygen and steam

    International Nuclear Information System (INIS)

    Hoshino, M.; Hayashi, M.; Oda, I.; Nonaka, N.; Kuwayama, K.; Shigeta, T.

    1988-01-01

    The radioactive waste (radwaste) slurry generated from the nuclear power plant operation, such as spent ion-exchange resins (powdered, bead), fire-retardant oils including phosphate ester and concentrated laundry (by the wet method) liquid waste, has been stored in an untreated condition on the plant site. Recently, since the Condensate Filter Demineralizer (CFD) has been applied in advanced BWR plants, the discharged volume of untreated spent powered resin slurry has been increasing steadily. TEE and NCE have been developing an effective new volume reduction system to treat this radwaste slurry based on an innovative incineration concept. The new system is called the IOS process, the feature of which is incineration with oxygen and steam admixture instead of conventional air. The IOS process, which consists mainly of high heat load incineration with slurry atomization, and combustion gas cooling and condensation by the wet method, has several advantages which are summarized in this paper

  14. Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)

    Science.gov (United States)

    Ye, Tiantian; Shi, Haitao; Wang, Yanping; Chan, Zhulong

    2015-01-01

    In this study, we investigated the mechanisms by which bermudagrass withstands the drought and submergence stresses through physiological, proteomic and metabolomic approaches. The results showed that significant physiological changes were observed after drought treatment, while only slight changes after submergence treatment, including compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics results showed that 81 proteins regulated by drought or submergence treatment were identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought stress with 46 increased abundance and 30 decreased abundance. Forty-five showed abundance changes after submergence treatment with 10 increased and 35 decreased. Pathway enrichment analysis revealed that pathways of amino acid metabolism and mitochondrial electron transport/ATP synthesis were only enriched by drought treatment, while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative pentose phosphate, glycolysis and redox were commonly over-represented after both drought and submergence treatments. Metabolomic analysis indicated that most of the metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents exhibited down-regulation or no significant changes when exposed to submergence stress, including sugars and sugar alcohols. These data indicated that drought stress extensively promoted photosynthesis and redox metabolisms while submergence stress caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the quiescence strategy with retarded growth might allow bermudagrass to be adaptive to long-term submerged environment, while activation of photosynthesis and redox, and accumulation of compatible solutes and molecular chaperones increased bermudagrass tolerance to drought stress. PMID:26617615

  15. Startup of a Joule-heated glass melter with a graphite slurry

    International Nuclear Information System (INIS)

    Allen, T.L.; Routt, K.R.; Porter, M.A.

    1983-01-01

    This paper discusses the theoretical equations and physical and electrical property data of various graphite slurries for starting up a glass melter. An application test is also included to demonstrate the graphite slurry startup technique

  16. Soil-bentonite design mix for slurry cutoff walls used as containment barriers

    International Nuclear Information System (INIS)

    Rad, N.S.; Bachus, R.C.; Jacobson, B.D.

    1995-01-01

    In recent years, soil-bentonite slurry cutoff walls have been increasingly used as containment barriers around contaminated soils to impede or, in some cases, nearly eliminate the off-site migration of contaminated ground water or other potentially hazardous liquids. The paper presents the procedures used and the results obtained during an extensive laboratory testing program performed to select varying soil-bentonite slurry mix components for a soil-bentonite slurry cutoff wall constructed around an old landfill at a former oil refinery. The landfill is underlain to varying depths by a coarse granular soils that has been exposed to oil-products. Compatibility of three commercially available bentonite products with the free oil-products and the oil-contaminated ground water found at some locations in the landfill was initially investigated. Based on the test results, one of the bentonite products was selected for use in the soil-bentonite slurry testing program. A clayey soil from a borrow source, potable water from the site, and subsurface soils from the proposed soil-bentonite slurry wall alignment were used to form different soil-bentonite slurry mixes. Slump tests were performed to evaluate the workability of the mixes. Based on the test results, a single mix was selected for further study, including permeability/compatibility testing. The results of the compatibility testing program are presented and discussed in the paper. A specific design mix methodology for evaluating the chemical compatibility of soil-bentonite slurry mixes with permeants is proposed

  17. Comparison of catalytic ethylene polymerization in slurry and gas phase

    NARCIS (Netherlands)

    Daftaribesheli, Majid

    2009-01-01

    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different

  18. Design and construction of a deep slurry trench barrier

    International Nuclear Information System (INIS)

    Deming, P.W.

    1997-01-01

    A 24 m (80 ft) deep slurry trench surrounding a former chromium manufacturing facility on the Patapsco River in Baltimore, Maryland was constructed in 1995 to contain groundwater and site Soils, and to reduce the volume of groundwater extracted to maintain an inward gradient. In 1992, an embankment made of crushed stone was constructed in the Patapsco River to make land for barrier construction outboard of the bulkheads, and to protect the barrier. Stability of the slurry-supported trench excavation in the embankment required construction from an elevated work platform. An extended reach backhoe was used to excavate the deep slurry trench and to clean the trench bottom. Soil-Bentonite backfill was prepared at a central mixing area and transported by truck to the perimeter barrier. A synthetic membrane was inserted partially into the backfill for connection to a multimedia cap, and for redundancy and erosion control in the tidal zone. Hydraulic testing of the aquitard contained by the barrier demonstrated excellent performance of the barrier and bottom closure. Detailed definition of subsurface conditions and the closure stratum was necessary for the design and successful construction of the barrier, and is recommended for comparable slurry trench construction projects

  19. Debris flow rheology: Experimental analysis of fine-grained slurries

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  20. EVALUATION OF MIXING IN THE SLURRY MIX EVAPORATOR AND MELTER FEED TANK

    International Nuclear Information System (INIS)

    MARINIK, ANDREW

    2004-01-01

    The Defense Waste Processing Facility (DWPF) vitrifies High Level radioactive Waste (HLW) currently stored in underground tanks at the Savannah River Site (SRS). The HLW currently being processed is a waste sludge composed primarily of metal hydroxides and oxides in caustic slurry. These slurries are typically characterized as Bingham Plastic fluids. The HLW undergoes a pretreatment process in the Chemical Process Cell (CPC) at DWPF. The processed HLW sludge is then transferred to the Sludge Receipt and Adjustment Tank (SRAT) where it is acidified with nitric and formic acid then evaporated to concentrate the solids. Reflux boiling is used to strip mercury from the waste and then the waste is transferred to the Slurry Mix Evaporator tank (SME). Glass formers are added as a frit slurry to the SME to prepare the waste for vitrification. This mixture is evaporated in the SME to the final concentration target. The frit slurry mixture is then transferred to the Melter Feed Tank (MFT) to be fed to the melter

  1. The Performance and Fouling Control of Submerged Hollow Fiber (HF Systems: A Review

    Directory of Open Access Journals (Sweden)

    Ebrahim Akhondi

    2017-07-01

    Full Text Available The submerged membrane filtration concept is well-established for low-pressure microfiltration (MF and ultrafiltration (UF applications in the water industry, and has become a mainstream technology for surface-water treatment, pretreatment prior to reverse osmosis (RO, and membrane bioreactors (MBRs. Compared to submerged flat sheet (FS membranes, submerged hollow fiber (HF membranes are more common due to their advantages of higher packing density, the ability to induce movement by mechanisms such as bubbling, and the feasibility of backwashing. In view of the importance of submerged HF processes, this review aims to provide a comprehensive landscape of the current state-of-the-art systems, to serve as a guide for further improvements in submerged HF membranes and their applications. The topics covered include recent developments in submerged hollow fiber membrane systems, the challenges and developments in fouling-control methods, and treatment protocols for membrane permeability recovery. The highlighted research opportunities include optimizing the various means to manipulate the hydrodynamics for fouling mitigation, developing online monitoring devices, and extending the submerged HF concept beyond filtration.

  2. Macroinvertebrates associated with two submerged macrophytes ...

    African Journals Online (AJOL)

    Macroinvertebrates associated with two submerged macrophytes, Lagarosiphon ilicifolius and Vallisneria aethiopica , in the Sanyati Basin, Lake Kariba, Zimbabwe: effect of plant morphological complexity.

  3. REDUCTIVE DEHALOGENATION OF A NITROGEN HETEROCYCLIC HERBICIDE IN ANOXIC AQUIFER SLURRIES

    Science.gov (United States)

    We studied the metabolic fate of bromacil in anaerobic aquifer slurries held under denitrifying, sulfate-reducing, or methanogenic conditions. Liquid chromatograhy-mass spectrometry of the slurries confirmed that bromacil was debrominated under methanogenic conditions but was not...

  4. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  5. Indian Creek-AML: Coal slurry reclamation (Kansas case history)

    International Nuclear Information System (INIS)

    Witthar, S.R.

    1998-01-01

    Black and Veatch, assisted by Jack Nawrot, developed conceptual and final designs and provided construction assistance to create grasslands and wetlands in order to reclaim an abandoned coal mine for the state of Kansas. The mine included spoils, a coal refuse dump, and slurry pond in the Indian Creek drainage basin in east central Kansas. The Indian Creek flowed from an off-site abandoned mine and through the coal slurry pond where its waters became more polluted. The intent of the reclamation project was to improve water quality and create a wildlife refuge. The coal refuse was covered and seeded with a diversity of vegetation including several grasses and legume. The slurry pond was developed into a series of large wetland cells to improve water quality. Prior to reclamation, the water leaving the site had a typical pH of 3.3, ranging from 2.4 to 5.6, an iron content which typically over 22 mg/L and ranging over 100 mg/L, and contained large amounts of coal slurry. The acid sediment in the slurry killed fish and caused visible damage to a new large concrete box culvert several miles downstream of the site. Post-reclamation water quality leaving the Indian Creek site showed immediate improvement even before vegetation was reestablished. The existing wetland treatment systems have been successfully treating water for over seven years with the pH of the water leaving the wetlands above 7 and soluble iron content less than 1 mg/L. Fish in the constructed wetlands support waterfowl which now nest onsite

  6. Aerosols generated by spills of viscous solutions and slurries

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Hodgson, W.H.

    1986-12-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases caused by accidents. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop methods for estimating source terms from these accidents. Experiments were run by spilling viscous solutions and slurries to determine the mass and particle-size distribution of the material made airborne. In all cases, 1 L of solution was spilled from a height of 3 m. Aqueous solutions of sucrose (0 to 56%) gave a range of viscosities from 1.3 to 46 cp. The percent of spill mass made airborne from the spills of these solutions ranged from 0.001 to 0.0001. The mass of particles made airborne decreased as solution viscosity increased. Slurry loading ranged from 25 to 51% total solids. The maximum source airborne (0.0046 wt %) occurred with the slurry that had the lightest loading of soluble solids. The viscosity of the carrying solution also had an impact on the source term from spilling slurries. The effect of surface tension on the source term was examined in two experiments. Surface tension was halved in these spills by adding a surfactant. The maximum weight percent airborne from these spills was 0.0045, compared to 0.003 for spills with twice the surface tension. The aerodynamic mass medium diameters for the aerosols produced by spills of the viscous solutions, slurries, and low surface tension liquids ranged from 0.6 to 8.4 μm, and the geometric standard deviation ranged from 3.8 to 28.0

  7. Nutrient losses from cattle co-digestate slurry during storage

    Directory of Open Access Journals (Sweden)

    Francesca Perazzolo

    2016-06-01

    Full Text Available Among environmental issues related to intensive livestock activity, emissions to air from manure management are of increasing concern. Thus the knowledge of the effect of treatment application on subsequent emissions from manure is required to assess the environment impact of management solutions. This work addresses the effect of anaerobic digestion and phase separation on emissions during storage by studying nitrogen losses from lab-scale stores and field pilot-scale stores of a co-digestate cattle slurry and its respective separated fractions. Lab-scale experiment was carried in temperature-controlled room where each fraction (untreated, separated liquid and separated solid was stored in duplicate for a period of 32 days in 30 L vessel. Pilot-scale experiment was carried out both during the cold season and during warm season for 90 days of storage. In both experimentations samples of the manure were analysed periodically for total Kjeldahl nitrogen (TKN, total ammonia nitrogen, dry matter and volatile solids and pH. These analyses allow estimating nitrogen losses in different storage conditions. Effects of mechanical separation and season were assessed by ANOVA (Wilcoxon test, P<0.05. In temperature controlled conditions nitrogen losses measured account for 13% and 26% of TKN for unseparated and separated slurries respectively. In field conditions during cold season nutrient losses were limited. On average unseparated and separated slurries lost respectively 6.8% and 12.6% of their initial TKN content. Much higher were the TKN losses from the slurries examined in warm season where losses raised up to 40% of the initial TKN content. Generally mechanical separation increases nutrient losses, but the differences were not significant in field conditions. The results highlighted that nutrient losses, in particular the nitrogen ones, can be considerable especially during summer storage. The latter, in case of separated slurries, are mainly related

  8. Improvements of marine clay slurries using chemical–physical combined method (CPCM

    Directory of Open Access Journals (Sweden)

    Dongqing Wu

    2015-04-01

    Full Text Available In this paper, the effectiveness, applicability and validity of chemical–physical combined methods (CPCMs for treatment of marine clay (MC slurries were evaluated. The method CPCM1 combines chemical stabilization and vacuum preloading (VP, while CPCM2 is similar to CPCM1 but includes both the application of surcharge and use of geo-bags to provide confinement during surcharge preloading. The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on the chemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling and dyke conditions, respectively. The test results show that the shear strength (cu of treated slurry by CPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reduce the treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows faster consolidation and higher preloading that help to achieve higher mechanical properties of the stabilized slurry. There are consistent relationships between cU and water content of slurries treated by CPCM2. Several important observations were also made based on comparisons of experimental data.

  9. Swine slurry application and soil management on double-cropped oat/maize

    Directory of Open Access Journals (Sweden)

    Marlo Adriano Bison Pinto

    2014-06-01

    Full Text Available The swine production in southern Brazil is concentrated in small farms that use residues as a nutrient source for crops of economic interest. This study aimed to evaluate the use of swine slurry associated with tillage systems on double-cropped oat/maize. The experiment was carried out in the 2009/2010 and 2010/2011 cropping seasons, in Taquaruçu do Sul, Rio Grande do Sul State, Brazil. The experimental design was randomized blocks in a factorial scheme, with four replications. Treatments consisted of the interaction of four swine slurry doses (no swine slurry, 20 m3 ha-1, 40 m3 ha-1 and 80 m3 ha-1 and mineral fertilization, in three tillage systems (no-tillage, chiseling and chiseling + disking. The swine slurry application on doublecropped oat/maize increased the dry matter and grain yield. The 80 m3 ha-1 dose provided a response statistically similar to the mineral fertilization recommended for maize. The interaction between the 80 m3 ha-1 dose and the immediate incorporation of slurry into the soil reduced N losses by ammonia volatilization, promoting a significant increase in maize grain yield, when grown on a clayish soil.

  10. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    Science.gov (United States)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  11. Improvement in water-slurry circulation at the Chumakovskaya coal preparation plant

    Energy Technology Data Exchange (ETDEWEB)

    Nabokov, A.K.; Fedotov, B.P.; Mitlash, V.V.

    1988-02-01

    The Chumakovskaya coal preparation plant (Donetskugleobogashchenie association) was put into operation in 1935. It processes 570 t/h of coal slurry with an ash content of 38.6% and produces grade T coal for coking and power generation. Coal preparation technology used is described. Shortcomings of the system cause 130 kg of high ash slurries to be recirculated per m/sup 3/ of hydrocyclone drain. Mathematical analysis of the present process and of two improved variants is presented. The analysis permits variants for clarification of the recirculated water to be developed and evaluated and the best one to be selected. The optimum variant permits the amount of thin recirculated slurry to be reduced to 48% and the amount of granular slurry to 13%. Implementation of this variant at the Chumakovskaya coal preparation plant will ensure annual savings of 20,000 rubles.

  12. Microalgal cultivation with biogas slurry for biofuel production.

    Science.gov (United States)

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Surfactant mediated slurry formulations for Ge CMP applications

    KAUST Repository

    Basim, G. Bahar

    2013-01-01

    In this study, slurry formulations in the presence of self-assembled surfactant structures were investigated for Ge/SiO2 CMP applications in the absence and presence of oxidizers. Both anionic (sodium dodecyl sulfate-SDS) and cationic (cetyl trimethyl ammonium bromide-C12TAB) micelles were used in the slurry formulations as a function of pH and oxidizer concentration. CMP performances of Ge and SiO2 wafers were evaluated in terms of material removal rates, selectivity and surface quality. The material removal rate responses were also assessed through AFM wear rate tests to obtain a faster response for preliminary analyses. The surfactant adsorption characteristics were studied through surface wettability responses of the Ge and SiO2 wafers through contact angle measurements. It was observed that the self-assembled surfactant structures can help obtain selectivity on the silica/germanium system at low concentrations of the oxidizer in the slurry. © 2013 Materials Research Society.

  14. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    Science.gov (United States)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  15. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    Science.gov (United States)

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  16. Demonstration Of Mixing And Transferring Settling Cohesive Slurry Simulants In The AY-102 Tank

    International Nuclear Information System (INIS)

    Adamson, D.

    2011-01-01

    In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work discussed in this report (Phase III) address the impacts cohesive simulants have on mixing and batch transfer performance. The objective of the demonstrations performed in Phase III was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using 1/22 nd scale mixing system and batch transfer of seed particles. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative. The batch transfers were made by pumping the simulants from the Mixing Demonstration Tank (MDT) to six Receipt Tanks (RTs), and the consistency in the amount of seed particles in each batch was compared. Tests were conducted with non-Newtonian cohesive simulants with Bingham yield stress ranging from 0.3 Pa to 7 Pa. Kaolin clay and 100 μm stainless steel seed particles were used for all the non-Newtonian simulants. To specifically determine the role of the yield stress on mixing and batch transfer, tests were conducted with a Newtonian mixture of glycerol and water with at viscosity of 6.2 cP that was selected to match the Bingham consistency (high shear rate viscosity) of the higher yield stress kaolin slurries. The water/glycerol mixtures used the same 100 μm stainless steel seed particles. For the transfer demonstrations in Phase III, the mixer jet pumps were operated either at 10.0 gpm (28 ft/s nozzle velocity, U o D=0.63 ft 2 /s) or 8.0 gpm (22.4 ft/s nozzle velocity, U o D=0.504 ft 2 /s). All batch transfers from the MDT to the RTs were made at 0.58 gpm (MDT suction velocity 3.95 ft/s). The

  17. Draught requirement of trailing foot and shallow injection equipment for applying slurry to grassland

    NARCIS (Netherlands)

    Huijsmans, J.F.M.; Hendriks, J.L.G.; Vermeulen, G.D.

    1998-01-01

    Surface spreading of slurry leads to the inevitable emission of ammonia into the environment. Injection of slurry on grassland reduces these emissions. However, injection of slurry by deep working injector tines with goose foot chisels (wings) requires high draught forces. This type of injection has

  18. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    Science.gov (United States)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  19. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    Science.gov (United States)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  20. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis

    International Nuclear Information System (INIS)

    Tavares, A.M.G.; Andrade Junior, M.A.S.; Cestari, A.R.; Vieira, E.F.S.

    2010-01-01

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  1. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    Science.gov (United States)

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  2. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    Science.gov (United States)

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  3. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods

    DEFF Research Database (Denmark)

    Herzog, Max; Konnerup, Dennis; Pedersen, Ole

    2018-01-01

    Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged...

  4. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  5. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurries.

    Science.gov (United States)

    Petersen, Heidi H; Enemark, Heidi L; Olsen, Annette; Amin, M G Mostofa; Dalsgaard, Anders

    2012-09-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry.

  6. Development of New Submergence Tolerant Rice Variety for Bangladesh Using Marker-Assisted Backcrossing

    Directory of Open Access Journals (Sweden)

    Khandakar Md Iftekharuddaula

    2015-01-01

    Full Text Available Submergence tolerant high yielding rice variety was developed using BR11 as a recipient parent applying foreground, phenotypic and background selection approaches. Recombinant selection was found essential to minimize linkage drag by BC2F2 generation. Without recombinant selection, the introgression size in the backcross recombinant lines (BRLs was approximately 15 Mb on the carrier chromosome. The BRLs were found submergence tolerance compared to the check varieties under complete submergence for two weeks at Bangladesh Rice Research Institute, and produced higher yield compared to the isogenic Sub1-line under controlled submerged condition. The BRL IR85260-66-654-Gaz2 was released as BRRI dhan52 in 2010, which was the first high yielding submergence tolerant variety in Bangladesh. BRRI dhan52 produced grain yield ranging from 4.2 to 5.2 t/hm2 under different flash flood prone areas of Bangladesh in three consecutive seasons. The study demonstrated the efficiency of recombinant selection and better adaptability of the newly released submergence tolerant high yielding variety in flash flood prone different areas of the country with respect to submergence tolerance and yield potential.

  7. Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

    Energy Technology Data Exchange (ETDEWEB)

    Becaccia, A.; Ferrer, P.; Ibañez, M.A.; Estellés, F.; Rodríguez, C.; Moset, V.; Blas, C. de; Calvet, P.; García-Rebollar, P.

    2015-07-01

    This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2>0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production. (Author)

  8. Simulation and characterization of a Hanford high-level waste slurry

    International Nuclear Information System (INIS)

    Russell, R.L.; Smith, H.D.

    1996-09-01

    The baseline waste used for this simulant is a blend of wastes from tanks 101-AZ, 102-AZ, 106-C, and 102-AY that have been through water washing. However, the simulant used in this study represents a combination of tank waste slurries and should be viewed as an example of the slurries that might be produced by blending waste from various tanks. It does not imply that this is representative of the actual waste that will be delivered to the privatization contractor(s). This blended waste sludge simulant was analyzed for grain size distribution, theological properties both as a function of concentration and aging, and calcining characteristics. The grain size distribution allows a comparison with actual waste with respect to theological properties. Slurries with similar grain size distributions of the same phases are expected to exhibit similar theological properties. Rheological properties may also change because of changes in the slurry's particulate supernate chemistry due to aging. Low temperature calcination allows the potential for hazardous gas generation to be investigated

  9. Analysis of high-level radioactive slurries as a method to reduce DWPF turnaround times

    International Nuclear Information System (INIS)

    Coleman, C.J.; Bibler, N.E.; Ferrara, D.M.; Hay, M.S.

    1996-01-01

    Analysis of Defense Waste Processing Facility (DWPF) samples as slurries rather than as dried or vitrified samples is an effective way to reduce sample turnaround times. Slurries can be dissolved with a mixture of concentrated acids to yield solutions for elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Slurry analyses can be performed in eight hours, whereas analyses of vitrified samples require up to 40 hours to complete. Analyses of melter feed samples consisting of the DWPF borosilicate frit and either simulated or actual DWPF radioactive sludge were typically within a range of 3--5% of the predicted value based on the relative amounts of sludge and frit added to the slurry. The results indicate that the slurry analysis approach yields analytical accuracy and precision competitive with those obtained from analyses of vitrified samples. Slurry analyses offer a viable alternative to analyses of solid samples as a simple way to reduce analytical turnaround times

  10. In-situ study of the thermal properties of hydrate slurry by high pressure DSC

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Brun, F.; Erbeau, N. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2008-07-01

    Knowing the enthalpy of hydrate slurry is very essential for energy balance and industrial applications. No direct measurement processes had been developed in this field in the past time. A new experimental method with special device has been developed to carry out on-line measurement of the thermal properties for hydrate slurry under dynamic conditions. With this special device, it is possible to deliver the hydrate slurry to the high pressure DSC (Differential Scanning Calorimetry) directly from the production tank or pipes. Thermal data acquisition will be performed afterwards by DSC. The investigated conditions were at pressure of 30 bar and temperature of {approx}+7 {sup o}C. The dissociation enthalpy of CO{sub 2} hydrate slurry was about 54 kJ/kg, corresponding 10.8% of solid fraction. The on-line measurement results for CO{sub 2} hydrate slurry give a good tendency to apply this phase change slurry to the industrial refrigeration process. (author)

  11. Study on the degradation of chitosan slurries

    Directory of Open Access Journals (Sweden)

    Benjamin Martini

    2016-01-01

    Full Text Available In the present work, we measured the degradation rate of different chitosan slurries. Several parameters were monitored such as temperature (25 °C, 37 °C, 50 °C; chitosan concentration (1% and 2% (w/V; and polymer molecular weight. The samples were tested in dynamic sweep test mode. This test is able to provide a reliable estimation of viscosity variations of the slurries; in turn, these variations could be related to degradation rate of the system in the considered conditions. The resulting information is particularly important especially in applications in which there is a close relationship between physical properties and molecular structure.

  12. A Fast and Efficient Dehydration Process for Waste Drilling Slurry

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2017-01-01

    Full Text Available In this article, slurry system was converted to colloid from fluid with the colloidization of high polymer coagulants with high viscosity. The solid-liquid separation of the waste slurry was realized by the process of chemical colloidal gel breaking, coagulation function, acidification gelout. In addition, the surface morphology of slurry cake was investigated by using Field emission scanning electron microscope (FE-SEM. The results indicate that mud separation effect is decides on the type of flocculants, gel breaker. The solid content of mud cake increases from 40.5% to 77.5% when A-PA and H20 are employed as the flocculants, gelout, with the dosage of zero point four grams and zero point five grams.

  13. Vibrational analysis of submerged cylindrical shells based on elastic foundations

    International Nuclear Information System (INIS)

    Shah, A.G.; Naeem, M.N.

    2014-01-01

    In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)

  14. Advanced computational model for three-phase slurry reactors

    International Nuclear Information System (INIS)

    Goodarz Ahmadi

    2001-10-01

    In the second year of the project, the Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is further developed. The approach uses an Eulerian analysis of liquid flows in the bubble column, and makes use of the Lagrangian trajectory analysis for the bubbles and particle motions. An experimental set for studying a two-dimensional bubble column is also developed. The operation of the bubble column is being tested and diagnostic methodology for quantitative measurements is being developed. An Eulerian computational model for the flow condition in the two-dimensional bubble column is also being developed. The liquid and bubble motions are being analyzed and the results are being compared with the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures is also being studied. Further progress was also made in developing a thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion. The balance laws are obtained and the constitutive laws are being developed. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The technique of Phase-Doppler anemometry was used in these studies. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also establish the

  15. Optimum IMFs Selection Based Envelope Analysis of Bearing Fault Diagnosis in Plunger Pump

    Directory of Open Access Journals (Sweden)

    Wenliao Du

    2016-01-01

    Full Text Available As the plunger pump always works in a complicated environment and the hydraulic cycle has an intrinsic fluid-structure interaction character, the fault information is submerged in the noise and the disturbance impact signals. For the fault diagnosis of the bearings in plunger pump, an optimum intrinsic mode functions (IMFs selection based envelope analysis was proposed. Firstly, the Wigner-Ville distribution was calculated for the acquired vibration signals, and the resonance frequency brought on by fault was obtained. Secondly, the empirical mode decomposition (EMD was employed for the vibration signal, and the optimum IMFs and the filter bandwidth were selected according to the Wigner-Ville distribution. Finally, the envelope analysis was utilized for the selected IMFs filtered by the band pass filter, and the fault type was recognized by compared with the bearing character frequencies. For the two modes, inner race fault and compound fault in the inner race and roller of rolling element bearing in plunger pump, the experiments show that a promising result is achieved.

  16. Escherichia coli Contamination of Lettuce Grown in Soils Amended with Animal Slurry

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Storm, Christina; Forslund, Anita

    2013-01-01

    A pilot study was conducted to assess the transfer of Escherichia coli from animal slurry fertilizer to lettuce, with E. coli serving as an indicator of fecal contamination and as an indicator for potential bacterial enteric pathogens. Animal slurry was applied as fertilizer to three Danish agric...... types between slurry, soil, and lettuce. The frequent finding of fecal-contaminated lettuce indicates that human pathogens such as Salmonella and Campylobacter can be present and represent food safety hazards.......A pilot study was conducted to assess the transfer of Escherichia coli from animal slurry fertilizer to lettuce, with E. coli serving as an indicator of fecal contamination and as an indicator for potential bacterial enteric pathogens. Animal slurry was applied as fertilizer to three Danish....... coli. A relatively higher frequency of E. coli in lettuce compared with the soil samples at harvest suggests environmental sources of fecal contamination, e.g., wildlife. The higher frequency was supported by the finding of 21 different PFGE types among the E. coli isolates, with only a few common PFGE...

  17. Development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D F

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt% on sedimentation ratios, drain times and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  18. Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries

    International Nuclear Information System (INIS)

    Ferrari, M.D.; Neirotti, E.; Albornoz, C.; Mostazo, M.R.; Cozzo, M.

    1996-01-01

    Biotreatment of oil wastes in aqueous slurries prepared with sandy loam soil and inoculated with selected soil cultures was evaluated. After 90 days, oil removal was 47%. Removal of each hydrocarbon class was 84% for saturates, 20% for aromatics, and 44% for asphaltenes. Resins increased by 68%. The use of a soil with a lower level of fine particles or minor organic matter content, or reinoculation with fresh culture did not improve oil elimination. Residual oil recovered from slurries was biotreated. Oil removal was 22%. Slurry-phase biotreatment showed less variability and faster oil removal than solid-phase biotreatment. (author)

  19. Radiation hygienization of cattle and swine slurry with high energy electron beam

    International Nuclear Information System (INIS)

    Skowron, Krzysztof; Olszewska, Halina; Paluszak, Zbigniew; Zimek, Zbigniew; Kałuska, Iwona; Skowron, Karolina Jadwiga

    2013-01-01

    The research was carried out to assess the efficiency of radiation hygienization of cattle and swine slurry of different density using the high energy electron beam based on the inactivation rate of Salmonella ssp, Escherichia coli, Enterococcus spp and Ascaris suum eggs. The experiment was conducted with use of the linear electron accelerator Elektronika 10/10 in Institute of Nuclear Chemistry and Technology in Warsaw. The inoculated slurry samples underwent hygienization with high energy electron beam of 1, 3, 5, 7 and 10 kGy. Numbers of reisolated bacteria were determined according to the MPN method, using typical microbiological media. Theoretical lethal doses, D 90 doses and hygienization efficiency of high energy electron beam were determined. The theoretical lethal doses for all tested bacteria ranged from 3.63 to 8.84 kGy and for A. suum eggs from 4.07 to 5.83 kGy. Salmonella rods turned out to be the most sensitive and Enterococcus spp were the most resistant to electron beam hygienization. The effectiveness or radiation hygienization was lower in cattle than in swine slurry and in thick than in thin one. Also the species or even the serotype of bacteria determined the dose needed to inactivation of microorganisms. - Highlights: ► The hygienic efficiency of electron beam against slurry was researched. ► The hygienization efficiency depended on the slurry characteristics and microorganism species. ► In most of the cases 7 kGy dose was sufficient for slurry hygienization. ► Dose below 1 kGy allowed for 90% elimination of microorganism population. ► The radiation hygienization is a good alternative for typical slurry treatment methods

  20. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  1. Semisolid slurry of 7A04 aluminum alloy prepared by electromagnetic stirring and Sc, Zr additions

    Directory of Open Access Journals (Sweden)

    Jun-wen Zhao

    2017-05-01

    Full Text Available Slurry preparation is one of the most critical steps for semisolid casting, and its primary goal is to prepare slurry with uniformly distributed fine globules. In this work, electromagnetic stirring (EMS and the addition of Sc and Zr elements were used to prepare semisolid slurry of 7A04 aluminum alloy in a large diameter slurry maker. The effects of different treatments on the microstructure, composition and their radial homogeneity were investigated. The results show that, compared to the slurry without any treatment, large volume slurry with finer and more uniform microstructure can be obtained when treated by EMS, Sc, or Zr additions individually. EMS is more competent in the microstructural and chemical homogenization of the slurry while Sc and Zr additions are more excellent in its microstructural refinement. The combined treatment of EMS, Sc and Zr produces premium 7A04 aluminum alloy slurry with uniformly distributed fine α-Al globules and composition. The interaction mechanism between EMS and Sc and Zr additions was also discussed.

  2. The stability of a novel weakly alkaline slurry of copper interconnection CMPfor GLSI

    Science.gov (United States)

    Yao, Caihong; Wang, Chenwei; Niu, Xinhuan; Wang, Yan; Tian, Shengjun; Jiang, Zichao; Liu, Yuling

    2018-02-01

    Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive (colloidal silica), complexing agent (glycine), inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine, 200 ppm BTA, 20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness (Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Professional Degree Teaching Case Foundation of Hebei Province, China (No. KCJSZ2017008), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Natural Science Foundation of Tianjin, China (No. 16JCYBJC16100).

  3. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    International Nuclear Information System (INIS)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs

  4. Microcystin production in epiphytic cyanobacteria on submerged macrophytes.

    Science.gov (United States)

    Mohamed, Zakaria A; Al Shehri, Abdulrahman M

    2010-06-15

    Cyanotoxins have been largely studied in planktonic and benthic cyanobacteria, but microcystin (MCYST) production in epiphytic cyanobacteria has not been reported yet. The present study reports for the first time the MCYST production in epiphytic cyanobacteria on submerged macrophytes. During this study, four common submerged macrophytes in eutrophic pond in Saudi Arabia were surveyed for the presence of toxic epiphytic cyanobacteria. The results showed that chlorophyll-a and total biovolume of epiphytic cyanobacteria differed significantly among submerged plants with highest values obtained in Stratiotes aloides and lowest in Elodea canadensis. Epiphytic materials collected from Ceratophyllum demersum and S. aloides had higher species diversities than materials collected from E. canadensis and Myriophyllum verticillatum. The cyanobacteria, Merismopedia tenuissima and Leptolyngbya boryana were recorded with a high abundance in epiphytic materials collected from all submerged macrohpytes. Based on Enzyme-linked immunosorbent assay (ELISA), these two species were found to produce MCYSTs (MCYSTs) with concentrations of 1438 and 630 microg g(-1) dry weight, respectively. HPLC analysis of the methanolic extracts of the two species showed that M. tenuissima extract contained MCYST-RR and -LR/demethyl LR plus 3 minor unidentified MCYSTs, while L. boryana extract contained MCYST-YR, -LR/demethyl LR, and 2 minor unidentified MCYSTs. This study suggests that epiphytic species should be considered during monitoring of toxic cyanobacteria in water sources. 2010 Elsevier Ltd. All rights reserved.

  5. Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling

    Directory of Open Access Journals (Sweden)

    FENG Cai-mei

    2018-02-01

    Full Text Available Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.

  6. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    Science.gov (United States)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent

  7. Leaf absorption of atmospheric ammonia emitted from pig slurry applied beneath the canopy of winter wheat

    International Nuclear Information System (INIS)

    Gjedde Sommer, S.; Jensen, E.S.; Kofoed Schjoerring, J.

    1993-01-01

    Absorption of volatilized ammonia after application of slurry onto the soil surface (sand) between rows of a wheat crop was studied in two experiments. The slurry was labelled with 15 N-NH 4 . During seven days the accumulated gaseous N loss from the slurry varied from 6.9 to 11.1 g N m -2 . In April ammonia losses from slurry applied beneath a 5 cm high wheat crop were equal to losses from slurry applied to a fallow, but 2.2% of the lost atmospheric ammonia was taken up by the leaves. In May ammonia loss from slurry applied between the rows of a 43 cm high crop was reduced by 6% compared to the loss from fallow, because of a reduced transfer of ammonia from the slurry to the air. Of the emitted ammonia 3.3% was absorbed by the canopy. (au)

  8. Heat transfer study of a submerged reactor channel under boil-off condition

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Deb [Bhabha Atomic Research Centre, Mumbai (India). Reactor Safety Div.; Sahoo, P.K. [Indian Institute of Technology, Roorkee (India). Dept. of Mechanical and Industrial Engineering; Ghosh, A.K. [Bhabha Atomic Research Centre, Mumbai (India). Health, Safety and Environment Group

    2012-12-15

    Experiments have been carried out to study the heatup behavior of a single segmented reactor channel for Pressurized Heavy Water Reactor under submerged, partially submerged and exposed conditions. This situation may arise from a severe accident scenario of Pressurised Heavy Water Reactors where full or segmented reactor channels are likely to be disassembled and form a submerged debris bed. An assembly of electrical heater rod, simulating fuel bundle and channel components like Pressure Tube and Calandria Tube constitutes the segmented reactor channel. Heatup of this assembly is observed with respect to different water levels ranging from full submergence to totally exposed and power levels of 6-8 kW, typical to decay power level. It has been observed from the set of experiment that fuel bundle local dry out followed by heatup does not happen till the bundle is partially submerged. Temperature excursion of the bundle is evident when the bundle is exposed to steam-air environment. (orig.)

  9. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer

  10. THE STUDY ON THE DURABILITY OF SUBMERGED STRUCTURE DISPLACEMENT DUE TO CONCRETE FAILURE

    Directory of Open Access Journals (Sweden)

    M. Mohd

    2016-09-01

    Full Text Available Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  11. Impacts of climate change on submerged and emergent wetland plants

    Science.gov (United States)

    Frederick T. Short; Sarian Kosten; Pamela A. Morgan; Sparkle L Malone; Gregg E. Moore

    2016-01-01

    Submerged and emergent wetland plant communities are evaluated for their response to global climate change (GCC), focusing on seagrasses, submerged freshwater plants, tidal marsh plants, freshwater marsh plants and mangroves. Similarities and differences are assessed in plant community responses to temperature increase, CO2increase, greater UV-B exposure, sea...

  12. Yield Stress Reduction of Radioactive Waste Slurries by Addition of Surfactants

    International Nuclear Information System (INIS)

    MICHAEL, STONE

    2005-01-01

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass while the facilities at the Hanford site are in the design/construction phase. Both processes utilize slurry-fed joule heated melters to vitrify the waste slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and melter feed processes. The use of a surface active agent, or surfactant, to increase the solids loading that can be fed to the melters would increase melt rate by reducing the heat load on the melter required to evaporate the water in the feed. The waste slurries are non-Newtonian fluids with rheological properties that were modeled using the Bingham Plastic mod el (this model is typically used by SRNL when studying the DWPF process1).The results illustrate that altering the surface chemistry of the particulates in the waste slurries can lead to a reduction in the yield stress. Dolapix CE64 is an effective surfactant over a wide range of pH values and was effective for all simulants tested. The effectiveness of the additive increased in DWPF simulants as the concentration of the additive was increased. No maxi main effectiveness was observed. Particle size measurements indicate that the additive acted as a flocculant in the DWPF samples and as a dispersant in the RPP samples

  13. Demonstration and Field Evaluation of Streambank Stabilization with Submerged Vanes

    Science.gov (United States)

    Whitman, H.; Hoopes, J.; Poggi, D.; Fitzpatrick, F.; Walz, K.; ,

    2001-01-01

    The effectiveness of submerged vanes for reducing bank erosion and improving aquatic habitat is being evaluated at a site on North Fish Creek, a Lake Superior tributary. Increased runoff from agricultural areas with clayey soils has increased flood magnitudes and the erosion potential/transport capacity of the stream. Most of the creek's sediment load originates from the erosion of 17 large bluffs. This creek contains important recreational fisheries that are potentially limited by the loss of aquatic habitat from deposition of sediment on spawning beds. Submerged vanes are a cost effective and environmentally less intrusive alternative to traditional structural stabilization measures. Submerged vanes protrude from a channel bed, are oriented at an angle to the local velocity, and are distributed along a portion of channel. They induce a transverse force and torque on the flow along with longitudinal vortexes that alter the cross sectional shape and alignment of the channel. Submerged vanes were installed at a bluff/bend site in summer and fall 2000. The number, size, and layout of the vanes were based upon the channel morphology under estimated bankfull conditions. The effectiveness of the vanes will be evaluated by comparing surveys of the bluff face, streamflow, and channel conditions for several years after installation of the submerged vanes with surveys before and immediately after their installation.

  14. Durability of double-shell slurry feed grouts: FY-90 results

    International Nuclear Information System (INIS)

    Lokken, R.O.; Martin, P.F.C.

    1992-12-01

    Plans for disposal of the low-level fraction of selected double-shell tank wastes at Hanford include grouting. Grout disposal is the process of mixing low-level liquid waste with cementitious powders and pumping the slurry to near-surface, underground concrete vaults; hydration results in the formation of a solid product that binds/encapsulates the radioactive/hazardous constituents. In this durability program, previous studies have indicated a strong impact from curing temperature/time on strength and leach resistance of DSSF grouts. The current studies were expanded to determine whether these impacts could be attributed to other factors, such as dry blend composition and waste concentration. Major conclusions: grouts from dry blends with 40 wt% limestone had lower strengths; compressive strengths and leach resistance decreased with increased curing temperature/time; leach resistance increased for grouts prepared with dilute DSSF; nitrate leach resistance increased with high slag/cement ratios, dilute DSSF, and low curing temperatures; amount of drainable liquids for grouts using diluted DSSF was lowest when slag content was high; the 2 most significant factors affecting grout properties were the slag/cement ratio and waste dilution (slag-waste reactions appear to dominate the properties of DSSF grouts)

  15. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study

    International Nuclear Information System (INIS)

    Sabbah, Rami; Farid, Mohammad M.; Al-Hallaj, Said

    2009-01-01

    This study investigates the influence of using micro-encapsulated phase change material (MEPCM) on the thermal and hydraulic performance of micro-channel heat sinks used for heat dissipation of high power electronic devices. A three-dimensional, one-phase, laminar flow model of a rectangular channel using water slurry of MEPCM with temperature dependent physical properties was developed. The results showed a significant increase in the heat transfer coefficient under certain conditions for heat flux rates of 100 W/cm 2 and 500 W/cm 2 that is mainly dependant on the channel inlet and outlet temperatures and the selected MEPCM melting temperature. Lower and more uniform temperatures across the electronic device can be achieved at less pumping power compared to using water only as the cooling fluid

  16. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    Science.gov (United States)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  17. Rheology of Colombian coal-water slurry fuels: Effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, J E; Rojas, C P; Acero, G [Universidad Industrial de Santander, Bucaramanga (Colombia)

    1996-12-31

    Coal-water slurry fuels (CWSF`s) have been prepared and characterized in a research project in Colombia, sponsored by Colciencias and Ecocarbon, in order to evaluate the effects of the different composition variables on the behavior during preparation and pipe line transportation. The authors have previously presented details describing the characteristics of the slurry fuels prepared with five types of Colombian thermal coals and the influence of their chemical composition on the optimum particle-size distribution (PSD) required to prepare highly loaded and workable CWSF`s. The formulation and design of flow systems of suspensions with high solids content, such as the CWSF`s, require a detailed rheological knowledge of the suspension in terms of the governing parameters related to PSD, coal content, surface chemistry of the particles and dispersants used to stabilize the slurries. Important studies on these aspects have been reviewed and carried out experimentally by other authors specially devoted to the correlations between apparent viscosity, solids content and average coal particle-size. One of the targets to obtain an optimum control on the viscosity and flow properties of the CWSF`s must be based in correlating the Theological constants for the prevailing model of viscosity law to the characteristic parameters of the particle-size distribution and to the coal content in the slurry. In spite of the effect of PSD on the rheology of highly-loaded coal slurries have been long recognized as significant, the specific influence of the various PSD`s on the parameters of the Theological model continues to receive attention to further understanding in order to improve the slurry formulations for a specified purpose on preparation and hydraulic handling. This paper reports the results of an experimental technique of examining the various PSD`s on coal slurry fuel rheology, taking special attention for the effect on the parameters of the rheological model.

  18. Management of Biogas spent slurry for hastening the composting of agro residues

    Directory of Open Access Journals (Sweden)

    G. S. Geeta

    2015-04-01

    Full Text Available The demand for energy and the fertilizers are ever increasing. Organic farming has many advantages looking to the environment pollution, unproductive soil, less yields etc. By installation of a biogas plant serves both the purposes of meeting the fuel as well as obtaining manures. The organic manures need to be added in bulk to meet the nutrient demands of the crop as it is not in concentrated form like chemical fertilizers. Hence, biogas spent slurry is the best alternate for hastening the compost preparation of abundantly available crop residues as well as obtaining enriched compost as conventional method takes long time. Moreover, slurry is composed of major nutrients besides enzymes and a rich microflora. Based on the preliminary results, the present study was conducted at farmer’s field to know whether slurry could be used for degradation of agro residues. One ton of crop residues that included banana waste, sunflower and maize waste, leaf litter of horticultural crops were inoculated individually with 60 L of spent slurry along with consortia of degrading fungi and P-solubilising bacteria. After a retention period of 60 days, nutrients were analysed. The cultures along with slurry indicated 1.5 - 1.96% N with reduction in C:N ratio between 1.6 - 1.82. The micronutrients also increased. Thus, it was concluded that efficient use of spent slurry can be made besides utilising the crop residues and the product for organic cultivation.

  19. Mechanical seal program

    International Nuclear Information System (INIS)

    Lowery, G.B.

    1983-01-01

    The experimental plans and timing for completion of the mechanical seal program for both the slurry and transfer pumps are given. The slurry pump seal program will be completed by April 1984 with turnover of two seals in pumps to SRP Tank 15H. Transfer pump seal design will be released for plant use by May 1984. Also included are various other pump and seal related tests

  20. Putting the coal slurry pipelines to the test

    Energy Technology Data Exchange (ETDEWEB)

    Sauermann, H B

    1978-03-01

    This paper deals with the advantages and disadvantages of coal slurry pipelines and describes coal slurry tests undertaken in three test circuits with 100, 200 and 250 mm diameter pipes. The test results from the test circuits were used to scale-up pressure gradients to larger pipe diameters. The construction and installation of hydraulic transport pipelines is simple and requires a minimum of space. The crossing of rivers, roads, railways or any other obstacles is comparatively easy. The operation, supervision and maintenance of a pipeline is simple since any pipeline can be easily adapted for fully automatic control. For this reason manpower requirements are small resulting in only small increases in operating costs during the life of a pipeline. This is an attractive feature in any economy troubled by inflationary trends. In transporting a commodity such as coal the quantities handled are usually large and the distances are long. The profitability of hydraulic transportation systems benefits from such operating conditions. Even though the various components of a slurry transport system, such as the slurrying facilities at the mine end and the dewatering facilities at the utilization end, are complex, their reliability is high. Against the advantages, the following limitations can be visualized: It is practically impossible to transport solids other than those for which the pipeline was designed; in this regard, road and rail transportation is more versatile. The solids throughput through a pipeline cannot be economically increased beyond its design throughput. Pipelining involves the use of fluids, in most cases water, which in some instances may not be readily available.

  1. Slurry feed variability in West Valley's melter feed tank and sampling system

    International Nuclear Information System (INIS)

    Fow, C.L.; Kurath, D.E.; Pulsipher, B.A.; Bauer, B.P.

    1989-04-01

    The present plan for disposal of high-level wastes at West Valley is to vitrify the wastes for disposal in deep geologic repository. The vitrification process involves mixing the high-level wastes with glass-forming chemicals and feeding the resulting slurry to a liquid-fed ceramic melter. Maintaining the quality of the glass product and proficient melter operation depends on the ability of the melter feed system to produce and maintain a homogeneous mixture of waste and glass-former materials. To investigate the mixing properties of the melter feed preparation system at West Valley, a statistically designed experiment was conducted using synthetic melter feed slurry over a range of concentrations. On the basis of the statistical data analysis, it was found that (1) a homogeneous slurry is produced in the melter feed tank, (2) the liquid-sampling system provides slurry samples that are statistically different from the slurry in the tank, and (3) analytical measurements are the major source of variability. A statistical quality control program for the analytical laboratory and a characterization test of the actual sampling system is recommended. 1 ref., 5 figs., 1 tab

  2. Fermentation of Anaerobic Cow Waste as Bio-Slurry Organic Fertilizer and Nitrogen Chemical Fertilizer on Soybean

    Science.gov (United States)

    Yafizham; Sutarno

    2018-02-01

    The study aimed was to evaluate the effect of bio-slurry organic fertilizer and urea chemical fertilizer combination on fresh material weight, phosphorus and potassium soybean straw, and seed weight per soybean plant plot. The experiment was conducted with a randomized block design with a single treatment repeated 5 times consisting of P0: control (without fertilizer), P1: bio-slurry 10 t/ha + 25 kg of N/ha, P2: bio-slurry 10 t/ha + 50 kg of N/ha, P3: bio-slurry 10 t/ha + 75 kg of N/ha, P4: bio-slurry 10 t/ha + 100 kg of N/ha and P5: bio-slurry 10 t/ha. The results showed that bio-slurry treatment of 10 t/ha + 25 kg of N/ha resulted in the highest fresh weight and dry weight of soybean plants, respectively of 240.7 g and 22.33 g, but not significantly different from the bio-slurry treatment of 10 t/ha + 50 kg of N/ha which yielded fresh weight of 197.7 g and a dry weight of 19.08 g. P production of 10.23 g per plant was significantly higher than other treatments but didn’t differ significantly between P2 and P4 treatments of 8.05 and 7.17 g per plant. The bio-slurry treatment of 10 t/ha + 25 kg of N/ha also yielded K of 6.46 g per plant butn’t unlike the bio-slurry treatment of 10 t/ha + 50 kg of N/ha. While the number of pods per plant and weight of 100 grains of the highest soybean seeds were also produced from bio-slurry treatment of 10 t/ha + 25 kg of N/ha.

  3. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  4. High static gel strength cement slurries for gas flow-laboratory surveys and case history

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P.; Ribeiro, Danilo [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pessoa, Laudemar [University of Adelaide (Australia). Math. Bachelor Master Petroleum Engineer

    2008-07-01

    Gas migration is a phenomenon involving fluid density control, well conditioning, good adherence of the cement slurry to the contacting surfaces, chemical-physical properties, cement hydration mechanisms, and the well's geometry. This problem is evident in several producing wells with a pressurized annulus. Recently, a trend of combining operational techniques with cement slurries capable of developing very high static gel strength (SGS) has developed. Slurry designs intended to confer high SGS almost always have greater rheologies. This can make it difficult to mix the slurry on surfaces or even move the slurry placement through the well, more so because gas-producing wells are typically deep and have complex geometry. This paper evaluates the industry's understanding of this problem. It compares the major solutions with current cement slurry designs and, in addition to the conventional specific gas well parameters, it emphasizes the high SGS and low rheologies on surface conditions. This study also documents the success and efficiency of cementing at a Brazilian sedimentary basin which was completed using designs recommended in this work. This paper does not consider the gas migration occurrence through the cementing matrix. (author)

  5. Estimation of methane emissions from slurry pits under pig and cattle confinements

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Olsen, Anne B.; Elsgaard, Lars

    2016-01-01

    Quantifying in-house emissions of methane (CH4) from liquid manure (slurry) is difficult due to high background emissions from enteric processes, yet of great importance for correct estimation of CH4 emissions from manure management and effects of treatment Technologies such as anaerobic digestion...... less sensitive to uncertainties in VSd or slurry temperature. A model application indicated that losses of carbon in VS as CO2 may be much greater than losses as CH4. Implications of these results for the correct estimation of CH4 emissions from manure management, and for the mitigation potential...... and cattle slurry differed significantly at 0.030 and 0.011 kg CH4 kg-1 VS (volatile solids). Current estimates of CH4 emissions from pig and cattle manure management correspond to 0.032 and 0.015 kg CH4 kg-1, respectively, indicating that slurry pits under animal confinements are a significant source...

  6. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  7. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, H.P.

    1992-10-01

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  8. The development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D F; Evans, G O; Harrell, P A; Whitehurst, B M

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents, and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt.% on sedimentation ratios, drain times, and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  9. Disposal of oil cuttings by downhole fracturing injections : slurry product specifications issues

    International Nuclear Information System (INIS)

    Radzuan Junin

    1994-01-01

    The technique of using on-site injection of oil contaminated drill cuttings is attracting considerable attention as a cost effective means of complying with environmental legislation concerning discharges of drilling wastes. The slurrification and injection of oil based cuttings into a casing annulus, a process developed in 1989 by a major oil and gas producer/ operator, has proven to be a significant step toward reduction of such environmental waste. This paper discusses the development of the cuttings reinjection, slurrification, slurry properties and benefits of quality slurry, and behaviour of solid laden slurries in a fracture in conjunction with down-hole disposal operations

  10. The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching.

    Science.gov (United States)

    Zhou, Jun; Zheng, Guanyu; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Cui, Chunhong

    2013-01-01

    The feasibility of removing heavy metals and eliminating pathogens from pig slurry through bioleaching involving the fungus Galactomyces sp. Z3 and two acidophilic thiobacillus (A. ferrooxidans LX5 and A. thiooxidans TS6) was investigated. It was found that the isolated pig slurry dissolved organic matter (DOM) degrader Z3 was identified as Galactomyces sp. Z3, which could grow well at pH 2.5-7 and degrade pig slurry DOM from 1973 to 942 mg/l within 48 h. During the successive multi-batch bioleaching systems, the co-inoculation of pig slurry degrader Galactomyces sp. Z3 and the two Acidithiobacillus species could improve pig slurry bioleaching efficiency compared to the single system without Galactomyces sp. Z3. The removal efficiency of Zn and Cu exceeded 94% and 85%, respectively. In addition, the elimination efficiencies of pathogens, including both total coliform and faecal coliform counts, exceeded 99% after bioleaching treatment. However, the counts of Galactomyces sp. Z3 decreased with the fall of pH and did not restore to the initial level during successive multi-batch bioleaching systems, and it is necessary to re-inoculate Galactomyces sp. Z3 cells into the bioleaching system to maintain its role in degrading pig slurry DOM. Therefore, a bioleaching technique involving both Galactomyces sp. Z3 and Acidithiobacillus species is an efficient method for removing heavy metals and eliminating pathogens from pig slurry.

  11. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Hutchings, Nicholas John; Peters, Gregory M.

    2014-01-01

    Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range...... of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000. kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient...... on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil...

  12. Interim report: Study of benzene release from Savannah River in-tank precipitation process slurry simulant

    International Nuclear Information System (INIS)

    Rappe, K.G.; Gauglitz, P.A.

    1997-09-01

    At the Savannah River Site, the in-tank precipitation (ITP) process uses sodium tetraphenylborate (NaTPB) to precipitate radioactive cesium from alkaline wastes. During this process, potassium is also precipitated to form a 4-wt% KTPB/CsTPB slurry. Residual NaTPB decomposes to form benzene, which is retained by the waste slurry. The retained benzene is also readily released from the waste during subsequent waste processing. While the release of benzene certainly poses both flammability and toxicological safety concerns, the magnitude of the hazard depends on the rate of release. Currently, the mechanisms controlling the benzene release rates are not well understood, and predictive models for estimating benzene release rates are not available. The overall purpose of this study is to obtain quantitative measurements of benzene release rates from a series of ITP slurry stimulants. This information will become a basis for developing a quantitative mechanistic model of benzene release rates. The transient benzene release rate was measured from the surface of various ITP slurry (solution) samples mixed with benzene. The benzene release rate was determined by continuously purging the headspace of a sealed sample vessel with an inert gas (nitrogen) and analyzing that purged headspace vapor for benzene every 3 minutes. The following 75-mL samples were measured for release rates: KTPB slurry with 15,000 ppm freshly added benzene that was gently mixed with the slurry, KTPB slurry homogenized (energetically mixed) with 15,000 ppm and 5,000 ppm benzene, clear and filtered KTPB salt solution saturated with benzene (with and without a pure benzene layer on top of the solution), and a slurry sample from a large demonstration experiment (DEMO slurry) containing-benzene generated in situ

  13. Biological treatment of soils contaminated with hydrophobic organics using slurry and solid phase techniques

    International Nuclear Information System (INIS)

    Cassidy, D.P.; Irvine, R.L.

    1995-01-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurry is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay load contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the ate and extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies

  14. Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement.

    Science.gov (United States)

    Yang, Ming; Kuittinen, Suvi; Vepsäläinen, Jouko; Zhang, Junhua; Pappinen, Ari

    2017-11-01

    This study aims to improve acetone-butanol-ethanol production from the hydrolysates of lignocellulosic material by supplementing starchy slurry as nutrients. In the fermentations of glucose, xylose and the hydrolysates of Salix schwerinii, the normal supplements such as buffer, minerals, and vitamins solutions were replaced with the barley starchy slurry. The ABE production was increased from 0.86 to 14.7g/L by supplementation of starchy slurry in the fermentation of xylose and the utilization of xylose increased from 29% to 81%. In the fermentations of hemicellulosic and enzymatic hydrolysates from S. schwerinii, the ABE yields were increased from 0 and 0.26 to 0.35 and 0.33g/g sugars, respectively. The results suggested that the starchy slurry supplied the essential nutrients for ABE fermentation. The starchy slurry as supplement could improve the ABE production from both hemicellulosic and cellulosic hydrolysate of lignocelluloses, and it is particularly helpful for enhancing the utilization of xylose from hemicelluloses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of storage time and straw content of cattle slurry on the mineralization of nitrogen and carbon in soil

    DEFF Research Database (Denmark)

    Sørensen, P.

    1998-01-01

    Animal slurries are stored for a variable period of time before application in the field. The effect of cattle slurry storage time and temperature on the subsequent mineralization of C and N in soil was studied under laboratory conditions. Urine and faeces from a dairy cow were sampled separately...... and mixed to a slurry. After 4 weeks of storage under anaerobic conditions at 15 degrees C, the NH4+ N content exceeded the original urinary N content of the slurry; the NH4+ content increased only slightly during the following 16 weeks of storage. After 4 weeks of storage, the proportion of slurry C...... in volatile fatty acids (VFA) amounted to 10% and increased to 15% after 20 weeks. Straw addition to the slurry caused an increase of VFA-C in stored slurry, but had a negligible influence on the proportion of slurry N in the form of NH4+. Slurries subjected to different storage conditions were added...

  16. Engineering properties of nuclear waste slurries - 16378

    International Nuclear Information System (INIS)

    Biggs, Simon; Fairweather, Michael; Hunter, Timothy; Omokanye, Qanitalillahi; Peakall, Jeffrey

    2009-01-01

    The type of particulate systems encountered in legacy nuclear waste slurries is highly complicated, with the aggregation and flow behaviour being at times very variable. However, deconstructing the complex overall slurry activity to singular particle-particle interactions can lead to a greater understanding of the mechanisms involved with particle aggregation, and so to predictions of their settling and flow in nuclear systems. Of particular importance to legacy waste is the role of salts in controlling the attraction of particles (and so in dictating the rheological properties of the system) as sludge may contain a variety of specific ions and generally have high ionic conductivity [1]. In this paper, particle-particle interactions are characterised using a number of complimentary methods, and their influence on resulting flow and bed compression is measured. The methods used to characterise the particle-particle interactions under various salt and pH conditions were electro-acoustic analysis (zeta potential) and atomic force microscopy (AFM). Following on from the analysis of particle-particle properties, bulk sediment behaviour was investigated using shear and compressive yield stress measurements, vital parameters in dictating flow and dewatering performance, respectively. Together, these techniques enable the characterisation of a range of particulate systems that may be encountered in legacy wastes, and results point to a number of important factors that can help explain the observed variability in industrial slurry behaviour. (authors)

  17. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    International Nuclear Information System (INIS)

    Lan, G; Jiang, J; Li, D D; Yi, W S; Zhao, Z; Nie, L N

    2013-01-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system

  18. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    Science.gov (United States)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  19. A study on the treatment of radioactive slurry liquid waste

    International Nuclear Information System (INIS)

    Jeong, Gyeong Hwan; Chung, U. S.; Baik, S. T.; Park, S. K.; Moon, J.S.; Jung, K.J.

    1998-12-01

    The influence of anionic flocculants on the dewatering of radioactive slurries has been investigated in a laboratory-scale vacuum filtration unit. Simultaneously the influence of certain surfactants on the dewatering of radioactive slurries with anionic flocculants has also been investigated. Test results show that the flocculated filter cake generally contains higher residual water than the unflocculated cake. The non-ionic surfactant Triton X-100 was effective in reducing the moisture content of the cake

  20. A study on the treatment of radioactive slurry liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyeong Hwan; Chung, U. S.; Baik, S. T.; Park, S. K.; Moon, J.S.; Jung, K.J

    1998-12-01

    The influence of anionic flocculants on the dewatering of radioactive slurries has been investigated in a laboratory-scale vacuum filtration unit. Simultaneously the influence of certain surfactants on the dewatering of radioactive slurries with anionic flocculants has also been investigated. Test results show that the flocculated filter cake generally contains higher residual water than the unflocculated cake. The non-ionic surfactant Triton X-100 was effective in reducing the moisture content of the cake.

  1. 3-dimensional Simulation of an Air-lift Pump from Bubbly to Slug Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hongrae; Jo, Daeseong [Kyungpook National Univ, Daegu (Korea, Republic of)

    2015-10-15

    The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it's pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.

  2. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    International Nuclear Information System (INIS)

    Adkins, B.J.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  3. Apparatus and method of measuring fluctuations of excavated mud amount in a slurry line

    International Nuclear Information System (INIS)

    Yamazaki, H.; Kubota, R.; Uchida, Y.; Kasuya, T.; Seki, N.

    1976-01-01

    An apparatus and method for measuring fluctuations in amount of soil in slurry or soil-containing fluid line is described. Each system of feeding the slurry typically to tunneling face and draining it therefrom in the slurry line is provided with gamma-ray densimeter and electromagnetic flow-meter to obtain respective amounts of soil only (dry-soil amounts) in the slurry flowing through each of said systems from respective outputs of these meters in each system, so that actually excavated amount through ground layer of a shielded excavator at the tunneling face can be measured by the difference between the respective dry-soil amounts. The excavator will be advanced depending on this measured amount

  4. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra; Amalendu Nayak [Sambalpur University, Orissa (India). Centre of Studies in Surface Science and Technology

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point of coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.

  5. Natural convection heat transfer enhancement using Microencapsulated Phase-Change-Material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nakano, Fumihiko; Nagashima, Akira.

    1997-01-01

    The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5μm and specific weight is same as water. The slurry of the MCPCM and water is put into a test apparatus, which is a rectangular enclosure with a heated horizontal cylinder. As the concentrations of PCM in the slurry are changed in 1,3 and 5%, the heat transfer coefficients of the cylinder are larger than that of water as working fluid, by 3,20 and 35% enhancements respectively. (author)

  6. Environmental Consequences of Pig Slurry Treatment Technologies

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke

    occur during manure storage and after field application. The main emissions are ammonia, nitrous oxide, methane, carbon dioxide, nitrate, phosphorus and odour. Slurry treatment technologies have been and are being developed in order to reduce the environmental impacts of manure. However, it is important...... and excluding biogenic carbon, marine and freshwater eutrophication potential, terrestrial acidification and eutrophication potential, and fossil resource depletion potential. The different types of treatment technologies showed varying environmental profiles, meaning that one type of technology was beneficial...... technology, or co-substrate for anaerobic digestion). With respect to odorous emissions, an LCIA method was developed, but due to a lack of data it proved difficult to include odour in LCA. Regulations appear to have an influence on the environmental impacts of slurry treatment. A decrease in N application...

  7. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants...... of this terrestrial plant species to submergence for gas exchange capacity is also shown. Shoot acclimation to submergence involved a reduction of the diffusion resistance to gases, which was not only functional by increasing diffusion of oxygen into the plant, but also by increasing influx of CO2, which enhances...... maintain relatively high internal oxygen pressures under water, and even may release oxygen via the roots into the sediment, also in dark. Based on these results, we challenge the dogma that oxygen pressures in submerged terrestrial plants immediately drop to levels at which aerobic respiration is impaired...

  8. Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale.

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Hao, Beibei; Liu, Guihua

    2013-10-01

    Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.

  9. Slurry explosives

    Energy Technology Data Exchange (ETDEWEB)

    1973-08-23

    A slurry explosive is comprised of (1) a composition consisting of ammonium nitrate or a mixture of ammonium nitrate and an alkali metal nitrate; or an alkaline earth metal nitrate; or an alkali metal nitrate and an alkaline earth metal nitrate; at least one member selected from the group consisting of 2,4,6-trinitrotoluene, aluminum, smokeless powder and fuels; and water; (2) 0.1 to 2.0% of guar gum; (3) between 0% and 0.3% of a sodium, potassium, calcium or magnesium borate; and greater than 0% but not more than 20% of hexamethylene tetramine; and (4) 0.02 to 2.0% of antimony potassium tartarate, antimony trioxide, antimony trisulfide or a mixture of these antimony compounds, % by wt.

  10. The effect on slurry water as a fresh water replacement in concrete properties

    Science.gov (United States)

    Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.

  11. Molecular dynamics simulations of melting behavior of alkane as phase change materials slurry

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Zhang Yanlai; Li Fuhuo

    2012-01-01

    Highlights: ► The melting behavior of phase change materials slurry was investigated by molecular dynamics simulation method. ► Four different PCM slurry systems including pure water and water/n-nonadecane composite were constructed. ► Amorphous structure and periodic boundary conditions were used in the molecular dynamics simulations. ► The simulated melting temperatures are very close to the published experimental values. - Abstract: The alkane based phase change materials slurry, with high latent heat storage capacity, is effective to enhance the heat transfer rate of traditional fluid. In this paper, the melting behavior of composite phase change materials slurry which consists of n-nonadecane and water was investigated by using molecular dynamics simulation. Four different systems including pure water and water/n-nonadecane composite were constructed with amorphous structure and periodic boundary conditions. The results showed that the simulated density and melting temperature were very close to the published experimental values. Mixing the n-nonadecane into water decreased the mobility but increased the energy storage capacity of composite systems. To describe the melting behavior of alkane based phase change materials slurry on molecular or atomic scale, molecular dynamics simulation is an effective method.

  12. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    Science.gov (United States)

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. NPK NMR Sensor: Online Monitoring of Nitrogen, Phosphorus, and Potassium in Animal Slurry.

    Science.gov (United States)

    Sørensen, Morten K; Jensen, Ole; Bakharev, Oleg N; Nyord, Tavs; Nielsen, Niels Chr

    2015-07-07

    Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.

  14. Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii

    NARCIS (Netherlands)

    Vanderstukken, M.; Declerck, S.A.J.; Decaestecker, E.; Muylaert, K.

    2014-01-01

    Keywords: allelochemicals; chemical ecology; competition; nutrient limitation; shallow lakes Summary 1.It is well known that submerged macrophytes can suppress phytoplankton blooms in lakes and thus promote water quality and biodiversity. One of the possible mechanisms through which submerged

  15. Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable lands

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, M., E-mail: marco.carozzi@unimi.it [University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milan (Italy); Ferrara, R.M.; Rana, G. [Consiglio per la Ricerca e sperimentazione in Agricoltura, Research Unit for Cropping Systems in Dry Environments, via C. Ulpiani, 5 – 70125 Bari (Italy); Acutis, M. [University of Milan, Department of Agricultural and Environmental Sciences, via Celoria 2, 20133 Milan (Italy)

    2013-04-01

    To evaluate the best practices in reducing ammonia (NH{sub 3}) losses from fertilised arable lands, six field trials were carried out in three different locations in northern Italy. NH{sub 3} emissions from cattle slurry were estimated considering the spreading techniques and the field incorporation procedures. The measurements were performed using long term exposure samplers associated to the determination of the atmospheric turbulence and the use of the backward Lagrangian stochastic (bLS) model WindTrax. The results obtained indicate that the NH{sub 3} emission process was exhausted in the first 24–48 h after slurry spreading. The slurry incorporation technique was able to reduce the NH{sub 3} losses with respect to the surface spreading, where a contextual incorporation led to reductions up to 87%. However, the best abatement strategy for NH{sub 3} losses from slurry applications has proved to be the direct injection into the soil, with a reduction of about 95% with respect to the surface spreading. The results obtained highlight the strong dependence of the volatilisation phenomenon by soil and weather conditions. - Highlights: ► Ammonia emissions from land-application of slurry were quantified. ► We examined and compared six different agronomic treatments in three locations. ► The faster was the soil-incorporation of slurry, the lower was the ammonia loss. ► The direct injection of slurry was found to be the best abatement strategy. ► The environmental factors were able to strongly influence the ammonia emission.

  16. Effects of slurry application methods on soil faunal communities in permanent grassland

    NARCIS (Netherlands)

    Vliet, van P.C.J.; Goede, de R.G.M.

    2006-01-01

    We studied the effects of two slurry manure application methods, broadcasting manure slurry (MB) and manure slit injection (SMI), on soil faunal communities 1 week and 4 or 5 weeks after application in the spring of 2002 and the summer of 2003. No effect on total numbers of Enchytraeidae and

  17. ABSORPTION OF GASES INTO ACTIVATED CARBON WATER SLURRIES IN A STIRRED CELL

    NARCIS (Netherlands)

    TINGE, JT; DRINKENBURG, AAH

    A surface-aerated stirred cell with a flat liquid surface was used to investigate the absorption of propane and ethene gas into slurries of activated carbon and water. Slurries with a solids concentration up to 4% by weight and particle diameters up to 565-mu-m were used. The experimental mass

  18. On-farm impact of cattle slurry manure management on biological soil quality

    NARCIS (Netherlands)

    Goede, de R.G.M.; Brussaard, L.; Akkermans, A.D.L.

    2003-01-01

    The effects of dairy cattle slurry management on soil biota, soil respiration and nitrogen (N) mineralization were evaluated in a farm trial across 12 farms and a field experiment on 2 farms located in a dairy farming area in the north of the Netherlands. The slurry management consisted of slit

  19. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  20. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  1. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.P.; Wells, B.E.

    2000-01-01

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m 3 ) of supernatant liquid and 95,000 gallons (360 m 3 ) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom

  2. Effect of plastic viscosity and yield value on spray characteristics of magnesium-slurry fuel

    Science.gov (United States)

    Prok, George M

    1957-01-01

    Magnesium slurries were sprayed onto a sheet of paper from an air-atomizing injector. Drop sizes and distributions were then determined from photomicrographs. Four different surface-active additives were used in preparing the slurries to give plastic viscosities between 0.22 and 0.51 poise and yield values between 150 and 810 dynes-cm(exp 2). It was found that there was no significant variation in the spray characteristics of these slurries when tested under the same conditions.

  3. Rheokinetic Analysis of Hydroxy Terminated Polybutadiene Based Solid Propellant Slurry

    Directory of Open Access Journals (Sweden)

    Abhay K Mahanta

    2010-01-01

    Full Text Available The cure kinetics of propellant slurry based on hydroxy-terminated polybutadiene (HTPB and toluene diisocyanate (TDI polyurethane reaction has been studied by viscosity build up method. The viscosity (ɳ–time (t plots conform to the exponential function ɳ = aebt, where a & b are empirical constants. The rate constants (k for viscosity build up at various shear rate (rpm, evaluated from the slope of dɳ/dt versus ɳ plots at different temperatures, were found to vary from 0.0032 to 0.0052 min-1. It was observed that the increasing shear rate did not have significant effect on the reaction rate constants for viscosity build up of the propellant slurry. The activation energy (Eɳ, calculated from the Arrhenius plots, was found to be 13.17±1.78 kJ mole-1, whereas the activation enthalpy (∆Hɳ* and entropy (∆Sɳ* of the propellant slurry, calculated from Eyring relationship, were found to be 10.48±1.78 kJ mole-1 and –258.51± 5.38 J mole-1K-1, respectively. The reaction quenching temperature of the propellant slurry was found to be -9 ° C, based upon the experimental data. This opens up an avenue for a “freeze-and-store”, then “warm-up and cast”, mode of manufacturing of very large solid rocket propellant grains.

  4. Slurry Coating System Statement of Work and Specification

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for a new system. This document presents the specifications and requirements for the system.

  5. Topology optimization for submerged buoyant structures

    NARCIS (Netherlands)

    Picelli, R.; van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; van Keulen, A.

    2017-01-01

    This paper presents an evolutionary structural topology optimization method for the design of completely submerged buoyant modules with design-dependent fluid pressure loading. This type of structure is used to support offshore rig installation and pipeline transportation at all water depths. The

  6. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    OpenAIRE

    Weijing Yao; Jianyong Pang; Yushan Liu

    2018-01-01

    Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry inject...

  7. Fabrication of tubed functionally graded material by slurry dipping process. Thickness control of dip-coated layer

    International Nuclear Information System (INIS)

    Watanabe, Ryuzo

    1997-03-01

    In order to obtain long life fuel cladding tubes for the fast breeder reactor, the concept of functionally graded material was applied for the material combination of Molybdenum/stainless steel/Titanium, in which Titanium and Molybdenum were placed at the inner and outer sides, respectively. Slurry dipping method was employed because of its capability of shape forming and microstructural control. We have hitherto reported the design criteria for the graded layers, preparation of the slurry, and microstructural control of the dip-coated layers. In the present report, the thickness control of the dip-coated layer is described in detail. The thickness of the dip-coated layer depends primarily on the viscosity of the slurry. Nevertheless, for the stable dispersion of the powder in the slurry, which dominates the microstructural homogeneity, an optimum viscosity value is present for the individual slurries. With stable slurries of Ti, Mo, stainless steel powders and their mixtures, the thicknesses of dip-coated layers were controlled in dependence of their viscosities and yield values. For Ti and stainless steel powders and their mixture a PAANa was used as a dispersing agent. A NaHMP was found to be effective for the dispersion of Mo powder and Mo/stainless steel powder mixture. For all slurries tested in the present investigation PVA addition was helpful for the viscosity control. Dip-coating maps have been drawn for the stabilization of the slurries and for the formation of films with a sufficient strength for further manipulation for the slurries with low viscosity (∼10 mPa s). The final film thickness for the low-viscosity slurry with the optimum condition was about 200 μm. The slurries with high viscosities of several hundreds mPa s had a good stability and the yield value was easy to be controlled. The film thickness was able to be adjusted in the size range between several tens and several hundreds μm. The final thickness of the graded layer was determined

  8. Development of spent solvent treatment process by a submerged combustion technique

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide; Chida, Mitsuhisa

    1994-01-01

    An experimental study using a bench-scale equipment of 1 kg-simulated spent solvents per hour has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of tri-n-butyl phosphate and/or n-dodecane, and on the distribution behaviors of combustion products such as phosphoric acid, Ru, I, Zr and lanthanides as TRU simulants in the submerged combustion process. Also the experimental results of TRU separation from phosphoric acid solution by co-precipitation using bismuth phosphate are reported. It was shown that the submerged combustion technique was applicable to the treatment of spent solvents including the distillation residues of the solvent. Based on the experimental data, a new treatment process of spent solvent was proposed which consisted of submerged combustion, co-precipitation using bismuth phosphate, ceramic membrane filtration, cementation of TRU lean phosphate, and vitrification of TRU rich waste. (author)

  9. The effect of the particulate phase on coal biosolubilisation mediated by Trichoderma atroviride in a slurry bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Oboirien, B.O.; Burton, S.G. [Bioprocess Engineering Research Unit, Department of Chemical Engineering, University of Cape Town, Rondebosch, 7701 (South Africa); Cowan, D. [Bioprocess Engineering Research Unit, Department of Chemical Engineering, University of Cape Town, Rondebosch, 7701 (South Africa); Department of Biotechnology, University of the Western Cape, Belville (South Africa); Harrison, S.T.L.

    2008-02-15

    Low rank coal is currently under-utilised because of its low calorific value and high moisture and sulphur content. Its solubilisation by both bacterial and fungal cultures has been reported, the latter more commonly. Coal biosolubilisation processes have potential to convert low rank coal to either a clean, cost-effective energy source or complex aromatic compounds for biocatalytic conversion to value-added products. This can lead to an increased utilisation of low rank coal. In this study, the key variables of the slurry that affect biosolubilisation of low rank coal by Trichoderma atroviride in submerged culture were investigated. Results showed that the key operating variables that influence coal biosolubilisation in the slurry bioreactor are coal loading and particle size affecting available surface area. These factors affect the surface area available for coal biosolubilisation. The optimum coal loading occurred between 5 and 10% (w/v); an increase above this optimum led to inhibition of the fungal culture of T. atroviride (ES11) by fragmentation of the fungal mycelium. A decrease in particle size fraction led to an increase in the degree of coal solubilisation. Coal biosolubilisation was shown to increase 4-fold when particle size was decreased from 600-850 {mu}m to 150-300 {mu}m. A 28% biosolubilisation of coal of 150-300 {mu}m, characterised by a surface specific area of 2.17 cm{sup 2} g{sup -} {sup 1}, was measured as coal weight loss over 14 days at solids loading at 5%. This can be compared with a 7.8% coal weight loss at 600-850 {mu}m diameters (0.54 cm{sup 2} g{sup -} {sup 1}). Soluble phenolic compounds are not a significant product of the coal biosolubilisation process. The change in pH observed in the presence of both coal and fungi was independent of coal loading and was not directly related to the extent of coal solubilisation. While soluble intermediates were observed as total organic, further metabolism resulted in complete oxidation of a

  10. Comparison of catalytic ethylene polymerization in slurry and gas phase

    OpenAIRE

    Daftaribesheli, Majid

    2009-01-01

    Polyethylene (PE) with the annual consumption of 70 million tones in 2007 is mostly produced in slurry, gas-phase or combination of both processes. This work focuses on a comparison between the slurry and gas phase processes. Why does PE produced in theses two processes can show extremely different properties and extremely different reaction behaviour even if the same Ziegler-Natta (ZN) catalyst is used? Generally, it is known that the reason can be found in the differences of local condition...

  11. Retrieval technology development for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Wise, B.M.; Miller, W.C.

    1992-05-01

    This paper describes the combined analytical, computational, and experimental program developed for identifying operating strategies for mobilization and retrieval of radioactive waste stored in double-shell tanks at Hanford. Sludge mobilization, slurry uniformity, and slurry retrieval investigations will produce guidelines for mixer pump and retrieval pump operation based on the physical properties of the waste and the geometric properties of the system (number of operating pumps and pump design and placement)

  12. Anaerobic digestion of dairy farm slurry

    Energy Technology Data Exchange (ETDEWEB)

    Bell, C

    1973-04-01

    Bell described the intermittent operation of a pilot-scale anaerobic digester receiving dilute dairy farm slurry. A 65 to 75 percent reduction of the ''permanganate (COD) value'' could be obtained at 35/sup 0/ and a 60 day detention time. Methane content of the gases ranged between 40 and 70 percent.

  13. Influence of Microalgae onto submerged surfaces on Fouling

    Science.gov (United States)

    Kong, M.; Eom, C.; Yoon, B.; Yoon, H.; Kim, B.; Chung, K.

    2012-12-01

    Lots of algae together with organic matter deposited on the submerged surface can be easily observed occurring in the shallower water along the coast. This is mainly because only those organisms with the ability to adapt to the new situations created by man can firmly adhere enough to avoid being washed off. Chemical and microbiological characteristics of the fouling microalgae developed on various surfaces in contact with the seawater were made. The microbial compositions of the microalgae formed on the submerged surfaces were tested for. The quantities of the diverse microalgae in the samples developed on the prohibiting submerged surface were larger when there was no concern about materials for special selection for fouling. To confirm formation of microalgae on adsorbents was done SEM-EDS (Scanning Electron Microscope-Spectrometer) analysis. Microbial identified using optical microscope. In addition to, we quantified attaching microalgae as pass time. Experiment results, ten species which are Nitzshhia sp., Eucampia sp., Coscinodiscus sp., Licmophora sp., Rhizosolenia sp., Cylindrotheca sp., Striateela sp., Thalassionema sp., Guinardia sp., and Helicostomella sp. discovered to reservoir formed biofouling. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater.

  14. Improved Fischer-Tropsch Slurry Reactors

    International Nuclear Information System (INIS)

    Lucero, Andrew

    2009-01-01

    The conversion of synthesis gas to hydrocarbons or alcohols involves highly exothermic reactions. Temperature control is a critical issue in these reactors for a number of reasons. Runaway reactions can be a serious safety issue, even raising the possibility of an explosion. Catalyst deactivation rates tend to increase with temperature, particularly of there are hot spots in the reactor. For alcohol synthesis, temperature control is essential because it has a large effect on the selectivity of the catalysts toward desired products. For example, for molybdenum disulfide catalysts unwanted side products such as methane, ethane, and propane are produced in much greater quantities if the temperature increases outside an ideal range. Slurry reactors are widely regarded as an efficient design for these reactions. In a slurry reactor a solid catalyst is suspended in an inert hydrocarbon liquid, synthesis gas is sparged into the bottom of the reactor, un-reacted synthesis gas and light boiling range products are removed as a gas stream, and heavy boiling range products are removed as a liquid stream. This configuration has several positive effects for synthesis gas reactions including: essentially isothermal operation, small catalyst particles to reduce heat and mass transfer effects, capability to remove heat rapidly through liquid vaporization, and improved flexibility on catalyst design through physical mixtures in addition to use of compositions that cannot be pelletized. Disadvantages include additional mass transfer resistance, potential for significant back-mixing on both the liquid and gas phases, and bubble coalescence. In 2001 a multiyear project was proposed to develop improved FT slurry reactors. The planned focus of the work was to improve the reactors by improving mass transfer while considering heat transfer issues. During the first year of the project the work was started and several concepts were developed to prepare for bench-scale testing. Power

  15. Rice SUB1A constrains remodeling of the transcriptome and metabolome during submergence and post-submergence recovery”.

    Science.gov (United States)

    The rice (Oryza sativa L.) ethylene-responsive transcription factor SUB1A confers tolerance to prolonged, complete submergence by limiting underwater elongation growth. Rice encoding SUB1A-1 also recovers photosynthetic function and re-commences development towards flowering more rapidly after desu...

  16. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An experimental investigation of the thermal/fluid properties of the nitrate to ammonia and ceramic (NAC) product slurry

    International Nuclear Information System (INIS)

    Muguercia, I.; Lagos, L.; Yang, G.; Li, W.; Ebadian, M.A.; Mattus, A.J.; Lee, D.D.; Walker, J.W.; Hunt, R.D.

    1994-01-01

    Recently, a new immobilization technique for LLW, the Nitrate to Ammonia and Ceramic (NAC) process, has been developed. Instead of mixing the liquid waste form directly with the cement to make concrete blocks, the NAC process eliminates the nitrate from the LLW by converting it to ammonia gas. Aluminum particles are used as a reductant to complete this conversion. The final product of the NAC process is gibbsite, which can be further sintered to a ceramic waste form. Experimental tests are conducted to measure the apparent viscosity, the pressure drop, and the heat transfer coefficient of the pipe flow of the Nitrate to Ammonia and Ceramic (NAC) process product slurry. The tests indicate that the NAC product slurry exhibits a typical pseudoplastic fluid behavior. The pressure drop in the pipe flow is a function of the Reynolds number and the slurry temperature. The results also indicate that at a low slurry temperature, the slurry is uniformly heated peripherally. At a high slurry temperature, however, the slurry may be thermally stratified. In a straight pipe, the Nusselt number is reduced as the slurry temperature increases

  18. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  19. Anaerobic digestion of pig manure fibres from commercial pig slurry separation units

    DEFF Research Database (Denmark)

    Thygesen, Ole; Triolo, Jin M.; Sommer, Sven G.

    2014-01-01

    and screw press on average produced approximately 220l [CH4]kg-1 [VS]. Initial methane production can be described using a first-order kinetic model. The average rate constant for manure fibres was 0.030d-1 and for pig slurry 0.071d-1, showing that pig slurry is digested much faster than manure fibres....

  20. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.

    Science.gov (United States)

    Li, Xiaojun; Li, Peijun; Lin, Xin; Zhang, Chungui; Li, Qi; Gong, Zongqiang

    2008-01-15

    Microbial consortia isolated from aged oil-contaminated soil were used to degrade 16 polycyclic aromatic hydrocarbons (15.72 mgkg(-1)) in soil and slurry phases. The three microbial consortia (bacteria, fungi and bacteria-fungi complex) could degrade polycyclic aromatic hydrocarbons (PAHs), and the highest PAH removals were found in soil and slurry inoculated with fungi (50.1% and 55.4%, respectively). PAHs biodegradation in slurry was lower than in soil for bacteria and bacteria-fungi complex inoculation treatments. Degradation of three- to five-ring PAHs treated by consortia was observed in soil and slurry, and the highest degradation of individual PAHs (anthracene, fluoranthene, and benz(a)anthracene) appeared in soil (45.9-75.5%, 62-83.7% and 64.5-84.5%, respectively) and slurry (46.0-75.8%, 50.2-86.1% and 54.3-85.7%, respectively). Therefore, inoculation of microbial consortia (bacteria, fungi and bacteria-fungi complex) isolated from in situ contaminated soil to degrade PAHs could be considered as a successful method.

  1. Application of submerged induction hardening; Ekichu koshuha yakiire no jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nishimori, Y; Nagai, Y; Amii, Y [Mazda Motor Corp., Hiroshima (Japan); Tanaka, Y [Netsuren Co. Ltd., Tokyo (Japan); Mizuma, T [Toyo Advanced Technologies Co. Ltd., Hiroshima (Japan)

    1997-10-01

    As a cost-cutting measure, the linerless diesel engine was adopted by applying submerged induction hardening process which can harden partial inner surface of cylinder block bore. In applying this process, (1) development of induction coil which can form any shape of quenched pattern and (2) the development of machining technology which can hone precisely the distorted bore after quenching, were important. With these improvements, submerged Induction hardening was made practical. 1 ref., 11 figs.

  2. Effects of acidifying pig diets on emissions of ammonia, methane and sulfur from slurry during storage

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Nørgaard, Jan Værum; Poulsen, Hanne Damgaard

    2014-01-01

    and feces were collected separately from twenty-four pigs fed one of four diets (Control, +BA, +CaCl2, +BA+CaCl2) in metabolic cages, and mixed as slurry. During 103 days of storage, all acidifying diets consistently reduced pH in the slurry by 0.4 - 0.6 units. There was a strong relationship between slurry...

  3. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries

    NARCIS (Netherlands)

    Holstvoogd, R.D.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The enhanced absorption of gases in aqueous activated carbbon slurries of fine particles is studied with a non-steady-state absorption model, taking into account the finite adsorption capacity of the carbon particles. It has been found that, for the different gas/activated carbon slurry systems

  4. Determination of particle size distribution of salt crystals in aqueous slurries

    International Nuclear Information System (INIS)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 μm size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 μm in size. 19 figures

  5. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  6. 3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes

    Science.gov (United States)

    Percin, Korcan; Rommerskirchen, Alexandra; Sengpiel, Robert; Gendel, Youri; Wessling, Matthias

    2018-03-01

    State-of-the-art all-vanadium redox flow batteries employ porous carbonaceous materials as electrodes. The battery cells possess non-scalable fixed electrodes inserted into a cell stack. In contrast, a conductive particle network dispersed in the electrolyte, known as slurry electrode, may be beneficial for a scalable redox flow battery. In this work, slurry electrodes are successfully introduced to an all-vanadium redox flow battery. Activated carbon and graphite powder particles are dispersed up to 20 wt% in the vanadium electrolyte and charge-discharge behavior is inspected via polarization studies. Graphite powder slurry is superior over activated carbon with a polarization behavior closer to the standard graphite felt electrodes. 3D-printed conductive static mixers introduced to the slurry channel improve the charge transfer via intensified slurry mixing and increased surface area. Consequently, a significant increase in the coulombic efficiency up to 95% and energy efficiency up to 65% is obtained. Our results show that slurry electrodes supported by conductive static mixers can be competitive to state-of-the-art electrodes yielding an additional degree of freedom in battery design. Research into carbon properties (particle size, internal surface area, pore size distribution) tailored to the electrolyte system and optimization of the mixer geometry may yield even better battery properties.

  7. Waterlogging and submergence: surviving poor aeration

    NARCIS (Netherlands)

    Atwell, B.J.; Ismail, A.M.; Pedersen, O.; Shabala, S.; Sorrell, B.; Voesenek, Laurentius|info:eu-repo/dai/nl/074850849

    2014-01-01

    Flooding, resulting in soil waterlogging and in many situations even complete submergence of plants, is an important abiotic stress in many regions worldwide. The number of floods has increased in recent decades (Figure 18.1), and the severity of floods is expected to increase further in many

  8. Spray polyurea coatings as containment liners in coal slurry storage ponds

    Energy Technology Data Exchange (ETDEWEB)

    Darden, J.W.; Loomis, R.; Roehm, F.T. [Willamette Valley Co., Eugene, OR (United States)

    1996-12-31

    The Southern California Edison (SCE) Mohave Generating Station was built in the early 1970`s in response to the shortage of oil due to the OPEC boycott. Coal/water slurry from the Black Mesa Pipeline is used to generate energy at the plant. Eight storage ponds, each about 175,000 square feet, were built in the mid to late 1970`s to insure a constant supply of slurry to feed the generating units. This paper describes the application of POLYQuik{trademark} P400 spray polyurea coating to the Marcona Pond, a coal slurry storage area at Southern California Edison`s Mohave Generating Station. The coating forms an impermeable barrier to prevent water loss and contamination of subgrade soils. The use of these coatings reduces facility downtime and liner replacement costs, offering a cost savings over the life of the pond.

  9. Flow in water-intake pump bays: A guide for utility engineers. Final report

    International Nuclear Information System (INIS)

    Ettema, R.

    1998-09-01

    This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how the vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes

  10. Differential Response of Floating and Submerged Leaves of Longleaf Pondweed to Silver Ions

    Directory of Open Access Journals (Sweden)

    Nisha Shabnam

    2017-06-01

    Full Text Available In this study, we have investigated variations in the potential of floating and submerged leaves of longleaf pondweed (Potamogeton nodosus to withstand silver ion (Ag+-toxicity. Both floating and submerged leaves changed clear colorless AgNO3 solutions to colloidal brown in the presence of light. Transmission electron microscopy revealed the presence of distinct crystalline Ag-nanoparticles (Ag-NPs in these brown solutions. Powder X-ray diffraction pattern showed that Ag-NPs were composed of Ag0 and Ag2O. Photosystem (PS II efficiency of leaves declined upon exposure to Ag+ with a significantly higher decline in the submerged leaves than in the floating leaves. Similarly, Ag+ treatment caused a significant reduction in the carboxylase activity of the ribulose bisphosphate carboxylase/oxygenase in leaves. The reduction in this carboxylase activity was significantly higher in the submerged than in the floating leaves. Ag+ treatment also resulted in a significant decline in the levels of non-enzymatic and enzymatic antioxidants; the decline was significantly lower in the floating than in submerged leaves. X-ray photoelectron spectroscopy revealed the presence of Ag2O in these leaves. Inductively coupled plasma mass spectrometry analysis revealed a three-fold higher Ag content in the submerged than in floating leaves. Our study demonstrates that floating leaves of longleaf pondweed have a superior potential to counter Ag+-toxicity compared with submerged leaves, which could be due to superior potential of floating leaves to reduce Ag+ to less/non-toxic Ag0/Ag2O-nanoparticles/nanocomplexes. We suggest that modulating the genotype of longleaf pondweed to bear higher proportion of floating leaves would help in cleaning fresh water bodies contaminated with ionic forms of heavy metals.

  11. Superheated fuel injection for combustion of liquid-solid slurries

    Science.gov (United States)

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  12. Kinetic modeling of cement slurry synthesized with Henna extract in oil well acidizing treatments

    Directory of Open Access Journals (Sweden)

    Amir Hossein Aghajafari

    2016-06-01

    Full Text Available Acidizing treatment in petroleum reservoirs is a short-term and viable strategy to preserve the productivity of a well. There is a major concern for the degradation of cement sheath integrity, leading to poor zonal isolation and environmental issues. Therefore, it is essential to understand how the cement behaves when attacked by hydrochloric acid. In this study, a cement slurry by incorporation of the Henna extract, as an environmentally friendly cement additive, was synthesized as a potential solution to solve this problem. The characteristics of the treated cement slurry were compared with a reference slurry (w/c = 0.44 which is composed of only cement and water. A kinetic study was carried out to evaluate the adsorption behavior of the cement slurries exposed to an acid solution with 0.1 M HCl in a range of 25 to 55 °C conditions. The features of the cement slurries were evaluated by multiple analytical techniques such as XRD, FTIR, TG, and DSC analysis. From the experimental data, it is concluded that the second-order Lagergren kinetic model revealed to be the best in describing kinetic isotherms taken, because the margin between experimental and calculated values was minor for this model. The results of the characterization and HCl interaction kinetic studies underlined the prominent protective role of Henna extract-modified cement slurry in the enhancement of the cement resistance against acid attack and utilization in environmentally favorable oil well acidizing treatments.

  13. Attenuation measurements of ultrasound in a kaolin-water slurry. A linear dependence upon frequency

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Mai, J.L.; Good, M.S.

    1993-01-01

    The attenuation of ultrasound through a kaolin-water slurry was measured for frequencies ranging from 0.5 to 3.0 MHz. The maximum concentration of the slurry was for a weight percentage of 44% (or a volume fraction of 0.24). The goal of these measurements was to assess the feasibility of using ultrasonic attenuation to determine the concentration of a slurry of known composition. The measurements were obtained by consecutively adding kaolin to the slurry and measuring the attenuation at each concentration. After reaching a maximum concentration a dilution technique was used, in which an amount of slurry was removed and water was added, to obtain the attenuation as a function of the concentration. The dilution technique was the more effective method to obtain calibration data. These measurements were carried out using two transducers, having a center frequency of 2.25 MHz, separated by 0.1016m (4.0 in.). The maximum attenuation measured in these experiments was about 100Np/m, but the experimental apparatus has the capability of measuring a larger attenuation if the distance between the two transducers is decreased. For a given frequency, the data show that ln V/V 0 depends linearly upon the volume fraction (V is the received voltage for the slurry and V 0 is that obtained for water). This indicated that each particle acts independently in attenuating ultrasound. 12 refs., 7 figs., 3 tabs

  14. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    Energy Technology Data Exchange (ETDEWEB)

    Xue, M.H.; Su, M.X.; Dong, L.L.; Shang, Z.T.; Cai, X.S. [Shanghai University of Science & Technology, Shanghai (China)

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluated on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.

  15. Carbon mineralization in mine tailing ponds amended with pig slurries and marble wastes

    Directory of Open Access Journals (Sweden)

    Raul Zornoza

    2012-07-01

    Full Text Available Effective application of organic residues to reclaim soils requires the optimization of the waste management to minimize CO2 emissions and optimize soil C sequestration efficiency. In this study, the short-term effects of pig slurry amendment alone and together with marble waste on organic matter mineralization in two tailing ponds from Cartagena-La Unión Mining District (SE Spain were investigated in a field remediation experiment. The treatments were: marble waste (MW, pig slurry (PS, marble waste + pig slurry (MW+PS, and control. Soil carbon mineralization was determined using a static chamber method with alkali absorption during 70 days. Soil respiration rates in all plots were higher the first days of the experiment owing to higher soil moisture and higher mean air temperature. MW plots followed the same pattern than control plots, with similar respiration rates. The addition of pig slurry caused a significant increase in the respiration rates, although in MW+PS plots, respiration rates were lower than in PS plots. The cumulative quantities of C-CO2 evolved from the pig slurry mineralization were fitted to a first-order kinetic model explaining 90% of the data. This model implies the presence of only one mineralisable pool (C0. The values of the index C0*constant rate/added C were similar for PS plots in both tailing ponds, but lower in the MW+PS treatment, suggesting that the application of marble reduces the degradability of the organic compounds present in the pig slurry. Thus, the application of marble wastes contributes to slow down the loss of organic matter by mineralization.

  16. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    Science.gov (United States)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  17. Technical report on treatment of radioactive slurry liquid waste

    International Nuclear Information System (INIS)

    Jeong, Gyeong Hwan; Jo, Eun Sung; Park, Seung Kook; Jung, Ki Jung

    1999-06-01

    By literature survey, this report deals with the technology on typical pre-treatment and filtration of radioactive slurry liquid waste, produced during the operation of TRIGA Mark-II, III research reactor, and produced during the decommission/decontamination of TRIGA Mark-II, III research reactor. It is reviewed pre-treatment procedure, both physical and chemical that optimise the dewatering characteristics, and also surveyed types of dewatering devices based on centrifuges, vacuum and pressure filters with particular reference to various combined field approaches using two or more complementary driving forces to achieve better performance. Dewatering operations and devises on filtration of radioactive slurry liquid waste are also analysed. (author)

  18. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  19. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Lentsch, J.W.

    1996-07-01

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  20. Effects of submergence on growth and survival of saplings of three wetland trees differing in adaptive mechanisms for flood tolerance

    Directory of Open Access Journals (Sweden)

    Fumiko Iwanaga

    2015-04-01

    Full Text Available Aim of study: Withstanding total submergence and reaeration following submergence is essential for the survival and establishment of wetland species. We focused on “LOES–low oxygen escape syndrome” and “LOQS–low oxygen quiescence syndrome” and compared tolerances to total submergence among wetland woody species differing in morphological adaptation to soil flooding. Area of study, materials and methods: This study examined the survival of 2-year-old saplings of Taxodium distichum and Metasequioia glyptostroboides (LOQS species, and Alnus japonica (LOES species, during and after total submergence. Saplings were completely submerged, then de-submerged to determine trends in survival and growth Main results: The M. glyptostroboides and A. japonica saplings could not survive prolonged submergence for more than 8 weeks, whereas saplings of T. distichum survived for over 2 years. Submerged saplings of all species showed no significant growth or modifications in morphology and anatomy under water, such as shoot elongation, adventitious root formation, and/or aerenchyma development. All T. distichum saplings that were de-submerged in the second year had the same pattern of shoot growth regardless of differences in timing and seasonality of de-submergence. Wood formation in T. distichum saplings ceased during submergence and resumed after de-submergence in spring and summer, but not in autumn. Research highlights: T. distichum saplings, which survived longer submergence periods than A. japonica and M. glyptostroboides, had physiological characteristics, such as suspension of growth and metabolism, which allowed survival of protracted total submergence (at least 2 years when saplings were immersed during the dormant stage before leaf flushing.

  1. The impact of slurry application technique on nitrous oxide emission from agricultural soils

    NARCIS (Netherlands)

    Velthof, G.L.; Mosquera, J.

    2011-01-01

    Direct nitrous oxide (N2O) emissions from fertilized soils are generally estimated using emission factors. However, the emission factors for N2O emission of applied slurry are not well quantified. The effect of slurry application technique on N2O emission was quantified in field experiments in the

  2. Slurry explosives containing the combination of nitrogen-base salt and hard solid particles as sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, W.M.

    1971-11-02

    In recent years, blasting agents, particularly those of the type known as water gels or slurry explosives have gained considerable commercial acceptance. Generally, the slurry explosives are comprised of an inorganic oxidizing salt, predominantly ammonium nitrate, a thickening agent for the liquid, water, and fuel. The density, velocity of detonation, and ability to sustain detonation are increased so that the compositions propagate in small diameter boreholes. A water-bearing slurry explosive is described containing inorganic oxidizing salt, fuel, water and thickener together with nitrogen- base salt and solid particles having a hardness of at least 4 on the Mohs scale and that have an acoustic impedance at least 2 times that of the matrix of the slurry explosive. (15 claims)

  3. Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrefah, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hohimer, Ryan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nigl, Franz [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toth, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokuda, Satoru T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication of slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 μm in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity

  4. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments

    NARCIS (Netherlands)

    Boedeltje, G; ter Heerdt, GNJ; Bakker, JP

    Seed bank studies focused on submerged aquatic plants are generally performed under submerged conditions, using the seedling-emergence method. However, if a study targets at both submerged species and helophytes, submerged conditions are generally not suitable. We tested the emergence of seedlings

  5. The effect of particle size and concentration on the flow properties of a homogeneous slurry

    International Nuclear Information System (INIS)

    Abbas, M.A.; Crowe, C.T.

    1986-01-01

    This paper presents the results of the effects of particle size and concentration on the velocity distribution in the fully developed flow of a homogeneous slurry. The slurry consisted of chloroform and silica gel with matched index of refraction to enable Laser-Doppler anemometry (LDA) measurements through the mixture. Slurries with two particle sizes and solids concentration up to 30% by volume were studied. Measurements were made over a Reynolds number range of 1,200 to 30,000

  6. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  7. Improvement of Photosynthesis by Sub1 QTL in Rice Under Submergence: Probed by Chlorophyll Fluorescence OJIP Transients

    Directory of Open Access Journals (Sweden)

    Panda Debabrata

    2011-09-01

    Full Text Available The influence of submergence on the photosynthetic activity in rice plants either possessing or not possessing Sub1 QTL i.e. Swarna and Swarna Sub1 cultivars (cv. were evaluated under simulated complete submergence. The leaf photosynthetic rate and stomatal conductance decreased in both the cv. during the progression of submergence as compared to control plant but significant varietal differences was observed after 1 day (d of submergence. Submergence also alters the photo-system (PS II activity, as reflected in a decrease in the values of Fo, Fm and the Fv/Fm ratio and degradation of chlorophyll, more in Swarna than that of Swarna Sub1. Under complete submergence the shape of the OJIP transient also changed in rice leaves with decrease in maximal fluorescence (P=Fm intensity, resulted lowering of variable fluorescence levels. The decrease was more pronounced in Swarna compared to the Swarna Sub1 cv. Thus, Swarna Sub1 improves photosynthetic activity showing more photosynthetic rate compared to Swarna under submergence because, of less degradation of chlorophyll, higher stomatal conductance, and efficient PS II activity.

  8. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  9. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    Science.gov (United States)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  10. A quantitative evaluation of the production performance of ice slurry by the oscillatory moving cooled wall method

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masahiko; Fukusako, Shoichiro [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering; Kawabe, Hiromichi [Senshu Univ., Bibai (Japan). Hokkaido College. Dept. of Agricultural Engineering

    2002-03-01

    Ice slurry has recently been utilized for a variety of engineering fields such as thermal energy storage and high-density energy transportation. In this paper, as a production method of ice slurry, the oscillatory rotating cooled tube method was proposed. A vertical cooled tube was installed in a test vessel that was filled with ethylene glycol solution being forced to move within an aqueous binary solution to produce the ice slurry. Production performance of ice slurry by the present method was determined under a variety of conditions, such as initial concentration of solution, angular acceleration and rotation angle for the oscillation motion of the cooled tube. The production performance was evaluated analytically by constructing a numerical model. The analysis was made to determine the separation condition of ice layer from the cooled tube surface at first, then the production rate of ice slurry was assessed. It was found from the present study that the ice slurry was produced continuously under the appropriate operating conditions in which the separation of ice layer was caused by oscillating motion of the cooled tube. (Author)

  11. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  12. Initial Investigation of Waste Feed Delivery Tank Mixing and Sampling Issues

    International Nuclear Information System (INIS)

    Fort, James A.; Bamberger, Judith A.; Meyer, Perry A.; Stewart, Charles W.

    2007-01-01

    The Hanford tank farms contractor will deliver waste to the Waste Treatment Plant (WTP) from a staging double-shell tank. The WTP broadly classifies waste it receives in terms of 'Envelopes,' each with different limiting properties and composition ranges. Envelope A, B, and C wastes are liquids that can include up to 4% entrained solids that can be pumped directly from the staging DST without mixing. Envelope D waste contains insoluble solids and must be mixed before transfer. The mixing and sampling issues lie within Envelope D solid-liquid slurries. The question is how effectively these slurries are mixed and how representative the grab samples are that are taken immediately after mixing. This report summarizes the current state of knowledge concerning jet mixing of wastes in underground storage tanks. Waste feed sampling requirements are listed, and their apparent assumption of uniformity by lack of a requirement for sample representativeness is cited as a significant issue. The case is made that there is not an adequate technical basis to provide such a sampling regimen because not enough is known about what can be achieved in mixing and distribution of solids by use of the baseline submersible mixing pump system. A combined mixing-sampling test program is recommended to fill this gap. Historical Pacific Northwest National Laboratory project and tank farms contractor documents are used to make this case. A substantial investment and progress are being made to understand mixing issues at the WTP. A summary of the key WTP activities relevant to this project is presented in this report. The relevant aspects of the WTP mixing work, together with a previously developed scaled test strategy for determining solids suspension with submerged mixer pumps (discussed in Section 3) provide a solid foundation for developing a path forward

  13. The effect of submergence on structural response in confined pools

    International Nuclear Information System (INIS)

    Sturm, A.J. Jr.; Song, C.C.S.

    1980-01-01

    In this paper the response of single and multi degree of submerged systems is investigated. The complete equations of motions including fluid coupling terms are developed for submerged bodies where the surrounding fluid is both moving in phase and out of phase with the support motion. The analysis considers both structural and fluid damping. Also included is an analysis of two degrees of freedom fluid coupling for submerged bodies completely enclosed within another body. In this case limiting conditions of the inner body hydrodynamic mass are examined, along the frequency response characteristics of these systems. The paper developes a simplified forcing function approach for in phase fluid support motion systems. This method is applicable for both modal-spectral and time history dynamic analyses of any linear structure. The results of the analysis are expanded for s structures with non-linear support configuration, i.e. (sliding or rocking bases) to again define a simplified analytical approach accounting for in phase fluid support motion. (orig.)

  14. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  15. Use of deep soil mixing as an alternate verticle barrier to slurry walls

    International Nuclear Information System (INIS)

    Miller, A.D.

    1997-01-01

    Slurry walls have become an accepted subsurface remediation technique to contain contaminated zones. However, situations develop where conventional slurry wall excavation techniques are not suitable. The use of conventional containment wall construction methods may involve removal and disposal of contaminated soils, stability concerns and the risk of open excavations. For these reasons, other installation techniques have received further consideration. Deep Soil Mixing (DSM) has emerged as a viable alternative to conventional slurry wall techniques. In situations dictating limited soil removal for contamination or stability concerns, or where space is a limitation, DSM can be used for installation of the barrier. Proper installation of a DSM wall requires sufficient monitoring and sampling to evaluate the continuity, mixing effectiveness, permeability and key into the confining layer. This paper describes a case study where DSM was used to cross major highways to avoid open excavation, and along slopes to reduce stability concerns. The DSM barrier was tied to an existing conventional slurry wall that had been installed in more stable areas without highway traffic

  16. Performance evaluation of the PITBULL trademark pump for the removal of hazardous waste

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Combs, W.H.; Hymas, C.R.; Powell, M.R.; Rinker, M.W.; White, M.

    1998-09-01

    One objective of the Waste Removal Project at the Department of Energy's Savannah River Site (SRS) is to explore methods to successfully remove waste heels that will remain in the high-level waste tanks after bulk waste removal has been completed. Tank closure is not possible unless this residue is removed. As much as 151,000 liters of residue can remain after a conventional waste removal campaign. The waste heels can be comprised of sludge, zeolite, and silica. The heels are generally hardened or compacted insoluble particulate with relatively rapid settling velocities. A PITBULL trademark pump is being considered by SRS to retrieve sludge-type waste from Tank 19. Sections 1 through 4 of this report present the scope and objectives of the test program, describe the principles of operation of the PITBULL, and present the test approach, set-up, and instrumentation. Test results, including pumping rates with water and slurry, are provided in Section 5, along with considerations for remote operation. Conclusions and recommendations are provided in Section 6

  17. Modified Application of Nitrogen Fertilizer for Increasing Rice Variety Tolerance toward Submergence Stress

    Directory of Open Access Journals (Sweden)

    Gribaldi Gribaldi

    2017-01-01

    Full Text Available This research was conducted from July to October 2015, using Randomized Block Design with two treatment factors and three replications for each treatment. The first factor was rice varieties (V: V1 = IR 64; V2 = Inpara 5. The second factor was fertilizer (N: N0: without submergence, all N fertilizer was given during planting; N1: all N fertilizer dose was given during planting; and N2: 1/2 dose of N fertilizer was given during planting; the rest was given at 42 days after planting. The submergence was during 7–14 days after planting; N3 = the entire dose of N fertilizer that was given during planting, N4 = 1/2 the dose of N fertilizer that was given during planting, and the rest was given at 42 days after planting. The submergence was during 7–14 and 28–35 days after planting. The results showed that the management of nitrogen fertilizer application had effect on rice growth and production which experienced dirty water submergence stress; the application of 1/2 dose of N fertilizer given during planting had the best effect on rice growth and production; the longer the submergence period for rice variety, the higher the effect on rice growth and production.

  18. Suspension of Egg Hatching Caused by High Humidity and Submergence in Spider Mites.

    Science.gov (United States)

    Ubara, Masashi; Osakabe, Masahiro

    2015-08-01

    We tested the effects of high humidity and submergence on egg hatching of spider mites. In both the high humidity and submergence treatments, many Tetranychus and Panonychus eggs did not hatch until after the hatching peak of the lower humidity or unsubmerged controls. However, after humidity decreased or water was drained, many eggs hatched within 1-3 h. This was observed regardless of when high humidity or submergence treatments were implemented: either immediately after oviposition or immediately before hatching was due. Normal eyespot formation was observed in most eggs in the high humidity and submergence treatments, which indicates that spider mite embryos develop even when eggs are underwater. Therefore, delays in hatching are not caused by delayed embryonic development. A delay in hatching was always observed in Panonychus citri (McGregor) but was more variable in Tetranychus urticae Koch and Tetranychus kanzawai Kishida. The high humidity and submergence treatments affected but did not suppress larval development in these species. In contrast, many Oligonychus eggs died following the high humidity treatments. In Tetranychus and Panonychus spider mites, suspension of egg hatching may mitigate the adverse effects of rainfall. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    Science.gov (United States)

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  20. Preparation of coal slurries deposited in ground settling ponds

    Directory of Open Access Journals (Sweden)

    Wiesław Blaschke

    2005-11-01

    Full Text Available As a result of the hard coal washing process, considerable quantities of coal slimes are generated. They belong to grain size classes below 1, 0 mm (with the majority of grains below 0,035 mm and are often sold in order to prepare blends for the power generation. It is assessed that in Poland about 11 mln tons of such slimes were deposited. The slimes of a low ash content can be exploited and sold. The slime of high ash content must be washed. In Poland there is one coal preparation plant for slurries. The article describes the technology and presents the results of a simplified economic analysis of exploitation of the slurries and their washing.

  1. Zeolite Combined with Alum and Polyaluminum Chloride Mixed with Agricultural Slurries Reduces Carbon Losses in Runoff from Grassed Soil Boxes.

    Science.gov (United States)

    Murnane, J G; Brennan, R B; Fenton, O; Healy, M G

    2016-11-01

    Carbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products, which are potentially harmful to human health. This study aimed to quantify total organic carbon (TOC) and total inorganic C losses in runoff after application of dairy slurry, pig slurry, or milk house wash water (MWW) to land and to mitigate these losses through coamendment of the slurries with zeolite (2.36-3.35 mm clinoptilolite) and liquid polyaluminum chloride (PAC) (10% AlO) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% AlO) for MWW. Four treatments under repeated 30-min simulated rainfall events (9.6 mm h) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide, 1 m long; 10% slope): control soil, unamended slurries, PAC-amended dairy and pig slurries (13.3 and 11.7 kg t, respectively), alum-amended MWW (3.2 kg t), combined zeolite and PAC-amended dairy (160 and 13.3 kg t zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t zeolite and PAC, respectively), and combined zeolite and alum-amended MWW (72 and 3.2 kg t zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34, and 50 t ha for pig and dairy slurries and MWW, respectively. Significant reductions of TOC in runoff compared with unamended slurries were measured for PAC-amended dairy and pig slurries (52 and 56%, respectively) but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared with alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, although effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared with the amounts applied. Copyright © by the American Society of Agronomy, Crop Science Society of

  2. Invasive crayfish threaten the development of submerged macrophytes in lake restoration.

    Science.gov (United States)

    van der Wal, Jessica E M; Dorenbosch, Martijn; Immers, Anne K; Vidal Forteza, Constanza; Geurts, Jeroen J M; Peeters, Edwin T H M; Koese, Bram; Bakker, Elisabeth S

    2013-01-01

    Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.

  3. Noise Reduction Properties of an Experimental Bituminous Slurry with Crumb Rubber Incorporated by the Dry Process

    Directory of Open Access Journals (Sweden)

    Moisés Bueno

    2014-08-01

    Full Text Available Nowadays, cold technology for asphalt pavement in the field of road construction is considered as an alternative solution to conventional procedures from both an economic and environmental point of view. Among these techniques, bituminous slurry surfacing is obtaining an important role due to the properties of the obtained wearing course. The functional performance of this type of surfaces is directly related to its rough texture. Nevertheless, this parameter has a significant influence on the tire/road noise generation. To reduce this undesirable effect on the sound performance, new designs of elastic bituminous slurries have been developed. Within the FENIX project, this work presents the acoustical characterization of an experimental bituminous slurry with crumb rubber from wasted automobile tires incorporated by the dry process. The obtained results show that, under controlled operational parameters, the close proximity sound levels associated to the experimental slurry are considerably lower than those emitted by a conventional slurry wearing course. However, after one year of supporting traffic loads and different weather conditions, the evaluated bituminous slurry, although it conserves the original noise reduction properties in relation to the conventional one, noticeably increases the generated sound emission. Therefore, it is required to continue improving the design of experimental surfaces in order to enhance its long-term performance.

  4. Increased mineral oil bioavailability in slurries by monovalent cation-induced dispersion

    International Nuclear Information System (INIS)

    Jonge, H. de; Verstraten, J.M.

    1995-01-01

    Bioavailability of apolar contaminants is an important limiting factor for microbial reclamation of polluted soils. This paper describes a laboratory study of the relation between microaggregate stability and bioavailability of mineral oil in soil-water slurries. The stability of microaggregates in slurries is regulated by the valence and surface affinity of the cations in the system, and by the complexing anion P 2 O 7 4- (metaphosphate). A silt loam, contaminated with a weathered gas oil, was collected from an oil refinery site. Degradation rates were monitored in small-scale incubations at solid:liquid ratios of 1:5 (w/w). The solution contained Ca, Na, or K as the dominant cation. The levels of nutrients and metaphosphate were varied. Biodegradation rates increased with the sequence Ca 2 treatment. Measurements of the particle size distribution the slurry showed that an increase in the finer fractions qualitatively correlated with enhanced biodegradation. This is a strong indication that dispersion of the microaggregates increased bioavailability of the contaminant

  5. Redistribution and persistence of microorganisms and steroid hormones after soil-injection of swine slurry

    DEFF Research Database (Denmark)

    Amin, Mostofa; Bech, Tina B.; Forslund, Anita

    2014-01-01

    Typhimurium Bacteriophage 28B (phage 28B), Escherichia coli, steroid hormones and other slurry components (water, volatile solids, chloride and mineral N) determined in and around the injection slit. The two experiments at Silstrup and Estrup differed with respect to slurry solid content (6.3 vs. 0...

  6. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    Science.gov (United States)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  7. Very low conductivity self-hardening slurry for permanent enclosures

    International Nuclear Information System (INIS)

    Tallard, G.

    1997-01-01

    Attapulgite clay and ground blast furnace slag cement can form a low solids slurry which, after setting and curing, exhibits very low permeability and substantial strength. Compared to better known cement bentonite slurries, the conductivity is 3 orders of magnitude lower and the strength is four times higher at a similar solids content. Coefficients of permeability have been measured in the 10 -10 cm/sec. range. As a containment barrier, no chemical compound has had detrimental effects on the integrity of the material. Compatibility with leachates at a pH under 2 has been demonstrated. Compared to leachable Ordinary Portland Cement and to bentonite gel shrinkage in the presence of certain organic compounds, the attapulgite clay and the selected slag cement behave as remarkably inert. A number of successful applications as vertical barriers, trenched and by the vibrated beam method, have been installed at remedial sites. Applications by jet grouting have been implemented under utilities to provide continuity. The potential for placement of such materials to form horizontal barriers by jet grouting or frac-grouting/mud jacking techniques, offers the possibility of creating complete enclosures in soils. The purely mineral nature of these slurries ensures long term chemical stability necessary for permanent containment

  8. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulk waste removal campaign).

  9. Measurement of Submerged Oil/Gas Leaks using ROV Video

    Science.gov (United States)

    Shaffer, Franklin; de Vera, Giorgio; Lee, Kenneth; Savas, Ömer

    2013-11-01

    Drilling for oil or gas in the Gulf of Mexico is increasing rapidly at depths up to three miles. The National Commission on the Deepwater Horizon Oil Leak concluded that inaccurate estimates of the leak rate from the Deepwater Horizon caused an inadequate response and attempts to cap the leak to fail. The first response to a submerged oil/gas leak will be to send a Remotely Operated Vehicle (ROV) down to view the leak. During the response to the Deepwater Horizon crisis, the authors Savas and Shaffer were members of the Flow Rate Technical Group's Plume Team who used ROV video to develop the FRTG's first official estimates of the oil leak rate. Savas and Shaffer developed an approach using the larger, faster jet features (e.g., turbulent eddies, vortices, entrained particles) in the near-field developing zone to measure discharge rates. The authors have since used the Berkeley Tow Tank to test this approach on submerged dye-colored water jets and compressed air jets. Image Correlation Velocimetry has been applied to measure the velocity of visible features. Results from tests in the Berkeley Tow Tank and submerged oil jets in the OHMSETT facility will be presented.

  10. Detecting submerged features in water: modeling, sensors, and measurements

    Science.gov (United States)

    Bostater, Charles R., Jr.; Bassetti, Luce

    2004-11-01

    It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.

  11. Efficient filtration system for paraffin-catalyst slurry separation

    Directory of Open Access Journals (Sweden)

    Khodagholi Mohammad Ali

    2013-01-01

    Full Text Available The filtration efficiency for separating liquid paraffin (or water from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (ΔP were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16μm. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ΔPs and for ΔP more than 1 bar is neither harmful nor helpful. The highest filtration rates at ΔPs higher than 1 bar were 170 and 248 ml/minute for 4 and 16μm respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm. The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.

  12. Area 3, SRC-II coal slurry preheater studies report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report reviews the raw data gathered from the Preheater B test runs at Ft. Lewis, and also the Preheater B results presented in the Solvent Refined Coal (SRC) Process Final Report, Volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and the Ft. Lewis Slurry Preheater Data Analysis, 1 1/2 Inch Coil by Gulf Science and Technology Corporation of Pittsburgh, Pennsylvania. attempts were made to correlate several variables not previously considered with slurry viscosity and thermal conductivity. Only partial success was realized. However, in the process of attempting to correlate these variables an understanding of why some variables could not be correlated was achieved. An attempt was also made, using multiple linear regression, to correlate coal slurry viscosity and thermal conductivity with several independent variables among which were temperature, coal concentration, total solids, coal type, slurry residence time, shear rate, and unit size. The final correlations included some, but not all, of these independent variables. This report is not a stand alone document and should be considered a supplement to work already done. It should be read in conjunction with the reports referenced above.

  13. Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field

    Directory of Open Access Journals (Sweden)

    Shaohui Zhang

    2016-04-01

    Full Text Available The effects of applied digested pig slurry on a vegetable crops field were studied. The study included a 3-year investigation on nutrient characteristics, heavy metals contamination and hygienic risks of a vegetable crops field in Wuhan, China. The results showed that, after anaerobic digestion, abundant N, P and K remained in the digested pig slurry while fecal coliforms, ascaris eggs, schistosoma eggs and hookworm eggs were highly reduced. High Cr, Zn and Cu contents in the digested pig slurry were found in spring. Digested pig slurry application to the vegetable crops field led to improved soil fertility. Plant-available P in the fertilized soils increased due to considerable increase in total P content and decrease in low-availability P fraction. The As content in the fertilized soils increased slightly but significantly (p = 0.003 compared with control. The Hg, Zn, Cr, Cd, Pb, and Cu contents in the fertilized soils did not exceed the maximum permissible contents for vegetable crops soils in China. However, high Zn accumulation should be of concern due to repeated applications of digested pig slurry. No fecal coliforms, ascaris eggs, schistosoma eggs or hookworm eggs were detected in the fertilized soils.

  14. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta

    2016-12-01

    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  15. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    Science.gov (United States)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  16. Design and Operation of the World's First Long Distance Bauxite Slurry Pipeline

    Science.gov (United States)

    Gandhi, Ramesh; Weston, Mike; Talavera, Maru; Brittes, Geraldo Pereira; Barbosa, Eder

    Mineracão Bauxita Paragominas (MBP) is the first long distance slurry pipeline transporting bauxite slurry. Bauxite had developed a reputation for being difficult to hydraulically transport using long distance pipelines. This myth has now been proven wrong. The 245-km- long, 13.5 MTPY capacity MBP pipeline was designed and commissioned by PSI for CVRD. The pipeline is located in the State of Para, Brazil. The Miltonia bauxite mine is in a remote location with no other efficient means of transport. The bauxite slurry is delivered to Alunorte Alumina refinery located near Barcarena. This first of its kind pipeline required significant development work in order to assure technical and economic feasibility. This paper describes the technical aspects of design of the pipeline. It also summarizes the operating experience gained during the first year of operation.

  17. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  18. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Directory of Open Access Journals (Sweden)

    Hong-Li Li

    Full Text Available Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot and two levels of water depth (30 cm and 70 cm. Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  19. Aerosol entrainment from a sparged non-Newtonian slurry

    International Nuclear Information System (INIS)

    Fritz, Brad G.

    2006-01-01

    Aerosol measurements were conducted above a half-scale air sparged mixing tank filled with simulated waste slurry. Three aerosol size fractions were measured at three sampling heights at three different sparging rates using a filter based ambient air sampling technique. Aerosol concentrations in the head space above the closed tank demonstrated a wide range, varying between 97 ?g m-3 for PM2.5 and 5650 ?g m-3 for TSP. The variation in concentrations was a function of sampling heights, size fraction and sparging rate. Measured aerosol entrainment coefficients showed good agreement with existing entrainment models. The models evaluated generally over predicted the entrainment, but were within a factor of two of the measured entrainment. This indicates that the range of applicability of the models may be extendable to include sparged slurries with Bingham plastic rheological properties

  20. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida de Oliveira

    2014-10-01

    Full Text Available Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control, 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity and chemical properties (organic matter, pH, extractable P, and exchangeable K were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.

  1. Choosing co-substrates to supplement biogas production from animal slurry - A life cycle assessment of the environmental consequences

    DEFF Research Database (Denmark)

    Croxatto Vega, Giovanna Catalina; Ten Hoeve, Marieke; Birkved, Morten

    2014-01-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co......-substrates, straw, organic household waste and the solid fraction of separated slurry, were assessed against slurry management without biogas production, using LCA methodology. The analysis showed straw, which would have been left on arable fields, to be an environmentally superior co-substrate. Due to its low...

  2. Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira.

    1997-01-01

    The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)

  3. The antifungal efficiency of carbide lime slurry compared with the commercial lime efficiency

    Science.gov (United States)

    Strigac, J.; Mikusinec, J.; Strigacova, J.; Stevulova, N.

    2017-10-01

    The article deals with studying the antifungal efficiency of carbide lime slurry compared to industrially manufactured commercial lime. Antifungal efficiency expressed as mould proofness properties was tested on the fungi using the procedure given in standard CSN 72 4310. A mixture of fungi Aspergillus niger, Chaetomium globosum, Penicillium funiculosum, Paecilomyces variotii and Gliocladium virens was utilized for testing. The scale for evaluating mould proofness properties according to CSN 72 4310 is from 0 to 5 in degree of fungi growth, where 0 means that no fungi growth occurs and the building products and materials possess fungistatic properties. The study confirms the fungistatic propeties of carbide lime slurry as well as industrially manufactured commercial lime. However, carbide lime slurry and industrially manufactured commercial lime possess no fungicidal effect.

  4. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    Energy Technology Data Exchange (ETDEWEB)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-07-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  5. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    International Nuclear Information System (INIS)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-01-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  6. Operating experience in the gasification of municipal waste and other waste at the `secondary feedstocks recycling centre` (SVZ) Schwarze Pumpe; Betriebserfahrungen zur Vergasung von Hausmuell und anderen Abfaellen im Sekundaerrohstoffverwertungszentrum Schwarze Pumpe (SVZ)

    Energy Technology Data Exchange (ETDEWEB)

    Buttker, B. [Sekundaerrohstoffverwertungszentrum Schwarze Pumpe GmbH, Schwarze Pumpe (Germany)

    1998-12-31

    The business purpose of SVZ Schwarze Pumpe is the production of synthesis gas from hydro-carbon-containing waste material and the use of synthesis gas in gas production or energy generation. For synthesis gas production, the techniques of packed-bed pressure gasification (FDV) and entrained-flow gasification (FSV) are used in close interconnection. Process control is such that only inert slags accrue, apart from the final products methanol and gypsum as well as generated energy in the form of electricity, process steam and heat. Currently, the following materials are mainly used in gasification: plastic materials after being subjected to conditioning, industrial and municipal sewage sludge, shredded goods, contaminated used wood, contaminated used oil, oil components obtained from oil/water mixtures, and slurry products. A special in-house know-how for waste oil gasification, and for the combined gasification of solid waste and coal by packed-bed pressure gasification with gradual stepping-up of the waste portion was realized. (orig.) [Deutsch] Der Geschaetszweck des SVZ Schwarze Pumpe besteht in der Herstellung von Synthesegas aus kohlenwasserstoffhaltigen Einsatzstoffen und in der stofflichen und energetischen Nutzung des Wertstoffes Synthesegas. Zur Synthesegasgewinnung werden die Verfahren der Festbettdruckvergasung (FDV) und Flugstromvergasung (FSV) in einer engen verbundwirtschaftlichen Kopplung angewandt. Die Betriebsfuehrung ist so gestaltet, dass neben den Endprodukten Methnaol und Gips sowie erzeugter Energie in Form von Strom, Prozessdampf und Waerme nur noch inerte Schlacken entstehen. Die Haupteinsatzprodukte fuer die Vergasung sind ggw. aufbereitete Altkunststoffe, industrielle und kommunale Klaerschlaemme, Shreddergueter, kontaminiertes Altholz, kontaminierte Altoele, Oelkomponenten, die aus Oel-Wasser-Gemischen gewonnen werden, und Slurry-Produkte. Es wurde ein spezielles Betriebs-Know-how zur Abfalloel-Vergasung und zur kombinierten Vergasung

  7. Factors affecting palatability of four submerged macrophytes for grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Sun, Jian; Wang, Long; Ma, Lin; Min, Fenli; Huang, Tao; Zhang, Yi; Wu, Zhenbin; He, Feng

    2017-12-01

    Grass carp can weaken the growth and reproductive capacity of submerged macrophytes by consuming valuable tissues, but factors affecting palatability of submerged macrophytes for grass carp rarely are considered. In this study, relative consumption rate of grass carp with regard to submerged macrophytes was in the following order: Hydrilla verticillata > Vallisneria natans > Ceratophyllum demersum > Myriophyllum spicatum. Firmness of macrophytes was in the following order: M. spicatum > C. demersum > H. verticillata = V. natans, whereas shear force was M. spicatum > C. demersum > H. verticillata > V. natans. After crude extracts of M. spicatum were combined with H. verticillata, grass carp fed on fewer macrophyte pellets that contained more plant secondary metabolites (PSMs). This indicated that structure and PSMs affected palatability of macrophytes.PSMs do not contribute to reduction in palatability through inhibition of intestinal proteinases activity, but they can cause a decrease in the abundance of Exiguobacterium, Acinetobacter-yielding proteases, lipases, and cellulose activity, which in turn can weaken the metabolic capacity of grass carp and adversely affect their growth. Thus, the disadvantages to the growth and development of grass carp caused by PSMs may drive grass carp to feed on palatable submerged macrophytes with lower PSMs.

  8. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  9. Through-flow of water in leaves of a submerged plant is influenced by the apical opening

    DEFF Research Database (Denmark)

    Pedersen, Ole; Jørgensen, Lise Bolt; Sand-Jensen, Kaj

    1997-01-01

    Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity......Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity...

  10. Spring barley yield and nitrogen recovery after application of peat manure and pig slurry

    Directory of Open Access Journals (Sweden)

    P. K. MATTILA

    2008-12-01

    Full Text Available The effectiveness of peat manure, manufactured of pig slurry and moderately humified Sphagnum peat (slurry:peat ca. 1:1.5 v/v, as nitrogen (N source for spring barley was investigated in a four.year field experiment on a clay loam soil in south-western Finland. Pig slurry, NPK fertilizer and plain peat were used as references. Manures were incorporated before sowing or surface-applied after sowing in spring at an ammoniacal N rate of.54.106 kg.ha-1 with or without supplementary NPK fertilizer (40.kg N.ha-1. Soil moisture conditions were varied by different irrigation treatments. Peat manure produced 5.15% higher grain yields than pig slurry, with the largest difference after surface application. Incorporation was more important for slurry than for peat manure in increasing N uptake and yield. Soil moisture deficit in spring and early summer limited the availability of manure N. Part of the manure N that was not available in the early growing period was apparently taken up by the crop later. Consequently, N concentration tended to be higher with lower yields, and differences in the recovery of manure N were smaller than the differences in grain yield. Supplementation of manures with inorganic fertilizer N increased yield by 37%, on average, and improved the N recovery.;

  11. Submerged reef systems on the central western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Almeida, F.

    -262 255 Elsevier Science Publishers B.V., Amsterdam -- Printed in the Netherlands Letter Section Submerged Reef Systems on the Central Western Continental Shelf of India K.H. VORA and F. ALMEIDA National Institute of Oceanography, Dona Paula, Goa 403... 004 (India) (Revision accepted October 26, 1989) Abstract Vora, K.H. and Almeida, F., 1990. Submerged reef systems on the central western continental shelf of India. Mar. Geol., 91: 255-262. Echosounding and sidescan sonar data from the western...

  12. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    Science.gov (United States)

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Upgrading of the Solid Fraction of Pig Slurry as Phosphorus Fertilizer

    DEFF Research Database (Denmark)

    Christel, Wibke

    Improved recycling of the solid fraction of separated pig slurry, which is considerably enriched in the essential plant nutrient phosphorus (P), could balance the P input in differently used agricultural areas and reduce the unsustainable depletion of the limited P rock reserves. By subsequent...... biological or thermal treatment, the P concentration of the pig slurry-derived products is furthermore increased, but these processes are also expected to affect P availability from the respective products. Consequently it was the overall objective of this PhD project to identify options for upgrading...

  14. Durability performance of submerged concrete structures - phase 2.

    Science.gov (United States)

    2015-09-01

    This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...

  15. Simple technologies for on-farm composting of cattle slurry solid fraction

    International Nuclear Information System (INIS)

    Brito, L.M.; Mourão, I.; Coutinho, J.; Smith, S.R.

    2012-01-01

    Highlights: ► Simple management techniques were examined for composting slurry solid fraction. ► Composting slurry solids was effective without bulking agents, turning or rewetting. ► Maximum rates of organic matter destruction were observed in short piles. ► Thermophilic temperatures in tall piles maximised sanitation and moisture reduction. ► The simple compost management approach maximised N retention and agronomic value. - Abstract: Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animal slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4 m 3 h −1 and 1 m 3 h −1 and composted in tall (1.7 m) and short (1.2 m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62–64 °C) were measured in tall piles compared to short piles (52 °C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520–660 g kg −1 dry solids and the net loss of OM significantly (P 4 + and increased concentrations of NO 3 - in SF composts. The results indicated that minimum intervention composting of SF in static piles over 168 days can produce agronomically effective organic soil amendments containing significant amounts of OM (772–856 g kg −1 ) and plant nutrients. The

  16. Submerged beachrock preservation in the context of wave ravinement

    Science.gov (United States)

    Pretorius, Lauren; Green, Andrew N.; Andrew Cooper, J.

    2018-02-01

    This study examines a Holocene-aged submerged shoreline, Limestone Reef, located in the shallow subtidal zone of South Africa's east coast. It comprises an elongate, coast-oblique, slab-like outcrop of beachrock situated above the contemporary fair-weather wave base. It is currently undergoing mechanical disintegration. Its unique and rare preservation in a high-energy setting affords an opportunity to examine the mechanical processes occurring during wave ravinement associated with rising sea level. The submerged shoreline and the adjacent shoreface were examined using high-resolution seismic reflection, side-scan sonar and shallow-water multibeam echosounding techniques. Limestone Reef rests on top of unconsolidated Holocene deposits. The structure's surface is characterised by reef-perpendicular gullies with rubble derived from the slab fringing its seaward edge. Limestone Reef slopes gently seawards and has a steep landward-facing edge where gullies are most prominently developed. Teardrop-shaped rippled scour depressions, marked by high backscatter, are located seawards of the submerged shoreline. These elongate in a seaward direction and are filled with bioclastic gravels and residual rubble from Limestone Reef. The gullies in the upstanding structure are indicative of wave plucking and abrasion of the shoreline. The material exposed by the rippled scour depressions is identical to that comprising the postglacial ravinement surface identified in the offshore stratigraphy. These deposits are considered to represent the contemporary, actively forming wave ravinement surface. The results suggest that wave ravinement of submerged shorelines is a discontinuous process dominated by the seaward entrainment of material from its landward edge controlled by high-energy drawback during storm surges. The ravinement process appears to operate at the seasonal scale and averages out over the long-term millennial scale for the continuous surface.

  17. Experimental motion behavior of submerged fuel racks

    International Nuclear Information System (INIS)

    Ellingson, F.J.; Wachter, W.; Moscardini, R.L.

    1989-01-01

    The design of submerged nuclear storage racks for light water reactor nuclear fuel has undergone a change from fixed position to a free-standing arrangement. Seismic analysis of the motion of the free-standing racks requires three-dimensional computer modeling that uses past studies of hydrodynamic mass and hydraulic coupling for rigid flat plates. This paper describes the results of experiments that show a reduced value for hydrodynamic mass and coupling forces when flexible elements are involved. To support this work, experiments were run with two full-scale welded box sections submerged in a water tank. The preliminary results indicate reduction in hydrodynamic mass due to box wall flexibility, a lack of impacting of box wall to box wall over the entire frequency range, and large hydrodynamic coupling forces under all test conditions. It is hypothesized that the coupling forces are sufficiently strong to prevent rotational motion of one rack when surrounded by adjacent racks

  18. Methane oxidation in pig and cattle slurry storages, and effects of surface crust moisture and methane availability

    DEFF Research Database (Denmark)

    Petersen, S.O.; Ambus, P.

    2006-01-01

    Storages with liquid manure (slurry) may develop a surface crust of particulate organic matter, or an artificial crust can be established. Slurry storages are net sources of atmospheric methane (CH4), but a potential for bacterial oxidation of CH4 in surface crusts was recently suggested in a study......2 during incubation, while intact subsamples were used to characterize CH4 oxidation as a function of CH4 availability and moisture content. Methane oxidation was observed in all materials except for an expanded clay product (Leca) sampled from a pig slurry storage. Despite significant variation...... crusts indicates that there is a potential for stimulating the process by manipulation of gas phase composition above the stored slurry....

  19. Simulation of Reynolds number influence on heat exchange in turbulent flow of medium slurry

    Science.gov (United States)

    Bartosik, A.

    2016-10-01

    The paper deals with the numerical simulation of mass and heat exchange in turbulent flow of solid-liquid mixture in the range of averaged solid particle diameter from 0.10mm to 0.80mm, named further as the medium slurry. Physical model assumes that dispersed phase is fully suspended and a turbulent flow is hydro-dynamically, and thermally developed in a straight horizontal pipeline. Taking into account the aforementioned assumptions the slurry is treated as a single-phase flow with increased density, while viscosity is equals to a carrier liquid viscosity. The mathematical model constitutes time averaged momentum equation in which the turbulent stress tensor was designated using a two-equation turbulence model, which makes use of the Boussinesq eddy-viscosity hypothesis. Turbulence damping function in the turbulence model was especially designed for the medium slurry. In addition, an energy equation has been used in which a convective term was determined from the energy balance acting on a unit pipe length, assuming linear changes of temperature in main flow direction. Finally, the mathematical model of non-isothermal medium slurry flow comprises four partial differential equations, namely momentum and energy equations, equations of kinetic energy of turbulence and its dissipation rate. Four partial differential equations were solved by a finite difference scheme using own computer code. The objective of the paper is to examine the influence of Reynolds number on temperature profiles and Nusselt number in turbulent flow of medium slurry in the range of solids concentration from 0% to 30% by volume. The effect of influential factors on heat transfer between the pipe and slurry is analysed. The paper demonstrates substantial impact of Reynolds number and solids volume fraction on the Nusselt number. The results of numerical simulation are reviewed.

  20. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    with this interaction mechanism mainly give a geometrical protection against oxidation by blocking oxygen access at the surface of the oxide scale. The protecting effect is gradually reduced as the oxide scale grows thicker than the diameter of the coating particles. Interaction mechanism B entails a chemical reaction...... scale. The incorporated coating particles create a geometrical protection against oxidation that should not loose their effect after the oxide scale has grown thicker than the diameter of the coating particles. The two single layer coatings consisting of (La0.85Sr0.15)MnO3 + 10% excess Mn, LSM, and (La0......In this project, high temperature oxidation experiments of slurry coated ferritic alloys in atmospheres similar to the atmosphere found at the cathode in an SOFC were conducted. From the observations possible interaction mechanisms between the slurry coatings and the growing oxide scale...

  1. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  2. Application of flexible slurries: an alternative for oil wells subject to cyclic steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P.; Paiva, Maria D.M.; Cunha, Marcelo C.S. [Halliburton Energy Services (HES), Duncan, OK (United States); Farias, Antonio Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Oil wells that receive cyclic steam injection are subject to high temperature variations during their life cycle. This causes volumetric expansion of the metallic casing which leads to cracks and channels in the formation of the cement. Studies show that volumetric expansion caused by temperature variation may cause wells to rise up to 20-in. at the surface. This paper presents alternative materials that improve the elastic properties of set cement slurries, focusing on maintaining sufficient resilience to maximize the life of the cement. We compare a set of fourteen formulations, some currently in use, selecting those with high flexibility. Analysis was based on the mechanical properties of the set slurries as well as tests according to standards from ABNT and from API Spec 10B. This work contributes new formulations for wells that under-go cyclic steam injection. These new formulations are presented as alternatives to current flexible slurry technology. We can obtain high-quality, more resilient slurries using materials that are more economical, have better cost-benefit, and are easily available in the market. (author)

  3. Utilization of 15N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    International Nuclear Information System (INIS)

    Peschke, H.

    1981-01-01

    After systematic application of 15 N-ammonium nitrate, the change of the dinuclidic composition and 15 N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative 15 N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The 15 N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are 15 N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors. (author)

  4. Identification of Inhibitors in Lignocellulosic Slurries and Determination of Their Effect on Hydrocarbon-Producing Microorganisms

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    2018-04-01

    Full Text Available The aim of this work was to identify inhibitors in pretreated lignocellulosic slurries, evaluate high-throughput screening strategies, and investigate the impact of inhibitors on potential hydrocarbon-producing microorganisms. Compounds present in slurries that could inhibit microbial growth were identified through a detailed analysis of saccharified slurries by applying a combination of approaches of high-performance liquid chromatography, GC-MS, LC-DAD-MS, and ICP-MS. Several high-throughput assays were then evaluated to generate toxicity profiles. Our results demonstrated that Bioscreen C was useful for analyzing bacterial toxicity but not for yeast. AlamarBlue reduction assay can be a useful high-throughput assay for both bacterial and yeast strains as long as medium components do not interfere with fluorescence measurements. In addition, this work identified two major inhibitors (furfural and ammonium acetate for three potential hydrocarbon-producing bacterial species that include Escherichia coli, Cupriavidus necator, and Rhodococcus opacus PD630, which are also the primary inhibitors for ethanologens. This study was strived to establish a pipeline to quantify inhibitory compounds in biomass slurries and high-throughput approaches to investigate the effect of inhibitors on microbial biocatalysts, which can be applied for various biomass slurries or hydrolyzates generated through different pretreatment and enzymatic hydrolysis processes or different microbial candidates.

  5. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.

    2009-05-22

    The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.

  6. Tank Farm WM-182 and WM-183 Heel Slurry Samples PSD Results

    International Nuclear Information System (INIS)

    Batcheller, T.A.; Huestis, G.M.

    2000-01-01

    Particle size distribution (PSD) analysis of INTEC Tank Farm WM-182 and WM-183 heel slurry samples were performed using a modified Horiba LA-300 PSD analyzer at the RAL facility. There were two types of testing performed: typical PSD analysis, and setting rate testing. Although the heel slurry samples were obtained from two separate vessels, the particle size distribution results were quite similar. The slurry solids were from approximately a minimum particle size of 0.5 mm to a maximum of 230 mm with about 90% of the material between 2-to-133 mm, and the cumulative 50% value at approximately 20 mm. This testing also revealed that high frequency sonication with an ultrasonic element may break-up larger particles in the WM-182 and WM-183 tank from heel slurries. This finding represents useful information regarding ultimate tank heel waste processing. Settling rate testing results were also fairly consistent with material from both vessels in that it appears that most of the mass of solids settle to an agglomerated, yet easily redispersed layer at the bottom. A dispersed and suspended material remained in the ''clear'' layer above the settled layer after about one-half an hour of settling time. This material had a statistical mode of approximately 5 mm and a maximum particle size of 30 mm

  7. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil.

    Science.gov (United States)

    Thiele-Bruhn, S; Aust, M O

    2004-07-01

    Sorption of p-aminobenzoic acid (pABA) and five sulfonamide antibiotics to loess Chernozem topsoil amended with varied additions of pig slurry was investigated in batch trials. In unfertilized soil, partition coefficients (Kd) of sulfonamides ranged from 0.3 to 2.0. Strong sorption nonlinearity (1/n = 0.5 to 0.8) was best fitted by the Freundlich isotherm (R2 = 0.7 to 1.0) and was indicative for specific sorption mechanisms. Adsorption to pig slurry was much stronger, and nondesorbable portions were increased compared with soil. However, in a mixture of soil and slurry (50:1 w/w), sorption of the antibiotics was significantly decreased at a lower concentration range of pABA and the sulfonamides. This was attributed to competitive adsorption of dissolved organic matter (DOM) constituents from manure. An increase in pig slurry amendment resulted in increased total organic matter, DOM concentration, and ionic strength, but pH decreased. As a result, the nonadsorbed portions of pABA, sulfanilamide, and sulfadiazine (logD(ow) 0.1)--remained nearly constant in the presence of increased manure input. The pH changes caused by manure amendment strongly affected ionisation status of the latter compounds, thus resulting in increased adsorption, which compensated the mobilizing effect of DOM. It is suggested that the effect of manure be considered in test methods to determine the soil retention of pharmaceutical substances.

  8. Preparatory studies for the on-line determination of zinc content in zinc ore slurries by radioisotope excited X-ray fluorescence

    International Nuclear Information System (INIS)

    Donhoffer, D.K.

    1977-01-01

    Laboratory tests were carried out to prove the feasibility of determination of Zn-content in zinc ore slurries by isotope excited x-ray fluorescence. Matrix effects were investigated on dry samples. A slurry testloop was built and measurements on slurries were made. The results indicated that the measurement on Zn in ore slurries can be made with a precision of 0,05% Zn. A working equation for interpretation of the measurements is derived. (author)

  9. Inhibition of methane oxidation in slurry surface crust by inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun-Feng; Elsgaard, Lars; Petersen, Søren O

    2013-01-01

    Livestock slurry is an important source of methane (CH4). Depending on dry matter content, a floating crust may form where methane-oxidizing bacteria (MOB) and CH4 oxidation activity have been found, suggesting that surface crusts may reduce CH4 emissions from slurry. However, it is not known how...... MOB in this environment interact with inorganic nitrogen (N). We studied inhibitory effects of ammonium (NH4+), nitrate (NO3–) and nitrite (NO2–) on potential CH4 oxidation in a cattle slurry surface crust. Methane oxidation was assayed at salt concentrations up to 500 mM at 100 and 10,000 ppmv...... headspace CH4. First-order rate constants were used to evaluate the strength of inhibition. Nitrite was the most potent inhibitor, reducing methanotrophic activity by up to 70% at only 1 mM NO2–. MOB were least sensitive to NO3–, tolerating up to 30 mM NO3– at 100 ppmv CH4 and 50 mM NO3– at 10,000 ppmv CH4...

  10. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  11. USAGE OF PLASTIC LITTER MADE FROM SEPARATED SLURRY IN FARM ANIMAL BREEDINGS ESPECIALLY IN CATTLE

    Directory of Open Access Journals (Sweden)

    M. ŠOCH

    2009-10-01

    Full Text Available The observation was performed in two dairy cows´ herds of Holstein breeding stabled in brick buildings with loose box stabling system. The separated slurry was used as litter in one of the building, classical stabling regime with straw litter was used in the other one. The experiment ascertained a significant tendency to reduction of microorganisms and parasites quantity in separated slurry modified by biometric treatment through the method of managed composting process. There was quite a small quantity of microorganisms and parasites in samples taken from litter of separated slurry and only after three weeks a gradual proliferation of them began. From the viewpoint of the dairy cows´ state of health, the quantity and quality of their milk production, the cleanness of their body surface, the periods of their lying and other ascertained welfare parameters under given microclimatic conditions the application of separated slurry as plastic litter fully complied.

  12. Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies.

    Science.gov (United States)

    Gurram, Raghu N; Datta, Saurav; Lin, Yupo J; Snyder, Seth W; Menkhaus, Todd J

    2011-09-01

    Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. COMPUTATIONAL AND EXPERIMENTAL MODELING OF THREE-PHASE SLURRY-BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Isaac K. Gamwo; Dimitri Gidaspow

    1999-09-01

    Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

  14. Crestal bone loss around submerged and nonsubmerged dental implants: A systematic review.

    Science.gov (United States)

    Al Amri, Mohammad D

    2016-05-01

    To my knowledge, there is no systematic review of crestal bone loss (CBL) around submerged and nonsubmerged dental implants. The purpose of this review was to systematically assess CBL around submerged and nonsubmerged dental implants. The addressed focused question was, "Does crestal and subcrestal placement of dental implants influence crestal bone levels?" Databases were searched from 1986 through October 2015 using different combinations of the following keywords: crestal, sub-crestal, bone loss, dental implant, submerged, and nonsubmerged. Reference lists of potentially relevant original and review articles were hand-searched to identify any further studies. Letters to the editor, case reports, commentaries, studies on platform-switched implants, and studies published in languages other than English were excluded. In total, 13 studies (6 human and 7 animal), which were performed at universities, were included. In the human studies, the number of participants ranged from 8 to 84 individuals. The follow-up period ranged from 1 to 5 years. CBL at the test sites ranged from 0.17 mm to 0.9 mm and at control sites from 0.02 mm to 1.4 mm. Five human studies reported no significant difference in CBL around implants placed at the test and control sites. All animal studies were performed in dogs with a mean age ranging from 1 to approximately 2 years. The follow-up period ranged from 2 to 6 months. Four animal studies reported no significant difference in CBL around submerged and nonsubmerged implants. No significant difference in CBL was found around submerged and nonsubmerged dental implants. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid

    Institute of Scientific and Technical Information of China (English)

    Wang Liang-Yong; Liu Bo; Song Zhi-Tang; Liu Wei-Li; Feng Song-Lin; David Huang; S.V Babu

    2011-01-01

    We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with picolinic acid is as high as 76.6 in the chemical mechanical polishing. By using zeta potential analyzer, particle size analyzer, horizon profilometer, thermogravimetric analysis and Fourier transform infrared spectroscopy, the pre-and the post-polished wafer surfaces as well as the pre-and the post-used ceria-based slurries are compared. Possible mechanism of high oxide to nitride selectivity with using ceria-based slurry with picolinic acid is discussed.

  16. A site-specific slurry application technique on grassland and on arable crops.

    Science.gov (United States)

    Schellberg, Jürgen; Lock, Reiner

    2009-01-01

    There is evidence that unequal slurry application on agricultural land contributes to N losses to the environment. Heterogeneity within fields demands adequate response by means of variable rate application. A technique is presented which allows site-specific application of slurry on grassland and arable land based on pre-defined application maps. The system contains a valve controlling flow rate by an on-board PC. During operation, flow rate is measured and scaled against set point values given in the application map together with the geographic position of the site. The systems worked sufficiently precise at a flow rate between 0 and 25 l s(-1) and an offset of actual slurry flow from set point values between 0.33 and 0.67 l s(-1). Long-term experimentation is required to test if site-specific application de facto reduces N surplus within fields and so significantly contributes to the unloading of N in agricultural areas.

  17. Pretreatment methods to obtain pumpable high solid loading wood–water slurries for continuous hydrothermal liquefaction systems

    DEFF Research Database (Denmark)

    Dãrãbana, Iulia-Maria; Rosendahl, Lasse Aistrup; Pedersen, Thomas Helmer

    2015-01-01

    Feedstock pretreatment is a prerequisite step for continuous processing of lignocellulosic biomass through HTL, in order to facilitate the pumpability of biomass aqueous slurries. Until now, HTL feedstock pumpability could only be achieved at solid mass content below 15%. In this work, two...... pretreatment methods to obtain wood-based slurries with more than 20% solid mass content, for continuous processing in HTL systems, are proposed. The effect of biomass particle size and pretreatment method on the feedstock pumpability is analyzed. The experimental results show that pumpable wood-based slurries...

  18. Methanotrophs, methanogens and microbial community structure in livestock slurry surface crusts

    DEFF Research Database (Denmark)

    Duan, Y.F.; Abu Al-Soud, Waleed; Brejnrod, Asker Daniel

    2014-01-01

    , and Methylosarcina of Type I, and Methylocystis of Type II, dominated the methane-oxidizing bacteria (MOB) community, whereas Methanocorpusculum was the predominant methanogen. Higher numbers of operational taxonomic units (OTUs) representing Type I than Type II MOB were found in all crusts. Potential CH4 oxidation...... rates were determined by incubating crusts with CH4, and CH4 oxidization was observed in cattle, but not in swine slurry crusts. Conclusions: Slurry surface crusts harbour a diverse microbial community. Type I MOB are more diverse and abundant than Type II MOB in this environment. The distinct CH4...

  19. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Fungal milk-clotting enzymes have gained value as bovine Chymosin substitutes in the cheese industry. In this work, the effects of culture conditions on the production of extracellular milk clotting enzymes from Mucor mucedo DSM 809 in submerged fermentation were studied. The maximum activity was observed after 48 h ...

  20. Submerged karst landforms observed by multibeam bathymetric survey in Nagura Bay, Ishigaki Island, southwestern Japan

    Science.gov (United States)

    Kan, Hironobu; Urata, Kensaku; Nagao, Masayuki; Hori, Nobuyuki; Fujita, Kazuhiko; Yokoyama, Yusuke; Nakashima, Yosuke; Ohashi, Tomoya; Goto, Kazuhisa; Suzuki, Atsushi

    2015-01-01

    Submerged tropical karst features were discovered in Nagura Bay on Ishigaki Island in the southern Ryukyu Islands, Japan. The coastal seafloor at depths shallower than ~ 130 m has been subjected to repeated and alternating subaerial erosion and sedimentation during periods of Quaternary sea-level lowstands. We conducted a broadband multibeam survey in the central area of Nagura Bay (1.85 × 2.7 km) and visualized the high-resolution bathymetric results over a depth range of 1.6-58.5 m. Various types of humid tropical karst landforms were found to coexist within the bay, including fluviokarst, doline karst, cockpit karst, polygonal karst, uvalas, and mega-dolines. Although these submerged karst landforms are covered by thick postglacial reef and reef sediments, their shapes and sizes are distinct from those associated with coral reef geomorphology. The submerged landscape of Nagura Bay likely formed during multiple glacial and interglacial periods. According to our bathymetric results and the aerial photographs of the coastal area, this submerged karst landscape appears to have developed throughout Nagura Bay (i.e., over an area of approximately 6 × 5 km) and represents the largest submerged karst in Japan.

  1. A functional comparison of acclimation to shade and submergence in two terrestrial plant species

    NARCIS (Netherlands)

    Mommer, L.; Kroon, de H.; Pierik, R.; bögemann, G.M.; Visser, E.J.W.

    2005-01-01

    Terrestrial plants experience multiple stresses when they are submerged, caused both by oxygen deficiency due to reduced gas diffusion in water, and by shade due to high turbidity of the floodwater. It has been suggested that responses to submergence are de facto responses to low light intensity. •

  2. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    International Nuclear Information System (INIS)

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO 2 from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide [Ba(OH) 2 ] or calcium hydroxide [Ca(OH) 2 ]. Such a process would be applied to scrub 14 CO 2 from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH) 2 slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH) 2 . Overall reaction mechanisms are postulated

  3. Study of benzene release from Savannah River in-tank precipitation process slurry simulant

    International Nuclear Information System (INIS)

    Rappe, K.G.; Gauglitz, P.A.

    1998-08-01

    At the Savannah River Site, the in-tank precipitation (ITP) process uses sodium tetraphenylborate (NaTPB) to precipitate radioactive cesium from alkaline wastes. During this process, potassium is also precipitated to form 4-wt% KTPB/CsTPB slurry. Residual NaTPB decomposes to form benzene, which is retained by the waste slurry. The retained benzene is also readily released from the waste during subsequent waste processing. While the release of benzene certainly poses flammability and toxicological safety concerns, the magnitude of the hazard depends on the rate of release. Currently, the mechanisms controlling the benzene release rates are not well understood, and predictive models for estimating benzene release rates are not available. The overall purpose of this study is to obtain quantitative measurements of benzene release rates from a series of ITP slurry simulants. This information will become a basis for developing a quantitative mechanistic model of benzene release rates. The transient benzene release rate was measured from the surface of various ITP slurry (solution) samples mixed with benzene. The benzene release rate was determined by continuously purging the headspace of a sealed sample vessel with an inert gas (nitrogen) and analyzing that purged headspace vapor for benzene every minute

  4. Improving profitability through slurry management: a look at the impact of slurry pH on various glass types

    Science.gov (United States)

    Hooper, Abigail R.; Boffa, Christopher C.; Sarkas, Harry W.; Cureton, Kevin

    2015-08-01

    When building an optical system, optical fabricators and designers meticulously choose the glass types for their application knowing that each one will have different chemical, thermal and mechanical properties. As the requirements for new optical systems have grown more demanding, the range of available glass types has vastly expanded and the specifications on the produced products have grown tighter. In an attempt to simplify processes and streamline consumable purchases, optical polishing houses often rely on one polishing slurry to manage these vast array of glass types. An unforeseen consequence of these practices can be a reduction in productivity by reduced removal rate, poor yields and frequent rework all translating into higher costs and reduced profitability. In this paper, the authors will examine the impact slurry pH has on glass types of different compositions and chemical, thermal and mechanical properties when using a double-sided polishing process. Experiments will use material removal rate, surface quality, and surface figure to provide insight into improving process control for differing glass types. Further guidance will be provided on how simple on-site monitoring and adjustment can deliver improved profitability on challenging substrates.

  5. Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance

    International Nuclear Information System (INIS)

    Soloiu, Valentin; Lewis, Jeffery; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    2011-01-01

    The paper presents the research results pertaining to the renewable biomass charcoal-diesel slurries and their use as alternative fuels for combustion in diesel generating plants. The utilization of charcoal slurry fuel aims to reduce diesel oil consumption and would decrease fossil green house emissions into the atmosphere. The paper investigates the formulation, emulsification, sprays, combustion, injection system operation, and subsequent wear with charcoal-diesel slurries. In the research, cedar wood chips were used for the production of charcoal to be emulsified with diesel oil. The slurry's viscosity of 27 cP achieved the target ( o C. Charcoal slurry displayed a high vaporization rate of 75% by wt. at 300 o C. Engine investigations showed that the top combustion pressure at 1200 rpm and 100% load (7.8 brake mean effective pressure (bmep)) was 79 bar for diesel fuel and 78 bar for the charcoal slurry fuel. From the injection and heat release history was found an ignition delay of 1.7 ms for diesel that increased to 2.1 ms for the slurry fuel. A higher net heat release for charcoal slurry was observed, up to 180 J/crank angle degrees (CAD) compared with the diesel at 145 J/CAD The maximum combustion temperature reached 2300 K for diesel and 2330 K for slurry. The heat fluxes for both fuels have similar values and trends during the entire cycle showing the good compatibility of charcoal slurry with a diesel type combustion and low soot radiation. The exhaust temperatures were about 40-50 o C higher for charcoal slurry at 19 o before top dead center (BTDC) injection timing. The engine's bsfc increased as expected due to the lower heating value of the slurry fuel. The smoke Bosch no. was lower for the slurry fuel at any load, and is believed that the oxygen from the charcoal had a beneficial effect. The measured emissions of slurry fuel were better at 13 o BTDC than those of diesel fuel with the original engine settings and the remaining 6-10% oxygen content in

  6. Automation of the second iron ore slurry pipeline from Samarco

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Juliana M.; Fonseca, Mario L.; Drumond, Pablo P.; Barbosa, Sylvio [IHM Engenharia, Belo Horizonte, MG (Brazil)

    2009-07-01

    The second iron ore slurry pipeline from Samarco was build to attend the Third Pellet Plant Project, which includes a new Concentration Plant at Germano-MG and a third Pellet Plant at Ubu-ES. It has 396km of extension and links the two plants by pulping the iron ore slurry prepared at Germano Unit. This works aims to present the iron ore slurry pipeline with emphasis on the automation architecture for the supervision and control system, interconnect throughout the pipe extension by fiber optics. The control system is composed of ControlLogix CLP's at the pulping and valve station and Micrologix CLP's at the pressure and cathodic protection monitoring points, totalizing 19 PLC's. The supervisory system was developed using the Wonderware IAS 3.0 suite, including the supervisory software InTouch 9.5 and the integrated ArchestrA IDE, and is composed of two data servers in redundancy and nine operation stations. The control and supervision system is interconnect through and Ethernet network using fiber optics and multiplexer modules (GE JungleMux) for voice, data and video. Among the expected results, it can be highlighted the sequence automation, greater process data availability (real and historical) and greater facility for the operation and detection of failures. (author)

  7. Slurry-phase biodegradation of weathered oily sludge waste.

    Science.gov (United States)

    Machín-Ramírez, C; Okoh, A I; Morales, D; Mayolo-Deloisa, K; Quintero, R; Trejo-Hernández, M R

    2008-01-01

    We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.

  8. Experimental investigation of submerged single jet impingement using Cu–water nanofluid

    International Nuclear Information System (INIS)

    Li Qiang; Xuan Yimin; Yu Feng

    2012-01-01

    Jet impingement cooling is a vital technique for thermal management of electronic devices of high-heat-flux by impinging fluid on a heater surface due to its high local heat transfer rates. In this paper, two types of Cu–water nanofluids (Cu particles with 25 nm diameter or 100 nm) are introduced into submerged single jet impingement cooling system as the working fluid. The heat transfer features of the nanofluids were experimentally investigated. The effects of the nanoparticle concentration, Reynolds number, nozzle-to-plate distance, fluid temperature, and nanoparticle diameter on the heat transfer performances of the jet impingement of nanofluids are discussed. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid. The convective heat transfer coefficient of Cu–water nanofluid with the volume fraction of 3.0% has 52% higher than the pure water. The experiments also revealed that the suspended nanoparticles brought almost no extra addition of pressure drop in both submerged single jet impingement. In addition, by considering the effects of the suspended nanoparticles as well as the condition of impinging jet, a new heat transfer correlation of nanofluids for the submerged single jet impingement has been proposed. - Highlights: ► Cu–water nanofluids are introduced into submerged single jet impingement. ► The affecting parameters on the heat transfer performances of nanofluids are discussed. ► New heat transfer correlation of nanofluid for single jet impingement is proposed.

  9. Assessment of performing an MST strike in Tank 21H

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Michael R.

    2014-09-29

    Previous Savannah River National Laboratory (SRNL) tank mixing studies performed for the Small Column Ion Exchange (SCIX) project have shown that 3 Submersible Mixer Pumps (SMPs) installed in Tank 41 are sufficient to support actinide removal by MST sorption as well as subsequent resuspension and removal of settled solids. Savannah River Remediation (SRR) is pursuing MST addition into Tank 21 as part of the Large Tank Strike (LTS) project. The preliminary scope for LTS involves the use of three standard slurry pumps (installed in N, SE, and SW risers) in a Type IV tank. Due to the differences in tank size, internal interferences, and pump design, a separate mixing evaluation is required to determine if the proposed configuration will allow for MST suspension and strontium and actinide sorption. The author performed the analysis by reviewing drawings for Tank 21 [W231023] and determining the required cleaning radius or zone of influence for the pumps. This requirement was compared with previous pilot-scale MST suspension data collected for SCIX that determined the cleaning radius, or zone of influence, as a function of pump operating parameters. The author also reviewed a previous Tank 50 mixing analysis that examined the ability of standard slurry pumps to suspend sludge particles. Based on a review of the pilot-scale SCIX mixing tests and Tank 50 pump operating experience, three standard slurry pumps should be able to suspend sludge and MST to effectively sorb strontium and actinides onto the MST. Using the SCIX data requires an assumption about the impact of cooling coils on slurry pump mixing. The basis for this assumption is described in this report. Using the Tank 50 operating experience shows three standard slurry pumps should be able to suspend solids if the shear strength of the settled solids is less than 160 Pa. Because Tank 21 does not contain cooling coils, the shear strength could be larger.

  10. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    International Nuclear Information System (INIS)

    White, T.L.

    1995-01-01

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates

  11. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows-`sub-bottom sediment pump action'

    Science.gov (United States)

    Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei

    2017-02-01

    A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.

  12. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  13. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping.

    Science.gov (United States)

    Brennan, Raymond B; Healy, Mark G; Fenton, Owen; Lanigan, Gary J

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.

  14. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping.

    Directory of Open Access Journals (Sweden)

    Raymond B Brennan

    Full Text Available Land application of cattle slurry can result in incidental and chronic phosphorus (P loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.

  15. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land.

    Science.gov (United States)

    Kay, Paul; Blackwell, Paul A; Boxall, Alistair B A

    2005-05-01

    The environment may be exposed to veterinary medicines administered to livestock due to the application of organic fertilisers to land. Slurry is often spread on to fields following the harvest of the previous crop. Despite recommendations to do so, the slurry may not be ploughed into the soil for some time. If precipitation occurs before incorporation then it is likely that the slurry and any antibiotic residues in the slurry will be transported towards surface waters in overland flow. This phenomenon has been investigated in a plot study and transport via 'tramlines' has been compared to that through crop stubble. Three veterinary antibiotics, from the tetracycline, sulphonamide and macrolide groups, were applied to the plots in pig slurry. Twenty four hours after the application the plots were irrigated. Following this the plots received natural rainfall. Sulphachloropyridazine was detected in runoff from the tramline plot at a peak concentration of 703.2 microgl(-1) and oxytetracycline at 71.7 microgl(-1). Peak concentrations from the plot that did not contain a tramline were lower at 415.5 and 32 microgl(-1), respectively. In contrast, tylosin was not detected at all. Mass losses of the compounds were also greater from the tramline plot due to greater runoff generation. These did not exceed 0.42% for sulphachloropyridazine and 0.07% for oxytetracycline however.

  16. Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Helen H. Raplong

    2014-09-01

    Full Text Available Microorganisms have the ability to secrete enzymes when they are grown in the presence of certain substrates. Amylases are among the most important industrial enzymes and are of great significance in biotechnological studies. Bacteria belonging to the genus Bacillus were isolated using mannitol egg yolk polymyxin B (MYP agar a highly selective media for Bacillus cereus isolation. The isolates were tested for α-amylase production on nutrient agar supplemented with starch and in submerged fermentation. The bacteria isolated and identified (using the Microgen Bacillus identification kit were all Bacillus cereus and SB2 had the largest zone of hydrolysis of 12mm on nutrient agar supplemented with starch as well as the highest enzyme activity of 1.62U/ml. Amylase activity of 2.56U/ml was obtained after 24 hours incubation in submerged fermentation. When amylase enzyme production parameters where optimized, maximum amylase activity was obtained at a pH of 6.5, temperature of 350C, incubation time of 24 hours and 4% inoculums concentration. Bacillus cereus SB2 is a potential isolate for alpha-amylase production with soluble starch as the sole carbon source in submerged fermentation.

  17. Thickness control and interface quality as functions of slurry formulation and casting speed in side-by-side tape casting

    DEFF Research Database (Denmark)

    Bulatova, Regina; Jabbari, Mirmasoud; Kaiser, Andreas

    2014-01-01

    A novel method of co-casting called side-by-side tape casting was developed aiming to form thin functionally graded films with varying properties within a single plane. The standard organic-based recipe was optimized to co-cast slurries into thick graded tapes. Performed numerical simulations...... identified the stable flow beneath the blade with a shear rate profile independent of slurry viscosity as long as the slurry load in the casting tank was low. Thickness and interface shape could be well predicted if the rheological behaviour of slurries is known and the processing parameters are well...

  18. [Influence of submerged macrophytes on phosphorus transference between sediment and overlying water in the growth period].

    Science.gov (United States)

    Wang, Li-Zhi; Wang, Guo-Xiang; Yu, Zhen-Fei; Zhou, Bei-Bei; Chen, Qiu-Min; Li, Zhen-Guo

    2012-02-01

    In order to study the process of phosphorus transfer between sediment and overlying water, Hydrilla verticillata and Vallisneria natans were cultured in spring, Potamogeton crispus was cultured in winter. Changes of environmental factors and phosphorus concentrations in water and sediment were investigated. The results indicated that: submerged macrophytes could reduce all phosphorus fractions in the overlying water. Phosphorus concentrations in overlying water maintained in a relative low level in the growth period of submerged macrophytes. The concentrations of total phosphorus (TP) in overlying water of H. verticillata, V. natans and P. crispus were 0.03-0.05, 0.04-0.12, 0.02-0.11 mg x L(-1), respectively. All phosphorus fractions in sediment were reduced. The maximum value between submerged macrophyte and control of H. verticillata, V. natans and P. crispus were 35.34, 60.67 and 25.92 mg x kg(-1), respectively. Dissolved oxygen (DO), redox potential (Eh) and pH in overlying water increased (DO 10.0-14.0 mg x L(-1), Eh 185-240 mV, pH 8.0-11.0) in the submerged macrophytes groups. Submerged macrophytes increased Eh( -140 - -23 mV) and maintained pH(7.2-8.0) in neutral range. The results indicated that submerged macrophytes affected phosphorus transferring between sediment and overlying water through increasing DO, Eh and pH in overlying water, and Eh in sediment.

  19. A big step change : new mobile slurry preparation and crushing technology on the horizon

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2007-09-15

    The efficiency and productivity of the trucks used in oil sands mining operations can be compromised by unstable terrain, and they consume large amount of fuel. Hydro-transport systems with slurry preparation facilities may soon eliminate the expenses associated with truck and shovel processes. The slurry preparation facilities use on-board reject handling systems to remove large pieces of ore that can't be used in crushers. However, they are hard to move. Researchers are now focusing on the development of a semi-mobile slurry preparation facility that uses mobile crushing and sizing equipment. The equipment uses large tractor tracks instead of wheels and tires, and can accomplish the same amount of work as 6 trucks. Using the system, mine scoop shovels dump ore into a hopper on the mobile unit. The ore is then conveyed to the mobile unit's onboard primary crusher or sizer. Staged crushing is combined with water addition and mixing at the mine site to prepare an oil and slurry ready for hydro-transport. It was concluded that the system may significantly reduce the use of shovel and truck operations in the oil sands industry. 2 figs.

  20. REMOVAL EFFICIENCY OF ORGANIC MATTER OF PIG SLURRY WITH BIODIGESTERS IN YUCATAN STATE, MEXICO

    Directory of Open Access Journals (Sweden)

    W. Trejo-Lizama

    2014-08-01

    Full Text Available In the intensive pig production in the state of Yucatan, 62 biodigesters were installed in the last 10 years. However, the complexities of the anaerobic biodigestion enclose difficulties to reach the expected efficiency. The objective of the present study was to determine the removal efficiency of the organic matter in pig slurry using biodigesters in the state of Yucatan. There were visited 15 pig farms in the state of Yucatan to interview the farmer about the management of the farm and the waste disposal and to take samples of the influent of the collector of the pig slurry and the effluent of the biodigestor and evaluating the samples by laboratory analysis. The removal values found in the present study were 7 percentage points below the reference value of total volatile solids, which represent the organic matter fraction of the solids treated in the biodigestor. More than the 50 % of the farms evaluated were similar or higher than the parameters of reference. The removal efficiency of the organic matter in the pig slurry by biodigesters in the state of Yucatan is close to the reference values. However complementary treatments are necessary to continue the waste slurry treatment.

  1. Origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid

    International Nuclear Information System (INIS)

    Wang Liang-Yong; Liu Bo; Song Zhi-Tang; Liu Wei-Li; Feng Song-Lin; David Huang; Babu, S.V

    2011-01-01

    We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with picolinic acid is as high as 76.6 in the chemical mechanical polishing. By using zeta potential analyzer, particle size analyzer, horizon profilometer, thermogravimetric analysis and Fourier transform infrared spectroscopy, the pre- and the post-polished wafer surfaces as well as the pre- and the post-used ceria-based slurries are compared. Possible mechanism of high oxide to nitride selectivity with using ceria-based slurry with picolinic acid is discussed. (interdisciplinary physics and related areas of science and technology)

  2. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Directory of Open Access Journals (Sweden)

    Jiaoping Cai

    2015-02-01

    Full Text Available A new titanium dioxide (TiO2 slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs. The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  3. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Science.gov (United States)

    Cai, Jiaoping; Chen, Zexiang; Li, Jun; Wang, Yan; Xiang, Dong; Zhang, Jijun; Li, Hai

    2015-02-01

    A new titanium dioxide (TiO2) slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ˜63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ˜0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  4. A durable, non power consumptive, simple seal for rotary blood pumps.

    Science.gov (United States)

    Mitamura, Y; Sekine, K; Asakawa, M; Yozu, R; Kawada, S; Okamoto, E

    2001-01-01

    One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal was developed for an axial flow pump. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments and finite element modeling (FEM) analyses confirmed these advantages. The seal body was composed of a Ned-Fe magnet and two pole pieces; the seal was formed by injecting ferrofluid into the gap (50 microm) between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 188 mm Hg with ferrofluid LS-40 (saturated magnetization, 24.3 kA/m) at a motor speed of 10,000 rpm and 225 mm Hg under static conditions. The magnetic fluid seals performed perfectly at a pressure of 100 mm Hg for 594 + days in a static condition, and 51, 39+, and 34+ days at a motor speed of 8,000 rpm. FEM analyses indicated a theoretical sealing pressure of 260 mm Hg. The state of the magnetic fluid in the seal in water was observed with a microscope. Neither splashing of magnetic fluid nor mixing of the magnetic fluid and water was observed. The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intracardiac axial flow pump.

  5. Vibration analysis of partially cracked plate submerged in fluid

    Science.gov (United States)

    Soni, Shashank; Jain, N. K.; Joshi, P. V.

    2018-01-01

    The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.

  6. The Effect of pH on Slurry Erosion-Corrosion of Tungsten Carbide Overlays Alloyed with Ru

    Science.gov (United States)

    Nelwalani, Ndivhuwo B.; van der Merwe, Josias W.

    2018-02-01

    The aim of the study was to determine the effect of Ru additions to WC-Fe overlays when exposed to low pH slurry erosion conditions. These overlays were applied through Plasma Transferred Arc, and the original bulk Ru powder concentrations varied from 0.5 to 5 wt.%. A slurry jet impingement erosion-corrosion test rig was used to evaluate wear, and electrochemical measurements were performed to characterize the corrosion properties. The slurry mixtures contained silica sand and synthetic mine water. The pH was varied between 3 and 6.5 for the slurry erosion tests and lowered further for the corrosion characterization. Samples were examined optically and with a scanning electron microscope using energy-dispersive x-ray spectroscopy. X-ray diffraction analysis was used to determine the phases present. For the slurry erosion-corrosion results at the pH of 6.5, addition of Ru did not show a decrease in erosion-corrosion rates. However, when the pH was decreased to 3, by the addition of HCl, Ru improved the resistance. From the electrochemistry, it was also clear that Ru additions improved the corrosion resistance, but more than 1 wt.% Ru was required. At very low pH levels, the presence of Ru was not able to prevent corrosion.

  7. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    Science.gov (United States)

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  8. Chemical attributes of a Hapludox soil after nine years of pig slurry application

    Directory of Open Access Journals (Sweden)

    Milton da Veiga

    2012-12-01

    Full Text Available The objective of this study was to evaluate the pig slurry application effects on chemical attributes of a Hapludox soil managed under no-tillage system. Treatments consisted of 50, 100 and 200 m³ ha-1 per year of pig slurry application, and a control with replacement of P and K exported through harvested grains. Attributes related to soil chemical reaction, exchange complex, and nutrient contents were determined in soil samples collected in the ninth year of experimentation from 0 - 0.025, 0.025 - 0.05, 0.05 - 0.10, 0.10 - 0.20, 0.20 - 0.40 and 0.40 - 0.60 m soil depths. The continuous application of high doses of pig slurry on the Oxisol surface under no-tillage acidifies the soil and increases Al, P, Cu, and Zn contents down to 0.2-m depth, and K levels down to 0.6-m depth.

  9. Utilization of /sup 15/N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion

    1981-12-01

    After systematic application of /sup 15/N-ammonium nitrate, the change of the dinuclidic composition and /sup 15/N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative /sup 15/N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The /sup 15/N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are /sup 15/N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors.

  10. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    Science.gov (United States)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  11. Sludge Batch 5 Slurry Fed Melt Rate Furnace Test with Frits 418 and 550

    International Nuclear Information System (INIS)

    Miller, Donald; Pickenheim, Bradley

    2009-01-01

    Based on Melt Rate Furnace (MRF) testing for the Sludge Batch 5 (SB5) projected composition and assessments of the potential frits with reasonable operating windows, the Savannah River National Laboratory (SRNL) recommended Slurry Fed Melt Rate Furnace (SMRF) testing with Frits 418 and 550. DWPF is currently using Frit 418 with SB5 based on SRNL's recommendation due to its ability to accommodate significant sodium variation in the sludge composition. However, experience with high boron containing frits in DWPF indicated a potential advantage for Frit 550 might exist. Therefore, SRNL performed SMRF testing to assess Frit 550's potential advantages. The results of SMRF testing with SB5 simulant indicate that there is no appreciable difference in melt rate between Frit 418 and Frit 550 at a targeted 34 weight % waste loading. Both batches exhibited comparable behavior when delivered through the feed tube by the peristaltic pump. Limited observation of the cold cap during both runs showed no indication of major cold cap mounding. MRF testing, performed after the SMRF runs due to time constraints, with the same two Slurry Mix Evaporator (SME) dried products led to the same conclusion. Although visual observations of the cross-sectioned MRF beakers indicated differences in the appearance of the two systems, the measured melt rates were both ∼0.6 in/hr. Therefore, SRNL does not recommend a change from Frit 418 for the initial SB5 processing in DWPF. Once the actual SB5 composition is known and revised projections of SB5 after the neptunium stream addition and any decants is provided, SRNL will perform an additional compositional window assessment with Frit 418. If requested, SRNL can also include other potential frits in this assessment should processing of SB5 with Frit 418 result in less than desirable melter throughput in DWPF. The frits would then be subjected to melt rate testing at SRNL to determine any potential advantages

  12. Microencapsulated PCM slurry for heat transfer media. 4. Reduction of undercooling

    International Nuclear Information System (INIS)

    Akino, Norio; Nakano, Fumihiko; Kubo, Shinji; Nagashima, Akira; Sagiya, Syojiro; Nakanishi, Masayuki.

    1997-01-01

    New heat transfer media with large heat capacity is under development, using a slurry of microencapsulated-phase-change-material (MCPCM) mixed into carrying liquid. To prepare stable MCPCM slurry, fatty acid is selected as PCM owing to relatively large density, and diameter of MCPCM particles are below 10 μm. The temperature difference between melting and freezing points, the so-called undercooling becomes remarkable. To reduce the undercooling, an additive is mixed into fatty acid to introduce nucleation cites. It is concluded that Hexatriacontane is effective to remove undercooling of microencapsulated Lauric acid, Myristic acid and their mixture, and Sebacic acid is effective for Lauric acid. (author)

  13. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata

    DEFF Research Database (Denmark)

    Pedersen, Ole; Vos, Harrie; Colmer, Timothy David

    2006-01-01

    This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on flood-prone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged...... the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial...... pressure of O2 (pO2) in the succulent stem was 23.2 kPa (i.e. ~10% above that in the air), while in the roots, it was 6.2-9.8 kPa. Upon sunset, the pO2 in the succulent stems declined within 1 h to below detection, but then showed some fluctuations with the pO2 increasing to at most 2.5 kPa during...

  14. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-09-29

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sup 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions.

  15. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    International Nuclear Information System (INIS)

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-01-01

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H 2 O, CO 2 , linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions

  16. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Sørensen, Peter; Elsgaard, Lars

    2008-01-01

    -available sulfate form. Microbial sulfate reduction during storage of acidified pig slurry was limited, presumably due to initial pH effects and a limitation in the availability of easily degradable organic matter. Sulfide accumulation was observed during storage but the sulfide levels in acidified slurry did...

  17. Comparison of rheological evaluation techniques and turbulent flow prediction of a simulated nuclear waste melter slurry

    International Nuclear Information System (INIS)

    Carleson, T.E.; Hart, R.E.; Drown, D.C.; Peterson, M.E.

    1987-03-01

    An experimental study was performed on a simulated nuclear waste slurry containing the type of waste sludge and glass-forming chemicals that will be converted to a stable glass in a high-temperature furnace. The rheological properties of the slurry must be determined in order to design the transport and mixing systems. The rheological parameters for the slurry were determined by a variety of viscometers including a rotational viscometer, a capillary tube viscometer, and a pipe flow apparatus. Experiments revealed the absence of wall slip and sufficient non-Newtonian behavior to require adjustments of the results. The slurry was characterized as a yield pseudoplastic fluid. Different rheological constants were obtained for all three viscometers. Predictions of the shear stress as a function of shear rate showed good agreement between the constants determined by the rotational viscometer and the pipe loop apparatus. Laminar and turbulent flows in the pipe loop correlated closely with a recent theoretical model. 16 refs., 16 figs., 5 tabs

  18. Benthic bacterial diversity in submerged sinkhole ecosystems.

    Science.gov (United States)

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  19. Convective heat transfer behavior of the product slurry of the nitrate to ammonia and ceramic (NAC) process

    International Nuclear Information System (INIS)

    Muguercia, I.; Yang, G.; Ebadian, M.A.

    1995-01-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing liquid form low level radioactive waste (LLW). An experimental study has been conducted to measure the heat transfer properties of the NAC product slurry. The results indicate that the heat transfer coefficient for both concentration slurries is much higher than that of pure water, which may be due to the higher conductivity of the gibbsite powder. For the 20% concentration slurry, the heat transfer coefficient increased as the generalized Reynolds number and slurry temperature increased. The heat transfer coefficient of 40% is a function of the Reynolds number only. The test results also indicate that the thermal entrance region can be observed only when the generalized Reynolds number is smaller than 1,000. The correlation equation is also developed based on the experimental data in this paper

  20. Effect of mixing digested slurry on the rate of biogas production from dairy manure in batch fermenter

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, A.K.; Singh, S.P.

    2001-09-01

    Forty kilograms of pure cattle dung and cattle dung mixed with 10% digested slurry obtained from a field biogas plant was batch fermented in horizontal biogas digesters for 15 weeks under field conditions with mean ambient temperature 20-23{sup o}C. Compared to 821 l of biogas from digester I, containing cattle dung alone, 1457 l of biogas was obtained from digester II, containing cattle dung mixed with 10% digested slurry. Mixing of slurry not only speeded up the gas production but also enhanced its rate from 108 l/kg dry matter to 158 l/kg dry matter. It also resulted in 36.1% distraction of total volatile solid in digester II, compared to 23.93% observed in digester I. Mixing digested slurry is recommended for raising biogas production from cattle dung in dry fermenters. (author)

  1. Contribution of seedling vigour and anoxia/hypoxia-responsive genes to submergence tolerance in Vietnamese lowland rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Hien Thi Thu Vu

    2016-09-01

    Full Text Available A direct-seeded rice cultivation system has been widely adopted in Asian countries. Optimum germination and vigorous seedling growth under submergence are key traits for the practice of direct seeding. We studied the post-germination seedling vigour in Vietnamese lowland rice accessions based on three bio-parameters, shoot elongation growth under five-day submergence in water-filled test-tubes, seedling recovery rate five days after transferring submerged seedlings to pots with soil and seedling survival rate 21 days after sowing seeds in nursery beds and immediate incubation under submergence. A large diversity was found in seedling vigour thus estimated among the accessions. Significantly high correlations were observed among all three bio-parameters, verifying the contribution of seedling vigour to the manifestation of submergence tolerance at this critical stage of rice development. To examine the roles of anoxia/hypoxia-responsive genes, the expression of 17 candidate genes was studied by reverse transcription polymerase chain reaction (RT-PCR and compared between selected vigorous and non-vigorous groups of accessions. Transcripts of all but two genes showed marked accumulation in submerged seedlings. No differences, however, were found between the two contrasting groups. The observed common and coordinate expression of anoxia/hypoxia-induced genes suggests that they might assume roles in attaining baseline tolerance against submergence stress. It was also suggested that some unknown genetic factors are operating in determining cultivar/genotype-specific levels of submergence tolerance as assessed by post-germination seedling vigour.

  2. Improving of Mixing by Submerged Rotary Jet (SRJ) System in a Large Industrial Storage Tank by CFD Techniques

    Science.gov (United States)

    Barekatain, H.; Hashemabadi, S. H.

    2011-09-01

    This paper reports the result of a CFD (Computational Fluid Dynamics) study on the Submerged Rotary Jet (SRJ) mixing system in a large industrial crude oil storage tank (one million barrels). This system has been installed on the tank just for reduction of sludge, but improper installation causes more accumulation of sludge on one side of tank. The main question is: How can we improve the mixing operation in this tank? For the purpose, a three dimensional modeling is carried out using an in-house CFD code and RNG k-ɛ model for turbulence prediction. The results show that pump suction location and crude oil velocity in tank are most effective factors on the sludge amount. Then, different ways such as increasing of jet flow rate, increasing and decreasing of tank height and reducing of nozzle diameter have been investigated. Finally, in this case, the results show the sedimentation of sludge in whole tank can be removed by 20% increasing of jet flow rate.

  3. Evaluation of planarization performance for a novel alkaline copper slurry under a low abrasive concentration

    International Nuclear Information System (INIS)

    Jiang Mengting; Liu Yuling; Yuan Haobo; Chen Guodong; Liu Weijuan

    2014-01-01

    A novel alkaline copper slurry that possesses a relatively high planarization performance is investigated under a low abrasive concentration. Based on the action mechanism of CMP, the feasibility of using one type of slurry in copper bulk elimination process and residual copper elimination process, with different process parameters, was analyzed. In addition, we investigated the regular change of abrasive concentration effect on copper and tantalum removal rate and within wafer non-uniformity (WIWNU) in CMP process. When the abrasive concentration is 3 wt%, in bulk elimination process, the copper removal rate achieves 6125 Å/min, while WIWNU is 3.5%, simultaneously. In residual copper elimination process, the copper removal rate is approximately 2700 Å/min, while WIWNU is 2.8%. Nevertheless, the tantalum removal rate is 0 Å/min, which indicates that barrier layer isn't eliminated in residual copper elimination process. The planarization experimental results show that an excellent planarization performance is obtained with a relatively high copper removal rate in bulk elimination process. Meanwhile, after residual copper elimination process, the dishing value increased inconspicuously, in a controllable range, and the wafer surface roughness is only 0.326 nm (sq < 1 nm) after polishing. By comparison, the planarization performance and surface quality of alkaline slurry show almost no major differences with two kinds of commercial acid slurries after polishing. All experimental results are conducive to research and improvement of alkaline slurry in the future. (semiconductor technology)

  4. Rheological study of an hydrate slurry as secondary two-phase refrigerant. Experimental results and modelling; Etude rheologique d'une suspension d'hydrates en tant que fluide frigoporteur diphasique: resultats experimentaux et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Darbouret, M.

    2005-12-15

    Secondary two-phase fluids are suspensions of solid crystals. Thanks to the melting latent heat, they present a great interest for cold transportation. Moreover, they are a mean of reducing the amount of classical refrigerant. In the refrigeration field, ice slurries are already used. The goal is now to extend this technology to other temperature ranges suitable for other applications like freezing or air-conditioning. For an air-conditioning application, a TBAB (Tetra-Butyl-Ammonium Bromide) aqueous solution is studied. Under atmospheric pressure and for positive temperatures, this solution crystallizes into ice-like compounds named 'hydrates'. First, the physical properties of the aqueous solution and its crystallisation conditions were studied. Two different types of hydrates can appear. The goal of the experimental set-up is to study the rheological behaviour of two-phase fluids. Slurries are made in brushed-surface heat exchanger and pumped into pipes where flow rates and pressure drops are measured. The rheological behaviour of TBAB hydrates slurries can be described using a Bingham fluid model. We highlight that the two rheological parameters, which are the apparent viscosity and the yield shear stress, depend on the volume fraction of crystal of course, but also on the hydrate type, and on the initial concentration of the solution. The yield shear stress is interpreted as the consequence of the Van der Waals inter-particle interaction forces. Finally, possible stratification effects are modelled with a finite difference method. The principle is to calculate particle concentration and velocity profiles following the flow of the slurry. Calculations are validated with experimental velocity profiles published by P. Reghem (2002). This model underlines the influence of the particle distribution in the pipe on pressure drops. (author)

  5. Mineralization-immobilization and plant uptake of nitrogen as influenced by the spatial distribution of cattle slurry in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    The effect of incorporating cattle slurry in soil, either by mixing or by simulated injection into a hollow in soil, on the ryegrass uptake of total N and (NH4+)-N-15-N was determined in three soils of different textrue. The N accumulation in Italian ryegrass (Lolium multiflorum L.) from slurry N...... and from an equivalent amount of NH4+-N in ((NH4)-N-15) SO4 (control) was measured during 6 months of growth in pots. After this period the total recovery of labelled N in the top soil plus herbage was similar in the slurry and the control treatments. This indicated that gaseous losses from slurry NH4+-N...... were insignificant. Consequently, the availability of slurry N to plants was mainly influenced by the mineralization-immobilization processes. The apparent utilization of slurry NH4+-N mixed into soil was 7%, 14% and 24% lower than the utilization of (NH4)(2)SO4-N in a sand soil, a sandy loam soil...

  6. Improvement of Xylanase Production by Cochliobolus sativus in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2008-01-01

    Full Text Available The xylanase production by a new Cochliobolus sativus Cs5 strain was improved under submerged fermentation. The xylanase was induced by xylan and repressed by glucose, sucrose, maltose, xylose, starch and cellulose. Highest enzyme production (98.25 IU/mL was recorded when wheat straw (4 % by mass per volume was used as a carbon source after 120 h of incubation. NaNO3 increased xylanase production 5.4-fold as compared to the control. Optimum initial pH was found to be 4.5 to 5. The C. sativus Cs5 strain grown under submerged culture in a simple medium proved to be a promising microorganism for xylanase production.

  7. Impact of slurry application method on phosphorus loss in runoff from grassland soils during periods of high soil moisture content

    Directory of Open Access Journals (Sweden)

    McConnell D.A.

    2016-06-01

    Full Text Available Previous studies have reported that the trailing shoe application technique reduces phosphorus (P in the runoff postslurry application when compared to the traditional splash-plate application technique. However, the effectiveness of the trailing-shoe technique as a means of reducing P losses has not been evaluated when slurry is applied during periods of high soil moisture levels and lower herbage covers. To address this issue, three treatments were examined in a 3 × 4 factorial design split-plot experiment, with treatments comprising three slurry treatments: control (no slurry, splashplate and trailing-shoe, and four slurry application dates: 7 December, 18 January, 1 March and 10 April. Dairy cow slurry was applied at a rate of 20 m3/ha, while simulated runoff was generated 2, 9 and 16 days later and analysed for a range of P fractions. Dissolved reactive P concentrations in runoff at day two was 41% lower when slurry was applied using the trailing-shoe technique, compared to the splash-plate technique (P < 0.05. In addition, P concentrations in runoff were higher (P < 0.05 from slurry applied in December and March compared to slurry applied in January or April, coinciding with periods of higher soil moisture contents. While the latter highlights that ‘calendar’-based non-spreading periods might not always achieve the desired consequences, the study demonstrated that further field-scale investigations into the trailing shoe as a mitigation measure to reduced P loss from agricultural soils is warranted.

  8. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene.

    Science.gov (United States)

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA 1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon de-submergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.

  9. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.; Patzek, Tadeusz; van Oort, Eric

    2017-01-01

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  10. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  11. Thermo physical and flow properties of CO{sub 2} hydrate slurry - Scientific paper

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Egolf, P. W. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec, Vevey (Switzerland)

    2008-07-01

    The apparent viscosity and flow regime of CO{sub 2} hydrate slurry were investigated with a XL7-100 on-line resonant viscometer. Possible reasons for the viscosity changes before and after the nucleation of hydrates are discussed. In addition, super saturation of the CO{sub 2} solution under certain pressure and temperature conditions as well as its density and apparent viscosity were examined. The hydrate's solid fraction and the dissociation enthalpy were evaluated by an on-line Micro DSC system. Real-time coupled multi-electrode array sensor (CMAS) probes were applied to measure the maximal localized corrosion rate of three different materials subjected to CO{sub 2} hydrate slurry and saturated CO{sub 2} solution in the temperature range of 1 to 18 {sup o}C and pressure range of 25 to 30 bar. The density of CO{sub 2} hydrate slurry was also experimentally investigated and the relation between the density and the solid fraction has been established. (author)

  12. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis

    Science.gov (United States)

    Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H.-M.

    2000-02-01

    A commercial atomic absorption graphite furnace (AAGF), with a self-made adapter and valve system, was used as a slurry sampling cell for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The system was applied to the determination of As, Sn, Sb, Se, Te, Bi, Cd, V, Ti and Mo in steelmaking flue dusts. Experimental conditions with respect to ETV and ICP-MS operating parameters were optimized. Compared to aqueous solutions, slurry samples were found to present better analyte transport. Microgram amounts of Rh were used to reduce the difference in analyte response in sensitivity for aqueous solutions of the tested analytes. No such increasing effect was observed for slurry samples and aqueous standards. An added quantity of Rh acting as modifier/carrier resulted in an increase for the same analytes in matrix-slurry solutions, even the addition of an extra Rh quantity has resulted in a decrease in the signals. The effect of Triton X-100 (used as a dispersant agent) on analyte intensity and precision was also studied. External calibration from aqueous standards spiked with 100 μg ml -1 Rh was performed to quantified 0.010 g/100 ml slurry samples. Results are presented for a certified reference electrical arc furnace flue dust (EAF): CRM-876-1 (Bureau of Analysis Samples Ltd., Cleveland, UK), a reference sample of coke ashes X-3705 (from AG der Dillinger Hüttenwerke, Germany), and a representative sample of EAF flue dust from a Spanish steelmaking company (CENIM-1). For the two reference materials an acceptable agreement with certificate values was achieved, and the results for the CENIM sample matched with those obtained from conventional nebulization solution.

  13. Molecular characterization of the submergence response of Arabidopsis thaliana ecotype Columbia

    DEFF Research Database (Denmark)

    Lee, S.C.; Mustroph, A.; Sasidaharan, R.

    2011-01-01

    partial pressure of the petiole and root had stabilized at c. 6 and 0.1 kPa, respectively. As controls, plants were untreated or exposed to darkness. Following quantitative profiling of cellular mRNAs with the Affymetrix ATH1 platform, changes in the transcriptome in response to submergence, early...... darkness, and O2-deprivation were evaluated by fuzzy k-means clustering. This identified genes co-regulated at the conditional, developmental or organ-specific level. Mutants for 10 differentially expressed HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes were screened for altered submergence tolerance....... • The analysis identified 34 genes that were ubiquitously co-regulated by submergence and O2 deprivation. The biological functions of these include signaling, transcription, and anaerobic energy metabolism. HUPs comprised 40% of the co-regulated transcripts and mutants of seven of these genes were significantly...

  14. Damage of reactor recirculation pump of No.3 plant in Fukushima No.2 Nuclear Power Station, Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1990-01-01

    No.3 plant in Fukushima No.2 Nuclear Power Station is a BWR plant with the rated output of 1100 MW, and as for the damage of its reactor recirculation pump, the investigation of the cause and the examination of countermeasures are advanced by the special committee. It is presumed that the submerged bearing ring of this pump caused the fatigue fracture due to the insufficient penetration in the fillet-welded part. The ring broke into pieces, and the main disk of the impeller was broken by the wear due to the pieces. Further, the damage of washers and the falling-off of bolts occurred. The metallic particles generated by wear were about 30 kg, and it is presumed that several kg of them adhered to fuel. Hereafter, the investigation of the cause will be continued, and the countermeasures for preventing the recurrence are examined. On January 1, 1989, the vibration of the pump increased, and the alarm was issued. However, the operation was continued carefully. On January 6, the vibration increased again, and on January 7, the reactor was stopped. The third regular inspection was begun on the same day, and the damage of the pump was found. (K.I.)

  15. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    International Nuclear Information System (INIS)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-01

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned

  16. Characterization methodology for re-using marble slurry in industrial applications

    Science.gov (United States)

    Marras, Graziella; Careddu, Nicola; Peretti, Roberto; Bortolussi, Augusto

    2017-04-01

    In the effort towards waste minimization and circular economy, natural stone waste is one of the foremost parameter to turn scientific community attention. At this time, calcium carbonate has a great importance in industrial fields and currently there is the necessity of appreciate the potential value of marble waste and convert it into marketable products. A large amount of residues is produced in ornamental stone sector with different dimension and particle size. The research focused on marble slurry, recovered at the end of the treatment plant in the filter-press section. The aim of this paper is to propose a defined way to characterize marble slurry, primarily composed of micronized particles, in order to obtain useful data to make a comparison with market specifications. In particular the proposed characterization methodology follows the indicated steps: Leaching test (TCLP) - Grain size distribution and bulk density - Mineralogical analyses - X-Ray diffraction - Chemical analysis - Loss on ignition - SEM determination - Colorimetric and bright analysis. Marble slurry samples, collected by different dimension stone treatment plants in Orosei marble district (Sardinia - Italy), were analyzed by physical, mineralogical and chemical determinations and the obtained data were evaluated for compatibility with the CaCO3 specifications required by a definite industrial sector, seeing as how CaCO3 product specifications vary depending on the utilization. The importance of this investigation is to characterize completely the "waste" that must apply for further uses and to identify the feasibility to substitute marketable micronized CaCO3 with marble slurry. Further goal is to enhance the environmental advantages of re-using stone waste by reducing marble waste landfills and by applying raw material substitution, in accordance with regulatory requirements, thus pursuing the objective to convert natural stone waste into by-product with a renewed environmental and economic

  17. The rheology of cryovolcanic slurries: Motivation and phenomenology of methanol-water slurries with implications for Titan

    Science.gov (United States)

    Zhong, Fang; Mitchell, Karl L.; Hays, Charles C.; Choukroun, Mathieu; Barmatz, Martin; Kargel, Jeffrey S.

    2009-08-01

    The Cassini spacecraft has revealed landforms on the surface of Titan suggested to be viscous cryovolcanic flows and possibly eruptive domes. In order to relate those surface features to the processes and chemistries that produced them, it is necessary to construct flow models, which rely on characterization of the rheological properties of the eruptants. This paper describes our initial exploratory attempts to understand the rheological characteristics of cryogenic slurries, using a 40% methanol-water mixture, as a precursor to more detailed experiments. We have devised a new automated cryogenic rotational viscometer system to more fully characterize cryovolcanic slurry rheologies. A series of measurements were performed, varying first temperature, and then strain rate, which revealed development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions, not previously reported. At fixed shear rate our data are fit well by the Andrade equation, with the activation energy modified by a solid volume fraction. At fixed temperature, depending on shearing history, a Cross model could describe our data over a wide shear rate range. A Bingham plastic model appears to be a good constitutive model for the data measured at high shear rates when the shear was global. The yield stress like behavior implies that levee formation on cryolava flows is more likely than would be inferred from the previous studies, and may provide a partial explanation for features interpreted as steep-sided volcanic constructs on Titan.

  18. Soil slurry reactors for the assessment of contaminant biodegradation

    Science.gov (United States)

    Toscano, G.; Colarieti, M. L.; Greco, G.

    2012-04-01

    Slurry reactors are frequently used in the assessment of feasibility of biodegradation in natural soil systems. The rate of contaminant removal is usually quantified by zero- or first-order kinetics decay constants. The significance of such constants for the evaluation of removal rate in the field could be questioned because the slurry reactor is a water-saturated, well-stirred system without resemblance with an unsaturated fixed bed of soil. Nevertheless, a kinetic study with soil slurry reactors can still be useful by means of only slightly more sophisticated kinetic models than zero-/first-order decay. The use of kinetic models taking into account the role of degrading biomass, even in the absence of reliable experimental methods for its quantification, provides further insight into the effect of nutrient additions. A real acceleration of biodegradation processes is obtained only when the degrading biomass is in the growth condition. The apparent change in contaminant removal course can be useful to diagnose biomass growth without direct biomass measurement. Even though molecular biology techniques are effective to assess the presence of potentially degrading microorganism in a "viable-but-nonculturable" state, the attainment of conditions for growth is still important to the development of enhanced remediation techniques. The methodology is illustrated with reference to data gathered for two test sites, Oslo airport Gardermoen in Norway (continuous contamination by aircraft deicing fluids) and the Trecate site in Italy (aged contamination by crude oil spill). This research is part of SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7).

  19. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  20. Automated injection of slurry samples in flow-injection analysis

    NARCIS (Netherlands)

    Hulsman, M.H.F.M.; Hulsman, M.; Bos, M.; van der Linden, W.E.

    1996-01-01

    Two types of injectors are described for introducing solid samples as slurries in flow analysis systems. A time-based and a volume-based injector based on multitube solenoid pinch valves were built, both can be characterized as hydrodynamic injectors. Reproducibility of the injections of dispersed