WorldWideScience

Sample records for submerged rice soils

  1. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy

    Directory of Open Access Journals (Sweden)

    Suvendu Das

    2017-09-01

    nitrogen (N were the major, while total organic carbon (TOC, total nitrogen (TN, and available phosphorus (P were the minor drivers of variation in bacterial communities. Overall, our observations suggest that CCM amendment is better than CSM amendment to improve soil fertility and crop yield in a submerged rice cropping system.

  2. Oxygen dynamics in submerged rice (Oryza sativa L.)

    DEFF Research Database (Denmark)

    Colmer, Timothy D.; Pedersen, Ole

    2008-01-01

    Complete submergence of plants prevents direct O2 and CO2 exchange with air. Underwater photosynthesis can result in marked diurnal changes in O2 supply to submerged plants. Dynamics in pO2 had not been measured directly for submerged rice (Oryza sativa), but in an earlier study, radial O2 loss...... from roots showed an initial peak following shoot illumination.  O2 dynamics in shoots and roots of submerged rice were monitored during light and dark periods, using O2 microelectrodes. Tissue sugar concentrations were also measured.  On illumination of shoots of submerged rice, pO2 increased rapidly...... of magnitude higher than in darkness, enhancing also pO2 in roots.The initial peak in pO2 following illumination of submerged rice was likely to result from high initial rates of net photosynthesis, fuelled by CO2 accumulated during the dark period. Nevertheless, since sugars decline with time in submerged...

  3. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods

    DEFF Research Database (Denmark)

    Herzog, Max; Konnerup, Dennis; Pedersen, Ole

    2018-01-01

    Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged...

  4. Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress

    Directory of Open Access Journals (Sweden)

    Malay Kumar ADAK

    2011-06-01

    Full Text Available The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation. It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield. The detrimental effects of the complete submergence were recorded in generation of sucrose, starch, sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e. non-submerged condition. The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity. Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity. However, under normal or control condition, there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity. Still, photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield. Finally, plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues. It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles, in this case as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.

  5. Rice SUB1A constrains remodeling of the transcriptome and metabolome during submergence and post-submergence recovery”.

    Science.gov (United States)

    The rice (Oryza sativa L.) ethylene-responsive transcription factor SUB1A confers tolerance to prolonged, complete submergence by limiting underwater elongation growth. Rice encoding SUB1A-1 also recovers photosynthetic function and re-commences development towards flowering more rapidly after desu...

  6. Vinegar rice (Oryza sativa L.) produced by a submerged fermentation process from alcoholic fermented rice

    OpenAIRE

    Spinosa,Wilma Aparecida; Santos Júnior,Vitório dos; Galvan,Diego; Fiorio,Jhonatan Luiz; Gomez,Raul Jorge Hernan Castro

    2015-01-01

    Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L.)) for vinegar production. An alcoholic solution with 6.28% (w/v) ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany) for the production of vineg...

  7. Contribution of seedling vigour and anoxia/hypoxia-responsive genes to submergence tolerance in Vietnamese lowland rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Hien Thi Thu Vu

    2016-09-01

    Full Text Available A direct-seeded rice cultivation system has been widely adopted in Asian countries. Optimum germination and vigorous seedling growth under submergence are key traits for the practice of direct seeding. We studied the post-germination seedling vigour in Vietnamese lowland rice accessions based on three bio-parameters, shoot elongation growth under five-day submergence in water-filled test-tubes, seedling recovery rate five days after transferring submerged seedlings to pots with soil and seedling survival rate 21 days after sowing seeds in nursery beds and immediate incubation under submergence. A large diversity was found in seedling vigour thus estimated among the accessions. Significantly high correlations were observed among all three bio-parameters, verifying the contribution of seedling vigour to the manifestation of submergence tolerance at this critical stage of rice development. To examine the roles of anoxia/hypoxia-responsive genes, the expression of 17 candidate genes was studied by reverse transcription polymerase chain reaction (RT-PCR and compared between selected vigorous and non-vigorous groups of accessions. Transcripts of all but two genes showed marked accumulation in submerged seedlings. No differences, however, were found between the two contrasting groups. The observed common and coordinate expression of anoxia/hypoxia-induced genes suggests that they might assume roles in attaining baseline tolerance against submergence stress. It was also suggested that some unknown genetic factors are operating in determining cultivar/genotype-specific levels of submergence tolerance as assessed by post-germination seedling vigour.

  8. Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    2017-10-01

    Full Text Available Submergence stress is a limiting factor for rice growing in rainfed lowland areas of the world. It is known that the phytohormone gibberellin (GA has negative effects on submergence tolerance in rice, while its inhibitor paclobutrazol (PB does the opposite. However, the physiological and molecular basis underlying the GA- and PB-regulated submergence response remains largely unknown. In this study, we reveal that PB could significantly enhance rice seedling survival by retaining a higher level of chlorophyll content and alcohol dehydrogenase activity, and decelerating the consumption of non-structure carbohydrate when compared with the control and GA-treated samples. Further transcriptomic analysis identified 3936 differentially expressed genes (DEGs among the GA- and PB-treated samples and control, which are extensively involved in the submergence and other abiotic stress responses, phytohormone biosynthesis and signaling, photosynthesis, and nutrient metabolism. The results suggested that PB enhances rice survival under submergence through maintaining the photosynthesis capacity and reducing nutrient metabolism. Taken together, the current study provided new insight into the mechanism of phytohormone-regulated submergence response in rice.

  9. Vinegar rice (Oryza sativa L. produced by a submerged fermentation process from alcoholic fermented rice

    Directory of Open Access Journals (Sweden)

    Wilma Aparecida Spinosa

    2015-03-01

    Full Text Available Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L. for vinegar production. An alcoholic solution with 6.28% (w/v ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany for the production of vinegar and was followed through 10 cycles. The vinegar had a total acidity of 6.85% (w/v, 0.17% alcohol (w/v, 1.26% (w/v minerals and 1.78% (w/v dry extract. The composition of organic acids present in rice vinegar was: cis-aconitic acid (6 mg/L, maleic acid (3 mg/L, trans-aconitic acid (3 mg/L, shikimic + succinic acid (4 mg/L, lactic acid (300 mg/L, formic acid (180 mg/L, oxalic acid (3 mg/L, fumaric acid (3 mg/L and itaconic acid (1 mg/L.

  10. Modified Application of Nitrogen Fertilizer for Increasing Rice Variety Tolerance toward Submergence Stress

    Directory of Open Access Journals (Sweden)

    Gribaldi Gribaldi

    2017-01-01

    Full Text Available This research was conducted from July to October 2015, using Randomized Block Design with two treatment factors and three replications for each treatment. The first factor was rice varieties (V: V1 = IR 64; V2 = Inpara 5. The second factor was fertilizer (N: N0: without submergence, all N fertilizer was given during planting; N1: all N fertilizer dose was given during planting; and N2: 1/2 dose of N fertilizer was given during planting; the rest was given at 42 days after planting. The submergence was during 7–14 days after planting; N3 = the entire dose of N fertilizer that was given during planting, N4 = 1/2 the dose of N fertilizer that was given during planting, and the rest was given at 42 days after planting. The submergence was during 7–14 and 28–35 days after planting. The results showed that the management of nitrogen fertilizer application had effect on rice growth and production which experienced dirty water submergence stress; the application of 1/2 dose of N fertilizer given during planting had the best effect on rice growth and production; the longer the submergence period for rice variety, the higher the effect on rice growth and production.

  11. Development of New Submergence Tolerant Rice Variety for Bangladesh Using Marker-Assisted Backcrossing

    Directory of Open Access Journals (Sweden)

    Khandakar Md Iftekharuddaula

    2015-01-01

    Full Text Available Submergence tolerant high yielding rice variety was developed using BR11 as a recipient parent applying foreground, phenotypic and background selection approaches. Recombinant selection was found essential to minimize linkage drag by BC2F2 generation. Without recombinant selection, the introgression size in the backcross recombinant lines (BRLs was approximately 15 Mb on the carrier chromosome. The BRLs were found submergence tolerance compared to the check varieties under complete submergence for two weeks at Bangladesh Rice Research Institute, and produced higher yield compared to the isogenic Sub1-line under controlled submerged condition. The BRL IR85260-66-654-Gaz2 was released as BRRI dhan52 in 2010, which was the first high yielding submergence tolerant variety in Bangladesh. BRRI dhan52 produced grain yield ranging from 4.2 to 5.2 t/hm2 under different flash flood prone areas of Bangladesh in three consecutive seasons. The study demonstrated the efficiency of recombinant selection and better adaptability of the newly released submergence tolerant high yielding variety in flash flood prone different areas of the country with respect to submergence tolerance and yield potential.

  12. Genetic potentiality of indigenous rice genotypes from Eastern India with reference to submergence tolerance and deepwater traits

    Directory of Open Access Journals (Sweden)

    Sayani Goswami

    2017-09-01

    Full Text Available Submergence tolerance in rice varieties is crucial for maintaining stable yields in low land areas, where recurrence of flooding is a constant phenomenon during monsoon. We have conducted detailed physiological and genotyping studies of 27 rice genotypes and one wild rice relative, popularly grown in low land areas of the two major rice growing states of eastern India, West Bengal and Odisha with a focus on submergence tolerance traits and Sub1 loci. We found that these genotypes show varying degree (50–100% survival rate during post submergence recovery period, and high degree of polymorphism in the Sub1 linked rice microsatellite loci RM219 and RM7175. Detailed allelic diversity study of Sub1A loci suggests that rice varieties IR42, Panibhasha, Khoda and Kalaputia share a common allele that is different from FR13A, Keralasundari, Bhashakalmi, Kumrogore. Two other genotypes Meghi and Khoda shares both alleles of Sub1A loci (present in IR42 and FR13A groups in addition to a new variant. Detailed sequence analysis of the amplified product for the Sub1A loci from these genotypes showed several single nucleotide changes with respect to reference Oryza sativa Sub1A loci (DQ011598. Three rice genotypes (Meghi, Bhashakalmi and Keralasundari showed beneficial properties in relation to induced submergence stress and can be considered as valuable genetic source in context of utilization of natural rice genetic resources in breeding program for submergence tolerance.

  13. Nitrogen fertilizer management for tidal submergence tolerant landrace rice (Oryza sativa L. cultivars

    Directory of Open Access Journals (Sweden)

    M.A.A. Mamun

    2017-12-01

    Full Text Available In tidal submergence ecosystem, nitrogen (N is a crucial nutrient for improved and sustainable rice production. Therefore, a series of on-farm and on-station field experiments were conducted to develop a suitable N management practice for tidal submergence tolerant landrace aman rice. In on-farm, urea deep placement (UDP through urea super granule before panicle initiation (PI stage was compared with no fertilizer application. Similarly, five N fertilizer management practices viz. (i. two splits of prilled urea (PU, (ii. UDP at 10 DAT, (iii. UDP before PI, (iv. full dose PU before PI and (v. No urea (control were compared at on-station trial. Tidal submergence tolerance aman rice varieties (Rajashail, Kutiagni, Sadamota and Lalmota were used as testing materials. In on farm experiment, aman cultivars produced 2.0–2.5 t ha−1 grain without N fertilizer. But, cultivated Rajashail, Kutiagni, Sadachikon, Sadapajam, Lalmota and Sadamota gave 3.0–3.5 t ha−1 grain yield with the UDP before PI in tidal prone areas. Though UDP required fertilizer and application cost but it gave profit upto 22,000 BDT ha−1 (Bangladeshi Taka. In on-station experiment, UDP before PI stage significantly increased rice yield and economic return although it was comparable to two splits of PU and top dressing of PU before PI stage. However, UDP at 10 DAT increased straw yield but failed to increase grain yield even compared to control. It could be concluded that UDP before PI stage of rice is an effective method for increasing rice yield and farm income in tidal prone areas.

  14. Mapping QTLs for submergence tolerance during germination in rice

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... Key words: Oryza sativa L, anaerobic germination, QTL analysis. INTRODUCTION. Two main ... The study was conducted at NG-01 greenhouse, Genome and. Mapping (GML), the .... ABC transporter family protein ..... differences of germination habits in rice seeds with special reference to plant breeding (in ...

  15. The mechanism of improved aeration due to gas films on leaves of submerged rice.

    Science.gov (United States)

    Verboven, Pieter; Pedersen, Ole; Ho, Quang Tri; Nicolai, Bart M; Colmer, Timothy D

    2014-10-01

    Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a three-dimensional leaf anatomy model. The anatomy and dark respiration of leaves of rice (Oryza sativa L.) were measured and used to compute O2 fluxes and partial pressure of O2 (pO2 ) in the DBL, gas film and leaf when submerged. The effects of floodwater pO2 , DBL thickness, cuticle permeability, presence of gas film and stomatal opening were explored. Under O2 -limiting conditions of the bulk water (pO2  gas film significantly increases the O2 flux into submerged leaves regardless of whether stomata are fully or partly open. With a gas film, tissue pO2 substantially increases, even for the slightest stomatal opening, but not when stomata are completely closed. The effect of gas films increases with decreasing cuticle permeability. O2 flux and tissue pO2 decrease with increasing DBL thickness. The present modelling analysis provides a mechanistic understanding of how leaf gas films facilitate O2 entry into submerged plants. © 2014 John Wiley & Sons Ltd.

  16. Submergence rice cultivation in southern Bangladesh: farmers opinion and adaptations practices

    Directory of Open Access Journals (Sweden)

    AKM Abdul Ahad Biswas

    2015-12-01

    Full Text Available Rice productivity in coastal Bangladesh is lower than the national average and total coastal area is considered to be submergence-prone and higher vulnerable in July to January cropping season. The selected study areas are Kalapara and Patuakhali Sadar Upazila that are too vulnerable to agriculture practices. Field survey was conducted during 01st June to 30th July, 2015 to investigate the impact of submergence on Aman rice cultivation (ARC, existing adopted local adaptation practices with impacts and options to address the submergence problem. Primary data was collected through Focus Group Discussion (FGD, Individual Interview and Key Informant Interview methods and secondary data was collected from different secondary sources. A well-structured pretested questionnaire schedule was developed keeping in mind the objectives and variables under this study. After cyclone SIDR and AILA devastation, the rate of traditional ARC is decreasing every year and in 2015 it was 26.51%. Recently farmers have adopted new cropping practices and strategies like modern ARC in Aman season as single crop; Boro-Aus-Aman season as triple crop and Aus-Aman season as double crop are practicing. Approximately all farmers have adopted to grow stress tolerant rice varieties (STRV; farmer’s curiosities to familiar with and to have the STRV are encouraging. Farmers were fully adopted BRRIdhan52 rice cultivation with positive perceptions of higher yield and lower production cost. Therefore it can be concluded that the intensity of adoption of adaptation and mitigation measures are significantly influenced positively by the STRV yield capability; farmer’s participation in intervention programs; livelihood diversification; frequency of extension personnel contact; submergence and inundation characteristics; tolerance attributes of STRV and availability of STRV cultivation information.International Journal of Environment Vol.4(4 2015: 100-113

  17. Response Of Lowland Rice To Soil Compaction

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2000-01-01

    Soil compaction, as a new tillage practice for paddy soil, is to substitute pudding in order to reduce land preparation cost. To study response of lowland rice to soil compaction, a pot experiment has been conducted which took place in the greenhouse of P3TIR-BATAN. Soil for experiment was taken from pusakanegara. Two factors (degree of soil compaction and rice variety) were combined. Degree of compaction was split into 3 levels (DI = normal; D215% more compact than normal; 30 % more compact than normal), and rice variety into 2 levels (IR64 and Atomita IV). KH 2 32 PO 4 solution was injected into the soil surrounding rice clump to test the root activity at blooming stage of rice plant. Data resulted from this experiment is presented together with additional data from some other experiments of fertilization in the research s erie to study soil compaction. Some information's from experiment results are as following. Both rice varieties tested gave the same response to soil compaction. Root activity, according to data of 32 P absorbed by plant, was not harmed by soil compaction at the degree tested in the experiment. This prediction is supported by the growth by rice observed at generative growth stage, in pot experiment as well as in field experiment, which showed that soil compaction tested did not decrease rice yield but in opposite in tended to increase the yield. In practising soil compaction in land preparation, fertilizers should be applied by deep placement to have higher increasing is rice yield

  18. Improvement of Photosynthesis by Sub1 QTL in Rice Under Submergence: Probed by Chlorophyll Fluorescence OJIP Transients

    Directory of Open Access Journals (Sweden)

    Panda Debabrata

    2011-09-01

    Full Text Available The influence of submergence on the photosynthetic activity in rice plants either possessing or not possessing Sub1 QTL i.e. Swarna and Swarna Sub1 cultivars (cv. were evaluated under simulated complete submergence. The leaf photosynthetic rate and stomatal conductance decreased in both the cv. during the progression of submergence as compared to control plant but significant varietal differences was observed after 1 day (d of submergence. Submergence also alters the photo-system (PS II activity, as reflected in a decrease in the values of Fo, Fm and the Fv/Fm ratio and degradation of chlorophyll, more in Swarna than that of Swarna Sub1. Under complete submergence the shape of the OJIP transient also changed in rice leaves with decrease in maximal fluorescence (P=Fm intensity, resulted lowering of variable fluorescence levels. The decrease was more pronounced in Swarna compared to the Swarna Sub1 cv. Thus, Swarna Sub1 improves photosynthetic activity showing more photosynthetic rate compared to Swarna under submergence because, of less degradation of chlorophyll, higher stomatal conductance, and efficient PS II activity.

  19. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.

    Science.gov (United States)

    Nunes, Luiza Varela; de Barros Correa, Fabiane Fernanda; de Oliva Neto, Pedro; Mayer, Cassia Roberta Malacrida; Escaramboni, Bruna; Campioni, Tania Sila; de Barros, Natan Roberto; Herculano, Rondinelli Donizetti; Fernández Núñez, Eutimio Gustavo

    2017-04-01

    The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L -1 ) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L -1 ) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L -1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.

  20. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.

  1. Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba.

    Science.gov (United States)

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-02-15

    We examined the gibberellin (GA) and ethylene regulation of submergence-induced elongation in seedlings of the submergence-tolerant lowland rice (Oryza sativa L.) cvs Senia and Bomba. Elongation was enhanced after germination to facilitate water escape and reach air. We found that submergence-induced elongation depends on GA because it was counteracted by paclobutrazol (an inhibitor of GA biosynthesis), an effect that was negated by GA(3). Moreover, in the cv Senia, submergence increased the content of active GA(1) and its immediate precursors (GA(53), GA(19) and GA(20)) by enhancing expression of several GA biosynthesis genes (OsGA20ox1 and -2, and OsGA3ox2), but not by decreasing expression of several OsGA2ox (GA inactivating genes). Senia seedlings, in contrast to Bomba seedlings, did not elongate in response to ethylene or 1-aminocyclopropane-1-carboxylic-acid (ACC; an ethylene precursor) application, and submergence-induced elongation was not reduced in the presence of 1-methylcyclopropene (1-MCP; an ethylene perception inhibitor). Ethylene emanation was similar in Senia seedlings grown in air and in submerged-grown seedlings following de-submergence, while it increased in Bomba. The expression of ethylene biosynthesis genes (OsACS1, -2 and -3, and OsACO1) was not affected in Senia, but expression of OsACS5 was rapidly enhanced in Bomba upon submergence. Our results support the conclusion that submergence elongation enhancement of lowland rice is due to alteration of GA metabolism leading to an increase in active GA (GA(1)) content. Interestingly, in the cv Senia, in contrast to cv Bomba, this was triggered through an ethylene-independent mechanism. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.

    Science.gov (United States)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-04-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas-water interface to promote O₂ uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O₂ from floodwaters when in darkness and CO₂ entry when in light. O₂ microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water-gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O₂ deficiency and oxidative stress. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  3. Soil quality assessment in rice production systems

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.

    2007-01-01

    In the state of Rio Grande do Sul, Brazil, rice production is one of the most important regional activities. Farmers are concerned that the land use practices for rice production in the Camaquã region may not be sustainable because of detrimental effects on soil quality. The study presented in this

  4. Production of surfactin from rice mill polishing residue by submerged fermentation using Bacillus subtilis MTCC 2423.

    Science.gov (United States)

    Gurjar, Jigar; Sengupta, Bina

    2015-08-01

    Rice mill polishing residue (RMPR), an abundant and cheap agro residue, was used as substrate for microbial growth of Bacillus subtilis MTCC 2423 by submerged fermentation process to produce surfactin. Nutrients present in the residue were sufficient to sustain the growth of the microorganism. Multi stage foam fractionation followed by acid precipitation was used to concentrate and recover the product. Recoverable yield of surfactin was 4.17 g/kg residue. Product recovered in the foamate accounted for 69% of the total yield. The residual broth containing ∼ 30% surfactin exhibited biological oxygen demand and chemical oxygen demand values of 23 and 69 mg/L respectively. The microbial growth data was correlated using three parameter sigmoid models. Surfactin synthesized had a predominance of molecular weight 1076 Da. Foam separation of copper using surfactin resulted in a maximum removal of 72.5%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fate of 14C-labelled diazinon in rice seedling and paddy soil

    International Nuclear Information System (INIS)

    Lee, Seong Kye; Kim, Kyoon; Park, Chang Kyu; Hwang, Eul Chul

    1985-01-01

    The fate of diazinon in the intact rice plants and submerged paddy soil has been investigated with (2- 14 C pyrimidine) diazinon. The labelled diazinon solution was applied to paddy water and distribution of radioactivities in the rice seedlings, paddy soil, volatile fraction and carbon dioxide has been ascertained at end the of incubation times of 0.5,1,4,6 and 9 days respectively. In addition, extract of plants and paddy soils were subjected to TLC separation for examination of possible transformation products of diazinon. The results may be summarized as follow; 1. Total recoveries of radiactivities were between 57.2∼73.6 per cent. 2. Radioactivity in rice seedlings increased with incubation periods reaching one tenth of treated radioactivity at the end of 9 day incubation. 3. Non-extractable radioactivity in paddy soil increased with incubation periods. 4. Radioactive volatile fraction increased in the presence of the rice seedlings. 5. Pyrimidinol was unique conversion product of diazinon in rice seedlings and paddy soils. 6. Pyrimidinol applied to paddy soil is readily absorbed by rice seedlings. (Author)

  6. Nitrogen fixation by free-living organisms in rice soils. Studies with 15N

    International Nuclear Information System (INIS)

    Rao, V.R.; Charyulu, P.B.B.N.; Nayak, D.N.; Ramakrishna, C.

    1979-01-01

    Heterotrophic nitrogen fixation as influenced by water regime, organic matter, combined nitrogen and pesticides was investigated in several Indian rice soils by means of the 15 N 2 tracer technique. Soil submergence accelerated nitrogen fixation. Addition of cellulose to both non-flooded and flooded soils enhanced nitrogen fixation. Under submerged conditions, addition of sucrose, glucose and malate in that order stimulated nitrogen fixation in alluvial soil, while only sucrose enhanced nitrogen fixation in laterite soil. Nitrogen fixation in flooded alluvial and laterite soils decreased with increasing concentration of combined nitrogen. Nitrogen fixation was appreciable in acid sulphate and saline soils under both flooded and non-flooded conditions, despite high salinity and acidity. Application of certain pesticides at rates equivalent to recommended field level greatly influenced nitrogen fixation in flooded rice soils. Additions of benomyl (carbamate fungicide) and carbofuran (methyl carbamate insecticide) to alluvial and laterite soils resulted in significant stimulation of nitrogen fixation. Gamma-BHC stimulated nitrogen fixation only in alluvial soil, with considerable inhibition in a laterite soil. Nitrogen fixation by Azospirillum lipoferum was investigated by 15 N 2 . Large variations in 15 N 2 incorporation by A. lipoferum isolated from the roots of several rice cultivars was observed. Specific lines of rice harbouring A. lipoferum with high nitrogenase activity might be selected. Nitrogen fixed by heterotrophic organisms in a complex system such as soil could not be evaluated precisely. Indigenous nitrogen fixation in a flooded soil would be in the range of 5-10 kg N/ha, increasable 3 to 4-fold by appropriate fertilizers and cultural practices

  7. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  9. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene.

    Science.gov (United States)

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA 1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon de-submergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.

  10. Degradation of chlorpyrifos in tropical rice soils.

    Science.gov (United States)

    Das, Subhasis; Adhya, Tapan K

    2015-04-01

    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Diminishing peat oxidation of agricultural peat soils by infiltration via submerged drains

    NARCIS (Netherlands)

    Akker, van den J.J.H.; Hendriks, R.F.A.

    2017-01-01

    Oxidation of peat soils used in dairy farming in the western peat area of The Netherlands causes subsidence rates up to 13 mm.y and emissions of CO2 to about 27 t.ha.y. In 2003 experiments started with subsurface irrigation by submerged drains to raise groundwater levels to reduce oxidation and so

  12. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    Science.gov (United States)

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which

  13. Effects of Soil Veterinary Antibiotics Pollution on Rice Growth

    OpenAIRE

    XU Qiu-tong; GU Guo-ping; ZHANG Ming-kui

    2016-01-01

    To understand the potential effect of soil veterinary antibiotics pollution on the growth of rice, a main food crop in China, oxytetracycline which was used widely in livestock and poultry breeding was selected to test the effects of different levels of soil antibiotics pollution on growth and yield of rice plant at both seedling and growth periods. Relationship between oxytetracycline accumulated in different organs of rice plant and oxytetracycline pollution levels in the soil was character...

  14. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-01-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas–water interface...... or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O2 deficiency and oxidative...... stress....

  15. Transfer of technetium from soil to paddy and upland rice

    International Nuclear Information System (INIS)

    Yanagisawa, Kei; Muramatsu, Yasuyuki

    1995-01-01

    Soil-plant transfer factors (concentration ratio between the plant and soil) of technetium in paddy and upland rice plants were obtained from laboratory experiments. The transfer factor is one of the most important parameters for environmental radiation dose assessment. Technetium tracer ( 95m TcO 4 - ) was added to the soil prior to rice cultivation. The transfer factor of technetium for the hulled grains (brown rice) of paddy rice (≤0.0002) was much lower than for that of upland rice (0.021). The transfer factors for both types of hulled grains were much lower than in the leaves. The technetium decontamination rate from hulled grains by polishing was 34%, the percentage of the weight decrease being 12%. The concentration of technetium in the soil solution collected from the paddy rice soil (flooded conditions) decreased rapidly with time due to its adsorption on the soil. In the upland rice soil (non-flooded) solution, the decrease in the technetium concentration was fairly slow. The low transfer factors for the paddy rice plants could be explained by the immobilization of technetium in the flooded soil. The oxidation-reduction potentials (Eh) in the flooded soil decreased rapidly with time. We conclude that technetium tracer added as TcO 4 - to flooded soil is readily transformed to an insoluble form (e.g.TcO 2 ) under the reducing conditions provided by flooding. (author)

  16. Soil to rice transfer factors for 210Pb: a study on rice grown in India

    International Nuclear Information System (INIS)

    Karunakara, N.; Rao, Chetan; Ujwal, P.; Yashodhara, I.; Sudeep Kumara; Somashekarappa, H.M.; Bhaskara Shenoy, K.; Ravi, P.M.

    2013-01-01

    India is the second largest producer of rice (Oryza sativa L.) in the world and rice is the essential component of the diet for the majority of the population of India. However, detailed studies aimed at evaluation of radionuclide transfer factors (F v ) for rice grown in India are almost non-existent. This paper presents soil to rice transfer factors for 210 Pb for rice grown in natural field conditions on the West Coast of India. A rice field was developed very close to the Kaiga nuclear power plant for the field studies. For a comparative study of radionuclide transfer factors, rice samples were also collected from the rice fields of nearby villages. The soil to un-hulled rice grain 210 Pb varied in the range <1.2 x10 -2 to 8.1 x 10 -1 with a mean of 1.4 x 10 -1 . The mean values of un-hulled grain to white rice processing retention factors (F r ) was 0.03 for 210 Pb. Using the processing retention factors the soil to white rice transfer factor was estimated and found to have the mean value of 4.2 x 10 -3 . The study has shown that the transfer of 210 Pb was retained in the root and its transfer to above ground organs of rice plant is significantly lower. (author)

  17. Effects of Soil Veterinary Antibiotics Pollution on Rice Growth

    Directory of Open Access Journals (Sweden)

    XU Qiu-tong

    2016-01-01

    Full Text Available To understand the potential effect of soil veterinary antibiotics pollution on the growth of rice, a main food crop in China, oxytetracycline which was used widely in livestock and poultry breeding was selected to test the effects of different levels of soil antibiotics pollution on growth and yield of rice plant at both seedling and growth periods. Relationship between oxytetracycline accumulated in different organs of rice plant and oxytetracycline pollution levels in the soil was characterized. The results showed that the effects of soil oxytetracycline pollution on rice growth mainly occurred at the seedling stage, and the effect on the underground part was obviously greater than the above-ground part of rice. Significant negative effects on biomass of the underground part of rice, root activity, and chlorophyll content and oxidase activity of the leave at the seedling stage were found when soil oxytetracycline pollution concentrations was over 30 mg·kg-1. The consequence from the impact of soil oxytetracycline pollution on rice seedling could be extended to the whole growth period of the plant, which could reduce the number of tiller and rice yield. Oxytetracycline accumulated in various organs of rice plant was in the sequence of root> leaf> stem> grain. Rice roots had low capacity to uptake oxytetracycline from the soil, the transfer capacity of oxytetracycline from the roots to leaf, stem, and grain was also weak. Considering the low oxytetracycline pollution levels in most of current actual farmland soils (less than 10 mg·kg-1 and lower accumulation character of oxytetracycline in the grain, it is thought that the direct damage of soil oxytetracycline pollution on rice production is small.

  18. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Prabhat, E-mail: prabhat2003@gmail.com; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo, E-mail: pjkim@gnu.ac.kr

    2014-08-15

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH{sub 4}) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO{sub 3}–N concentrations in soil, which are precursors for the formation of nitrous oxide (N{sub 2}O). However, N{sub 2}O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N{sub 2}O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N{sub 2}O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N{sub 2}O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha{sup −1} and 27 Mg ha{sup −1} rates in rice paddy soil. Cover crop application significantly increased CH{sub 4} emission flux while decreased N{sub 2}O emissions during rice cultivation. The lowest N{sub 2}O emission was observed in 27 Mg ha{sup −1} cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (< 250 μm), and that proportionately increased the N{sub 2}O emission potentials of these soil aggregates. Fluxes of N{sub 2}O emissions in the fallow season were influenced by the N{sub 2}O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH{sub 4}, but N{sub 2}O should also be

  19. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    International Nuclear Information System (INIS)

    Pramanik, Prabhat; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2014-01-01

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH 4 ) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO 3 –N concentrations in soil, which are precursors for the formation of nitrous oxide (N 2 O). However, N 2 O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N 2 O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N 2 O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N 2 O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha −1 and 27 Mg ha −1 rates in rice paddy soil. Cover crop application significantly increased CH 4 emission flux while decreased N 2 O emissions during rice cultivation. The lowest N 2 O emission was observed in 27 Mg ha −1 cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (< 250 μm), and that proportionately increased the N 2 O emission potentials of these soil aggregates. Fluxes of N 2 O emissions in the fallow season were influenced by the N 2 O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH 4 , but N 2 O should also be considered especially for fallow season to calculate total GWP. - Highlights:

  20. Stability of submerged rock berms exposed to motion of liquefied soil in waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Dixen, Figen Hatipoglu; Fredsøe, Jørgen

    2011-01-01

    . Various berm materials were used, stones of size 0.74–2.5cm, plastic balls of size 3.6cm, brass of size 2.5cm and steel of size 1.0cm. The experiments show that rock berms that are stable under very large waves can be unstable when they are exposed to the motion of liquefied soil. The limited data......The paper describes the results of an experimental study on the behaviour of a submerged rock berm in liquefied backfill soil. The soil is liquefied by waves, and the rock berm is subject to the orbital motion of the liquefied soil. The soil used in the experiments was silt with d50=0.075mm...

  1. Rice lands of South and South East Asia, some soil physical aspects

    International Nuclear Information System (INIS)

    Bhagat, R.M.

    2004-01-01

    Worldwide about 148 million ha are planted to rice each year, taking into account double and triple cropping. About 90 percent of this area is in Asia and two thirds in South and South-East Asia, where rice is the most dominant crop grown during the wet season. When wetland rice is included in a cropping system, the soils undergo unique changes in physical properties. Wet tillage or puddling has become synonymous with wetland rice culture and it refers to the destruction of aggregated condition of the soil by mechanical manipulation within a narrow range of moisture contents above and below field capacity, so that soil aggregates lose their identity and the soil is converted into a structurally more or less homogenous mass of ultimate particles. During puddling, soils are subjected to two kinds of deforming stresses: (a) the normal stress (load) associated with compression and (b) tangential stress causing shear. The compression is more effective below the upper plastic limit (moisture content at which the soil-water system can flow as a sticky fluid paste); shearing effects dominate above the upper plastic limit. Puddling destroys and coverts aggregates and peds into plastic mud. When an initially dry soil is wetted, there is uneven swelling of aggregates, which subsequently explode due to entrapped air resulting in aggregates slaking. Continuous wet tillage (repeated plowings and harrowings) converts the soil into a plastic mud with massive structure. Puddling effects on bulk density are dependent on the aggregation status of the soil before puddling. If a parallel oriented, closely packed structure is produced from a well aggregated open structure, bulk density would increase. The strong inter-particle forces favor well oriented structure, while weak inter-particle forces favor an open gel structure. Initial submergence before tillage (a practice in many parts of Asia) also decreases bulk density. Bulk density increases when the puddled soils undergo desiccation

  2. Exploring options for water savings in lowland rice using a modelling approach

    NARCIS (Netherlands)

    Belder, P.; Bouman, B.A.M.; Spiertz, J.H.J.

    2007-01-01

    Water-saving irrigation regimes are needed to deal with a reduced availability of water for rice production. Two important water-saving technologies at field scale are alternately submerged¿nonsubmerged (SNS) and flush irrigated (FI) rice. SNS allows dry periods between submerged soil conditions,

  3. Submerged pedology: the soils of minor islands in the Venice lagoon

    Directory of Open Access Journals (Sweden)

    Mohammad Washa

    2015-12-01

    Full Text Available Minor islands of the Venice lagoon are part of a delicate ecosystem, with equilibrium that depends on multiple factors deriving from both the aqueous and the terrestrial compartment, and represent useful indicators of the lagoon ecosystem status. Over centuries, some islands emerged, some others disappeared, others are being submerged in consequence of sea level rise, or are dismantled by marine erosion. Ecological survey and soil sampling evidenced rather homogeneous environment and soil characters, likely due to the same genesis from HTM during centuries, and to environmental conditions such as moisture and brackish groundwater. Four of the examined soils are Inceptisols, while the others present limited horizon differentiation, and are Entisols. All the profiles reflect udic or aquic conditions, and some of them are submerged for most time. Most soils are moderately alkaline (7.9 250 g/kg; organic carbon content at surface is within the normal range (8 17 g/kg and carbonates. Moreover, the textural class is generally silty-loam with increasing clay content with depth. Currently, the soils examined present hydromorphic pedofeatures, which are the result of the most important pedogenic process in the lagoon. Alternating reduction/oxidation processes would increase as a consequence of sea level rise, determining reducing conditions at bottom, and conversely enhancing salt concentration uppermost, with negative consequences for both pedogenic evolution and vegetation survival.

  4. Utilization of applied zinc by rice crop in wetland acidic soils

    International Nuclear Information System (INIS)

    Singh, A.K.; Nongkynrih, P.; Sachdev, P.; Sachdev, M.S.

    2001-01-01

    A greenhouse experiment was conducted to study the response of rice plant to zinc fertilizer under submerged condition using 65 Zn-labelled ZnSO 4 in 13 wetland acidic soils of Meghalaya. Application of Zn significantly increased the dry matter yield. Dry matter yield, total Zn content and per cent Zndff of rice plant at 2.5 and 5 mg Zn kg -1 increased significantly from 7.05 to 8.47 g/pot, 66 g/pot to 78 mg/pot and 7.56 to 8.73 per cent, respectively. Per cent Zn utilization declined significantly from 0.188 to 0.131 on enhancing the levels of Zn from 2.5 to 5 mg kg -1 . On an average, per cent utilization of added Zn by rice plant was only a fraction of total quantity of applied Zn. Most of the soil characteristics analysed play important role in regulating the availability of added Zn in these soils. (author)

  5. Management of soil physical properties of lowland puddled rice soil for sustainable food production

    International Nuclear Information System (INIS)

    Bhagat, R.M.

    2004-01-01

    About 3 billion people who rely on rice as their staple food today will have multiplied to some 4.4 billion by the middle of this century. With rice demand growing at an average rate of about 3 percent annually, 70 percent more rice has to be produced in next 30 years compared to present day production levels. More rice has to come from less favorable environments, with less water and nutrients. Agricultural population densities on Asia's rice producing lands are among the highest in the world and continue to increase at a remarkable rate. Rice has widely adapted itself: to the hot Australian and Egyptian deserts, to the cool Himalayan foothills of Nepal. Hill tribes in Southeast Asia plant it on slash-and-burned forest slopes; that's upland rice. However, low lying areas in Asia, which are subject to uncontrolled flooding, are home to more than 100 million poor farmers. Puddling or wet tillage in rice, decreases total soil porosity only slightly, but markedly changes porosity distribution with both storage and residual porosity increasing at the expanse of transmission porosity. Soil texture plays an important role in soil water retention following soil disturbance. Cracking pattern of the soils is studied after six years of different levels of regular addition of residue. Cracking pattern at a soil surface affects the hydrodynamic properties of soil. Cracking extends the soil-air interface into the soil profile and thereby may increase the moisture loss through evaporation

  6. Tungsten (W) bioavailability in paddy rice soils and its accumulation in rice (Oryza sativa).

    Science.gov (United States)

    James, Blessing; Zhang, Weili; Sun, Pei; Wu, Mingyan; Li, Hong Hong; Khaliq, Muhammad Athar; Jayasuriya, Pathmamali; James, Swithin; Wang, Guo

    2017-12-01

    The aim of this study was to investigate the accumulation characteristics of tungsten (W) by different indica rice cultivars from the soil and to assess the potential risks to human health via dietary intake of W in rice consumption. A total of 153 rice (ear) samples of 15 cultivars and the corresponding surface soil samples were collected from 7 cities in Fujian Province of southeastern China. The available soil W were extracted using H 2 C 2 O 4 ·2H 2 O-(NH 4 ) 2 C 2 O 4 ·H 2 O at pH 3.3). Results showed that the total soil W ranged from 2.03 mg kg -1 to 15.34 mg kg -1  and available soil W ranged from 0.03 mg kg -1 to 1.61 mg kg -1 . The W concentration in brown rice varied from 7 μg kg -1 to 283 μg kg -1 and was significantly correlated with the available soil W. The highest mean TF avail (transfer factor based on available soil W) was 0.91 for Te-you 627 (hybrid, indica rice), whereas the lowest was 0.08 for Yi-you 673 (hybrid, indica rice). The TF avail decreased with the increase in available soil W, clay content, and cation exchange capacity. The consumption of the brown rice produced from the investigated areas in some cultivars by the present study may cause risks to human health.

  7. Enhanced Soil Chemical Properties and Rice Yield in Acid Sulphate Soil by Application of Rice Straw

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2012-01-01

    Full Text Available Swampland development such as acid sulphate soil for agricultural cultivation has various problem, including highsoil acidity, fluctuated and unpredictable water flooding and the presence of toxic elements such as Fe whichresulting in low crop yields. The research was conducted at the experimental station Belandean, Barito Kualaregency in dry season 2007. The objective of research was to study the effect of rice straw on the dynamic of soilpH, the concentration of iron and sulphate and yield on tidal land acid sulphate soil at two different water inletchannel. This research was designed in RCBD (Randomized Completely Block Design with five treatments (0, 2.5,5.0, 7.5 and 10 Mg ha-1 and four replications. Dolomite as much as 1 Mg ha-1 was also applied. This research wasdivided into two sub-units experiment i.e. two conditions of different water inlet channel. The first water channelswere placed with limestone and the second inlet was planted with Eleocharis dulcis. The results showed that (i ricestraw application did not affect the dynamic of soil pH, concentration of iron and sulphate, and (ii the highest yieldwas obtained with 7.5 Mg ha-1 of rice straw.

  8. The effect of biofertilizer fungi on Ciherang rice growth at some level of soil salinity

    Directory of Open Access Journals (Sweden)

    Y B Subowo

    2014-04-01

    Full Text Available A research about the effect of fungus contained biofertilizer on Ciherang rice that was growth on different level of soil salinity was conducted. One of the effect of global climate changes is the increase of sea water level. It leads to the expansion of sea water submerged land for agriculture. Salt intrution to the agriculture area considerably decrease soil fertility because of the high salinity. Some of microbes especially soil fungi such as Aspergillus sp and Penicillium sp. are able to grow at high salinity environment. Those fungi were also able to degrade lignocellulose, sollubilize in organic phosphate and provide organic phosphat and produce plant growth hormon especially IAA. Such activities benefit to improve soil fertility in high salinity land as a bio-fertilizer.The objective of this research was to know the growth of rice plant that treated with fungus contained bio-fertilizer on land with different level of salinity. The rice were planted in Green house of Cibinong Science Centre, Cibinong.The research was set up as complete random design with five replication. The rice were watered by 5 conditions: 50% of sea water, 100% of sea water, 100% sea water + 2 % NaCl , fresh water + 5 % NaCl and 100% fresh water as the control. Fertilizer was added to the medium twice. Ten grams of fertilizer were used per polybag (10g/7 Kg, 2 weeks after planting and before flowering subsequently. The observed parameters were plant height, number of tiller, leaves colour, biomass dry weight, soil organic carbon content, cellulosic and lignin degrading activities of the fungus, fungus phosphate-solubilizing potency and fungus production of IAA.The watering treatment lead to 5 level of salinity i.e. : 5,93 dS/m (50% sea water, 9,15 dS/m (100% sea water, 10,42 dS/m (sea water + 2% NaCl, 12,43 dS/m (fresh water + 5% NaCl and 0,74 dS/m (fresh water. The result showed that among those 5 watering condition, the rice grew best on 5,93 dS/m (watering 50% of

  9. Characterization of bacterial communities and functions of two submerged soils from San Vitale park (Italy)

    Science.gov (United States)

    Mocali, Stefano; Chiellini, Carolina; Lagomarsino, Alessandra; Ferronato, Chiara; Vittori Antisari, Livia; Vianello, Gilmo

    2015-04-01

    Subaqueous soils has been introduced in the last edition of the Keys to Soil Taxonomy (Soil surveystaff, 2014), to describe soils covered by a water column of up to 2.5 m where different pedogenetic processes can be recognized. However, the role of bacterial community structure and function in such environments and its potential use as pedogenetic indicator is still largely unknown. Two submerged soils (WAS-2 and WAS-4) were collected from San Vitale park (Italy), a site where the evolution of the landscape from subaqueous wetland to interdunal and dunal system, and the interfacing of freshwater with saltwater, made this site particularly suitable for examining the pedogenetic indicators which can characterize and predict the soil hydromorphism in trasitional ecosystems. The two soils were classified and their physicochemical and morphological features were investigated. Selective media were used to isolate both culturable aerobic and anaerobic (microaerophilic) bacteria associated with each horizon. In WAS-2 seven horizons were identified (depths 4-0, 0-6, 6-13, 13-20, 20-36, 36-59/60, and 59/60-83 cm) while in WAS-4, five horizons were identified (depths 0-14, 14-20, 20-40, 40-45, 45-100 cm) for a total of 12 horizons (samples). For each sample, aerobic bacterial plate count was performed on solid LB medium, coupled with microaerophilic bacterial plate count either on SA500 minimal medium and AYE medium (0.5% soft agar each). Molecular identification (16S rRNA gene sequencing) of ~100 strains isolated from each of the three used medium was performed, for a total of ~300 strains for each sample. To complete the characterization of the microbial communities in all horizons, Next Generation Sequencing (NGS) analysis was carried out with 454 platform on each of the 12 samples. Moreover, the N2O and CH4 emissions were determined from each pedon. All the parameters were used to highlight the similarities and the differences between and within the pedons. The results

  10. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done

  11. Solophos fertilizer improved rice plant growth in aerobic soil

    OpenAIRE

    NIE, Lixiao; PENG, Shaobing; BOUMAN, Bas A.M.; HUANG, Jianliang; CUI, Kehui; VISPERAS, Romeo M.; PARK, Hong-Kyu

    2007-01-01

    Yield decline of continuous monocropping of aerobic rice is the major constraint to the wide adoption of aerobic rice technology. This study was conducted to determine if solophos fertilizer could be used to reverse the yield decline of this cropping system using pot and micro-plot experiments. The soil for the pot experiment was collected from a field where aerobic rice has been grown continuously for 11 seasons at the IRRI farm. Four rates (4, 6, 8, and 10gpot^) of solophos application were...

  12. Zinc fertilization of flooded rice

    International Nuclear Information System (INIS)

    1981-02-01

    Local scientists studied Zn fertilization of flooded rice soils in Bangladesh, India, Indonesia, the Republic of Korea, Egypt, the Philippines, Thailand and Turkey. Diagnosis of Zn deficiency was carried out for submerged rice soils. Soil maps were prepared, designating areas as low, medium and high in Zn, based on Zn extraction with DTPA and HCl solutions and on rice leaf analysis. The effectiveness of various Zn fertilizer sources and methods of application in field and greenhouse experiments was measured, using 65 Zn. The percent Zn derived from fertilizer was shown to be a much more sensitive measure of efficiency than yield or total uptake

  13. Separating the effects of partial submergence and soil oxygen demand on plant physiology.

    Science.gov (United States)

    van Bodegom, Peter M; Sorrell, Brian K; Oosthoek, Annelies; Bakker, Chris; Aerts, Rien

    2008-01-01

    In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more

  14. Effect of organic matter on the uptake of phosphorus by rice plants under different moisture conditions

    International Nuclear Information System (INIS)

    Ghosh, Geetanjali

    1974-01-01

    In studies on the effect of three levels of moisture and two levels of organic matter in two alluvial soils, the uptake of P by rice plant both from soil and fertilizer sources was the highest and Eh the lowest under submerged conditions. No marked difference in total uptake of P was observed in upland and alternate submerged condition; organic matter application showed an appreciable effect under submerged condition. (author)

  15. Decomposition of rice residue in tropical soils, 2

    International Nuclear Information System (INIS)

    Yoneyama, Tadakatsu; Yoshida, Tomio

    1977-01-01

    The decomposition processes of intact rice residue (leaf blades) in the Maahas soil in the Philippines were investigated. Three sets of beakers simulating both lowland and upland conditions were incubated in the dark at 30 deg. C. One set of beakers had neither rice residue nor fertilizer. Pieces of leaf blades weighing 204 mg (dry weight) were inserted in the second set. Pieces of leaf blades were inserted in the third set, and 200 ppm of fertilizer nitrogen as 15 N-labelled ammonium sulfate was added. The experiment dealt with the nitrogen immobilization by rice residue under lowland and upland conditions. The rice residue which has contained low nitrogen absorbed nitrogen from the soil and from the added fertilizer (ammonium sulfate) during its decomposition under both conditions. Under the lowland condition, the amount of nitrogen immobilized was small during the first week, but became large after 2 or 3 weeks. Under the upland condition, the immobilized nitrogen reached its maximum during the first week, but the amount was not so large as that under the lowland condition. The added fertilizer stimulated the decrease of weight of the rice residue in the early incubation period, but retarded it later under both conditions. The absorption of fertilizer by the rice residue ceased at the early stage of residue decomposition, but the nitrogen content of the residue continued to increase. (Iwakiri, K.)

  16. Transfer of technetium in the soil-rice plant system

    International Nuclear Information System (INIS)

    Yanagisawa, K.; Muramatsu, Y.

    1995-01-01

    In order to assess the behavior of Tc in flooded soil-plant systems, laboratory experiments have been done using 95m Tc as a tracer. Two common soil types in Japan, Andosol and Gray lowland soils, were used. Soil-plant transfer factors of Tc in rice grain were very low, i.e. 5 x 10 -5 for Andosol and 6 x 10 -4 for Gray lowland soil. It was found that the Tc concentrations in rice plants were influenced by those in soil solutions. Concentrations of 95m Tc in both soil solutions decreased rapidly in the early period of cultivation. It was observed that redox-potential (Eh) also decreased markedly following flooding. A relationship was found between the decrease of the 95m Tc concentrations in soil solutions and the drop of Eh in the soils. The Tc (VII) added to soil was transformed to insoluble Tc (IV) under the reduced conditions existing in flooded soil. (author). 10 refs., 2 figs., 4 tabs

  17. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content.

    Science.gov (United States)

    Jiang, Wei; Hou, Qingye; Yang, Zhongfang; Zhong, Cong; Zheng, Guodong; Yang, Zhiqiang; Li, Jie

    2014-05-01

    The transfer of arsenic from paddy field to rice is a major exposure route of the highly toxic element to humans. The aim of our study is to explore the effects of soil available phosphorus on As uptake by rice, and identify the effects of soil properties on arsenic transfer from soil to rice under actual field conditions. 56 pairs of topsoil and rice samples were collected. The relevant parameters in soil and the inorganic arsenic in rice grains were analyzed, and then all the results were treated by statistical methods. Results show that the main factors influencing the uptake by rice grain include soil pH and available phosphorus. The eventual impact of phosphorus is identified as the suppression of As uptake by rice grains. The competition for transporters from soil to roots between arsenic and phosphorus in rhizosphere soil has been a dominant feature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.

    Science.gov (United States)

    Tang, Zhenya; Fan, Fangling; Wang, Xinyue; Shi, Xiaojun; Deng, Shiping; Wang, Dingyong

    2018-04-15

    High levels of mercury (Hg), especially methylmercury (MeHg), in rice is of concern due to its potential of entering food chain and the high toxicity to human. The level and form of Hg in rice could be influenced by fertilizers and other soil amendments. Studies were conducted to evaluate the effect of 24 years application of chemical fertilizers and organic amendments on total Hg (THg) and MeHg and their translocation in soil, plants, and rice grain. All treatments led to significantly higher concentrations of MeHg in grain than those from the untreated control. Of nine treatments tested, chemical fertilizers combining with returning rice straw (NPK1+S) led to highest MeHg concentration in grain and soil; while the nitrogen and potassium (NK) treatment led to significantly higher THg in grain. Concentrations of soil MeHg were significantly correlated with THg in soil (r = 0.59 *** ) and MeHg in grain (r = 0.48 *** ). Calcium superphosphate negatively affected plant bioavailability of soil Hg. MeHg concentration in rice was heavily influenced by soil Hg levels. Phosphorus fertilizer was a main source contributing to soil THg, while returning rice straw to the field contributed significantly to MeHg in soil and rice grain. As a result, caution should be exercised in soil treatment or when utilizing Hg-contaminated soils to produce rice for human consumption. Strategic management of rice straw and phosphorus fertilizer could be effective strategies of lowering soil Hg, which would ultimately lower MeHg in rice and the risk of Hg entering food chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Will heavy metals in the soils of newly submerged areas threaten the water quality of Danjiangkou Reservoir, China?

    Science.gov (United States)

    Song, Zhixin; Shan, Baoqing; Tang, Wenzhong; Zhang, Chao

    2017-10-01

    Soil heavy metal contents were measured in newly submerged areas of the Danjiangkou Reservoir, China. We aimed to determine the heavy metal distribution in this area and the associated ecological risk. Most of these heavy metal contents (except Pb and Mn) suggest enrichment compared with the background values of soils from Henan Province, especially As and Cd with mean geo-accumulation index (I geo ) values of 0.84 and 0.54. The spatial analysis results indicated that the highest heavy metal contents were distributed in the arable soils above 160m elevation, whereas low heavy metal contents were observed under other land-use types above 160m elevation. According to I geo and EF values, Cd was the major heavy metal contaminant in the newly submerged area, Cr, Pb and Mn mainly originated from natural geochemical sources. In contrast, Ni, Cd, As, Cu, and Zn mainly originated from anthropogenic sources. Evaluation using the potential ecological risk (PER) method indicated that PER of individual elements were low in the studied soils, and the comprehensive PER index was at a moderate level, indicating heavy metals in the soils of newly submerged areas may not threaten the water quality of Danjiangkou Reservoir, especially in winter. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  1. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    Science.gov (United States)

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  2. Potassium adsorption behaviour of three Malaysian rice soils

    International Nuclear Information System (INIS)

    Choudhury, A.T.M.A.; Khanif, Y.M.

    2003-01-01

    Potassium (K) deficiency exists in different rice growing areas of Malaysia. A study on K adsorption was carried out in three Malaysian rice soils (Guar, Hutan and Kangar series) using six levels of K (0.00,28.77, 33.57, 38.37, 43.16 and 47.96 mmol kg/sup -1/). The data on K adsorption were fitted into Langmuir, Freundlich, and Temkin adsorption equations. Adsorption data were also correlated with pH, cation exchange capacity and organic matter content of the soils. Potassium adsorption increased linearly with increasing level of added K in all the three soils. The rate of increase was the highest in Guar series followed by Kangar and Hutan series, respectively. Potassium adsorption in two soils (Hutan and Kangar) fitted into Langmuir equation while he adsorption data in Guar series did not fit into this equation. Adsorption data in none of the soils fitted well in Freundlich and Temkin adsorption equations. Correlation between K adsorption and pH was significant (r = 0.881,), whereas, correlation of K adsorption with either organic matter content or cation exchange capacity was non-significant. The results of this study indicated that K adsorption is mainly dependent on soil pH. In soils with higher adsorption capacity, more K fertilizer may be needed to get immediate crop response. (author)

  3. Choosing soil management systems for rice production on lowland soils in South Brazil

    NARCIS (Netherlands)

    Lima, A.C.R.; Hoogmoed, W.B.

    2009-01-01

    Lowland soils are commonly found in the state of Rio Grande do Sul, Southern of Brazil, where they represent around 20% of the total area of the state. Deficient drainage is the most important natural characteristic of these soils which therefore are mainly in use for flood-irrigated rice (Oriza

  4. Imidacloprid application changes microbial dynamics and enzymes in rice soil.

    Science.gov (United States)

    Mahapatra, Bibhab; Adak, Totan; Patil, Naveen K B; Pandi G, Guru P; Gowda, G Basana; Jambhulkar, N N; Yadav, Manoj Kumar; Panneerselvam, P; Kumar, Upendra; Munda, Sushmita; Jena, Mayabini

    2017-10-01

    Extensive use of imidacloprid in rice ecosystem may alter dynamics of microorganisms and can change soil biochemical properties. The objective of this study was to assess the effect of imidacloprid on growth and activities of microbes in tropical rice soil ecosystem. Four treatments, namely, recommended dose (at 25g a.i. ha -1 , RD), double the recommended dose (at 50g a.i. ha -1 , 2RD), five times the recommended dose (at 125g a.i. ha -1 , 5RD) & ten times the recommended dose (at 250g a.i. ha -1 , 10RD) along with control were imposed under controlled condition. Dissipation half lives of imidacloprid in soil were 19.25, 20.38, 21.65 and 33.00 days for RD, 2RD, 5RD and 10RD, respectively. In general bacteria, actinomycetes, fungi and phosphate solubilising bacteria population were disturbed due to imidacloprid application. Changes in diversity indices within bacterial community confirmed that imidacloprid application significantly affected distribution of bacteria. Total soil microbial biomass carbon content was reduced on imidacloprid application. Except dehydrogenase and alkaline phosphatase activities, all other soil enzymes namely, β-glycosidase, fluorescien diacetate hydrolase, acid phosphatase and urease responded negatively to imidacloprid application. The extent of negative effect of imidacloprid depends on dose and exposure time. This study concludes imidacloprid application had transient negative effects on soil microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Soil quality assessment in rice production systems: establishing a minimum data set.

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Brussaard, L.

    2008-01-01

    Soil quality, as a measure of the soil's capacity to function, can be assessed by indicators based on physical, chemical, and biological properties. Here we report on the assessment of soil quality in 21 rice (Oryza sativa) fields under three rice production systems (semi-direct, pre-germinated, and

  6. Pesticide-soil microflora interactions in flooded rice soils

    International Nuclear Information System (INIS)

    Sethunathan, N.; Siddaramappa, R.; Siddarame Gowda, T.K.; Rajaram, K.P.; Barik, S.; Rao, V.R.

    1976-01-01

    Isotope studies revealed that gamma and beta isomers of HCH (hexachlorocyclohexane) decomposed rapidly in nonsterile soils capable of attaining redox potentials of -40 to -100mV within 20 days after flooding. Degradation was slow, however, in soils low in organic matter and in soils with extremely low pH and positive potentials, even after several weeks of flooding. Under flooded conditions, endrin decomposed to six metabolites in most soils. There is evidence that biological hydrolysis of parathion is more widespread than hitherto believed, particularly under flooded soil conditions. Applications of benomyl (fungicide) to a simulated-oxidized zone of flooded soils favoured heterotrophic nitrification. (author)

  7. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y

    2007-05-01

    The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.

  8. Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Directory of Open Access Journals (Sweden)

    Nabin Rawal

    2015-12-01

    Full Text Available A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM @10 t ha-1 gave significantly (P≤0.05 higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N and Potassium oxide (K2O @ 50 kg ha-1 produced significantly (P≤0.05 the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P, Potassium (K treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05 effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8, soil organic matter (4.1%, total N content (0.16%, available P (503.5 kg P2O5 ha-1 and exchangeable K (137.5 kg K2O ha-1 in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.

  9. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    Science.gov (United States)

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  10. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice

    International Nuclear Information System (INIS)

    Ye Wenling; Khan, M. Asaduzzaman; McGrath, Steve P.; Zhao Fangjie

    2011-01-01

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. - Highlights: → Pteris vittata removed 3.5-11.4% of the total As from five contaminated paddy soils. → P. vittata decreased phosphate-extractable and soil solution As to a greater extent. → P. vittata reduced As concentration in rice grain by 18-83%. → P. vittata decreased methylated As in rice grain more than inorganic As. - Phytoremediation with P. vittata significantly reduced arsenic uptake by rice from contaminated paddy soils.

  11. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice

    Energy Technology Data Exchange (ETDEWEB)

    Ye Wenling [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Khan, M. Asaduzzaman [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207 (Bangladesh); McGrath, Steve P. [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Zhao Fangjie, E-mail: Fangjie.Zhao@bbsrc.ac.uk [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-12-15

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. - Highlights: > Pteris vittata removed 3.5-11.4% of the total As from five contaminated paddy soils. > P. vittata decreased phosphate-extractable and soil solution As to a greater extent. > P. vittata reduced As concentration in rice grain by 18-83%. > P. vittata decreased methylated As in rice grain more than inorganic As. - Phytoremediation with P. vittata significantly reduced arsenic uptake by rice from contaminated paddy soils.

  12. Radiotracer experiments on the desorption of iodine from paddy soil with and without rice plants

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Uchida, Shigeo; Yoshida, Satoshi

    1991-01-01

    In order to assess the behavior of radioiodine in rice fields, we have performed laboratory experiments, using 125 I tracer, on the desorption phenomena of iodine from soil during rice cultivation. Most of the 125 I added to the soil was adsorbed by the soil solid phase at the beginning of the experiment. However, the iodine started to desorb into the soil solution with the growth of rice plants. The highest desorption rate of iodine was found around the flowering period, i.e. nearly 30% of the 125 I was desorbed from Ando soil into the soil solution. In contrast to this, no particular increase in the iodine desorption was observed from the uncultivated flooded soil. It was suggested that rice plants had some influence upon iodine desorption from soil and the desorption also depended on the soil types. (author)

  13. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  14. Adsorption Kinetics of Carbamate Pesticide in Rice Field Soil

    Directory of Open Access Journals (Sweden)

    Soontree Khuntong

    2010-07-01

    Full Text Available Ultrasonic extraction (75.55% with petroleum ether:acetone (1:1, v/v was employed for extraction of carbofuran in rice field soil. The amounts of carbofuran were determined by reverse phase HPLC. The analytical method provided high precision and accuracy with the relative error of 0.47%. The percentage of recoveries varied from 84% to 77% in the con¬centration ranges of 10–40 mg/L of spiked soil samples. The carbofuran residues in the rice field soil significantly decreased year by year because of pesticide properties, soil properties and degradation conditions. A high amount of residues was found in the plots that contained high organic contents. The adsorption of carbofuran in soil reached equilibrium within 23 h. The percentage of adsorption varied from almost 30% to 80% depending on concentrations of carbofuran. The adsorption of carbofuran agreed with Freundlich isotherms; q = 7.07 x 10-5Cf2.5092; with the correlation coefficient of 0.9281. Organic carbon coefficient, Koc, was 1.91 x 10-3 mg/L calculated from Kd, and half-life (8.9 d of adsorbed carbofuran. The GUS index (6.37 calculated from Koc presented a high lixiviation potential. The positive ΔG indicated the non-spontaneous reaction. Carbofuran rapidly desorbed from soil at the desorption rate of 0.0228 mg/kg soil d. Kinetic studies provided the first order reaction with the reaction rate of 0.0779 mg/d and half-life of 8.9 days.

  15. The absorption and distribution of Cesium-134 in rice-soil system

    International Nuclear Information System (INIS)

    Xu Yinliang; Chen Chuanqun; Chen Bin; Sun Zhiming

    1991-01-01

    Dynamics of absorption of 134 Cs by rice shows that absorption rate is the fastest at boot stage; absorption capacities of 134 Cs in soils are different with the different physical-chemical properties of soils; absorption amounts vary with the time of irrigating 134 Cs; the closer the irrigation time to mature stage is, the more the absorption amount of 134 Cs in rice will be; the more the irrigating times are, and the higher the radioactivity of 134 Cs in irrigating water is, the more the absorption amount in rice will be. After brown rice is polished, contamination of 134 Cs can be decreased by 22.6-45.6%. The order of specific activity in rice is: bran > root > straw > husk > polished rice. Percentage activity of straw, brown rice, root and husk is 51.4%, 28.4%, 11.8% and 8.4% respectively. The migration of 134 Cs is very slow in soil and 95.1% of 134 Cs is concentrated in surface soil (0-2.5 cm). The distribution ratio of 134 Cs in the rice and soil is 6.1%:93.9%. Potassium ion can inhibit the absorption of 134 Cs by rice. There is an exponential function between the concentration of potassium ion and specific activity of 134 Cs in rice

  16. Effects of lead contamination on soil microbial activity and rice physiological indices in soil-Pb-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Zeng, Lu-Sheng; Liao, Min; Chen, Cheng-Li; Huang, Chang-Yong

    2006-10-01

    The effect of lead (Pb) treatment on the soil microbial activities (soil microbial biomass and soil basal respiration) and rice physiological indices were studied by greenhouse pot experiment. Pb was applied as lead acetate at six different levels in two different paddy soils, namely 0 (control), 100, 300, 500, 700, 900 mg kg-1 soil. The results showed that the application of Pb at lower level (500 mg Pb kg-1 soil), which might be the critical concentration of Pb causing a significant decline in the soil microbial activities. However, the degree of influence on soil microbial activities by Pb was related to the clay and organic matter contents of the soils. On the other hand, when the level of Pb treatments increased to 500 mg kg-1, there was ecological risk for both soil microbial activities and plants. The results also revealed that there was a consistent trend that the chlorophyll contents increased initially, and then decreased gradually with increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. In a word, soil microbial activities and rice physiological indices, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-rice system.

  17. Response of soil physico-chemical properties to restoration approaches and submergence in the water level fluctuation zone of the Danjiangkou Reservoir, China.

    Science.gov (United States)

    Shu, Xiao; Zhang, KeRong; Zhang, QuanFa; Wang, WeiBo

    2017-11-01

    With the completion of the Danjiangkou Dam, the impoundment and drainage of dams can significantly alter shorelines, hydrological regime, and sediment and can result in the loss of soil and original riparian vegetation. Revegetation may affect soil properties and have broad important implications both for ecological services and soil recovery. In this work, we investigated the soil properties under different restoration approaches, and before and after submergence in the water level fluctuation zone (WLFZ) of the Danjiangkou Reservoir. Soil physical (bulk density and soil moisture), chemical (pH, soil organic carbon, nitrogen, phosphorus and potassium contents), and heavy metals were determined. This study reported that restoration approaches have impacts on soil moisture, pH, N, soil organic carbon, P, K and heavy metals in the WLFZ of the Danjiangkou Reservoir. Our results indicated that different restoration approaches could increase the soil moisture while decrease soil pH. Higher soil organic carbon in propagule banks transplantation (PBT) and shrubs restoration (SR) indicate that PBT and SR may provide soil organic matter more quickly than trees restoration (TR). SR and TR could significantly improve the soil total P and available P. PBT and SR could improve the soil total K and available K. SR and TR could significantly promote Cu and Zn adsorption, and Pb and Fe release by plant. Submergence could significantly affect the soil pH, NO 3 - -N, NH 4 + -N, total P and available P. Submergence could promote NO 3 - -N and available P adsorption, and NH 4 + -N and total P release by soil. The soil quality index (SQI) values implied that TR and PBT greatly improved soil quality. The present study suggests that PBT and TR could be effective for soil restoration in WLFZ of the Danjiangkou Reservoir. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    Science.gov (United States)

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  19. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    Directory of Open Access Journals (Sweden)

    Zhouping Liu

    2015-12-01

    Full Text Available Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM. This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  20. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    Science.gov (United States)

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  1. Mineralization of residual fertilizer nitrogen in soil after rice harvest

    International Nuclear Information System (INIS)

    Hazarika, S.; Sarkar, M.C.

    1994-01-01

    Remineralization of immobilized 15 N labelled urea N applied to rice crop at the rate of 180 kg N/ha was determined. Mineral N increased rapidly up to 14 days of incubation and thereafter remained more or less constant. The recovery of fertilizer as mineral N varied between 0.7 and 3.1 μg/g soil. The percent mineralization of labelled organic N ranged between 3.1 and 9.5. (author). 5 refs., 2 tabs., 1 fig

  2. The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone

    International Nuclear Information System (INIS)

    Feng, Youzhi; Yu, Yongjie; Tang, Haoye; Zu, Qianhui; Zhu, Jianguo; Lin, Xiangui

    2015-01-01

    Although elevated ground-level O 3 has a species–specific impact on plant growth, the differences in soil biota responses to O 3 pollution among rice cultivars are rarely reported. Using O 3 Free-Air Concentration Enrichment, the responses of the rhizospheric bacterial communities in the O 3 -tolerant (YD6) and the O 3 -sensitive (IIY084) rice cultivars to O 3 pollution and their differences were assessed by pyrosequencing at rice tillering and anthesis stages. Elevated ground-level O 3 negatively influenced the bacterial community in cultivar YD6 at both rice growth stages by decreasing the bacterial phylogenetic diversities and response ratios. In contrast, in cultivar IIY084, the bacterial community responded positively at the rice tillering stage under O 3 pollution. However, several keystone bacterial guilds were consistently negatively affected by O 3 pollution in two rice cultivars. These findings indicate that continuously O 3 pollution would negatively influence rice agroecosystem and the crop cultivar is important in determining the soil biota responses to elevated O 3 . - Highlights: • We investigated the soil biota in two rice cultivars in presence of elevated O 3 . • The contrasting responses of soil biota were found between two rice cultivars. • Some keystone bacterial guilds were consistently negatively affected by O 3 pollution. • The crop cultivar is important in determining soil biota responses to elevated O 3 . - The crop cultivar is important in determining the soil biota responses to elevated O 3

  3. Effect of rice straw on the degradation of 14C-parathion in flooded alluvial soil

    International Nuclear Information System (INIS)

    Rajaram, K.P.; Sethunathan, N.

    1975-01-01

    Organic matter, either native or applied, influences the persistence of soil-applied pesticides. The effect of rice straw on the metabolism of parathion in an alluvial soil under flooded condition was investigated. Residues were extracted from the soil at periodic intervals after application of ethoxy 14 C-parathion to rice straw amended and unamended soil employing chloroform-diethyl ether. The radioactivity in the solvent and water fractions were estimated. The activity in the solvent phase decreased more rapidly in the rice straw amended than in unamended soil indicating enhanced degradation of parathion by rice straw amendment. The autoradiograph of thin layer chromatograms of solvent phase revealed the rapid formation of aminoparathion and an unidentified metabolite possessing P-S bond and ethoxy label in amended soil within 3 days. A polar unidentified metabolite was detected in the water phase of the unamended soil at 14 days. (author)

  4. Effect of available phosphorus in paddy soils on phosphorus uptake of rice

    International Nuclear Information System (INIS)

    Liu Delin; Zhu Zhaomin

    1996-01-01

    Relation between available phosphorus in 6 types of paddy soil in Hunan Province and its uptake by rices was studied by 32 P tracing. The result indicated that the P uptake by rices varied with available P content in the paddy soils. When the content was high, the rice absorbed more P nutrient from the soil and decreased the P uptake from the P fertilizer, which showed a poor contribution of the P fertilizer to the rice yield increase, and vice versa. The recovery of the P fertilizer varied with the soil types. Ranked the first was in paddy soils derived from lacustrine deposite but little rice yield increased. While in paddy soils derived from limestone, the yield greatly increased although the recovery of P fertilizer was the lowest. Rice absorbed P nutrient during its whole growth duration. No matter the different uptake amount due to the P supply by the different soils, rice plant generally had the greatest P nutrient uptake from tillering stage to elongation stage, and along with the rise of the rices dry matter, amount of P uptake was gradually increased but the P content in unit dry matter was tended to decrease. (author). 5 refs., 3 figs., 6 tabs

  5. [Effects of Rice Cultivar and Typical Soil Improvement Measures on the Uptake of Cd in Rice Grains].

    Science.gov (United States)

    Wang, Mei-e; Peng, Chi; Chen, Wei-ping

    2015-11-01

    Cadmium pollution of rice is a big problem in agricultural food safety. The accident "Cd rice" occurred last year in Youxian County, Hunan Province caused serious social panic. In this study, trials on "Cd rice" controlling techniques specific to the Cd pollution in paddy soil in Youxian were investigated. It was suggested that the average Cd contents in rice grains of the rice variety "Zhu Liang You 06" in Datongqiao and Wangling were 0.167 and 0.127 mg x kg(-1), respectively, which were only equal to 20% of the contents of other varieties. The trials for stabilizing agents revealed that treatments of lime and mineral fertilizer decreased Cd contents in rice grains to 20-30% of the control. Plastic film-mulched treatment decreased the rice grain Cd to 50%. And combined treatment of plastic film-mulched and biochar and silicon foliar-fertilizer decreased 80% of rice Cd content. Single treatments of silicon foliar-fertilizer and combined treatment of silicon foliar-fertilizer and topdressing fertilizer decreased more than 90% of Cd content. Results of BCR revealed that the percentage of cationic exchangeable and/or carbonate associated Cd fraction was more than 55% for most of the soil samples. Lime treatment significantly decreased the percentage of cationic exchangeable and/or carbonate and oxides of Fe and Mn associated Cd and increased the crystalline structure of clay minerals associated Cd. The change rate reached about 20%. Our results suggested concentration of soil Cd and pH were the two significant factors impacting the uptake of Cd by rice grains.

  6. Phosphorus critical levels and availability in lowland soils cultivated with flooded rice

    Directory of Open Access Journals (Sweden)

    Mariano Isabela Orlando dos Santos

    2002-01-01

    Full Text Available Lowland soils present a great potential for the flooded rice crop. This work aimed to estimate critical levels of P in waterlogged soils cultivated with rice using Mehlich 1 and anion exchange resin as soil-P extractors, compare the performance of these extractors as for the evaluation of the P availability, and study the soil-P fractions involved in the P nutrition of the rice crop. Studied soils consisted of four Histosols: Low Humic Gley (GP, Aluvial (A, Humic Gley (GH and Bog Soil (O which were previously cultivated with beans. The experimental design was completely randomized, in a factorial scheme, using four soils, five P rates (75, 150, 300, 500 and 800 mg dm-3 and two liming treatments (with and without liming, with three replicates. After 60 days of flooding, soil samples were submitted to P extraction by Mehlich 1 and resin, and phosphorous fractionation. Two rice plants were cultivated in pots containing 3 dm³ of waterlogged soils. The labile P and the moderately labile P of the soils contributed for rice nutrition. The two tested extractors presented efficiency in the evaluation of P availability for the rice cultivated in lowland waterlogged soils.

  7. Uptake of C-14 tagged acetate by rice in a paddy soil-to-rice plant system

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuyoshi; Tagami, Keiko; Uchida, Shigeo [Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2014-07-01

    Geological disposal of Transuranic (TRU) waste is planned to avoid radiation exposure to the public. One of the dominant nuclides contributing to the dose from TRU waste is C-14, which is long-lived and has very poor sorption properties on natural geological media. Therefore, there are some concerns regarding possible migration of C-14 to the living environments. For the public health safety, it is necessary to clarify pathways of C-14 to human beings in the environment. Intake of C-14 from food source is one of important pathways. In the present study, we examined transfer of C-14 to various parts of rice plant in a paddy soil-to-rice plant system. Rice seedlings in Wagner pots (n=12) were grown for about two months from 7 May 2012 under natural light. The grown plants were moved to a closed chamber on 5 July 2012. The rice plants were grown without water supply from 5 July 2012, and then one liter of C-14 tagged acetate (1.85 MBq) was supplied to the rice plants in the spiked group (n=8) just once on 9 July 2012. For the rice plants in the control group (n=4), uncontaminated water was supplied. These rice plants were air-dried after a harvest on 23 August 2012 and divided into four parts: white rice, bran, rice husk, and the stem and leaf part. The activities of C-14 in the divided parts and air-dried soil samples were determined with a liquid scintillation counting system. Radiocarbon was detected even in the rice plants of the control group. However, the C-14 activity in the soil of the control group was less than the detection limit (1.0 Bq/g). The C-14 activities for the control group decreased in the order of rice husk, bran, white rice, and the stem and leaf part. The detection of C-14 in the control group may be caused by the release of C-14 tagged carbon dioxide from the spiked group. That is, C-14 tagged acetate was converted to carbon dioxide by microbial activity in the spiked group, and then some of the released carbon dioxide was assimilated into

  8. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils

    International Nuclear Information System (INIS)

    Liu, Yu-Rong; Dong, Ji-Xin; Han, Li-Li; Zheng, Yuan-Ming; He, Ji-Zheng

    2016-01-01

    Currently, rice straw return in place of burning is becoming more intensive in China than observed previously. However, little is known on the effect of returned rice straw on mercury (Hg) methylation and microbial activity in contaminated paddy fields. Here, we conduct a microcosm experiment to evaluate the effect of rice straw amendment on the Hg methylation and potential nitrification in two paddy soils with distinct Hg levels. Our results show that amended rice straw enhanced Hg methylation for relatively high Hg content soil, but not for low Hg soil, spiking the same additional fresh Hg. methylmercury (MeHg) concentration was significantly correlated to the dissolved organic carbon (DOC) content and relative abundance of dominant microbes associated with Hg methylation. Similarly, amended rice straw was found to only enhance the potential nitrification rate in soil with relatively high Hg content. These findings provide evidence that amended rice straw differentially modulates Hg methylation and nitrification in Hg contaminated soils possibly resulting from different characteristics in the soil microbial community. This highlights that caution should be taken when returning rice straw to contaminated paddy fields, as this practice may increase the risk of more MeHg production. Main finding: Rice straw amendment enhanced both Hg methylation and nitrification potential in the relatively high, but not low, Hg soil. - Highlights: • Rice straw enhanced Hg methylation in relatively high Hg content paddy soils. • Microbial community directly correlated to the Hg methylation. • Mercury methylation in soils depend on Hg bioavailability and microbial activities. • Hg input affects microbial community associated with decomposition of rice straw.

  9. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China

    International Nuclear Information System (INIS)

    Fu Yangrong; Chen Mulong; Bi Xiangyang; He Yusheng; Ren Limin; Xiang Wu; Qiao Shengying; Yan Sen; Li Zhonggen; Ma Zhendong

    2011-01-01

    The acquaintance of arsenic concentrations in rice grain is vital in risk assessment. In this study, we determined the concentration of arsenic in 282 brown rice grains sampled from Hainan Island, China, and discussed its possible relationships to the considered soil properties. Arsenic concentrations in the rice grain from Hainan Island varied from 5 to 309 μg/kg, with a mean (92 μg/kg) lower than most published data from other countries/regions and the maximum contaminant level (MCL) for As i in rice. The result of correlation analysis between grain and soil properties showed that grain As concentrations correlated significantly to soil arsenic speciation, organic matter and soil P contents and could be best predicted by humic acid bound and Fe-Mn oxides bound As fractions. Grain arsenic rises steeply at soil As concentrations lower than 3.6 mg/kg and gently at higher concentrations. - Highlights: → Arsenic concentration in brown rice from Hainan was lower than most published data. → Grain As was affected by soil As speciation, OM, and P. → Humic acid and Fe-Mn oxides bound As fractions were important pools for rice plant. → Grain arsenic rises steeply at lower soil As concentrations and gently at higher concentrations. - Arsenic in brown rice grain from Hainan, China showed low concentrations and correlated most closely to soil humic acid bound and Fe-Mn oxides bound As fractions.

  10. Utilisation of rice husk ash for improvement of deficient soils in Nigeria

    African Journals Online (AJOL)

    The studies generally showed improvement in the geotechnical properties of soils, either modified or stabilised with the ash, thus indicating the potentials of using this agricultural waste for improvement of geotechnical properties of ... Keywords: Black cotton soil, Deficient soil, Laterite, Rice husk ash, Soil improvement ...

  11. Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Brus, D.J.; Guo, H.Y.; Chu, C.L.; Chiang, C.M.; Koopmans, G.F.

    2011-01-01

    At present, soil quality standards used for agriculture do not consider the influence of pH and CEC on the uptake of pollutants by crops. A database with 750 selected paired samples of cadmium (Cd) in soil and paddy rice was used to calibrate soil to plant transfer models using the soil metal

  12. Soil quality assessment of rice production systems in South of Brazil

    OpenAIRE

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Brussaard, L.

    2006-01-01

    Soil quality, as a measure of the soil capacity to function, can be quantified by indicators based on physical, chemical and biological properties. Maintaining soil quality at a desirable level in the rice cropping system is a very complex issue due to the nature of the production systems used. In the state of Rio Grande do Sul, Brazil, rice production is one of the most important agricultural activities in the region. The study presented here was conducted with the following objectives: (i) ...

  13. Reduction of Cadmium Uptake of Rice Plants Using Soil Amendments in High Cadmium Contaminated Soil: A Pot Experiment

    Directory of Open Access Journals (Sweden)

    Dian Siswanto

    2013-05-01

    Full Text Available The aims of this study were to investigate the effect of agricultural residues on reducing cadmium uptake in rice plants. The rice plants growing on no cadmium/free cadmium soils (N, Cd soils (Cds, and Cd soils each amended with 1% w/w of coir pith (CP, coir pith modified with sodium hydroxide (CPm and corncob (CC under high cadmium contaminated soil with an average 145 mg Cd kg-1 soil were investigated. The results showed that the cumulative transpiration of rice grown in various treatments under high cadmium contaminated soil followed the order: Cds > CPm ≥ CP ≥ CC. These transpirations directly influenced cadmium accumulation in shoots and husks of rice plants. The CC and CP seemed to work to reduce the cadmium uptake by rice plants indicated by accumulated cadmium in the husk that were 2.47 and 7.38 mg Cd kg-1 dry weight, respectively. Overall, transpiration tended to drive cadmium accumulation in plants for rice grown in high cadmium contaminated soil. The more that plants uptake cadmium, the lower cadmium that remains in the soil.

  14. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Bogdan, Katja; Schenk, Manfred K.

    2009-01-01

    Paddy rice may contribute considerably to the human intake of As. The knowledge of soil characteristics affecting the As content of the rice plant enables the development of agricultural measures for controlling As uptake. During field surveys in 2004 and 2006, plant samples from 68 fields (Italy, Po-area) revealed markedly differing As concentration in polished rice. The soil factors total As (aquaregia) , pH, grain size fractions, total C, plant available P (CAL) , poorly crystalline Fe (oxal.) and plant available Si (Na-acetate) content that potentially affect As content of rice were determined. A multiple linear regression analysis showed a significant positive influence of the total As (aquaregia) and plant available P (CAL) content and a negative influence of the poorly crystalline Fe (oxal.) content of the soil on the As content in polished rice and rice straw. Si concentration in rice straw varied widely and was negatively related to As content in straw and polished rice. - Field selection for total As, poorly crystalline Fe and plant available P in soil might contribute to control As content of paddy rice.

  15. Rice uptake and leaching of {sup 99}Tc in different paddy soils contaminated according to two contrasting scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ho; Lim, Kwang Muk; Jun, In; Kim, Byung Ho; Keum, Dong Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Four different paddy soils collected around the Gyeongju nuclear site were treated with {sup 99}TcO{sub 4}{sup -1} solution under the assumption of two contrasting contamination scenarios. Scenario I (SN-I) is for a pre-transplanting deposition of {sup 99}Tc followed by plowing, whereas SN-II is for its deposition onto the water surface shortly after transplanting. Rice plants were grown in lysimeters in a greenhouse. Plant uptake of {sup 99}Tc was quantified with the TF{sub area} (m{sup 2}·kg{sup -1}-dry). The SN-II values for straws and brown rice, having been generally higher than the SN-I values, were within the ranges of 6.9x10{sup -3}⁓4.1x10{sup -2} and 5.2x10{sup -6}⁓7.3x10{sup -5}, respectively. Sorption onto clay seems to have decreased {sup 99}Tc uptake in SN-I, whereas it may have had an insignificant effect in SN-II. A phenomenon characteristic of submerged paddy soil, i.e., the development of a thin oxic surface layer may have greatly affected the rice uptake of SN-II {sup 99}Tc. The surface-water concentrations of {sup 99}Tc were much higher in SN-II than in SN-I. For the percolating water, however, the opposite was generally true. At most 1.3% of the applied {sup 99}Tc were leached through such percolation. The use of empirical deposition time-dependent TF{sub area} values was considered desirable in assessing the radiological impact of a growing-season deposition of {sup 99}Tc onto paddy fields.

  16. Utilization of fertilizer phosphorus in rice wheat cropping sequence on different soils

    International Nuclear Information System (INIS)

    Singhania, R.A.; Goswami, N.N.

    1975-01-01

    Uptake and utilization of fertilizer phosphorus was studied in a rice-wheat cropping pattern on alluvial, black, red and laterite soils from representative model agronomic centres. Phosphorus was applied as 32 P-tagged superphosphate to rice at varying doses, depending upon the phosphorus fixing capacity of the soil, and to wheat at 30 kg P 2 O 5 /ha. Results showed that rice responded to phosphorus in all soils, but to higher doses only in black and laterite soils which had higher P-fixation capacity. Phosphorus applied to rice had little residual effect on the suceeding crop of wheat but the latter showed higher uptake and utilization of fertilizer phosphorus directly applied to it as compared to that by rice. Wheat responded to P only in red and laterite soils. Results on the transformation of applied P was converted to Fe-P which was of lower availability. These findings suggest that phosphorus in a rice-wheat sequence should preferably be applied to wheat primarily because of (1) greater uptake of fertilizer P by wheat (2) under flooded conditions in which rice is grown most of the applied P is transformed into Fe-P and (3) rice can utilize Fe-P better. (author)

  17. [Selenium uptake and transport of rice under different Se-enriched natural soils].

    Science.gov (United States)

    Jiang, Chao-qiang; Shen, Jia; Zu, Chao-long

    2015-03-01

    In this study, a pot experiment was conducted with "Wandao 205" as test materials to investigate Se uptake and translocation in rice under different Se concentrations (0.5, 1.0, and 1.5 mg . kg-1). Results showed that there was no significant change in rice yield when Se concentration in soil was lower than 1.5 mg . kg-1. Significant linear correlations existed between Se concentration in soil and different rice plant tissues. Se concentration in rice plant followed the order of root > straw > grain. Se concentration in different rice grain fractions followed the order of bran > polished rice > hull. The root absorption index of Se was more than 1.86, suggest that the rice could absorpt Se from soil effectively. However, the transport and accumulation of Se in seeds from Se-enriched soil was relatively constant. The Se transport index in seeds was between 0.53 and 0.59. Soil Se concentration within the range of 0.5 to 1.0 mg . kg-1 could produce Se-enriched rice, which might be enough for human requirement of 60-80 µg . d-1 Se. However, polished rice at high-Se treatment (1.5 mg . kg-1) exceeded the maximum standard limit of Se (0.3 mg . kg-1) for cereals in China. These results suggested that we could produce Se-enriched rice under soil Se concentration in the range of 0.5 to 1.0 mg . kg-1 without spraying Se fertilizer, thus reducing the cost and avoiding soil and water pollution caused by exogenous Se.

  18. Actual and potential salt-related soil degradation in an irrigated rice scheme in the Sahelian zone of Mauritania

    NARCIS (Netherlands)

    Asten, van P.J.A.; Barbi'ro, L.; Wopereis, M.C.S.; Maeght, J.L.; Zee, van der S.E.A.T.M.

    2003-01-01

    Salt-related soil degradation due to irrigation activities is considered a major threat to the sustainability of rice cropping under semi-arid conditions in West Africa. Rice productivity problems related to soil salinity, alkalinity and topographic position were observed in an irrigated rice scheme

  19. Establishment of a rice-duck integrated farming system and its effects on soil fertility and rice disease control

    Science.gov (United States)

    Teng, Qing; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-Qing; Luo, Fan

    2015-04-01

    Rice-duck integrated farming is an ecological farming system newly established in some areas of southern China . It was reported that the ducks walking around the paddy fields is beneficial to control weed hazards and reduce rice pests and diseases. To study and evaluate the effects of the rice-duck integrated farming on soil fertility and rice disease control, a field experiment of rice cultivation was carried out in the suburb of Shanghai in 2014. It includes a treatment of raising ducks in the fields and a control without ducks. The treatment was implemented by building a duck coop nearby the experimental fields and driving 15 ducks into a plot at daytime since the early stage of rice growth. Each plot is 667 m2 in area. The treatment and control were replicated for three times. No any herbicides, pesticides, fungicides and chemical fertilizers were applied during the experiment to prevent any disturbance to duck growing and rice weed hazards and disease incidences from agrochemicals. The results are as follows: (1) The incidences of rice leaf rollers (Cnaphalocrocis medinalis) and stem borers treated with ducks, 0.45%and 1.18% on average, respectively, are lower than those of the control, 0.74% and 1.44% on average, respectively. At the late stage of rice growth, the incidence of rice sheath blight treated with ducks, 13.15% on average, is significantly lower than that of the control, 16.9% on average; and the incidence of rice planthoppers treated with ducks, 11.3 per hill on average, is also significantly lower than that of the control, 47.4 per hill on average. (2) The number of weeds in the plots treated with ducks, 8.3 per m2 on average, is significantly lower than that of the control, 87.5 m2 on average. (3) Raising ducks in the fields could also enhance soil enzyme activity and nutrient status. At the late stage of rice growth, the activities of urease, phosphatase, sucrase and catalase in the soils treated with ducks are 1.39 times, 1.40 times, 1

  20. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  1. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    Science.gov (United States)

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  2. Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Nunokawa, Masanori; Wakahara, Taeko; Onda, Yuichi

    2014-01-01

    We investigated the biological accumulation of radiocesium in tadpoles [Rana (Pelophylax) porosa porosa] in rice paddies with and without decontamination practice at Fukushima. Radiocesium was accumulated in surface part of soils both in the control and decontaminated paddies one year after decontamination. Mean 134 Cs and 137 Cs concentrations in tadpoles in the control and decontaminated paddies were 3000 and 4500, and 600 and 890 Bq/kg dry weight, respectively. Radiocesium concentrations in surface soil (0–5 cm depth) and tadpoles in the decontaminated paddy were five times smaller than in the control paddy. These results suggest that decontamination practice can reduce radiocesium concentrations in both soil and tadpoles. However, at the decontaminated paddy, radiocesium concentrations in surface soils became 3.8 times greater one year after decontamination, which indicates that monitoring the subsequent movement of radiocesium in rice paddies and surrounding areas is essential for examining contamination propagation. - Highlights: • Surface soil removal in a rice paddy reduced the radiocesium concentration in soil. • The radiocesium concentration in tadpoles decreased following decontamination. • Radiocesium levels in soil increased at 1 year following decontamination practice. • Reduction of radiocesium of soil can propagate to biota in rice paddies. - Decontamination practice reduced radiocesium concentrations in both soil and tadpoles that suggests reduction of radiocesium of soil can propagate to biota in rice paddies

  3. Effects of soil's properties on transfer of 137Cs to rice plants through plant uptake after soil deposition

    International Nuclear Information System (INIS)

    Keum, Dong-Kwon; Lee, Hansoo; Kang, Hee-Seok; Jun, In; Choi, Yong-Ho; Lee, Chang-Woo

    2007-01-01

    This paper presents a dynamic compartment model to appraise the concentration of 137 Cs in agricultural plants as a result of a soil deposition. The present model used the Absalom model as a module to account for the effects of a soil's properties (pH, soil clay content, organic matter content, and exchangeable potassium) on a plant uptake, and the leaching and fixation process of 137 Cs in a soil. The model was tested by comparing the model predictions of the 137 Cs aggregated transfer factors for rice plants with those obtained as results of simulated 137 Cs soil deposition experiments with seventeen paddy soils of different properties, all of which were performed before a transplanting of the rice. Predicted 137 Cs TF a values of the rice plants were found to be comparable with those observed. (author)

  4. Rice husk ash with high carbon content proves favourable for soil stabilization

    NARCIS (Netherlands)

    Pham, P.V.; van der Star, WRL; van Paassen, L.A.; Ye, G.

    2015-01-01

    Rice husk ash is a promising pozzolanic material produced from rice husk burning and has significant potential a sustainable replacement for cement in construction and ground improvement applications. In this study the effect of burning conditions on the ash reactivity and its potential for soil

  5. Evaluation of nutrients status of soils under rice cultivation in cross ...

    African Journals Online (AJOL)

    Nutrients status of soils under rice cultivation in Cross River State Nigeria was evaluated to ascertain the present status and suggest management practices needed for an increased rice production. A reconnaissance survey of the entire State was undertaken. A total number of eight Local Government Areas, namely ...

  6. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal

    International Nuclear Information System (INIS)

    Arao, Tomohito; Maejima, Yuji; Baba, Koji

    2011-01-01

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. - Highlights: → Pot experiments using agricultural soil contaminated with aromatic arsenicals (AAs). → Methylphenylarsinic acid (MPAA) was the most abundant AA in rice and soybean. → MPAA concentration in rice grains was dramatically reduced via 0.2% AC amendment. → MPAA concentration in soybean seeds was also reduced via 0.2% AC amendment. → AC amendment effectively reduced AAs in rice and soybean. - Activated charcoal amendment to soil contaminated with diphenylarsinic acid reduced aromatic arsenicals in rice and soybean.

  7. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Arao, Tomohito, E-mail: arao@affrc.go.jp [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Maejima, Yuji; Baba, Koji [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan)

    2011-10-15

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. - Highlights: > Pot experiments using agricultural soil contaminated with aromatic arsenicals (AAs). > Methylphenylarsinic acid (MPAA) was the most abundant AA in rice and soybean. > MPAA concentration in rice grains was dramatically reduced via 0.2% AC amendment. > MPAA concentration in soybean seeds was also reduced via 0.2% AC amendment. > AC amendment effectively reduced AAs in rice and soybean. - Activated charcoal amendment to soil contaminated with diphenylarsinic acid reduced aromatic arsenicals in rice and soybean.

  8. Soil quality assessment of rice production systems in South of Brazil

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Brussaard, L.

    2007-01-01

    Soil quality, as a measure of the soil capacity to function, can be quantified by indicators based on physical, chemical and biological properties. Maintaining soil quality at a desirable level in the rice cropping system is a very complex issue due to the nature of the production systems used. In

  9. Soil nutrient enhancement by rice husk in smallholder farms of the ...

    African Journals Online (AJOL)

    Soil fertility management is one of the most cherished natural resource that requires being safeguard at all cost. An adequate and better solution to combat soil constraint arising from nutrient depletion has been developed; a low external input technology, amending soils with an organic base fertilizer (rice husk) as it is high ...

  10. The effect of different water managements on rice arsenic content in two arsenic-spiked soils

    Directory of Open Access Journals (Sweden)

    Chang H. Y.

    2013-04-01

    Full Text Available Growing rice on arsenic (As-contaminated paddy fields may induce high As level grain production. In order to reduce the food contamination risk, the pot experiments containing two As-spiked aging soils and four water managements were conducted to evaluate the effects of water managements on rice As content. The results indicated that As concentration of Erlin soil solution was 10 to 20 times (210-520 μg/L higher than that of Pinchen soil solution (5-20 μg/L at early stage of experiment (0-60 days. Aerobic water treatment will decrease As level to 30-50% (108-220 μg/L of original As concentration in Erlin soil solution. Statistic results indicated that water management was effective to reduce the rice grain As level in Erlin soil. However, the management impact was not obvious in Pinchen soil, which may be attributed to high clay or free Fe and Al content in the soil. This study suggested that keeping soil under aerobic condition for 3 weeks before rice heading can reduce the risk of rice grown at the As-contamination soil.

  11. evaluation of nutrients status of soils under rice cultivation in cross ...

    African Journals Online (AJOL)

    CULTIVATION IN CROSS RIVER STATE, NIGERIA. I. N. ONYEKWERE, A. G. ... KEYWORDS: Evaluation, Nutrient status, Soils, Cross River. ... countries like India, Japan, Taiwan and South Korea. ... which the rice culture can be established.

  12. Utilization of organic fertilizer to increase paddy growth and productivity using System of Rice Intensification (SRI method in saline soil

    Directory of Open Access Journals (Sweden)

    V . O . Subardja

    2016-01-01

    Full Text Available Soil salinity has negative effect on soil biodiversity as well as microbial activities. Hence, rice growth also effected by salinity. Application of organic fertilizer and adoption of System of Rice Intensification (SRI cultivation might improve the (biological soil properties and increase rice yield. The aim of this study was to evaluate the effect of two different rice cultivation methods namely conventional rice cultivation method and System of Rice Intensification (SRI rice cultivation method and two kinds organic fertilizer on improvement of soil biological properties and rice yield. In this study, a split plot experimental design was applied where rice cultivation method (conventional and SRI was the main plot and two kinds of organic fertilizer (market waste and rice straw was the sub plot. The treatments had four replicates. The results showed that SRI cultivation with market waste organic fertilizer could increase soil biological properties (population of microbe, fungi and soil respiration. The same treatment also increased rice growth and production. Combination of SRI and market waste organic fertilizer yielded the highest rice production (7.21 t/ha.

  13. How Rice (Oryza sativa L.) Responds to Elevated As under Different Si-Rich Soil Amendments.

    Science.gov (United States)

    Teasley, William A; Limmer, Matthew A; Seyfferth, Angelia L

    2017-09-19

    Several strategies exist to mitigate As impacts on rice and each has its set of trade-offs with respect to yield, inorganic As content in grain, and CH 4 emissions. The addition of Si to paddy soil can decrease As uptake by rice but how rice will respond to elevated As when soil is amended with Si-rich materials is unresolved. Here, we evaluated yield impacts and grain As content and speciation in rice exposed to elevated As in response to different Si-rich soil amendments including rice husk, rice husk ash, and CaSiO 3 in a pot study. We found that As-induced yield losses were alleviated by Husk amendment, partially alleviated by Ash amendment, and not affected by CaSiO 3 amendment. Furthermore, Husk was the only tested Si-amendment to significantly decrease grain As concentrations. Husk amendment was likely effective at decreasing grain As and improving yield because it provided more plant-available Si, particularly during the reproductive and ripening phases. Both Husk and Ash provided K, which also played a role in yield improvement. This study demonstrates that while Si-rich amendments can affect rice uptake of As, the kinetics of Si dissolution and nutrient availability can also affect As uptake and toxicity in rice.

  14. Effects of Chemical Applications to Metal Polluted Soils on Cadmium Uptake by Rice Plant

    Directory of Open Access Journals (Sweden)

    Yoo J. H.

    2013-04-01

    Full Text Available Pot experiment using metal polluted soils was conducted to investigate the effects of lime, iron and sulfur on changes in Cd availability and uptake by rice plant. Drainage and irrigation of water were performed to develop redox changes like field cultivation. Iron chloride and sodium sulfate solutions were applied to the pots in the middle of growth period of rice plant. Reactive metal pool in heavily polluted soils was slightly decreased after treatments with lime, iron chloride, sodium sulfate and combination of these chemicals. However, cadmium uptake by rice plant was significantly different across the treatments and the extent of Cd pollution. For highly polluted soils, more Cd reduction was observed in iron chloride treatments. Cd content in polished rice for iron chloride and (iron chloride+organic matter treatments was only 16-23% and 25-37% compared to control and liming, respectively. Treatment of (iron chloride+sulfate rather increased Cd content in rice. For moderately polluted soils, Cd reduction rate was the order of (OM+iron chloride > iron chloride > lime. Other treatments including sulfate rather increased Cd content in rice maximum 3 times than control. It was proposed to determine the optimum application rate of iron for minimizing hazardous effect on rice plant.

  15. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    Science.gov (United States)

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the

  16. Prediction of Cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Guo, H.Y.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F.

    2009-01-01

    Cadmium (Cd) levels in paddy fields across Taiwan have increased due to emission from industry. To ensure the production of rice that meets food quality standards, predictive models or suitable soil tests are needed to evaluate the quality of soils to be used for rice cropping. Levels of Cd in soil

  17. Soil micronutrients and its uptake by rice plant. Part of a coordinated programme on isotope-aided micronutrient studies in rice production with special reference to zinc deficiencies

    International Nuclear Information System (INIS)

    Kim, T.S.

    1980-02-01

    A series of field and greenhouse experiments with flooded rice was carried out on contrasting soil types of Korea to study the zinc status of soils, evaluate the chemical methods for extracting zinc from soils in terms of ability to identify zinc deficiency, perform 65 Zn-aided experiments including the residual effects of zinc fertilizers to evaluate the efficiency of zinc sources and methods of zinc application to rice, and associated studies on factors affecting zinc nutrition in rice such as effect of organic matter and chelates. The results show that i) 0.05 N HCl solution for extracting available zinc in soil was effective to separating the soils which require zinc fertilizer application. The proposed zinc value to identify is 2.4 ppm. Among rice soils surveyed, the red-yellow podsolic soil derived from basalt, the reddish-brown lateritic soil of calcareous material and newly reclaimed saline soils were shown to be below this limit; ii) 5 kg Zn/ha as zinc sulphate introduced the highest response in terms of % Zndff, total zinc yield in rice plant, and the fertilizer zinc use efficiency. Applying higher zinc amounts, in case of 20 kg Zn/ha, retarded nitrogen uptake by the plant and as a result the rice grain yield was decreased; iii) Significant yields increases due to the residual effects of zinc fertilizers were obtained on the second and third crops; iv) On the zinc-deficient calcareous soil the use of chelated zinc sources is recommended

  18. Radioactive cesium deposition on rice, wheat, peach tree and soil after nuclear accident in Fukushima

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Kobayashi, N.I.; Tanoi, K.

    2013-01-01

    We present how radioactive Cs was deposited on wheat, rice, peach tree and soil after nuclear accident in Fukushima. The deposition of radioactive Cs was found as spots at the surface of the leaves, branch or trunk of the trees, as well as in soil using one of the imaging method, autoradiography. The deposited radioactive Cs was not easily washed out, even with the treatment of acid solution. When the wheat was harvested 2 months after the accident, high radioactivity of Cs was found only on the leaves developed and expanded at the time of the accident. In the case of the rice grain, most of the radioactivity was found in bran and the radioactivity was drastically reduced in milled rice. Most of the radioactive Cs accumulation in rice plants was estimated from the absorption of the Cs ion dissolved in water, rather than Cs adsorbed in soil. (author)

  19. Enhanced chlorophenol sorption of soils by rice-straw-ash amendment

    International Nuclear Information System (INIS)

    Liu, Jen-Chyi; Tzou, Yu-Min; Lu, Yi-Hsien; Wu, Jeng-Tzung; Cheng, Mei-Ping; Wang, Shan-Li

    2010-01-01

    Rice-straw burning is a common post-harvest practice on rice paddy land, which results in the accumulation of rice-straw ash (RSA) in paddy soil. Because the occurrence of RSA in soil may affect the fate and transport of contaminants, this study investigated the sorption of 3-chlorophenol (3-CP) on RSA and RSA amended soils to evaluate the sorptive properties of RSA in soils. The results showed that the sorption of 3-CP to RSA proceeds through a surface reaction rather than through partitioning and that the neutral form of 3-CP is preferentially sorbed to the surface when compared to the deprotonated anionic form of 3-CP. The addition of RSA to the soils enhanced the overall 3-CP sorption, indicating that RSA amendment may be applied to retard the movement of 3-CP in contaminated soils. As the RSA content in the soils was increased from 0% to 2%, the Langmuir sorption maximum of the soils increased from 18-80 to 256-274 mg kg -1 . Thus, RSA contributed more to the total sorption of the soils than other major components in the soils. Nonetheless, the 3-CP sorption of the soils containing RSA was less than the combination of pure RSA and the soils, thereby indicating that the 3-CP sorption of RSA was suppressed. This may be attributed to the competition of organic matter or other soil components for the surface binding sites of RSA.

  20. BIOCHAR AS SOIL CONDITIONER IN THE SUCCESSION OF UPLAND RICE AND COWPEA FERTILIZED WITH NITROGEN

    Directory of Open Access Journals (Sweden)

    NEYTON DE OLIVEIRA MIRANDA

    2017-01-01

    Full Text Available The effects of biochar and nitrogen application on yields of upland rice and cowpea and on soil fertility were determined in a greenhouse in Macaíba, RN, Brazil. The trial consisted of the succession of two crops in a completely randomized design and a factorial scheme, with four replicates. Initially, four doses of biochar and four doses of nitrogen were tested for cultivation of rice. Subsequently, four doses of biochar and two doses of nitrogen were tested in half of the pots maintained for planting cowpea. Soil was sampled after rice harvest for half of the pots and at end of the trial for the remaining pots. We evaluated the following parameters: mass of hundred grains of rice, dry shoot mass, panicle number, number of filled spikelets and of empty spikelets, and grain production. Determinations for cowpea were: pod number per pot, grain number per pod, and grain production per pot. Measured soil parameters were: pH, contents of organic carbon, P, K, Ca, Mg, Na, cation exchange capacity, and exchangeable sodium percentage. Biochar addition did not influence yield components of upland rice and cowpea, but resulted in increased soil N retention, which influenced rice dry shoot mass, spikelets sterility, panicle number, and grain mass. Biochar also promoted increased soil pH, potassium content, and exchangeable sodium percentage and decreased calcium and magnesium concentrations.

  1. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice.

    Science.gov (United States)

    Ye, Wen-Ling; Khan, M Asaduzzaman; McGrath, Steve P; Zhao, Fang-Jie

    2011-12-01

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Evaluating cadmium bioavailability in contaminated rice paddy soils and assessing potential for contaminant immobilisation with biochar.

    Science.gov (United States)

    Kosolsaksakul, Peerapat; Oliver, Ian W; Graham, Margaret C

    2018-06-01

    Cadmium (Cd) contaminated soils from the Mae Sot district in northwest Thailand, a region in which rice Cd concentrations often exceed health limits (0.4 mg/kg) set by the World Health Organisation, were examined for isotopically exchangeable Cd (Cd E values using a 111 Cd spike) to determine how this rates as a predictor of rice grain Cd in comparison with soil total Cd and solution extractable Cd (using the commonly applied BCR scheme and, in an attempt to distinguish carbonate bound forms, the Tessier soil sequential extraction scheme reagents). Step 1 of the BCR scheme (0.11 M CH 3 COOH) and step 1 of the Tessier scheme (1M MgCl 2 ) showed the highest R 2 values in regressions with rice Cd (91% and 90%, respectively), but all predictors were strongly linked to rice Cd (p soil, of the six tested, was an exception to this, where all predictors over-estimated grain Cd by a factor of 2.5-5.7, suggesting that rice grain Cd had been restricted here by the differing flooding regime and subsequent changes to redox conditions. E values and Tessier step 1 extractions were closely related, indicating that these measurements access similar pools of soil Cd. Separately, the isotopic exchangeability (representing bioavailability) of Cd was also assessed in two soils amended with rice husk and miscanthus biochars (0, 1, 5, 10, 15 and 20% w/w) in order to assess the utility of the biochars as a soil amendment for immobilising Cd in situ. One soil showed significant reductions in Cd E value at 5% rice husk biochar addition and at 15% miscanthus biochar addition however, based on the E value-rice grain Cd regression relationship previously established, the E values in the amended soils still predicted for a rice Cd concentration above the health limit. In the second soil, neither of the biochars successfully reduced the Cd E value. This indicates that further work is needed to customise biochar properties to suit specific soil and contaminant situations if they are to be

  3. Dynamics of pH, Ferrum and Mangan, and Phosphorus on Newly Opened Paddy Soil having High Soil Organic Matter on Rice Growth

    Directory of Open Access Journals (Sweden)

    Sukristyonubowo

    2012-01-01

    Full Text Available Research had been carried out at the Research and Soil Testing Laboratory and Greenhouse of Soil ResearchInstitute, Bogor using newly opened paddy soil from Pesisir Selatan districts, West Sumatra (one year old. Totaltreatments tested were 12 which were combination of farmer rate, NPK recommendation (½×; ¾×; 1½×, strawcompost (½×; ¾×; 1½×, and dolomite. The trial was conducted using a completely randomized design with threereplications. This research had been prepared in two units, one unit for observing plant response to nutrientmanagement and another unit for incubation trial with the same treatment placed in the greenhouse. Rice cultivarused was IR-42 in accordance to the preferred varieties of local farmers. The sampling method for measuring thesolubility of Fe2+ and Mn2+, as well as the availability of PO43- was by centrifuge 50 g mud samples from theincubation pots then separated clear extract using filter paper. The observation results on dynamics of pH, Fe2+,Mn2+ and PO4-3 mainly occured in 1 to 14 days after submerging (incubation. After 14 days soil reaction had reachedthermodynamic sequence of oxidation-reduction processes, the PO43- more available and pH of the soil reached thepeak. The optimum dose of NPK fertilizer obtained 0.875 NPK or equal to 175 kg of urea, 87.5 kg of SP-36 and 87.5 kgKCl ha-1. The highest number of hills achieved from straw compost treatment 1½ organic matter (OM or 3 tons withan increase of 20%. Application of ameliorant dolomite increased the number of tillers about 2-3%, but insignificantlydifferent with no dolomite treatment.

  4. The emission of nitrous oxide upon wetting a rice soil following a dry season fallow

    Science.gov (United States)

    Byrnes, B. H.; Holt, L. S.; Austin, E. R.

    1993-12-01

    A greenhouse experiment was conducted to measure nitrous oxide (N2O) emissions from a soil, which had been planted to flooded transplanted rice, as it was rewetted to simulate the end of a dry season fallow period. The pots of soil had been cropped to transplanted rice with two commonly used nitrogen (N) fertilizer treatments and a control, and the soil had been puddled before transplanting. Large amounts of nitrate N accumulated in the soils during the dry season fallow, and the N fertilizers applied to the previous crop had little effect on nitrate accumulation. There was little N2O emission during the nitrification period. With water additions meant to simulate rainfall events at the beginning of a wet season, the soil redox dropped slightly, and large amounts of N2O began to be emitted. Large emissions began 5 days after each of the two simulated rainy season watering events and stopped abruptly at soil saturation, even though considerable amounts of nitrate still remained in the soil after saturation. Total measured emissions amounted to 6 to 7 kg N2O-N ha-1 for the period. Although these measurements were made in a system which may have favored nitrate accumulation, they are the first known measurements of N2O made from a rice soil as it is wetted. Nitrous oxide emitted from the flooding of rice soils that have accumulated nitrate during a dry season fallow may be a major source of N2O additions to the atmosphere.

  5. Cadmium transfer from contaminated soils to the human body through rice consumption in southern Jiangsu Province, China.

    Science.gov (United States)

    Li, Tianyuan; Chang, Qing; Yuan, Xuyin; Li, Jizhou; Ayoko, Godwin A; Frost, Ray L; Chen, Hongyan; Zhang, Xinjian; Song, Yinxian; Song, Wenzhi

    2017-06-21

    Consumption of crops grown in cadmium-contaminated soils is an important Cd exposure route to humans. The present study utilizes statistical analysis and in vitro digestion experiments to uncover the transfer processes of Cd from soils to the human body through rice consumption. Here, a model was created to predict the levels of bioaccessible Cd in rice grains using phytoavailable Cd quantities in the soil. During the in vitro digestion, a relatively constant ratio between the total and bioaccessible Cd in rice was observed. About 14.89% of Cd in soils was found to be transferred into rice grains and up to 3.19% could be transferred from rice grains to the human body. This model was able to sufficiently predict rice grain cadmium concentrations based on CaCl 2 extracted zinc and cadmium concentrations in soils (R 2 = 0.862). The bioaccessible Cd concentration in rice grains was also able to be predicted using CaCl 2 extracted cadmium from soil (R 2 = 0.892). The models established in this study demonstrated that CaCl 2 is a suitable indicator of total rice Cd concentrations and bioaccessible rice grain Cd concentrations. The chain model approach proposed in this study can be used for the fast and accurate evaluation of human Cd exposure through rice consumption based on the soil conditions in contaminated regions.

  6. Use of rice seedlings to estimate uptake of radiocesium from soil to plants in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Suzuki, Yasukazu; Ohno, Takeshi

    2013-01-01

    The uptake of radiocesium to plants from the soil is affected by many environmental factors, and it is difficult to determine the contribution of uptake among these factors. In addition, these environmental factors should be investigated independently for each field. The aim of this study was to develop a practical and simple method for the estimate of uptake of radiocesium from soil to plants. Rice seedlings were used to estimate the root uptake of radiocesium from seven different soils. To confirm that the seedlings were the effective indicator, the concentration of "1"3"7Cs in the seedlings was compared with that in brown rice and sunflower. The seedlings were cultivated for a week from germination in a phytotron and the concentrations of "1"3"7Cs in the seedlings above ground were determined. To obtain brown rice and sunflower, rice and sunflower were cultivated either in a pot (1/5000 a Wagner pot, 4000 cm"3) placed in a glasshouse or in a paddy field in Fukushima prefecture for two to four months. The concentration of "1"3"7Cs in the rice seedlings ranged from 150 to 1900 Bq kg"-"1, and that in brown rice and sunflower ranged from 2 to 880 Bq kg"-"1 and from 580 to 3900 Bq kg"-"1, respectively. The Spearman's rank correlation coefficient between the measured concentration of "1"3"7Cs in rice seedlings and the measured concentration of "1"3"7Cs in brown rice and sunflower was 1.0 (p < 0.001 and p = 0.09, respectively). This suggests that the use of rice seedlings in this experiment over a period of two weeks provides an effective indicator for the uptake of "1"3"7Cs from soil to plants over a longer period of time. (author)

  7. Use of rice seedlings to estimate uptake of radiocesium from soil to plants in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Suzuki, Yasukazu; Ohno, Takeshi

    2012-01-01

    The uptake of radiocesium to plants from the soil is affected by many environmental factors, and it is difficult to determine the contribution of uptake among these factors. In addition, these environmental factors should be investigated independently for each field. The aim of this study was to develop a practical and simple method for the estimate of uptake of radiocesium from soil to plants. Rice seedlings were used to estimate the root uptake of radiocesium from seven different soils. To confirm that the seedlings were the effective indicator, the concentration of 137 Cs in the seedlings was compared with that in brown rice and sunflower. The seedlings were cultivated for a week from germination in a phytotron and the concentrations of 137 Cs in the seedlings above ground were determined. To obtain brown rice and sunflower, rice and sunflower were cultivated either in a pot (1/5000 a Wagner pot, 4000 cm 3 ) placed in a glasshouse or in a paddy field in Fukushima prefecture for two to four months. The concentration of 137 Cs in the rice seedlings ranged from 150 to 1900 Bq kg -1 , and that in brown rice and sunflower ranged from 2 to 880 Bq kg -1 and from 580 to 3900 Bq kg -1 , respectively. The Spearman's rank correlation coefficient between the measured concentration of 137 Cs in rice seedlings and the measured concentration of 137 Cs in brown rice and sunflower was 1.0 (p < 0.001 and p = 0.09, respectively). This suggests that the use of rice seedlings in this experiment over a period of two weeks provides an effective indicator for the uptake of 137 Cs from soil to plants over a longer period of time. (author)

  8. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant.

    Science.gov (United States)

    Liu, Jie; Zhang, Xue-Hong; Tran, Henry; Wang, Dun-Qiu; Zhu, Yi-Nian

    2011-11-01

    The objective of this paper is to assess the impact of long-term electroplating industrial activities on heavy metal contamination in agricultural soils and potential health risks for local residents. Water, soil, and rice samples were collected from sites upstream (control) and downstream of the electroplating wastewater outlet. The concentrations of heavy metals were determined by an atomic absorption spectrophotometer. Fractionation and risk assessment code (RAC) were used to evaluate the environmental risks of heavy metals in soils. The health risk index (HRI) and hazard index (HI) were calculated to assess potential health risks to local populations through rice consumption. Hazardous levels of Cu, Cr, and Ni were observed in water and paddy soils at sites near the plant. According to the RAC analysis, the soils showed a high risk for Ni and a medium risk for Cu and Cr at certain sites. The rice samples were primarily contaminated with Ni, followed by Cr and Cu. HRI values >1 were not found for any heavy metal. However, HI values for adults and children were 2.075 and 1.808, respectively. Water, paddy soil, and rice from the studied area have been contaminated by Cu, Cr, and Ni. The contamination of these elements is related to the electroplating wastewater. Although no single metal poses health risks for local residents through rice consumption, the combination of several metals may threaten the health of local residents. Cu and Ni are the key components contributing to the potential health risks.

  9. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  10. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability

    Science.gov (United States)

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-08-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment.

  11. Improving soil fertility through Azolla application in low land rice: A review

    Directory of Open Access Journals (Sweden)

    Purushottam Subedi

    2015-04-01

    Full Text Available The continuous usages of chemical fertilizers have harmful effects on soil organic matter reserves, soil health and environmental safety. The use of Bio-fertilizers like Azolla not only increases the rice productivity but also improves the long term soil fertility. Azolla is a fast growing aquatic pteridophyte which fixes atmospheric Nitrogen by forming a symbiotic association with the Blue-Green Algae, Anabaena azollae. Azolla is an efficient Nitrogen fixer. It is grown in lowland rice fields because flooded habitat is suitable for it. Under favorable field condition, it fixes atmospheric nitrogen at a rate exceeding that of the Legume-Rhizobium symbiotic relationship. It increases the rice yield equivalent to that produced by 30-60 kg N/ha. As green manure in water logged soil, it enhances the rapid mineralization of nitrogen. It reduces the NH3 volatilization losses through its influence on floodwater pH that leads to the conservation of urea-N in the system to improve the efficiency of N fertilizers. It significantly improves the physical and chemical properties of the soil including improvement in soil microbial activities. It helps in addition of Organic Matter and release of cations such as Magnesium, Calcium and Sodium. The total N, available P and exchangeable K in the soil and N-uptake by rice can be improved. Therefore, Azolla application is considered as a good practice for sustaining soil fertility and crop productivity irrespective of some limitations.

  12. Management systems in irrigated rice affect physical and chemical soil properties

    NARCIS (Netherlands)

    Rodrigues de Lima, A.C.; Hoogmoed, W.B.; Pauletto, E.A.; Pinto, L.F.S.

    2009-01-01

    Lowland soils are commonly found in the state of Rio Grande do Sul, Southern of Brazil, where they represent around 20% of the total area. Deficient drainage is the most important natural characteristic of these soils which therefore are mainly in use for irrigated rice (Oriza sativa). Degradation

  13. Rice straw biochar affects water retention and air movement in a sand-textured tropical soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Ahmed, Fauziatu

    2017-01-01

    Despite the current global attention on biochar (BC) as a soil amendment, knowledge is limited on how BC impacts the physical properties of coarse-textured soils (sand > 95%), particularly in tropical regions. A two-season field-study was conducted to investigate the effect of rice straw BC (3% w...

  14. 137Cs absorption by growing rice planted in pot soil from Qinshan and Daya Bay area

    International Nuclear Information System (INIS)

    Shang Zhaorong; Yu Fengyi; Lu Zixian

    1999-01-01

    The pot experiment of growing rice contaminated with 137 Cs solution was designed as follows. (1) The same volume of 137 Cs solution was irrigated into rice soil from Guantang District around Qinshan NPP in seedling stage, booting stage and milk stage respectively with the same Specific Activity (SA) of 370 Bq/g soil , and the rice was sampled after maturity. (2) In the seedling stage, the rice cultured in the soil from Guantang District was irrigated by four different SA of 0.37, 3.7, 37 and 370 Bq/g soil respectively, and sampled after 30, 60 and 90 d. (3) Transfer Factors (TF) of edible parts of rice on five different soils were calculated for three different stage and four different 137 Cs levels. The results show that: 1) TF of Shenzhen soil is the highest with 1.86 in seed and 2.22 in stem and 4.05 in leaf, Changchuanba soil is the lowest with 0.09 in seed and 0.20 in stem and 0.20 in leaf, among the five different soils. 2) TF in milk stage is the highest with 0.46 in seed and 2.29 in stem and 2.87 in leaf, and booting stem is lowest with 0.09 in seed and 0.17 in stem and 0.17 in leaf, among the three different stage. 3) TF of soil with contamination in 0.37 Bq/g soil is the highest with 1.08 in seed and 3.70 in stem and 4.32 in leaf, and the contamination in 37 Bq/g soil is the lowest with 0.06 in seed and 0.10 in stem and 0.14 in leaf, among four different contamination levels

  15. Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields

    Energy Technology Data Exchange (ETDEWEB)

    Roemkens, P.F.A.M., E-mail: paul.romkens@wur.nl [Soil Science Center, Alterra, WageningenUR. P.O. Box 47, 6700AA Wageningen (Netherlands); Brus, D.J. [Soil Science Center, Alterra, WageningenUR. P.O. Box 47, 6700AA Wageningen (Netherlands); Guo, H.Y.; Chu, C.L.; Chiang, C.M. [Taiwan Agricultural Research Institute (TARI), Wufong, Taiwan (China); Koopmans, G.F. [Soil Science Center, Alterra, WageningenUR. P.O. Box 47, 6700AA Wageningen (Netherlands); Department of Soil Quality, Wageningen University, WageningenUR. P.O. Box 47, 6700AA, Wageningen (Netherlands)

    2011-08-01

    At present, soil quality standards used for agriculture do not consider the influence of pH and CEC on the uptake of pollutants by crops. A database with 750 selected paired samples of cadmium (Cd) in soil and paddy rice was used to calibrate soil to plant transfer models using the soil metal content, pH, and CEC or soil Cd and Zn extracted by 0.01 M CaCl{sub 2} as explanatory variables. The models were validated against a set of 2300 data points not used in the calibration. These models were then used inversely to derive soil quality standards for Japonica and Indica rice cultivars based on the food quality standards for rice. To account for model uncertainty, strict soil quality standards were derived considering a maximum probability that rice exceeds the food quality standard equal to 10 or 5%. Model derived soil standards based on Aqua Regia ranged from less than 0.3 mg kg{sup -1} for Indica at pH 4.5 to more than 6 mg kg{sup -1} for Japonica-type cultivars in clay soils at pH 7. Based on the CaCl{sub 2} extract, standards ranged from 0.03 mg kg{sup -1} Cd for Indica cultivars to 0.1 mg kg{sup -1} Cd for Japonica cultivars. For both Japonica and Indica-type cultivars, the soil quality standards must be reduced by a factor of 2 to 3 to obtain the strict standards. The strong impact of pH and CEC on soil quality standards implies that it is essential to correct for soil type when deriving national or local standards. Validation on the remaining 2300 samples indicated that both types of models were able to accurately predict (> 92%) whether rice grown on a specific soil will meet the food quality standard used in Taiwan. - Research highlights: {yields} Cadmium uptake by Japonica and Indica rice varieties depends on soil pH and CEC. {yields} Food safety based soil standards range from 0.3 (Indica) to 6 mg kg{sup -1} (Japonica). {yields} Model uncertainty leads to strict soil standards of less than 0.1 mg kg{sup -1} for Indica. {yields} Soil pH and CEC should be

  16. Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields

    International Nuclear Information System (INIS)

    Roemkens, P.F.A.M.; Brus, D.J.; Guo, H.Y.; Chu, C.L.; Chiang, C.M.; Koopmans, G.F.

    2011-01-01

    At present, soil quality standards used for agriculture do not consider the influence of pH and CEC on the uptake of pollutants by crops. A database with 750 selected paired samples of cadmium (Cd) in soil and paddy rice was used to calibrate soil to plant transfer models using the soil metal content, pH, and CEC or soil Cd and Zn extracted by 0.01 M CaCl 2 as explanatory variables. The models were validated against a set of 2300 data points not used in the calibration. These models were then used inversely to derive soil quality standards for Japonica and Indica rice cultivars based on the food quality standards for rice. To account for model uncertainty, strict soil quality standards were derived considering a maximum probability that rice exceeds the food quality standard equal to 10 or 5%. Model derived soil standards based on Aqua Regia ranged from less than 0.3 mg kg -1 for Indica at pH 4.5 to more than 6 mg kg -1 for Japonica-type cultivars in clay soils at pH 7. Based on the CaCl 2 extract, standards ranged from 0.03 mg kg -1 Cd for Indica cultivars to 0.1 mg kg -1 Cd for Japonica cultivars. For both Japonica and Indica-type cultivars, the soil quality standards must be reduced by a factor of 2 to 3 to obtain the strict standards. The strong impact of pH and CEC on soil quality standards implies that it is essential to correct for soil type when deriving national or local standards. Validation on the remaining 2300 samples indicated that both types of models were able to accurately predict (> 92%) whether rice grown on a specific soil will meet the food quality standard used in Taiwan. - Research highlights: → Cadmium uptake by Japonica and Indica rice varieties depends on soil pH and CEC. → Food safety based soil standards range from 0.3 (Indica) to 6 mg kg -1 (Japonica). → Model uncertainty leads to strict soil standards of less than 0.1 mg kg -1 for Indica. → Soil pH and CEC should be considered to obtain meaningful standards for agriculture.

  17. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    Science.gov (United States)

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  18. Isotope technology as applied to studies of soil fertility, nutrient availability and fertilizer use on flooded rice soils

    International Nuclear Information System (INIS)

    Patnaik, S.; Mohanty, S.K.; Dash, R.N.

    1979-01-01

    Research is reviewed on soil fertility and nutrient availability in relation to fertilizer efficiency, especially o stimulated the mineralization of soil N. Losses of added N from oxidation, leaching, denitrification and volatilization could be minimized through placement of N fertilizer in the reduced zone or by the addition of rice straw for rapid immobilization of added N. Fe-P and, to some extent, Al-P provided P to the rice plants, particularly in P-deficient soils. Added phosphates were converted to these forms which, under waterlogged soil conditions, released more P into the soil solution through reductive solubilization of Fe-P and hydrolytic dissolution of Al-P. The rice plants generally absorbed fertilizer N during the vegetative growth period and N mineralized from soil organic matter during the reproductive growth period. 15 N studies indicated higher grain yield and utilization of applied N through fractional application of 70-80% during the vegetative growth period, and the remaining 20-30% top-dressed at the panicle initiation stage. Ammonia-containing and -forming (urea) fertilizers were superior to the nitrate form of N. In field tests, however, the crop recovery of applied N was relatively low. Phosphatic fertilizers were best applied at puddling. In general, water-soluble phosphates were superior to citrate-soluble or insoluble phosphates. The latter could be made as efficient as the water-soluble phosphate, at comparable low rates, by applying to the moist aerobic acid soil 2-3 weeks before flooding and transplanting rice. Tracer studies have been used to evaluate the nutrient-supplying capacity of the soil from the 'A' value concept. 'A' values varied with varying conditions of soil, rate, time and form of fertilizer application. Zn nutrition of the rice plant and fertilizer use with 65 Zn have been studied relatively little. Some lines of future work are suggested

  19. Increasing Soil Organic Matter Enhances Inherent Soil Productivity while Offsetting Fertilization Effect under a Rice Cropping System

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhao

    2016-09-01

    Full Text Available Understanding the role of soil organic matter (SOM in soil quality and subsequent crop yield and input requirements is useful for agricultural sustainability. SOM is widely considered to affect a wide range of soil properties, however, great uncertainty still remains in identifying the relationships between SOM and crop yield due to the difficulty in separating the effect of SOM from other yield-limiting factors. Based on 543 on-farm experiments, where paired treatments with and without NPK fertilizer were conducted during 2005–2009, we quantified the inherent soil productivity, fertilization effect, and their contribution to rice yield and further evaluated their relationships with SOM contents under a rice cropping system in the Sichuan Basin of China. The inherent soil productivity assessed by rice grain yield under no fertilization (Y-CK was 5.8 t/ha, on average, and contributed 70% to the 8.3 t/ha of rice yield under NPK fertilization (Y-NPK while the other 30% was from the fertilization effect (FE. No significant correlation between SOM content and Y-NPK was observed, however, SOM content positively related to Y-CK and its contribution to Y-NPK but negatively to FE and its contribution to Y-NPK, indicating an increased soil contribution but a decreased fertilizer contribution to rice yield with increasing SOM. There were significantly positive relationships between SOM and soil available N, P, and K, indicating the potential contribution of SOM to inherent soil productivity by supplying nutrients from mineralization. As a result, approaches for SOM accumulation are practical to improve the inherent soil productivity and thereafter maintain a high crop productivity with less dependence on chemical fertilizers, while fertilization recommendations need to be adjusted with the temporal and spatial SOM variation.

  20. [Effects of mechanical transplanting of rice with controlled release bulk blending fertilizer on rice yield and soil fertility].

    Science.gov (United States)

    Zhang, Xuan; Ding, Jun-Shan; Liu, Yan-Ling; Gu, Yan; Han, Ke-Feng; Wu, Liang-Huan

    2014-03-01

    Abstract: A 2-year field experiment with a yellow-clay paddy soil in Zhejiang Province was conducted to study the effects of different planting measures combined with different fertilization practices on rice yield, soil nutrients, microbial biomass C and N and activities of urease, phosphatase, sucrase and hydrogen peroxidase at the maturity stage. Results showed that mechanical transplanting of rice with controlled release bulk blending (BB) fertilizer (BBMT) could achieve a significantly higher mean yield than traditional manual transplanting with traditional fertilizer (TFTM) and direct seeding with controlled release BB fertilizer (BBDS) by 16.3% and 27.0%, respectively. The yield by BBMT was similar to that by traditional manual transplanting with controlled release BB fertilizer (BBTM). Compared with TFTM, BBMT increased the contents of soil total-N, available N, available P and microbial biomass C, and the activities of urease, sucrase and hydrogen peroxidase by 21.5%, 13.6%, 41.2%, 27.1%, 50.0%, 22.5% and 46.2%, respectively. Therefore, BBMT, a simple high-efficiency rice cultivation method with use of a light-weighted mechanical transplanter, should be widely promoted and adopted.

  1. Investigation of Hg uptake and transport between paddy soil and rice seeds combining Hg isotopic composition and speciation

    OpenAIRE

    C. Feng; Z. Pedrero; P. Li; B. Du; X. Feng; M. Monperrus; E. Tessier; S. Berail; D. Amouroux

    2016-01-01

    Abstract Human consumption of rice constitutes a potential toxicological risk in mercury (Hg) polluted areas such as Hg mining regions in China. It is recognized to be an important source of Hg for the local human diet considering the efficient bioaccumulation of methylmercury (MeHg) in rice seed. To assess Hg sources and uptake pathways to the rice plants, Hg speciation and isotopic composition were investigated in rice seeds and their corresponding paddy soils from different locations withi...

  2. Soil-based screening for iron toxicity tolerance in rice using pots

    Directory of Open Access Journals (Sweden)

    Mouritala Sikirou

    2016-10-01

    Full Text Available The objective of this study was to assess the reliability of pot-based screening method for iron (Fe toxicity tolerance in rice using soils from hot spots. Five lowland rice varieties with known reaction to Fe toxicity were grown in pots in a screen house for three seasons. Fe-toxic soils from two hot spot fields – Edozighi, Nigeria and Niaouli, Benin were used and soil from Africa Rice Center (AfricaRice experimental farm, Cotonou, Benin was included as control. Leaf bronzing score (LBS was determined at different stages, and grain yield was determined at maturity. Heritability was estimated using data across the three seasons. High heritability was recorded for LBS and grain yield. Grain yield reduction in stress treatment relative to control varied from 15 to 56% depending on the variety and soil. Bao Thai, Suakoko 8, and WITA 4 had better performance under Fe toxicity in terms of LBS, yield and relative yield reduction, whereas Bouake 189 and IR64 had poorer performance. Grain yield and LBS were significantly correlated but negatively at 60 days after sowing (DAS. Overall, the results found in this experiment were consistent with previous field studies. Therefore, pot screening using soils from hot spots can be used by rice breeding programs to reliably assess Fe toxicity tolerance ex situ.

  3. Influence of Rice Husk Ash and Clay in Stabilization of Silty Soils Using Cement

    Directory of Open Access Journals (Sweden)

    Widjajakusuma Jack

    2017-01-01

    Full Text Available Soil stabilization is needed to enhance the strength of the soil. One popular method of soil stabilization is using cement. Due to the environmental issue, it is a need to reduce the application of cement and/or to replace partially the cement with other environmental-friendly compounds. One of these compounds is rice husk ash (RSA, which is agricultural wastes. The objective of this paper is to study the influence of RSA and clay as partial replacement to cement in soil stabilization of silt soil with high plasticity (MH using cement. The cement used was ordinary Portland cement, while the RHA was obtained by burning rice husk at temperature of 250°C. The MH soil is stabilized with 4% cement, 4% cement and 3% rice husk ash and 4% cement, 3 % RHA and 3 % clay. The various tests were conducted on the pure and stabilized soils. Results have indicated that application of 4% cement, 3 % RHA and 3 % clay as silt soil stabilization is more favorable in increasing soil strength and reducing brittle behaviour of soil.

  4. The balance of distribution and conversion of pentachlorophenal 14C in rice plants and soil

    International Nuclear Information System (INIS)

    Weiss, U.; Scheunert, I.; Korte, F.

    1981-01-01

    Rice plants were cultivated in a climatic chamber in vessels with 7-8 kg soil which was contaminated with 14 C pentachlorophenol. The soil was flooded with water during the growth period. The test was carried out until the rice plants were ripe. All parts of the system (atmosphere, straw and ears, roots and stubble, infiltration water, soil and washing water from the roots) were then investigated for their 14 C content. It could be seen that pentachlorophenol does not belong to the so-called 'persistant' environmental chemicals. After a period of vegetation, only about 1% of the initial substance is found in the plant/soil system. Besides the volatility of the initial substance and/or decomposition products into the atmosphere, a stepwise reductive dechlorination takes place in the soil and plants and finally the residues are bonded in a specific form to soil and plants. Residues can occur in the rice grains after soil treatment of rice cultures which also are largely bonded and cannot be chemically characterized. Its toxicological significance has not been thoroughly investigated. The question of the long-term consequences of the bonded residues still needs extensive research despite the favourable conclusion that can be drawn from this study on environmental behaviour of pentachlorophenol. (orig.) [de

  5. Rice and wheat yield improvement by the application of boron in salt affected soils

    International Nuclear Information System (INIS)

    Mehdi, S.M.; Sarfraz, M.; Hassan, N.M.; Hassan, W.

    2007-01-01

    In recent past studies on wheat, rice and fruit plant showed that fairly large percentage of soils and crops are deficient in boron. Several times a question rose to study the boron responses in a cropping system to see the residual effect of boron. With the objective in mind, a field experiment was conducted at two sites in saline sodic soils to see the rice and wheat crops response to boron. Boron was applied to rice at the rate of 0.25, 0.50, 1.0, 1.5, and 2.0 Kg ha/sub -1/ as sodium tetra borate. The results showed that both paddy and straw yields increased with the increasing rates of boron and highest yield was obtained from 2 Kg ha/sub -l/. After harvesting of rice crop wheat was sown in the same layout. The treatments were divided into two equal portions. Boron was applied to one portion at the same rates as to rice while remaining half remained as such to study the residual effect of B on wheat. The results showed that grain anti straw yields increased with increasing rates of boron. In case of untreated plots to see the residual effect grain and straw yield increased with increasing rates of boron applied to rice. It was concluded that B applied to rice did show residual effect to the following wheat crop. Therefore, there is no need to apply B to following crop when B is applied to the previous crop. (author)

  6. Uptake of radionuclides and stable elements from paddy soil to rice: a review

    International Nuclear Information System (INIS)

    Uchida, S.; Tagami, K.; Shang, Z.R.; Choi, Y.H.

    2009-01-01

    The critical paths for radionuclides and the critical foods in Asian countries differ from those in Western countries because agricultural products and diets are different. Consequently, safety assessments for Asian countries must consider rice as a critical food. As most rice is produced under flooded conditions, the uptake of radionuclides by rice is affected by soil conditions. In this report, we summarize radionuclide and stable element soil-to-plant transfer factors (TFs) for rice. Field observation results for fallout 137 Cs and stable Cs TFs indicated that while fallout 137 Cs had higher TF than stable Cs over several decades, the GM (geometric mean) values were similar with the GM of TF value for 137 Cs being 3.6 x 10 -3 and that for stable Cs being 2.5 x 10 -3 . Although there are some limitations to the use of TF for stable elements under some circumstances, these values can be used to evaluate long-term transfer of long-lived radionuclides in the environment. The compiled data showed that TF values were higher in brown rice than in white rice because distribution patterns for elements were different in the bran and white parts of rice grains.

  7. Biochar amendment to lead-contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice.

    Science.gov (United States)

    Tan, Xiaofei; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Hu, Xinjiang; Wang, Xin; Hu, Xi; Guo, Yiming; Zeng, Xiaoxia; Sun, Zhichao

    2015-09-01

    The amendment effects of biochar on total microbial activity was measured by fluorescein diacetate (FDA) hydrolytic activity, and phytotoxicity in Pb(II)-contaminated soils was examined by the application of 4 different biochars to soil, with rice as a test plant. The FDA hydrolytic activities of biochar-amended soils were much higher than that of the control. The survival rate of rice in lead-contaminated biochar-amended soils showed significant improvement over the control, especially for bamboo biochar-amended soil (93.3%). In addition, rice grown in lead-contaminated control sediment displayed lower biomass production than that in biochar-amended soil. The immobilization of Pb(II) and the positive effects of biochar amendment on soil microorganisms may account for these effects. The results suggest that biochar may have an excellent ability to mitigate the toxic effects of Pb(II) on soil microorganisms and rice. © 2015 SETAC.

  8. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    Science.gov (United States)

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Uptake of fertilizer nitrogen and soil nitrogen by rice using 15N-labelled nitrogen fertilizer

    International Nuclear Information System (INIS)

    Reddy, K.R.; Patrick, W.H. Jr.

    1980-01-01

    Data from five field experiments using labelled nitrogen fertilizer were used to determine the relative effects of soil nitrogen and fertilizer nitrogen on rice yield. Yield of grain was closely correlated with total aboveground nitrogen uptake (soil + fertilizer), less closely correlated with soil nitrogen uptake and not significantly correlated with fertilizer nitrogen uptake. When yield increase rather than yield was correlated with fertilizer nitrogen uptake, the correlation coefficient was statistically significant. (orig.)

  10. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types

    International Nuclear Information System (INIS)

    Bhujbal, B.M.; Mistry, K.B.; Chapke, V.G.; Mutatkar, V.K.

    1977-01-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers. (author)

  11. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types. [/sup 32/P-labelled fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Bhujbal, B M; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.; Chapke, V G; Mutatkar, V K [Fertilizer Corp. of India Ltd., Bombay

    1977-09-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO/sub 3/ (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers.

  12. Studies on the copper-poisoned soils. Part 2. Actual condition of the copper-poison in the soils and the rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Koshiba, N.; Sano, Y.

    1968-01-01

    Copper contents of soils and rice plants in paddylands were correlated with growth. The results were as follows: available copper content in paddies was 181.8 ppm where the rice plants grew poorly, and was more than 4 times the value of the soil where rice plants grew favorably. The difference growth was obviously caused by available copper. The copper content of the rice plants showing poor growth was the same as those which grew well. Plants were poisoned by available copper of more than 100 ppm. The available copper contents were increased by drying processes of the paddyland soils distributed in the copper-poisoned area. 8 references, 6 tables.

  13. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    Science.gov (United States)

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-01

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones. PMID:25635917

  14. The impact of wood biochar as a soil amendment in aerobic rice systems of the Brazilian Savannah

    NARCIS (Netherlands)

    Carvalho, M.T.M.

    2015-01-01

    Abstract

    Keywords: tropical Savannah, biochar, soil fertility, aerobic rice, grain yield, N2O emission

    Márcia Thaís de Melo Carvalho (2015). The impact of wood biochar as a soil amendment in aerobic rice systems of the Brazilian Savannah. PhD thesis,

  15. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    Directory of Open Access Journals (Sweden)

    Keli Zhao

    2015-01-01

    Full Text Available There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%. The spatial distribution of copper (Cu, nickel (Ni, lead (Pb and zinc (Zn in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  16. Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China.

    Science.gov (United States)

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-28

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  17. Rubidium contents in erythrocyte of children, rice and soil in the areas with different selenium status

    International Nuclear Information System (INIS)

    Liu Nianqing; Zhao Shunying; Qian Qinfang; Zhu Lianzhen; Piao Jianhua

    1997-01-01

    Rubidium concentration of erythrocyte of healthy children aged from 6-11 years living in four areas of Sichuan Province with different selenium status was measured by PIXE and the results show that the Rb concentration in erythrocyte for the Keshan Disease area is two times more than other three areas. Meanwhile the glutathione peroxidase (GSHPx) activity of erythrocyte was determined and the results confirm that children in the Keshan Disease area are really with selenium deficiency. The Rb contents in rice and soil samples from the Keshan Disease area and the Se-deficiency area but with Se-supplementation to the inhabitants, were tested by INNA. It was found that Rb contents in rice and soil from the former area were much higher than those from the latter. This result indicates that Rb in erythrocyte of children is mainly taken from staple food (rice) and that a higher Rb level in soil is probably another environmental factor causing the Keshan Disease

  18. Study on movement, accumulation and distribution of 137Cs in rice and soils

    International Nuclear Information System (INIS)

    Lu Zixian; Xu Shiming

    1992-11-01

    The experiment of growing rice contaminated by 137 Cs solution shows that from the seedling stage to booting stage the absorption rate of 137 Cs is the highest, in the heading stage it is steady and in the milk stage goes to high again. The 137 Cs transfers from root to straw and ear, and from vegetative organs to reproductive organs. The relationship between specific activity (SA) and the amount of 137 Cs in soil is proportional. Only when the amount of 137 Cs in soil reaches to 370 Bq/g the SA of 137 Cs in rice rises remarkably. The different soil growing rice has different absorption rate of 137 Cs. Only in Shenzhen it is much higher than in other areas. The absorption of 137 Cs is also depending on different stage, in the milk stage it is considerably higher than other stages

  19. Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2014-10-01

    Full Text Available The decline in soil fertility in agricultural land is a major problem that causes a decrease in the production of food crops. One of the causes of the decline in soil fertility is declining soil pH that caused the decline in the availability of nutrients in the soil. This study aimed to assess the influence of alternative liming materials derived from maize cob biochar and rice husk charcoal compared to conventional lime to improve soil pH, soil nutrient availability and maize production. The experiment used a factorial complete randomized design which consisting of two factors. The first factor is the type of soil amendment which consists of three levels (calcite lime, rice husk charcoal and cob maize biochar. The second factor is the application rates of the soil amendment consisted of three levels (3, 6 and 9 t/ha and one control treatment (without soil amendment. The results of this study showed that the application of various soil amendment increased soil pH, which the pH increase of the lime application was relatively more stable over time compared to biochar and husk charcoal. The average of the soil pH increased for each soil amendment by 23% (lime, 20% (rice husk charcoal and 23% (biochar as compared with control. The increase in soil pH can increase the availability of soil N, P and K. The greatest influence of soil pH on nutrient availability was shown by the relationship between soil pH and K nutrient availability with R2 = 0.712, while for the N by R2 = 0.462 and for the P by R2 = 0.245. The relationship between the availability of N and maize yield showed a linear equation. While the relationship between the availability of P and K with the maize yield showed a quadratic equation. The highest maize yield was found in the application of biochar and rice husk charcoal with a dose of 6-9 t/ha. The results of this study suggested that biochar and husk charcoal could be used as an alternative liming material in improving acid soil

  20. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities.

    Science.gov (United States)

    Lumini, Erica; Vallino, Marta; Alguacil, Maria M; Romani, Marco; Bianciotto, Valeria

    2011-07-01

    Arbuscular mycorrhizal fungi (AMF) comprise one of the main components of soil microbiota in most agroecosystems. These obligate mutualistic symbionts colonize the roots of most plants, including crop plants. Many papers have indicated that different crop management practices could affect AMF communities and their root colonization. However, there is little knowledge available on the influence of conventional and low-input agriculture on root colonization and AMF molecular diversity in rice fields. Two different agroecosystems (continuous conventional high-input rice monocropping and organic farming with a five-year crop rotation) and two different water management regimes have been considered in this study. Both morphological and molecular analyses were performed. The soil mycorrhizal potential, estimated using clover trap cultures, was high and similar in the two agroecosystems. The diversity of the AMF community in the soil, calculated by means of PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and 18S rDNA sequencing on clover trap cultures roots, was higher for the organic cultivation. The rice roots cultivated in the conventional agrosystem or under permanent flooding showed no AMF colonization, while the rice plants grown under the organic agriculture system showed typical mycorrhization patterns. Considered together, our data suggest that a high-input cropping system and conventional flooding depress AMF colonization in rice roots and that organic managements could help maintain a higher diversity of AMF communities in soil.

  1. A preliminary study on the uptake of radioiodine by rice plants from soil

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Muramatsu, Yasuyuki; Sumiya, Misako; Ohmomo, Yoichiro; Yamaguchi, Shuho.

    1989-01-01

    In an atmospheric discharge of radioiodines, direct deposition of the nuclides onto leaf surface must be the most significant pathway from the environment to man. However, 129 I reaches man through several pathways because of its long half life of 1.6 x 10 7 years. Root uptake of 129 I is one of the most important pathways of this nuclide. In Japan, rice is thought to be the most critical crop on the pathway. In this paper, uptake of radioiodine from irrigation water by rice plant was investigated. Rice plants, Oryza sativa cv. Nihonbare, were grown under flooded condition in Wagner pots containing soil collected in Tokai-mura. Iodine-131 was added as a tracer into the surface water in the pots at three different growing stages, heading, dough-ripe and yellow-ripe stages, respectively, and the plants were cultivated until the harvest time in a plant growth chamber. At the harvest time, concentration of 131 I in each organ of rice plant was measured with a NaI scintillation counter. The profile of 131 I in the soil was also investigated. The results obtained are as follows; (1) Activities of 131 I in leaf blade and sheath of lower part were generally higher than those of upper part. Compared to the 131 I activity of the flag leaf, the ratios of the activity in rachis-branch, hull and brown rice were 1.0-0.5, 0.1 and 1-5 x 10 -3 , respectively. These may suggest that iodine taken up by the roots scarcely re-translocated into rice. (2) Ratio of 131 I in brown rice and hull was about 1 : 4. (3) Activity ratio ('concentration of 131 I in brown rice'/'average concentration of that in the soil' during 6 days uptake experiment.) was 4-5 x 10 -4 . (author)

  2. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    Science.gov (United States)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  3. Sulfur utilization by rice and Crotalaria juncea from sulfate - 34S applied to the soil

    Directory of Open Access Journals (Sweden)

    Trivelin Paulo Cesar Ocheuze

    2002-01-01

    Full Text Available In tropical soils with intensive agriculture an increasing sulfur deficiency has been verified in several crops. The low available S in these soils is caused by the continuous use of concentrated NPK fertilizers. The objective of this work was to evaluate the utilization by rice (Oriza sativa L. and crotalaria juncea (Crotalaria juncea L. of sulfur applied to the soil, under greenhouse conditions. Pots with 3 kg of an Argisol (Paleudalf were used to test the isotopic technique with the stable isotope 34S, adding a solution of sodium sulfate labeled with 34S (14.30 ± 0.05 atom % of 34S to the soil (70 mg SO4-S per kg-1 of soil 18 days after sowing both species. The shoots of the crotalaria and rice were harvested, respectively on the 72nd and 122nd days after S fertilization. The concentration and the amount of sulfur in the crotalaria were higher than in rice, due to the higher legume requirement for this nutrient. The sulfur requirement and the short time interval between fertilization and harvest of the crotalaria resulted in a small amount of native SO4-S mineralized in the soil and a small quantity of 34SO4 immobilized by soil microorganisms. Thus, the percentage of sulfur in the crotalaria derived from the fertilizer (Sdff was higher than in the rice (%Sdff crotalaria = 91.3 ± 3.5%; %Sdff rice = 66.3 ± 0.8%. The expressive values of %Sdff indicate a low rate of mineralization of SO4-S probably as a consequence of the low available sulfur content in the soil.

  4. HEAVY METAL LEVELS IN PADDY SOILS AND RICE (ORYZA ...

    African Journals Online (AJOL)

    Mgina

    subsistence farms in Asia (Chaney et al. 2005). Indeed ..... environment have in most cases been associated ... Rice from other countries also with relatively ... Table 4: Comparison of concentrations of metals (µg g-1) in LVB and the European.

  5. UV-irradiation enhances rice allelopathic potential in rhizosphere soil

    DEFF Research Database (Denmark)

    Mahmood, Khalid; Khan, Muhammad Bismillah; Song, Yuan Yuan

    2013-01-01

    Ultraviolet-B radiation is rising continuously due to stratospheric ozone depletion over temperate latitudes. This study investigated effects of UV exposure on rice allelopathic potentials. For this purpose, two rice (Oryza sativa L.) cultivars BR-41 (high allelopathic = able to inhibit neighboring...... grass and lettuce). These bioassays showed significant inhibition in lettuce and barnyard growth after UV in both rice cultivars. Interestingly, Huajingxian, which did not exhibit allelopathic potential in absence of UV showed significant inhibition after UV exposure. Phenolics, enzymes activities...... and genes responsible for biosynthesis of allelopathic compounds were examined after UV exposure. Phenolic compounds accumulated in rice leaves were quantified through HPLC analysis. They were significantly higher in BR-41 leaves after UV exposure. Enzyme activities (PAL and C4H) were significantly higher...

  6. Soil salinization processes in rice irrigation schemes in the Senegal River Delta

    International Nuclear Information System (INIS)

    Ceuppens, J.; Wopereis, M.C.S.; Miezan, K.M.

    1997-01-01

    Soil salinization constitutes a major threat to irrigated agriculture (mainly rice, Oryza sativa L.) in the Senegal River Delta. It is generally hypothesized that salinization is caused by (i) capillary rise from a saline water table and (ii) concentration of salts in the field due to lack of adequate drainage facilities. The impact of field water management and rice cropping intensity on salinization in the Delta was determined using an electromagnetic conductivity meter (Geonics EM38). More than 4000 measurements were made in 40 rice fields on a typical heavy clay soil (Vertic Xerofluvent). Thirty EM38 measurements per field (0.25 ha) estimated average field soil salinity with a relative error of 20%. A multiple linear regression model based on EM38 readings explained 60 to 75% of the variability in conductivity of 1:5 saturation extracts at 0- to 5-, 10- to 15-, and 30- to 35-cm depths. Higher cropping intensity limited upward salt transport from the water table. Average horizontal and vertical EM38 measurements increased in the following order two rice crops per year with drainage: 0.73 and 0.98 dS m -1 ; one rice crop per year with drainage: 1.26 and 1.76 dS m -1 ; one rice crop per year without drainage: 2.23 and 2.98 dS m -1 ; and abandoned fields: 4.77 and 4.29 dS m -1 . Results indicate a beneficial effect of flooded rice on salinity for this type of heavy clay soil. Irrigation development in the area needs to be accompanied by monitoring of water table depth. (author)

  7. The influence of soil water status on Oryza Sativa Var. MR220 in KADA rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Ismail Che Haron; Mazleha Maskin; Mohd Razi Ismail

    2006-01-01

    A study to determine the influence of soil water status on rice plant Oryza sativa var. MR220 after panicle initiation stage was carried out at Ladang Merdeka Mulong Lating in the Kemubu Agricultural Development Authority (KADA) area, Kelantan. Five water management treatments imposed on direct seeded rice were; T1. Continuous flooding, T2. Early flooding up to panicle initiation stage followed by saturated (F55-saturated), T3. Early flooding for the first month followed by saturated (F-30 saturated), T4. Continuous saturated, and T5. Continuous field capacity condition throughout the growth stage. The treatments were arranged in Randomized Complete Block Design (RCBD) with four replicates. Results showed significant differences in soil moisture content in the order of T1>T2>T3>T4>T5. Significant differences were also observed in rice plant water content at 68 DAS (days after seeding) in the order of T2>T3>T4>T1>T5. Moisture content also showed significant differences between replicates in the order of R1>R2>R3>R4 and R2>R1>R3>R4; in rice plant and ricefield soil, respectively. Results however showed no significant difference in leaf stomatal conductance due to water stress. Rice plant moisture, soil moisture and leaf stomatal conductance showed no interaction. Published results show that even though overall crop yield was reduced by sheath blight and panicle blast incidence that occur at later stage in 2004-2005 field trials, highest grain yields were obtained from T2 (off season) and T4 (main season). Saturated condition seems to be the most suitable method of growing rice under minimal water input in KADA rice agroecosystem. (Author)

  8. Increased P diffusion as an explanation of increased P availability in flooded rice soils

    International Nuclear Information System (INIS)

    Turner, F.T.; Gilliam, J.W.

    1976-01-01

    Phosphorus supply factors (capacity, kinetic, intensity, and diffusivity) and plant growth were the approaches used to assess P supply of flooded rice soils. Increases in the capacity, intensity and kinetic factors, as measured by E-value, solution P concentration, and soil P release rate to a distilled water 'sink' respectively, were unpronounced and infrequent upon water-saturation of ten soils. However, increases in the diffusivity factor, as measured by 32 P diffusion coefficients, were at least ten-fold as soil moisture increased. The greatest increases in P diffusion occurred as soil moisture increased beyond one-third bar. Using a P-fertilized soil or P treated powdered cellulose as the P source and a minus P nutrient solution to nourish a split root system with water and nutrients, data were obtained which suggested that P uptake and rice shoot growth (indicators of P availability) increased with increasing moisture level. Phosphorus uptake and rice-shoot growth were greatest when the soil or P treated cellulose were water-saturated. These data indicate that increased soil P availability upon flooding can be attributed to an increase in the diffusivity factor

  9. Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system

    NARCIS (Netherlands)

    Li, Qi; Yang, Yue; Bao, Xuelian; Zhu, Jianguo; Liang, Wenju; Bezemer, T. Martijn

    2016-01-01

    Abstract Tropospheric ozone has been recognized as one of the most important air pollutants. Many studies have shown that elevated ozone negatively impacts yields of important crops such as wheat or rice, but how ozone influences soil ecosystems of these crops and plant growth in rotation systems is

  10. Silicon fertilization and soil water tensions on rice development and yield

    Directory of Open Access Journals (Sweden)

    Jakeline R. de Oliveira

    2016-02-01

    Full Text Available ABSTRACT The cultivation of upland rice (Oryza sativa in Brazil occurs mainly in the Cerrado, a region with adverse weather conditions. The use of silicon in its cultivation becomes important, since this nutrient provides higher rigidity, lower transpiration and higher resistance to dry spells in rice plants. The objective of the present study was to evaluate the effect of silicon fertilization and soil water tensions on upland rice development and yield in a Cerrado Oxisol. A 5 x 5 fractionated factorial with five soil water tensions (0, 15, 30, 45 and 60 kPa and five silicon doses (0, 120, 240, 480 and 960 mg dm-3 was used, which were distributed in a randomized block design, with four replicates. Plant height, number of tillers, number of panicles, number of grains per panicle, numbers of full and empty grains and percentage of empty grains were evaluated. Silicon fertilization promotes increased tillering in rice plants at the dose of 960 mg dm-3. The numbers of tillers and panicles decreased with the application of silicon up to the doses of 460 and 490 mg dm-3, respectively. The increase in soil water tensions reduced plant height and the number of full grains, and increased the percentage of empty grains of upland rice.

  11. Effects of rice straw, biochar and mineral fertiliser on methane (CH4) and nitrous oxide (N2O) emissions from rice (Oryza sativa L.) grown in a rain-fed lowland rice soil of Cambodia

    DEFF Research Database (Denmark)

    Ly, Proyuth; Duong, Quynh Vu; Jensen, Lars Stoumann

    2015-01-01

    -control, rice straw (RS) and biochar (BC). Compound fertiliser was applied to all treatments. Rice was grown in columns packed with a paddy soil from Cambodia. Results revealed faster mineralisation of organic carbon (RS and BC) when applied in water-saturated conditions lasting for 2 weeks instead of flooding...

  12. Mechanisms of flood tolerance in wheat and rice

    DEFF Research Database (Denmark)

    Herzog, Max

    Most crops are sensitive to excess water, and consequently floods have detrimental effects on crop yields worldwide. In addition, global climate change is expected to regionally increase the number of floods within decades, urging for more flood-tolerant crop cultivars to be released. The aim...... of this thesis was to assess mechanisms conferring rice (Oryza sativa) and wheat (Triticum aestivum) flood tolerance, focusing on the role of leaf gas films during plant submergence. Reviewing the literature showed that wheat germplasm holds genetic variation towards waterlogging (soil flooding), and highlighted...... that the contrasting submergence tolerance could rather be governed by tolerance to radical oxygen species or contrasting metabolic responses (other than carbohydrate consumption) to ethylene accumulation. Manipulating leaf gas film presence affected wheat and rice submergence tolerance such as plant growth...

  13. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhou, Jun; Liu, Hongyan; Du, Buyun; Shang, Lihai; Yang, Junbo; Wang, Yusheng

    2015-04-01

    Recent studies showed that rice is the major pathway for methylmercury (MeHg) exposure to inhabitants in mercury (Hg) mining areas in China. There is, therefore, a concern regarding accumulation of Hg in rice grown in soils with high Hg concentrations. A soil pot experimental study was conducted to investigate the effects of Hg-contaminated soil on the growth of rice and uptake and speciation of Hg in the rice. Our results imply that the growth of rice promotes residual fraction of Hg transforming to organic-bound fraction in soil and increased the potential risks of MeHg production. Bioaccumulation factors deceased for IHg but relatively stabilized for MeHg with soil total mercury (THg) increasing. IHg in soil was the major source of Hg in the root and stalk, but leaf was contributed by Hg from both atmosphere and soil. Soluble and exchangeable Hg fraction can predict the bioavailability of IHg and MeHg in soils, and that can provide quantitative description of the rate of uptake of the bioavailable Hg. Soluble and exchangeable Hg fraction in paddy soil exceeding 0.0087 mg kg(-1) may cause THg concentration in rice grain above the permissible limit standard, and MeHg concentration in paddy soil more than 0.0091 mg kg(-1) may have the health risks to humans.

  14. Concentrations of major and trace elements in polished rice and paddy soils collected in Aomori, Japan

    International Nuclear Information System (INIS)

    Tsukada, H.; Hasegawa, H.; Takeda, A.; Hisamatsu, S.

    2005-01-01

    Rice is a staple food in most Asian countries including Japan, and it is important to evaluate the intake of elements through polished rice ingestion in daily life. Rice grain samples and surface paddy soil samples were collected from 20 sites throughout Aomori Prefecture, Japan. Rice grains were threshed and then polished to 90% of the total weight of brown rice. The polished rice samples for the determination of the neutron activation analysis (NAA) were dried at 50 degree C and those of the inductively coupled plasma-mass spectrometer (ICP-MS) were ashed at a temperature below 450 degree C to avoid loss of alkali metals. The soil samples were dried at 50 degree C and were pulverized with an agate ball mill. The concentrations of As, Cl and I in the polished rice and As, Cl, I, Ti and Zr in the soils were determined by the NAA. The concentrations of 22 elements in the polished rice and 28 elements in the soils were determined by the ICP-MS. The mean concentrations of essential elements in the polished rice such as K, Mg, Cl, Ca, Zn, Mn, Fe, Cu and Mo were 720, 270, 160, 54, 16, 9.7, 2.3, 21 and 0.47 mg kg -1 dry weight, respectively, and the range of each element was within one order of magnitude. However, the ranges of most trace elements in the polished rice including Al, Ni, Ba, Cd, Pb, Cr, I, Ag and Cs were more than one order of magnitude. The mean concentrations of non-essential elements in the polished rice were as follows: Na, 11; Al, 3.9; Rb, 1.2; Ni, 0.11; As, Sr, Ba, Cd, V and Pb, 0.1-0.01; Cr, I, Co, Ag, Se and Cs, O.Ol-0.001 mg kg -1 dry weight. The concentration ranges of elements, except for I, in the paddy soils were within one order of magnitude. The mean concentrations of elements in the soils were as follows: Al, Fe, Ca and Na, 100000-10000; Mg, K and Ti, 10000-1000; Mn, Ba, Cl, Zr, Sr and Zn, 1000-100; V, Ce, Cr, Rb, Cu, Pb, Sc, La, As and Ni, 100-10; Co, Th, Cs, I, U, Mo and Se, 10-1; Sb, Cd and Ag, 1-0.1 mg kg -1 . The mean concentrations of

  15. Instrumental neutron activation analysis to determine inorganic elements in paddy soil and rice and evaluate bioconcentration factors in rice

    Directory of Open Access Journals (Sweden)

    Prapamon Seeprasert

    2017-06-01

    Full Text Available Increased anthropogenic activity, especially in thriving industries and mining activity, has led to the accumulation of inorganic elements in the soil. This study applied neutron activation analysis for the determination of inorganic element concentrations in paddy soils and quantified the nutrient value of paddy rice cultivated on various agricultural sites throughout Thailand. The determination accuracy of the elements—U, As, Sb, W, Mn, K, La, Cr, Hf, Cs, Sc, Fe, Co, Cd and Zn was assessed using National Institute of Standards and Technology standard reference materials; the results were satisfactory, showing low relative error. High analytical precision was also observed. Cadmium was selected to check the linearity of the calibration curve against a Cd standard. For a calibration curve in the range 1–9 μg, a correlation coefficient of 0.997 was found. Trace amounts of U, As, Sb, W, Mn, K, La, Cr, Hf, Cs, Sc, Fe, Co, Zn and Cd were also found in the soil samples. However, the Co, Cd, and Zn concentrations were especially high in agricultural sites in Tak province. The elemental concentrations in rice followed the order K > Zn > Mn. The data obtained are of potential benefit for the development of trace element supplementation in food.

  16. Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima.

    Science.gov (United States)

    Sakai, Masaru; Gomi, Takashi; Nunokawa, Masanori; Wakahara, Taeko; Onda, Yuichi

    2014-04-01

    We investigated the biological accumulation of radiocesium in tadpoles [Rana (Pelophylax) porosa porosa] in rice paddies with and without decontamination practice at Fukushima. Radiocesium was accumulated in surface part of soils both in the control and decontaminated paddies one year after decontamination. Mean (134)Cs and (137)Cs concentrations in tadpoles in the control and decontaminated paddies were 3000 and 4500, and 600 and 890 Bq/kg dry weight, respectively. Radiocesium concentrations in surface soil (0-5 cm depth) and tadpoles in the decontaminated paddy were five times smaller than in the control paddy. These results suggest that decontamination practice can reduce radiocesium concentrations in both soil and tadpoles. However, at the decontaminated paddy, radiocesium concentrations in surface soils became 3.8 times greater one year after decontamination, which indicates that monitoring the subsequent movement of radiocesium in rice paddies and surrounding areas is essential for examining contamination propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Influence of Rice Husk Ash and Clay in Stabilization of Silty Soils Using Cement

    OpenAIRE

    Widjajakusuma Jack; Winata Hendo

    2017-01-01

    Soil stabilization is needed to enhance the strength of the soil. One popular method of soil stabilization is using cement. Due to the environmental issue, it is a need to reduce the application of cement and/or to replace partially the cement with other environmental-friendly compounds. One of these compounds is rice husk ash (RSA), which is agricultural wastes. The objective of this paper is to study the influence of RSA and clay as partial replacement to cement in soil stabilization of sil...

  18. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions.

    Science.gov (United States)

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas

    2017-12-26

    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  19. Effects of compost on soil fertility in irrigated rice growing at Kou ...

    African Journals Online (AJOL)

    Effects of compost on soil fertility in irrigated rice growing at Kou Valley (Burkina Faso) : Amélioration de la fertilité du sol par utilisation du compost en riziculture irriguée dans la Vallée du Kou au Burkina Faso.

  20. Aboveground herbivory by the brown planthopper (Nilaparvata lugens) affects soil nematode communities under different rice varieties

    NARCIS (Netherlands)

    Liu, M.; Huang, J.; Chen, X.; Wang, F.; Ge, C.; Su, Y.; Shao, B.; Tang, Y.; Li, H.

    2009-01-01

    Interactions between aboveground–belowground communities play an important role in regulating terrestrial ecological processes; however, the interactions between rice varieties, herbivory and the soil community are often ignored. A pot experiment with a full 2×2 factorial design was conducted to

  1. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  2. Effect of Cyanobacteria Isolates on Rice Seeds Germination in Saline Soil

    Directory of Open Access Journals (Sweden)

    Mostafa M. El -Sheekh

    2018-03-01

    Full Text Available Cyanobacteria are prokaryotic photosynthetic communities which are used in biofertilization of many plants especially rice plant. Cyanobacteria play a vital role to increase the plant's ability for salinity tolerance. Salinity is a worldwide problem which affects the growth and productivity of crops. In this work three cyanobacteria strains (Nostoc calcicola, Anabaena variabilis, and Nostoc linkia were isolated from saline soil at Kafr El-Sheikh Governorate; North Egypt. The propagated cyanobacteria strains were used to withstand salinity of the soil and increase rice plant growth (Giza 178. The length of roots and shoot seedlings was measured for seven and forty days of cultivation, respectively. The results of this investigation showed that the inoculation with Nostoc calcicola, Anabaena variabilis, and Nostoc linkia increased root length by 27.0, 4.0, 3.0 % and 39, 20, 19 % in EC5 and 10 (ds/m, respectively. Similarly, they increased shoot length by 121, 70, 55 %, 116, 88, 82 % in EC5 and 10 (ds/m, respectively. In EC15and more concentrations, control rice plants could not grow while those to which cyanobacteria were inoculated could withstand only EC15 but not other elevated concentrations. These results encourage using Nostoc calcicola,Anabaena variabilis, and Nostoc linkia as biofertilizer for rice plant in the saline soil for increasing growth and decrease soil electrical conductivity.

  3. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    Science.gov (United States)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  4. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China

    International Nuclear Information System (INIS)

    Sui, Yanghui; Gao, Jiping; Liu, Caihong; Zhang, Wenzhong; Lan, Yu; Li, Shuhang; Meng, Jun; Xu, Zhengjin; Tang, Liang

    2016-01-01

    Impacts of biochar on greenhouse gas emissions and C sequestration in agricultural soils have been considered as the key to mitigate climate change. There is limited knowledge regarding the effects of rice straw-derived biochar and interaction with N fertilization on soil C sequestration and rice productivity in fertile paddy fields. A 2-year (2013 and 2014) consecutive field trial was performed using straw treatment (5.05 t ha −1 ) and biochar amendment (0, 1.78, 14.8 and 29.6 t ha −1 ) with or without urea application in a rice paddy in Northeast China. A super high yielding rice variety (Oryza sativa L. subsp. Japonica cv. ‘Shennong 265’) was cultivated with permanent flooding. Results showed that biochar amendments significantly decreased CH 4 emissions relative to straw treatment irrespective of N fertilization, especially in N-fertilized soils with 1.78 t ha −1 biochar. There were no differences in CO 2 emissions with respect to biochar amendments, except for 14.8 t ha −1 biochar with N fertilization. Straw treatment had the highest global warming potential over a 100-year time frame, which was nearly 1.5 times that of 14.8 t ha −1 biochar amendment without N fertilization. Biochar addition increased total soil C by up to 5.75 mg g −1 and 11.69 mg g −1 (with 14.8 and 29.6 t ha −1 biochar, respectively), whereas straw incorporation increased this value by only 3.92 mg g −1 . The aboveground biomass of rice in biochar-amended soils increased to varying degrees compared with that in straw-treated soils. However, biochar application had no effects on rice yield, regardless of N fertilization. This study indicated that transforming straw to biochar was more stabilized and more suitable to mitigate greenhouse gas emissions and increase C storage in agriculture soils in Northeast China. - Highlights: • Rice straw-derived biochar significantly reduced CH 4 emission. • Rice straw-derived biochar interacted with the effects of N fertilizers on

  5. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Yanghui [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Gao, Jiping [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Liu, Caihong; Zhang, Wenzhong [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Lan, Yu [Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Li, Shuhang [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Meng, Jun [Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Xu, Zhengjin, E-mail: xuzhengjin@126.com [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Tang, Liang, E-mail: tl_rice@126.com [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China)

    2016-02-15

    Impacts of biochar on greenhouse gas emissions and C sequestration in agricultural soils have been considered as the key to mitigate climate change. There is limited knowledge regarding the effects of rice straw-derived biochar and interaction with N fertilization on soil C sequestration and rice productivity in fertile paddy fields. A 2-year (2013 and 2014) consecutive field trial was performed using straw treatment (5.05 t ha{sup −1}) and biochar amendment (0, 1.78, 14.8 and 29.6 t ha{sup −1}) with or without urea application in a rice paddy in Northeast China. A super high yielding rice variety (Oryza sativa L. subsp. Japonica cv. ‘Shennong 265’) was cultivated with permanent flooding. Results showed that biochar amendments significantly decreased CH{sub 4} emissions relative to straw treatment irrespective of N fertilization, especially in N-fertilized soils with 1.78 t ha{sup −1} biochar. There were no differences in CO{sub 2} emissions with respect to biochar amendments, except for 14.8 t ha{sup −1} biochar with N fertilization. Straw treatment had the highest global warming potential over a 100-year time frame, which was nearly 1.5 times that of 14.8 t ha{sup −1} biochar amendment without N fertilization. Biochar addition increased total soil C by up to 5.75 mg g{sup −1} and 11.69 mg g{sup −1} (with 14.8 and 29.6 t ha{sup −1} biochar, respectively), whereas straw incorporation increased this value by only 3.92 mg g{sup −1}. The aboveground biomass of rice in biochar-amended soils increased to varying degrees compared with that in straw-treated soils. However, biochar application had no effects on rice yield, regardless of N fertilization. This study indicated that transforming straw to biochar was more stabilized and more suitable to mitigate greenhouse gas emissions and increase C storage in agriculture soils in Northeast China. - Highlights: • Rice straw-derived biochar significantly reduced CH{sub 4} emission. • Rice straw

  6. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.

    Science.gov (United States)

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-07-01

    A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.

  7. Capability and quality assessment of rice growing hydric soils in majuli river island, assam, India

    Directory of Open Access Journals (Sweden)

    Bhaskara Phaneendra Bhaskar

    2013-06-01

    Full Text Available The  wetland soils in  majuli island is a unique in maintaining rice ecology and geoenvironment in Brahmaputra valley of Assam  due to increasing  rate of  bankline erosion in southern bank  and expansion of channel bars on northern banks. These hydric soils in the subgroups of aquents and aquepts are  saturated throughout year as assessed from depleted matrix with hue 10YR, 2.5Y and 5Y, chroma less than 2, stratified textures, neutral to slightly alkaline reaction, low cation exchange capacity  and poor exchangeable base status. The  assessment of land capability and soil quality  for rice production in   hydric soils  was conducted on twenty four soil mapping units derived from reconnaissance soil survey done on 1:50000 scale.  As per  land capability  assessment, these soils are  good(classII to fairly good(IV for arable use with limitations of low fertility status, moderate to severe wetness and moderate to rapid permeability. The soil quality rating with  multiple variable indicator transform(MVIT technique  of  twenty hydric soil units in active and old floodplains was  medium (35 to 65per cent with six indicators(pH, organic carbon, base saturation, effective rooting depth , structure and texture meeting the thresh hold value  above 65 per cent.  Thirty five  per cent of total area is suitable for rice cultivation as against the current cropped area of 7.2 per cent with potassium and zinc deficiency. The determination of soil quality in relation to land capability was found useful to design best management practices for wetlands in the region that ensure sustainable land use.

  8. Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice.

    Science.gov (United States)

    Villegas, James M; Way, Michael O; Pearson, Rebecca A; Stout, Michael J

    2017-08-13

    Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.

  9. The influence of acid rain on the intake of trace elements into rice plant from soils

    International Nuclear Information System (INIS)

    Tanizaki, Yoshiyuki; Nakamura, Masaru; Maeno, Tomokazu

    1995-01-01

    Rice plant samples were grown in 14 cultivative pots by irrigation using the six conditions of artificial acid rain waters (pH: 6.5, 6.0, 4.5, 3.5, 3.0 and 2.5) and tap water (pH: 7.5). The rice grain yielded were separated into three parts, i.e., polished rice, bran and chaff, and they were reduced to powder one by one. Twenty six element contents in the three parts of grain (each 14 samples) were determined by a neutron activation analysis. The contents of Cr, Fe, Ni, Zn, Cu, Rb, Mo in the polished rice increased with decreasing of pH of the irrigation waters. The contents of Se and Br, on the contrary, decreased with decreasing of pH of the irrigation waters. Significant changes of the contents were not observed for the elements Na, Al, Cl, Sc, Mn, Co, V. The enrichment factor of trace elements to soils were calculated for the polished rice, bran and chaff. The high enrichments of Cl, Mo, Zn, Se, Cu and Ni were observed in the polished rice. The elements K, Rb, Mn, Mg and Cr were highly concentrated in the bran. (author)

  10. Absorption and utilization of fertilizer-N and soil-N with mixed application of straw and urea by rice

    International Nuclear Information System (INIS)

    Zhang Xinwei; Liu Feng; Ye Shuya; Zhu Hongbin; Ye Chengxin

    1996-01-01

    The nitrogen absorption of mixed application of straw and urea by rice was studied by using 15 N isotope tracing technique. The results show that the sole application of straw would result in biological immobilization of available soil N. The insufficient N supply was the limiting factor for rice tiller and spikelets development. Mixed use of straw and urea obviously improved nitrogen supply from both fertilizer and soil, which in turn, promoted the yield of growing rice and increased the soil fertility and productivity of later crop

  11. Contamination of rice (Oryza sativa L) with Cadmium and Arsenic by irrigation with the Bogota River water in rice soils of the Lower Basin

    International Nuclear Information System (INIS)

    Montenegro, Omar; Mejia L

    2001-01-01

    In this study, field and greenhouse experiments were simultaneously carried out with rice (oryza sativa l., variedad oryzica-1) in soils of the Bogota River lower basin (Los Manueles Series, a member of the clayed, mixed, isohipertermic family of the Fluventic Vertic Haplustepts) to evaluate the effect of Cd and As content of the irrigation waters (of the Bogota River and greenhouse) on soils and: 1) rice growth physiological parameters; 2) Cd and As accumulated in different parts of rice plants; 3) yields and other aspects and properties of rice crop. The results lead to the following conclusions: 1) The Cd and As content of the Bogota River water, increased during the driest months and was minimum in those with the highest precipitation; Cd and As concentrations in both seasons surpassed the maximum permissible limits. 2) Rice height was highest when irrigation water does have neither Cd nor As. Effects of both elements showed an inverse lineal tendency. 3) The gradual increase of Cd in irrigation water reduced in 12.5% the number of grains per panicle; the increase of As induced a 10% reduction. 4) The highest concentration of Cd and As in irrigation waters significantly reduced yields; maximum yields l were obtained when Cd and As were absent from irrigation waters. 5) For any concentration of As in irrigation water the highest concentration of Cd was accumulated in rice leafs when concentration of Cd 2 was 2mg/l; above this value Cd accumulation in leafs el decreased with the gradual increase of As concentration. 6) Cd and As accumulated in rice grains increased with the gradual increment of both elements in the irrigation waters; Cd and As accumulated were respectively 50 and 15 times higher than the maximum critical levels proposed for rice grains. 7) Cd and As accumulated progressively on soils with gradual increase of both elements in irrigation waters 8) Cd and As concentration in irrigation waters apparently does not affect the rice mill behavior

  12. Absorption and utilization of fertilizer-N and soil-N by rice at basal-ear stage

    International Nuclear Information System (INIS)

    Zhao Rongguang; Li Shuhua; Sun Weizhong; Xiao Mian

    1997-01-01

    The effect of basal-ear fertilizer application on uptake and utilization of fertilizer and soil N by rice was studied with 15 N tracer technique. The results showed that the basal-ear fertilizer application is an effective approach to increase numbers of effective ears, caryopsis, spikelets, seed setting percentage, seed weight and yield of rice and reduce the cost of rice production under the condition of applying equal doses of nitrogenous fertilizer

  13. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    Science.gov (United States)

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.

  14. utilisation of rice husk ash for improvement of deficient soils

    African Journals Online (AJOL)

    user

    1, 2 DEPARTMENT OF CIVIL ENGINEERING,FEDERAL UNIVERSITY OF TECHNOLOGY,MINNA,NIGER STATE.NIGERIA ... industrial wastes in soil improvement is rapidly increasing ..... barriers, permeability characteristics of the treated soil,.

  15. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.).

    Science.gov (United States)

    Huang, Qingqing; Yu, Yao; Wan, Yanan; Wang, Qi; Luo, Zhang; Qiao, Yuhui; Su, Dechun; Li, Huafen

    2018-06-01

    A four-year field trial was conducted in a rice paddy in southern China to determine the effects of continuous phosphate fertilizer, pig manure, chicken manure, and sewage sludge application on soil Cd accumulation in soil and Cd uptake by rice. The results showed that continuous application of fertilizers with higher Cd levels caused Cd to accumulate and redistribute in various soil fractions. In turn, these effects influenced Cd bioavailability in rice plants. After four years of phosphate fertilizer, pig manure, chicken manure, and sewage sludge application, the annual soil Cd accumulation rates were 0.007-0.032 mg kg -1 , 0.005-0.022 mg kg -1 , 0.002-0.013 mg kg -1 , and 0.032-0.087 mg kg -1 , respectively. Relative to the control, the pig- and chicken manure treatments significantly increased soil pH and reduced DTPA-extractable Cd (DTPA-Cd) and the exchangeable Cd fraction (Exc-Cd). In contrast, sewage sludge application significantly increased DTPA-Cd and Cd in all soil fractions. Phosphate fertilization had no significant effect on soil pH, DTPA-Cd, or Exc-Cd. Pearson's correlation coefficients showed that the rice grain Cd levels varied directly with DTPA-Cd, and Exc-Cd but inversely with soil pH. Pig- or chicken manure decreased rice grain Cd content, but sewage sludge increased both soil Cd availability and rice grain Cd uptake. Application of phosphate fertilizer had no significant effect on rice grain Cd content. The continuous use of organic- or phosphate fertilizer with elevated Cd content at high application rates may induce soil Cd accumulation and influence rice grain Cd accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of Rice Husk Ash on Soil Stabilization

    OpenAIRE

    Muhammad Qasim; Aroj Bashir; Mubashar Tanvir; Malik Muhammad Anees

    2015-01-01

    The soil frequently is fragile and has low stability in heavy loading. The objective of this study is to review the stabilization of soil using sustainable methods. Some strengthening approaches are available for stabilization of expansive soils. These methods consist of stabilization with soil replacement, chemical additives, moisture control, rewetting, surcharge loading, compaction control and thermal methods. The disadvantages may be associated with all these methods due to ineffectivenes...

  18. Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria

    Institute of Scientific and Technical Information of China (English)

    Md Mohibul Alam KHAN; Effi HAQUE; Narayan Chandra PAUL; Md Abdul KHALEQUE; Saleh M. S. AL-GARNI; Mahfuzur RAHMAN; Md Tofazzal ISLAM

    2017-01-01

    Plant associated bacteria are promising alternatives to chemical fertilizers for plant growth and yield improvement in an eco-friendly manner. In this study, rice associated bacteria were isolated and assessed for mineral phosphate solubilization and indole-3-acetic acid (IAA) production activity in vitro. Six promising strains, which were tentatively identified as phylotaxon Pseudochrobactrum sp. (BRRh-1), Burkholderia sp. (BRRh-2), Burkholderia sp. (BRRh-3), Burkholderia sp. (BRRh-4), Pseudomonas aeruginosa (BRRh-5 and BRRh-6) based on their 16S rRNA gene phylogeny, exhibited significant phosphate solubilizing activity in National Botanical Research Institute phosphate growth medium, and BRRh-4 displayed the highest phosphate solubilizing activity, followed by BRRh-5. The pH of the culture broth declined, resulting in increase of growth rate of bacteria at pH 7, which might be due to organic acid secretion by the strains. In presence of L-tryptophan, five isolates synthesized IAA and the maximum IAA was produced by BRRh-2, followed by BRRh-1. Application of two most efficient phosphate solubilizing isolates BRRh-4 and BRRh-5 by root dipping (colonization) of seedling and spraying at the flowering stage significantly enhanced the growth and grain yield of rice variety BRRI dhan-29. Interestingly, application of both strains with 50% of recommended nitrogen, phosphorus and potassium fertilizers produced equivalent or higher grain yield of rice compared to the control grown with full recommended fertilizer doses, which suggests that these strains may have the potential to be used as bioinoculants for sustainable rice production.

  19. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.

    Science.gov (United States)

    Sun, Min; Xiao, Tangfu; Ning, Zengping; Xiao, Enzong; Sun, Weimin

    2015-03-01

    Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

  20. Dissipation of the Herbicide Benzobicyclon Hydrolysate in a Model California Rice Field Soil.

    Science.gov (United States)

    Williams, Katryn L; Gladfelder, Joshua J; Quigley, Lindsay L; Ball, David B; Tjeerdema, Ronald S

    2017-10-25

    The herbicide benzobicyclon (BZB; 3-(2-chloro-4-(methylsulfonyl)benzoyl)-2-phenylthiobicyclo[3.2.1]oct-2-en-4-one) has recently been approved for use on California rice fields by the United States Environmental Protection Agency (U.S. EPA). Hydrolysis of BZB rapidly forms the active compound, benzobicyclon hydrolysate (BH), whose fate is currently not well understood. A model California rice soil was used to determine BH soil dissipation. The pK a and aqueous solubility were also determined, as experimental values are not currently available. Sorption data indicate BH does not bind tightly, or irreversibly, with this soil. Flooding resulted in decreased BH loss, indicating anaerobic microbes are less likely to transform BH compared to aerobic microorganisms. Temperature increased dissipation, while autoclaving decreased BH loss. Overall, dissipation was slow regardless of treatment. Further investigation is needed to elucidate the exact routes of loss in soil, though BH is expected to dissipate slowly in flooded rice field soil.

  1. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Directory of Open Access Journals (Sweden)

    Ronaldir Knoblauch

    2014-02-01

    Full Text Available Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept soil. The treatments were as follows: control (no straw or ash; incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+ and nitrate (NO3-. Soil solution pH and concentration of organic acids (acetic, propionic and butyric were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days

  2. Determination of plant species for the phytoremediation of carbofuran residue in rice field soils

    Directory of Open Access Journals (Sweden)

    Alissara Reungsang

    2005-09-01

    Full Text Available This study searched for plant species suitable for accumulating carbofuran residue in rice field soil. Three groups of plant, i.e. grass crops, upland crops, and vegetable crops, were grown in 8 inches diameter plastic pots filled with soil containing 5 mg/kg carbofuran. Parts of plants (stems and leaves, roots, fruits were harvested at day 120 and analyzed for carbofuran residue using HPLC. The results indicated that Helianthus annuus L. (sunflower was the most suitable species for phytoremediation of carbofuran residue in rice field soil because it highly accumulated carbofuran up to 93.4 μg/kg dry weight in its stems and leaves. In addition, H. annuus L. (sunflower could tolerate carbofuran since it showed similar physical appearance (circumference and height to control not receiving carbofuran.

  3. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil

    International Nuclear Information System (INIS)

    Wang Haiyan; Ye Qingfu; Wang Wei; Wu Licheng; Wu Weixiang

    2006-01-01

    Expression of Cry1Ab protein in Bt transgenic rice (KMD) and its residue in the rhizosphere soil during the whole growth in field, as well as degradation of the protein from KMD straw in five soils under laboratory incubation were studied. The residue of Cry1Ab protein in KMD rhizosphere soil was undetectable (below the limit of 0.5 ng/g air-dried soil). The Cry1Ab protein contents in the shoot and root of KMD were 3.23-8.22 and 0.68-0.89 μg/g (fresh weight), respectively. The half-lives of the Cry1Ab protein in the soils amended with KMD straw (4%, w/w) ranged from 11.5 to 34.3 d. The residence time of the protein varied significantly in a Fluvio-marine yellow loamy soil amended with KMD straw at the rate of 3, 4 and 7%, with half-lives of 9.9, 13.8 and 18 d, respectively. In addition, an extraction method for Cry1Ab protein in soil was developed, with extraction efficiencies of 46.4-82.3%. - Cry1Ab protein was not detected in the rhizosphere soil of field-grown Bt transgenic rice

  4. The influence of rice husk and tobacco waste biochars on soil quality

    Directory of Open Access Journals (Sweden)

    Amir Hamzah

    2017-10-01

    Full Text Available Heavy metal pollution in agricultural land threatens soil and food quality. Soil pollution could be remediate using biochar, but the effectiveness of biochar on soil quality improvement is determined by types of feedstock and pyrolysis temperature. This study was aimed to explore the effect of different types of biochar on soil properties.  Biochar from rice husk and tobacco waste was applied to soil contaminated with lead and mercury. This study was conducted at Sumber Brantas, Malang East Java, and used a completely randomized design with three replicates. Heavy metals content was measured using AAS. The results of measurements were analyzed using analysis of variance at 5% and 1% significance levels. The initial analysis of the soil properties at the research site showed that the soil nutrient status was low, i.e. N (0.2 %, K (0.50 cmol+/kg, and CEC (5.9 me/100g respectively, but soil pH was neutral (6.8. The research site also has crossed the threshold of heavy metal content for Hg (0.5 ppm, Pb (25.22 ppm, Cd (1.96 ppm, and As (0.78 ppm. Biochar added had a positive influence on soil characteristics improvement. It could increase the content of organic C, i.e. 35.12% and 31.81% and CEC (cation exchange capacity, i.e.30.56 me/100g and 28.13 me/100 g for rice husk biochar and tobacco waste biochar, respectively.  However, N, P, and K contents were low i.e. N ( 0.33 and 0.30 %; P2O5 (148.79 and 152 ppm; K (1.58 and 2.11 mg/100g for rice husk biochar and tobacco waste biochar, respectively.

  5. Degradation of 14C - DDT in soils under moist and flooded conditions with rice straw and green manure amendments

    International Nuclear Information System (INIS)

    Dubey, S.; Dubey, P.S.; Kale, S.P.; Murthy, N.B.K.

    2001-01-01

    Degradation of 14 C - DDT in moist and flooded soils was studied with rice straw and green manure amendments for 100 days. The mineralization of DDT was not significantly influenced by any of the treatments. Rice straw and green manure in flooded soil brought about decrease in extractable 14 C - residues with concomitant increase in soil bound residues. DDT has a very short residence in flooded soils though radiocarbon was more in extractable residues. DDD is the major degradation product in flooded soils. (author)

  6. Soil quality and rice productivity problems in Sahelian irrigation schemes

    NARCIS (Netherlands)

    Asten, van P.J.A.

    2003-01-01

    In irrigation schemes in theSahel, rice yields and cropping

  7. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  8. N balance sheet pattern under rainfed rice

    International Nuclear Information System (INIS)

    Mukherjee, P.K.; Mandal, S.R.

    1994-01-01

    A pot experiment was conducted in kharif, 1991 in the net house with rice CV. IR-36 receiving 100 (70+20+10) kg N/ha under different rainfall situations in loamy orthent. The per cent recovery of 15 N ranged from 16.2 to 38.0 in the crop, 12.2 to 21.3 in the soil after crop harvest and 0.8 to 3.3 in the leachate. The per cent loss in the unaccounted form ranged from 39.7 to 70.3. The order of 15 N recovery in the crop is : continuous submergence > late stress > early stress > continuous drought; in the soil is : continuous submergence > late stress > continuous drought > early stress, but in the leachate it is : early stress > mid season stress > continuous submergence > continuous drought. The proportion of fertilizer to soil N in the pool was in the order of leachate > crop > soil and continuous drought > early stress > mid season stress > continuous submergence. (author). 4 refs., 2 tabs

  9. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag.

    Science.gov (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2017-12-01

    Contamination of rice (Oryza sativa) by Cd is of great concern. Steel slag could be used to amend Cd-contaminated soils and make them safe for cereal production. This work was conducted to study the effects of steel slag on Cd uptake and growth of rice plants in acidic and Cd-contaminated paddy soils and to determine the possible mechanisms behind these effects. Pot (rhizobag) experiments were conducted using rice plants grown on two acidic and Cd-contaminated paddy soils with or without steel slag amendment. Steel slag amendment significantly increased grain yield by 36-45% and root catalase activity, and decreased Cd concentrations in brown rice by 66-77% compared with the control, in both soils. Steel slag amendment also markedly decreased extractable soil Cd, Cd concentrations in pore-water and Cd translocation from roots to above-ground parts. It also significantly increased soil pH, extractable Si and Ca in soils and Ca concentrations in roots. Significant positive correlations were found between extractable soil Cd and Cd concentrations in rice tissues, but it was negatively correlated with soil pH and extractable Si. Calcium in root tissues significantly and negatively correlated with Cd translocation factors from roots to straw. Overall, steel slag amendment not only significantly promoted rice growth but decreased Cd accumulation in brown rice. These benefits appear to be related to improvements in soil conditions (e.g. increasing pH, extractable Si and Ca), a reduction in extractable soil Cd, and suppression of Cd translocation from roots to above-ground parts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    Science.gov (United States)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance

  11. Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India

    International Nuclear Information System (INIS)

    Karunakara, N.; Rao, Chetan; Ujwal, P.; Yashodhara, I.; Kumara, Sudeep; Ravi, P.M.

    2013-01-01

    India is the second largest producer of rice (Oryza sativa L.) in the world and rice is an essential component of the diet for a majority of the population in India. However, detailed studies aimed at the evaluation of radionuclide transfer factors (F v ) for the rice grown in India are almost non-existent. This paper presents the soil to rice transfer factors for natural ( 226 Ra, 228 Ra, 40 K, and 210 Pb) and artificial ( 137 Cs) radionuclides for rice grown in natural field conditions on the West Coast of India. A rice field was developed very close to the Kaiga nuclear power plant and the water required for this field was drawn from the cooling water discharge canal of the power plant. For a comparative study of the radionuclide transfer factors, rice samples were also collected from the rice fields of nearby villages. The study showed that the 226 Ra and 228 Ra activity concentrations were below detection levels in different organs of the rice plant. The soil to un-hulled rice grain 40 K transfer factor varied in the range of 6.5 × 10 −1 to 2.9 with a mean of 0.15 × 10 1 , and of 210 Pb varied in the range of −2 to 8.1 × 10 −1 with a mean of 1.4 × 10 −1 , and of 137 Cs varied in the range of 6.6 × 10 −2 to 3.4 × 10 −1 with a mean of 2.1 × 10 −1 . The mean values of un-hulled grain to white rice processing retention factors (F r ) were 0.12 for 40 K, 0.03 for 210 Pb, and 0.14 for 137 Cs. Using these processing retention factors, the soil to white rice transfer factors were estimated and these were found to have mean values of 1.8 × 10 −1 , 4.2 × 10 −3 , and 3.0 × 10 −2 for 40 K, 210 Pb, and 137 Cs, respectively. The study has shown that the transfer of 40 K was higher for above the ground organs than for the root, but 210 Pb and 137 Cs were retained in the root and their transfer to above the ground organs of the rice plant is significantly lower. -- Highlights: ► Soil to rice (Oryza sativa L.) transfer factors for radionuclides

  12. Distribution of 14C in soil and rice plants following application of 14C - parathion to soil

    International Nuclear Information System (INIS)

    Andrea, M.M. de; Ruegg, E.F.

    1983-01-01

    Amount of residues of 14 C-parathion in soil rice plants after application of the insecticide to soil were determined in four systems studied during five weeks: pots of soil with and without plants and open or enclosed by a transparent cover. Measurements of amounts volatilized and 14 CO 2 evolution from the pesticide were made in closed system without plants. The bound residues in soil and plants were also determined. Results indicated that parathion half life in a Gley Humic soil was about two weeks. Very little radiocarbon was taken up by rice plants; of this, more was found in shoots of plants enclosed, probably by collection of the volatilized material by plants. About 6% and 4% of the 14 C-parathion were found as volatilized material and 14 CO 2 , respectively after five weeks. Bound residues varied very little and reached a maximum of 22% in soil and in plants amounted to less than 2% at the final of the experiment. (Author) [pt

  13. Proposal for Reference Soil Concentrations of Radiocesium Applicable to Accidentally Contaminated Rice and Soybean Fields

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Kim, Byung-Ho; Keum, Dong-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radionuclides in arable soil can be transferred to food plants via root uptake. If radionuclide concentrations in food plants to be grown in contaminated soil are estimated to be higher than the authorized food standards, their culture needs to be cancelled or ameliorating practices need to be taken. Therefore, it is necessary to establish soil concentration limits or reference soil concentrations of radiocesium standing with the food standards in preparation for potential severe NPP accidents in this and adjacent countries. In the present study, reference soil concentrations of radiocesium for rice and soybean, two of the most important food plants in Korea, were provisionally established using all relevant domestic data of soil-to-plant transfer factor (TF). The reference soil concentrations of radiocesium for rice and soybean were calculated using available domestic TF data, and were proposed for provisional use at the time of a severe NPP accident. The present RSCs are based on limited numbers of {sup 137}Cs TF values. More amounts of relevant TF data should be produced to have more reliable RSCs. For other staple-food plants such as Chinese cabbage and radish, RSCs of radiocesium should also be established. However, only a couple of relevant domestic TF values are available for these vegetables.

  14. Proposal for Reference Soil Concentrations of Radiocesium Applicable to Accidentally Contaminated Rice and Soybean Fields

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Kim, Byung-Ho; Keum, Dong-Kwon

    2014-01-01

    Radionuclides in arable soil can be transferred to food plants via root uptake. If radionuclide concentrations in food plants to be grown in contaminated soil are estimated to be higher than the authorized food standards, their culture needs to be cancelled or ameliorating practices need to be taken. Therefore, it is necessary to establish soil concentration limits or reference soil concentrations of radiocesium standing with the food standards in preparation for potential severe NPP accidents in this and adjacent countries. In the present study, reference soil concentrations of radiocesium for rice and soybean, two of the most important food plants in Korea, were provisionally established using all relevant domestic data of soil-to-plant transfer factor (TF). The reference soil concentrations of radiocesium for rice and soybean were calculated using available domestic TF data, and were proposed for provisional use at the time of a severe NPP accident. The present RSCs are based on limited numbers of 137 Cs TF values. More amounts of relevant TF data should be produced to have more reliable RSCs. For other staple-food plants such as Chinese cabbage and radish, RSCs of radiocesium should also be established. However, only a couple of relevant domestic TF values are available for these vegetables

  15. Effect of rice husk biochar application to soil insect diversity on potato cultivation

    Science.gov (United States)

    Meilin, A.; Rubiana, R.

    2018-02-01

    High intensity of disease infection and the intensive use of fertilizers and pesticidescause saturated fertilizer and pesticide to the land. Remediation using biochar rice husk is one of the technology to decrease fertilizer and pesticide residue. The diversity of soil insects can be used as bioindicators because of their existence dependsg on soil structure and condition. This study was aimed to study the diversity and structure communities of soil insect in potatoes on difference husk rice biochar application. The sampling of soil insects was done on potato farmer’s land with four treatments i.e control (farmers’ technique), trichokompos without biochar, trichokompos + biochar with dose 1 ton/ha, and trichokompos + biochar with dose 2 ton / ha. At each point a single pitfall trap was installed for two nights and then it was taken for identification. The results showed that biochar application had significant effect on the number of soil insect species (P = 0.037). The soil insect species composition pattern also showed significant differences between the four treatments (R: 0.2306, Pvalue = 0.001). This mean that the application of biochar affects the number of insects species and plays a role in the formation of soil insect diversity beta patterns.

  16. LEACHING AND DEGRADATION OF 2,4-DICHLOROPHENOXIACETIC ACID, IN COLOMBIA RICE FLOODED SOIL.

    Science.gov (United States)

    Huertas, J; Guerrero, J A; Martinez-Cordon, M J

    2015-01-01

    Rice is mostly cultivated on soil held under flooded conditions. Under these conditions pesticides undergo reductive transformations which are characteristic to rice fields and other anaerobic systems. The present study was undertaken to evaluate the mobility and persistence of 2,4-dichlorophenoxy acetic acid (2,4-D) under laboratory conditions for the rice crop in Espinal, Colombia. A displacement study was performed on a hand packed soil column 30 cm length. After leaching experiment, the soil from column was sliced into six successive sections (5 cm). Methanol acidified (H3PO4 0.25%) extraction was used to determine the herbicide residues in each section. 2,4-D experimental breakthrough curve was analyzed using Stanmod program (inverse problem) to obtain transport parameters. The non-equilibrium physical model fitted well the experimental breakthrough curve. The recovery percent of 2,4-D in leachates was 36.44% after 3.4 pore volumes, and retardation factor was 2.1, indicating low adsorption in that conditions. 2,4-D was rapidly degraded, with DT50 = 11.4 days. The results suggest that 2,4-D under flooded conditions have a high potential for leaching through the soil profile, although the elevated rate of degradation reduced the ground water contamination risk.

  17. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    Science.gov (United States)

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  19. Application of Bioameliorant and Biofertilizers to Increase the Soil Health and Rice Productivity

    Directory of Open Access Journals (Sweden)

    Tualar Simarmata

    2016-10-01

    Full Text Available The major rice intensity of diseases in Indonesia was increased significantly and has caused a yield loss of up to 20–30%. The experiments had been conducted to investigate the effect of bioameliorant or composted straw (CS combined with consortia of biofertilizers (CB and biocontrol agent to restore the soil health and promote the induced systemic resistance (ISR for increasing the rice productivity. The experiment arranged as randomized block design consisted of 12 treatments (0, 2.5, 5.0 and 7.5 ton of CS per ha combined with 400 g of CB and 200 g inoculant of CB + 200 g inoculant of Trichoderma sp and was provided with three replications. The experimental results revealed that application of 2.5–7.5 ton per ha of bioameliorant combined with 400 g per ha of CB and 400 g Trichoderma sp has increased the ISR and enhanced the rice productivity significantly. The brown spot, sheath rice blight and bacterial leaf blight diseases were reduced from 16.7% to 3.3–8.0%, 20% to 4–10%, 24% to 2.7–4.7% and 20.7% to 8–14.0%, respectively at 7 weeks after transplanting. In addition, the rice grain yield was increased from about 7.1 ton ha−1 to 7.9–10.1 ton per ha.

  20. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Directory of Open Access Journals (Sweden)

    Liqun Zhu

    Full Text Available Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C contents. However, the effects of tillage method or straw return on soil organic C (SOC have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC, dissolved organic C (DOC and microbial biomass C (MBC contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  1. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils.

    Science.gov (United States)

    Wu, Fuyong; Hu, Junli; Wu, Shengchun; Wong, Ming Hung

    2015-06-01

    A pot trial was conducted to investigate the effects of three arbuscular mycorrhizal (AM) fungi species, including Glomus geosporum BGC HUN02C, G. versiforme BGC GD01B, and G. mosseae BGC GD01A, on grain yield and arsenic (As) uptake of upland rice (Zhonghan 221) in As-spiked soils. Moderate levels of AM colonization (24.1-63.1 %) were recorded in the roots of upland rice, and up to 70 mg kg(-1) As in soils did not seem to inhibit mycorrhizal colonization. Positive mycorrhizal growth effects in grain, husk, straw, and root of the upland rice, especially under high level (70 mg kg(-1)) of As in soils, were apparent. Although the effects varied among species of AM fungi, inoculation of AM fungi apparently enhanced grain yield of upland rice without increasing grain As concentrations in As-spiked soils, indicating that AM fungi could alleviate adverse effects on the upland rice caused by As in soils. The present results also show that mycorrhizal inoculation significantly (p rice production when growing in As-contaminated soils.

  2. Assessment of total soil and plant trace elements in rice-based production systems in NE Italy

    Science.gov (United States)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Vianello, Gilmo; Vittori, Livia; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    Macro- and micronutrients concentrations, and PTEs contents in soils and plants (rice) from the rice district in the Venetian territory (NE Italy) have been determined by ICP-MS spectrometry, with the following aims: - to determine the background levels of macro- and microelements in the study area; - to assess possible contamination of soils and plants; - to calculate the Translocation Factor (TF) of metals from soil to plant, and the possible hazard for human health. Four rice plots with different rotation systems were investigated from seedling time to harvesting; sampling of soils (0-30cm) and plants was carried out 4 times during growing season (three replicates). Rice plants were separated into roots, stems, leaves and grains, and then oven-dried. Chemical and physical analyses were carried out at the Soil Science Lab of the University of Bologna and Venice, respectively. The results obtained point to a land with moderate soil contamination by trace elements (namely Li, Sn, Tl, Sr, Ti, Fe). Heavy metal (Sb, As, Be, Cd, Co, Cr, Ni, Pb, Cu, V, Zn ) concentrations in soils are below the threshold indicated by the Italian legislation (DM 152/2006). Cd, Sn, and Ti contents in soils are positively correlated with soil pH, while As, Fe, Li, Ti, Tl and Zn are negatively correlated with organic matter content. With the exception of Strontium, soil metal contents are always correlated between variable couples. HMs in plants vary according to the sampling season, texture and moisture, and soil pH. Most non-essential trace elements are accumulated in rice roots and, only in cases of essential micronutrients, in leaves. Therefore, rice can be assumed as an accumulator plant of As, Pb, Cr, Ba, and Ti, whereas it is as an indicator plant for Cu, Fe, Ni, Mn and Zn. The results of multiple linear regression analysis showed that soil pH has a larger effect on Ba, Cr, Cu, Fe, Mn, Ni, Ti and Zn concentrations in grain than other soil parameters. The average translocation of

  3. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice.

    Science.gov (United States)

    Bisoi, Sidhanta Sekhar; Mishra, Swati S; Barik, Jijnasa; Panda, Debabrata

    2017-05-04

    The aim of the present study was investigation of the effects of fly ash and mining soil on growth and antioxidant protection of two cultivars of Indian wild rice (Oryza nivara and Oryza rufipogon) for possible phytoremediation and restoration of metal-contaminated site. In this study, Indian wild rice showed significant changes in germination, growth, and biochemical parameters after exposure to different ratio of fly ash and mining soil with garden soil. There was significant reduction of germination, fresh weight, dry weight, leaf chlorophyll content, leaf area, Special Analysis Device Chlorophyll (SPAD) Index, proteins, and activities of antioxidant enzymes in both cultivars of the wild rice grown in 100% fly ash and mining soil compared to the plants grown in 100% garden soil. Results from this study showed that in both cultivars of wild rice, all growth and antioxidant parameters increased when grown in 50% fly ash and mining soil. Taken together, Indian wild rice has the capacity to tolerate 50% of fly ash and mining soil, and can be considered as a good candidate for possible phytoremediation of contaminated soils.

  4. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Reddy, K.R.

    1982-01-01

    15 N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH 4+ -N kg dry soil - 1 day - 1 ). 2) net nitrification (207 mg NO 3- -N kg dry soil - 1 day - 1 ). 3) denitrification (0.37 mg N kg dry soil - 1 day - 1 ), and 4) biological N 2 fixation (0.16 mg N kg dry soil - 1 day - 1 ). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N 2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH 3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal. (orig.)

  5. Effect of urea placement on leaching losses of nitrogen from flooded rice soils

    International Nuclear Information System (INIS)

    Vlek, P.L.G.; Byrnes, B.H.; Craswell, E.T.

    1980-01-01

    In an effort to provide an explanation for the reported variability in fertilizer N efficiency from deep-placed urea on flooded rice, a set of controlled experiments was conducted to evaluate the effect of water percolation on fertilizer loss and plant uptake from 15 N labeled urea supergranules. Three soils of different texture (silt loam-clay) were subjected to various percolation rates (0-20 mm/day) while planted to rice which was harvested after approximately 40 days. The results indicate that moderate to high percolation through silt loam soil will lead to significant fertilizer N losses and drastically decrease the fertilizer uptake by plants. The permeability of the clay soil was too low for any leaching to take place. It is therefore concluded that deep placement of urea supergranules not be recommended in soils where percolation rates may exceed 5 mm/day, particularly if the cation exchange capacity of the soil is low. This experiment points to the need of evaluating and reporting the percolation rates in soils where experiments with supergranular urea are conducted. (orig.)

  6. [Effects of Phosphate Rock and Decomposed Rice Straw Application on Lead Immobilization in a Contaminated Soil].

    Science.gov (United States)

    Tang, Fan; Hu, Hong-qing; Su, Xiao-juan; Fu, Qing-ling; Zhu, Jun

    2015-08-01

    The soils treated with phosphate rock (PR) and oxalic acid activated phosphate rock (APR) mixed with decomposed rice straw were incubated in different moisture conditions for 60 days to study the effect on the basic property of the soil and on the speciation variation of Pb. The results showed that all these three types of immobilizing materials increased the pH, the Olsen-P, the exchangeable Ca and the soil cation exchange capacity, and APR showed more obvious effect; the pH and the exchangeable Ca of soil in the flooding treatment were higher than those in normal water treatment (70%), but the Olsen-P of soil in normal water treatment was a little bit more. These materials reduced exchangeable Ph fraction, and converted it into unavailable fraction. But the APR was better than raw PR in immobilizing lead, and the exchangeable Pb fraction was reduced by 40.3% and 24.2%, compared with the control, respectively, and the immobilization effect was positively correlated with the dosage. Decomposed rice straw could transform the exchangeable Ph fraction in soil into organic-bound fraction, while the flooding treatment changed it into the Fe-Mn oxide-bound and residue fractions.

  7. In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal, India.

    Science.gov (United States)

    Bhattacharya, Piyal; Samal, Alok C; Majumdar, Jayjit; Banerjee, Satabdi; Santra, Subhas C

    2013-11-15

    Rice is an efficient accumulator of arsenic and thus irrigation with arsenic-contaminated groundwater and soil may induce human health hazard via water-soil-plant-human pathway. A greenhouse pot experiment was conducted on three high yielding, one hybrid and four local rice varieties to investigate the uptake, distribution and phytotoxicity of arsenic in rice plant. 5, 10, 20, 30 and 40 mg kg(-1) dry weights arsenic dosing was applied in pot soil and the results were compared with the control samples. All the studied high yielding and hybrid varieties (Ratna, IET 4094, IR 50 and Gangakaveri) were found to be higher accumulator of arsenic as compared to all but one local rice variety, Kerala Sundari. In these five rice varieties accumulation of arsenic in grain exceeded the WHO permissible limit (1.0 mg kg(-1)) at 20 mg kg(-1) arsenic dosing. Irrespective of variety, arsenic accumulation in different parts of rice plant was found to increase with increasing arsenic doses, but not at the same rate. A consistent negative correlation was established between soil arsenic and chlorophyll contents while carbohydrate accumulation depicted consistent positive correlation with increasing arsenic toxicity in rice plant. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.

    Science.gov (United States)

    Chen, Tingting; Xu, Yunji; Wang, Jingchao; Wang, Zhiqin; Yang, Jianchang; Zhang, Jianhua

    2013-05-01

    This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.

  9. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  10. Acid drainage from coal mining: Effect on paddy soil and productivity of rice.

    Science.gov (United States)

    Choudhury, Burhan U; Malang, Akbar; Webster, Richard; Mohapatra, Kamal P; Verma, Bibhash C; Kumar, Manoj; Das, Anup; Islam, Mokidul; Hazarika, Samarendra

    2017-04-01

    Overburden and acid drainage from coal mining is transforming productive agricultural lands to unproductive wasteland in some parts of Northeast India. We have investigated the adverse effects of acid mine drainage on the soil of rice paddy and productivity by comparing them with non-mined land and abandoned paddy fields of Jaintia Hills in Northeast India. Pot experiments with a local rice cultivar (Myngoi) as test crop evaluated biological productivity of the contaminated soil. Contamination from overburden and acid mine drainage acidified the soil by 0.5 pH units, increased the exchangeable Al 3+ content 2-fold and its saturation on clay complexes by 53%. Available sulfur and extractable heavy metals, namely Fe, Mn and Cu increased several-fold in excess of critical limits, while the availability of phosphorus, potassium and zinc contents diminished by 32-62%. The grain yield of rice was 62% less from fields contaminated with acid mine drainage than from fields that have not suffered. Similarly, the amounts of vegetation, i.e. shoots and roots, in pots filled with soil from fields that received acid mine drainage were 59-68% less than from uncontaminated land (average shoot weight: 7.9±2.12gpot -1 ; average root weight: 3.40±1.15gpot -1 ). Paddy fields recovered some of their productivity 4years after mining ceased. Step-wise multiple regression analysis affirmed that shoot weight in the pots and grain yield in field were significantly (p<0.01) and positively influenced by the soil's pH and its contents of K, N and Zn, while concentration of S in excess of threshold limits in contaminated soil significantly (p<0.01) reduced the weight of shoots in the pots and grain yield in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using Upland Rice Root Traits to Identify N Use Efficient Genotypes for Limited Soil Nutrient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Traore, K.; Traore, O. [INERA / Station de Farakoba, Bobo-Dioulasso (Burkina Faso); Bado, V. B. [Africa Rice Center (AfricaRice), Saint Louis (Senegal)

    2013-11-15

    Crop production in the Sahelian countries of Africa is limited by many factors. The most important are low potential yields of local varieties, low inherent soil fertility and low applications of external inputs (organic and mineral fertilizers). A field experiment was conducted from 2007 to 2008 with the objective to develop and validate screening protocols for plant traits that enhance N acquisition and utilization in upland rice grown in low N soils of two hundred (200) upland rice (Oryza sativa L.) genotypes from WAB, NERICA, CNA, CNAX, IRAT and IR lines. An experiment in small pots was carried out in a greenhouse of Farakoba research center. The pots were filled with a sandy soil and upland rice genotypes were grown during three weeks, harvested and studied for their root characteristics (seminal root length, adventitious root number, lateral root length and number and roots hair density). The small pot method was reliable for root trait characterisation at the seedling stage. A large variability among genotypes was exhibited for the root characteristics. The variability was larger within the NERICA and WAB lines compared to the other lines. The length of the seminal roots varied from 10 to 40 cm, the lateral root number ranged between 3 and 15 and the number of adventitious roots varied between 2 and 7. The selected root traits can be used to identify high nutrients and water use efficient genotypes. (author)

  12. Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils.

    Science.gov (United States)

    Li, Yunyun; Zhao, Jiating; Guo, Jingxia; Liu, Mengjiao; Xu, Qinlei; Li, Hong; Li, Yu-Feng; Zheng, Lei; Zhang, Zhiyong; Gao, Yuxi

    2017-09-01

    Sulfur (S) is an essential element for plant growth and its biogeochemical cycling is strongly linked to the species of heavy metals in soil. In this work, the effects of S (sulfate and elemental sulfur) treatment on the accumulation, distribution and chemical forms of Hg in rice growing in Hg contaminated soil were investigated. It was found that S could promote the formation of iron plaque on the root surface and decrease total mercury (T-Hg) and methylmercury (MeHg) accumulation in rice grains, straw, and roots. Hg in the root was dominated in the form of RS-Hg-SR. Sulfate treatment increased the percentage of RS-Hg-SR to T-Hg in the rice root and changed the Hg species in soil. The dominant Hg species (70%) in soil was organic substance bound fractions. Sulfur treatment decreased Hg motility in the rhizosphere soils by promoting the conversion of RS-Hg-SR to HgS. This study is significant since it suggests that low dose sulfur treatment in Hg-containing water irrigated soil can decrease both T-Hg and MeHg accumulation in rice via inactivating Hg in the soil and promoting the formation of iron plaque in rice root, which may reduce health risk for people consuming those crops. Copyright © 2017. Published by Elsevier Ltd.

  13. The migration, accumulation and distribution of 59Fe in rice plants and soils

    International Nuclear Information System (INIS)

    Wang Yumin; Xu Shiming; Xu Guanren

    1990-07-01

    The 59 Fe is one of radionuclides in the waste water discharged from nuclear power plants. The accumulation and distribution of 59 Fe in rice plants at different growing stages and the accumulation and migration in soils of different textures were studied by using solution containing 59 FeCl 3 as a tracer. At the same contaminated activity, the distribution in the soils are discussed. According to the biological consequences caused by 59 Fe entering indirectly into agroecological environment, the possible methods for treatment and utilization of agricultural products are suggested

  14. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China

    Science.gov (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui

    2010-07-01

    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  15. Adsorption, desorption and biodegradation in soil of CrylAb toxin protein from Bt transgenic rice

    International Nuclear Information System (INIS)

    Wang Haiyan; Ye Qingfu

    2004-01-01

    The equilibrium adsorption and binding of CrylAb toxin from Bt transgenic rice, to 7 different soils and the biodegradation of the bound toxin were studied. The adsorption rate of Bt in soils improved with decreasing of the added Bt purified protein concentration. Adsorption rate (125 and 780 nm/ml) in powdery-muddy paddy soil, Fluvio-marine yellow loamy and Coastal saline soil were 24.85% and 40.81%, 9.1% and 31.67%, 12.47% and 30.75%, respectively. Desorption rate in the soils dropped with content of soil-absorbed protein decreased. Its adsorption ratio in powdery-muddy paddy soil was 12.95% and 5.88%, respectively. The relationship between adsorption amount and concentration of Bt purified protein in different soils was notably positive correlation (P 0 e -λt ); Half life of Bt protein in soils was among 15.2-97.6 d; Degradation of pruified Bt protein was rapid at the initial incubation time (30 d), but slow at 150d incubation; The degradation of purified Bt protein in Intertidal sandy soil was the slowest with half-life of 97.6d. The protein in the soil amended with 1.25 μg/g could be still detectable after incubation of 345d; the degradation of purified Bt protein in Coastal saline soil and Aquic light saline sandy soil were faster. Their half-lives were 19.6 d and 15.2 d, respecitvely. The residue time of Bt purified protein in the soils was all more than 150 d. (authors)

  16. Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia.

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2016-06-01

    Full Text Available The aim of the study was to estimate the soil organic carbon (SOC storage in the interface between riparian forests and a matrix of rice fields and pastures with organic management. The study took place in Piedras, Tolima, Colombia. Two plots in production (rice and pasture were selected and SOC was estimated in these areas and in the edge and the interior of adjacent riparian forests at a depth of 0 to 20 cm. Bulk density and SOC concentration were quantified between May and July, 2013. Potential change in SOC storage due to land use change among rice fields, pastures, and riparian forests was estimated. The interfaces rice field-riparian forest and pasture-riparian forest stored an average of 65.6 and 61.3 t C/ha, respectively, with no statistical differences (p>0.05. Statistical differences were not detected (p>0.05 between agricultural matrices (rice fields and pastures in any of the variables. The sampling position (matrix and the edge and interior of forests had a significant impact (p<0.05 just in bulk density: 1.7 vs 1.1 vs 1.0 g/cm3 in interior and edge of the riparian forests and the matrix, respectively. SOC was not statistically affected (p>0.05 by the position in the riparian forest-matrix interface. Conversion from riparian forests to rice fields or pastures with organic management is not emitting greenhouse gases, on the contrary, it is increasing SOC in 3.2 t C/ha. 

  17. Rapid Measurement of Soil Carbon in Rice Paddy Field of Lombok Island Indonesia Using Near Infrared Technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono, S.; Bustan, B.

    2018-02-01

    Measuring soil organic carbon (C) using conventional analysis is tedious procedure, time consuming and expensive. It is needed simple procedure which is cheap and saves time. Near infrared technology offers rapid procedure as it works based on the soil spectral reflectance and without any chemicals. The aim of this research is to test whether this technology able to rapidly measure soil organic C in rice paddy field. Soil samples were collected from rice paddy field of Lombok Island Indonesia, and the coordinates of the samples were recorded. Parts of the samples were analysed using conventional analysis (Walkley and Black) and some other parts were scanned using near infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) Models were developed using data of soil C analysed using conventional analysis and data from soil spectral reflectance. The models were moderately successful to measure soil C in rice paddy field of Lombok Island. This shows that the NIR technology can be further used to monitor the C change in rice paddy soil.

  18. Root-induced Changes in the Rhizosphere of Extreme High Yield Tropical Rice: 2. Soil Solution Chemical Properties

    Directory of Open Access Journals (Sweden)

    Mitsuru Osaki

    2012-09-01

    Full Text Available Our previous studies showed that the extreme high yield tropical rice (Padi Panjang produced 3-8 t ha-1 without fertilizers. We also found that the rice yield did not correlate with some soil properties. We thought that it may be due to ability of root in affecting soil properties in the root zone. Therefore, we studied the extent of rice root in affecting the chemical properties of soil solution surrounding the root zone. A homemade rhizobox (14x10x12 cm was used in this experiment. The rhizobox was vertically segmented 2 cm interval using nylon cloth that could be penetrated neither root nor mycorrhiza, but, soil solution was freely passing the cloth. Three soils of different origins (Kuin, Bunipah and Guntung Papuyu were used. The segment in the center was sown with 20 seeds of either Padi Panjang or IR64 rice varieties. After emerging, 10 seedlings were maintained for 5 weeks. At 4 weeks after sowing, some chemical properties of the soil solution were determined. These were ammonium (NH4+, nitrate (NO3-, phosphorus (P and iron (Fe2+ concentrations and pH, electric conductivity (EC and oxidation reduction potential (ORP. In general, the plant root changed solution chemical properties both in- and outside the soil rhizosphere. The patterns of changes were affected by the properties of soil origins. The release of exudates and change in ORP may have been responsible for the changes soil solution chemical properties.

  19. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil.

    Science.gov (United States)

    Ye, Xinxin; Li, Hongying; Zhang, Ligan; Chai, Rushan; Tu, Renfeng; Gao, Hongjian

    2018-01-01

    Combinations of remediation technologies are needed to solve the problem of soil contamination in paddy rice, due to multiple potential toxic elements (PTEs). Two potential mitigation methods, water management and in-situ remediation by soil amendment, have been widely used in treatment of PTE-polluted paddy soil. However, the interactive relationship between soil amendment and water management, and its influence on the accumulation of PTEs in rice are poorly understood. Greenhouse pot experiments were conducted to examine the effects of phosphate amendment on Cd and Pb availability in soil and their influence on Cd and Pb uptake into rice, on Fe and P availability in soil, and on the alteration of Fe amount and compartment on root surface among different water management strategies. Results indicated that Cd and Pb content in the shoot and grain were significantly affected by the different water management strategies in nonamended soils, and followed the order: wetting irrigation > conventional irrigation > continuous flooding. The application of phosphate amendment significantly decreased the variations of Cd and Pb absorption in shoot and grain of rice among different water treatments. The reasons may be attributed to the enhancement of P availability and the decrease of Fe availability in soil, and the decreased variations of Fe 2+ /Fe 3+ content in root coating after the application of phosphate amendment. These results suggested that the simultaneous use of phosphate amendment and continuous flooding to immobilize Cd and Pb, especially in acid paddy soils, should be avoided. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides. (2) Rice collected in Japan

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Tagami, Keiko; Hirai, Ikuko

    2007-01-01

    The critical paths of radionuclides and the critical foods in Japan are different from those in European and North American countries because agricultural products and food customs are different. Consequently, safety assessment in Japan is required to consider rice and vegetables as the critical foods. In this study, we measured soil-to-plant transfer factors (TFs) for rice using naturally existing elements as analogues of radionuclides under equilibrium conditions. Rice and associated soil samples were collected from 50 sampling sites throughout Japan and TFs of 36 and 34 elements for brown rice and white rice, respectively, were calculated on dry weight basis. Probability distributions of TFs of elements for brown rice and white rice were a log normal type. Except for As and Mo, the TFs for brown rice were usually lower than those for wheat and barley especially for K, Fe, Sr (t-test: p 90 Sr and 137 Cs observed in field experiments. Thus, the TFs of naturally existing elements can be used as TFs of those radionuclides which have been in contact with the environment for a long time and have reached equilibrium conditions. (author)

  1. Comparative evaluation of phosphorus fertilizer on lowland rice soils by the 'A' value technique

    International Nuclear Information System (INIS)

    Nagarajah, S.; Amarasiri, S.L.; Jauffer, M.M.M.; Wickremasinghe, K.

    1979-01-01

    The direct and residual effects of several phosphorus fertilizers were studied in some rice soils of Sri Lanka in the greenhouse and in the field using the 'A' value method. In the greenhouse experiment rock phosphates did not show a direct effect on any of the soils. Rhenania phosphate was superior to other phosphates in its direct effect in some of the soils. The rock phosphates hardly showed a residual effect while Rhenania phosphate showed a residual effect in three of the soils. In the field experiment there were no differences in 'A' value between the forms of phosphate in their direct effects. Only the higher level of concentrated superphosphate showed a residual effect. 'A' value data also presented some problems in their interpretation and use. Some of the 'A' values were negative, there were conflicts between 'A' value data and previously known field data, and the 'A' value method was sometimes unable to differentiate between phosphates of wide differences in availability. (author)

  2. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients

    International Nuclear Information System (INIS)

    Endo, Satoru; Kajimoto, Tsuyoshi; Shizuma, Kiyoshi

    2013-01-01

    The transfer coefficient (TF) from soil to rice plants of 134 Cs and 137 Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City. Rice crops were planted in the following May and harvested at the end of September. Soil cores of 30-cm depth were sampled from rice-planted paddy fields to measure 134 Cs and 137 Cs radioactivity at 5-cm intervals. 134 Cs and 137 Cs radioactivity was also measured in rice ears (rice with chaff), straws and roots. The rice ears were subdivided into chaff, brown rice, polished rice and rice bran, and the 134 Cs and 137 Cs radioactivity concentration of each plant part was measured to calculate the respective TF from the soil. The TF of roots was highest at 0.48 ± 0.10 in the field where the 40 K concentration in the soil core was relatively low, in comparison with TF values of 0.31 and 0.38 in other fields. Similar trends could be found for the TF of whole rice plants, excluding roots. The TF of rice ears was relatively low at 0.019–0.026. The TF of chaff, rice bran, brown rice and polished rice was estimated to be 0.049, 0.10–0.16, 0.013–0.017 and 0.005–0.013, respectively. - Highlights: ► We investigated the transfer coefficient of 134 Cs and 137 Cs from soil to rice plants in Minami-Soma City due to the Fukushima accident in 2011. ► The rice ears, straws, roots, chaff, brown rice, polished rice, rice bran and soil samples have been measured by Ge-detector. ► Transfer coefficient of chaff, rice bran, brown rice, and polished rice is estimated as 0.049, ranging from 0.10 to 0.16, 0.013 to 0.017, and 0.005 to 0.013, respectively.

  3. Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage.

    Science.gov (United States)

    Huang, Xuexia; Li, Ning; Wu, Qihang; Long, Jianyou; Luo, Dinggui; Zhang, Ping; Yao, Yan; Huang, Xiaowu; Li, Dongmei; Lu, Yayin; Liang, Jianfeng

    2016-12-01

    The objective of this paper is to assess the influence of irritating paddy fields with acid mine drainage containing thallium (Tl) to rice plant-soil system and potential health risks for local residents. Vertical distribution of Tl, pH, organic matter (OM), and cation exchange capacity (CEC) in 24 paddy soil profiles around Yunfu pyrite mine area was investigated. Rice plant samples were collected from the corresponding soil sampling site. The results showed that Tl concentrations in paddy soils at 0-60 cm depth range from 3.07 to 9.42 mg kg -1 , with a mean of 5.74 mg kg -1 , which were significantly higher than the background value of soil in China (0.58 mg kg -1 ). On the whole, Tl contents in paddy soil profiles increased quickly with soil depth from 0 to 30 cm and decreased slowly with soil depth from 30 to 60 cm. The soil Tl content was significant negatively correlated with soil pH. The mean content of Tl in the root, stem, leaf, and rice was 4.36, 1.83, 2.74, and 1.42 mg kg -1 , respectively, which exceeded the proposed permissible limits for foods and feedstuffs in Germany. The Tl content in various tissues of the rice plants followed the order root > leaf > stem (rice), which suggested that most Tl taken up by rice plants retained in the root, and a little migrated to the leaf, stem, and rice. Correlation analysis showed that Tl content in root was significant positively correlated with Tl content in leaf and rice. The ranges of hazard quotient (HQ) values were 4.08∼24.50 and 3.84∼22.38 for males and females, respectively. Males have higher health risk than females in the same age group. In childhood age groups (2 to <21 years) and adult age groups (21 to <70 years), the highest health risk level was observed in the 11 to 16 age group and 21 to 50 age group, respectively. The findings indicated that regular irrigation with Tl-bearing acid mine drainage led to considerable contamination of Tl in paddy soil and rice plant. Local government

  4. SOIL N, P AND K CONCENTRATIONS AND RICE YIELD INCREASED DUE TO THE APPLICATION OF Azolla pinnata

    Directory of Open Access Journals (Sweden)

    A. Arivin Rivaie*

    2014-01-01

    Full Text Available Many studies showed that application of Azolla pinnata as biofertilizer improved soil fertility some agricultural crops, including rice, whereas farmers in Lampung consider that A. pinnata suppresses growth of rice seedlings, so they throw it field by raising irrigation water surface. Information on effects A. pinnata application on changes in nutrient availability and rice yield obtained from paddy fields of regions still rare. A study was carried out to investigate effects of different rates of A. pinnata on changes in N, P, K concentrations in paddy soils, N uptake, and rice yield. A well-irrigated paddy field was incorporated with A. pinnata, and then rice seedlings of Ciherang variety had been grown from June up to December 2009. Results: application of A. pinnata at dose of five t per ha increased concentration of N, P and K as well as rice yield. A. pinnata had a relatively high N content, ie 2.43 percent. Application of A. pinnata of 7.5 t per ha increased significantly available soil P, indicated that A. pinnata requires a fairly high P to grow optimally. Application of A. pinnata of 7.5 t per ha gave highest dry grain yield, suggests that application A. pinnata did not suppress rice yield, even use of A. pinnata as organic matter source will help to conserve fossil fuels and foreign exchange as well as will allow more paddy fields that can be fertilized by N.

  5. Determination of zinc nutrient in the soil using isotope technique

    International Nuclear Information System (INIS)

    Suwadji, E.

    1975-01-01

    In this experiment the availability of soil Zn nutrient in various soil conditions (dry and submerged), and the efficiency of the application of Zn fertilizer in rice nutrition were measured in glasshouse using isotope dilution technique. The amount of soil Zn nutrient available to plants can be expressed in 'E' and 'L' values. Submerged conditions generally showed an increase in the 'E' and 'L' value compared to dry conditions. Mixed treatment with ZnSO 4 fertilizer is more efficient for Zn absorption than surface treatment. (author)

  6. COMPARATIVE ASSESSMENT OF RICE HUSK ASH, POWDERED GLASS AND CEMENT AS LATERITIC SOIL STABILIZERS

    Directory of Open Access Journals (Sweden)

    Adebisi Ridwan

    2016-10-01

    Full Text Available This paper compares the stabilizing effects of three different materials, namely: rice husk ash, powdered glass, and cement on the properties of lateritic soil. The basic properties of the lateritic soil were first obtained through colour, moisture content determination, specific gravity, particle size distribution and Atterberg limits tests. Each of the stabilizing materials was then mixed with the lateritic soil in varying percentages of 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight of the soil. Thereafter, compaction and California bearing ratio (CBR tests were carried out on the sample mixes to determine the effects of the materials on the lateritic soil. Chemical tests were also carried out on the samples to determine their percentage oxides composition. The compaction test showed that the highest maximum dry densities (MDD obtained for the mixed samples were 2.32 g/cm3 (at 2.5% cement addition, 2.28g/cm3 (at 5% powdered glass (PG addition and 2.18 g/cm3 (at 5% rice husk ash (RHA addition with corresponding optimum moisture contents (OMC of 10.06%, 14.3% and 12.31% respectively. The CBR tests showed that the CBR values increased in all cases as the materials were added with those of the cement and powdered glass giving the highest values and showing close semblance under unsoaked conditions. The chemical test showed that the significant oxides present in the cement, powdered glass and rice husk ash were CaO (53.60%, SiO2 (68.45% and SiO2 (89.84% respectively.

  7. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    Science.gov (United States)

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  8. Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants

    Science.gov (United States)

    Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong

    Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.

  9. Soil CO2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils.

    Science.gov (United States)

    Affholder, Marie-Cecile; Weiss, Dominik J; Wissuwa, Matthias; Johnson-Beebout, Sarah E; Kirk, Guy J D

    2017-12-01

    We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter-intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn-deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO 2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali-soluble, Zn-complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO 2 through root aerenchyma were responsible for the genotype and planting density effects. © 2017 John Wiley & Sons Ltd.

  10. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    Directory of Open Access Journals (Sweden)

    Ning An

    Full Text Available Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG emissions (N2O, CH4 and CO2-equivalent with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield. Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice

  11. Comparison of partial and complete soil K budgets under intensive rice cropping in the Mekong Delta, Vietnam

    NARCIS (Netherlands)

    Hoa, N.M.; Janssen, B.H.; Oenema, O.; Dobermann, A.

    2006-01-01

    Crop response to added fertilizer K was often found to be small in trials conducted on favorable soils of tropical rice ecosystems. Hence, applications of only fertilizer N and P were recommended. This has resulted in soil K mining in intensive cropping systems in China, India and other Asian

  12. Soil salinity and acidity : spatial variabil[it]y and effects on rice production in West Africa's mangrove zone

    NARCIS (Netherlands)

    Sylla, M.

    1994-01-01

    In the mangrove environment of West Africa, high spatial and temporal variability of soil constraints (salinity and acidity) to rice production is a problem for the transfer and adoption of new agronomic techniques, for land use planning, and for soil and water management. Recently, several

  13. Biochar improves fertility of a clay soil in the Brazilian Savannah: short term effects and impact on rice yield

    NARCIS (Netherlands)

    Melo Carvalho, de M.T.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Heinemann, A.B.; Silva, da M.A.S.; Maia, A.H.N.; Meinke, H.B.

    2013-01-01

    The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH,

  14. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].

    Science.gov (United States)

    Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han

    2015-02-01

    Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.

  15. Influence of phosphate and copper on reductive dechlorination of thiobencarb in California rice field soils.

    Science.gov (United States)

    Gunasekara, Amrith S; Tenbrook, Patti L; Palumbo, Amanda J; Johnson, Catherine S; Tjeerdema, Ronald S

    2005-12-28

    The potential for reductive dechlorination of the herbicide thiobencarb (TB) by microbes and its prevention in saturated anaerobic rice field soils was examined in laboratory microcosms. TB is effective in controlling both annual grasses and broadleaf weeds. In anoxic microcosms, TB was effectively degraded within 30 days to its dechlorinated product, deschlorothiobencarb (DTB), in two Sacramento Valley rice field soils. TB dechlorination, and subsequent degradation, followed pseudo-zero- (lag phase) and first-order (degradation phase) kinetics. Logistic regression analysis (r2 > 0.841) produced a half-life (t(1/2)) in nonsterile soils ranging from 10 to 15 days, which was also observed when microcosms were amended with low concentrations (copper (Cu2+; as the fungicides Cu(OH)2 and CuSO4.5H2O). High Cu2+ concentrations (>40 mg L(-1)) were added to the microcosms to determine if copper toxicity to dechlorinating microbes is concentration dependent within the range used. After 30 days, the low-copper-amended soils closely resembled the nonsterile experiments to which no Cu2+ was added while the high-copper-amended microcosms were similar to the sterile experiment. Microcosms were also separately amended with 5.7 g L(-1) phosphate (PO4(2-); as KH2PO4), a nutrient regularly applied to rice fields. Phosphate-amended experiments also showed TB degradation, but no DTB formation, indicating the phosphate played a role, possibly as a microbial inhibitor or an alternative electron acceptor, in limiting the dechlorination of TB. In summary, TB dechlorination was inhibited at high Cu(OH)2, CuSO4.5H2O, and KH2PO4 concentrations.

  16. Increasing Efficiency of Soil Fertility Map for Rice Cultivation Using Fuzzy Logic, AHP and GIS

    Directory of Open Access Journals (Sweden)

    javad seyedmohammadi

    2017-02-01

    fertility groups for better management of soil and plant nutrition. Weight of soil parameters was0.54, 0.29 and 0.17 for organic carbon, available phosphor and potassium, respectively. Fuzzy map of study area includes five soil fertility groups as: 22.9% very high fertility, 27.7% high fertility, 35.53% medium fertility, 10.48% low fertility and 3.39% very low fertility. Consequently, a separated map for soil fertility prepared to evaluate soil fertility of study area for rice cultivation. Toinvestigatethe efficiency of fuzzy model and AHP in increasing the accuracy of soil fertility map, soil fertility map with Boolean method prepared as well. Boolean map showed 58.88% fertile and 41.12% unfertile.15 soil samples from different soil fertility groups of study area were derived fromcontrol of maps accuracy. 13 renewed samples of 15 and 9 soil samples have matched with fuzzy and Boolean map, respectively. Comparison of parameters mean in fuzzy map fertility groups showed that parameters mean amounts of very high and high fertility groups are higher than optimum level except potassium that is a few lower than optimum level in high fertility group, therefore, addition of fertilizers in these groups could not be useful to increase rice crop production. Phosphorus parameter amount is lower than the critical level in very low, low and medium fertility groups, then in these groups phosphorus fertilizer should be added to the soil toincreaserice production. The amount of potassium parameter is higher than the critical level and lower than optimum limit in very low, low, medium and high fertility groups, then in these groups addition of potassium fertilizer will results in theincrease of production. Organic carbon amount is lower than optimum level in very low and low fertility groups. With regard to the relation between organic carbon andnitrogen and phosphorus, therefore, the addition of organic carbon fertilizer could compensate deficit of nitrogen and phosphorus in these groups

  17. [Response of soil hydrolase and oxidoreductase activities to free-air carbon dioxide enrichment (FACE) under rice-wheat rotation].

    Science.gov (United States)

    Zhang, Yulan; Zhang, Lili; Chen, Lijun; Wu, Zhijie

    2004-06-01

    This paper studied the response of soil urease, phosphatase, arylsulphatase and dehydrogenase to 200 micromol x mol(-1) CO2 elevation under rice-wheat rotation. The results showed that under CO2 elevation, the urease activity in 0-10 cm soil layer was decreased at the early growth stages of wheat but increased at its booting stage; the activity increased at the early growth stages of rice but decreased at its ripening stage. Phosphatase activity was increased during the whole growth period of wheat; the activity increased at the tillering stage of rice but decreased at its later growth stages. Arylsulphatase activity was decreased at the over-wintering and booting stages of wheat but increased at its tillering and ripening stages. Dehydrogenase activity was decreased at the early growth stages of wheat and rice, but increased at their late growth stages.

  18. Soil-to-Rice Transfer of {sup 99}Tc in Paddy Soils Contaminated in Two Different Ways

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yongho; Lim, Kwangmuk; Jun, In; Kim, Byungho; Keum, Dongkwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Rice is one of the most important food crops in the world. All isotopes of technetium (Tc) are radioactive, and the environmentally most important one is {sup 99}Tc because of its very long half-life (2.1x10{sup 5} years) and relatively high {sup 235}U-fission yield. Accordingly, it is one of the critical radionuclides in an environmental impact assessment for radioactive waste disposal. A significant amount of {sup 99}Tc can be released into the atmosphere in a severe reactor accident as was shown in the Chernobyl accident. It is a pure better emitter and thus internal exposure via food consumption may be a primary contributor to the {sup 99}Tc radiation dose to humans. Paddy rice fields can be contaminated with {sup 99}Tc in various ways. In the present study, greenhouse experiments were conducted to investigate the transfer of {sup 99}Tc from four paddy soils contaminated in two different ways. One was to simulate plowing the topsoil after a pre-transplanting deposition of {sup 99}Tc, whereas the other was to simulate a {sup 99}Tc deposition onto the surface water shortly after transplanting. Soil-to-rice transfer of {sup 99}Tc in paddy soils was experimentally investigated for two different scenarios of the paddy-field contamination. It was demonstrated that a post-transplanting deposition of {sup 99}Tc onto the surface water can lead to a much higher transfer than a pre-transplanting deposition followed by plowing. The surface-water concentrations of {sup 99}Tc following the post-transplanting deposition was markedly higher than those following the pre-transplanting deposition, possibly indicating a much higher plant-base uptake of {sup 99}Tc following the post-transplanting deposition. The present results can be referred to in a radiological impact assessment for the contamination of paddy fields with {sup 99}Tc by chronic or acute releases from nuclear facilities.

  19. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system.

    Science.gov (United States)

    Yin, Daixia; Wang, Xin; Peng, Bo; Tan, Changyin; Ma, Lena Q

    2017-11-01

    In this study, the effects of biochar derived from rice-straw (biochar) and iron-impregnated biochar (Fe-biochar) on Cd and As mobility in rice rhizosphere and transfer from soil to rice were investigated with different application rates. 1-3% biochar reduced porewater Cd in rhizosphere but elevated soluble As, resulting in 49-68% and 26-49% reduction in the root and grain Cd, with a simultaneous increase in root As. Unlike biochar, 0.5% Fe-biochar decreased porewater As throughout rice growth, resulting in reduced root As, which, however, increased Cd uptake by root. Biochar-induced soil As mobilization was probably through competitive desorption and Fe-biochar-induced soil Cd mobilization was probably via soil acidification. The results suggested that biochar and Fe-biochar was effective in reducing Cd and As uptake by rice, respectively, so they may be used as emergency measures to cope with single Cd or As contamination in paddy soils. Copyright © 2017. Published by Elsevier Ltd.

  20. Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil.

    Science.gov (United States)

    Abeysinghe, Kasun S; Yang, Xiao-Dong; Goodale, Eben; Anderson, Christopher W N; Bishop, Kevin; Cao, Axiang; Feng, Xinbin; Liu, Shengjie; Mammides, Christos; Meng, Bo; Quan, Rui-Chang; Sun, Jing; Qiu, Guangle

    2017-05-01

    Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife. Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining. Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of THg that was MeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines. In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202-1210. © 2016 SETAC. © 2016 SETAC.

  1. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.

    Science.gov (United States)

    Li, Wanlu; Xu, Binbin; Song, Qiujin; Liu, Xingmei; Xu, Jianming; Brookes, Philip C

    2014-02-15

    Chinese agricultural soils and crops are suffering from increasing damage from heavy metals, which are introduced from various pollution sources including agriculture, traffic, mining and especially the flourishing private metal recycling industry. In this study, 219 pairs of rice grain and corresponding soil samples were collected from Wenling in Zhejiang Province to identify the spatial relationship and pollution hotspots of Cd, Cu, Ni and Zn in the soil-rice system. The mean soil concentrations of heavy metals were 0.316 mg kg(-1) for Cd, 47.3 mg kg(-1) for Cu, 31.7 mg kg(-1) for Ni and 131 mg kg(-1) for Zn, and the metal concentrations in rice grain were 0.132 mg kg(-1) for Cd, 2.46 mg kg(-1) for Cu, 0.223 mg kg(-1) for Ni and 17.4 mg kg(-1) for Zn. The coefficient of variability (CV) of soil Cd, Cu and rice Cd were 147%, 146% and 180%, respectively, indicating an extensive variability. While the CVs of other metals ranged from 23.4% to 84.3% with a moderate variability. Kriging interpolation procedure and the Local Moran's I index detected the locations of pollution hotspots of these four metals. Cd and Cu had a very similar spatial pattern, with contamination hotspots located simultaneously in the northwestern part of the study area, and there were obvious hotspots for soil Zn in the north area, while in the northeast for soil Ni. The existence of hotspots may be due to industrialization and other anthropogenic activities. An Enrichment Index (EI) was employed to measure the uptake of heavy metals by rice. The results indicated that the accumulation and availability of heavy metals in the soil-rice system may be influenced by both soil heavy metal concentrations and soil physico-chemical properties. Cross-correlograms quantitatively illustrated that EIs were significantly correlated with soil properties. Soil pH and organic matter were the most important factors controlling the uptake of heavy metals by rice. As results, positive measures should be taken into

  2. Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties

    Science.gov (United States)

    Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq

    2018-02-01

    This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.

  3. Direct and indirect exogenous contamination by pesticides of rice-farming soils in a Mediterranean wetland.

    Science.gov (United States)

    Gamón, M; Sáez, E; Gil, J; Boluda, R

    2003-02-01

    It is known that the sources of soil contamination can be endogenous or exogenous and that exogenous contamination may be direct or indirect. In this work, an environmental pesticide fate study was conducted in soil profiles collected from 23 rice field sites in an important Mediterranean wetland (Albufera Natural Park, Valencia, Spain) from April 1996 to November 1997. Temporal and spatial distribution of 44 pesticide residues in an alluvial Mediterranean soil (gleyic-calcaric Fluvisol, Fluvaquent) were monitored. During this period, the levels of pesticide residues in different soil horizons (Ap1 0-12 cm, Ap2 12-30 cm, ApCg 30-50 cm, C1gr 50-76 cm, and C2r 76-100 cm) were investigated. In addition, information was collected on agricultural pesticide application practices and soil characteristics. Distribution throughout the soil profile showed that pesticide concentrations were always higher in the topsoil (Ap1 horizon), in the autumn season, and in the border with citrus-vegetable orchard soils (calcaric Fluvisol, Xerofluvent). Chlorpyrifos (organophosphorus), endosulfan (organochlorine), and pyridaphenthion (organophosphorus) insecticides were, respectively, the most detected of all the pesticides investigated. These results were associated with processes, such as nonleaching, transport by movement into surface waters, retention, volatilization, and chemical and biological degradation in the topsoil, as well as with direct and indirect exogenous contamination sources.

  4. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash.

    Science.gov (United States)

    Yin, Chun-Yang; Mahmud, Hilmi Bin; Shaaban, Md Ghazaly

    2006-10-11

    This paper presents the findings of a study on solidification/stabilization (S/S) of lead-contaminated soil using ordinary Portland cement (OPC) and rice husk ash (RHA). The effects of varying lead concentrations (in the form of nitrates) in soil samples on the physical properties of their stabilized forms, namely unconfined compressive strength (UCS), setting times of early mixtures and changes in crystalline phases as well as chemical properties such as leachability of lead, pH and alkalinity of leachates are studied. Results have indicated that usage of OPC with RHA as an overall binder system for S/S of lead-contaminated soils is more favorable in reducing the leachability of lead from the treated samples than a binder system with standalone OPC. On the other hand, partial replacement of OPC with RHA in the binder system has reduced the UCS of solidified samples.

  5. Impact of rice-straw biochars amended soil on the biological Si cycle in soil-plant ecosystem

    Science.gov (United States)

    Li, Zimin; Delvaux, Bruno; Struyf, Eric; Unzué-Belmonte, Dácil; Ronsse, Frederik; Cornelis, Jean-Thomas

    2017-04-01

    Biochar used as soil amendment can enhance soil fertility and plant growth. It may also contribute to increase the plant mineralomass of silicon (Si). However, very little studies have focused on the plant Si cycling in biochar amended soils. Here, we study the impact of two contrasting biochars derived from rice straws on soil Si availability and plant Si uptake. Rice plants were grown in a hydroponic device using Yoshida nutrient solution, respectively devoid of H4SiO4 (0 ppm Si: Si-) and enriched with it (40 ppm Si: Si+). After 12 weeks, the plants were harvested for further pyrolysis, conducted with holding time of 1h at 500˚ C. The respective rice-biochars are Si-/biochar and Si+/biochar. They exhibit contrasting phytolith contents (0.3 g Si kg-1 vs. 51.3 g Si kg-1), but identical physico-chemical properties. They were applied in two soils differing in weathering stage: a weathered Cambisol (CA) and a highly weathered Nitisol (NI). We then studied the effects of the amended biochar on CaCl2 extractable Si using a 64-days kinetic approach, on the content of soil biogenic Si, and on the uptake of Si by wheat plants grown for 5 weeks. We also quantified Si mineralomass in plants. We compared the effects of biochars to that of wollastonite (Wo)-(CaSiO3), a common Si-fertilizer. Our results show that Si+/biochar significantly increase the content of BSi in both soils. In CA, the cumulative content of CaCl2 extractable Si amounts to 85 mg kg-1 after Si+/biochar amendment, which is below the amount extracted after Wo application (100 mg kg-1). In contrast, in NI, the cumulative content of CaCl2 extractable Si is 198 mg kg-1 in the Si+/biochar amended treatment, which is far above the one measured after Wo application (93 mg kg-1). The Si-/biochar has no effect on the cumulative content of CaCl2 extractable Si in either soil type. Biochars and wollastonite increase the biomass of wheat on both soils. The increase is, however, larger in NI than in CA. In terms of Si

  6. EFFECT OF RICE STRAW AND NITRATE LEVELS IN SOIL SOLUTION ON NITROUS OXIDE EMISSION

    Directory of Open Access Journals (Sweden)

    André Carlos Cruz Copetti

    2015-04-01

    Full Text Available Among the greenhouse gases, nitrous oxide (N2O is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2 and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N and rice straw levels (0, 5 and 10 Mg ha-1, i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF, significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.

  7. Effects of P-efficient Transgenic Rice OsPT4 on Inorganic Phosphorus Fractions in Red Soil

    Directory of Open Access Journals (Sweden)

    WEI Lin-lin

    2017-08-01

    Full Text Available In a rhizobox experiment with phosphorus(P fertilizer application and P-deficiency, planting wild-type rice(Nipp, P-efficient mutant rice(PHO2, P-efficient transgenic rice(OsPT4 were chosen to evaluate effects of phosphorus efficient transgenic rice on inorganic phosphorus in the rhizosphere and non-rhizosphere soil. The obtained results were summarized as follows:(1Significant higer dry weight and P accumulation were observed in OsPT4 and PHO2 than in Nipp, but lower total P and inorganic phosphorus observed in OsPT4 and PHO2 than in Nipp;(2The concentrations of inorganic phosphorus fractions in the rhizosphere and non-rhizosphere soil were sorted as follows:O-P > Fe-P > Al-P > Ca-P, and the order of inorganic phosphorus fractions adapted to three rice materials;(3When added phosphorus fertilizer, the concents of rhizospheric Al-P, Fe-P and non-rhizospheric Ca-P in three rice materials had no significant difference. The concents of rhizospheric soil O-P and Ca-P in OsPT4 and PHO2 were significantly inferior to Nipp, and their concents of non-rhizospheric soil Al-P, Fe-P and O-P were significantly lower than Nipp. When added no phosphorus fertilizer, the concents of rhizospheric Al-P, O-P, Ca-P and non-rhizosphere Al-P, Ca-P in three rice materials had no significant difference, and the concents of rhizosphere Fe-P and non-rhizosphere soil Fe-P, O-P in OsPT4 and PHO2 were significantly lower than Nipp, but rhizosphere Ca-P was significantly higher than Nipp.

  8. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    Science.gov (United States)

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Fate of fertilizer nitrogen in flooded rice soil - I. Leaching losses of nitrogen

    International Nuclear Information System (INIS)

    Daftardar, S.Y.; Deb, D.L.; Datta, N.P.

    1979-01-01

    A greenhouse experiment on rice (Oryza sativa L. cv IR 22) was conducted under flooded conditions using CO( 15 NH 2 ) 2 , 15 NH 4 NO 3 and NH 4 ( 15 NO 3 ) to study the leaching loss of added fertilizer nitrogen in two typical rice soils. The loss of nitrogen was in the order: NO 3 -N (4 to 25.6 percent) > amide-N (1.2 to 16.2 percent) > NH 4 -N (0.07 to 0.3 percent). The basal applied urea was lost by percolation in the first month while the basal applied NO 3 -N was lost in the first 8 days. Leaching loss did not occur after split application of fertilizer nitrogen at primordial initiation stage. The loss of nitrogen in kaolinitic Dapoli clay loam soil was about 2.5 to 4.5 times more than that in montmorillonitic Karjat sandy loam soil. Cropping reduced the percolation loss of N by 40 to 60 percent. (auth.)

  10. Heavy Metal Concentration and Risk Assessment of Soil and Rice in and around an Open Dumpsite in Thailand

    Directory of Open Access Journals (Sweden)

    Tanjira Klinsawathom

    2017-07-01

    Full Text Available This study aimed to determine the heavy metal concentration in the soil and rice in and around Nakhonluang district open dumpsite in Phra Nakhon Si Ayutthaya province of Thailand and to assess the human health risk of these metals. The soil samples demonstrated heavy metal concentrations in the following order: Fe > Mn >Zn > Cu > Cr > Ni > Pb (Cd was not detected, and the average concentrations of each metal in soil from the dumpsite area were higher than those in the surrounding area. The average concentrations of Mn in the soils exceeded the screening level for higher plant protection of the USEPA’s Eco-SSL while the average Zn and Cu concentrations in the soil samples from the dumpsite exceeded the level for good soil and safety to life recommended by LDD. The rice exhibited metal concentrations in the following order: root > straw > grain. A carcinogenic human health risk assessment (RTotal indicated that the values from the soil samples and the rice were at safe levels. The sum of noncarcinogenic hazard values (Cr, Cu, Mn, Ni, Pb, and Zn indicated that exposure to the soils around the dumpsite area may pose adverse health effects (HI < 1 while exposure to the soils in the dumpsite area carries a high risk of causing adverse health effects both in children (HI = 10.5 and adults (HI = 2.18. It is suggested that suitable management measures should be applied to prevent or reduce heavy metal contamination in and around the dumpsite area.

  11. Behavior of 210Pb and 210Bi in soil-rice system and the effects of carrier-Pb

    International Nuclear Information System (INIS)

    Li Shuding

    1993-01-01

    Chemical species of 210 Pb and 210 Bi in soil and rice were investigated using 210 Pb trace experiment. 79%-91% of 210 Pb in the soil was in available fraction. On the contrary, 80%-98% of 210 Bi was bound. The available 210 Pb in the soil was changed slowly into bound fraction, while the bound 210 Bi transformed gradually into available one. Much of 210 Pb and 210 Bi entered into rice were as inorganic free ions. The bound 210 Pb in rice was less than 1% and the bound 210 Bi was around 40%. The different adsorption affinities between 210 Pb and 210 Bi were demonstrated by the different behavior of them. The effect of carrier-Pb on adsorption of 210 Pb and 210 Bi was also discussed

  12. Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants.

    Science.gov (United States)

    Yang, Wen-Tao; Gu, Jiao-Feng; Zou, Jia-Ling; Zhou, Hang; Zeng, Qing-Ru; Liao, Bo-Han

    2016-10-01

    The objective of the present study was to investigate the effects of rapeseed dregs (RSD, a commonly organic fertilizer in rural China) at application rates of 0, 0.75, 1.5, and 3.0 % on Cd availability in soil and its accumulation in rice plants (Oryza sativa L., Xiangwanxian 12 # , and Weiyou 46 # ) by means of a pot experiment. The results showed that application of RSD resulted in a sharp decrease in the soil TCLP-extractable Cd content. However, the soil TCLP-extractable Cd content in amended soil gradually increased during the rice growing period. Application of RSD significantly increased Cd transport from root to shoot and the amount of Cd accumulated in the aerial part. RSD was an effective organic additive for increasing rice grain yield, but total Cd content in rice grain was also increased. At an application rate of 1.5-3.0 % RSD, the total Cd content in Weiyou 46 # brown rice was 0.27-0.31 mg kg -1 , which exceeded the standard safe limit (0.2 mg kg -1 ) and was also higher than that of Xiangwanxian 12 # (0.04-0.14 mg kg -1 ). Therefore, Weiyou 46 # had a higher dietary risk than Xiangwanxian 12 # with RSD application. We do not recommend planting Weiyou 46 # and applying more than 0.75 % RSD in Cd-contaminated paddy fields.

  13. Influence of pH of acid irrigation water on the transfer of elements into rice plant from soils

    International Nuclear Information System (INIS)

    Maeno, Tomokazu; Tanizaki, Yoshiyuki

    1996-01-01

    Rice plant samples were grown in 14 cultivative pots under six different pH conditions of acid irrigation water (pH: 6.5, 6.0, 4.5, 3.5, 3.0. 2.5) and ion exchange water (pH: 7.5), in order to study an influence of pH of irrigation water on the transfer of elements into rice plant from soils. The acid irrigation water was prepared by adding mixed solution of 1N H 2 SO 4 and 1N HNO 3 (1:1) to ion exchange water. The rice grain yielded was separated into three parts, i.e., polished rice, bran and chaff and they were powdered one by one. The contents of twenty five elements in the three parts of grain (14 samples each) were determined by a neutron activation analysis. It was clarified that the contents of Cu, Zn, Fe, Cr, Mg, Rb, Mo, Ni, and Cs in the polished rice increased with decreasing pH of the acid irrigation water. The contents of Se and Br, on the contrary, decreased. Significant changes of the contents were not observed for Na, Al, Sc, Mn, Cl, Ca, V and Co. The relationships between the contents of elements in the bran or chaff and pH of the acid irrigation water were not so clear as the case of polished rice. The enrichment factor of trace elements from soils was calculated for the polished rice, bran and chaff The high enrichment of Cl, Mo, Zn, Se and Cu was observed in the polished rice. Manganese and Cr were concentrated more in the bran than in the polished rice. (author)

  14. Utilization of crops residues as compost and biochar for improving soil physical properties and upland rice productivity

    Directory of Open Access Journals (Sweden)

    J. Barus

    2016-07-01

    Full Text Available The abundance of crops waste in the agricultural field can be converted to organic fertilizer throughout the process of composting or pyrolysis to return back into the soil. The study aimed to elucidate the effect of compost and biochar application on the physical properties and productivity of upland rice at Village of Sukaraja Nuban, Batanghari Nuban Sub district, East Lampung Regency in 2015. The amendment treatments were A. control; B. 10 t rice husk biochar/ ha; C. 10 t maize cob biochar/ha; D. 10 t straw compost/ha; E. 10 t stover compost/ha, F. 10 t rice husk biochar/ha + 10 t straw compost/ha; F. 10 t maize cob biochar/ha + 10 t maize stover compost/ha. The treatments were arranged in randomized block design with four replicates. The plot size for each treatment was 10 x 20 m. After incubation for about one month, undisturbed soil samples were taken using copper ring at 10–20 cm depth for laboratory analyzes. Analyses of soil physical properties included bulk density, particle density, total porosity, drainage porosity, and soil water condition. Plant observations conducted at harvest were plant height, number of panicle, number of grain/panicle, and grain weight/plot. Results of the study showed that biochar and compost improved soil physical properties such as bulk density, total porosity, fast drainage pores, water content, and permeability of soil. The combination of rice husk biochar and straw compost gave better effect than single applications on rice production components (numbers of panicle and grains of rice, and gave the highest yield of 4.875 t/ha.

  15. Enhancing the fertility of an acid sulfate soil for rice cultivation using lime in combination with bio-organic fertilizer

    International Nuclear Information System (INIS)

    Farhana, A.; Shamshuddin, J.; Fauziah, C.I.; Panhwar, Q.A.

    2017-01-01

    The acid sulfate soils contain pyrite (FeS/sub 2/) which is due to oxidation results in the production of high amount of acidity, aluminum and iron significantly affecting rice growth. A glasshouse study was arranged to determine the effect of ground magnesium limestone (GML) in combination with bio-organic fertilizer (JITUTM) application on the chemical properties of soils and rice yield. Three rice seedlings were transplanted in pots which were previously amended with 0, 2, 4, 6 and 8 t/ha GML with or without bio-organic fertilizer. The common rice varieties (MR 219 and MR 253) were cultivated for two seasons in the same pots. The critical Fe2+ and Al3+ activities for MR 219 were 14.45 and 4.23 mu M, while for MR 253 were 7.45 and 5.53 mu M, respectively. However, without applying the amendments, rice grown on the soils was affected severely by the high acidity (Fe2+ and Al3+ toxicity). The soil pH increased to 5 and the higher grain yield of MR 219 (99.77 and 121.38 g/pot) and MR253 (98.63 and 112.60 g/pot) was in first and second season with the application of 2 t GML application combined with 0.25 t JITUTM/ha respectively. In addition, 1000 grain weight, number of panicle, number of spikelets panicle-1 and the percentage of filled spikelet, were also higher than without the soil amendments. Hence, the infertility of acid sulfate soils for sustainable rice cultivation in Malaysia can be improved by applying 2 t GML/ha combined with 0.25 t JITUTM/ha for two seasons in long run. (author)

  16. Pesticide residue analysis of soil, water, and grain of IPM basmati rice.

    Science.gov (United States)

    Arora, Sumitra; Mukherji, Irani; Kumar, Aman; Tanwar, R K

    2014-12-01

    The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008-2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (water samples (2008-09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (water samples (2009-2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (water samples (<0.001-0.05 μg/L) (2010-2011).

  17. 32P tracer studies on the efficiency of ammonium nitrate phosphates and polyphosphates for growing rice on different soil types

    International Nuclear Information System (INIS)

    Sadanandan, A.K.; Mohanty, S.K.; Patnaik, S.; Mistry, K.B.

    1980-01-01

    A pot experiment was conducted with 32 P tagged phosphates to evaluate the efficiency of ammonium nitrate phosphate containing 30, 50 and 70 percent of P in the water soluble form, tri- and tetra-ammonium pyrophosphate, as compared with mono-ammonium ortho-phosphate (MAP) for growing rice on red, laterite and black soils, with regard to recovery of applied P in soil, dry matter production and utilization of applied P by crop at flowering and grain and straw yield at harvest. Ammonium nitrate phosphates containing 50 percent or more of P in the water soluble form could be used for growing rice on all soil types. The pyrophosphates were as efficient as MAP on soils having pH 6.2 and above but less efficient in soils of lower pH. (author)

  18. Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice.

    Science.gov (United States)

    Zhang, Hua; Feng, Xinbin; Jiang, Chengxin; Li, Qiuhua; Liu, Yi; Gu, Chunhao; Shang, Lihai; Li, Ping; Lin, Yan; Larssen, Thorjørn

    2014-05-01

    Rice is an important source of Se for billions of people throughout the world. The Wanshan area can be categorized as a seleniferous region due to its high soil Se content, but the Se content in the rice in Wanshan is much lower than that from typical seleniferous regions with an equivalent soil Se level. To investigate why the Se bioaccumulation in Wanshan is low, we measured the soil Se speciation using a sequential partial dissolution technique. The results demonstrated that the bioavailable species only accounted for a small proportion of the total Se in the soils from Wanshan, a much lower quantity than that found in the seleniferous regions. The potential mechanisms may be associated with the existence of Hg contamination, which is likely related to the formation of an inert Hg-Se insoluble precipitate in soils in Wanshan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. US State Submerged Lands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submerged Lands Act (43 U.S.C. Section 1301 et seq.) grants coastal states title to natural resources located within their coastal submerged lands and navigable...

  20. CHARACTERISTICS OF RICE SOILS FROM THE TIDAL FLAT AREAS OF MUSI BANYUASIN, SOUTH SUMATRA

    Directory of Open Access Journals (Sweden)

    B.H. Prasetyo

    2016-10-01

    Full Text Available Tidal flats in the Musi Banyuasin region that cover more than 200,000 ha are the largest area for agricultural development in South Sumatra Province. Only about a half of this has been used for tidal swamp rice fields, therefore, the other half needs to be developed. To obtain a better understanding of their properties for appropriate soil management, soil characteristics of the area need to be studied. To characterize the soil, thirty-four soil samples from seven soil profiles were analyzed for their chemical and mineralogical composition at the laboratories of the Center for Soil and Agroclimate Research and Development. The results indicate that soils from the tidal flat areas have an aquic soil moisture regime, the upper parts of the soils are mostly ripe, and most of the pedons show the presence of sulfidic materials below 65 cm of the mineral soil surface. The soils are classified as Sulfic Endoaquept (P1, P2, Histic Sulfaquent (P3, Typic Sulfaquept (P4, Fluvaquentic Endoaquept (P5, and Sulfic Hydraquent (P6, P7. Mineral composition of the sand fraction is dominated by quartz, while the clay minerals consist of predominantly kaolinite, mixed with small amount of smectite, illite, quartz, and crystoballite. Organic carbon content is high to very high, potential phosphate content of most pedons ranges from very low to medium, while potential potassium content varies from very low to medium in the upper layers and medium to very high in the bottom layers. Phosphate retention of topsoil sample varies from 56 to 97%, and is positively correlated (r2 = 0.73 with aluminum from amorphous materials. Exchangeable cations are dominated by Mg cation, and in all pedons cation exchange capacity values are medium to very high, and seem to be influenced by organic carbon. Specific chemical properties, particularly soil pH and content of exchangeable aluminum exhibit a significant change about 1-2 months after soil samples were taken from the field

  1. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    Science.gov (United States)

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Effects of Rice Straw and Biochar Applications on the Microbial Community in a Soil with a History of Continuous Tomato Planting History

    Directory of Open Access Journals (Sweden)

    Yiming Zhang

    2018-05-01

    Full Text Available Soil microbial abundance and diversity change constantly in continuous cropping systems, resulting in the prevalence of soil-borne pathogens and a decline in crop yield in solar greenhouses. To investigate the effects of rice straw and biochar on soil microbial abundance and diversity in soils with a history of continuous planting, three treatments were examined: mixed rice straw and biochar addition (RC, rice straw addition (R, and biochar addition (C. The amount of C added in each treatment group was 3.78 g kg−1 soil. Soil without rice straw and biochar addition was treated as a control (CK. Results showed that RC treatment significantly increased soil pH, available nitrogen (AN, available phosphorus (AP, and potassium (AK by 40.3%, 157.2%, and 24.2%, respectively, as compared to the CK soil. The amount of soil labile organic carbon (LOC, including readily oxidizable organic carbon (ROC, dissolved organic carbon (DOC, and light fraction organic carbon (LFOC, was significantly greater in the RC, R, and C treatment groups as compared to CK soil. LOC levels with RC treatment were higher than with the other treatments. Both rice straw and biochar addition significantly increased bacterial and total microbial abundance, whereas rice straw but not biochar addition improved soil microbial carbon metabolism and diversity. Thus, the significant effects of rice straw and biochar on soil microbial carbon metabolism and diversity were attributed to the quantity of DOC in the treatments. Therefore, our results indicated that soil microbial diversity is directly associated with DOC. Based on the results of this study, mixed rice straw and biochar addition, rather than their application individually, might be key to restoring degraded soil.

  3. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.).

    Science.gov (United States)

    Pan, Yunyu; Koopmans, Gerwin F; Bonten, Luc T C; Song, Jing; Luo, Yongming; Temminghoff, Erwin J M; Comans, Rob N J

    2016-12-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still limited. Here, a field-contaminated paddy soil was subjected to two flooding and drainage cycles in a pot experiment with two rice plant cultivars, exhibiting either high or low Cd accumulation characteristics. Flooding led to a strong vertical gradient in the redox potential (Eh). The pH and Mn, Fe, and dissolved organic carbon concentrations increased with decreasing Eh and vice versa. During flooding, trace metal solubility decreased markedly, probably due to sulfide mineral precipitation. Despite its low solubility, the Cd content in rice grains exceeded the food quality standards for both cultivars. Trace metal contents in different rice plant tissues (roots, stem, and leaves) increased at a constant rate during the first flooding and drainage cycle but decreased after reaching a maximum during the second cycle. As such, the high temporal variability in trace metal solubility was not reflected in trace metal uptake by rice plants over time. This might be due to the presence of aerobic conditions and a consequent higher trace metal solubility near the root surface, even during flooding. Trace metal solubility in the rhizosphere should be considered when linking water management to trace metal uptake by rice over time.

  4. Downward carbon transport in a 2000-year rice paddy soil chronosequence traced by radiocarbon measurements

    Energy Technology Data Exchange (ETDEWEB)

    Braeuer, T., E-mail: tbraeuer@leibniz.uni-kiel.de [Leibniz-Laboratory, Christian-Albrechts-University, Kiel (Germany); Grootes, P.M.; Nadeau, M.-J.; Andersen, N. [Leibniz-Laboratory, Christian-Albrechts-University, Kiel (Germany)

    2013-01-15

    Paddy and non-paddy soils from a chronosequence of 50-2000 years of agricultural use, developed on former estuarine sediments of the Yangtze River, were sampled near Cixi, Zhejiang Province, China, in the framework of the Research Unit 'Biogeochemistry of paddy soil evolution' of the German Research Foundation (DFG). In addition samples of Yangtze River estuarine sediments were obtained. The parent sediment shows a fairly homogeneous composition with ca. 0.3% TOC and a {sup 14}C concentration of ca. 50 pMC. After being diked-in, gradients in soil organic carbon and {sup 14}C concentration develop under the influence of vegetation and cultivation. In the non-paddy soil, a {sup 14}C gradient with concentration decreasing with increasing depth from modern (>100 pMC) to original sediment values around 50 pMC is already established after 50 years and can also be observed in the older sites. In contrast, the 50 years old paddy soil shows organic carbon and {sup 14}C enrichment only in the A-horizon and a nearly constant TOC and {sup 14}C stock of original sediment below the plough pan. To test the basic approach that the soil profile development started on homogeneous sediment, an isotope and mass balance calculation was used. The results show a quite similar age composition of different sample sites. Paddy rice cultivation quickly leads to a dense plough pan, which seriously reduces, but not totally prevents, downward transport of organic matter. The equilibrium times for TOC and {sup 14}C in paddy soil profiles are short (decades) in the topsoil and in the order of centuries in the subsoil, underlining the dynamic character of soil organic carbon.

  5. Downward carbon transport in a 2000-year rice paddy soil chronosequence traced by radiocarbon measurements

    International Nuclear Information System (INIS)

    Bräuer, T.; Grootes, P.M.; Nadeau, M.-J.; Andersen, N.

    2013-01-01

    Paddy and non-paddy soils from a chronosequence of 50–2000 years of agricultural use, developed on former estuarine sediments of the Yangtze River, were sampled near Cixi, Zhejiang Province, China, in the framework of the Research Unit “Biogeochemistry of paddy soil evolution” of the German Research Foundation (DFG). In addition samples of Yangtze River estuarine sediments were obtained. The parent sediment shows a fairly homogeneous composition with ca. 0.3% TOC and a 14 C concentration of ca. 50 pMC. After being diked-in, gradients in soil organic carbon and 14 C concentration develop under the influence of vegetation and cultivation. In the non-paddy soil, a 14 C gradient with concentration decreasing with increasing depth from modern (>100 pMC) to original sediment values around 50 pMC is already established after 50 years and can also be observed in the older sites. In contrast, the 50 years old paddy soil shows organic carbon and 14 C enrichment only in the A-horizon and a nearly constant TOC and 14 C stock of original sediment below the plough pan. To test the basic approach that the soil profile development started on homogeneous sediment, an isotope and mass balance calculation was used. The results show a quite similar age composition of different sample sites. Paddy rice cultivation quickly leads to a dense plough pan, which seriously reduces, but not totally prevents, downward transport of organic matter. The equilibrium times for TOC and 14 C in paddy soil profiles are short (decades) in the topsoil and in the order of centuries in the subsoil, underlining the dynamic character of soil organic carbon.

  6. Improvement of Soil Biology Characteristics at Paddy Field by System of Rice Intensification

    Directory of Open Access Journals (Sweden)

    Widyatmani Sih Dewi

    2015-07-01

    Full Text Available The aim of the research was to test the System of Rice Intensification (SRI method in improving the biological properties of paddy soil. The indicators of improvement were measured by the number of earthworm feces (cast, and the population of some microbial and nutrient content in the cast. The experiments were performed by comparing the three methods, namely: (1 SRI, (2 semi-conventional, and (3 conventional, using Randomized Completely Block Design. Each treatment was repeated nine times. The experiments were performed in the paddy fields belonging to farmers in Sukoharjo, Central Java. The result showed that the SRI (application of 1 tons ha-1 of vermicompost + 50% of inorganic fertilizer dosage tends to increase the number of earthworms cast. It is an indicator of earthworm activity in soil. Earthworms cast contains more phosphate solubilizing bacteria (12.98 x 1010cfu and N content (1.23% compared to its surrounding soil. There is a close functional relation between earthworms cast with total tiller number. SRI method is better than the other two methods to improve the biological characteristics of paddy soil that has the potential to maintain the sustainability of soil productivity.

  7. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil.

    Science.gov (United States)

    Liu, Shusi; Lu, Yixin; Yang, Chen; Liu, Chuanping; Ma, Lin; Dang, Zhi

    2017-10-01

    Biochar was carbon-rich and generated by high-temperature pyrolysis of biomass under oxygen-limited conditions. Due to the limitations of surface functional groups and the weakness of surface activity in the field of environmental remediation, the raw biochar frequently was chemically modified to improve its properties with a new performance. In this study, a kind of high-efficiency and low-cost amino biochar modified by nano zero-valent iron (ABC/NZVI) was synthesized and applied to paddy soil contaminated with arsenic (As). Dynamic changes of soil properties, arsenic speciations and rhizosphere microbial communities have been investigated over the whole growth period of rice plants. Pot experiments revealed that the ABC/NZVI could decrease the arsenic concentration in rice straw by 47.9% and increase the content of nitrogen in rice straw by 47.2%. Proportion of Geobacter in soil with ABC/NZVI treatment increased by 175% in tillering period; while Nitrososphaera decreased by 61 and 20% in tillering and maturity, respectively, compared to that of control. ABC/NZVI promotes arsenic immobilization in rhizosphere soil and precipitation on root surface and reduces arsenic accumulation in rice. At the same time, ABC/NZVI would inhibit Nitrososphaera which is related to ammonia oxidation process, and it would have a promising potential as soil amendment to reduce nitrogen loss probably.

  8. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  9. [Effects of soil water status on gas exchange of peanut and early rice leaves].

    Science.gov (United States)

    Chen, Jiazhou; Lü, Guoan; He, Yuanqiu

    2005-01-01

    The gas exchange characteristics of peanut and early rice leaves were investigated in experimental plots under different soil water conditions over a long growth period. The results showed that at the branching stage of peanut, the stomatal conductance (Gs) and transpiration rate (Tr) decreased slightly under mild and moderate soil water stress, while the net photosynthetic rate (Pn) and leaf water use efficiency (WUE) increased. The Gs/Tr ratio also increased under mild water stress, but decreased under moderate water stress. At podding stage, the Gs, Tr, Gs/Tr ratio and Pn decreased, while WUE increased significantly under mild and moderate water stress. The peanut was suffered from water stress at its pod setting stage. At the grain filling stage of early rice, the Gs, Tr and Gs/Tr ratio fluctuated insignificantly under mild and moderate water stress, while Pn and WUE increased significantly, with an increase in grain yield under mild water stress. It's suggested that the combination of Gs and Gs/Tr ratio could be a reference index for crop water stress, namely, crops could be hazarded by water stress when Gs and Gs/Tr decreased synchronously.

  10. Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China.

    Science.gov (United States)

    Khan, Sardar; Reid, Brian J; Li, Gang; Zhu, Yong-Guan

    2014-07-01

    Consumption of rice contaminated with potentially toxic elements (PTEs) is a major pathway for human exposure to PTEs. This is particularly true in China's so called "Cancer Villages". In this study, sewage sludge biochar (SSBC) was applied to soil (at 5% and 10%) to suppress PTE phytoavailability and as a consequence to reduce PTE levels in rice grown in mining impacted paddy soils. Risk assessment indicated that SSBC addition (10%) markedly (P≤0.05) decreased the daily intake, associated with the consumption of rice, of PTEs (As, Cd, Co, Cu, Mn, Pb and Zn by: 68, 42, 55, 29, 43, 38 and 22%, respectively). In treatments containing SSBC (10%) the health quotient (HQ) indices for PTEs (except for As, Cu and Mn) were iAs (AsIII+AsV) associated with the consumption of rice was significantly (P≤0.01) reduced by 66%. These findings suggest that SSBC could be a useful soil amendment to mitigating PTE exposure, through rice consumption, in China's "Cancer Villages". Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Bulliform Phytolith Research in Wild and Domesticated Rice Paddy Soil in South China

    OpenAIRE

    Huan, Xiujia; Lu, Houyuan; Wang, Can; Tang, Xiangan; Zuo, Xinxin; Ge, Yong; He, Keyang

    2015-01-01

    Bulliform phytoliths play an important role in researching rice origins as they can be used to distinguish between wild and domesticated rice. Rice bulliform phytoliths are characterized by numerous small shallow fish-scale decorations on the lateral side. Previous studies have shown that domesticated rice has a larger number of these decorations than wild rice and that the number of decorations ≥9 is a useful feature for identifying domesticated rice. However, this standard was established b...

  12. Autointoxication mechanism ofOryza sativa : III. Effect of temperature on phytotoxin production during rice straw decomposition in soil.

    Science.gov (United States)

    Chou, C H; Chiang, Y C; Chfng, H H

    1981-07-01

    The phytotoxicity produced during decomposition of rice straw in soil was evaluated under both constant and changing temperature conditions. Bioassay tests showed that the aqueous extract from a soilstraw mixture after incubation at constant temperature was more than twice as phytotoxic as the extract from soil incubated alone. The phytotoxicity was highest at 20-25 ° C. Temperatures above 25 ° C enhanced rice straw decomposition and also degraded the phytotoxic substances more rapidly. After incubation of soil mixtures under changing temperature regimes in a phytotron, the phytotoxicy of the soil aqueous extracts increased in the following order: soil alone lettuce or rice seedlings was also at the highest at the temperature range of 25-30 ° C irrespective of the direction of temperature changes from either low to high or vice versa. Five phytotoxic phenolics,p-hydroxybenzoic, vanillic,p-coumaric, syringic, and ferulic acids, were obtained from both the aqueous extract and residue of the incubated soil samples and were quantitatively estimated by chromatography. The amount of phytotoxins found in various soil mixtures followed the same increasing order as that found by the seed bioassay test. Although no definite distribution pattern of the phenolics in the incubated soil samples can be attributed to temperature variations, the amount of the phenolics was likely higher in the samples incubated at 25 ° C than at either 15 ° C or 35 ° C. The quantity of toxins released during decomposition of rice straw in soil reached highest levels six weeks after incubation and gradually disappeared after twelve weeks.

  13. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    Science.gov (United States)

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  14. [Impacts of rice straw biochar on organic carbon and CO2 release in arable soil].

    Science.gov (United States)

    Ke, Yue-Jin; Hu, Xue-Yu; Yi, Qing; Yu, Zhong

    2014-01-01

    In order to investigate the stability of biochar and the effect of biochar when added into soil on soil organic carbon, a 130-day incubation experiment was conducted with rice straw biochar produced at 500 degrees C and 700 degrees C (RBC500 and RBC700) and with addition rates of 0% (control), 3%, 6% and 100% (pure biochar), to detect the change of total organic carbon (TOC), easily oxidized carbon (EOC) and status of CO2 release, following addition of biochar in arable soil. Results showed that: the content of both TOC and EOC in soil increased with biochar addition rates comparing with the control. RBC500 had greater contributions to both TOC and EOC increasing amounts than those of RBC700 under the same biochar addition rate. TOC contents of all treatments decreased during the initial 30 days with the largest decreasing amplitude of 15.8%, and tended to be stable in late incubation stages. Same to that of TOC, EOC contents of all treatments also tended to remain stable after 30 days, but in the 30 days of early incubation, EOC in the soil decreased by 72.4% and 81.7% respectively when the added amount of RBC500 was 3% and 6% , while it was reduced by 61.3% and 69.8% respectively when the added amount of RBC700 was 3% and 6%. EOC contents of soil added with biochar produced at the same temperature were similar in the end of incubation. The reduction of soil EOC content in early incubation may be related to mineralization caused by labile fractions of biochar. During the 130-day incubation, the accumulated CO2 releases showed an order of soil and biochar mixtures soil could reduce CO2 release, the largest reduction amplitude is 41.05%. In a long time scale, biochar as a soil amendment is favorable to the deduction of greenhouse gas release and soil carbon immobilization. Biochar could be used as a soil carbon sequestration carrier.

  15. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil.

    Science.gov (United States)

    Yan, Dafang; Ma, Wei; Song, Xiaojing; Bao, Yanyu

    2017-03-01

    Although the role of iron plaque on rice root surface has been investigated in recent years, its effect on antibiotic uptake remains uncertain. In the study, pot experiment was conducted to investigate the effect of iron plaque on uptake and translocation of norfloxacin (adding 10 and 50 mg·kg -1 treatments) in rice seedlings grown in paddy soil. Iron plaque was induced by adding different amounts of Fe(II) in soil. The results showed that the presence of norfloxacin can decrease the amount of iron plaque induced. After rice with iron plaque induced, norfloxacin was mainly accumulated in iron plaque on root surface, followed by inside root, but its translocation from root to other rice tissues is not observed. Iron plaque played the role of a barrier for norfloxacin uptake into rice roots under high norfloxacin concentration of 50 mg·kg -1 , however not that under low concentration of 10 mg·kg -1 . And the barrier function was the most strongest with adding Fe(II) of 30 mg·kg -1 as combined action of iron plaque and rhizosphere effect. Fluorescence microscope analysis showed that norfloxacin mainly distributed in the outside of root cell, which showed its translocation as apoplastic pathway in rice. Comparing with non-rhizosphere, more norfloxacin was accumulated in rhizosphere soil. Maybe, strong root oxidization (high Eh values) induced more iron oxide formation in rhizosphere and on root surface, which led to norfloxacin's mobility towards to rhizosphere through its strong adsorption of iron oxides and then promoted its uptake by rice on root surface.

  16. Impacts of soil incorporation of pre-incubated silica-rich rice residue on soil biogeochemistry and greenhouse gas fluxes under flooding and drying.

    Science.gov (United States)

    Gutekunst, Madison Y; Vargas, Rodrigo; Seyfferth, Angelia L

    2017-09-01

    Incorporation of silica-rich rice husk residue into flooded paddy soil decreases arsenic uptake by rice. However, the impact of this practice on soil greenhouse gas (GHG) emissions and elemental cycling is unresolved particularly as amended soils experience recurrent flooding and drying cycles. We evaluated the impact of pre-incubated silica-rich rice residue incorporation to soils on pore water chemistry and soil GHG fluxes (i.e., CO 2 , CH 4 , N 2 O) over a flooding and drying cycle typical of flooded rice cultivation. Soils pre-incubated with rice husk had 4-fold higher pore water Si than control and 2-fold higher than soils pre-incubated with rice straw, whereas the pore water As and Fe concentrations in soils amended with pre-incubated straw and husk were unexpectedly similar (maximum ~0.85μM and ~450μM levels, respectively). Pre-incubation of residues did not affect Si but did affect the pore water levels of As and Fe compared to previous studies using fresh residues where straw amended soils had higher As and Fe in pore water. The global warming potential (GWP) of soil GHG emissions decreased in the order straw (612±76g CO 2 -eqm -2 )>husk (367±42gCO 2 -eqm -2 )>ashed husk=ashed straw (251±26 and 278±28gCO 2 -eqm -2 )>control (186±23gCO 2 -eqm -2 ). The GWP increase due to pre-incubated straw amendment was due to: a) larger N 2 O fluxes during re-flooding; b) smaller contributions from larger CH 4 fluxes during flooded periods; and c) higher CH 4 and CO 2 fluxes at the onset of drainage. In contrast, the GWP of the husk amendment was dominated by CO 2 and CH 4 emissions during flooded and drainage periods, while ashed amendments increased CO 2 emissions particularly during drainage. This experiment shows that ashed residues and husk addition minimizes GWP of flooded soils and enhances pore water Si compared to straw addition even after pre-incubation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field

    Directory of Open Access Journals (Sweden)

    Linlin Si

    2018-02-01

    Full Text Available Crop productivity in cold waterlogged paddy fields can be constrained by chronic flooding stress and low temperature. Farmers typically use chemical fertilizer to improve crop production, but this conventional fertilization is not very effective in a cold waterlogged paddy field. Biochar amendment has been proposed as a promising management approach to eliminating these obstacles. However, little is known about the performance of biochar when combined with N fertilizer and P fertilizer in cold waterlogged soils. The aim of this study was, therefore, to assess the main effects and interactive effects of rice straw biochar, N and P fertilizer on rice growth and soil properties in a cold waterlogged paddy field. The field treatments consisted of a factorial combination of two biochar levels (0 and 2.25 t ha−1, two N fertilizer levels (120.0 and 180.0 kg ha−1 and two P fertilizer levels (37.5 and 67.5 kg ha−1 which were arranged in a randomized block design, with three replicates. Results confirmed that biochar application caused a significant increase in the soil pH due to its liming effect, while this application resulted in a significant decrease in soil exchangeable cations, such as exchangeable Ca, Mg, Al and base cations. The interactive effect of N fertilizer, P fertilizer and biochar was significant for soil total N. Moreover, a negative effect of biochar on the internal K use efficiency suggested that K uptake into rice may benefit from biochar application. According to the partial Eta squared values, the combined application of N fertilizer and biochar was as effective as pure P fertilization at increasing straw P uptake. The addition of biochar to farmers’ fertilization practice treatment (180.0 kg N ha−1, 67.5 kg P2O5 ha−1 and 67.5 kg K2O ha−1 significantly increased rice yield, mainly owing to improvements in grains per panicle. However, notable effects of biochar on rice yield and biomass production were not detected

  18. [Influence of sulfur on the bioavailability of arsenic uptake by rice (Oryza. sativa L. ) and its speciation in soil ].

    Science.gov (United States)

    Yang, Shi-jie; Tang, Bing-pei; Wang, Dai-chang; Rao, Wei; Zhang, Ya-nan; Wang, Dan; Zhu, Yun-ji

    2014-09-01

    Pot experiments using exogenous arsenic-polluted paddy soils were carried out to investigate the influence of different forms of sulfur fertilizers (sulfur and gypsum) on As uptake by rice and its chemical speciation. Soil solution pH value ranged 7. 38-7. 45 in different growth period of rice, and the pH value of AsS0 and AsS1 treatments was higher than that of AsS2 treatment. Variation of Eh value in soil solution was about 200 mV and the Eh of AsS0 was higher than those of AsS1 and AsS2 treatments. From dry matter weight of root and stem and grain of rice, S-fertilizer applied by sulfur and gypsum could improve the amounts of dry matter in rice, while the effects of sulfur treatments and gypsum treatments were not significant. Concentrations of Fe and Mn in iron-manganese plaque on rice roots were 10-30 g.kg-1 and 0.1-1.3 g.kg-1, respectively. Contents of Fe-Mn plaque were mainly different in the tiller stage. Elemental S treatment could more greatly promote the formation of Fe-Mn plaque of rice root than gypsum treatment. Concentrations of As adsorbed by rice roots surface plaque were 583-719 mg.kg-' in tiller stage, 466-621 mg.kg-1 in boot stage, and 310-384 mg kg-1 in flower and matur stage. And it was consistent with the thickness of Fe-Mn plaque on rice root surface. Concentrations of As uptake in roots and stem and leaf and grain were significantly reduced by the application of S fertilizer, and it may be related to the amount of As adsorbed by Fe-Mn plaque at boot stage. According to chemical speciation of soil arsenic, As of non-specific and specific adsorption was most active, and their amounts of As adsorbed in AsS, treatment were significantly lower by 2.85 mg kg-~' than that in AsS2 treatment in tiller stage, and was 0.77 mg.kg- higher than that in AsS2 treatment in the flower stage. Perhaps soil arsenic was easily dissolved in the soil solution and the bioavailability of AsS, treatment was better than that of AsS, treatment.

  19. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Sahrawat, K.L.; Jones, M.P.; Diatta, S.

    2000-01-01

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  20. The effect of motor vehicle emission towards lead (Pb content of rice field soil with different clay content

    Directory of Open Access Journals (Sweden)

    C.C.Wati

    2015-10-01

    Full Text Available Motor vehicle gas emission contains lead (Pb which is a hazardous and toxic substance. Agricultural land, especially rice field, which is located nearby roads passed by many motor vehicle, are susceptible to the accumulation of Pb. If Pb is permeated by plants cultivated in the rice field, it will be very hazardous for humans as they are the final consumers. Hence, it is essential to identify Pb content of rice-field soil initiated by motor vehicle gas emission. This study was aimed to identify the effects of motor vehicle density, the distance between rice-field and road, and the clay content of soil towards Pb content of soils in Blitar and Ngawi Regencies of East Java. The method used for the study was survey method managed by using three-factor nested design with three replicates. The results of this study showed that motor vehicle density and the distance of rice field to road provide significant affected the total of Pb content of soil. However, the dissemination pattern of Pb in the soil was irregular due to the factors of climate and environment. Before Pb reached soil surface, Pb was spread out in the air due to the effect of temperature, wind velocity, vehicle velocity, size of vehicle, and road density. Consequently, the location with low motor vehicle density and positioned faraway to the road had higher total rate of Pb than the location with high motor vehicle density and positioned nearby the road. Clay content affected the total rate of Pb content as much as 37%, every 1% increase of clay content increased the total rate of Pb as much as 0.08 mg/kg.

  1. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    Science.gov (United States)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial

  2. Uptake and distribution of natural radioactivity in rice from soil in north and west part of peninsular malaysia for the estimation of ingestion dose to man

    International Nuclear Information System (INIS)

    Asaduzzaman, Kh.; Khandaker, M.U.; Amin, Y.M.; Mahat, R.

    2015-01-01

    Highlights: • We determine the uptake of naturally occurring radionuclides by rice from soil. • Transfer factor, effective dose and excess lifetime cancer risk have been assessed. • Evaluate the radiological impact on human body due to the radioactivity in rice. • The transfer factors for 226 Ra and 232 Th were found far beyond to IAEA default value. - Abstract: Paddy is the third most widely planted crop in Malaysia and most of the Malaysian people consume rice as their staple food. Hence, studies on the uptake of naturally occurring radionuclides by rice from soil of widely rice cultivated areas in Malaysia have been performed under normal field environments in order to evaluate various radiation hazards via rice consumption. The soil-to-rice grain transfer factors and the annual effective dose have been assessed for the natural radionuclides 226 Ra, 232 Th and 40 K. The estimated transfer factors for 226 Ra and 232 Th were found far beyond compared to the IAEA reported value for rice. Among the detected radionuclides, 40 K shows the highest transfer factor in all study locations but close to the IAEA reported range. The total effective dose obtained due to an ingestion of radionuclides via rice consumption was within the range of world average value (290 μSv y −1 ) compiled by the UNSCEAR (2000) in all study areas. On an average, the excess life time cancer risk (ELCR) values via rice consumption were found below the acceptable limit of 10 −3 for radiological risk

  3. Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil.

    Science.gov (United States)

    Lai, Yu-Cheng; Syu, Chien-Hui; Wang, Pin-Jie; Lee, Dar-Yuan; Fan, Chihhao; Juang, Kai-Wei

    2018-01-01

    Paddy rice (Oryza sativa L.) is a major staple crop in Asia. However, heavy metal accumulation in paddy soil poses a health risk for rice consumption. Although plant uptake of Pb is usually low, Pb concentrations in rice plants have been increasing with Pb contamination in paddy fields. It is known that iron oxide deposits in the rhizosphere influence the absorption of soil Pb by rice plants. In this study, 14 rice cultivars bred in Taiwan, including ten japonica cultivars (HL21, KH145, TC192, TK9, TK14, TK16, TN11, TNG71, TNG84, and TY3) and four indica cultivars (TCS10, TCS17, TCSW2, and TNGS22), were used in a field experiment. We investigated the genotypic variation in rice plant Pb in relation to iron oxides deposited in the rhizosphere, as seen in a suspiciously contaminated site in central Taiwan. The results showed that the cultivars TCSW2, TN11, TNG71, and TNG84 accumulated brown rice Pb exceeding the tolerable level of 0.2mgkg -1 . In contrast, the cultivars TNGS22, TK9, TK14, and TY3 accumulated much lower brown rice Pb (iron oxides deposited on the rhizosphere soil show stronger affinity to soil-available Pb than those on the root surface to form iron plaque. The relative tendency of Pb sequestration toward rhizosphere soil was negatively correlated with the Pb concentrations in brown rice. The iron oxides deposited on the rhizosphere soil but not on the root surface to form iron plaque dominate Pb sequestration in the rhizosphere. Therefore, the enhancement of iron oxide deposits on the rhizosphere soil could serve as a barrier preventing soil Pb on the root surface and result in reduced Pb accumulation in brown rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China

    OpenAIRE

    Fan, Yu; Zhu, Tingping; Li, Mengtong; He, Jieyi; Huang, Ruixue

    2017-01-01

    Background. Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. Methods. This research was conducted to determine lead (Pb), cadmium (Cd), arsenic (As), manganese (Mn), and antimony (Sb) concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Results. Local soil contaminati...

  5. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Pan, Yunyu; Koopmans, Gerwin F.; Bonten, Luc T.C.; Song, Jing; Luo, Yongming; Temminghoff, Erwin J.M.; Comans, Rob N.J.

    2016-01-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still

  6. Effects of compost amended lead-arsenate contaminated soils on total and inorganic arsenic concentration in rice

    Science.gov (United States)

    Rice (Oryza sativa L.), a staple crop for over fifty percent of the world’s population, is also a source of dietary arsenic because of its efficiency at accumulating As. Pesticides containing As were once widely used in agriculture, and some soils in which these pesticides were used are now being u...

  7. The effect of toposequence position on soil properties, hydrology, and yield of rainfed lowland rice in Southeast Asia

    NARCIS (Netherlands)

    Boling, A.A.; Tuong, T.P.; Suganda, H.; Konboon, Y.; Harnpichitvitaya, D.; Bouman, B.A.M.; Franco, D.T.

    2008-01-01

    large proportion of rainfed lowland rice in Southeast Asia is grown in gently sloping areas along toposequences with differences in elevation of a few meters. These small differences in elevation can lead to differentiation in soil properties and hydrological conditions, which in turn may affect

  8. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    Science.gov (United States)

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-06

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  9. Microbial utilization of rice straw and its derived biochar in a paddy soil

    International Nuclear Information System (INIS)

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Khan, Sardar; Yao, Huaiying

    2016-01-01

    The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using 13 C-labeled rice straw and its derived biochar ( 13 C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials. Regarding microbial function, biochar and straw applications increased CO 2 emission in the initial stage of incubation and reached the highest level (0.52 and 3.96 mg C kg −1 soil h −1 ) at 1 d and 3 d after incubation, respectively. Straw amendment significantly (p < 0.01) increased respiration rate, total phospholipid fatty acids (PLFAs) and 13 C-PLFA as compared to biochar amendment and the control. The amount and percent of Gram positive bacteria, fungi and actinomycetes were also significantly (p < 0.05) higher in 13 C-labeled straw amended soil than the 13 C-labeled biochar amended soil. According to the 13 C data, 23 different PLFAs were derived from straw amended paddy soil, while only 17 PLFAs were derived from biochar amendments. The profile of 13 C-PLFAs derived from straw amendment was significantly (p < 0.01) different from biochar amendment. The PLFAs 18:1ω7c and cy17:0 (indicators of Gram negative bacteria) showed high relative abundances in the biochar amendment, while 10Me18:0, i17:0 and 18:2ω6,9c (indicators of actinomycetes, Gram positive bacteria and fungi, respectively) showed high relative abundance in the straw amendments. Our results suggest that the function, size and structure of the

  10. Microbial utilization of rice straw and its derived biochar in a paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Fuxia [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yaying [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800 (China); Chapman, Stephen James [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Khan, Sardar [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Department of Environmental Science, University of Peshawar (Pakistan); Yao, Huaiying, E-mail: hyyao@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800 (China)

    2016-07-15

    The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using {sup 13}C-labeled rice straw and its derived biochar ({sup 13}C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials. Regarding microbial function, biochar and straw applications increased CO{sub 2} emission in the initial stage of incubation and reached the highest level (0.52 and 3.96 mg C kg{sup −1} soil h{sup −1}) at 1 d and 3 d after incubation, respectively. Straw amendment significantly (p < 0.01) increased respiration rate, total phospholipid fatty acids (PLFAs) and {sup 13}C-PLFA as compared to biochar amendment and the control. The amount and percent of Gram positive bacteria, fungi and actinomycetes were also significantly (p < 0.05) higher in {sup 13}C-labeled straw amended soil than the {sup 13}C-labeled biochar amended soil. According to the {sup 13}C data, 23 different PLFAs were derived from straw amended paddy soil, while only 17 PLFAs were derived from biochar amendments. The profile of {sup 13}C-PLFAs derived from straw amendment was significantly (p < 0.01) different from biochar amendment. The PLFAs 18:1ω7c and cy17:0 (indicators of Gram negative bacteria) showed high relative abundances in the biochar amendment, while 10Me18:0, i17:0 and 18:2ω6,9c (indicators of actinomycetes, Gram positive bacteria and fungi, respectively) showed high relative abundance in the straw amendments. Our results suggest

  11. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types].

    Science.gov (United States)

    Zhao, Bing; Shen, Li-bo; Cheng, Miao-miao; Wang, Song-feng; Wu, Long-hua; Zhou, Shou-biao; Luo, Yong-ming

    2011-10-01

    A pot experiment with heavy metals- contaminated black soil from Heilongjiang Province, alluvial soil from Henan Province, and paddy soil from Zhejiang Province was conducted to study the effects of intercropping Sedum plumbizincicola in wheat growth season under wheat (Triticum aestivum) - rice (Oryza sativa) rotation on the growth of the crops and their heavy metals uptake, aimed to explore the feasibility of simultaneous grain production and heavy metals-contaminated soil phytoremediation in main food crop production areas of this country. Comparing with monoculture T. aestivum, intercropping S. plumbizincicola increased the soil NaNO3 -extractable Zn and Cd significantly, with the increment of extractable Zn in test paddy soil, alluvial soil, and black soil being 55%, 32% and 110%, and that of extractable Cd in test paddy soil and black soil being 38% and 110%, respectively. The heavy metals concentration in T. aestivum shoots under intercropping S. plumbizincicola was 0.1-0.9 times higher than that under monoculture T. aestivum, but the intercropping had little effects on the rice growth and its heavy metals uptake. Though the Cd concentration in rice grain after S. plumbizincicola planting was still higher than 0.2 mg kg(-1) (the limit of Cd in food standard), it presented a decreasing trend, as compared with that after monoculture T. aestivum. Therefore, intercropping S. plumbizincicola in wheat growth season under wheat-rice rota- tion could benefit the phytoremediation of heavy metals-contaminated soil, and decrease the food-chain risk of rotated rice.

  12. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Fanrong; Ali Shafaqat; Zhang Haitao [Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Ouyang Younan [China National Rice Research Institute, Fuyang 310041 (China); Qiu Boyin; Wu Feibo [Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Zhang Guoping, E-mail: zhanggp@zju.edu.c [China National Rice Research Institute, Fuyang 310041 (China)

    2011-01-15

    The experiments were done to investigate the effect of soil pH and organic matter content on EDTA-extractable heavy metal contents in soils and heavy metal concentrations in rice straw and grains. EDTA-extractable Cr contents in soils and concentrations in rice tissues were negatively correlated with soil pH, but positively correlated with organic matter content. The combination of soil pH and organic matter content would produce the more precise regression models for estimation of EDTA-Cu, Pb and Zn contents in soils, demonstrating the distinct effect of the two factors on the availability of these heavy metals in soils. Soil pH greatly affected heavy metal concentrations in rice plants. Furthermore, inclusion of other soil properties in the stepwise regression analysis improved the regression models for predicting straw Fe and grain Zn concentrations, indicating that other soil properties should be taken into consideration for precise predicting of heavy metal concentrations in rice plants. - Soil pH and organic matter content significantly affect heavy metal availability and accumulation in rice plants.

  13. Effects of Two Soil Amendments from Steel Slag on Rice Growth and Nitrogen, Phosphorus and Potassium Uptake

    Directory of Open Access Journals (Sweden)

    ZHANG Lu

    2017-08-01

    Full Text Available A pot experiment was conducted to investigate the effects of two soil amendments(W and Y derived from steel slag and their application rates(0.74, 1.47, 2.94, 5.88 g·kg-1 and 11.76 g·kg-1 for W; 1.47, 2.94, 5.88, 11.76 g·kg-1 and 23.52 g·kg-1 for Y on rice growth. The results showed that no significant change in rice yield was found following W amendments; conversely, a 20% increase in rice yield was observed following Y amendments at rates of 11.76 g·kg-1 and 23.52 g·kg-1 as compared with NPK treatments. Y amendment at rates of 5.88~23.52 g·kg-1 increased straw mass by 24.02%~35.23% when compared with NPK treatments. Combined application of Y amendments and NPK fertilizers increased subsequent N, P and K uptake by rice by 12.61%~21.55%, 7.63%~38.31% and 11.89%~54.13%, respectively. The results indicated Y amendments could effectively accelerate subsequent rice growth at high application rates by increasing nutrient uptake in the soil studied(pH 6.51; Conversely, we observed no significant effects with W amendments.

  14. Evaluating non-aromatic rice varieties for growth and yield different rates of soil applied boron

    International Nuclear Information System (INIS)

    Shah, J.A.; Abbas, M.; Memon, M.Y.; Raid, N.

    2016-01-01

    Balanced boron (B) fertilization has prime importance to obtain maximum paddy yield. The range between B deficiency and toxicity is smaller than most plant nutrients, though B requirement among different crops varies widely. The adequate dose of B for one genotype can either be insufficient or toxic to other. Hence, without knowing the actual requirements of crop varieties, B application can be risky due to the toxicity hazards. A field experiment was undertaken at experimental farm of Nuclear Institute of Agriculture (NIA), Tandojam during 2013, to evaluate the B requirement of two non-aromatic rice varieties.The experiment was arranged in split plot design with three repeats. Two rice varieties Sarshar and Shandar were grown in main plots with four rates of B: 0.5, 1.0, 1.5 and 2.0 kg ha/sup -1/ and control (0 kg ha/sup -1/) in sub plots. Both the varieties responded differently to B rates. Sarshar produced the highest paddy yield (5691 kg ha/sup -1/) at a rate of 1.5 kg B ha/sup -1/ and was 18% greater than control, Shandar produced the highest yield (6075 kg ha/sup -1/) at a rate of 1.0 kg B ha/sup -1/ and was 5% greater than control. B accumulation in paddy and straw of both varieties increased with the increasing B rates. Both varieties were also significantly (p<0.05) varied in B accumulations. Comparatively, rice variety Sarshar accumulated 9% and 22% more B in straw and paddy than the Shandar. Thus, the B requirement of Sarshar was relatively higher than the Shandar. Shandar can be grown without the additional B application, whereas, Sarshar requires additional B for its maximum harvest in B deficient soils. (author)

  15. The significance of denitrification of applied nitrogen in fallow and cropped rice soils under different flooding regimes. Pt. 1

    International Nuclear Information System (INIS)

    Fillery, I.R.P.; Vlek, P.L.G.

    1982-01-01

    The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the 15 N balance, after either first accounting for NH 3 volatilization or by analyzing the 15 N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of 15 N from the soil-plant systems depended on the soil, being about 20% - 25% for the silt loams and only 10% - 12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied 15 N. Loss of 15 N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of 15 N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods. (orig.)

  16. [Quantifying rice (Oryza sativa L.) photo-assimilated carbon input into soil organic carbon pools following continuous 14C labeling].

    Science.gov (United States)

    Nie, San-An; Zhou, Ping; Ge, Ti-Da; Tong, Cheng-Li; Xiao, He-Ai; Wu, Jin-Shui; Zhang, Yang-Zhu

    2012-04-01

    The microcosm experiment was carried out to quantify the input and distribution of photo-assimilated C into soil C pools by using a 14C continuous labeling technique. Destructive samplings of rice (Oryza sativa) were conducted after labeling for 80 days. The allocation of 14C-labeled photosynthates in plants and soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) in rice-planted soil were examined over the 14C labeling span. The amounts of rice shoot and root biomass C was ranged from 1.86 to 5.60 g x pot(-1), 0.46 to 0.78 g x pot(-1) in different tested paddy soils after labeling for 80 days, respectively. The amount of 14C in the soil organic C (14C-SOC) was also dependent on the soils, ranged from 114.3 to 348.2 mg x kg(-1), accounting for 5.09% to 6.62% of the rice biomass 14C, respectively. The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C(14C-MBC), as proportions of 14C-SOC, were 2.21%-3.54% and 9.72% -17.2%, respectively. The 14C-DOC, 14C-MBC, and 14C-SOC as proportions of total DOC, MBC, and SOC, respectively, were 6.72% -14.64%, 1.70% -7.67%, and 0.73% -1.99%, respectively. Moreover, the distribution and transformation of root-derived C had a greater influence on the dynamics of DOC and MBC than on the dynamics of SOC. Further studies are required to ascertain the functional significance of soil microorganisms (such as C-sequestering bacteria and photosynthetic bacteria) in the paddy system.

  17. Influence of gypsum amendment on methane emission from paddy rice soil affected by saline irrigation water

    Directory of Open Access Journals (Sweden)

    Ei Ei eTheint

    2016-01-01

    Full Text Available To investigate the influence of gypsum application on methane (CH4 emission from paddy rice soil affected by saline irrigation water, two pot experiments with the rice cultivation were conducted. In pot experiment (I, salinity levels 30 mMNaCl (S30 and 90 mMNaCl (S90, that showed maximum and minimum CH4 production in an incubation experiment, respectively, were selected and studied without and with application of 1 Mg gypsum ha-1(G1. In pot experiment (II, CH4 emission was investigated under different rates of gypsum application: 1 (G1, 2.5 (G2.5 and 5 (G5 Mg gypsum ha-1 under a non-saline and saline condition of 25 mMNaCl (S25. In experiment (I, the smallest CH4 emission was observed in S90. Methane emission in S30 was not significantly different with the non-saline control. The addition of gypsum showed significant lower CH4 emission in saline and non-saline treatments compared with non-saline control. In experiment (II, the CH4 emissions in the saline treatments were not significantly different to the non-saline treatments except S25-G5. However, our work has shown that gypsum can lower CH4 emissions under saline and non-saline conditions. Thus, gypsum can be used as a CH4 mitigation option in non-saline as well as in saline conditions.

  18. Effect of organic matter application and water regimes on the transformation of fertilizer nitrogen in a Philippine soil

    International Nuclear Information System (INIS)

    Yoshida, Tomio; Padre, B.C. Jr.

    1975-01-01

    Greenhouse experiments using the tracer technique showed that about 20 per cent of the fertilizer nitrogen added as basal to the Maahas clay soil was immobilized in submerged soils to which no organic material was added. The addition of organic matter to the soil increases the amount of nitrogen immobilized and the magnitude depends on the carbon to nitrogen ratio of the materials added. More fertilizer nitrogen was immobilized in the soils under upland and alternate wet-and-dry conditions than under submerged soil conditions. The uptake of fertilizer nitrogen by rice plants growing under submerged soil conditions ceased at the vegetative stage of growth because only a small amount of available nitrogen remains in the soil at this time, but the rice plant continued to absorb gradually untagged nitrogen from the soil throughout the reproductive stages of growth. Losses of fertilizer nitrogen were great under the alternate wet-and-dry conditions (submerged-upland). The loss of nitrogen from the soil-plant system was reduced by the addition of rice straw, which also reduced the uptake of fertilizer nitrogen but not the total dry matter production under the experimental conditions. Fertilizer nitrogen immobilized during the first crop remained mostly in the soil throughout the full period of the second crop. The total nitrogen uptake by rice plants was not affected by the soil moisture tension under the upland conditions used in the study but the movement of nitrogen from the leaves to the panicles during the reproductive stage seemed to decrease as the soil moisture tension increased. (auth.)

  19. Influence of gypsum and farmyard manure on fertilizer zinc uptake by wheat and its residual effect on succeeding rice and wheat crops in a sodic soil

    International Nuclear Information System (INIS)

    Sachdev, P.; Deb, D.L.

    1990-01-01

    Greenhouse experiments were conducted to evaluate the effectiveness of gypsum and FYM on a sodic soil on fertilizer Zn uptake by wheat and residual effect on succeeding crops of rice and wheat. Application of FYM significantly increased the yield of first wheat crop as well as the yield of subsequent rice and wheat crops, but gypsum showed significant effect only on rice. FYM application also resulted in an increase in Zn content of all the three crops. Utilisation of the fertilizer Zn by the first crop of wheat ranged between 0.30 to 0.54 per cent while succeeding crop of rice utilised 1.00 to 1.25 per cent of the applied Zn. Application of gypsum to the first crop did not influence the fertilizer Zn uptake by wheat, rice and wheat, however, it significantly reduced the soil pH and increased the available Zn content in soil. (author). 15 refs., 6 tabs

  20. IMPACT OF BRACHIARIA, ARBUSCULAR MYCORRHIZA, AND POTASSIUM ENRICHED RICE STRAW COMPOST ON ALUMINIUM, POTASSIUM AND STABILITY OF ACID SOIL AGGREGATES

    Directory of Open Access Journals (Sweden)

    Bariot Hafif

    2013-04-01

    Full Text Available Acid soil is commonly grown with cassava, which in general, tolerate low soil  fertility and aluminum (Al toxicity. However, without any improvement efforts such soil will become worse. Intercropping cassava with Brachiaria decumbens (BD which adapts to acid soil and tolerates low fertility soils as well as application of arbuscular mycorrhiza (AM and organic matters are among the important efforts to rehabilitate this soil. The experiment was conducted to  examine the impact of BD, AM, and potassium (K enriched rice straw compost on exchangeable Al, available K, and stability of soil aggregates. Experiment was arranged in a completely randomized design with three factors and three replications. The first factor was BD as cassava intercropping, the second factor was AM, and the third factor was 2 t ha-1 rice straw compost enriched with 0 kg, 50 kg, 100 kg, and 200 kg KCl ha-1. Brick pots (1 m length x 1 m width x 0.45 m depth filled with Kanhapludult soil was used for growing cassava in which row of BD was planted at 60 cm from cassava stem. K-enriched rice straw compost and AM (10 g per stem were applied around cassava stem at 2 and 12 days after planting, respectively. BD was cut every 30 days and the cutting was returned to the soil. Soil exchangeable Al was analyzed at 0, 3, 6 and 9 months after planting (MAP, while Al and K contents as well as aggregate stability were measured at 6 MAP. The results showed that planting BD decreased 33% exchangeable Al, which means that the root exudates of this grass was effective in detoxifying Al3+. Treatment of BD and/or in combination with AM was effective in preserving K added to the soil, increasing total polysaccharides, and improving soil aggregate stability. This indicated that planting BD and applying AM and Kenriched rice straw compost improved acid soil fertility, and therefore can be recommended in cassava cultivation.

  1. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil.

    Science.gov (United States)

    Li, Chao; Zhang, Ji; Wu, Zhi-Guo; Cao, Li; Yan, Xin; Li, Shun-Peng

    2012-03-14

    A buprofezin-degrading bacterium, YL-1, was isolated from rice field soil. YL-1 was identified as Rhodococcus sp. on the basis of the comparative analysis of 16S rDNA sequences. The strain could use buprofezin as the sole source of carbon and nitrogen for growth and was able to degrade 92.4% of 50 mg L(-1) buprofezin within 48 h in liquid culture. During the degradation of buprofezin, four possible metabolites, 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one, N-tert-butyl-thioformimidic acid formylaminomethyl ester, 2-isothiocyanato-2-methyl-propane, and 2-isothiocyanato-propane, were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The catechol 2,3-dioxygenase activity was strongly induced during the degradation of buprofezin. A novel microbial biodegradation pathway for buprofezin was proposed on the basis of these metabolites. The inoculation of soils treated with buprofezin with strain YL-1 resulted in a higher degradation rate than that observed in noninoculated soils, indicating that strain YL-1 has the potential to be used in the bioremediation of buprofezin-contaminated environments.

  2. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils.

    Science.gov (United States)

    Gimeno-García, E; Andreu, V; Boluda, R

    1996-01-01

    The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.

  3. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  4. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China.

    Science.gov (United States)

    Du, Yan; Hu, Xue-Feng; Wu, Xiao-Hong; Shu, Ying; Jiang, Ying; Yan, Xiao-Juan

    2013-12-01

    Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg(-1), with a mean of 0.64 mg kg(-1), of which 57.5% exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4%. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg(-1), with a mean of 0.24 mg kg(-1). A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r = 0.770, ρ soils (r = 0.091, ρ > 0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day(-1) person(-1) on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.

  5. Transfer Factor of Co-60 and Cs-137 from Agricultural Soil to Agricultural Plant of Rice and Beans

    International Nuclear Information System (INIS)

    Suzie, D; Cerdas, T; Susilah, S; Umbara, H

    1996-01-01

    A study to estimate transfer factor of Co-60 and Cs-137 radionuclides from agricultural soil to agricultural plant of beans and rice in Serpong Nuclear Research Center Complex has been carried out. The soil used was that from off site Serpong Nuclear Research Center Complex, the agricultural plant samples were rice with variety of Cisadane, Situgintung, Seratus Malam, and Atomita 4, and for beans were peanut with variety of AH 1781 SI (parent) and A 20 psj (daughter), soybean with variety of Kerinci (parent) and Camar (daughter), and greenbean with variety of Manyar (parent) and Camar (daughter), which obtained from PAIR-BATAN Pasar Jumat. 10 kg of soil was put on the container which layered with plastic. The soil was contaminated with Co-60 and Cs-137 with activity concentration of 10 Bq/kg. Samples were counted with gamma spectrometer. The value of transfer factor was obtained by comparing activity concentration of agricultural plant with that of agricultural soil. The results of transfer factor of Co-60 for rice and beans were 0.12 x 10-2 and 1.05 x 10-2, respectively and the transfer factor of Cs-137 for rice and beans were 0.83 x 10-2 and 2.09 x 10-2, respectively. The gamma emmitter radionuclides counted from the soil of Serpong Nuclear Research Center Complex were Th-228, U-235, Ra-226, Ac-228 and K-40, with activities concentration as background were 35.39 - 101.60; 32.14 - 74.50; 23.37 - 28.57; 20.90 - 31.28 and 5.97 - 8.13 Bq/kg, respectively

  6. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  7. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils.

    Science.gov (United States)

    Yang, Yongjie; Chen, Jiangmin; Huang, Qina; Tang, Shaoqing; Wang, Jianlong; Hu, Peisong; Shao, Guosheng

    2018-02-01

    Cadmium (Cd) accumulation in rice is strongly controlled by liming, but information on the use of liming to control Cd accumulation in rice grown in slightly acidic soils is inconsistent. Here, pot experiments were carried out to investigate the mechanisms of liming on Cd accumulation in two rice varieties focusing on two aspects: available/exchangeable Cd content in soils that were highly responsive to liming, and Cd uptake and transport capacity in the roots of rice in terms of Cd accumulation-relative gene expression. The results showed that soil availability and exchangeable iron, manganese, zinc and Cd contents decreased with increased liming, and that genes related to Cd uptake (OsNramp5 and OsIRT1) were sharply up-regulated in the roots of the two rice varieties. Thus, iron, manganese, zinc and Cd contents in rice plants increased under low liming applications but decreased in response to high liming applications. However, yield and rice quantities were only slightly affected. These results indicated that Cd accumulation in rice grown in slightly acidic soils presents a contradictory dynamic equilibrium between Cd uptake capacity by roots and soil Cd immobilisation in response to liming. The enhanced Cd uptake capacity under low liming dosages increases risks to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice.

    Science.gov (United States)

    Yu, Huan-Yun; Wang, Xiangqin; Li, Fangbai; Li, Bin; Liu, Chuanping; Wang, Qi; Lei, Jing

    2017-05-01

    Iron (Fe)-based solids can reduce arsenic (As) mobility and bioavailability in soils, which has been well recognized. However, to our knowledge, there are few studies on As uptake at different growth stages of rice under Fe compound amendments. In addition, the formation of Fe plaques at different growth stages of rice has also been rarely reported. Therefore, the present study was undertaken to investigate As mobility and bioavailability in paddy soil under Fe compound amendments throughout the whole growth stage of rice plants. Amendments of poorly crystalline Fe oxides (PC-Fe), FeCl 2 +NaNO 3 and FeCl 2 reduced grain As by 54% ± 3.0%, 52% ± 3.0% and 46% ± 17%, respectively, compared with that of the non-amended control. The filling stage was suggested to be the key stage to take measures to reduce As uptake. At this stage, all soil amendments significantly reduced As accumulation in rice plants. At the maturation stage, PC-Fe amendment significantly reduced mobile pools and increased immobile pools of soil As. Besides, PC-Fe treatment promoted the transformation of Fe fractions from dissolved Fe to adsorbed, poorly crystalline and free Fe oxides. Moreover, significant positive correlations between soil Fe fractions and As fractions were found. Accordingly, we hypothesized that Fe compound amendments might affect the concentration distribution of Fe fractions first and then affect As fractionation in soil and its bioavailability to rice plants indirectly. The formation of Fe plaques varied with growth stages and different treatments. Significantly negative correlations between mobile pools of As and Fe or As in Fe plaques indicated that Fe plaques could immobilize mobile As in soils and thus affect As bioavailability. Overall, the effect of the soil amendments on reduction of As uptake varied with growth stages and different treatments, and further research on the key stage for reducing As uptake is still required. Copyright © 2017 Elsevier Ltd. All

  9. Content Of 2,4-D-14C Herbicide Residue In Water And Soil Of Irrigated Rice Field System

    International Nuclear Information System (INIS)

    Chairul, Sofnie M.; Djabir, Elida; Magdalena, Nelly

    2000-01-01

    The investigation of 2,4-D exp.-14C herbicide residue in water and soil of irrigated rice field system was carried out. Rice plant and weeds (Monochoria vaginalis Burn. F. Presl) were planted in 101 buckets using two kinds of soil condition, I.e. normal soil and 30 % above normal compact soil. After one week planting, the plants were sprayed with 1 u Ci of 2,4-D exp.-14C and 0,4 mg non labeled 2,4-D. The herbicide residue content was determined 0, 2, 4, 8 and 10 weeks after spraying with 2,4-D herbicide. The analysis was done using Combustion Biological Oxidizer merk Harvey ox-400, and counted with Liquid Scintillation Counter merk Beckman model LS-1801. The results indicates that the herbicide contents in water and soil decrease from the first spraying with herbicide until harvest herbicide Residue content in water after harvest was 0.87 x 10 exp.-6 ppm for soil normal condition, and 0.59 x 10 exp.-6 pm for the soil 30 % up normal condition, while herbicide content in soil was 1.54 x 10 exp.-6 ppm for soil normal condition and 1.48 x 10 exp.-6 ppm for soil 30 % up normal. 2,4-D herbicide residue content in rice after harvest was 0.27 x 10 exp.-6 ppm for normal soil condition and 0.25 x 10 exp.-6 ppm for the soil 30 % up normal. 2,4-D herbicide residue content in roots and leaves of weeds after harvest were respectively 0.29 x 10 exp.-6 ppm and 0.18 x 10 exp.-6 for normal soil condition, while for 30 % up normal soil were 0.25 x 10 exp.-5 ppm and 0.63 x 10 exp.-7 ppm. This result indicates that there is no effect pollution to surrounding area, because the herbicide content is still bellow the allowed detection limit, 0.05 ppm

  10. X-ray CT imaging and image-based modelling study of gas exchange in the rice rhizosphere

    Science.gov (United States)

    Affholder, Marie-Cecile; Keyes, Samuel David; Roose, Tiina; Heppell, James; Kirk, Guy

    2016-04-01

    We used X-ray computer tomography and image-based modelling to investigate CO2 uptake by rice roots growing in submerged soil, and its consequences for the chemistry and biology of the rhizosphere. From previous work, three processes are known to greatly modify the rhizophere of rice and other wetland plants: (1) oxygenation of the submerged, anoxic soil by O2 transported through the root gas channels (aerenchyma); (2) oxidation of ferrous iron and resulting accumulation of ferric oxide; and (3) pH changes due to protons formed in iron oxidation and released from the roots to balance excess intake of cations over anions. A further process, so far not much investigated, is the possibility of CO2 uptake by the roots. Large amounts of CO2 accumulate in submerged soils because CO2 formed in soil respiration escapes only slowly by diffusion through the water-saturated soil pores. There is therefore a large CO2 gradient between the soil and the aerenchyma inside the root, and CO2 may be taken up by the roots and vented to the atmosphere. The extent of this and its consequences for rhizosphere chemistry and biology are poorly understood. We grew rice plants in a submerged, strongly-reduced, Philippine rice soil contained in 10-cm diameter, 20-cm deep Perspex pots. Four-week old rice seedlings, grown in nutrient culture, were transplanted into the pots at either 1 or 4 plants per pot, planted closely together. After 3 and 4 weeks, the pots were analysed with an X-ray CT scanner (Custom Nikon/Xtek Hutch; 80 mm by 56 mm field of view and 40 μm voxel size). Gas bubbles were extracted from the data by 3D median filtering and roots using a region-growth method. The images showed prominent and abundant gas bubbles in the soil bulk, but no or very few bubbles in the soil close to roots. There was a clear relation between the absence of gas bubbles and the presence of roots, as well as an increasing concentration of bubbles with depth through the soil. Analysis of the bubbles

  11. Absorption of Mercury from Polluted Soil by Rice Plant(Case Study: Farms of Amol Industrial Suburban Area

    Directory of Open Access Journals (Sweden)

    Fatemeh Ahmadipour

    2013-03-01

    Full Text Available Mercury has recognized as one of the most toxic heavy metals, which many industries generate and dispose to the environment. Few studies are done about mercury accumulation in soil and bioconcentration and transfer factor of mercury in rice plant cultivated in industrial areas. In this study samples were taken randomly from 10 farms in vicinity of Amol industrial suburban area with three replications. Samples were measured by the LECO AMA 254 Advanced Mercury Analyzer according to ASTM D-6733method. Also the parameters related to the quality of the soil were measured. The mean of mercury concentration in soil, root, stem and grain were found 0.031 ±0.012 mg/kg, 0.074 ±0.0163 mg/kg, 0.058 ±0.008 mg/kg and 0.051 ±0.0083 mg/kg respectively. The calculated transfer factor of mercury to various organs and bioconcentration factor were < 1 and 2.46 respectively. Pearson correlation test showed a positive correlation between mercury concentration in soil with mercury concentration in grain and also a negative correlation between pH with mercury concentration in root and soil. It is concluded that rice plant have high potential for phytoremediation of mercury from soil.

  12. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIEXiao-mei; LIAOMin; LIUWei-ping; SusanneKLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolyrJc bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport svstem activit), was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growrh stages

  13. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-mei; LIAO Min; LIU Wei-ping; Susanne KLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolytic bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport system activity was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growth stages.

  14. Evaluation of the Effects of Iron Oxides on Soil Reducing Conditions and Methane Generation in Cambodian Wetland Rice Fields

    Science.gov (United States)

    Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.

    2007-12-01

    Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.

  15. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Xu, Chao; Chen, Hao-Xiang; Xiang, Qian; Zhu, Han-Hua; Wang, Shuai; Zhu, Qi-Hong; Huang, Dao-You; Zhang, Yang-Zhu

    2018-01-01

    Soil amendments, such as biochar, have been used to enhance the immobilization of heavy metals in contaminated soil. A pot experiment was conducted to immobilize the available cadmium (Cd) and lead (Pb) in soil using peanut shell biochar (PBC) and wheat straw biochar (WBC), and to observe the accumulation of these heavy metals in rice (Oryza sativa L.). The application of PBC and WBC led to significantly higher pH, soil organic carbon (SOC), and cation exchange capacity (CEC) in paddy soil, while the content of MgCl 2 -extractable Cd and Pb was lower than that of untreated soil. MgCl 2 -extractable Cd and Pb showed significant negative correlations with pH, SOC, and CEC (p rice plants. Specially, when compared to the corresponding concentrations in rice grown in control soils, 5% PBC addition lowered Cd and Pb concentrations in grains by 22.9 and 12.2%, respectively, while WBC addition lowered them by 29.1 and 15.0%, respectively. Compared to Pb content, Cd content was reduced to a greater extent in grain by PBC and WBC. These results suggest that biochar application is effective for immobilizing Cd and Pb in contaminated paddy soil, and reduces their bioavailability in rice. Biochar could be used as a soil amendment for the remediation of soils contaminated with heavy metals.

  16. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil.

    Science.gov (United States)

    Zou, Lina; Zhang, Shu; Duan, Dechao; Liang, Xinqiang; Shi, Jiyan; Xu, Jianming; Tang, Xianjin

    2018-03-01

    Arsenic (As) and lead (Pb) commonly co-exist with high concentrations in paddy soil mainly due to human activities in south of China. This study investigates the effect of ferrous sulfate (FeSO 4 ) amendment and water management on rice growth and arsenic (As) and lead (Pb) accumulation in rice plants. A paddy soil co-contaminated with As and Pb was chosen for the pot experiment with three FeSO 4 levels (0, 0.25, and 1%, on a dry weight basis) and two water managements (flooded, non-flooded). The concentrations of As and Pb in iron plaques and rice plants were determined. Application of FeSO 4 and non-flooded conditions significantly accelerated the growth of rice plants. With the addition of FeSO 4 , iron plaques were significantly promoted and most of the As and Pb were sequestered in the iron plaques. The addition of 0.25% FeSO 4 and non-flooded conditions did not significantly change the accumulation of As and Pb in rice grains. The practice also significantly decreased the translocation factor (TF) of As and Pb from roots to above-ground parts which might have been aided by the reduction of As and Pb availability in soil, the preventing effect of rice roots, and the formation of more reduced glutathione (GSH). Flooded conditions decreased the Pb concentration in rice plants, but increased As accumulation. Moreover, rice grew thin and weak and even died under flooded conditions. Overall, an appropriate FeSO 4 dose and non-flooded conditions might be feasible for rice cultivation, especially addressing the As issue in the co-contaminated soil. However, further detailed studies to decrease the accumulation of Pb in edible parts and the field application in As and Pb co-contaminated soil are recommended.

  17. Waterlogging and submergence: surviving poor aeration

    NARCIS (Netherlands)

    Atwell, B.J.; Ismail, A.M.; Pedersen, O.; Shabala, S.; Sorrell, B.; Voesenek, Laurentius|info:eu-repo/dai/nl/074850849

    2014-01-01

    Flooding, resulting in soil waterlogging and in many situations even complete submergence of plants, is an important abiotic stress in many regions worldwide. The number of floods has increased in recent decades (Figure 18.1), and the severity of floods is expected to increase further in many

  18. Long-term effects of lowland properties system on soil physicochemical properties and rice yield in Ashanti Region of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Obalum, S. E.; Oppong, J.; Nwite, J. C.; Watanabe, Y.; Buri, M. M.; Igwe, C. A.; Wakatsuki, T.

    2012-11-01

    Lowland sawah is viewed as a sustainable alternative to traditional rice culture in West Africa. Sawah (a bund-demarcated, puddled, leveled, and water-regulated rice field) has received growing research attention lately, but no data exist yet on the systems long-term agronomic impact. In a clayey inland-valley soil in southern Ghana, 10-year-old sawah plots (OSP), fresh sawah plots (FSP), and non-sawah plots (NSP) were maintained under both ponded and nonponded conditions in 2007. The OSP enhanced soil status of exchangeable nutrients compared to NSP. There were relative improvements in soil bulk density, total porosity, and field moisture content (OSP = FSP > NSP), with clear benefits of ponding over non-ponding in OSP. The NSP was so unsustainable that it showed less favourable values of these variables than an adjacent fallowed plot. These soil variables deteriorated with time, with significant differences in FSP. Soil moisture retention data for tension range of 0-300 kPa depicted the importance of puddling and ponding. During 2001-2009, OSP consistently out-yielded NSP by five times on average. During 2007-2009 when all three plots co-existed, grain yields averaged 5.80, 4.80 and 1.10 Mg ha-1 in OSP, FSP and NSP, respectively. In 2007 yields, OSP minus FSP was higher than NSP; in 2008/2009, the opposite prevailed. These results highlight the agronomic benefits of continuous sawah-based rice production. Although the positive effects of puddling on the soil hydrophysical properties were largely responsible for the wide margin in yield between sawah and traditional systems, other yield-enhancing factors, particularly bunds for water control, were also lacking in the latter. (Author) 37 refs.

  19. Accumulation of methylmercury in rice and flooded soil in experiments with an enriched isotopic Hg(II) tracer

    Science.gov (United States)

    Strickman, R. J.; Mitchell, C. P. J.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxin produced in anoxic aquatic sediments. Numerous factors, including the presence of aquatic plants, alter the biogeochemistry of sediments, affecting the rate at which microorganisms transform bioavailable inorganic Hg (IHg) to MeHg. Methylmercury produced in flooded paddy soils and its transfer into rice has become an important dietary consideration. An improved understanding of how MeHg reaches the grain and the extent to which rice alters MeHg production in rhizosphere sediments could help to inform rice cultivation practices. We conducted a controlled greenhouse experiment with thirty rice plants grown in individual, flooded pots amended with enriched 200Hg. Unvegetated controls were maintained under identical conditions. At three plant growth stages (vegetative growth, flowering, and grain maturity), ten plants were sacrificed and samples collected from soil, roots, straw, panicle, and grain of vegetated and unvegetated pots, and assessed for MeHg and THg concentrations. We observed consistent ratios between ambient and tracer MeHg between soils (0.36 ±0.04 — 0.44 ± 0.09) and plant compartments (0.23 ± 0.07 -0.34 ± 0.05) indicating that plant MeHg contamination originates in the soil rather than in planta methylation. The majority of this MeHg was absorbed between the tillering (4.48 ± 2.38 ng/plant) and flowering (8.43 ± 5.12 ng/pl) phases, with a subsequent decline at maturity (2.87 ± 1.23 ng/pl) only partly explained by translocation to the developing grain, indicating that MeHg was demethylated in planta. In contrast, IHg was absorbed from both soil and air, as evidenced by the higher ambient IHg concentrations compared to tracer (3.76 ± 1.19 vs. 0.27 ± 0.40 ng/g). Surprisingly, MeHg accumulation was significantly (p= 0.042-- 0.003) lower in vegetated vs. unvegetated sediments at flowering (1.41 ± 0.26 vs. 1.57 ± 0.23) and maturity (1.27 ± 0.22 vs. 1.71 ± 0.25), suggesting that plant exudates bound Hg

  20. Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application.

    Science.gov (United States)

    Zhan, Jie; Wei, Shuhe; Niu, Rongcheng; Li, Yunmeng; Wang, Shanshan; Zhu, Jiangong

    2013-04-01

    Using low-accumulative plant, especially excluder crop, to safely produce food is one of the very important technologies of phytoremediation, which is practical to safe production and long-term remediation of heavy metal-contaminated soil. A pot experiment using field cadmium (Cd)-contaminated soil (Cd concentration was 0.75 mg kg(-1)) was conducted to compare Cd accumulation differences among 39 normal rice cultivars (Japonica) in Shenyang region of China for food safety and high grain yield aim. The results showed that brown grain Cd concentration in 12 rice cultivars of a total of 39 tested cultivars was lower than 0.2 mg kg(-1) (Agricultural Trade Standard of Nonpollution Food for Rice of China, NY 5115-2008). In these 12 cultivars, Cd enrichment factors (Cd concentration ratio in shoot to that in soil) of nine cultivars were lower than 1. Likewise, Cd translocation factors (Cd concentration ratio in shoot to that in root) of eight cultivars were lower than the 0.28 average. Furthermore, grain yield per pot of seven cultivars were higher than the average 18.4 g pot(-1). Four cultivars, i.e., Shendao 5, Tianfu 1, Fuhe 90, and Yanfeng 47 showed Cd-exclusive characteristic and better foreground application.

  1. Soil-to-Rice Seeds Transfer Factors of Radioiodine and Technetium for Paddy Fields around the Radioactive-Waste Disposal Site in Gyeongju

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lim, Kwang Muk; Jun, In; Park, Doo Won; Keum, Dong Kwon; Han, Moon Hee

    2010-01-01

    Radiotracer experiments were performed over two years using pot cultures in a greenhouse to investigate soil-torice seeds transfer factors of radioiodine and technetium for paddy fields around the radioactive-waste disposal site in Gyeongju. Before transplanting rice seedlings, the top about 20 cm soils were thoroughly mixed with 125 I (2007) and 99 Tc (2008), and the pots were irrigated to simulate flooded rice fields. Transfer factors were determined as the ratios of the radionuclide concentrations in dry rice seeds (brown rice) to those in dry soils. Transfer factors of radioiodine and technetium were in the ranges of 1.1 x 10 -3 ∼ 6.4 x 10 -3 (three soils) and 5.4 x 10 -4 ∼ 2.5 x 10 -3 (four soils), respectively, for different soils. It seems that the differences in the clay content among soils played a more important role for such variations than those in the organic matter content and pH. As the representative values of radioiodine and technetium transfer factors for rice seeds, 2.9 x 10 -3 and 1.1 x 10 -3 , respectively, were proposed. In order to obtain more highly representative values in the future, investigations for the sites of interest need to be carried out continuously

  2. Identification of a novel submergence response gene regulated by ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-12-07

    Dec 7, 2016 ... ... stress. Hormone ABA treatment induces, whereas GA treatment decreases, RS1 ... Key word: Rice (Oryza sativa L.), submergence, RNA-seq, Sub1A, abiotic stress. ... genes may interact with Sub1A-1 that are necessary for.

  3. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    Science.gov (United States)

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system

  4. Mercury content in wetland rice soil and water of two different seasons at small-scale gold mine processing areas

    Directory of Open Access Journals (Sweden)

    T. Sugianti

    2016-04-01

    Full Text Available This study was aimed to identify the impact of small-scale gold processing activities on mercury content in wetland rice soil and water during the rainy and first dry seasons in Central Lombok and West Lombok Districts. The method used for this study was survey method. Measurement of mercury levels in water samples was conducted at Agro Bogor Centre using SNI 6989.77: 2011 methods. The data was collected and processed in a simple statistic presented descriptively, in order to obtain information. Results of the study showed that mercury content soils in the rainy season exceeded the threshold of 0.005 ppm, while in the first dry season the mercury content in soil decreased, but it was still above the threshold value permitted. The contents of mercury in water samples in the rainy season and the first dry season were still at a safe point that was less than 0.05 ppm. The wetland rice soil and water had been polluted with mercury, although the mercury content in the water was still below the threshold, but the accumulation of mercury that could have been absorbed by the plants are of particular concerns. The decrease of mercury content in soil in dry season was due to lack of gold processing activities.

  5. Isotopic tracer studies to evaluate relative efficiency of different forms of P for growing rice on different soil types

    Energy Technology Data Exchange (ETDEWEB)

    Dash, R N; Mohanty, S K; Patnaik, S [Central Rice Research Inst., Cuttack (India)

    1977-12-01

    The relative efficiency of different forms of P in relation to their time of application for growing rice on different soil types has been studied by using /sup 32/P tagged mono-, di-, and tri-calcium phosphate, ammonium nitrate phosphate containing all the P in the citrate-soluble form and potassium meta-phosphate. P-deficient acid laterite soil from Burdwan, red loam soil from Peramanpur and calcareous black soil from Hyderabad were used in the study. The different P forms were found to be compatible in the acid, red and laterite soils when the phosphorus forms were primed to moist acid soils 2 weeks prior to flooding. On application at flooding, fertilizers containing citrate-soluble phosphate were found to be less effective as compared to those containing water-soluble phosphate. In the calcareous black soil, however, the fertilizers, containing insoluble or citrate-soluble phosphates were not as efficient as the water-soluble forms, possibly because of lack of dissolution process. Potassium meta-phosphate was found to be effective in all the soil types whether applied at flooding or primed to the moist soil.

  6. Isotopic tracer studies to evaluate relative efficiency of different forms of P for growing rice on different soil types

    International Nuclear Information System (INIS)

    Dash, R.N.; Mohanty, S.K.; Patnaik, S.

    1977-01-01

    The relative efficiency of different forms of P in relation to their time of application for growing rice on different soil types has been studied by using 32 P tagged mono-, di-, and tri-calcium phosphate, ammonium nitrate phosphate containing all the P in the citrate-soluble form and potassium meta-phosphate. P-deficient acid laterite soil from Burdwan, red loam soil from Peramanpur and calcareous black soil from Hyderabad were used in the study. The different P forms were found to be compatible in the acid, red and laterite soils when the phosphorus forms were primed to moist acid soils 2 weeks prior to flooding. On application at flooding, fertilizers containing citrate-soluble phosphate were found to be less effective as compared to those containing water-soluble phosphate. In the calcareous black soil, however, the fertilizers, containing insoluble or citrate-soluble phosphates were not as efficient as the water-soluble forms, possibly because of lack of dissolution process. Potassium meta-phosphate was found to be effective in all the soil types whether applied at flooding or primed to the moist soil. (M.G.B.)

  7. Soil-to-plant transfer factors of trace and major elements in rice plant (Oryza Sativa) at Kalpakkam

    International Nuclear Information System (INIS)

    Sreedevi, K.R.; Rajaram, S.; Thulasi Brindha, J.; Venkataraman, S.; Hegde, A.G.

    2011-01-01

    The objective of this study was to evaluate the distribution of trace and major elements in rice plant (Oryza Sativa) which is the staple diet of the public at Kalpakkam. The transfer factor from soil to various parts of plant was also studied. Trace and major elements such as Fe, Mn, Zn, Co, Cu, Ni, Cr, Cd, Pb , Sr, K, Ca and Mg were selected based on their role in nutrition and also to study the behaviour of their radioactive counterparts. Among the trace elements Fe concentration was observed to be maximum in soil, the mean value of which was 18394 mg/kg dry wt. Cadmium concentration was observed to be minimum with the mean value of 2 mg/kg dry wt. The maximum and minimum concentration observed in the rice grain were due to Zn and Cd and the values were found to be 9 and 0.044 mg/kg dry wt, respectively. In the stem and leaves part the maximum and minimum concentration was due to Fe and Cd and the values were found to be 26.8 and 0.12 mg/kg dry wt. Similarly in the root part Fe and Cd concentrations were found to be maximum and minimum, respectively. Among the different parts of the rice plant, trace elements concentration in root was maximum and in stem and leaves major elements concentration was maximum. Transfer factor from soil to plant parts was computed. In general, the transfer factor was maximum in root, followed by stem and leaves and grain for trace elements. The transfer factor computed for whole rice plant was maximum for Zn and minimum for Sr which is a significant observation from radiological point of view. (author)

  8. Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka

    International Nuclear Information System (INIS)

    Fordyce, F.M.; Johnson, C.C.; Appleton, J.D.; Navaratna, U.R.B.; Dissanayake, C.B.

    2000-01-01

    Endemic goitre has been reported in the climatic wet zone of south-west Sri Lanka for the past 50 years, but rarely occurs in the northern dry zone. Despite government-sponsored iodised salt programmes, endemic goitre is still prevalent. In recent years, it has been suggested that Se deficiency may be an important factor in the onset of goitre and other iodine deficiency disorders (IDD). Prior to the present study, environmental concentrations of Se in Sri Lanka and the possible relationships between Se deficiency and endemic goitre had not been investigated. During the present study, chemical differences in the environment (measured in soil, rice and drinking water) and the Se-status of the human population (demonstrated by hair samples from women) were determined for 15 villages. The villages were characterised by low ( 25%) goitre incidence (NIDD, MIDD and HIDD, respectively). Results show that concentrations of soil total Se and iodine are highest in the HIDD villages, however, the soil clay and organic matter content appear to inhibit the bioavailability of these elements. Concentrations of iodine in rice are low (≤58 ng/g) and rice does not provide a significant source of iodine in the Sri Lankan diet. High concentrations of iodine (up to 84 μg/l) in drinking water in the dry zone may, in part, explain why goitre is uncommon in this area. This study has shown for the first time that significant proportions of the Sri Lankan female population may be Se deficient (24, 24 and 40% in the NIDD, MIDD and HIDD villages, respectively). Although Se deficiency is not restricted to areas where goitre is prevalent, a combination of iodine and Se deficiency could be involved in the pathogenesis of goitre in Sri Lanka. The distribution of red rice cultivation in Sri Lanka is coincident with the HIDD villages. Varieties of red rice grown in other countries contain anthocyanins and procyanidins, compounds which in other foodstuffs are known goitrogens. The potential

  9. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield

    NARCIS (Netherlands)

    Carvalho, M.T.M.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Leal, W.G.O.; Heinemann, A.B.; Silva, da M.A.S.; Maia, A.H.N.; Parsons, D.; Meinke, H.

    2016-01-01

    We assessed the impact of a single application of wood biochar on soil chemical and physical properties and aerobic rice grain yield on an irrigated kaolinitic clay Ferralsol in a tropical Savannah. We used linear mixed models to analyse the response of soil and plant variables to application

  10. Growth inhibition of rice (Oryza sativa L.) seedlings in Ga- and In-contaminated acidic soils is respectively caused by Al and Al+In toxicity.

    Science.gov (United States)

    Su, Jeng-Yan; Syu, Chien-Hui; Lee, Dar-Yuan

    2018-02-15

    Limited information exists on the effects of emerging contaminants gallium (Ga) and indium (In) on rice plant growth. This study investigated the effects on growth and uptake of Ga and In by rice plants grown in soils with different properties. Pot experiment was conducted and the rice seedlings were grown in two soils of different pH (Pc and Cf) spiked with various Ga and In concentrations. The results showed concentrations of Ga, In, and Al in soil pore water increased with Ga- or In-spiking in acidic Pc soils, significantly decreasing growth indices. According to the dose-response curve, we observed that the EC 50 value for Ga and In treatments were 271 and 390mgkg -1 in Pc soils, respectively. The context of previous hydroponic studies suggests that growth inhibition of rice seedlings in Ga-spiked Pc soils is mainly due to Al toxicity resulting from enhanced Al release through competitive adsorption of Ga, rather than from Ga toxicity. In-spiked Pc soils, both In and Al toxicity resulted in growth inhibition, while no such effect was found in Cf soils due to the low availability of Ga, In and Al under neutral pH conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Absorption of gamma-emitting fission products and activation products by rice under flooded and unflooded conditions from two tropical soils

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Mistry, K.B.

    1980-01-01

    The absorption of gamma-emitting fission products 106 Ru, 125 Sb, 137 Cs and 144 Ce and activation products 59 Fe, 58 Co, 54 Mn and 65 Zn by rice plants grown on two contrasting tropical soils, namely, a blak soil (pellustert) and a laterite (oxisol), and the effects of flooding were studied under controlled conditions. Results indicated greater uptake of 106 Ru and 125 Sb from the black soil than from the laterite. In contrast, the uptake of 144 Ce and 137 Cs was greater in the laterite than in the black soil. Flooding treatment enhanced the uptake of all these fission products by rice plants in the laterite soil whereas this effect was observed only for 125 Sb and 137 Cs in the black soil. The plant uptake of activation products from the two soil types showed maximum accumulation of 65 Zn followed by 54 Mn, 59 Fe and 58 Co in both soil types. Besides, uptake of these nuclides was greater from the laterite soil than from the black soil. Flooding treatment for rice while showing a reduction of 59 Fe uptake showed an increase in plant uptake of 58 Co, 54 Mn and 65 Zn in both soil types. (orig.)

  12. Absorption of gamma-emitting fission products and activation products by rice under flooded and unflooded conditions from two tropical soils

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, T J; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.

    1980-01-01

    The absorption of gamma-emitting fission products /sup 106/Ru, /sup 125/Sb, /sup 137/Cs and /sup 144/Ce and activation products /sup 59/Fe, /sup 58/Co, /sup 54/Mn and /sup 65/Zn by rice plants grown on two contrasting tropical soils, namely, a blak soil (pellustert) and a laterite (oxisol), and the effects of flooding were studied under controlled conditions. Results indicated greater uptake of /sup 106/Ru and /sup 125/Sb from the black soil than from the laterite. In contrast, the uptake of /sup 144/Ce and /sup 137/Cs was greater in the laterite than in the black soil. Flooding treatment enhanced the uptake of all these fission products by rice plants in the laterite soil whereas this effect was observed only for /sup 125/Sb and /sup 137/Cs in the black soil. The plant uptake of activation products from the two soil types showed maximum accumulation of /sup 65/Zn followed by /sup 54/Mn, /sup 59/Fe and /sup 58/Co in both soil types. Besides, uptake of these nuclides was greater from the laterite soil than from the black soil. Flooding treatment for rice while showing a reduction of /sup 59/Fe uptake showed an increase in plant uptake of /sup 58/Co, /sup 54/Mn and /sup 65/Zn in both soil types.

  13. The carbon count of 2000 years of rice cultivation.

    Science.gov (United States)

    Kalbitz, Karsten; Kaiser, Klaus; Fiedler, Sabine; Kölbl, Angelika; Amelung, Wulf; Bräuer, Tino; Cao, Zhihong; Don, Axel; Grootes, Piet; Jahn, Reinhold; Schwark, Lorenz; Vogelsang, Vanessa; Wissing, Livia; Kögel-Knabner, Ingrid

    2013-04-01

    More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long-term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000-year chronosequence of soils under paddy and adjacent nonpaddy management in the Yangtze delta, China. The initial organic carbon accumulation phase lasts much longer and is more intensive than previously assumed, e.g., by the Intergovernmental Panel on Climate Change (IPCC). Paddy topsoils accumulated 170-178 kg organic carbon ha(-1) a(-1) in the first 300 years; subsoils lost 29-84 kg organic carbon ha(-1) a(-1) during this period of time. Subsoil carbon losses were largest during the first 50 years after land embankment and again large beyond 700 years of cultivation, due to inorganic carbonate weathering and the lack of organic carbon replenishment. Carbon losses in subsoils may therefore offset soil carbon gains or losses in the surface soils. We strongly recommend including subsoils into global carbon accounting schemes, particularly for paddy fields. © 2012 Blackwell Publishing Ltd.

  14. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2017-01-01

    Full Text Available Background. Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. Methods. This research was conducted to determine lead (Pb, cadmium (Cd, arsenic (As, manganese (Mn, and antimony (Sb concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Results. Local soil contamination was observed, with mean concentrations of Cd, Pb, Sb, and As of 0.472, 193.133, 36.793, and 89.029 mg/kg, respectively. Mean concentrations of Cd, Pb, Sb, Mn, and As in brown rice were 0.103, 0.131, 5.175, 6.007, and 0.524 mg/kg, respectively. Daily intakes of Cd, As, Sb, Pb, and Mn through brown rice consumption were estimated to be 0.011, 0.0002, 0.004, 0.0001, and 0.0003 mg/(kg/day, respectively. The combined hazard index for the five heavy metals was 22.5917, and the total cancer risk was 0.1773. Cd contributed most significantly to cancer risk, accounting for approximately 99.77% of this risk. Conclusions. The results show that potential noncarcinogenic and carcinogenic health risks exist for local inhabitants and that regular monitoring of pollution to protect human health is urgently required.

  15. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China.

    Science.gov (United States)

    Fan, Yu; Zhu, Tingping; Li, Mengtong; He, Jieyi; Huang, Ruixue

    2017-01-01

    Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. This research was conducted to determine lead (Pb), cadmium (Cd), arsenic (As), manganese (Mn), and antimony (Sb) concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Local soil contamination was observed, with mean concentrations of Cd, Pb, Sb, and As of 0.472, 193.133, 36.793, and 89.029 mg/kg, respectively. Mean concentrations of Cd, Pb, Sb, Mn, and As in brown rice were 0.103, 0.131, 5.175, 6.007, and 0.524 mg/kg, respectively. Daily intakes of Cd, As, Sb, Pb, and Mn through brown rice consumption were estimated to be 0.011, 0.0002, 0.004, 0.0001, and 0.0003 mg/(kg/day), respectively. The combined hazard index for the five heavy metals was 22.5917, and the total cancer risk was 0.1773. Cd contributed most significantly to cancer risk, accounting for approximately 99.77% of this risk. The results show that potential noncarcinogenic and carcinogenic health risks exist for local inhabitants and that regular monitoring of pollution to protect human health is urgently required.

  16. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.

    Science.gov (United States)

    Liu, Houjun; Zhang, Junling; Christie, Peter; Zhang, Fusuo

    2008-05-15

    Iron plaque is ubiquitously formed on the root surfaces of rice. However, little is known about the role of iron plaque in Cd movement from soil to the plant aboveground parts. A pot experiment was conducted to investigate the influence of iron plaque in Cd uptake and accumulation by rice seedlings in soil. Rice seedlings were pre-cultivated in solution culture for 16 days. Two seedlings were transplanted in a nylon bag containing no substrate but surrounded by soil amended with Fe and Cd combined at rates of 0, 1, or 2 g Fe kg(-1) and 0, 2.0, or 10 mg Cd kg(-1) soil. Fe was added to induce different amounts of iron plaque, and Cd to simulate Cd-polluted soils. Plants were grown for a further 43 days and then harvested. The length of the longest leaf and SPAD values of the newly mature leaves were measured during plant growth. Fe and Cd concentrations were determined in dithionite-citrate-bicarbonate (DCB) soil extracts and in plant roots and shoots. Shoot and root dry weights were significantly affected by Fe supply level but not by added Cd. Root dry weight declined with increasing Fe supply but shoot dry weight decreased at 2 g Fe kg(-1) and increased at 1 g Fe kg(-1) (except at 2 mg Cd kg(-1)). The length of the longest leaf and SPAD values of the newly mature leaves were significantly affected by plant growth stage and added Fe and Cd. Fe tended to diminish the negative effect of Cd on these two parameters. Cd concentrations in DCB extracts increased with increasing Cd and Fe supply. In contrast, external Fe supply markedly reduced shoot and root Cd concentrations and there was generally no significant difference between the two Fe supply levels. Shoot and root Cd concentrations increased with increasing Cd addition. Root Cd concentrations were negatively correlated with root Fe concentrations. The proportion of Cd in DCB extracts was significantly lower than in roots or shoots. The results indicate that enhanced Fe uptake by plants can diminish the negative

  17. Estimation of Net Rice Production through Improved CASA Model by Addition of Soil Suitability Constant (ħα

    Directory of Open Access Journals (Sweden)

    Syed Muhammad Hassan Raza

    2018-05-01

    Full Text Available Net primary production (NPP is an important indicator of the supply of food and wood. We used a hierarchy model and real time field observations to estimate NPP using satellite imagery. Net radiation received by rice crop canopies was estimated as 27,428 Wm−2 (215.4 Wm−2 as averaged throughout the rice cultivation period (RCP, including 23,168 Wm−2 (118.3 Wm−2 as averaged as shortwave and 4260 Wm−2 (34.63 Wm−2 as averaged as longwave radiation. Soil, sensible and latent heat fluxes were approximated as 3324 Wm−2, 16,549 Wm−2, and 7554 Wm−2, respectively. Water stress on rice crops varied between 0.5838 and 0.1218 from the start until the end of the RCP. Biomass generation declined from 6.09–1.03 g/m2 in the tillering and ripening stages, respectively. We added a soil suitability constant (ħα into the Carnegie-Ames-Stanford Approach (CASA model to achieve a more precise estimate of yield. Classification results suggest that the total area under rice cultivation was 8861 km2. The spatial distribution of rice cultivation as per suitability zone was: 1674 km2 was not suitable (NS, 592 km2 was less suitable (LS, 2210 km2 was moderately suitable (MS and 4385 km2 was highly suitable (HS soil type with ħα ranges of 0.05–0.25, 0.4–0.6, 0.7–0.75 and 0.85–0.95 of the CASA based yield, respectively. We estimated net production as 1.63 million tons, as per 0.46 ton/ha, 1.2 ton/ha 1.9 ton/ha and 2.4 ton/ha from NS, LS, MS and HS soil types, respectively. The results obtained through this improved CASA model, by addition of the constant ħα, are likely to be useful for agronomists by providing more accurate estimates of NPP.

  18. [Effects of long-term fertilization on soil organic carbon pool and carbon sequestration under double rice cropping].

    Science.gov (United States)

    Sun, Yu-Tao; Liao, Yu-Lin; Zheng, Sheng-Xian; Nie, Jun; Lu, Yan-Hong; Xie, Jian

    2013-03-01

    This paper studied the effects of 30 years (1981-2010) fertilization with chemical N, P, and K, pig manure (PM), and rice straw (RS) on the soil organic carbon (SOC) and its components contents under intensive double rice cropping. The experiment was established on a typic Hapli-Stagnic Anthrosols in Hunan in 1981, and the soil samples were collected in November 2010. In treatment NPK, the contents of SOC, particulate organic C (POC), and KMnO4-oxidizable C (KMnO4-C) were higher than those in treatments NP and NK. The combined application of chemical and organic fertilizers (treatments NK+PM, NP+RS, and NPK+RS) made the contents of SOC, POC, and KMnO4-C have a significant increase, as compared with chemical fertilizations. Treatment NK+PM had the highest contents of SOC (84.71 t C.hm-2), POC (8.94 t C.hm-2), and KMnO4-C (21.09 t C.hm-2) in top soil (0-45 cm), followed by treatment NPK+RS. Treatment NK+PM had the highest C sequestration (485 kg C.hm-2.a-1) , followed by treatment NPK+RS (375 kg C.hm-2.a-1). The C sequestration efficiency (CSE) of SOC in the treatments of chemical fertilizers plus pig manure or rice straw was obviously higher than that in the treatments of chemical fertilizations, and the CSE of the POC in fertilization treatments (ranging from 0.4% and 1.2%) was lower than that of the KMnO4-C (ranging from 3.0% to 8.3%). By using the values of humification constant (h) and the decay constant (k) in Jenkinson' s equation, it was possible to predict the SOC storages in different treatments in the year 2010; and by using Jenkinson' s equation, it was possible to calculate the C input required to maintain the SOC storages in the year 1981 (AE). The increase of the SOC in treatments NK+PM, NP+RS, and NPK+RS was due to the annual C input being higher than the AE. It was considered that in the double rice cropping areas in subtropical region of China, long-term application of chemical fertilizers combined with pig manure or rice straw could promote the

  19. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices.

    Science.gov (United States)

    Singh, Y P; Mishra, V K; Singh, Sudhanshu; Sharma, D K; Singh, D; Singh, U S; Singh, R K; Haefele, S M; Ismail, A M

    2016-04-01

    Regaining the agricultural potential of sodic soils in the Indo-Gangetic plains necessitates the development of suitable salt tolerant rice varieties to provide an entry for other affordable agronomic and soil manipulation measures. Thus selection of high yielding rice varieties across a range of sodic soils is central. Evaluation of breeding lines through on-station and on-farm farmers' participatory varietal selection (FPVS) resulted in the identification of a short duration (110-115 days), high yielding and disease resistant salt-tolerant rice genotype 'CSR-89IR-8', which was later released as 'CSR43' in 2011. Several agronomic traits coupled with good grain quality and market value contributed to commercialization and quick adoption of this variety in the sodic areas of the Indo-Gangetic plains of eastern India. Management practices required for rice production in salt affected soils are evidently different from those in normal soils and practices for a short duration salt tolerant variety differ from those for medium to long duration varieties. Experiments were conducted at the Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station, Lucknow, Uttar Pradesh, India during 2011 and 2013 wet seasons, to test the hypothesis that combining matching management practices (Mmp) with an improved genotype would enhance productivity and profitability of rice in sodic soils. Mmp were developed on-station by optimizing existing best management practices (Bmp) recommended for the region to match the requirements of CSR43. The results revealed that transplanting 4 seedlings hill -1 at a spacing of 15 × 20 cm produced significantly higher yield over other treatments. The highest additional net gain was US$ 3.3 at 90 kg ha -1  N, and the lowest was US$ 0.4 at 150 kg ha -1  N. Above 150 kg ha -1 , the additional net gain became negative, indicating decreasing returns from additional N. Hence, 150

  20. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta

    International Nuclear Information System (INIS)

    Hang Xiaoshuai; Wang Huoyan; Zhou Jianmin; Ma Chengling; Du Changwen; Chen Xiaoqin

    2009-01-01

    Soil pollution with potentially toxic elements (PTEs) resulting from rapid industrial development has caused major concerns. Selected PTEs and their accumulation and distribution in soils and rice (Oryza sativa) collected from Changshu, east China, were analyzed to evaluate the potential health risk to the local population. The soils were primarily contaminated with Hg, followed by Cu, Cd, Pb, and Zn. The concentrations of Pb, Hg, and Cd of 46, 32, and 1 rice samples exceeded their national maximum allowable levels in foods, respectively. Spatial distributions of total Cr, Cu, Pb, Zn, and Cd in soils shared similar geographical trends. The risk assessment of PTEs through rice consumption suggests that the concentrations of Cu, Pb, and Cd in some rice samples exceed their reference oral dose for adults and children. In general, there was no target hazard quotient value of any individual element that was greater than 1, but hazard index values for adults and children were 1.726 and 1.523, respectively. - Industrial development has led to increased risk from potentially toxic elements in soils and rice.

  1. Soil type links microbial colonization of rice roots to methane emission

    NARCIS (Netherlands)

    Conrad, R.; Klose, M.; Noll, M.; Kemnitz, D.; Bodelier, P.L.E.

    2008-01-01

    Most of the methane (CH4) emission from rice fields is derived from plant photosynthates, which are converted to CH4. Rice cluster I (RC-1) archaea colonizing the rhizosphere were found to be the methanogens responsible for this process. Hence, RC-1 methanogens seem to play a crucial role in

  2. Rice in cropping systems - Modelling transitions between flooded and non-flooded soil environments

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Suriadi, A.; Dobermann, A.; Bouman, B.A.M.; Timsina, J.

    2012-01-01

    Water shortages in many rice-growing regions, combined with growing global imperatives to increase food production, are driving research into increased water use efficiency and modified agricultural practices in rice-based cropping systems. Well-tested cropping systems models that capture

  3. Rice rhizosphere soil and root surface bacterial community response to water management changes

    Science.gov (United States)

    Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...

  4. Speciation of trace metals and their uptake by rice in paddy soils

    NARCIS (Netherlands)

    Pan, Y.

    2015-01-01

    Rice (Oryza sativa L.) is the most important staple food in South and Southeast Asia and plays a crucial role in food security. However, with fast urbanization and industrialization and economic growth in these parts of the world, the production and quality of rice has become an

  5. Effect of compound bio-fertilizer on fertilizer efficiency of rice and active nutrients of soil after harvesting by 15N tracing

    International Nuclear Information System (INIS)

    Lin Daiyan; Weng Boqi; Lin Yan

    2005-01-01

    The experimental study on the effects of bio-fertilizer on pot planted rice showed that bio-fertilizer could promote the nutrient supply for rice. In addition, the nutrient content in soil after harvesting was increased through the application of bio-fertilizer. 15 N tracing showed that Bacillus azotofixans in bio-fertilizer can provided 99.5 mg/ plant azote for rice, which was about 11.92% of the total azote absorption. At the same time, micro-organism could decrease the loss of the azote, thus increasing the recovery rate of azote. (authors)

  6. Growth, Metabolism and Yield of Rice Cultivated in Soils Amended with Fly Ash and Cyanobacteria and Metal Loads in Plant Parts

    OpenAIRE

    Rabindra N. Padhy; Nabakishore Nayak; Rajesh R. Dash-Mohini; Shakti Rath; Rajani K. Sahu

    2016-01-01

    Soil amendment with fly ash (FA) and combined supplementation with N2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grow...

  7. Transport behavior and rice uptake of radiostrontium and radiocesium in flooded paddy soils contaminated in two contrasting ways

    International Nuclear Information System (INIS)

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Han, Moon-Hee; Kim, In-Gyu

    2011-01-01

    In order to investigate the transport behavior and rice uptake of radiostrontium and radiocesium in flooded rice fields, lysimeter experiments with two paddy soils were performed in a greenhouse. A solution containing 85 Sr and 137 Cs was applied in two different ways — being mixed with the top soil 27 d before transplanting or being dropped to the surface water 1 d after transplanting. Rice uptake was quantified with two kinds of transfer factor — TF m (dimensionless) and TF a (m 2 kg −1 -dry) for the pre- and post-transplanting depositions, respectively. For brown rice, the TF m values of 85 Sr and 137 Cs differed between the soils by factors of 2 (1.6 × 10 −2 and 2.5 × 10 −2 ) and 7 (2.2 × 10 −2 and 1.5 × 10 −1 ), respectively. Corresponding factors by the TF a values were 2 (2.5 × 10 −4 and 4.4 × 10 −4 ) for 85 Sr and 3 (1.1 × 10 −3 and 2.9 × 10 −3 ) for 137 Cs. Straws had several times higher TF m and TF a values of 85 Sr than of 137 Cs. The surface-water concentrations were substantially higher for the TF a than for the TF m , indicating the possibility of a much higher plant-base uptake for the TF a . In the TF a soils, 137 Cs and, to a lesser degree, 85 Sr were severely localized towards the soil surface, probably leading to an increased root uptake. The activity loss due to plant uptake and water percolation was generally inconsiderable. Time-dependent K d values of 85 Sr measured in a parallel experiment ranged from 20 to 170, whereas 137 Cs had much higher K d values. The use of TF a values instead of TF m values turned out to be a reasonable approach to the evaluation of a vegetation-period deposition.

  8. Feasibility Study of Soil Quality Survey using Visible and Near Infrared Spectroscopy in Rice Paddy Fields in China

    Directory of Open Access Journals (Sweden)

    Hongyi Li

    2014-06-01

    Full Text Available Survey and monitoring of soil quality are needed to prevent soil degradation and are important for sustainable farming and food production. Conventional soil survey involves intensive soil sampling and laboratory analysis, which are time consuming and expensive. Visible and near infrared spectroscopy of soil has proved to be accurate, cheap and robust and has huge potential for survey of soil quality. To test its potential, 327 soil samples were taken from long-term paddy rice fields in four provinces in south of China and covered a wide range of soil types and texture. The samples were air-dried, ground and passed through a 2 mm sieve. They were then scanned by an ASD vis–NIR spectrometer with wavelength range from 350 to 2500 nm. Organic matter (OM, pH, total nitrogen (TN and available nitrogen (N_av were also measured on soil samples to build calibration models and also to validate the models’ accuracy. On the basis of the ratio of prediction deviation (RPD, which is standard deviation (SD of prediction divided by the root mean square error of prediction (RMSEP, the accuracy of leave-one-out cross-validation of soil N_av model was classified very good (RPD=1.96 and soil OM and TN was good (RPD=1.78 and RPD=1.81, respectively. However, the model accuracy of pH was poor due to non-direct soil spectral response for soil pH in vis–NIR spectroscopy. The independent validation results showed excellent accuracy for soil N_av (RPD=3.26, good accuracy for OM and TN (RPD=1.76 and RPD=1.78 and relative poor accuracy for soil pH (RPD=1.27. This feasibility study is encouraging for the application of vis–NIR surveys of soil quality accuracy at regional and national scales; it found good to excellent accuracy for some important soil properties in quality survey.

  9. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils

    International Nuclear Information System (INIS)

    Ali, Muhammad Aslam; Kim, P.J.; Inubushi, K.

    2015-01-01

    Effects of different soil amendments were investigated on methane (CH 4 ) and nitrous oxide (N 2 O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK + fly ash, NPK + silicate slag, NPK + phosphogypsum(PG), NPK + blast furnace slag (BFS), NPK + revolving furnace slag (RFS), NPK + silicate slag (50%) + RFS (50%), NPK + biochar, NPK + biochar + Azolla-cyanobacteria, NPK + silicate slag + Azolla-cyanobacteria, NPK + phosphogypsum (PG) + Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH 4 emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N 2 O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH 4 emissions were significantly increased by 9.5–14.0% with biochar amendments, however, global warming potentials were decreased by 8.0–12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0–30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43–50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries. - Highlights: • Azolla-cyanobacteria with organic and inorganic amendments

  10. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Muhammad Aslam, E-mail: litonaslam@yahoo.com [Dept. of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Dept. of Agricultural Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Division of Environmental Horticulture, Chiba University, Matsudo, Chiba 271-8510 (Japan); Kim, P.J., E-mail: pjkim@nongae.gsnu.ac.kr [Dept. of Agricultural Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Inubushi, K. [Division of Environmental Horticulture, Chiba University, Matsudo, Chiba 271-8510 (Japan)

    2015-10-01

    Effects of different soil amendments were investigated on methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK + fly ash, NPK + silicate slag, NPK + phosphogypsum(PG), NPK + blast furnace slag (BFS), NPK + revolving furnace slag (RFS), NPK + silicate slag (50%) + RFS (50%), NPK + biochar, NPK + biochar + Azolla-cyanobacteria, NPK + silicate slag + Azolla-cyanobacteria, NPK + phosphogypsum (PG) + Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH{sub 4} emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N{sub 2}O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH{sub 4} emissions were significantly increased by 9.5–14.0% with biochar amendments, however, global warming potentials were decreased by 8.0–12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0–30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43–50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries. - Highlights: • Azolla-cyanobacteria with organic and

  11. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    Science.gov (United States)

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.

  12. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    Science.gov (United States)

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Assessment of arsenic content in soil, rice grains and groundwater and associated health risks in human population from Ropar wetland, India, and its vicinity.

    Science.gov (United States)

    Sharma, Sakshi; Kaur, Inderpreet; Nagpal, Avinash Kaur

    2017-08-01

    In the present study, potential health risks posed to human population from Ropar wetland and its vicinity, by consumption of inorganic arsenic (i-As) via arsenic contaminated rice grains and groundwater, were assessed. Total arsenic (t-As) in soil and rice grains were found in the range of 0.06-0.11 mg/kg and 0.03-0.33 mg/kg, respectively, on dry weight basis. Total arsenic in groundwater was in the range of 2.31-15.91 μg/L. i-As was calculated from t-As using relevant conversion factors. Rice plants were found to be arsenic accumulators as bioconcentration factor (BCF) was observed to be >1 in 75% of rice grain samples. Further, correlation analysis revealed that arsenic accumulation in rice grains decreased with increase in the electrical conductivity of soil. One-way ANOVA, cluster analysis and principal component analysis indicated that both geogenic and anthropogenic sources affected t-As in soil and groundwater. Hazard index and total cancer risk estimated for individuals from the study area were above the USEPA limits of 1.00 and 1.00 × 10 -6 , respectively. Kruskal-Wallis H test indicated that groundwater intake posed significantly higher health risk than rice grain consumption (χ 2 (1) = 17.280, p = 0.00003).

  14. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    Science.gov (United States)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  15. Applying Limestone or Basalt in Combination with Bio-Fertilizer to Sustain Rice Production on an Acid Sulfate Soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2016-07-01

    Full Text Available A study was conducted to determine the efficacy of applying ground magnesium limestone (GML or ground basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia. Soils from Kelantan Plains, Malaysia, were treated with GML, ground basalt, bio-fertilizer, GML + bio-fertilizer, and ground basalt + bio-fertilizer (4 t·ha−1 each. Results showed that soil fertility was improved by applying the soil amendments. GML and basalt contain some Zn and Cu; thus, application of these amendments would increase their contents in the soil needed for the healthy growth of rice. Basalt applied in combination with bio-fertilizer appeared to be the best agronomic option to improve the fertility of acid sulfate soils for sustainable rice production in the long run. In addition to increasing Ca, Mg, Zn, and Cu reserves in the soil, water pH increased and precipitated Al3+ and/or Fe2+. Ground basalt is cheaper than GML, but basalt dissolution in the acidic soil was slow. As such, its ameliorative effects could only be seen significantly from the second season onwards. The specially-formulated bio-fertilizer for alleviating the infertility of acid sulfate soil could also enhance rice growth. The use of the bio-fertilizer fortified with N2-fixing bacteria is a green technology that would help reduce NO3− and/or NO2− pollution and reduce the cost of rice production. The phosphate-solubilizing bacteria (PSB present in the bio-fertilizer not only increased the available P, but also helped release organic acids that would inactivate Al3+ and/or Fe2+ via the process of chelation.

  16. Effect of nutrient management on soil organic carbon sequestration, fertility, and productivity under rice-wheat cropping system in semi-reclaimed sodic soils of North India.

    Science.gov (United States)

    Gupta Choudhury, Shreyasi; Yaduvanshi, N P S; Chaudhari, S K; Sharma, D R; Sharma, D K; Nayak, D C; Singh, S K

    2018-02-05

    The ever shrinking agricultural land availability and the swelling demand of food for the growing population fetch our attention towards utilizing partially reclaimed sodic soils for cultivation. In the present investigation, we compared six treatments, like control (T1), existing farmers' practice (T2), balanced inorganic fertilization (T3) and combined application of green gram (Vigna radiate) with inorganic NPK (T4), green manure (Sesbania aculeate) with inorganic NPK (T5), and farmyard manure with inorganic NPK (T6), to study the influence of nutrient management on soil organic carbon sequestration and soil fertility under long-term rice-wheat cropping system along with its productivity in gypsum-amended partially reclaimed sodic soils of semi-arid sub-tropical Indian climate. On an average, combined application of organics along with fertilizer NPK (T4, T5, and T6) decreased soil pH, ESP, and BD by 3.5, 13.0, and 6.7% than FP (T2) and 3.7, 12.5, and 6.7%, than balanced inorganic fertilizer application (T3), respectively, in surface (0-20 cm). These treatments (T4, T5, and T6) also increased 14.1% N and 19.5% P availability in soil over the usual farmers' practice (FP) with an additional saving of 44.4 and 27.3% fertilizer N and P, respectively. Long-term (6 years) incorporation of organics (T4, T5, and T6) sequestered 1.5 and 2.0 times higher soil organic carbon as compared to the balanced inorganic (T3) and FP (T2) treatments, respectively. The allocation of soil organic carbon into active and passive pools determines its relative susceptibility towards oxidation. The lower active to passive ratio (1.63) in FYM-treated plots along with its potentiality of higher soil organic carbon (SOC) sequestration compared to the initial stock proved its acceptability for long-term sustenance under intensive cropping even in partially reclaimed sodic soils. Among all the treatments, T4 yielded the maximum from second year onwards. Moreover, after 6 years of continuous

  17. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils.

    Science.gov (United States)

    Ali, Muhammad Aslam; Kim, P J; Inubushi, K

    2015-10-01

    Effects of different soil amendments were investigated on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK+fly ash, NPK+silicate slag, NPK+phosphogypsum(PG), NPK+blast furnace slag (BFS), NPK+revolving furnace slag (RFS), NPK+silicate slag (50%)+RFS (50%), NPK+biochar, NPK+biochar+Azolla-cyanobacteria, NPK+silicate slag+Azolla-cyanobacteria, NPK+phosphogypsum (PG)+Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH4 emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N2O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH4 emissions were significantly increased by 9.5-14.0% with biochar amendments, however, global warming potentials were decreased by 8.0-12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0-30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43-50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Response of Transplanted Aman Rice Varieties to Herbicides in Strip-Tilled Non-Puddled Soil

    Directory of Open Access Journals (Sweden)

    Taslima Zahan1

    2017-12-01

    Full Text Available BACKGROUND: Sensitivity of crop cultivars may vary to commonly used herbicides resulting in potential yield loss and reduce farm profit. Transplanting of rice seedlings in strip-tilled non-puddled field is a new practice for which herbicide tolerant varieties need to select. Therefore, a study was executed at the Agronomy Field Laboratory of Bangladesh Agricultural University, Mymensingh during 2013 to evaluate the response of some popular transplanted aman rice varieties to different herbicides at their recommended rate and to select most tolerant aman rice variety or varieties for strip-tilled non-puddled transplanting. METHODOLOGY: Twelve aman rice varieties (BR11, BRRI dhan33, BRRI dhan39, BRRI dhan44, BRRI dhan46, BRRI dhan49, BRRI dhan51, BRRI dhan52, BRRI dhan56, BRRI dhan57, BRRI hybrid dhan-4 and BINA dhan7 were examined in the study against six herbicides (2 pre-emergence: pyrazosulfuron-ethyl and butachlor; 1 early post-emergence: orthosulfamuron and 3 late post-emergence: acetochlor + bensulfuron methyl, butachlor + propanil and 2,4-D amine along with one untreated manually weed-free control. KEY FINDINGS: The study revealed that aman rice varieties responded differentially to different herbicides. All rice varieties performed better in pyrazosulfuron-ethyl treated plots relative to the other herbicide treated plots and even than the control plots. Pyrazosulfuron-ethyl increased grain yield of all aman rice varieties by 0.6-32.6% over control and butachlor + propanil provided increased grain yield in all rice varieties by 2.0-25.5% except BRRI hybrid dhan-4. The study also disclosed that BRRI dhan57 and BRRI hybrid dhan-4 gone through the yield loss by application of 2,4-D amine and BRRI dhan56 by application of butachlor and orthosulfamuron. Moreover, acetochlor + bensulfuron methyl produced shorter plants and caused yield loss by 7.8-27.1% in all aman rice varieties compared to the control and BRRI dhan39 was the most susceptible

  19. Soil CH4 and N2O Emissions from Rice Paddy Fields in Southern Brazil as Affected by Crop Management Levels: a Three-Year Field Study

    Directory of Open Access Journals (Sweden)

    Tiago Zschornack

    2018-05-01

    Full Text Available ABSTRACT Rice yield increases in response to improvements in crop management, but the impact on greenhouse gas (GHG emissions in the subtropical region of Southern Brazil remains unknown. A three-year field study was developed aiming to evaluate the impact that an increase in crop management levels (high and very high has on soil methane (CH4 and nitrous oxide (N2O emissions, as compared to the level (medium currently adopted by farmers in Southern Brazil. Differences in crop management included seed and fertilizer rates, irrigation, and pesticide use. The effect of crop management levels on the annual partial global warming potential (pGWP = CH4 × 25 + N2O × 298 ranged from 7,547 to 17,711 kg CO2eq ha−1 and this effect was larger than on the rice grain yield (9,280 to 12,260 kg ha−1, resulting in approximately 60 % higher yield-scaled GHG with the high crop management level compared to the current level. Soil CH4 emissions accounted for 98 % of pGWP in the flooded rice season, whereas N2O prevailed during the drained non-rice season (≈65 %. Although it was impossible to relate emissions to any individual input or practice, soil CH4 emissions in the rice season were linearly related to the biomass produced by the rice crop (p<0.01 and by ryegrass in the previous non-rice season (p<0.1, both of which were possibly related to the supply of labile C for methanogenesis. A future increase in rice yield as a result of the adoption of improved crop management may require additional agricultural practices (e.g., intermittent irrigation to offset the increased GHG emissions.

  20. [The influence of straw, particularly rice straw, together with calcium-cyanamide on the microbiological activity of two Portuguese soils (author's transl)].

    Science.gov (United States)

    Glathe, H; El Din, A; Scheuer, A

    1976-01-01

    The influence of calcium-cyanamide upon the microbiological activity was tested in pot experiments under controlled conditions in two Portuguese soils (sandy and loamy) after the addition of rice or wheat straw (rice straw 0.275% N, wheat straw 0.307% N). The amount of straw was equalled to 100 dz/ha, the application of calcium-cyanamide to 25, 50 and 100 kg N/ha. In the containers treated with straw the total amount of microorganisms (Koch-method) was higher in sandy than in loamy soil after 30 days, but after 70 days it was higher in loamy soil. The content of active nitrogen (NH4 + NO3) increased, when calcium-cyanamide was added, but decreased after the application of straw. After 70 days sandy soil again showed an increase of active nitrogen. Straw increased the rates of CO2-production considerably, wheat straw was superior to rice straw. Calcium-cyanamide increased the CO2-production more in sandy than in loamy soil or German loess, which was also used for this experiment. Only in the case of rice straw higher doses of calcium-cyanamide had a positive effect. After 70 days the CO2-production rose only when rice straw was applied. The dehydrogenase-activity was increased in both soils, but a superiority of wheat straw occurred in sandy soil only. The microbiological activity in the pots with straw was higher in sandy than in loamy soil, the addition of calcium-cyanamide accelerated it. Doses of 25-50 kg N/ha are sufficient generally. The period of the formation of insoluble organic N-compounds, usually connected with the application of organic matter with a wide N:C-ratio, seems to be reduced by the addition of calcium-cyanamide.

  1. Optimization of submerged vane parameters

    Indian Academy of Sciences (India)

    H Sharma

    the height or length of the submerged vane, no effective change in bed profile .... easily and again vanes will be ineffective, which is what. Odgaard and .... [3] Odgaard A J and Wang Y 1991a Sediment management with submerged vanes.

  2. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota.

    Directory of Open Access Journals (Sweden)

    Tatsuki Ogura

    Full Text Available Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.

  3. /sup 32/P tracer studies on the efficiency of ammonium nitrate phosphates and polyphosphates for growing rice on different soil types

    Energy Technology Data Exchange (ETDEWEB)

    Sadanandan, A K; Mohanty, S K; Patnaik, S [Central Rice Research Inst., Cuttack (India); Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.

    1980-12-01

    A pot experiment was conducted with /sup 32/P tagged phosphates to evaluate the efficiency of ammonium nitrate phosphate containing 30, 50 and 70 percent of P in the water soluble form, tri- and tetra-ammonium pyrophosphate, as compared with mono-ammonium ortho-phosphate (MAP) for growing rice on red, laterite and black soils, with regard to recovery of applied P in soil, dry matter production and utilization of applied P by crop at flowering and grain and straw yield at harvest. Ammonium nitrate phosphates containing 50 percent or more of P in the water soluble form could be used for growing rice on all soil types. The pyrophosphates were as efficient as MAP on soils having pH 6.2 and above but less efficient in soils of lower pH.

  4. Physiological studies on photochemical oxidant injury in rice plants. III. Relationship between abscisic acid (ABA) and water metabolism in water-stressed rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    Several experiments were carried out to determine the effects of exogenously applied ABA on water metabolism, and to clarify the endogenous ABA relationships in ozone-sensitivity under different soil water content in rice plants. The rice plants were cultivated in soil with 60, 80, and 100% of maximum water holding capacity and under submerged condition. The results of the experiments were as follows: ozone injury was reduced with increasing ABA content of which production was increased under water stress conditions. Under water stressed conditions, the rate of water loss was decreased with increasing concentration of ABA applied exogenously. It may be assumed that the ozone-sensitivity is closely related to the stomatal closure caused by the increased ABA content due to water stress. 5 references, 4 tables.

  5. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil.

    Science.gov (United States)

    Bao, Qiongli; Huang, Yizong; Wang, Fenghua; Nie, Sanan; Nicol, Graeme W; Yao, Huaiying; Ding, Longjun

    2016-07-01

    Nitrogen fertilization and returning straw to paddy soil are important factors that regulate CH4 production. To evaluate the effect of rice straw and/or nitrate amendment on methanogens, a paddy soil was anaerobically incubated for 40 days. The results indicated that while straw addition increased CH4 production and the abundances of mcrA genes and their transcripts, nitrate amendment showed inhibitory effects on them. The terminal restriction fragment length polymorphism (T-RFLP) analysis based on mcrA gene revealed that straw addition obviously changed methanogenic community structure. Based on mcrA gene level, straw-alone addition stimulated Methanosarcinaceaes at the early stage of incubation (first 11 days), but nitrate showed inhibitory effect. The relative abundance of Methanobacteriaceae was also stimulated by straw addition during the first 11 days. Furthermore, Methanosaetaceae were enriched by nitrate-alone addition after 11 days, while Methanocellaceae were enriched by nitrate addition especially within the first 5 days. The transcriptional methanogenic community indicated more dynamic and complicated responses to straw and/or nitrate addition. Based on mcrA transcript level, nitrate addition alone resulted in the increase of Methanocellaceae and the shift from Methanosarcinaceae to Methanosaetaceae during the first 5 days of incubation. Straw treatments increased the relative abundance of Methanobacteriaceae after 11 days. These results demonstrate that nitrate addition influences methanogens which are transcriptionally and functionally active and can alleviate CH4 production associated with straw amendment in paddy soil incubations, presumably through competition for common substrates between nitrate-utilizing organisms and methanogens.

  6. Graphical approach to assess the soil fertility evaluation model validity for rice (case study: southern area of Merapi Mountain, Indonesia)

    Science.gov (United States)

    Julianto, E. A.; Suntoro, W. A.; Dewi, W. S.; Partoyo

    2018-03-01

    Climate change has been reported to exacerbate land resources degradation including soil fertility decline. The appropriate validity use on soil fertility evaluation could reduce the risk of climate change effect on plant cultivation. This study aims to assess the validity of a Soil Fertility Evaluation Model using a graphical approach. The models evaluated were the Indonesian Soil Research Center (PPT) version model, the FAO Unesco version model, and the Kyuma version model. Each model was then correlated with rice production (dry grain weight/GKP). The goodness of fit of each model can be tested to evaluate the quality and validity of a model, as well as the regression coefficient (R2). This research used the Eviews 9 programme by a graphical approach. The results obtained three curves, namely actual, fitted, and residual curves. If the actual and fitted curves are widely apart or irregular, this means that the quality of the model is not good, or there are many other factors that are still not included in the model (large residual) and conversely. Indeed, if the actual and fitted curves show exactly the same shape, it means that all factors have already been included in the model. Modification of the standard soil fertility evaluation models can improve the quality and validity of a model.

  7. 15N enrichment of soil NH4+-N as an alternative non-N2-fixing reference for assessing varietal differences in N2 fixation of rice

    International Nuclear Information System (INIS)

    Shrestha, R.K.; Ladha, J.K.

    1996-01-01

    A pot experiment in the greenhouse was conducted to assess the usefulness of 15 N enrichment of soil NH 4 + -N as an alternative to a non-fixing reference plant to determine varietal differences in N 2 fixation among rice varieties. Diverse rice genotypes were grown in a 15 N stabilized soil obtained after 6 wk of application under flooded conditions. Atom % 15 N excess of soil NH 4 + -N was decreased exponentially with amount of N mineralized (r=99). Close agreement was observed between the 15 N enrichment of reference rice plant and 15 N enrichment of KCl extractable NH 4 + -N from unplanted pots maintained in the greenhouse. Whole plant atom % 15 N excess was inversely correlated within growth duration. Therefore, it was necessary to calculate Ndfa within growth duration. Ndfa estimated within the growth duration using 15 N enrichment of soil NH 4 + -N and reference rice genotype correlated almost perfectly (r=998). Thus the study demonstrated the potential of using 15 N enrichment of soil NH 4 + -N as a non-N 2 fixing reference for reliable estimate of biological nitrogen fixation by nonlegumes under flooded conditions. (author)

  8. Metagenomic of Actinomycetes Based on 16S rRNA and nifH Genes in Soil and Roots of Four Indonesian Rice Cultivars Using PCR-DGGE

    Directory of Open Access Journals (Sweden)

    Mahyarudin

    2015-07-01

    Full Text Available The research was conducted to study the metagenomic of actinomycetes based on 16S ribosomal RNA (rRNA and bacterial nifH genes in soil and roots of four rice cultivars. The denaturing gradient gel electrophoresis profile based on 16S rRNA gene showed that the diversity of actinomycetes in roots was higher than soil samples. The profile also showed that the diversity of actinomycetes was similar in four varieties of rice plant and three types of agroecosystem. The profile was partially sequenced and compared to GenBank database indicating their identity with closely related microbes. The blast results showed that 17 bands were closely related ranging from 93% to 100% of maximum identity with five genera of actinomycetes, which is Geodermatophilus, Actinokineospora, Actinoplanes, Streptomyces and Kocuria. Our study found that Streptomyces species in soil and roots of rice plants were more varied than other genera, with a dominance of Streptomyces alboniger and Streptomyces acidiscabies in almost all the samples. Bacterial community analyses based on nifH gene denaturing gradient gel electrophoresis showed that diversity of bacteria in soils which have nifH gene was higher than that in rice plant roots. The profile also showed that the diversity of those bacteria was similar in four varieties of rice plant and three types of agroecosystem. Five bands were closely related with nifH gene from uncultured bacterium clone J50, uncultured bacterium clone clod-38, and uncultured bacterium clone BG2.37 with maximum identity 99%, 98%, and 92%, respectively. The diversity analysis based on 16S rRNA gene differed from nifH gene and may not correlate with each other. The findings indicated the diversity of actinomycetes and several bacterial genomes analyzed here have an ability to fix nitrogen in soil and roots of rice plant.

  9. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil.

    Science.gov (United States)

    Gao, Y; Yu, X Z; Wu, S C; Cheung, K C; Tam, N F Y; Qian, P Y; Wong, M H

    2006-12-15

    The effects of cultivation of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) separately, and in combination, on the dissipation of spiked phenanthrene and pyrene (0, 50+50, 100+100, 200+200 mg kg(-1)) in waterlogged soil were studied using pot trials. The population of introduced PAH-degrading bacteria remained at 10(5) CFU g(-1) dry soil after 20 days of treatment with Acinetobacter sp. only, but increased to 10(6) when planted with rice simultaneously. Shoot and root biomass of rice when grown alone was adversely affected by spiked PAHs, but significantly increased by 2-55% and 8-409%, respectively, when inoculated with Acinetobacter sp.. Phenanthrene and pyrene concentrations in roots ranged from 1-27 and 20-98 mg kg(-1), respectively, while their concentrations in shoots were generally lower than 0.2 mg kg(-1). The dissipation of phenanthrene was mainly due to abiotic loss as 70-78% phenanthrene was lost from the control soil at the end of 80 days, while removal of 86-87% phenanthrene had been achieved after 40 days in the treatment co-cultivated with Acinetobacter sp. and rice. Compared with the control where only 6-15% of pyrene was removed from soil, a much higher dissipation of pyrene (43-62%) was attained for the treatments co-cultivated with Acinetobacter sp. and rice at the end of 80 days. The results demonstrated that co-cultivation of rice and PAH-degrading bacteria may have a great potential to accelerate the bioremediation process of PAH-contaminated soil under waterlogged conditions.

  10. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    Full Text Available A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia. The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c kg(-1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis. The isolated strains were capable of producing indoleacetic acid (IAA and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65% existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  11. Stabilization of lead (Pb) and zinc (Zn) in contaminated rice paddy soil using starfish: A preliminary study.

    Science.gov (United States)

    Moon, Deok Hyun; Hwang, Inseong; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ok, Yong Sik; Ji, Won Hyun; Park, Jeong-Hun

    2018-05-01

    Lead (Pb) and zinc (Zn) contaminated rice paddy soil was stabilized using natural (NSF) and calcined starfish (CSF). Contaminated soil was treated with NSF in the range of 0-10 wt% and CSF in the range of 0-5 wt% and cured for 28 days. Toxicity characteristic leaching procedure (TCLP) test was used to evaluate effectiveness of starfish treatment. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses were conducted to investigate the mechanism responsible for effective immobilization of Pb and Zn. Experimental results suggest that NSF and CSF treatments effectively immobilize Pb and Zn in treated rice paddy soil. TCLP levels for Pb and Zn were reduced with increasing NSF and CSF dosage. Comparison of the two treatment methods reveals that CSF treatment is more effective than NSF treatment. Leachability of the two metals is reduced approximately 58% for Pb and 51% for Zn, upon 10 wt% NSF treatment. More pronounced leachability reductions, 93% for Pb and 76% for Zn, are achieved upon treatment with 5 wt% CSF. Sequential extraction results reveal that NSF and CSF treatments of contaminated soil generated decrease in exchangeable/weak acid Pb and Zn soluble fractions, and increase of residual Pb and Zn fractions. Results for the SEM-EDX sample treated with 5 wt% CSF indicate that effective Pb and Zn immobilization is most probably associated with calcium silicate hydrates (CSHs) and calcium aluminum hydrates (CAHs). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of warming on uptake and translocation of cadmium (Cd) and copper (Cu) in a contaminated soil-rice system under Free Air Temperature Increase (FATI).

    Science.gov (United States)

    Ge, Li-Qiang; Cang, Long; Liu, Hui; Zhou, Dong-Mei

    2016-07-01

    Global warming has received growing attentions about its potential threats to human in recent, however little is known about its effects on transfer of heavy metals in agro-ecosystem, especially for Cd in rice. Pot experiments were conducted to evaluate Cd/Cu translocation in a contaminated soil-rice system under Free Air Temperature Increase (FATI). The results showed that warming gradually decreased soil porewater pH and increased water-soluble Cd/Cu concentration, reduced formation of iron plaque on root surface, and thus significantly increased total uptake of Cd/Cu by rice. Subsequently, warming significantly promoted Cd translocation from root to shoot, and increased Cd distribution percentage in shoot, while Cu was not significantly affected. Enhanced Cd uptake and translocation synergistically resulted in higher rice grain contamination with increasing concentration from 0.27 to 0.65 and 0.14-0.40 mg kg(-1) for Indica and Japonica rice, respectively. However increase of Cu in brown grain was only attributed to its uptake enhancement under warming. Our study provides a new understanding about the food production insecurity of heavy metal contaminated soil under the future global warming. Copyright © 2016. Published by Elsevier Ltd.

  13. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.

    Science.gov (United States)

    Martinez, Raul E; Marquez, J Eduardo; Hòa, Hoàng Thị Bích; Gieré, Reto

    2013-11-01

    This study quantified Cd, Pb, and Cu content, and the soil-plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz-clay matrix of rice paddy soils at 20-30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146±0.004, 23.3±0.1, and 23.5±0.1 mg/kg which exceeded calculated background concentrations of 0.006±0.004, 1.9±0.5, and 2.4±1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2±0.1 to 140±3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60% with respect to a control sample was found for model plants, whereas a decrease of only 10% was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84±0.02 and 7.7±0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0

  14. Effect of chemically processed bonemeal alone and in combination with organic materials on plant growth. [Part] I : Rice-wheat rotation in an alluvial soil

    International Nuclear Information System (INIS)

    Ramasami, S.; Vimal, O.P.

    1975-01-01

    The effect of chemically processed bonemeal added 60 kg P 2 O /ha alone and in combination with various organic materials viz., wheat straw and rice straw 3 tons/hs, starch 500 kg/ha and EDTA 250 kg/ha was studied on rice in an alluvial soil. The residual effect was studied on wheat using 32 P as a tracer. The results showed that in the first crop(rice) bonemeal organic matter combination had a significant effect both on dry matter yield and nutrient uptake. In the second crop (wheat) except chemically processed honemeal in combination with EDTA, all other combinations showed a marked positive effect on yield, total P-uptake and 'A' values. Comparison of P-uptake from soil and fertilizer indicated that there was a marked residual effect on the subsequent wheat crop. (author)

  15. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    Science.gov (United States)

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F1 hybrids grown in cadmium-contaminated soils.

    Science.gov (United States)

    Li, Kun; Yu, Haiying; Li, Tingxuan; Chen, Guangdeng; Huang, Fu

    2017-07-01

    Cadmium (Cd) pollution has threatened severely to food safety and human health. A pot experiment and a field experiment were conducted to investigate the difference of Cd accumulation between rice (Oryza sativa L.) lines and F 1 hybrids in Cd-contaminated soils. The adverse effect on biomass of rice lines was greater than that of F 1 hybrids under Cd treatments in the pot experiment. The variations of Cd concentration among rice cultivars in different organs were smaller in stem and leaf, but larger in root and ear. Average proportion of Cd in root of F 1 hybrids was 1.39, 1.39, and 1.16 times higher than those of rice lines at the treatment of 1, 2, and 4 mg Cd kg -1 soil, respectively. Cd concentrations in ear of F 1 hybrids were significantly lower than rice lines with the reduction from 29.24 to 50.59%. Cd concentrations in brown rice of all F 1 hybrids were less than 0.2 mg kg -1 at 1 mg Cd kg -1 soil, in which Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be screened out as cadmium-safe cultivars (CSCs) for being safe even at 2 mg Cd kg -1 soil. C268A/YaHui2816 showed the lowest Cd concentration in root among F 1 hybrids, while Lu98A/YaHui2816 and 5406A/YaHui2816 showed lower capability of Cd translocation from root to shoot under Cd exposure, which eventually caused the lower Cd accumulation in brown rice. The lower level of Cd translocation contributed to reducing the accumulation of Cd in brown rice had been validated by the field experiment. Thus, Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be considered as potential CSCs to cultivate in Cd-contaminated soils (<2 mg Cd kg -1 soil).

  17. Seed longevity of red rice ecotypes buried in soil Longevidade de sementes de arroz-vermelho enterradas no solo

    Directory of Open Access Journals (Sweden)

    J.A. Noldin

    2006-12-01

    Full Text Available Red rice is a troublesome weed in irrigated rice production and is spread through contaminated commercial rice seed and machinery. Seed dormancy is a major trait for red rice. Studies were carried out at two locations to determine red rice seed longevity in the soil of several ecotypes from four US states. Five months after burial near Beaumont, Texas only three ecotypes had viable seed (O arroz-vermelho constitui-se na principal planta daninha infestante de lavouras de arroz irrigado e a sua disseminação ocorre, principalmente, pelo uso de sementes comerciais contaminadas e equipamentos agrícolas. A ocorrência de dormência nas sementes é uma das principais características que dificultam o controle do arroz-vermelho em lavouras. O objetivo deste trabalho foi estimar a longevidade no solo de ecótipos de arroz-vermelho provenientes de diferentes áreas de produção de arroz nos Estados Unidos. O estudo foi conduzido em dois locais: Beaumont e College Station, no estado do Texas (TX. Para sementes enterradas a 5 cm de profundidade em Beaumont, apenas três ecótipos apresentaram sementes viáveis (<1%. No entanto, quando as sementes foram enterradas em maior profundidade (25 cm, nove ecótipos tinham sementes viáveis após 2 anos. Trinta e seis meses após o enterrio, cinco ecótipos apresentavam sementes com alguma viabilidade, mas todos inferiores a 1%. Sementes de arroz-vermelho produzidas e enterradas em College Station na profundidade de 12 cm, um dia após a colheita, apresentaram maior longevidade que aquelas mantidas na superfície do solo. Após 17 meses, um dos ecótipos de arroz-preto (TX 4, enterrado a 12 cm, foi o que apresentou maior percentual de viabilidade (2%. Nos dois experimentos, observou-se que os cultivares comerciais, Lemont e Mars, não apresentaram sementes viáveis após cinco meses, independentemente da localização no solo. Os resultados deste estudo sugerem que em áreas com arroz-vermelho deve-se evitar o

  18. Contributions of available substrates and activities of trophic microbial community to methanogenesis in vegetative and reproductive rice rhizospheric soil.

    Science.gov (United States)

    Chawanakul, Sansanee; Chaiprasert, Pawinee; Towprayoon, Sirintornthep; Tanticharoen, Morakot

    2009-01-01

    Potential of methane production and trophic microbial activities at rhizospheric soil during rice cv. Supanbunri 1 cultivation were determined by laboratory anaerobic diluents vials. The methane production was higher from rhizospheric than non-rhizospheric soil, with the noticeable peaks during reproductive phase (RP) than vegetative phase (VP). Glucose, ethanol and acetate were the dominant available substrates found in rhizospheric soil during methane production at both phases. The predominance activities of trophic microbial consortium in methanogenesis, namely fermentative bacteria (FB), acetogenic bacteria (AGB), acetate utilizing bacteria (AB) and acetoclastic methanogens (AM) were also determined. At RP, these microbial groups were enhanced in the higher of methane production than VP. This correlates with our finding that methane production was greater at the rhizospheric soil with the noticeable peaks during RP (1,150 +/- 60 nmol g dw(-1) d(-1)) compared with VP (510 +/- 30 nmol g dw(-1) d(-1)). The high number of AM showed the abundant (1.1x10(4) cell g dw(-1)) with its high activity at RP, compared to the less activity with AM number at VP (9.8x10(2) cell g dw(-1)). Levels of AM are low in the total microbial population, being less than 1% of AB. These evidences revealed that the microbial consortium of these two phases were different.

  19. Puddling against dry plowing for lowland rice culture in Surinam : effect on soil and plant, and interactions with irrigation and nitrogen dressing

    NARCIS (Netherlands)

    Scheltema, W.

    1974-01-01

    The influence of tillage on rice grown on heavy Surinam clay soils was investigated in pot and field trials. Included were interactions with seed rate, nitrogen dressing and distribution, water management, and variety. Four procedures for tilled layer and seedbed preparation were studied

  20. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    Science.gov (United States)

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration.

    Science.gov (United States)

    Wu, Mengxiong; Yang, Min; Han, Xingguo; Zhong, Ting; Zheng, Yunfei; Ding, Pin; Wu, Weixiang

    2016-01-01

    Recalcitrant charcoal application is predicted to decelerate global warming through creating a long-term carbon sink in soil. Although many studies have showed high stability of charcoal derived from woody materials, few have focused on the dynamics of straw-derived charcoal in natural environment on a long timescale to evaluate its potential for agricultural carbon sequestration. Here, we examined straw-derived charcoal in an ancient paddy soil dated from ~3700 calendar year before present (cal. year BP). Analytical results showed that soil organic matter consisted of more than 25% of charcoal in charcoal-rich layer. Similarities in morphology and molecular structure between the ancient and the fresh rice-straw-derived charcoal indicated that ancient charcoal was derived from rice straw. The lower carbon content, higher oxygen content, and obvious carbonyl of the ancient charcoal compared with fresh rice straw charcoal implied that oxidation occurred in the scale of thousands years. However, the dominant aromatic C of ancient charcoal indicated that rice-straw-derived charcoal was highly stable in the buried paddy soil due to its intrinsic chemical structures and the physical protection of ancient paddy wetland. Therefore, it may suggest that straw charcoal application is a potential pathway for C sequestration considering its longevity.

  2. Application of X-ray fluorescence in the study of some mineral elements in soils of rice fields of the rural town of Ambohitrimanjaka

    International Nuclear Information System (INIS)

    RARIVOSON, M.J.

    2006-01-01

    The aim of this study is to determine the chemical compounds of top soils in term of major, minor elements and traces, in rice culture and to bring a contribution to the determination of the mineral elements in the rice soils of the village of Ambodivona, in the township of Ambohitrimanjaka. The technique of energy dispersive X-ray fluorescence is used for the elemental analysis of soil samples. The results showed that all soils are very acidic. The range of the pH of soils in water was from 4,30 to 5,34. In general, the value of pH for soils in agriculture is between 5,5 and 6,5 which is equivalent to one slightly acidic soil. In addition, the range of pH adapted for soils in rice cultivation is from 6 to 7. All the soil samples contain potassium (K), calcium (Ca), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), gallium (Ga), bromine (Br), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), gadolinium (Gd), terbium (Tb) and lead (Pb). The analysed soil samples are very rich in potassium (K). But they had a deficiency made of calcium (Ca) and the excesses of manganese (Mn), cobalt (Co) and bromine (Br). This deficiency made of calcium and these excesses of manganese and cobalt could be due to the too acidic nature of soils. The deficiency made of calcium and the excesses of manganese, cobalt and bromine may be a factor that promotes plant disease, and lead to low productivity performance [fr

  3. Distribution, and uptake by rice plants of 15N-labeled ammonium applied in mudballs in paddy soils

    International Nuclear Information System (INIS)

    Ventura, Wilbur; Yoshida, Tomio

    1978-01-01

    A 1974 field experiment determined the distribution, and uptake by rice plants, of ammonium fertilizer at 60 kg N/ha applied in mudballs into the reduced layer of paddy soil. The fertilizer-carrying mudballs were placed at the center of four hills. At the center of the plot, one 15 N-labeled mudball was applied and the 15 N content of the plants surrounding the site of placement were determined. For comparison, labeled ammonium fertilizer was basally incorporated with the entire puddled layer and a topdress application was made 39 days before heading. There was little movement of the ammonium nitrogen horizontally from the site of placement so that the distribution of 15 N was restricted to the four adjacent plant hills. The distribution of incorporated ammonium fertilizer with the puddled layer was likewise restricted to the four adjacent rice plants but topdressing, with the unavoidable disturbance of the floodwater, resulted to a wide distribution of the 15 N-labeled fertilizer. In all the methods of application, there was an uneven uptake of 15 N among four plants adjacent to the site of placement. An increase of at least 10% in the efficiency of ammonium fertilizer was obtained by the deep placement of ammoniated mudballs as compared to the common practice of incorporating the fertilizer with the puddled soil layer. Topdressing at 39 days before heading, however, was as efficient as mudballs applied at the same stage of growth. There was no significant increase in grain yield by deep placement of fertilizer because of the high initial nitrogen content of the soil. (author)

  4. Factors affecting variation in CH4 emission from paddy soils grown with different rice cultivars: A pot experiment

    Science.gov (United States)

    Watanabe, Akira; Kimura, Makoto

    1998-08-01

    The growth of rice plants greatly influences CH4 emission from paddy fields through the supply of organic materials such as root exudates and sloughed tissues, the release of oxygen to the root environment, and the transfer of CH4 from the rhizosphere into the atmosphere through the aerenchyma. In the present pot experiments, the effects of the release of water-soluble organic substances from roots, the air space in roots, and the CH4-oxidizing capacity of roots on intervarietal differences in CH4 emission were examined using three Japonica type cultivars (Norin 25, Nipponbare, and Aoinokaze), which differ in morphological properties. The CH4 emission rates varied among the cultivars from mid-July (tillering stage) to the beginning of September (heading stage).Total CH4 emission throughout the rice growth period was largest for Norin 25, followed by Nipponbare, and Aoinokaze. In August, the rate of release of water-soluble organic substances from roots was largest for Norin 25. The air space in roots was also largest in Norin 25 and least in Aoinokaze. The stable carbon isotopic ratios (δ13C) of CH4 in roots were 3-10‰ higher than those in soil in August. The difference in δ13C values of CH4 between roots and soil was largest for Aoinokaze and smallest for Norin 25. In September, the difference in δ13C values of CH4 between roots and soil became small (2-3‰). These findings suggest that the proportion of CH4 oxidation in the rhizosphere was largest in the cultivar which emitted the smallest amount of CH4 and that the proportion became smaller with continued plant growth.

  5. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Roslev, P.; Henckel, T.; Frenzel, P.

    2000-01-01

    Methane is involved in a number of chemical and physical processes in the Earths atmosphere, including global warming(1), Atmospheric methane originates mainly from biogenic sources, such as rice paddies and natural wetlands; the former account for at least 30% of the global annual emission of

  6. Soil potassium dynamics under intensive rice cropping. A case study in the Mekong Delta, Vietnam

    NARCIS (Netherlands)

    Nguyen, M.H.

    2003-01-01

    Keywords:potassium, nutrient budgets, nutrient depletion, fertilizer, kinetics, adsorption,desorption, fixation, release, modeling, rice cropping system,

  7. Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Timsina, J.

    2012-01-01

    Photosynthetic aquatic biomass (PAB – algae and other floodwater flora) is a significant source of organic carbon (C) in rice-based cropping systems. A portion of PAB is capable of fixing nitrogen (N), and is hence also a source of N for crop nutrition. To account for this phenomenon in long term

  8. Effects of aging process on adsorption-desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar

    Institute of Scientific and Technical Information of China (English)

    Mahdi Safaei Khorram; Dunli Lin; Qian Zhang; Yuan Zheng; Hua Fang; Yunlong Yu

    2017-01-01

    Biochar has been introduced as an acceptable soil amendment due to its environmental benefits such as sequestering soil contaminants.However,the aging process in biochar amended soil probably decreases the adsorption capacity of biochar through changing its physico-chemical properties.Adsorption,leaching and bioavailability of fomesafen to corn in a Chinese soil amended by rice hull biochar after 0,30,90 and 180 days were investigated.Results showed that the addition of 0.5%-2% fresh biochar significantly increases the adsorption of fomesafen 4-26 times compare to unamended soil due to higher SSA of biochar.Biochar amendment also decreases fomesafen concentration in soil pore water by 5%-23% resulting lower risk of the herbicide for cultivated plants.However,the aging process decreased the adsorption capacity ofbiochar since the adsorption coefficient values which was 1.9-12.4 in 0.5%-2% fresh biochar amended soil,declined to 1.36-4.16,1.13-2.78 and 0.95-2.31 in 1,3 and 6-month aged treatments,respectively.Consequently,higher desorption,leaching and bioavailable fraction of fomesafen belonged to 6-month aged treatment.Nevertheless,rice hull biochar was effective for sequestering fomesafen as the adsorption capacity of biochar amended soil after 6 months of aging was still 2.5-5 times higher compared to that of unamended soil.

  9. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  10. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance.

    Science.gov (United States)

    Tyagi, Wricha; Rai, Mayank

    2017-03-01

    Low phosphorus (P) tolerance in rice is a biologically and agronomically important character. Low P tolerant Indica-type rice genotypes, Sahbhagi Dhan (SD) and Chakhao Poreiton (CP), are adapted to acidic soils and show variable response to low P levels. Using RNAseq approach, transcriptome data was generated from roots of SD and CP after 15 days of low P treatment to understand differences and similarities at molecular level. In response to low P, number of genes up-regulated (1318) was more when compared with down-regulated genes (761). Eight hundred twenty-one genes found to be significantly regulated between SD and CP in response to low P. De novo assembly using plant database led to further identification of 1535 novel transcripts. Functional annotation of significantly expressed genes suggests two distinct methods of low P tolerance. While root system architecture in SD works through serine-threonine kinase PSTOL1, suberin-mediated cell wall modification seems to be key in CP. The transcription data indicated that CP relies more on releasing its internally bound Pi and coping with low P levels by transcriptional and translational modifications and using dehydration response-based signals. Role of P transporters seems to be vital in response to low P in CP while sugar- and auxin-mediated pathway seems to be preferred in SD. At least six small RNA clusters overlap with transcripts highly expressed under low P, suggesting role of RNA super clusters in nutrient response in plants. These results help us to understand and thereby devise better strategy to enhance low P tolerance in Indica-type rice.

  11. Evaluating Non-Aromatic Rice Varieties for Growth and Yield under Different Rates of Soil Applied Boron

    Directory of Open Access Journals (Sweden)

    Javaid Ahmed Shah

    2016-05-01

    Full Text Available Balanced boron (B fertilization has prime importance to obtain maximum paddy yield. The range between B deficiency and toxicity is smaller than most plant nutrients, though B requirement among different crops varies widely. The adequate dose of B for one genotype can either be insufficient or toxic to other. Hence, without knowing the actual requirements of crop varieties, B application can be risky due to the toxicity hazards. A field experiment was undertaken at experimental farm of Nuclear Institute of Agriculture (NIA Tandojam during 2013, to evaluate the B requirement of two non-aromatic rice varieties. The experiment was arranged in split plot design with three repeats. Two rice varieties Sarshar and Shandar were grown in main plots with four rates of B: 0.5, 1.0, 1.5 and 2.0 kg ha-1 and control (0 kg ha-1 in sub plots. Both the varieties responded differently to B rates. Sarshar produced the highest paddy yield (5691 kg ha-1 at a rate of 1.5 kg B ha-1 and was 18% greater than control, Shandar produced the highest yield (6075 kg ha-1 at a rate of 1.0 kg B ha-1and was 5% greater than control. B accumulation in paddy and straw of both varieties increased with the increasing B rates. Both varieties were also significantly (p<0.05 varied in B accumulations. Comparatively, rice variety Sarshar accumulated 9% and 22% more B in straw and paddy than the Shandar. Thus, the B requirement of Sarshar was relatively higher than the Shandar. Shandar can be grown without the additional B application, whereas, Sarshar requires additional B for its maximum harvest in B deficient soils.

  12. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.

    Science.gov (United States)

    Nayak, D R; Babu, Y Jagadeesh; Datta, A; Adhya, T K

    2007-01-01

    Methane (CH4) oxidation is the only known biological sink process for mitigating atmospheric and terrestrial emissions of CH4, a major greenhouse gas. Methane oxidation in an alluvial soil planted to rice (Oryza sativa L.) under long-term application of organic (compost with a C/N ratio of 21.71), and mineral fertilizers was measured in a field-cum-laboratory incubation study. Oxidation rates were quantified in terms of decrease in the concentration of CH4 in the headspace of incubation vessels and expressed as half-life (t(1)2) values. Methane oxidation rates significantly differed among the treatments and growth stages of the rice crop. Methane oxidation rates were high at the maximum tillering and maturity stages, whereas they were low at grain-filling stage. Methane oxidation was low (t(1)2) = 15.76 d) when provided with low concentration of CH4. On the contrary, high concentration of CH4 resulted in faster oxidation (t(1)2) = 6.67 d), suggesting the predominance of "low affinity oxidation" in rice fields. Methane oxidation was stimulated following the application of mineral fertilizers or compost implicating nutrient limitation as one of the factors affecting the process. Combined application of compost and mineral fertilizer, however, inhibited CH4 oxidation probably due to N immobilization by the added compost. The positive effect of mineral fertilizer on CH4 oxidation rate was evident only at high CH4 concentration (t(1)2 = 4.80 d), while at low CH4 concentration their was considerable suppression (t(1) = 17.60 d). Further research may reveal that long-term application of fertilizers, organic or inorganic, may not inhibit CH4 oxidation.

  13. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    Science.gov (United States)

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils.

    Science.gov (United States)

    Lin, Aijun; Zhang, Xuhong; Yang, Xiaojin

    2014-12-01

    A pot culture experiment was carried out to investigate the roles of Glomus mosseae in Cu and Pb acquisition by upland rice (Oryza sativa L.) and the interactions between Cu and Pb. The soil was treated with three Cu levels (0, 100 and 200 mg kg(-1)) and three Pb levels (0, 300, and 600 mg kg(-1)). All treatments were designed with (+M) or without (-M) G. mosseae inoculation in a randomized block design. The addition of Cu and Pb significantly decreased root mycorrhizal colonization. Compared with -M, +M significantly increased root biomass in almost all treatments, and also significantly increased shoot biomass in the Pb(0)Cu(200), Pb(300)Cu(0), and all Pb(600) treatments. AM fungi enhanced plant Cu acquisition, but decreased plant Cu concentrations with all Cu plus Pb treatments, except for shoot in the Cu(200)Pb(600) treatment. Irrespective of Cu and Pb levels, +M plants had higher Pb uptakes than -M plants, but had lower root Pb and higher shoot Pb concentrations than those of -M plants. Another interpretation for the higher shoot Pb concentration in +M plants relied on Cu-Pb interactions. The study provided further evidences for the protective effects of AM fungi on upland rice against Cu and Pb contamination, and uncovered the phenomenon that Cu addition could promote Pb uptake and Pb partitioning to shoot. The possible mechanisms by which AM fungi can alleviate the toxicity induced by Cu and Pb are also discussed.

  15. Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil.

    Science.gov (United States)

    Huang, Bin; Yu, Kewei; Gambrell, Robert P

    2009-01-01

    A laboratory soil slurry experiment and an outdoor pot experiment were conducted to study effects of ferric iron (Fe(III)) reduction and regeneration on nitrous oxide (N(2)O) and methane (CH(4)) emissions in a rice (Oryza sativa L.) soil. The anoxic slurry experiment showed that enhancing microbial Fe(III) reduction by ferrihydrite amendment (40 mol Fe g(-1)) transitionally stimulated N(2)O production and lowered CH(4) production by 16% during an initial 33-day incubation. Increased regeneration of Fe(III) through a 4-day aeration period in the Fe-amended slurry compared to the control slurry reduced CH(4) emission by 30% in the subsequent 15-day anaerobic incubation. The pot experiment showed that ferrihydrite amendment (63 micromol Fe g(-1)) stimulated N(2)O fluxes in the days following flooding. The Fe amendment suppression on CH(4) emission was obscured in the early season but became significant upon reflooding in the mid- and late-seasons. As a result, seasonal CH(4) emission in Fe-amended pots was 26% lower than the control with a single 2-day drainage and 69% lower with a double 2-day drainage. The reduction in CH(4) emission upon reflooding from the Fe-amended pots was mainly attributed to the increased Fe(III) regeneration during drainage showing a mechanism of Fe(III) regeneration in mitigating CH(4) emission by short-term drainage in flooded soils.

  16. Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system.

    Science.gov (United States)

    Yang, Bo; Chen, Zhaozhi; Zhang, Man; Zhang, Heng; Zhang, Xuhui; Pan, Genxing; Zou, Jianwen; Xiong, Zhengqin

    2015-06-01

    The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE+T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE+T and T treatments, respectively, at the 7 cm depth during the rice season (pCO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem (p<0.05). Copyright © 2015. Published by Elsevier B.V.

  17. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation.

    Science.gov (United States)

    Rehman, Muhammad Zia-ur; Rizwan, Muhammad; Ghafoor, Abdul; Naeem, Asif; Ali, Shafaqat; Sabir, Muhammad; Qayyum, Muhammad Farooq

    2015-11-01

    Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.

  18. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment

    International Nuclear Information System (INIS)

    Liu, C.Y.; Jiang, X.; Yang, X.L.; Song, Y.

    2010-01-01

    Reductive dechlorination is a crucial pathway for HCB degradation, the applications of organic materials and nitrogen can alter microbial activity and redox potential of soils, thus probably influence HCB dechlorination. To evaluate hexachlorobenzene (HCB) dechlorination as affected by organic fertilizer (OF) and urea applications in planted paddy soils, a pot experiment was conducted in two types of soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). After 18 weeks of experiment, HCB residues decreased by 28.2-37.5% of the initial amounts in Ac, and 42.1-70.9% in An. The amounts of HCB metabolites showed that dechlorination rates in An were higher than in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. Both in Ac and An, the additions of 1% and 2% OF had negative effect on HCB dechlorination, which was probably because excessive nitrogen in OF decreased degraders' activity and the degradation of organic carbon in OF accepted electrons. The application of 0.03% urea could enhance HCB dechlorination rates slightly, while 0.06% urea accelerated HCB dechlorination significantly both in Ac and An. It could be assumed that urea served as an electron donor and stimulated degraders to dechlorinate HCB. In addition, the methanogenic bacteria were involved in dechlorination process, and reductive dechlorination in planted paddy soil might be impeded for the aerenchyma and O 2 supply into the rhizosphere. Results indicated that soil types, rice root system, methanogenic bacteria, OF and urea applications all had great effects on dechlorination process.

  19. Rice to vegetables: short- versus long-term impact of land-use change on the indigenous soil microbial community.

    Science.gov (United States)

    Sun, Bo; Dong, Zhi-Xing; Zhang, Xue-Xian; Li, Yun; Cao, Hui; Cui, Zong-Li

    2011-08-01

    OV soil have the lowest score of diversity (H = 3.48). The low level of bacterial diversity in OV soil was supported by sequencing of ten randomly selected 16S rDNA clones from each of the three rDNA libraries. Phylogenetic analysis showed that all the ten OV clones belonged to Proteobacteria with eight in the gamma-subdivision and two in the alpha-subdivision. In contrast, the ten clones from NV and OP soils were classified into four and eight bacterial classes or unclassified groups, respectively. Taken together, our data suggest that land-use change from rice to vegetables resulted in a decrease of bacterial diversity and soil biomass despite an increase in the abundance of culturable microorganisms and, moreover, the decrease of bacterial diversity occurred during long-term rather than short-term vegetable cultivation.

  20. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  1. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    International Nuclear Information System (INIS)

    Feng, Shuzhen; Huang, Yuan; Ge, Yunhui; Su, Yirong; Xu, Xinwen; Wang, Yongdong; He, Xunyang

    2016-01-01

    The addition of exogenous inorganic carbon (CaCO 3 ) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, 14 C-labeled rice straw addition, 14 C-labeled CaCO 3 addition, and a combination of 14 C-labeled rice straw and CaCO 3 . Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both 14 C-rice straw and Ca 14 CO 3 addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of 14 C-rice straw and Ca 14 CO 3 addition on positive priming effects of SOC mineralization. • Inorganic C is involved in soil C cycling with the participation of soil microbial

  2. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shuzhen [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China); Huang, Yuan [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Ge, Yunhui [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Su, Yirong [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China); Xu, Xinwen; Wang, Yongdong [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); He, Xunyang, E-mail: hbhpjhn@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China)

    2016-11-15

    The addition of exogenous inorganic carbon (CaCO{sub 3}) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, {sup 14}C-labeled rice straw addition, {sup 14}C-labeled CaCO{sub 3} addition, and a combination of {sup 14}C-labeled rice straw and CaCO{sub 3}. Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both {sup 14}C-rice straw and Ca{sup 14}CO{sub 3} addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of {sup 14}C-rice straw and Ca{sup 14}CO{sub 3} addition on positive priming effects of SOC mineralization. • Inorganic C is involved in

  3. Effect of gypsum, pressmud, fulvic acid and zinc sources on yield and zinc uptake by rice crop in a saline-sodic soil

    International Nuclear Information System (INIS)

    Chand, M.

    1980-01-01

    The application of fulvic acid to a saline-sodic soil augmented the solubility of zinc by thousands fold. Zinc fulvate when applied at levels equivalent to that of zinc sulphate was more effective in enhancing diffusion of zinc in the soil. Application of gypsum, zinc sulphate and fulvic acid significantly increased dry matter yield and uptake of zinc by rice crop in a saline-sodic soil. Application of gypsum with pressmud or with fulvic acid and zinc sulphate resulted in significantly higher yield and zinc uptake than in other treatments. (orig.)

  4. Growth, Metabolism and Yield of Rice Cultivated in Soils Amended with Fly Ash and Cyanobacteria and Metal Loads in Plant Parts

    Directory of Open Access Journals (Sweden)

    Rabindra N. Padhy

    2016-01-01

    Full Text Available Soil amendment with fly ash (FA and combined supplementation with N2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, pH value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts (root and seed were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients (Mn, Ni, Co, Zn and Cu and toxic elements (Pb, Cr and Cd increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N2-fixation.

  5. Effect of FYM on the recovery of applied zinc in DTPA extract under upland and submerged conditions in calcareous and non-calcareous soils

    International Nuclear Information System (INIS)

    Deb, D.L.; Leelabhai, K.S.

    1988-01-01

    Studies undertaken to determine the effect of varying levels of FYM application on the recovery of applied zinc in DTPA extract under upland and sub merged conditions in calcareous and non-calcareous soils using 65 Zn under controlled conditions showed that the recovery of fertilizer Zn was reduced significantly with high level of applied Zn and 5 cm standing water over the soil. Application of FYM also tended to reduce the percent recovery of applied Zn. The recovery of applied Zn was found to increase after 60 days (period of contact) in all the tretments. The calcareous soils showed significantly lower recovery of fertilizer Zn than non-calcareous soils. The interactions of 5 cm standing water with all the other factors studied on the recovery of applied Zn were highly significant and negative. (author). 8 refs., 3 tabs

  6. Influence of N,K and CaSO4 on utilisation of sulfur by rice in red sandy loam soil

    International Nuclear Information System (INIS)

    Patnaik, M.C.; Sathe, Arun

    1993-01-01

    A greenhouse study with rice on red sandy loam soil showed that uptake of sulphur increased from both native as well as applied source with increase in the application of sulphur from 20-60 kg S ha -1 through gypsum. The grain yields were influenced by nitrogen application but there was only relative increase with the application of potassium and sulphur. There was positive effect of applied nitrogen and sulphur for the total sulphur removal by the rice crop. The per cent sulphur utilisation decreased with increase in sulphur application from 20-60 kg S ha -1 through gypsum but increased with increase in the application of nitrogen from 0-150 kg N ha -1 . Sulphur utilization by rice crop was more in potassium treated pots compared to that without its application. (author). 7 refs., 3 tabs

  7. Effect of the fertilization with micro-nutriments with Phosphorous and Potassium on the biomass of rice, in different soils of the Ibague Terrace

    International Nuclear Information System (INIS)

    Salive R, Alvaro; Frye C, Alberto

    1995-01-01

    To compare the effect of Zn and Cu Chelates (EDTA) with their respective sulfates as well as to evaluate the response to the nutrients b, Cu, Zn and K, an experiment was effected with normal rice growing soils and also those with high levels of calcium or carbonates using a tray system in a net covered structure. Based on the biomass of rice, Zn and Cu Chelates were found to have a greater influence than the sulfates, reaching statistical significance in the case of the calcareous soil and improving the response of P and K. On the contrary the sulfates were associated with negative effects. On the other hand, in different soils a significant positive effect was noted for B, Cu and P, as well as for K in calcareous soils, while in normal soil the response for Zn and K was negative. Moderate response to P was seen even though content was found to be sufficient: Zn showed no such response in calcareous soils, even though poor in it probably due to antagonism with iron, another critical element in these soils

  8. Microbial degradation of 15N-labeled rice residues in soil during two years' incubation under flooded and upland conditions, (1)

    International Nuclear Information System (INIS)

    Kanazawa, Shinjiro; Yoneyama, Tadakatsu.

    1980-01-01

    The decay of rice residue was investigated after incubation periods of from 1 to 24 months at 30 0 C under both blooded and upland soil conditions. Tops and roots of rice plants were cut into about 10-mm length, and separately incorporated in soil which had been passed through a 0.5-mm sieve. Plant debris were fractionated physically according to their sizes and divided into five groups (> 4 mm, 4 - 2 mm, 2 - 1 mm, 1 - 0.5 mm, and 0.5 - 0.25 mm). Carbon loss from the soils amended with rice residues and decrease in the weight of total plant debris proceeded at a rapid speed in the early periods (around 4 months) and then at a slow speed in the subsequent periods under both flooded and upland soil conditions. The distribution of the plant debris in the decomposition processes differed under flooded and upland conditions. Under flooded conditions, 2 - 4 mm-sized plant debris were retained for a long period with slow transformation into the smaller fractions. In contrast, under upland conditions, change of plant debris from large to small size fractions proceeded gradually. This continuous change could be attributed to the high decomposing activities of fungi under upland conditions. (author)

  9. Impacts of integrated nutrient management on methane emission, global warming potential and carbon storage capacity in rice grown in a northeast India soil.

    Science.gov (United States)

    Bharali, Ashmita; Baruah, Kushal Kumar; Baruah, Sunitee Gohain; Bhattacharyya, Pradip

    2018-02-01

    Rice soil is a source of emission of two major greenhouse gases (methane (CH 4 ) and nitrous oxide (N 2 O)) and a sink of carbon dioxide (CO 2 ). The effect of inorganic fertilizers in combination with various organics (cow dung, green manure (Sesbania aculeata) Azolla compost, rice husk) on CH 4 emission, global warming potential, and soil carbon storage along with crop productivity were studied at university farm under field conditions. The experiment was conducted in a randomized block design for 2 years in a monsoon rice (cv. Ranjit) ecosystem (June-November, 2014 and 2015). Combined application of inorganic (NPK) with Sesbania aculeata resulted in high global warming potential (GWP) of 887.4 kg CO 2 ha -1 and low GWP of 540.6 kg CO 2 ha -1 was recorded from inorganic fertilizer applied field. Irrespective of the type of organic amendments, flag leaf photosynthesis of the rice crop increased over NPK application (control). There was an increase in CH 4 emission from the organic amended fields compared to NPK alone. The combined application of NPK and Azolla compost was effective in the buildup of soil carbon (16.93 g kg -1 ) and capacity of soil carbon storage (28.1 Mg C ha -1 ) with high carbon efficiency ratio (16.9). Azolla compost application along with NPK recorded 15.66% higher CH 4 emission with 27.43% yield increment over control. Azolla compost application significantly enhanced carbon storage of soil and improved the yielding ability of grain (6.55 Mg ha -1 ) over other treatments.

  10. Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practises and soil geochemistry.

    Science.gov (United States)

    Fransisca, Yunnita; Small, Darryl M; Morrison, Paul D; Spencer, Michelle J S; Ball, Andrew S; Jones, Oliver A H

    2015-11-01

    Chronic dietary exposure to arsenic, particularly the inorganic forms (defined as elemental arsenic, predominantly As(3+) and As(5+), and all its inorganic compounds except arsine), is a matter of concern for human health. Ingestion of arsenic usually occurs via contaminated water but recent studies show there is also a risk of exposure from food, particularly Asian rice (Oryza sativa). Australia is a rice growing country, contributing around 2% of the world rice trade, and a large proportion of the population consumes rice regularly. In the present study we investigated concentrations of arsenic in both Australian grown and imported rice on sale in Australia and examined the potential links with irrigation practises and soil geochemistry. The results indicated a wide spread of arsenic levels of 0.09-0.33 mg kg(-1), with Australian grown Arborio and sushi varieties of O. sativa containing the highest mean value of ∼0.22 mg kg(-1). Arsenic levels in all samples were below the 1 mg kg(-1) limit set by Food Standards Australia New Zealand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. O-2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes

    DEFF Research Database (Denmark)

    Larsen, Morten; Santner, Jakob; Oburger, Eva

    2015-01-01

    dynamics in the rice rhizosphere. Applying high-resolution planar optode imaging, we investigated the O-2 dynamics of plants grown in water saturated soil, as a function of ambient O-2 level, irradiance and plant development, for submerged and emerged plants. O-2 leakage was heterogeneously distributed...... with zones of intense leakage around roots tips and young developing roots. While the majority of roots exhibited high ROL others remained surrounded by anoxic soil. ROL was affected by ambient O-2 levels around the plant, as well as irradiance, indicating a direct influence of photosynthetic activity on ROL...... of the rhizosphere. The work documents that spatio-temporal measurements are important to fully understand and account for the highly variable O-2 dynamics and associated biogeochemical processes and pathways in the rice rhizosphere....

  12. Biochar application mode influences nitrogen leaching and NH3 volatilization losses in a rice paddy soil irrigated with N-rich wastewater.

    Science.gov (United States)

    Sun, Haijun; Min, Ju; Zhang, Hailin; Feng, Yanfang; Lu, Kouping; Shi, Weiming; Yu, Min; Li, Xuewen

    2017-07-11

    Impacts of biochar application mode on nitrogen (N) leaching, ammonia (NH 3 ) volatilization, rice grain yield and N use efficiency (NUE) are not well understood. Therefore, a field experiment was conducted to evaluate those impacts in a rice paddy soil received 225 kg N ha -1 from either urea or N-rich wastewater. One treatment received 10 t ha -1 biochar with the basal fertilization, and the other received same total amount of biochar but split applied with the three split N applications with same ratio as N fertilizer split ratio (40%, 30% and 30%). Results showed that N leaching loads were 4.20-6.22 kg ha -1 . Biochar one-time application reduced N leaching by 23.1%, and biochar split application further reduced N leaching by 32.4%. Total NH 3 volatilization loss was 15.5-24.5 kg ha -1 . Biochar one-time application did not influence the NH 3 volatilization, but biochar split application stimulated the cumulative NH 3 volatilization by 57.7%. Both biochar treatments had no influence on NUE and rice grain yield. In conclusion, biochar application mode indeed influences the N leaching and NH 3 volatilization in rice paddy soils, and biochar one-time application should be recommended for reducing N leaching without increasing NH 3 volatilization.

  13. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    Science.gov (United States)

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system.

    Science.gov (United States)

    Zhao, Jun; Ni, Tian; Xun, Weibing; Huang, Xiaolei; Huang, Qiwei; Ran, Wei; Shen, Biao; Zhang, Ruifu; Shen, Qirong

    2017-06-01

    To study the influence of straw incorporation with and without straw decomposer on bacterial community structure and biological traits, a 3-year field experiments, including four treatments: control without fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus 7500 kg ha -1 straw incorporation (NPKS), and chemical fertilizer plus 7500 kg ha -1 straw incorporation and 300 kg ha -1 straw decomposer (NPKSD), were performed in a rice-wheat cropping system in Changshu (CS) and Jintan (JT) city, respectively. Soil samples were taken right after wheat (June) and rice (October) harvest in both sites, respectively. The NPKS and NPKSD treatments consistently increased crop yields, cellulase activity, and bacterial abundance in both sampling times and sites. Moreover, the NPKS and NPKSD treatments altered soil bacterial community structure, particularly in the wheat harvest soils in both sites, separating from the CK and NPK treatments. In the rice harvest soils, both NPKS and NPKSD treatments had no considerable impacts on bacterial communities in CS, whereas the NPKSD treatment significantly shaped bacterial communities compared to the other treatments in JT. These practices also significantly shifted the bacterial composition of unique operational taxonomic units (OTUs) rather than shared OTUs. The relative abundances of copiotrophic bacteria (Proteobacteria, Betaproteobacteria, and Actinobacteria) were positively correlated with soil total N, available N, and available P. Taken together, these results indicate that application of straw incorporation with and without straw decomposer could particularly stimulate the copiotrophic bacteria, enhance the soil biological activity, and thus, contribute to the soil productivity and sustainability in agro-ecosystems.

  15. Long-term monitoring and analysis of 90Sr and 137Cs concentrations in rice, wheat and soils in Japan from 1959 to 2000

    International Nuclear Information System (INIS)

    Komamura, M.; Tsumura, A.; Yamaguchi, N.; Fujiwara, H.; Kihou, N.; Kodaira, K.

    2006-01-01

    Atmospheric nuclear tests in the 1950s and thereafter had showered radioactive fallout throughout Japan. Therefore, radioactive contamination of crops cultivated in Japan was concerned. We continued to monitor concentrations of 90Sr and 137Cs in rice, wheat and soils collected annually from sixteen national and prefectural experimental farms for forty-two years, from 1959 to 2000. In 1963, when the largest annual precipitation of radioactive fallout was observed, 90Sr and 137Cs concentration in rice and wheat reached at their maximum; 0.27 Bq/kg for 90Sr and 4.2 Bq/kg for 137Cs in polished rice and 12 Bq/kg for 90Sr and 44 Bq/kg for 137Cs in wheat grain. The concentration of 90Sr and 137Cs in the plowed layer of paddy and upland soils reached maximum from 1963 to 1966. After 1966, concentrations of 90Sr and 137Cs in polished rice, wheat grain, and soils were gradually decreased although there were some minor fluctuations. The Chernobyl nuclear power plant accident in 1986 caused contamination of wheat grain by 137Cs up to 6.0 Bq/kg. However, the concentration of 137Cs in wheat grain decreased to its normal level in the following year. There was no evidence for the polished rice contamination in Japan that could be ascribed to the accident at Chernobyl. Based on the analyses of the data above, we made several interesting findings as follows: a) The accumulated amounts of 90Sr and 137Cs in fallout during cultivation period were highly correlated with those concentrations in husked rice, polished rice and wheat grain. The estimate equations derived from the correlations were accurate enough for quick prediction of contamination level of polished rice and wheat grain based on 90Sr and 137Cs contents in fallout in case of contingencies. b) The sensitive response of 90Sr and 137Cs in polished rice and wheat grain to concentrations of fallout suggested that direct absorption of 90Sr and 137Cs from radioactive fallout deposited on plant body played important role. In 1963

  16. Submerged AUV Charging Station

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  17. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils

    International Nuclear Information System (INIS)

    Kuo, S.; Lai, M.S.; Lin, C.W.

    2006-01-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1 ± 0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl 2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them

  18. Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia. Report of a FAO/IAEA consultants' meeting

    International Nuclear Information System (INIS)

    2000-01-01

    A Consultants' Meeting on 'Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia' was held at FAO, Rome, August 22-25, 2000. Five consultants, together with one staff from IAEA headquarters, one staff from IAEA Laboratories, Seibersdorf, five staff from FAO headquarters, two staff from FAO regional offices, one observer from ACIAR, one observer from Cornell University with expertise in crop, nutrient, soil and water management, attended the meeting. The consultants presented reviews of the situation regarding studies of water and nutrient dynamics in rice-wheat systems in South Asia. These were complemented by a paper on the development of 15 N techniques to study the contribution of N from leg