WorldWideScience

Sample records for submerged plant communities

  1. [Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].

    Science.gov (United States)

    Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang

    2016-05-15

    Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure.

  2. Parametric and Nonparametric Analysis of LANDSAT TM and MSS Imagery for Detecting Submerged Plant Communities

    Science.gov (United States)

    Ackleson, S. G.; Klemas, V.

    1984-01-01

    The spatial, spectral and radiometric characteristics of LANDSAT TM and MSS imagery for detecting submerged aquatic vegetation are assessed. The problem is approached from two perspectives; purely stochastic or nonparametric in a radiative sense and theoretical in which radiative transfer equations are used to predict upwelling radiance at satellite altitude. The spectral and radiometric aspects of the theoretical approach are addressed with which a submerged plant canopy is distinguished from a surrounding bottom of sand or mud.

  3. Impacts of climate change on submerged and emergent wetland plants

    Science.gov (United States)

    Frederick T. Short; Sarian Kosten; Pamela A. Morgan; Sparkle L Malone; Gregg E. Moore

    2016-01-01

    Submerged and emergent wetland plant communities are evaluated for their response to global climate change (GCC), focusing on seagrasses, submerged freshwater plants, tidal marsh plants, freshwater marsh plants and mangroves. Similarities and differences are assessed in plant community responses to temperature increase, CO2increase, greater UV-B exposure, sea...

  4. Drought and submergence tolerance in plants

    Science.gov (United States)

    Du, Hewei; Zhou, Yufan; Oksenberg, Nir; Ronald, Pamela

    2017-11-14

    The invention provides methods of genetically modified plants to increase tolerance to drought and/or submergence. The invention additionally provides plants having increased drought and/or submergence tolerance engineered using such methods.

  5. Swan foraging shapes spatial distribution of two submerged plants, favouring the preferred prey species

    NARCIS (Netherlands)

    Sandsten, H.; Klaassen, M.R.J.

    2008-01-01

    Compared to terrestrial environments, grazing intensity on belowground plant parts may be particularly strong in aquatic environments, which may have great effects on plant-community structure. We observed that the submerged macrophyte, Potamogeton pectinatus, which mainly reproduces with tubers,

  6. Crassulacean acid metabolism in submerged aquatic plants

    Science.gov (United States)

    Keeley, Jon E.; Sybesme, C.

    1984-01-01

    CO2-fixation in the dark is known to occur in various organs of many plants. However, only in species possessing crassulacean acid metabolism (CAM) does dark CO2-fixation contribute substantially to the carbon economy of the plant. Until very recently CAM was known only from terrestrial species, largely drought adapted succulents. The discovery of CAM in the submerged aquatic fern ally Isoetes howellii (Isoetaceae)(Keeley 1981) adds a new dimension to our understanding of crassulacean acid metabolism. In this paper I will summarize 1) the evidence of CAM in Isoetes howellii, 2) the data on the distribution of CAM in aquatic species, and 3) the work to date on the functional significance of CAM in aquatic species.

  7. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  8. Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress

    Directory of Open Access Journals (Sweden)

    Malay Kumar ADAK

    2011-06-01

    Full Text Available The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation. It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield. The detrimental effects of the complete submergence were recorded in generation of sucrose, starch, sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e. non-submerged condition. The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity. Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity. However, under normal or control condition, there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity. Still, photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield. Finally, plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues. It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles, in this case as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.

  9. Through-flow of water in leaves of a submerged plant is influenced by the apical opening

    DEFF Research Database (Denmark)

    Pedersen, Ole; Jørgensen, Lise Bolt; Sand-Jensen, Kaj

    1997-01-01

    Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity......Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity...

  10. Reactive oxygen species mediate growth and death in submerged plants

    Directory of Open Access Journals (Sweden)

    Bianka eSteffens

    2013-06-01

    Full Text Available Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism and nonenzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS.

  11. CAM Photosynthesis in Submerged Aquatic Plants

    Science.gov (United States)

    Keeley, J.E.

    1998-01-01

    Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism selected in response to aridity in terrestrial habitats, and, in aquatic environments, to ambient limitations of carbon. Evidence is reviewed for its presence in five genera of aquatic vascular plants, including Isoe??tes, Sagittaria, Vallisneria, Crassula, and Littorella. Initially, aquatic CAM was considered by some to be an oxymoron, but some aquatic species have been studied in sufficient detail to say definitively that they possess CAM photosynthesis. CO2-concentrating mechanisms in photosynthetic organs require a barrier to leakage; e.g., terrestrial C4 plants have suberized bundle sheath cells and terrestrial CAM plants high stomatal resistance. In aquatic CAM plants the primary barrier to CO2 leakage is the extremely high diffusional resistance of water. This, coupled with the sink provided by extensive intercellular gas space, generates daytime CO2(Pi) comparable to terrestrial CAM plants. CAM contributes to the carbon budget by both net carbon gain and carbon recycling, and the magnitude of each is environmentally influenced. Aquatic CAM plants inhabit sites where photosynthesis is potentially limited by carbon. Many occupy moderately fertile shallow temporary pools that experience extreme diel fluctuations in carbon availability. CAM plants are able to take advantage of elevated nighttime CO2 levels in these habitats. This gives them a competitive advantage over non-CAM species that are carbon starved during the day and an advantage over species that expend energy in membrane transport of bicarbonate. Some aquatic CAM plants are distributed in highly infertile lakes, where extreme carbon limitation and light are important selective factors. Compilation of reports on diel changes in titratable acidity and malate show 69 out of 180 species have significant overnight accumulation, although evidence is presented discounting CAM in some. It is concluded that similar proportions of the aquatic

  12. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.

  13. Underwater photosynthesis of submerged plants - recent advances and methods

    National Research Council Canada - National Science Library

    Pedersen, Ole; Colmer, Timothy D; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary...

  14. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments

    NARCIS (Netherlands)

    Boedeltje, G; ter Heerdt, GNJ; Bakker, JP

    Seed bank studies focused on submerged aquatic plants are generally performed under submerged conditions, using the seedling-emergence method. However, if a study targets at both submerged species and helophytes, submerged conditions are generally not suitable. We tested the emergence of seedlings

  15. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants.

    Science.gov (United States)

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M; Cornelissen, Johannes H C

    2016-04-10

    Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. TakingAlternanthera philoxeroides(Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. The adventitious roots ofA. philoxeroidesformed upon submergence can absorb oxygen from ambient water, thereby alleviating the adverse effects of

  16. Environmental Assessment: Submerged Aquatic Plant Management of Banks Lake, Banks Lake NWR, Lakeland, Georgia

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Environmental Assessment is an analysis of five alternatives developed to address themanagement of the submerged aquatic plants of Banks Lake on Banks Lake...

  17. Anatomy of floating and submerged leaves of heterophyllous plant of Nymphaea candida L.

    OpenAIRE

    E.N. Klimenko

    2014-01-01

    The data on anatomy of floating and submerged leaves of heterophyllous aquatic plant Nymphaea candida L. are presented. Anatomy of floating leaves is shown to be different from that of submerged leaves: the absence of stomata, asterosclereids, and differentiated parenchyma, as well as by reduce intercellular volume and leaf width. Common patterns of leaf structure plasticity of aquatic heterophyllous plants in dependence on the environment are discussed.

  18. Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii.

    Science.gov (United States)

    Rich, Sarah Meghan; Ludwig, Martha; Colmer, Timothy David

    2012-07-01

    A common response of wetland plants to flooding is the formation of aquatic adventitious roots. Observations of aquatic root growth are widespread; however, controlled studies of aquatic roots of terrestrial herbaceous species are scarce. Submergence tolerance and aquatic root growth and physiology were evaluated in two herbaceous, perennial wetland species Cotula coronopifolia and Meionectes brownii. Plants were raised in large pots with 'sediment' roots in nutrient solution and then placed into individual tanks and shoots were left in air or submerged (completely or partially). The effects on growth of aquatic root removal, and of light availability to submerged plant organs, were evaluated. Responses of aquatic root porosity, chlorophyll and underwater photosynthesis, were studied. Both species tolerated 4 weeks of complete or partial submergence. Extensive, photosynthetically active, aquatic adventitious roots grew from submerged stems and contributed up to 90 % of the total root dry mass. When aquatic roots were pruned, completely submerged plants grew less and had lower stem and leaf chlorophyll a, as compared with controls with intact roots. Roots exposed to the lowest PAR (daily mean 4.7 ± 2.4 µmol m(-2) s(-1)) under water contained less chlorophyll, but there was no difference in aquatic root biomass after 4 weeks, regardless of light availability in the water column (high PAR was available to all emergent shoots). Both M. brownii and C. coronopifolia responded to submergence with growth of aquatic adventitious roots, which essentially replaced the existing sediment root system. These aquatic roots contained chlorophyll and were photosynthetically active. Removal of aquatic roots had negative effects on plant growth during partial and complete submergence.

  19. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants

  20. Constructed tropical wetlands with integrated submergent-emergent plants for sustainable water quality management.

    Science.gov (United States)

    Tanaka, Norio; Jinadasa, K B S N; Werellagama, D R I B; Mowjood, M I M; Ng, W J

    2006-01-01

    Improvement of primary effluent quality by using an integrated system of emergent plants (Scirpus grossus in the leading subsurface flow arrangement) and submergent plants (Hydrilla verticillata in a subsequent channel) was investigated. The primary effluent was drawn from a septic tank treating domestic sewage from a student dormitory at the University of Peradeniya, Sri Lanka. Influent and effluent samples were collected once every 2 weeks from May 2004 through July 2005 and analyzed to determine water quality parameters. Both the emergent and submergent plants were harvested at predetermined intervals. The results suggested that harvesting prolonged the usefulness of the system and the generation of a renewable biomass with potential economic value. The mean overall pollutant removal efficiencies of the integrated emergent and submergent plant system were biological oxygen demand (BOD5), 65.7%; chemical oxygen demand (COD), 40.8%; ammonium (NH4+-N), 74.8%; nitrate (NO3--N), 38.8%; phosphate (PO43-), 61.2%; total suspended solids (TSS), 65.8%; and fecal coliforms, 94.8%. The submergent plant subsystem improved removal of nutrients that survived the emergent subsystem operated at low hydraulic retention times. The significant improvement in effluent quality following treatment by the submergent plant system indicates the value of incorporating such plants in wetland systems.

  1. Submergence Causes Similar Carbohydrate Starvation but Faster Post-Stress Recovery than Darkness in Alternanthera philoxeroides Plants.

    Directory of Open Access Journals (Sweden)

    Xiao Qi Ye

    Full Text Available Carbon assimilation by submerged plants is greatly reduced due to low light levels. It is hypothesized that submergence reduces carbohydrate contents and that plants recover from submergence in the same way as darkness-treated plants. To test this hypothesis, the responses of plants to submergence and darkness were studied and compared. Plants of a submergence-tolerant species, Alternanthera philoxeroides, were exposed to well drained and illuminated conditions, complete submergence conditions or darkness conditions followed by a recovery growth period in a controlled experiment. The biomass maintenance and accumulation, carbohydrate content dynamics and respiration rate in the plants were assessed to quantify the carbohydrate utilization rate and regrowth. The submerged plants maintained higher chlorophyll contents, more green leaf tissue and more biomass; recovered more quickly; and accumulated more carbohydrates and biomass than darkness-treated plants. The respiration rate was continuously reduced in the same pattern under both stress conditions but was maintained at a significantly lower level in the submerged plants; the total soluble sugar and total fructan contents were decreased at approximately the same rate of decrease, reaching similar low levels, in the two stress treatments. The A. philoxeroides plants were more tolerant of submergence than darkness. The faster recovery of desubmerged plants could not be explained by the similar carbohydrate contents at the start of recovery. Other types of carbon reserves besides carbohydrates or other mechanisms such as higher post-stress photosynthetic performance might be involved.

  2. Submerged macrophytes mitigate direct and indirect insecticide effects in freshwater communities.

    Directory of Open Access Journals (Sweden)

    William R Brogan

    Full Text Available Understanding how ecological interactions mitigate the impacts of perturbations such as pesticides in biological communities is an important basic and applied question for ecologists. In aquatic ecosystems, new evidence from microcosm experiments suggests that submerged macrophytes can buffer cladocerans from pulse exposures to the widely used insecticide malathion, and that mitigation increases with macrophyte density. However, whether these results scale up to more complex aquatic communities where ecological interactions such as competition can alter toxicity is unknown. Further, macrophyte abilities to mitigate different insecticide exposure scenarios (i.e. single versus repeated pulses have never been tested. To address these gaps, we performed a factorial mesocosm experiment examining the influence of four macrophyte treatments (0, 10, 50, or 100 Elodea Canadensis shoots planted per mesocosm crossed with three malathion exposure scenarios (no insecticide, single pulse, repeated pulses on aquatic communities containing zooplankton, phytoplankton, periphyton, two snail species, and larval amphibians. In the absence of macrophytes, single malathion pulses caused short-term declines in cladoceran abundance followed by their rapid recovery, which precluded any indirect effects (i.e. trophic cascades. However, repeated malathion pulses caused cladoceran extinctions, resulting in persistent phytoplankton blooms and reduced abundance of one snail species. In contrast, with macrophytes present, even at low density, malathion had no effect on any taxa. We also discovered novel effects of macrophytes on the benthic food web. In the two highest macrophyte treatments, we observed trends of reduced periphyton biomass, decreased abundance of one snail species, and decreased amphibian time to and mass at metamorphosis. To our knowledge, this is the first evidence of negative submerged macrophyte effects on amphibians, a taxa of global conservation concern

  3. Bacterial and fungal colonization and decomposition of submerged plant litter: consequences for biogenic silica dissolution.

    Science.gov (United States)

    Alfredsson, Hanna; Clymans, Wim; Stadmark, Johanna; Conley, Daniel; Rousk, Johannes

    2016-03-01

    We studied bacterial and fungal colonization of submerged plant litter, using a known Si-accumulator (Equisetum arvense), in experimental microcosms during one month. We specifically addressed the microbial decomposer role concerning biogenic silica (bSiO2) dissolution from the degrading litter. To vary the rates and level of microbial colonization, the litter was combined with a range of mineral nitrogen (N) and phosphorous (P) supplements. Overall microbial growth on plant litter increased with higher levels of N and P. There was a tendency for higher relative bacterial than fungal stimulation with higher nutrient levels. Differences in microbial colonization of litter between treatments allowed us to test how Si remineralization from plants was influenced by microbial litter decomposition. Contrary to previous results and expectations, we observed a general reduction in Si release from plant litter colonized by a microbial community, compared with sterile control treatments. This suggested that microbial growth resulted in a reduction of dissolved Si concentrations, and we discuss candidate mechanisms to explain this outcome. Hence, our results imply that the microbial role in plant litter associated Si turnover is different from that commonly assumed based on bSiO2 dissolution studies in aquatic ecosystems. © FEMS 2016.

  4. Strong growth limitation of a floating plant (Lemna gibba) by the submerged macrophyte (Elodea nuttallii) under laboratory conditions

    NARCIS (Netherlands)

    Szabo, S.; Scheffer, M.; Roijackers, R.M.M.; Waluto, B.; Zambrano, L.

    2010-01-01

    1. The asymmetric competition for light and nutrients between floating and submerged aquatic plants is thought to be key in explaining why dominance by either of these groups can be stable and difficult to change. 2. Although the shading effect of floating plants on submerged plants has been well

  5. A new mechanism of macrophyte mitigation: how submerged plants reduce malathion's acute toxicity to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2014-08-01

    A growing body of evidence suggests that aquatic plants can mitigate the toxicity of insecticides to sensitive aquatic animals. The current paradigm is that this ability is driven primarily by insecticide sorption to plant tissues, especially for hydrophobic compounds. However, recent work shows that submerged plants can strongly mitigate the toxicity of the relatively hydrophilic insecticide malathion, despite the fact that this compound exhibits a slow sorption rate to plants. To examine this disparity, we tested the hypothesis that the mitigating effect of submerged plants on malathion's toxicity is driven primarily by the increased water pH from plant photosynthesis causing the hydrolysis of malathion, rather than by sorption. To do this, we compared zooplankton (Daphnia magna) survival across five environmentally relevant malathion concentrations (0, 1, 4, 6, or 36 μg L(-1)) in test containers where we chemically manipulated water pH in the absence of plants or added the submerged plant (Elodea canadensis) but manipulated plant photosynthetic activity via shading or no shading. We discovered that malathion was equally lethal to Daphnia at all concentrations tested when photosynthetically inactive (i.e. shaded) plants were present (pH at time of dosing=7.8) or when pH was chemically decreased (pH=7.7). In contrast, when photosynthetically active (i.e. unshaded) plants were present (pH=9.8) or when pH was chemically increased (pH=9.5), the effects of 4 and 6 μg L(-1) of malathion on Daphnia were mitigated strongly and to an equal degree. These results demonstrate that the mitigating effect of submerged plants on malathion's toxicity can be explained entirely by a mechanism of photosynthesizing plants causing an increase in water pH, resulting in rapid malathion hydrolysis. Our findings suggest that current ecotoxicological models and phytoremediation strategies may be overlooking a critical mechanism for mitigating pesticides. Copyright © 2014 Elsevier Ltd

  6. Two-flow simulation of the natural light field within a canopy of submerged aquatic plants

    Science.gov (United States)

    Ackleson, S. G.; Klemas, V.

    1986-01-01

    A two-flow model is developed to simulate a light field composed of both collimated and diffuse irradiance within natural waters containing a canopy of bottom-adhering plants. To account for the effects of submerging a canopy, the transmittance and reflectance terms associated with each plant structure (leaves, stems, fruiting bodies, etc.) are expressed as functions of the ratio of the refractive index of the plant material to the refractive index of the surrounding media and the internal transmittance of the plant stucture. Algebraic solutions to the model are shown to yield plausible physical explanations for unanticipated variations in volume reflectance spectra. The effect of bottom reflectance on the near-bottom light field is also investigated. These indicate that within light-limited submerged aquatic plant canopies, substrate reflectance may play an important role in determining the amount of light available to the plants and, therefore, canopy productivity.

  7. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants...... maintain relatively high internal oxygen pressures under water, and even may release oxygen via the roots into the sediment, also in dark. Based on these results, we challenge the dogma that oxygen pressures in submerged terrestrial plants immediately drop to levels at which aerobic respiration is impaired....... The present study demonstrates that the internal oxygen pressure in the petioles of Rumex palustris plants under water is indeed well above the critical oxygen pressure for aerobic respiration, provided that the air-saturated water is not completely stagnant. The beneficial effect of shoot acclimation...

  8. Surprising spectra of root-associated fungi in submerged aquatic plants.

    Science.gov (United States)

    Kohout, Petr; Sýkorová, Zuzana; Ctvrtlíková, Martina; Rydlová, Jana; Suda, Jan; Vohník, Martin; Sudová, Radka

    2012-04-01

    Similarly to plants from terrestrial ecosystems, aquatic species harbour wide spectra of root-associated fungi (RAF). However, comparably less is known about fungal diversity in submerged roots. We assessed the incidence and diversity of RAF in submerged aquatic plants using microscopy, culture-dependent and culture-independent techniques. We studied RAF of five submerged isoetid species collected in four oligotrophic freshwater lakes in Norway. Levels of dark septate endophytes (DSE) colonization differed among the lakes and were positively related to the organic matter content and negatively related to pH. In total, we identified 41 fungal OTUs using culture-dependent and culture-independent techniques, belonging to Mucoromycotina, Chytridiomycota, Glomeromycota, Ascomycota as well as Basidiomycota. Sequences corresponding to aquatic hyphomycetes (e.g. Nectria lugdunensis, Tetracladium furcatum and Varicosporium elodeae) were obtained. Eight arbuscular mycorrhizal taxa belonging to the orders Archaeosporales, Diversisporales and Glomerales were also detected. However, the vast majority of the fungal species detected (e.g. Ceratobasidium sp., Cryptosporiopsis rhizophila, Leptodontidium orchidicola, and Tuber sp.) have previously been known only from roots of terrestrial plants. The abundance and phylogenetic distribution of mycorrhizal as well as nonmycorrhizal fungi in the roots of submerged plants have reshaped our views on the fungal diversity in aquatic environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds.

    Science.gov (United States)

    Liu, Hui; Bu, Hongmei; Liu, Guihua; Wang, Zhixiu; Liu, Wenzhi

    2015-12-01

    Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks.

  10. Microbial community dynamics in a submerged fixed bed bioreactor during biological treatment of saline urban wastewater

    NARCIS (Netherlands)

    Cortés-Lorenzo, C.; Sipkema, D.; Rodríguez-Díaz, M.; Fuentes, S.; Juárez-Jiménez, B.; Rodelas, B.; Smidt, H.; González-López, J.

    2014-01-01

    The influence of salt (NaCl) on bacterial and archaeal communities in a submerged fixed bed bioreactor system for the treatment of urban wastewater was determined by DGGE and 454 pyrosequencing of PCR-amplified 16S ribosomal RNA gene fragments. Cluster analysis of DGGE fingerprints showed

  11. Swan foraging shapes spatial distribution of two submerged plants, favouring the preferred prey species.

    Science.gov (United States)

    Sandsten, Håkan; Klaassen, Marcel

    2008-06-01

    Compared to terrestrial environments, grazing intensity on belowground plant parts may be particularly strong in aquatic environments, which may have great effects on plant-community structure. We observed that the submerged macrophyte, Potamogeton pectinatus, which mainly reproduces with tubers, often grows at intermediate water depth and that P. perfoliatus, which mainly reproduces with rhizomes and turions, grows in either shallow or deep water. One mechanism behind this distributional pattern may be that swans prefer to feed on P. pectinatus tubers at intermediate water depths. We hypothesised that when swans feed on tubers in the sediment, P. perfoliatus rhizomes and turions may be damaged by the uprooting, whereas the small round tubers of P. pectinatus that escaped herbivory may be more tolerant to this bioturbation. In spring 2000, we transplanted P. perfoliatus rhizomes into a P. pectinatus stand and followed growth in plots protected and unprotected, respectively, from bird foraging. Although swan foraging reduced tuber biomass in unprotected plots, leading to lower P. pectinatus density in spring 2001, this species grew well both in protected and unprotected plots later that summer. In contrast, swan grazing had a dramatic negative effect on P. perfoliatus that persisted throughout the summer of 2001, with close to no plants in the unprotected plots and high densities in the protected plots. Our results demonstrate that herbivorous waterbirds may play a crucial role in the distribution and prevalence of specific plant species. Furthermore, since their grazing benefitted their preferred food source, the interaction between swans and P. pectinatus may be classified as ecologically mutualistic.

  12. Development and validation of phytotoxicity tests with emergent and submerged aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.S. [Carolina Ecotox, Inc., Durham, NC (United States); Powell, R.L. [Monsanto Co., St. Louis, MO (United States); Nelson, M.K. [National Biological Service, Columbia, MO (United States)

    1995-12-31

    Toxicity testing procedures have recently been developed for assessment of contaminant effects on emergent and submerged aquatic macrophytes commonly found in freshwater wetlands. These tests have potential application in risk assessments for contaminated wetlands as well as for new chemical substances. The objective of this study was to evaluate and modify, if necessary, these methods and to validate them, using two benchmark chemicals, in a contract laboratory setting. Oryza sativa (domestic rice) was used as a surrogate emergent vascular plant, while Ceratophylium demersum (coontail) and Myriophyllum heterophyllum (variable-leaf milfoil) were the representative submerged vascular plants. Subsequent to evaluating culturing techniques and testing conditions, toxicity tests were conducted using boron and metribuzin. The test procedure for the emergent plants involves a two-week pro-exposure period followed by a two-week aqueous exposure. Five types of sediment, including both natural and artificial sediments, were evaluated for use with rice. Fresh weight and chlorophyll a content were the selected test endpoints. The submerged plants were exposed for two weeks, and the response variables evaluated included length, weight (fresh and dry), and root number. The sensitivity of these tests were comparable to the results obtained for the same two chemicals using the green alga, Selenastrum capricornutum, and the duckweed, Lemna gibba, with the exception that rice was less sensitive to metribuzin than the other species.

  13. Seed weight and germination behavior of the submerged plant Potamogeton pectinatus in the arid zone of northwest China

    National Research Council Canada - National Science Library

    Li, Zhongqiang; Lu, Wei; Yang, Lei; Kong, Xianghong; Deng, Xuwei

    2015-01-01

    .... This study examined within‐species variation in seed weight and germination attributes and the effects of environmental factors on seed traits of the submerged plant P otamogeton pectinatus in the arid zone of northwest China...

  14. MBS Native Plant Communities

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer contains results of the Minnesota County Biological Survey (MCBS). It includes polygons representing the highest quality native plant communities...

  15. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Mo Shuqing

    2017-01-01

    Full Text Available Eutrophication resulting from nutrient loading to freshwater habitats is a severe problem, leading to degradation of ecosystems, including deterioration of water quality, water clarity and loss of biodiversity. Measures enacted to restore degraded freshwater ecosystems often involve the reintroduction of submerged plants and aquatic animals with beneficial ecological functions. In a mesocosm experiment, three treatments (planting with Vallisneria natans, introduction of the snail Bellamya aeruginosa and a combined treatment with both plants and snails were compared with controls to evaluate their effects on trophic state. The total nitrogen (TN, total phosphorus (TP and chlorophyll a (Chl a concentrations of planktonic and benthic algal samples were determined every two weeks, along with light intensity at the sediment surface. The plant-only treatment significantly reduced the TN levels and planktonic and benthic algal biomass and increased the light intensity at the sediment surface. The snail-only treatment reduced the concentrations of TN and reduced planktonic and benthic algal biomass. The combined treatment decreased the concentrations of TN and TP, reduced planktonic algal biomass and increased the light intensity on the sediment surface. The results indicate that while submerged plants and snails can both improve water quality, the most pronounced effect in aquatic ecosystems is achieved by their presence in combination. A combined reintroduction approach may provide enhanced benefits in restoring the eutrophic ecosystems, following the reduction of external nutrient loading.

  16. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki

    2012-10-18

    Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land. © 2012 Blackwell Publishing Ltd.

  17. Adsorption of Arsenite by Six Submerged Plants from Nansi Lake, China

    Directory of Open Access Journals (Sweden)

    Zhibin Zhang

    2014-01-01

    Full Text Available Nansi Lake is the largest and the most important freshwater lake in north China for the South-North Water Transfer Project. Due to long-time and large-scale fish farming of history, the excess fish food and excretion usually release pentavalent arsenic, which is converted into trivalent arsenic (As (III in the lake sediment and released into lake water. Adsorption of arsenite using six submerged plants (Mimulicalyx rosulatus, Potamogeton maackianus, Hydrilla, Watermifoil, Pteris vittata, and Potamogeton crispus as adsorbing materials was investigated. The experimental data obtained have been analyzed using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. According to the results, the As (III equilibrium data agreed well with the Freundlich isotherm model. The adsorption capacity of the plants was in the following order: Potamogeton crispus > Pteris vittata > Potamogeton maackianus > Mimulicalyx rosulatus > Hydrilla > Watermifoil. The sorption system with the six submerged plants was better described by pseudo-second-order than by first-order kinetics. Moreover, the adsorption with Potamogeton crispus could follow intraparticle diffusion (IPD model. The initial adsorption and rate of IPD using Potamogeton crispus and Pteris vittata were higher than those using other plants studied.

  18. Modeling complex flow structures and drag around a submerged plant of varied posture

    Science.gov (United States)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  19. Mn accumulation in a submerged plant Egeria densa (Hydrocharitaceae) is mediated by epiphytic bacteria.

    Science.gov (United States)

    Tsuji, Kousuke; Asayama, Takuma; Shiraki, Nozomi; Inoue, Shota; Okuda, Erina; Hayashi, Chizuru; Nishida, Kazuma; Hasegawa, Hiroshi; Harada, Emiko

    2017-07-01

    Many aquatic plants act as biosorbents, removing and recovering metals from the environment. To assess the biosorbent activity of Egeria densa, a submerged freshwater macrophyte, plants were collected monthly from a circular drainage area in Lake Biwa basin and the Mn concentrations of the plants were analysed. Mn concentrations in these plants were generally above those of terrestrial hyperaccumulators, and were markedly higher in spring and summer than in autumn. Mn concentrations were much lower in plants incubated in hydroponic medium at various pH levels with and without Mn supplementation than in field-collected plants. The precipitation of Mn oxides on the leaves was determined by variable pressure scanning electron microscopy-energy dispersive X-ray analysis and Leucoberbelin blue staining. Several strains of epiphytic bacteria were isolated from the field-collected E. densa plants, with many of these strains, including those of the genera Acidovorax, Comamonas, Pseudomonas and Rhizobium, found to have Mn-oxidizing activity. High Mn concentrations in E. densa were mediated by the production of biogenic Mn oxide in biofilms on leaf surfaces. These findings provide new insights into plant epidermal bacterial flora that affect metal accumulation in plants and suggest that these aquatic plants may have use in Mn phytomining. © 2017 John Wiley & Sons Ltd.

  20. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems.

    Science.gov (United States)

    Sun, Feifei; Kolvenbach, Boris Alexander; Nastold, Peter; Jiang, Bingqi; Ji, Rong; Corvini, Philippe Francois-Xavier

    2014-12-16

    Contamination by tetrabromobisphenol A (TBBPA), the most widely used brominated flame retardant, is a matter of environmental concern. Here, we investigated the fate and metabolites of (14)C-TBBPA in a submerged soil with an anoxic-oxic interface and planted or not with rice (Oryza sativa) and reed (Phragmites australis) seedlings. In unplanted soil, TBBPA dissipation (half-life 20.8 days) was accompanied by mineralization (11.5% of initial TBBPA) and the substantial formation (60.8%) of bound residues. Twelve metabolites (10 in unplanted soil and 7 in planted soil) were formed via four interconnected pathways: oxidative skeletal cleavage, O-methylation, type II ipso-substitution, and reductive debromination. The presence of the seedlings strongly reduced (14)C-TBBPA mineralization and bound-residue formation and stimulated debromination and O-methylation. Considerable radioactivity accumulated in rice (21.3%) and reed (33.1%) seedlings, mainly on or in the roots. While TBBPA dissipation was hardly affected by the rice seedlings, it was strongly enhanced by the reed seedlings, greatly reducing the half-life (11.4 days) and increasing monomethyl TBBPA formation (11.3%). The impact of the interconnected aerobic and anaerobic transformation of TBBPA and wetland plants on the profile and dynamics of the metabolites should be considered in phytoremediation strategies and environmental risk assessments of TBBPA in submerged soils.

  1. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2017-01-01

    Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log K ow ) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log K ow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Chromium accumulation in submerged aquatic plants treated with tannery effluent at Kanpur, India.

    Science.gov (United States)

    Gupta, Kiran; Gaumat, Sumati; Mishra, Kumkum

    2011-09-01

    Aquatic macrophytes have been widely studied because of their capability of absorbing contaminants from water and their subsequent use in biomonitoring. This study presents a comparison of Cr accumulating potential of submerged aquatic plants viz Vallisneria spiralis and Hydrilla verticillata. These plants were treated with various concentrations of treated tannery effluent collected from UASB, Jajmau, Kanpur under repeated exposure in controlled laboratory conditions in order to assess their maximum bioaccumulation potential. The maximum accumulation of 385.6 and 201.6 microg g(-1) dry weight was found in roots of V. spiralis and the whole plants of H. verticillata, respectively at 100% concentration after 9th day of effluent exposure. The chlorophyll and protein content of both species decreased with increase in effluent concentration and duration. At highest concentration and duration a maximum reduction of 67.4 and 62.66% in total chlorophyll content, 9.97 and 4.66% in carotenoid content and 62.66 and 59.36% in protein content was found in V. spiralis and H. verticillata respectively. Anatomical studies in both V. spiralis and H. verticillata was carried out to assess the effects of metal accumulation within the plants. Changes in the anatomical structures of both plants exhibits the capacity of these species to act as indicator of effluent toxicity. The high accumulation potential of Cr by both plants revealed their capability to remove pollutants from effluent.

  3. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants.

    Science.gov (United States)

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.

  4. Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional level

    Science.gov (United States)

    Submerged aquatic plants have a key role in maintaining functioning aquatic ecosystems through their effects in the hydrological regime, sedimentation, nutrient cycling and habitats of associated fauna. Modifications of aquatic plant communities, as for example through the introduction of invasive s...

  5. Growth and physiological responses of submerged plant Vallisneria natans to water column ammonia nitrogen and sediment copper

    Directory of Open Access Journals (Sweden)

    Zhengjie Zhu

    2016-04-01

    Full Text Available Background. The decline of submerged plant populations due to high heavy metal (e.g., Cu levels in sediments and ammonia nitrogen (ammonia-N accumulation in the freshwater column has become a significant global problem. Previous studies have evaluated the effect of ammonia-N on submerged macrophytes, but few have focused on the influence of sediment Cu on submerged macrophytes and their combined effects. Methods. In this paper, we selected three levels of ammonia-N (0, 3, and 6 mg L−1 and sediment Cu (25.75 ± 6.02 as the control, 125.75 ± 6.02, and 225.75 ± 6.02 mg kg−1, to investigate the influence of sediment Cu and ammonia-N on submerged Vallisneria natans. We measured the relative growth rate (RGR, above- and below- ground biomass, chlorophyll, non-protein thiol (NP-SH, and free proline. Results and Discussion. The below-ground biomass of V. natans decreased with increasing Cu sediment levels, suggesting that excessive sediment Cu can result in significant damage to the root of V. natans. Similarly, the above-ground biomass significantly decreased with increasing ammonia-N concentrations, indicating that excessive water ammonia-N can cause significant toxicity to the leaf of V. natans. In addition, high ammonia-N levels place a greater stress on submerged plants than sediment Cu, which is indicated by the decline of RGR and chlorophyll, and the increase of (NP-SH and free proline. Furthermore, high sediment Cu causes ammonia-N to impose greater injury on submerged plants, and higher sediment Cu levels (Cu ≥ 125.75 mg kg−1 led to the tolerant values of ammonia-N for V. natans decreasing from 6 to 3 mg L−1. This study suggests that high sediment Cu restricts the growth of plants and intensifies ammonia-N damage to V. natans.

  6. Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata.

    Science.gov (United States)

    Nigam, Shubha; Gopal, Krishna; Vankar, Padma S

    2013-06-01

    To evaluate the biosorption efficacy of submerged aquatic plant Hydrilla verticilata for arsenic uptake from drinking water. H. verticillata, a submerged aquatic plant was utilized successfully for arsenic uptake from aqueous solution. Batch studies with various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature were carried out. Data were utilized to plot Lagergren graph along with pseudo-second-order graphs for kinetic studies to estimate the removal efficacy and to determine the nature of reaction. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) have been performed for characterization of metals on biomass. The study showed 96.35 % maximum absorption of arsenic by H. verticilata at initial concentration of 100 ppb with 0.5 g of biomass/100 ml for 5 h contact time at pH 6.0 with 150 rpm agitation rate. Data followed Langmuir isotherm showing sorption to be monolayer on homogeneous surface of biosorbent. The negative values of ΔG° indicated spontaneous nature; whereas ΔH° indicates exothermic nature of system and negative value of ∆S° entropy change correspond to a decrease in the degree of freedom to the adsorbed species followed by pseudo-second-order adsorption kinetics. FTIR and SEM results showed apparent changes in functional group regions after metal chelation and the changes in surface morphology of biosorbent. This is a comparatively more effective, economic, easily available, and environmentally safe source for arsenic uptake from solution due to its high biosorption efficacy than other biosorbents already used.

  7. Quantitative assessment of ammonia-oxidizing bacterial communities in the epiphyton of submerged macrophytes in shallow lakes

    NARCIS (Netherlands)

    Coci, M.; Nicol, G.W.; Pilloni, G.N.; Schmid, M.; Kamst-van Agterveld, M.P.; Bodelier, P.L.E.; Laanbroek, H.J.

    2010-01-01

    In addition to the benthic and pelagic habitats, the epiphytic compartment of submerged macrophytes in shallow freshwater lakes offers a niche to bacterial ammonia-oxidizing communities. However, the diversity, numbers, and activity of epiphytic ammonia-oxidizing bacteria have long been overlooked.

  8. Plant Communities of Rough Rock.

    Science.gov (United States)

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  9. Influence of salinity on fungal communities in a submerged fixed bed bioreactor for wastewater treatment

    NARCIS (Netherlands)

    Cortés-Lorenzo, C.; González-Martínez, A.; Smidt, H.; González-López, J.; Rodelas, B.

    2016-01-01

    Salinity is known to influence the performance of biological wastewater treatment plants. While its impact on bacterial communities has been thoroughly studied, its influence on fungal communities has been largely overlooked. To address this knowledge gap, we assessed the effect of saline

  10. Benthic macroinvertebrate and fish communities in Lake Huron are linked to submerged groundwater vents

    Science.gov (United States)

    Garrison, Sanders T.; Biddanda, B.A.; Stricker, C.A.; Nold, S.C.

    2011-01-01

    Groundwater can be an important source of nutrients and energy to aquatic ecosystems, but quantifying the inputs and biogeochemical importance remains challenging. A series of submerged groundwater vents in northern Lake Huron were examined to determine the linkage between groundwater nutrients and aquatic food webs. We collected samples of key food-web components from groundwater vent and reference habitats and analyzed them for 13C, 15N, and 34S isotopes. Dissolved inorganic carbon (DIC) in the groundwater was depleted in 13C, while aqueous sulfate was enriched in 34S (mean differences between groundwater and reference sites were -3.9% and +12.0%, respectively). Benthic primary producers, macroinvertebrates, and benthivorous fish had significantly lower ??13C values in groundwater environments, and benthivorous fish were somewhat depleted (-2.5%) in ??34S at groundwater sites compared to reference sites. However, ??15N values were not different between groundwater and reference sites, and pelagic components of the ecosystems (plankton and planktivorous and piscivorous fish) were similar in both ??13C and ??15N. These data suggest benthic metazoan communities surrounding groundwater vents are partially linked to groundwater-derived benthic primary production, while planktivorous and piscivorous communities not directly associated with the benthos do not rely on groundwater nutrients. ?? Inter-Research 2011.

  11. Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater.

    Science.gov (United States)

    Hempel, Melanie; Blume, Maja; Blindow, Irmgard; Gross, Elisabeth M

    2008-04-10

    Plants and their heterotrophic bacterial biofilm communities possibly strongly interact, especially in aquatic systems. We aimed to ascertain whether different macrophytes or their habitats determine bacterial community composition. We compared the composition of epiphytic bacteria on two common aquatic macrophytes, the macroalga Chara aspera Willd. and the angiosperm Myriophyllum spicatum L., in two habitats, freshwater (Lake Constance) and brackish water (Schaproder Bodden), using fluorescence in situ hybridization. The bacterial community composition was analysed based on habitat, plant species, and plant part. The bacterial abundance was higher on plants from brackish water [5.3 x 10(7) cells (g dry mass)-1] than on plants from freshwater [1.3 x 10(7) cells (g dry mass)-1], with older shoots having a higher abundance. The organic content of freshwater plants was lower than that of brackish water plants (35 vs. 58%), and lower in C. aspera than in M. spicatum (41 vs. 52%). The content of nutrients, chlorophyll, total phenolic compounds, and anthocyanin differed in the plants and habitats. Especially the content of total phenolic compounds and anthocyanin was higher in M. spicatum, and in general higher in the freshwater than in the brackish water habitat. Members of the Cytophaga-Flavobacteria-Bacteroidetes group were abundant in all samples (5-35% of the total cell counts) and were especially dominant in M. spicatum samples. Alphaproteobacteria were the second major group (3-17% of the total cell counts). Betaproteobacteria, gammaproteobacteria, and actinomycetes were present in all samples (5 or 10% of the total cell counts). Planctomycetes were almost absent on M. spicatum in freshwater, but present on C. aspera in freshwater and on both plants in brackish water. Bacterial biofilm communities on the surface of aquatic plants might be influenced by the host plant and environmental factors. Distinct plant species, plant part and habitat specific differences in

  12. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis.

    Science.gov (United States)

    Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to

  13. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  14. Experimental wave attenuation study over flexible plants on a submerged slope

    Science.gov (United States)

    Yin, Zegao; Yang, Xiaoyu; Xu, Yuanzhao; Ding, Meiling; Lu, Haixiang

    2017-12-01

    Using plants is a kind of environmentally-friendly coastal protection to attenuate wave energy. In this paper, a set of experiments were conducted to investigate the wave attenuation performance using flexible grasses on a submerged slope, and the wave attenuation coefficient for these experiments was calculated for different still water depths, slope and grass configurations. It was found that the slope plays a significant role in wave attenuation. The wave attenuation coefficient increases with increasing relative row number and relative density. For a small relative row number, the two configurations from the slope top to its toe and from the slope toe to its top performed equally to a large extent. For a medium relative row number, the configuration from the slope toe to its top performed more poorly than that from the slope top to its toe; however, it performed better than that from the slope top to its toe for a high relative row number. With a single row of grasses close to the slope top from the slope toe, the wave attenuation coefficient shows double peaks. With increasing grass rows or still water depth, the grass location corresponding to the maximum wave attenuation coefficient is close to the slope top. The dimensional analysis and the least square method were used to derive an empirical equation of the wave attenuation coefficient considering the effect of relative density, the slope, the relative row number and the relative location of the middle row, and the equation was validated to experimental data.

  15. Effects of Plant Growth Form and Water Substrates on the Decomposition of Submerged Litter: Evidence of Constructed Wetland Plants in a Greenhouse Experiment

    Directory of Open Access Journals (Sweden)

    Yunmei Ping

    2017-10-01

    Full Text Available Wetland plants are important components in constructed wetlands (CWs, and one of their most important functions in CWs is to purify the water. However, wetland plant litter can also increase eutrophication of water via decomposition and nutrient release, and few studies have focused on the interspecific variation in the decomposition rate and nutrient release of multiple plant species in CWs. Here a greenhouse litter-bag experiment was conducted to quantify the decomposition rates and nutrient release of 7 dominant macrophytes (2 floating plants and 5 emergent plants in three types of water substrate. The results showed that plant litter species and growth forms significantly affected the litter mass losses. The nutrient release was significantly different among plant litter species, but not between floating and emergent plants. Litter traits, such as litter lignin, total nitrogen (TN and total phosphorus (TP can well predict the decomposition rates of submerged litter. These results indicated that submerging litter in water did not change the relationships between litter traits and litter decomposition rates, and leaching might play a more important role in the decomposition of submerged litter in CWs than that in other terrestrial ecosystems. These findings can provide suggestions for managers about the maintenance of constructed wetlands.

  16. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    Science.gov (United States)

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  17. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    Directory of Open Access Journals (Sweden)

    Shabnam Abbasi

    Full Text Available Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros and desert zones (Kavir, with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU. At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was

  18. Photoinhibition-like damage to the photosynthetic apparatus in plant leaves induced by submergence treatment in the dark.

    Science.gov (United States)

    Fan, Xingli; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin

    2014-01-01

    Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.

  19. Photoinhibition-like damage to the photosynthetic apparatus in plant leaves induced by submergence treatment in the dark.

    Directory of Open Access Journals (Sweden)

    Xingli Fan

    Full Text Available Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST, without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII and photosystem I (PSI in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS. DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2 without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.

  20. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange

    DEFF Research Database (Denmark)

    Colmer, Timothy David; Pedersen, Ole

    2007-01-01

    Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films, and......(N) was enhanced up to sixfold. Gas films on submerged leaves enable continued gas exchange via stomata and thus bypassing of cuticle resistance, enhancing exchange of O(2) and CO(2) with the surrounding water, and therefore underwater P(N) and respiration.......Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films......, and two species that do not, were used. Gas films were also experimentally removed by brushing with 0.05% (v/v) Triton X. Net O(2) production in light, or O(2) consumption in darkness, was measured at various CO(2) and O(2) concentrations. When gas films were removed, O(2) uptake in darkness was already...

  1. Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake.

    Science.gov (United States)

    Zhao, Da-yong; Luo, Juan; Zeng, Jin; Wang, Meng; Yan, Wen-ming; Huang, Rui; Wu, Qinglong L

    2014-01-01

    Abundances and community compositions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in unvegetated sediment and the rhizosphere sediments of three submerged macrophytes (Ceratophyllum demersum, Vallisneria spinulosa, and Potamogeton crispus) were investigated in a large, eutrophic freshwater lake, Lake Taihu. Abundances of archaeal ammonia monooxygenase alpha-subunit (amoA) gene (from 6.56 × 10(6) copies to 1.06 × 10(7) copies per gram of dry sediment) were higher than those of bacterial amoA (from 6.13 × 10(5) to 3.21 × 10(6) copies per gram of dry sediment) in all samples. Submerged macrophytes exhibited no significant effect on the abundance and diversity of archaeal amoA gene. C. demersum and V. spinulosa increased the abundance and diversity of bacterial amoA gene in their rhizosphere sediment. However, the diversity of bacterial amoA gene in the rhizosphere sediments of P. crispus was decreased. The data obtained in this study would be helpful to elucidate the roles of submerged macrophytes involved in the nitrogen cycling of eutrophic lake ecosystems.

  2. Captive bubble and sessile drop surface characterization of a submerged aquatic plant, Hydrilla verticillata

    Science.gov (United States)

    The surface energy parameters of the invasive aquatic weed, Hydrilla verticillata, were determined using contact angle measurements using two different methods. The abaxial and adaxial surfaces of the leaves and stem were characterized for the weed while submerged in water using captive air and octa...

  3. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms

    NARCIS (Netherlands)

    Van Donk, E.; Van de Bund, W.J.

    2002-01-01

    Submerged macrophytes are crucial for the stabilization of the clear water state in shallow, mesotrophic and eutrophic lakes. Especially, charophytes often play an important role because they are typically rapid colonizers and because charophyte meadows are believed to have a particularly strong

  4. The influences of sugars and plant growth regulators on β-glucan synthesis of G. lucidum mycelium in submerged culture

    Science.gov (United States)

    Thao, Cao Phuong; Tien, Le Thi Thuy

    2017-09-01

    β - glucan is intracellular polysaccharide (IPS), extracted from Ganoderma lucidum mycelium that can enhance human immune respond. This study aimed to stimulate the production of β - glucan in G. lucidum mycelium through optimating the carbonhydrates and plant rowth regulators in submerged culture. The results showed that the stimulation or inhibition of IPS production as well as β - glucan biosynthesis could be adjusted depend on the type and concentration of carbonhydrates and plant growth regulators. The supplement of lactose 80 g/L and BA 1 mg/L in medium could cause the highest IPS production (644.478 mg/g DW) and β - glucan increased up to 0.15/DW, that raised twice as much as without plant growth regulators. Futhermore, the optimation of other environmental elements were figured out were completely dark and 150 rpm on rotary shaker. This result could be used as premise for production of β - glucan in pilot.

  5. Development and implementation of bottom ash crushing system in Submerged Scrapper Conveyor (SSC for Coal-fired Power Plant

    Directory of Open Access Journals (Sweden)

    Basim Ismail Firas

    2017-01-01

    Full Text Available The existence of Submerged Scrapper Conveyor (SSC in coal-fired power plant is to handle the by-product of bottom ash. However, soot-blowing will be performed sometimes, in order to remove slag formed at the boiler furnace wall. Thence, this lead to a sudden loading of large amount of slags and bottom ash at SSC after soot-blowing, causing SSC conveying system to jam and conveying chain breakage. In this paper, a new SSC design with additional crushing system is proposed. By implementing the new design proposed, it is expected to improve the overall current performances, and to reduce the trip issue of SSC in coal-fired power plant. The new 3D model of SSC is designed, and stress-strain simulation of the model is analysed by using software of PTC Creo Parametric. Final cost and safety factor analysis of model is made to prove its validation.

  6. Submerged macrophyte communities in the Forsmark area. Building of a GIS application as a tool for biomass estimations

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Ronny [Univ. of Kalmar (Sweden)

    2005-12-15

    The aim of this study was to compile the information from previous studies to produce a GIS application that both illustrates the distribution of different vegetation communities and also makes it possible to estimate the total biomass of the different vegetation communities and its associated fauna. The GIS application was created by means of the software Arc View 3.3 by Environmental Systems Research Institute, Inc. Distribution readings and quantitative data of submerged macrophyte communities and its associated fauna was obtained from studies by Kautsky et al. and by Borgiel. Information about the macrophyte distribution in Laangoersviken, located in the northern parts of Kallrigafjaerden, was obtained from a report by Upplandsstiftelsen. Information about water depth and bottom substrate was available as USGS DEM file, produced by Geological Survey of Sweden. Complementary data of the covering degree of submerged vegetation was obtained from a study using an under water video camera by Tobiasson. Quantitative data on macrophyte and faunal biomass were either obtained from the primary SKB data base SICADA or directly from reports. Samples were compiled and analysed according to dominating vegetation. The work was carried out as follows: Where information about the bottom substrate was available polygons were created by means of the substrate shape file and depth grid from Geological Survey of Sweden. The vegetation community and the covering degree on a certain depth and substrate combination were determined by compiled information from studies by Kautsky and by Borgiel. All observations from a certain bottom substrate were analysed to find the dominating vegetation within different depth ranges. After determining the dominating vegetation, the covering degrees of different macrophyte classes within each depth range were calculated as a mean of all readings. Areas without information about the bottom substrate, but still adjacent to areas included in the

  7. Estimation of leaf area index and plant area index of a submerged macrophyte canopy using digital photography.

    Directory of Open Access Journals (Sweden)

    Dehua Zhao

    Full Text Available Non-destructive estimation using digital cameras is a common approach for estimating leaf area index (LAI of terrestrial vegetation. However, no attempt has been made so far to develop non-destructive approaches to LAI estimation for aquatic vegetation. Using the submerged plant species Potamogeton malainus, the objective of this study was to determine whether the gap fraction derived from vertical photographs could be used to estimate LAI of aquatic vegetation. Our results suggested that upward-oriented photographs taken from beneath the water surface were more suitable for distinguishing vegetation from other objects than were downward-oriented photographs taken from above the water surface. Exposure settings had a substantial influence on the identification of vegetation in upward-oriented photographs. Automatic exposure performed nearly as well as the optimal trial exposure, making it a good choice for operational convenience. Similar to terrestrial vegetation, our results suggested that photographs taken for the purpose of distinguishing gap fraction in aquatic vegetation should be taken under diffuse light conditions. Significant logarithmic relationships were observed between the vertical gap fraction derived from upward-oriented photographs and plant area index (PAI and LAI derived from destructive harvesting. The model we developed to depict the relationship between PAI and gap fraction was similar to the modified theoretical Poisson model, with coefficients of 1.82 and 1.90 for our model and the theoretical model, respectively. This suggests that vertical upward-oriented photographs taken from below the water surface are a feasible alternative to destructive harvesting for estimating PAI and LAI for the submerged aquatic plant Potamogeton malainus.

  8. Impact of temperature and nutrients on carbon:nutrient tissue stoichiometry of submerged aquatic plants: an experiment and meta-analysis

    NARCIS (Netherlands)

    Velthuis, M.; van Deelen, Emma; van Donk, E.; Zhang, P.; Bakker, E.S.

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource

  9. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    Science.gov (United States)

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events.

  10. Nitrification with submerged filters. Air supply and comsumption at the pilot-plant at the Bekkelaget treatment plant

    OpenAIRE

    Englund, G

    1990-01-01

    During the three months research period (October 1989 - January 1990) the average nitrification efficiencies for municipal sewage were 48% and 61 % for respectively one-step and two-step biological submerged filters placed after chemical precipitation. Correspondi- ng nitrification rates were 0.69 and 0.56 g NH4-N/m² d. The air/liquid ratio (m³/m³) varied from 18-35 for the diffused aeration, giving high 02-concentrations, but indicating an inefficient aeration system. No logging problems occ...

  11. A model for the release, dispersion and environmental impact of a postulated reactor accident from a submerged commercial nuclear power plant

    Science.gov (United States)

    Bertch, Timothy Creston

    1998-12-01

    Nuclear power plants are inherently suitable for submerged applications and could provide power to the shore power grid or support future underwater applications. The technology exists today and the construction of a submerged commercial nuclear power plant may become desirable. A submerged reactor is safer to humans because the infinite supply of water for heat removal, particulate retention in the water column, sedimentation to the ocean floor and inherent shielding of the aquatic environment would significantly mitigate the effects of a reactor accident. A better understanding of reactor operation in this new environment is required to quantify the radioecological impact and to determine the suitability of this concept. The impact of release to the environment from a severe reactor accident is a new aspect of the field of marine radioecology. Current efforts have been centered on radioecological impacts of nuclear waste disposal, nuclear weapons testing fallout and shore nuclear plant discharges. This dissertation examines the environmental impact of a severe reactor accident in a submerged commercial nuclear power plant, modeling a postulated site on the Atlantic continental shelf adjacent to the United States. This effort models the effects of geography, decay, particle transport/dispersion, bioaccumulation and elimination with associated dose commitment. The use of a source term equivalent to the release from Chernobyl allows comparison between the impacts of that accident and the postulated submerged commercial reactor plant accident. All input parameters are evaluated using sensitivity analysis. The effect of the release on marine biota is determined. Study of the pathways to humans from gaseous radionuclides, consumption of contaminated marine biota and direct exposure as contaminated water reaches the shoreline is conducted. The model developed by this effort predicts a significant mitigation of the radioecological impact of the reactor accident release

  12. Submerged vegetation complexity modifies benthic infauna communities: the hidden role of the belowground system

    NARCIS (Netherlands)

    González-Ortiz, V.; Gonzalo Egea, L.; Jiménez-Ramos, R.; Moreno-Mar, F; Pérez Lloréns, J.L.; Bouma, T.J.; Bruno, F.

    2016-01-01

    Marine plants provide a variety of functions with high economic and ecologicalvalues in ecosystems. The above- (AG) and below-ground (BG) systems increasethe structural complexity of plants, which also enhance faunal abundance anddiversity. The ecological role of the AG compartment in structuring

  13. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    Science.gov (United States)

    Xu, Peng; Xiao, En-Rong; Xu, Dan; Zhou, Yin; He, Feng; Liu, Bi-Yun; Zeng, Lei; Wu, Zhen-Bin

    2017-01-01

    Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o), closed-circuit (SMFC-c), aquatic plants with open-circuit (P-SMFC-o) and aquatic plants with closed-circuit (P-SMFC-c). The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the sediments

  14. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o, closed-circuit (SMFC-c, aquatic plants with open-circuit (P-SMFC-o and aquatic plants with closed-circuit (P-SMFC-c. The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the

  15. Ecology of plant volatiles: taking a plant community perspective.

    Science.gov (United States)

    Pierik, Ronald; Ballaré, Carlos L; Dicke, Marcel

    2014-08-01

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and benefits. Research on the role of plant volatiles in defence has focused primarily on the responses of individual plants. However, in nature, plants rarely occur as isolated individuals but are members of plant communities where they compete for resources and exchange information with other plants. In this review, we address the effects of neighbouring plants on plant volatile-mediated defences. We will outline the various roles of volatile compounds in the interactions between plants and other organisms, address the mechanisms of plant neighbour perception in plant communities, and discuss how neighbour detection and volatile signalling are interconnected. Finally, we will outline the most urgent questions to be addressed in the future. © 2014 John Wiley & Sons Ltd.

  16. Seed weight and germination behavior of the submerged plant Potamogeton pectinatus in the arid zone of northwest China.

    Science.gov (United States)

    Li, Zhongqiang; Lu, Wei; Yang, Lei; Kong, Xianghong; Deng, Xuwei

    2015-04-01

    Variation in seed weight is common within and among plant species, but few studies have attempted to document the pattern of seed weight and germination attributes for aquatic macrophytes at a large scale. This study examined within-species variation in seed weight and germination attributes and the effects of environmental factors on seed traits of the submerged plant Potamogeton pectinatus in the arid zone of northwest China. Our results showed that the average seed weight was 0.24 g per 100 seeds with a coefficient of variation (CV) of 28.4% among the eight P. pectinatus populations. The total germination fraction of seeds of P. pectinatus was relatively poor, less than 35% in seven P. pectinatus populations, and the lowest germination percentage found was only 2%. There were significant differences in seed weight, time to onset of germination, and total germination fraction among the eight different populations. Hierarchical partitioning analysis showed a strongly positive correlation between seed weight and water temperature and pH. Seed weight and the maternal environmental factors significantly affected both time to initiation of germination and total germination fraction. Our results suggest that (1) seed weight variation in P. pectinatus primarily is the result of temperature variation during fruit development; (2) relatively poor germination fraction suggests that seeds are relatively unimportant in the short-term survival of populations and that it may be another adaptive trait allowing plants to take place in the right place and at the right time, especially in harsh environment; and (3) variation in seed germination traits should be determined by local environmental and intrinsic factors that interact in a complex fashion.

  17. Synergistic effects of heavy metal pollutants on senescence in submerged aquatic plants. [Potamogeton pectinatus L. , Vallisneria spiralis L. , Hydrialla Verticillata (L. f. ) Royle

    Energy Technology Data Exchange (ETDEWEB)

    Jana, S.; Choudhuri, M.A.

    1984-01-01

    The effects of many combinations of toxic concentrations of heavy metal pollutants, viz., mercuric chloride, lead acetate, cadmium chloride and cupric sulphate, on the senescence of isolated mature leaves of submerged aquatic plants, Potamogeton pectinatus L., Vallisneria spiralis L., and Hydrilla Verticillata (L.f.) Royle were studied. All of the combinations of heavy metal pollutants caused senescence in all three species by decreasing chlorophyll, DNA, RNA, protein and dry wt, and increasing free amino acid, tissue permeability, the activities of protease and RNase, and the ratio of acid to alkaline pyrophosphatase activity over control values. The effects were highest in Potamogeton and lowest in Hydrilla. The degree of senescence in the three submerged plants by combinations of toxic concentrations of heavy metal pollutants is much higher due to synergism than that by individual heavy metal pollutants.

  18. Competition for light and nutrients in layered communities of aquatic plants.

    Science.gov (United States)

    van Gerven, Luuk P A; de Klein, Jeroen J M; Gerla, Daan J; Kooi, Bob W; Kuiper, Jan J; Mooij, Wolf M

    2015-07-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at high supply of light and nutrients, floating plants always dominate due to their primacy for light, even when submerged plants have lower minimal resource requirements. The model also shows that floating-plant dominance cannot be an alternative stable state in light-limited environments but only in nutrient-limited environments, depending on the plants' resource consumption traits. Compared to unlayered communities, the asymmetry in competition for light-coincident with symmetry in competition for nutrients-leads to fundamentally different results: competition outcomes can no longer be predicted from species traits such as minimal resource requirements ([Formula: see text] rule) and resource consumption. Also, the same two species can, depending on the environment, coexist or be alternative stable states. When applied to two common plant species in temperate regions, both the model and field data suggest that floating-plant dominance is unlikely to be an alternative stable state.

  19. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.

    Directory of Open Access Journals (Sweden)

    Dagne Duguma

    Full Text Available Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis, the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus, and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae, was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.

  20. Actinides and other radionuclides in sediments and submerged plants of the Yenisei River

    Energy Technology Data Exchange (ETDEWEB)

    Bolsunovsky, A. [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk (Russian Federation)], E-mail: radecol@ibp.ru; Bondareva, L. [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk (Russian Federation)

    2007-10-11

    The source of radioactive contamination of the Yenisei River floodplain, including contamination with actinides, is the Mining-and-Chemical combine (MCC), which has for many years been producing weapons-grade plutonium. Actinides have been detected not only in the soil and sediment of the river but also in the biomass of aquatic plants. The aim of our investigation was to assess the levels of actinides and other radionuclides in sediments and aquatic plants both near the MCC and at a considerable distance from it, down the Yenisei River. Investigations of the Yenisei River sediment samples revealed high activity concentrations of actinides (Pu isotopes and {sup 241}Am), which were 100 times higher than their global fallout levels. Sequential extraction of radionuclides from samples of sediments collected near the MCC showed that the amounts of extracted {sup 241}Am were the largest (up to 98% of initial activity). It was found that aquatic plants of the Yenisei River collected both near the MCC discharge site and at a distance up to 200 km downstream contained several actinide isotopes. The aquatic moss, Fontinalis antipyretica, was found to contain higher levels of radionuclides than Potamogeton lucens. Leaves of P. lucens contained higher levels of radionuclides, including {sup 239}Np, than stems. Sequential extraction of radionuclides from samples of aquatic plants showed that {sup 239}Np levels in exchangeable and adsorption fractions of P. lucens biomass were higher than in the respective fractions of F. antipyretica biomass.

  1. Oxygen dynamics in submerged rice (Oryza sativa L.)

    DEFF Research Database (Denmark)

    Colmer, Timothy D.; Pedersen, Ole

    2008-01-01

    Complete submergence of plants prevents direct O2 and CO2 exchange with air. Underwater photosynthesis can result in marked diurnal changes in O2 supply to submerged plants. Dynamics in pO2 had not been measured directly for submerged rice (Oryza sativa), but in an earlier study, radial O2 loss...

  2. Individual and combined suppressive effects of submerged and floating-leaved macrophytes on algal blooms.

    Science.gov (United States)

    Seto, Mayumi; Takamura, Noriko; Iwasa, Yoh

    2013-02-21

    Shallow lakes and ponds are often characterised either by clear water with abundant submerged macrophytes or by turbid water with abundant phytoplankton. Blooms of toxic filamentous blue-green algae (cyanobacteria) often dominate the phytoplankton community in eutrophic lakes, which threatens ecological functions and biodiversity of freshwater ecosystems. We studied a simple lake model in order to evaluate individual and combined suppressive effects of rooted submerged and rooted floating-leaved macrophytes on algal blooms. Floating-leaved plants are superior competitors for light, whereas submerged plants absorb and reduce available phosphorus in a water column that rooted floating-leaved plants exploit to a lesser extent. We found that mixed vegetation that includes both submerged and floating-leaved plants is more resistant than vegetation comprised by a single plant type to algal invasion triggered by phosphorus loading. In addition, competitive exclusion of submerged plants by floating-leaved plants may promote an algal bloom. These predictions were confirmed by the decision tree analysis of field data from 35 irrigation ponds in Hyogo Prefecture, Japan. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Changes in community-level riparian plant traits over inundation gradients, Colorado River, Grand Canyon

    Science.gov (United States)

    McCoy-Sulentic, Miles; Kolb, Thomas; Merritt, David; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel; Shafroth, Patrick B.

    2017-01-01

    Comparisons of community-level functional traits across environmental gradients have potential for identifying links among plant characteristics, adaptations to stress and disturbance, and community assembly. We investigated community-level variation in specific leaf area (SLA), plant mature height, seed mass, stem specific gravity (SSG), relative cover of C4 species, and total plant cover over hydrologic zones and gradients in years 2013 and 2014 in the riparian plant community along the Colorado River in the Grand Canyon. Vegetation cover was lowest in the frequently inundated active channel zone, indicating constraints on plant establishment and production by flood disturbance and anaerobic stress. Changes in trait values over hydrologic zones and inundation gradients indicate that frequently inundated plots exhibit a community-level ruderal strategy with adaptation to submergence (high SLA and low SSG, height, seed mass, C4 relative cover), whereas less frequently inundated plots exhibit adaptation to drought and infrequent flood disturbance (low SLA and high SSG, height, seed mass, C4 relative cover). Variation in traits not associated with inundation suggests niche differentiation and multiple modes of community assembly. The results enhance understanding of future responses of riparian communities of the Grand Canyon to anticipated drying and changes in hydrologic regime.

  4. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, II, Gregory Von [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Glover, Steven F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Gary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williamson, Kenneth Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gelbard, Fred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    and industrial literature was performed to identify : 1) findings regarding the degradation mechanisms of submerged cabling and 2) condition monitoring methods that may prove useful in predict ing the remaining lifetime of submerged medium voltage p ower cables . The re search was conducted by a multi - disciplinary team , and s ources includ ed official NRC reports, n ational l aboratory reports , IEEE standards, conference and journal proceedings , magazine articles , PhD dissertations , and discussions with experts . The purpose of this work was to establish the current state - of - the - art in material degradation modeling and cable condition monitoring techniques and to identify research gaps . Subsequently, future areas of focus are recommended to address these research gaps and thus strengthen the efficacy of the NRC's developing cable condition monitoring program . Results of this literature review and details of the test ing recommendations are presented in this report . FOREWORD To ensure the safe, re liable, and cost - effective long - term operation of nuclear power plants, many systems, structures, and components must be continuously evaluated. The Nuclear Regulatory Commission (NRC) has identified that cables in submerged environments are of concern, particularly as plants are seeking license renewal. To date, there is a lack of consensus on aging and degradation mechanisms even though the area of submerged cables has been extensively studied. Consequently, the ability to make lifetime predictions for submerged cable does not yet exist. The NRC has engaged Sandia National Laboratories (SNL) to lead a coordinated effort to help elucidate the aging and degradation of cables in submerged environments by collaborating with cable manufacturers, utilities, universities, and other government agencies. A team of SNL experts was assembled from the laboratories including electrical condition monitoring, mat erial science, polymer degradation, plasma physics

  5. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  6. Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata).

    Science.gov (United States)

    Abu Bakar, Ahmad Farid; Yusoff, Ismail; Fatt, Ng Tham; Othman, Faridah; Ashraf, Muhammad Aqeel

    2013-01-01

    The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.

  7. Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata

    Directory of Open Access Journals (Sweden)

    Ahmad Farid Abu Bakar

    2013-01-01

    Full Text Available The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2% and zinc (93.7% and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8% compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5% and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.

  8. Dimensioning of activation systems using submerged membranes at municipal sewage treatment plants; Bemessung von Membranbelebungsanlagen beim Einsatz zur Reinigung kommunaler Abwaesser

    Energy Technology Data Exchange (ETDEWEB)

    Ohle, P.; Dorgeloh, E. [Technische Hochschule Aachen (DE). Inst. fuer Siedlungswasserwirtschaft (ISA)

    1999-07-01

    Dimensioning of conventional activation systems in Germany as a rule relies on instruction sheet A131 of the Abwassertechnische Vereinigung or follows the Hochschulgruppen approach (HSG). They contain recommendations as to the size of the nitrification and denitrification zones, the amount of oxygen supplied and sludge production, and the size of the final sedimentation tank. For the use of sludge activation techniques by means of submerged membranes at municipal sewage treatment plant there so far do not exist any clues to dimensioning that make allowance for the modified boundary conditions. The present paper analyses instruction sheet A131 for its suitability as a basis in the dimensioning of sludge activation systems with submerged membranes at municipal sewage treatment plant. Then the dimensioning instructions are modified to suit the changed boundary conditions, and recommendations for the dimensioning of activation systems with submerged membranes on the basis of extensive studies carried out at the Institut fuer Siedlungswasserwirtschaft ISA of Aachen Technical University RWTH are given. (orig.) [German] Die Bemessung konventioneller Belebungsverfahren erfolgt in Deutschland i.d.R. auf der Grundlage des Arbeitsblatts A 131 der Abwassertechnischen Vereinigung bzw. nach dem Hochschulgruppenansatz (HSG). Sie enthalten Empfehlungen bezueglich der Dimensionierung von Nitrifikations- und Denitrifikationszone, Sauerstoffversorgung, Schlammproduktion und Nachklaerbecken. Fuer den Einsatz von Membranbelebungsanlagen in kommunalen Klaeranlagen existieren bislang keine Bemessungshinweise, die den veraenderten Randbedingungen Rechnung tragen. Der vorliegende Beitrag analysiert das Arbeitsblatt A 131 in Hinsicht auf die Moeglichkeit zur Anwendung fuer die Bemessung von Membranbelebungsanlagen beim Einsatz zur kommunalen Abwasserreinigung. Im Weiteren erfolgt die Modifikation der Bemessungshinweise hinsichtlich der geaenderten Randbedingungen und die Angabe von

  9. Exploring the Spatial-Seasonal Dynamics of Water Quality, Submerged Aquatic Plants and Their Influencing Factors in Different Areas of a Lake

    Directory of Open Access Journals (Sweden)

    Kun Li

    2017-09-01

    Full Text Available The degradation of water quality in lakes and its negative effects on freshwater ecosystems have become a serious problem worldwide. Exploring the dynamics in the associated factors is essential for water pollution management and control. GIS interpolation, principal component analysis (PCA and multivariate statistical techniques were used to identify the main pollution sources in different areas of Honghu Lake. The results indicate that the spatial distribution of the concentrations of total nitrogen (TN, total phosphate (TP, ammonia nitrogen (NH4+–N, and permanganate index (CODMn have similar characteristics and that their values gradually increased from south to north during the three seasons in Honghu Lake. The major influencing factors of water quality varied across the different areas and seasons. The relatively high concentrations of TN and TP, which might limit the growth of submerged aquatic plants, were mainly caused by anthropogenic factors. Our work suggests that spatial analyses combined with PCA are useful for investigating the factors that influence water quality and submerged aquatic plant biomass in different areas of a lake. These findings provide sound information for the future water quality management of the lake or even the entire lake basin.

  10. THE EUROPEAN POSITION OF DUTCH PLANT COMMUNITIES

    Directory of Open Access Journals (Sweden)

    J.A.M. JANSSEN

    2007-04-01

    Full Text Available In this paper it is analyzed for which plant communities (alliances the Netherlands has an international responsibility. Data has been brought together on the range and distribution of alliances in Europe, the area of plant communities in the Netherlands and surrounding countries and the occurrence of endemic associations in the Netherlands. The analysis resulted in a list of 34 out of 93 alliances in the Netherlands which are important from an international point of view.

  11. Adaptações de plantas submersas à absorção do carbono inorgânico Adaptations of submerged plants to inorganic carbon uptake

    Directory of Open Access Journals (Sweden)

    Sandra Andréa Pierini

    2004-09-01

    Full Text Available No presente trabalho são discutidos alguns aspectos teóricos dos mecanismos e adaptações empregados pela vegetação submersa para maximizar o aproveitamento do carbono inorgânico na água. O tipo de estratégia utilizada pelas macrófitas aquáticas submersas deve-se a diferenças genéticas entre as espécies e também às condições ambientais predominantes. Vários mecanismos fisiológicos e morfológicos, como a utilização do metabolismo C4, do ácido das crassuláceas (CAM, a utilização do bicarbonato (HCO3-, a utilização do CO2 da água intersticial do sedimento e o desenvolvimento de folhas aéreas foram considerados as principais adaptações para evitar a limitação do carbono no ambiente aquático. De relevância ecológica, a utilização destas diferentes estratégias pode compensar baixas ofertas de CO2 às taxas fotossintéticas de várias espécies submersas e suprimir a fotorrespiração por garantir altas concentrações intracelulares de CO2. Assim, estes mecanismos são responsáveis, em parte, pelo sucesso das macrófitas aquáticas submersas em ambientes oligotróficos, com baixas concentrações de CO2.In this paper, the main theoretical aspects of the mechanisms and adaptations used by submerged vegetation to maximize the utilization of inorganic carbon are discussed. The type of strategy used by submerged plants is related to both genetic differences among species and environmental conditions. The use of C4 metabolism and crassulacean acid metabolism (CAM, uptake of bicarbonate (HCO3-, uptake of CO2 from interstitial (sediment water and the development of aerial leaves are considered the main physiological and morphological adaptations to avoid CO2 limitation. These mechanisms are ecologically important given that their utilization overcome the low CO2 availability to several submerged species. In addition, they suppress the photorespiration by increasing the intracellular CO2 concentrations. Thus, these

  12. Seed bank characteristics of Dutch plant communities

    NARCIS (Netherlands)

    Bekker, RM; Schaminee, JHJ; Bakker, JP; Thompson, K

    With the recent appearances of a new and well-documented classification of the Dutch plant communities (Schaminee et al 1995a,b; 1996) and a database on the seed longevity of plant species of North West Europe (Thompson ct al. 1997a) it was possible to investigate patterns of seed longevity in Dutch

  13. Effects of Planted Versus Naturally Growing Vallisneria natans on the Sediment Microbial Community in West Lake, China.

    Science.gov (United States)

    Wang, Chuan; Liu, Shuangyuan; Zhang, Yi; Liu, Biyun; Zeng, Lei; He, Feng; Zhou, Qiaohong; Wu, Zhenbin

    2017-08-01

    Submerged macrophytes play an important role in aquatic ecosystems, which has led to an increase in studies on vegetation recovery in polluted lakes from which submerged macrophytes have disappeared. The comparison of microbial communities in sediment cloned with planted and naturally growing submerged macrophytes is an interesting but rarely studied topic. In this investigation, Maojiabu and Xilihu, two adjacent sublakes of West Lake (Hangzhou, China), were selected as aquatic areas with planted and naturally growing macrophytes, respectively. Sediment samples from sites with/without Vallisneria natans were collected from both sublakes. The results showed that sediment total nitrogen and organic matter were significantly lower in the plant-covered sites than that in the non-plant sites in Maojiabu. Additionally, the sediment microbial community characterized by 16S ribosomal RNA (rRNA) sequencing differed more significantly for Maojiabu than for Xilihu. The relative abundances of microbes involved in C, N, and S elemental cycling were significantly higher in the sediments with plants than in those without. Results from both fatty acid methyl ester analysis and 16S rRNA sequencing indicated that vegetation significantly influenced the sulfate-reducing bacteria (SRB). Thus, the gene copies and composition of SRB were explored further. The relative gene abundance of SRB was 66% higher with natural vegetation colonization but was not influenced by artificial colonization. An increase in dominant SRB members from the families Syntrophobacteraceae and Thermodesulfovibrionaceae contributed to the increase of total SRB. Thus, macrophyte planting influences sediment nutrient levels and microbial community more than natural growth does, whereas the latter is more beneficial to sediment SRB.

  14. Effects of toxic organic flotation reagent (aniline aerofloat) on an A/O submerged membrane bioreactor (sMBR): Microbial community dynamics and performance.

    Science.gov (United States)

    Lin, Weixiong; Sun, Shuiyu; Wu, Chun; Xu, Pingting; Ye, Ziwei; Zhuang, Shengwei

    2017-08-01

    Bio-treatment of flotation wastewater has been proven to be both effective and economical, as a treatment method. Despite this, little is known regarding the effects of toxic organic floatation reagents such as Dianilinodithiophosphoric acid (DDA), on the microbial community performance or dynamics, which are critical to the effective performance of the bio-treatment reactor. A submerged membrane bioreactor (sMBR) was constructed to continuously treat simulated wastewater contaminated with DDA, an organic flotation reagent that is now considered a significant pollutant. The performance of the sMBR system was investigated at different DDA loading concentrations, with assessment of the effects of DDA on the microbial communities within the sMBR, in particular the biodiversity and succession within the microbial community. Results showed that, with increased DDA loadings, the performance of the sMBR was initially negatively affected, but the system adapted efficiently and consistently reached a COD removal rate of up to 80%. Increased DDA loading concentrations had an adverse effect on the activity of both the activated sludge and microbial communities, resulting in a large alteration in microbial dynamics, especially during the start-up stage and the high DDA loading stage. Strains capable of adapting to the presence of DDA, capable of degrading DDA or utilizing its byproducts, were enriched within the sMBR community, such as Zoogloea, Clostridium, Sideroxydans lithotrophicus, Thiobacillus, Thauera amino aromatica and Alicycliphilus denitrificans. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. US State Submerged Lands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submerged Lands Act (43 U.S.C. Section 1301 et seq.) grants coastal states title to natural resources located within their coastal submerged lands and navigable...

  16. PLANT COMMUNITIES OF ALBANIA - A PRELIMINARY OVERVIEW

    Directory of Open Access Journals (Sweden)

    J, RODWELL

    2002-01-01

    Full Text Available The phytosociological analysis of Albania was initiated by F. Markgraf in the 30ies, but still remains incomplete. This is a preliminary list of the plant communities resulting from the literature and from field research carried out during the last years and may represent a first contribution for further research. Many communities are described only by dominant species, other are quoted as nomina nuda. Some further syntaxa. probably present in the study area, are added.

  17. PLANT COMMUNITIES OF ALBANIA - A PRELIMINARY OVERVIEW

    Directory of Open Access Journals (Sweden)

    J. DRING

    2002-04-01

    Full Text Available The phytosociological analysis of Albania was initiated by F. Markgraf in the 30ies, but still remains incomplete. This is a preliminary list of the plant communities resulting from the literature and from field research carried out during the last years and may represent a first contribution for further research. Many communities are described only by dominant species, other are quoted as nomina nuda. Some further syntaxa. probably present in the study area, are added.

  18. Species composition, Plant Community structure and Natural ...

    African Journals Online (AJOL)

    Belete forest is one of the very few remnant moist evergreen montane forests in Ethiopia. The objective of this work was to study the vegetation structure, composition and Natural regeneration status of Belete moist evergreen montane forest. To investigate the plant community structure, composition and regeneration status ...

  19. Submergence tolerance in Hordeum marinum

    DEFF Research Database (Denmark)

    Pedersen, Ole; Malik, Al I.; Colmer, Timothy D.

    2010-01-01

    Floodwaters differ markedly in dissolved CO(2), yet the effects of CO(2) on submergence responses of terrestrial plants have rarely been examined. The influence of dissolved CO(2) on underwater photosynthesis and growth was evaluated for three accessions of the wetland plant Hordeum marinum Huds......) movement, would all contribute to submergence tolerance in H. marinum. The present study demonstrates that dissolved CO(2) levels can determine submergence tolerance of terrestrial plants. So, submergence experiments should be conducted with defined CO(2) concentrations and enrichment might be needed...

  20. Effects of Co2 Concentrations and light intensity on photosynthesis of a rootless submerged plant, ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    Aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality in addition to green microalgae. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for plant function in aquatic food production modules including both plant culture and fish culture systems . The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known level CO 2 gas mixed with N2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 100 mmol mol-1 . Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1 , which was controlled with a metal halide lamp. Temperature was kept at 28 C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol-1 , respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 70 nmolO 2 gDW s at 3.0 mmol mol-1 CO2 and gradually decreased with increasing CO 2 levels from 3.0 to 100 mmol mol-1 . The results demonstrate that Ceratophyllum demersum L. could be an efficient CO 2 to O2 converter under a 3.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.

  1. Benthic bacterial diversity in submerged sinkhole ecosystems.

    Science.gov (United States)

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  2. Efficient methanogenic degradation of alcohol ethoxylates and microbial community acclimation in treatment of municipal wastewater using a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Nie, Yulun; Niu, Qigui; Kato, Hiroyuki; Sugo, Toshiki; Tian, Xike; Li, Yu-You

    2017-02-01

    The effect of alcohol ethoxylates on the treatment of municipal wastewater by a submerged anaerobic membrane bioreactor was investigated by a 400days operation including the treatment efficiency, methanogenic activity of sludge and microbial community structure. The results indicated that alcohol ethoxylates (5.0-200mg/L) was efficiently degraded and converted into methane due to the similar COD removal 95.5-98.8% and rising biogas production rate (2.30-4.25L/d) compared with control (96.8% and 2.55L/d). The microbes in sludge could copy with the presence of alcohol ethoxylates in wastewater by releasing more SMP and EPS, which caused a higher membrane fouling rate. Moreover, via long term acclimation, the specific methanogenic activity of sludge was greatly enhanced due to the changes of microbial community structure. Hence, the sludge self-acclimation to alcohol ethoxylates was responsible to the efficient methane recovery in treatment of municipal wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    Science.gov (United States)

    Miller, R.L.; Fujii, R.

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.

  4. Plant interactions with multiple insect herbivores: from community to genes

    NARCIS (Netherlands)

    Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; Loon, van J.J.A.; Poelman, E.H.; Dicke, M.

    2014-01-01

    Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant

  5. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China.

    Science.gov (United States)

    Qin, Ying-Ying; Li, Dao-Tang; Yang, Hong

    2007-03-01

    The community composition of total bacteria and ammonia-oxidizing bacteria in a full-scale aerated submerged biofilm reactor for drinking water pretreatment was characterized by analysis of 16S rRNA gene and the functional gene amoA, respectively. Sampling was performed in February and in July. 16S rRNA gene clone libraries revealed 13 bacterial divisions. At both sampling dates, the majority of clone sequences were related to the Alpha- and Betaproteobacteria. A minor proportion belonged to the following groups: Gammaproteobacteria, Deltaproteobacteria, Nitrospira, Firmicutes, Acidobacteria, Verrucomicrobia, Actinobacteria, Planctomycetes, Chloroflexi, Gemmatimonadetes and the Cytophaga-Flavobacterium-Bacteroides group. Some sequences related to bacteria owning high potential metabolic capacities were detected in both samples, such as Rhodobacter-like rRNA gene sequences. Surveys of cloned amoA genes from the two biofilm samples revealed ammonia-oxidizing bacterial sequences affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage. An unknown Nitrosomonas group of amoA gene sequences was also detected.

  6. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment.

    Science.gov (United States)

    Yu, Jaecheul; Seon, Jiyun; Park, Younghyun; Cho, Sunja; Lee, Taeho

    2012-08-01

    A submerged type microbial fuel cell (MFC) system, which consisted of six readily exchangeable air-cathode MFCs, was evaluated for continuous treatment of low-strength domestic wastewater. When supplied with synthetic wastewater (COD 100 mg/L), the system showed increasing maximum power densities from 191 to 754 mW/m2 as COD loading rates increased (0.20-0.40 kg/m3/day). COD removal efficiencies decreased with increased COD loading rates but the effluent COD concentrations met the relevant effluent quality standard (CODMn 20 mg/L) at all conditions. The system was then operated with domestic wastewater (c.a. 100 mg COD/L) at 0.32 and 0.43 kg/m3/day. The system showed much lower power densities (116-149 mW/m2) at both loading rates, compared to synthetic wastewater. Anodic microbial communities were completely different when the wastewater type was changed. These results suggest that the newly developed MFC system could be applied to treat low-strength domestic wastewater without requiring any additional organic removal stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effects of CO 2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllumdemersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO 2 to O 2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O 2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO 2 gas mixed with N 2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol -1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol M -2 s -1, which was controlled with a metal halide lamp. Temperature was kept at 28°C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m -2 s -1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol -1, respectively. The net photosynthetic rate increased with increasing CO 2 levels from 0.3 to 3.0 mmol mol -1 showing the maximum value, 75 nmolO 2 gDW -1 s -1, at 2-3 mmol mol -1 CO 2 and gradually decreased with increasing CO 2 levels from 3.0 to 10 mmol mol -1. The results demonstrate that C. demersum could be an efficient CO 2 to O 2 converter under a 2.0 mmol mol -1 CO 2 level and relatively low PPFD levels in aquatic food production modules.

  8. Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    2003-01-01

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  9. Nitrifying Community Analysis in a Single Submerged Attached-Growth Bioreactor for Treatment of High-Ammonia Waste Stream

    DEFF Research Database (Denmark)

    Gu, April Z.; Pedros, Philip B; Kristiansen, Anja

    2007-01-01

    addition (methanol). With influent ammonia and total Kjeldahl nitrogen ranging from 537 to 968 mg/L and 643 to1510 mg/L, respectively, 85% nitrogen removal was obtained, and effluent was dominated by nitrite (NO2 −/NOx >0.95). Nitrifying community analysis using fluorescence in situ hybridization (FISH...... in this study is applicable for high-ammonia-strength wastewater treatment, such as centrate or industrial wastes. Udgivelsesdato: December 2007...

  10. Management of plant communities on set-aside land and its effects on earthworm communities

    NARCIS (Netherlands)

    Gormsen, D.; Hedlund, K.; Korthals, G.W.; Mortimer, S.R.; Pizl, V.; Smilauerova, M.; Sugg, E.

    2004-01-01

    Plant communities of set-aside agricultural land in a European project were managed in order to enhance plant succession towards weed-resistant, mid-successional grassland. Here, we ask if the management of a plant community affects the earthworm community. Field experiments were established in four

  11. Community Support of Ethanol Plants: Does Local Ownership Matter?

    Science.gov (United States)

    Bain, Carmen; Prokos, Anastasia; Liu, Hexuan

    2012-01-01

    Drawing on data from six communities in Kansas and Iowa, we explore the factors that are related to community members' current levels of overall support for local ethanol plants. What are residents' opinions about the benefits and drawbacks of local ownership of ethanol plants? How does that awareness lead to overall support of plants? Our…

  12. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  13. Plant community analysis and ecology of afromontane and ...

    African Journals Online (AJOL)

    Plant community-environment relationship was assessed based on topog raphic and some soil physical and chemical characteristics. A total of 101 relevés were analysed at altitudes between 1050 and 2550 m a.s.l. (metres above sea level), and a total of 139 species of vascular plants were identified. Nine plant community ...

  14. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly

    NARCIS (Netherlands)

    Kardol, P.; Cornips, N.J.; Kempen, van M.M.L.; Bakx-Schotman, J.M.T.; Putten, van der W.H.

    2007-01-01

    Plant¿soil feedback affects performance and competitive ability of individual plants. However, the importance of plant¿soil feedback in historical contingency processes and plant community dynamics is largely unknown. In microcosms, we tested how six early-successional plant species of secondary

  15. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Zhilan Feng; Rongsong Liu; Donald L. DeAngelis; John P. Bryant; Knut Kielland; F. Stuart Chapin; Robert K. Swihart

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of...

  16. Ecology of plant volatiles: taking a plant community perspective

    NARCIS (Netherlands)

    Pierik, Ronald; Ballaré, C.L.; Dicke, M.

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and

  17. Ecology of plant volatiles: taking a plant community perspective

    NARCIS (Netherlands)

    Pierik, R.; Ballaré, C.L.; Dicke, M.

    2014-01-01

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and

  18. Arbuscular Mycorrhizal Fungal Mediation of Plant-Plant Interactions in a Marshland Plant Community

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2014-01-01

    Full Text Available Obligate aerobic AMF taxa have high species richness under waterlogged conditions, but their ecological role remains unclear. Here we focused on AM fungal mediation of plant interactions in a marshland plant community. Five cooccurring plant species were chosen for a neighbor removal experiment in which benomyl was used to suppress AMF colonization. A Phragmites australis removal experiment was also performed to study its role in promoting AMF colonization by increasing rhizosphere oxygen concentration. Mycorrhizal fungal effects on plant interactions were different for dominant and subdominant plant species. AMF colonization has driven positive neighbor effects for three subdominant plant species including Kummerowia striata, Leonurus artemisia, and Ixeris polycephala. In contrast, AMF colonization enhanced the negative effects of neighbors on the dominant Conyza canadensis and had no significant impact on the neighbor interaction to the dominant Polygonum pubescens. AM colonization was positively related to oxygen concentration. P. australis increased oxygen concentration, enhanced AMF colonization, and was thus indirectly capable of influencing plant interactions. Aerobic AM fungi appear to be ecologically relevant in this wetland ecosystem. They drive positive neighbor interactions for subdominant plant species, effectively increasing plant diversity. We suggest, therefore, that AM fungi may be ecologically important even under waterlogged conditions.

  19. Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities.

    Directory of Open Access Journals (Sweden)

    Colin Fontaine

    2006-01-01

    Full Text Available Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant-pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.

  20. Functional Diversity of Plant-Pollinator Interaction Webs Enhances the Persistence of Plant Communities.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant-pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.

  1. Diversity of MAPs in some plant communities of Stara Planina

    OpenAIRE

    Obratov-Petković Dragica; Popović Ivana; Belanović Snežana; Perović Marko; Košanin Olivera

    2006-01-01

    The high floristic diversity of Stara Planina was the starting base for the research of medicinal and aromatic plants (MAPs) in individual forest and meadow communities. The sites Javor and Prelesje, forest community Fagetum moesiacae montanum B. Jov. 1953, pioneer community of birch Betuletum verrucosae s.l. and meadow community Agrostietum vulgaris (capillaris) Pavlović, Z. 1955, were researched as follows: soil types, floristic composition and structure of the community, percentage of MAPs...

  2. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  3. The importance of priority effects for riparian plant community dynamics

    NARCIS (Netherlands)

    Sarneel, Judith M.|info:eu-repo/dai/nl/304836923; Kardol, Paul; Nilsson, Christer

    Questions The order of plant species arrival can affect recruitment and subsequent plant community development via priority effects, but is often overlooked. Priority effects occur when early-colonizing plant species affect the establishment of later-arriving species, and are hypothesized to depend

  4. Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities

    NARCIS (Netherlands)

    Deyn, de G.B.; Ruijven, van J.; Raaijmakers, C.E.; Ruiter, de P.C.; Putten, van der W.H.

    2007-01-01

    Interactions between above- and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above- and belowground invertebrate herbivores which alter plant community

  5. Plant communities of stubble-fields in the Lublin Region, P. I. Plant communities of poor sites

    Directory of Open Access Journals (Sweden)

    Maria Jędruszczak

    2013-12-01

    Full Text Available Floristic diversity is a specific characteristic of stubble-fields plant communities. They contain both the species which remained after harvesting cereal communities and the species developing root-plant communities. This diversity is favoured by the ecological conditions of stubble-fields (warmth, light, frequent rainfall but first of all lack of competition on the part of cultivated plants. The first part of the paper describes the plant communities of poor sites in the investigated region. It is based on 133 phytosociological records taken in August and September in 1975-1980 and on soil investigations. Three types of communities have been distingushed belonging to the Panico-Setarion association. They are: (1 Digitarietum ischaemi association, (2 Setaria glauca-Scleranthus annuus community and (3 Echinochloo-setarietum association. They all can be divided into smaller phytosociological units.

  6. Plant community resistance to invasion by Bromus species: The roles of community attributes, Bromus interactions with plant communities, and Bromus traits [Chapter 10

    Science.gov (United States)

    Jeanne C. Chambers; Matthew J. Germino; Jayne Belnap; Cynthia S. Brown; Eugene W. Schupp; Samuel B. St. Clair

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromus hereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in...

  7. Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants.

    Science.gov (United States)

    Zhao, Congcong; Xie, HuiJun; Xu, Jingtao; Xu, Xiaoli; Zhang, Jian; Hu, Zhen; Liu, Cui; Liang, Shuang; Wang, Qian; Wang, Jingmin

    2015-02-01

    Triclosan (TCS) is a broad-spectrum synthetic antimicrobial agent that is toxic to microbes and other aquatic organisms. Constructed wetlands (CWs) are now popular in TCS removal. However, knowledge on the effects of TCS on the bacterial community and microbial removal mechanism in CWs is lacking. The effects of TCS (60 μg L(-1)) on bacterial communities in batch-loaded CWs with emergent (Typha angustifolia), submerged (Hydrilla verticillata), and floating plant (Salvinia natans) were analyzed by 454 pyrosequencing technology. After six periods of experiment, the TCS removal efficiencies were over 90% in CWs, and negative effects of TCS on bacterial community richness and diversity were observed. Moreover, plant species effect existed. Bacterial strains that contributed to TCS biodegradation in CWs were successfully identified. In TCS-treated T. angustifolia and H. verticillata CWs, beta-Proteobacteria increased by 16.63% and 18.20%, respectively. In TCS-treated S. natans CWs, delta- and gamma-Proteobacteria and Sphingobacteria increased by 9.36%, 19.49%, and 31.37%, respectively, and could relate to TCS biodegradation. TCS affected the development of certain bacteria, and eventually, the bacterial community structures in CWs. This research provided ecologically relevant information on bacterial community and microbial removal mechanism in CWs under TCS treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Cars submerged in water.

    NARCIS (Netherlands)

    2010-01-01

    Crashes in which cars are submerged in deep water or in a ditch are often complicated and serious. Considering their severity and the fact that approximately half the fatalities in this crash type are not due to drowning but to injury, preventive measures are to be preferred above measures that have

  9. The plant communities of the Andover Game Reserve, South Africa

    Directory of Open Access Journals (Sweden)

    Heath P. Cronje

    2008-05-01

    Full Text Available Floristic characteristics of the Andover Game Reserve (AGR were surveyed using an area-based survey technique and classified according to the data recorded from 88 relevés, using the PHYTOTAB-PC software package. Three plant communities, of which two each contain two variants, were described and mapped. The plant communities and their causative environmental factors were validated through detrended- and canonical correspondence multivariate analyses. The plant communities of the AGR were found to typify the floristics associated with the catenal sequences located in undulating areas on granite. Broad-leaved savanna is located at the crest and upper mid-slopes while fine-leaved savanna occurs along the footslopes of the AGR. Seeplines, a characteristic occurrence along catenas, are found at the transitional zone between the upper broad- and lower fine-leaved savanna plant communities. This study forms the basis for the compilation of a revised ecological management plan for the Andover Game Reserve.

  10. Local factors determine plant community structure on closely neighbored islands.

    Directory of Open Access Journals (Sweden)

    Jianbo Lu

    Full Text Available Despite the recent popularity of the metacommunity concept, ecologists have not evaluated the applicability of different metacommunity frameworks to insular organisms. We surveyed 50 closely spaced islands in the Thousand-Island Lake of China to examine the role of local (environmental and regional (dispersal factors in structuring woody plant assemblages (tree and shrub species on these islands. By partitioning the variation in plant community structure into local and regional causes, we showed that local environmental conditions, specifically island morphometric characteristics, accounted for the majority of the variation in plant community structure among the studied islands. Spatial variables, representing the potential importance of species dispersal, explained little variation. We conclude that one metacommunity framework-species sorting-best characterizes these plant communities. This result reinforces the idea that the traditional approach of emphasizing the local perspective when studying ecological communities continues to hold its value.

  11. Local factors determine plant community structure on closely neighbored islands.

    Science.gov (United States)

    Lu, Jianbo; Jiang, Lin; Yu, Lin; Sun, Que

    2011-05-10

    Despite the recent popularity of the metacommunity concept, ecologists have not evaluated the applicability of different metacommunity frameworks to insular organisms. We surveyed 50 closely spaced islands in the Thousand-Island Lake of China to examine the role of local (environmental) and regional (dispersal) factors in structuring woody plant assemblages (tree and shrub species) on these islands. By partitioning the variation in plant community structure into local and regional causes, we showed that local environmental conditions, specifically island morphometric characteristics, accounted for the majority of the variation in plant community structure among the studied islands. Spatial variables, representing the potential importance of species dispersal, explained little variation. We conclude that one metacommunity framework-species sorting-best characterizes these plant communities. This result reinforces the idea that the traditional approach of emphasizing the local perspective when studying ecological communities continues to hold its value.

  12. ROOT ALLOMETRY OF TWO SUBTROPICAL PLANT COMMUNITIES OF NORTHEASTERN MEXICO

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Navar Chaidez

    2009-06-01

    Full Text Available This research work aimed at the study of the root allometry in subtropical Tamaulipan thornscrub and pine forest communities of Nuevo Leon, Mexico. By excavating each individual root of each of 20 trees per plant community, we developed root allometric equations for biomass, volume, total length and diameter. Covariance analysis, ancova, was employed to determine the statistical difference of these parameters between plant communities. Results indicate that pine plant trees have larger root volumes, longer root systems and higher root basic densities than trees of Tamaulipan thornscrub forests. This piece of information is key to estimate root biomass, volume, total length and diameter of roots of trees of these plant communities at the stand scale; important environmental information.Key words: Power equations, ancova, root biomass, volume, length and diameter.

  13. Fire-Dependent Plant Communities (burn_plan_p)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Fire-Dependent Plant Communities (burn_plan_p) data layer was developed in conjunction with the St Croix National Scenic Riverway's Fire Management Plan. It...

  14. Gall-Insect Community on Big Sagebrush Varies With Plant Size but not Plant Age.

    Science.gov (United States)

    Spawton, Kayla A; Wetzel, William C

    2015-08-01

    There is astounding variation in the abundance and diversity of insect herbivores among plant individuals within plant species in natural systems. One of the most well studied hypotheses for this pattern, the plant architecture hypothesis, suggests that insect community patterns vary with plant structural complexity and plant traits associated with structure. An important limitation to our understanding of the plant architecture hypothesis has been that most studies on the topic confound plant size and plant age. This occurs because, for most plant species, larger individuals are older individuals. This is a limitation because it prevents us from knowing whether insect community patterns are more dependent on traits associated with plant size, like resource quantity or plant apparency, or traits associated with plant age, like ontogenetic changes in phytochemistry. To separate these effects, we characterized galling insect communities on sagebrush (Artemisia tridentata)-a shrub in which age and size are not tightly correlated. We identified gall insects and recorded morphological measurements from 60 plants that varied separately in size and age. We found that plant size explained significantly more variation in insect gall abundance and species richness than did plant age. These results suggest that processes supporting the plant architecture hypothesis in this system are driven primarily by plant size and not plant age per se. Resource qualities associated with host-plant ontogeny may be less important than resource quantity in the assembly of herbivorous insect communities. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Measuring competition in plant communities where it is difficult to distinguish individual plants

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2011-01-01

    A novel method for measuring plant-plant interactions in undisturbed semi-natural and natural plant communities where it is difficult to distinguish individual plants is discussed. It is assumed that the ecological success of the different plant species in the plant community may be adequately...... measured by plant cover and vertical density (a measure that is correlated to the 3-dimensional space occupancy and biomass). Both plant cover and vertical density are measured in a standard pin-point analysis in the beginning and at the end of the growing season. In the outlined competition model....... The method allows direct measurements of the competitive effects of neighbouringzplants on plant performance and the estimation of parameters that describe the ecological processes of plantplant interactions during the growing season as well as the process of survival and recruitment between growing seasons...

  16. Abiotic drivers of Chihuahuan Desert plant communities

    Science.gov (United States)

    Laura Marie Ladwig

    2014-01-01

    Within grasslands, precipitation, fire, nitrogen (N) addition, and extreme temperatures influence community composition and ecosystem function. The differential influences of these abiotic factors on Chihuahuan Desert grassland communities was examined within the Sevilleta National Wildlife Refuge, located in central New Mexico, U.S.A. Although fire is a natural...

  17. Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding

    NARCIS (Netherlands)

    Hendriks, M.; Mommer, L.; Caluwe, de H.; Smit-Tiekstra, A.E.; Putten, van der W.H.; Kroon, de H.

    2013-01-01

    1. Recent studies have shown that the positive relationship between plant diversity and plant biomass ('overyielding') can be explained by soil pathogens depressing productivity more in low than in high diverse plant communities. However, tests of such soil effects in field studies were constrained

  18. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation

    Directory of Open Access Journals (Sweden)

    Jinlei Yu

    2016-10-01

    Full Text Available Fish removal has been used to restore temperate lakes, and positive effects on ecological state and water clarity have frequently been recorded in many lakes. Recently, a supplementary measure, transplantation of submerged macrophytes after fish removal, has been applied to restore warm Chinese shallow lakes in order to compensate for the expected lack of increasing grazing control of phytoplankton after the biomanipulation. These measures have successfully shifted turbid warm lakes to a clear water state, but little is known about the responses to restoration of key physico-chemical variables. We analyzed the seasonal variation in nutrient concentrations in two subtropical and one tropical biomanipulated shallow Chinese lakes subjected to restoration. In all three lakes, a marked decline occurred in the concentrations of lake total nitrogen (TN, total phosphorus (TP, total suspended solids (TSS, and chlorophyll a (Chl a, while the transparency (SD:WD ratio, Secchi depth to water depth ratio increased. A clear water state was established, lasting so far for 7 to 23 months, and TN, TP, Chl a, and TSS levels in the three restored lakes decreased to, on average, 49%, 58%, 41%, and 18% of the level prior to restoration and/or the level in a reference lake, respectively, while the annual mean SD:WD ratio exhibited a 1.5–4 fold increase. In conclusion, lake restoration by transplantation of submerged macrophytes after fish removal had major positive effects on the physico-chemical variables in our study lakes. However, continuous control of omnivorous and herbivorous fish biomass is recommended as the fish typically present in warm, shallow lakes to some extent feed on submerged macrophytes, when available.

  19. Impacts of soil microbial communities on exotic plant invasions

    NARCIS (Netherlands)

    Inderjit, .; Van der Putten, W.H.

    2010-01-01

    Soil communities can have profound effects on invasions of ecosystems by exotic plant species. We propose that there are three main pathways by which this can happen. First, plant–soil feedback interactions in the invaded range are neutral to positive, whereas native plants predominantly suffer from

  20. Changing soil legacies to direct restoration of plant communities

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; De Boer, W.; van der Putten, W.H.

    2017-01-01

    It is increasingly acknowledged that soil biota may influence interactions among plant species, however, little is known about how to change historical influences of previous land management on soil biota, the so-called ‘biotic soil legacy effect’. We used a two-phase plant community-soil feedback

  1. Quantitative description of woody plant communities: Part I. An ...

    African Journals Online (AJOL)

    Various descriptive units for woody plant communities are proposed. These are the evapotranspiration tree equivalent (ETTE), browse tree equivalent (BTE) and canopied subhabitat index (CSI), which describe the status of woody community in terms of potential moisture use, value of the trees as food for browsers and ...

  2. Evapotranspiration in three plant communities of a Rhigozum ...

    African Journals Online (AJOL)

    Evapotranspiration losses in three Rhigozum trichotomum plant communities namely, pure grass, pure R. trichotomum and a mixed stand of grass and R. trichotomum were determined during the 1985-86 growing season. Three hydrologically isolated plots in each community type were irrigated and changes in soil water ...

  3. Experimental plant communities develop phylogenetically overdispersed abundance distributions during assembly

    OpenAIRE

    Allan, Eric; Jenkins, Tania; Alexander J. F. Fergus; Roscher, Christiane; Fischer, Markus; Petermann, Jana; Wolfgang W Weisser; Schmid, Bernhard

    2013-01-01

    The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the developme...

  4. Community evolution increases plant productivity at low diversity.

    Science.gov (United States)

    van Moorsel, Sofia J; Hahl, Terhi; Wagg, Cameron; De Deyn, Gerlinde B; Flynn, Dan F B; Zuppinger-Dingley, Debra; Schmid, Bernhard

    2018-01-01

    Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long-term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re-assembled communities with 8-year co-selection history adjacent to communities with identical species composition but no history of co-selection ('naïve communities'). Monocultures, and in particular mixtures of two to four co-selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co-selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co-evolutionary processes between plants and soil organisms. © 2017 John Wiley & Sons Ltd/CNRS.

  5. Contrasting effects of different mammalian herbivores on sagebrush plant communities.

    Directory of Open Access Journals (Sweden)

    Kari E Veblen

    Full Text Available Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides, responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg's blue grass (Poa secunda. Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into

  6. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    Science.gov (United States)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  7. Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †

    Science.gov (United States)

    Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643

  8. Intraspecific genetic variation and species coexistence in plant communities.

    Science.gov (United States)

    Ehlers, Bodil K; Damgaard, Christian F; Laroche, Fabien

    2016-01-01

    Many studies report that intraspecific genetic variation in plants can affect community composition and coexistence. However, less is known about which traits are responsible and the mechanisms by which variation in these traits affect the associated community. Focusing on plant-plant interactions, we review empirical studies exemplifying how intraspecific genetic variation in functional traits impacts plant coexistence. Intraspecific variation in chemical and architectural traits promotes species coexistence, by both increasing habitat heterogeneity and altering competitive hierarchies. Decomposing species interactions into interactions between genotypes shows that genotype × genotype interactions are often intransitive. The outcome of plant-plant interactions varies with local adaptation to the environment and with dominant neighbour genotypes, and some plants can recognize the genetic identity of neighbour plants if they have a common history of coexistence. Taken together, this reveals a very dynamic nature of coexistence. We outline how more traits mediating plant-plant interactions may be identified, and how future studies could use population genetic surveys of genotype distribution in nature and methods from trait-based ecology to better quantify the impact of intraspecific genetic variation on plant coexistence. © 2016 The Author(s).

  9. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods

    DEFF Research Database (Denmark)

    Herzog, Max; Konnerup, Dennis; Pedersen, Ole

    2018-01-01

    Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerg...

  10. Microbial community structure in the rhizosphere of rice plants

    Directory of Open Access Journals (Sweden)

    Björn eBreidenbach

    2016-01-01

    Full Text Available The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e. rhizosphere versus bulk soil had a greater effect on the community structure than did time (e.g. plant growth stage. Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g. Geobacter, Anaeromyxobacter and fermenters (e.g. Clostridiaceae, Opitutaceae were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth.

  11. The stubble-field plant communities on lowland complexes in South-Eastern Poland. P. II. Plant communities of the Eu-Polygono-Chenopodion alliance

    Directory of Open Access Journals (Sweden)

    Czesława Trąba

    2013-12-01

    Full Text Available Part I deals with the Panico-Setarion stubble plant communities. Part II describes the Eu-Polygono-Chenopodion plant communities. Part II is based on 89 photosociological records. The Eu-Polygono-Chenopodion plant communities develope on soil rich in nutrients (brown soil developed from silts loess and clay; alluvial soils developed from silts and loams; chernozem and black soils, belongs to wheat complexes. Two plant communities are distinguished: 1 Oxalis stricta-Euphorbia esula community; 2 Veronica persica community divided into four variants. The floristic diversity of these plant communities reflects the ecological conditions of the examined region.

  12. Characteristics of Climbing Plants Community in Rambut Island Wildlife Reserve

    Directory of Open Access Journals (Sweden)

    Nani Rahayu

    2017-09-01

    Full Text Available Climbing plants are major component of tropical forest and play important role in many aspects of forest dynamic, balancing the micro-climate and provide food, shelter, nest material for wildlife especially bird. Inspite of their importance, climbing plants are often neglected. This research was aimed to describe the characteristics of climbing plants communities in three different ecosystems in Rambut Island Wildlife Reserve (RIWR. Climbing plants inventory in dryland, beach and ecotone forest were done by combining transect and quadrat method. The plots made in each ecosystem were 53, 27 and 85 respectively. A total of 37 climbing plants species consisted of 19 families were identifed and their contribution to species richness in RIWR reached 25,7 %. The climbing plants found in dryland, coastal and ecotone forest were 27 species (17 families, 23 species (16 families dan 16 species (12 families respectively. The species richness of climbing plants in all ecosystem were low, but the dryland forest was the richest due to the more fertile soils and vegetation structure complexity. In general, the species diversity and evenness in all ecosystem were low because of certain species domination. Dioscorea bulbifera was dominant in dryland and beach forest while Ipomoea violacea was dominant in ecotone forest. The domination of D. bulbifera influenced the similarity of climbing plants communities among ecosystem. Dominance, density and distribution of climbing plants indicated invasion of certain climbing plants species in RIWR. Keywords: diversity, forest, liana, vine

  13. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... was devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long......-term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled...

  14. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms

    NARCIS (Netherlands)

    Netten, J.J.C.; Arts, G.H.P.; Gylstra, R.; Nes, van E.H.; Scheffer, M.; Roijackers, R.M.M.

    2010-01-01

    In many aquatic ecosystems, free-floating plants compete with submerged plants for nutrients and light. Being on top of the water surface free-floating plants are superior competitors for light. Submerged plants can take up nutrients from the sediment and the water column, hereby reducing these

  15. Species composition, Plant Community structure and Natural ...

    African Journals Online (AJOL)

    Bheema

    at good regeneration status. Planning and management of the forest should be assisted by research findings, such as detailed ecological studies in relation to various environmental factors. Keywords: Belete forest, Community structure, Moist Evergreen Montane Forest, Regeneration. 1. INTRODUCTION. Ethiopia has the ...

  16. Major plant communities of the Marakele National Park

    Directory of Open Access Journals (Sweden)

    P.J. van Staden

    2005-12-01

    Full Text Available To manage and conserve any national park efficiently, a profound knowledge of the ecology is a prerequisite, and to achieve that an inventory of the biotic and abiotic components must be undertaken. As a contribution to such a program this information was collected for Marakele National Park. The study area covers 290.51 km² in the southwestern part of the Limpopo Province. The underlying parent rock of the study area is sandstone, shale and mudstone with several diabase dykes. The soils range from shallow to deep sandy soils on sandstone and clayey soils on diabase and mudstone. The rainfall varies from 556 mm to 630 mm per annum, mainly during the summer months. The study area experiences warm summers with temperatures of up to 32 ºC and cool, dry winters with frost in the low-lying areas. The vegetation of the study area was classified in a hierarchical, plant sociological system by using TWINSPAN and the Braun - Blanquet technique. The floristic data from 130 relevés were classified to identify five major plant communities, namely one forest community, three savanna/grassland communities and one wetland community. These plant communities were ecologically interpreted by habitat.The phytosociological table was condensed to a synoptic table to describe the major plant communities.

  17. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities

    Science.gov (United States)

    Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...

  18. Nitrogen Fixing Legumes in the Plant Communities

    OpenAIRE

    M. A.A. Al-Fredan

    2011-01-01

    Problems statement: Numerous authors have used energetic to explain the ecological success of N-fixing plants. Legume biodiversity assessment, species dynamics, nitrogen fixation monitoring and environment impact assessment of these ecological events in Al-Hassa Oasis, Saudi Arabia are rare and need to be continuous and more frequent. Approach: Thus the objectives of this study were to analyze legume abundance within and outside Al-Hassa Oasis and relate it to the dis...

  19. Behavioural and community ecology of plants that cry for help.

    Science.gov (United States)

    Dicke, Marcel

    2009-06-01

    Plants respond to insect herbivory with the production of volatiles that attract carnivorous enemies of the herbivores, a phenomenon called indirect defence or 'plants crying for help'. Plants are under selection to maximize Darwinian fitness, and this can be done by making the right 'decisions' (i.e. by responding to environmental stress in ways that maximize seed production). Plant decisions related to the response to herbivory in terms of the emission of herbivore-induced volatiles include 'to respond or not to respond', 'how fast to respond', 'how to respond' and 'when to stop responding'. In this review, the state-of-the-art of the research field is presented in the context of these decisions that plants face. New questions and directions for future research are identified. To understand the consequences of plant responses in a community context, it is important to expand research from individual interactions to multispecies interactions in a community context. To achieve this, detailed information on underlying mechanisms is essential and first steps on this road have been made. This selective review addresses the ecology of herbivore-induced plant volatiles (HIPVs) by integrating information on mechanisms and ecological functions. New questions are identified as well as challenges for extending current information to community ecology.

  20. Euphorbia plant latex is inhabited by diverse microbial communities.

    Science.gov (United States)

    Gunawardana, Manjula; Hyde, Embriette R; Lahmeyer, Sean; Dorsey, Brian L; La Val, Taylor P; Mullen, Madeline; Yoo, Jennifer; Knight, Rob; Baum, Marc M

    2015-12-01

    The antimicrobial properties and toxicity of Euphorbia plant latex should make it a hostile environment to microbes. However, when specimens from Euphorbia spp. were propagated in tissue culture, microbial growth was observed routinely, raising the question whether the latex of this diverse plant genus can be a niche for polymicrobial communities. Latex from a phylogenetically diverse set of Euphorbia species was collected and genomic microbial DNA extracted. Deep sequencing of bar-coded amplicons from taxonomically informative gene fragments was used to measure bacterial and fungal species richness, evenness, and composition. Euphorbia latex was found to contain unexpectedly complex bacterial (mean: 44.0 species per sample; 9 plants analyzed) and fungal (mean: 20.9 species per sample; 22 plants analyzed) communities using culture-independent methods. Many of the identified taxa are known plant endophytes, but have not been previously found in latex. Our results suggest that Euphorbia plant latex, a putatively hostile antimicrobial environment, unexpectedly supports diverse bacterial and fungal communities. The ecological roles of these microorganisms and potential interactions with their host plants are unknown and warrant further research. © 2015 Botanical Society of America.

  1. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues.

    Science.gov (United States)

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E

    2016-09-29

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health.

  2. Negative Plant-Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant¿soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  3. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    this early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically......Invasive exotic plant species often have fewer natural enemies and suffer less damage from herbivores in their new range than genetically or functionally related species that are native to that area. Although we might expect that having fewer enemies would promote the invasiveness of the introduced...... exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species...

  4. Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods onindividual ragwort (Jacobaea vulgaris) plants

    NARCIS (Netherlands)

    Kostenko, O.; Grootemaat, S.; Putten, van der W.H.; Bezemer, T.M.

    2012-01-01

    The diversity of plant community can greatly affect the abundance and diversity of arthropods associated to that community, but can also influence the composition or abundance of arthropods on individual plants growing in that community. We sampled arthropods and recorded plant size of individual

  5. Optimization of submerged vane parameters

    Indian Academy of Sciences (India)

    Submerged vanes are airfoils which are in general placed at certain angle with respect to the flow direction in a channel to induce artificial circulations downstream. By virtue of these artificially generated circulations, submerged vanes were utilized to protect banks of rivers against erosion, to control shifting of rivers, to avoid ...

  6. Optimization of submerged vane parameters

    Indian Academy of Sciences (India)

    H Sharma

    velocities simulated from CFD using standard k-x model were very much in accordance with what it was measured by Wang and Odgaard [4]. Thus, model can be used to study the turbulence characteristics around submerged vanes and to predict various parameters downstream of the submerged vanes. After the model ...

  7. Root transcript profiling of two Rorippa (brassicaceae) species reveals gene clusters associated with extreme submergence tolerance.

    NARCIS (Netherlands)

    Sasidharan, R.; Mustroph, A.; Boonman, A.; Akman, M.; Ammerlaan, A.M.H.; Breit, T.M.; Schranz, M.E.; Voesenek, L.A.C.J.; Tienderen, van P.H.

    2013-01-01

    Complete submergence represses photosynthesis and aerobic respiration, causing rapid mortality in most terrestrial plants. However, some plants have evolved traits allowing them to survive prolonged flooding, such as species of the genus Rorippa, close relatives of Arabidopsis (Arabidopsis

  8. Root transcript profiling of two Rorippa species reveals gene clusters associated with extreme submergence tolerance

    NARCIS (Netherlands)

    Sasidharan, R.; Mustroph, A.; Boonman, A.; Akman, M.; Ammerlaan, A.M.H.; Breit, T.M.; Schranz, M.E.; Voesenek, L.A.C.J.; van Tienderen, P.H.

    2013-01-01

    Complete submergence represses photosynthesis and aerobic respiration, causing rapid mortality in most terrestrial plants. However, some plants have evolved traits allowing them to survive prolonged flooding, such as species of the genus Rorippa, close relatives of Arabidopsis (Arabidopsis

  9. Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants

    DEFF Research Database (Denmark)

    Frost-Christensen, Henning; Jørgensen, Lise Bolt; Floto, Franz

    2003-01-01

    oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants......oxygen, diffusion, cuticula, amphibious plants, Hygrophila, Berula, Lobelia, Mentha, Potamogeton, Veronica, aquatic plants, submerged plants...

  10. Submerged AUV Charging Station

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  11. Functional diversity in plant communities: Theory and analysis ...

    African Journals Online (AJOL)

    Plant functional diversity in community has become a key point in ecology studies recently. The development of species functional diversity was reviewed in the present work. Based on the former original research papers and reviews, we discussed the concept and connotation and put forward a new definition of functional ...

  12. Selection for niche differentiation in plant communities increases biodiversity effects

    NARCIS (Netherlands)

    Zuppinger-Dingley, D.; Schmid, B.; Petermann, J.S.; Yadav, V.; Deyn, de G.B.; Flynn, D.F.B.

    2014-01-01

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time1, 2, a fact often attributed to increased resource complementarity between species in mixtures3 and negative plant–soil feedbacks in monocultures4. Here we show

  13. Selection for niche differentiation in plant communities increases biodiversity effects

    NARCIS (Netherlands)

    Zuppinger-Dingley, D.; Schmid, B.; Petermann, J.S.; Yadav, V.; Deyn, de G.B.; Flynn, D.F.B.

    2014-01-01

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant–soil feedbacks in monocultures. Here we show that

  14. Plant community development is affected by nutrients and soil biota

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van der Putten, W.H.

    2004-01-01

    1 Plant community development depends to a great extent on the availability of soil nutrients, but recent studies underline the role of symbiotic, herbivorous and pathogenic soil biota. We tested for interactions between these biotic and abiotic factors by studying the effects of additional

  15. The biodiversity and stability of alpine meadow plant communities in ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-10-02

    Oct 2, 2012 ... The biodiversity and stability of alpine meadow plant communities in relation to altitude gradient in three ... grassland to global climate change. MATERIALS AND METHODS. Site description ..... ultramafic substrate and altitude in south western New Zealand [J]. Vegetation 86:15-20. Wills KJ, Whittaker RJ ...

  16. Vascular plant diversity and community Structure of nandi forests ...

    African Journals Online (AJOL)

    The main objective of this study was assessing the species diversity and plant community structure of Nandi forests of Kenya. Seventy six (20 × 20 m) sample plots, of which 27 located in North Nandi and 49 from South Nandi Forest were used to collect vegetation data. Sample plots were established along transects ...

  17. Plant community responses to prescribed burning in Wisconsin sedge meadows

    Science.gov (United States)

    Michael A. Kost; Diane De Steven

    2000-01-01

    In northern temperate regions, sedge meadows dominated by the tussock-sedge Carex stricta Lam. (Cyperaceae) were historically a fire-maintained community type. In two Wisconsin natural areas (Lulu Lake and Summerton), the authors assessed the effects of time since prescribed spring burning on plant composition and aboveground biomass in eight sedge...

  18. Response of Native Insect Communities to Invasive Plants

    NARCIS (Netherlands)

    Bezemer, T.M.; Harvey, J.A.; Cronin, J.T.

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies.

  19. Problems in the recognition of plant communities in pollen diagrams

    NARCIS (Netherlands)

    Janssen, C.R.

    1970-01-01

    In recent years pollen analysis has turned increasingly from historical plant geography towards paleoecology. More and more the main interest lies in a reconstruction of the past vegetation instead of simply floristics of a region. Vegetation as a rule is made up of communities¹) that can be

  20. Hierarchical organization of a Sardinian sand dune plant community

    Directory of Open Access Journals (Sweden)

    Valentina Cusseddu

    2016-07-01

    Full Text Available Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune.

  1. Hierarchical organization of a Sardinian sand dune plant community.

    Science.gov (United States)

    Cusseddu, Valentina; Ceccherelli, Giulia; Bertness, Mark

    2016-01-01

    Coastal sand dunes have attracted the attention of plant ecologists for over a century, but they have largely relied on correlations to explain dune plant community organization. We examined long-standing hypotheses experimentally that sand binding, inter-specific interactions, abiotic factors and seedling recruitment are drivers of sand dune plant community structure in Sardinia, Italy. Removing foundation species from the fore-, middle- and back-dune habitats over three years led to erosion and habitat loss on the fore-dune and limited plant recovery that increased with dune elevation. Reciprocal species removals in all zones suggested that inter-specific competition is common, but that dominance is transient, particularly due to sand burial disturbance in the middle-dune. A fully factorial 2-year manipulation of water, nutrient availability and substrate stability revealed no significant proximate response to these physical factors in any dune zone. In the fore- and middle-dune, plant seeds are trapped under adult plants during seed germination, and seedling survivorship and growth generally increase with dune height in spite of increased herbivory in the back-dune. Sand and seed erosion leads to limited seed recruitment on the fore-dune while high summer temperatures and preemption of space lead to competitive dominance of woody plants in the back-dune. Our results suggest that Sardinian sand dune plant communities are organized hierarchically, structured by sand binding foundation species on the fore-dune, sand burial in the middle-dune and increasingly successful seedling recruitment, growth and competitive dominance in the back-dune.

  2. Parthenium sp. as a plant biomass for the production of alkalitolerant xylanase from mutant Penicillium oxalicum SAU{sub E}-3.510 in submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Pallavi; Vivekanand, V.; Ganguly, Ruma; Singh, Rajesh P. [Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2009-04-15

    The use of congress grass (Parthenium sp.) and water hyacinth (Eichhornia crassipes) as low cost raw materials for xylanase production from mutant Penicillium oxalicum SAU{sub E}-3.510 in submerged fermentation was investigated. For development of mutant from wild type P. oxalicum SA-8 ITCC 6024, a strategy of mixed mutagenesis was followed using UV-irradiation and ethidium bromide, which had resulted into 1.87 fold increases in the activity of the enzyme. For enzyme production, the fungus was cultivated in mineral medium containing congress grass as carbon source. Considerably higher levels of production (475.2 {+-} 6.0 IU ml{sup -1}) were achieved in media containing congress grass, although it was slightly less than that was obtained (488.5 {+-} 6.5 IU ml{sup -1}) in presence of commercial oat spelt xylan. This fact confirms the feasibility of using this low cost non-food resource as an alternative carbon source to save costs of the enzyme production process. Maximum xylanase activity was reported at 55 C with its stability at 80 C for 2 h. The highest activity of xylanase at pH 9.0 and its stability at similar pH for 24 h denote the alkalitolerant nature of enzyme. (author)

  3. Multiple climate drivers accelerate Arctic plant community senescence

    Science.gov (United States)

    Livensperger, C.; Steltzer, H.; Wallenstein, M. D.; Weintraub, M. N.

    2015-12-01

    Alteration of seasonal phenology cues due to climate change has led to changes in the onset and duration of the growing season. While photoperiod often acts as an ultimate control on phenological events, recent studies have shown that environmental cues such as temperature and soil water content can modify the direction and rate of senescence processes. Warmer temperatures have resulted in an observed trend towards delayed senescence across temperate latitudes. However, Arctic regions are characterized by extreme seasonality and rapidly decreasing photoperiod, and consequently senescence may not shift as climate warms. We monitored the timing of Arctic plant community senescence for three years under the framework of an experimental manipulation that altered seasonal phenological cues through warming and earlier snowmelt. Alternative models of senescence were tested to determine if microclimate (air temperature, soil temperature, and soil moisture) or start of season phenology affect the timing and rate of community senescence. We found that all three microclimate predictors contributed to explaining variation in timing of senescence, suggesting that photoperiod is not the sole control on timing of senescence in Arctic plant communities. Rather, increased air and soil temperatures along with drier soil conditions, led to acceleration in the onset of senescence at a community level. Our data suggest that (1) multiple climate drivers predict timing of plant community senescence, and (2) climate change could result in a shorter peak season due to earlier onset of senescence, which would decrease the potential carbon uptake in moist acidic tundra.

  4. Assessing the diversity of bacterial communities associated with plants

    Science.gov (United States)

    Andreote, Fernando Dini; Azevedo, João Lúcio; Araújo, Welington Luiz

    2009-01-01

    Plant–bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants. PMID:24031382

  5. Efficient performance and the microbial community changes of submerged anaerobic membrane bioreactor in treatment of sewage containing cellulose suspended solid at 25°C.

    Science.gov (United States)

    Watanabe, Ryoya; Nie, Yulun; Takahashi, Shintaro; Wakahara, Shinichiro; Li, Yu-You

    2016-09-01

    Influence of cellulose as suspended solid (SS) on the performance of submerged anaerobic membrane bioreactor (SAnMBR) was evaluated at 25°C using two types of synthetic sewage (SS contained or not). During the 110days operation, COD and BOD removal, CH4 gas recovery and cellulose accumulation were investigated in detail. The influence of cellulose as SS in sewage on the SAnMBR performance was not significant at HRT longer than12h and 65-72% of the influent COD was recovered as methane gas at HRT of 12h. At HRT of 6h, the quality of effluent got worse and the accumulation of cellulose was found in reactor. 16S rRNA analysis revealed that the microbial diversity distribution including Archaea and Bacteria changed due to the addition of SS in sewage and specific microbe for cellulose degradation such as Proteobacteria was detected. Sludge in SAnMBR could acclimate to characteristics of sewage by self-adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ethnobotany of dye plants in Dong communities of China.

    Science.gov (United States)

    Liu, Yujing; Ahmed, Selena; Liu, Bo; Guo, Zhiyong; Huang, Weijuan; Wu, Xianjin; Li, Shenghua; Zhou, Jiangju; Lei, Qiyi; Long, Chunlin

    2014-02-19

    Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011-2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye plants, their efficacy in enhancing food

  7. Effects of trampling limitation on coastal dune plant communities.

    Science.gov (United States)

    Santoro, Riccardo; Jucker, Tommaso; Prisco, Irene; Carboni, Marta; Battisti, Corrado; Acosta, Alicia T R

    2012-03-01

    Sandy coastlines are sensitive ecosystems where human activities can have considerable negative impacts. In particular, trampling by beach visitors is a disturbance that affects dune vegetation both at the species and community level. In this study we assess the effects of the limitation of human trampling on dune vegetation in a coastal protected area of Central Italy. We compare plant species diversity in two recently fenced sectors with that of an unfenced area (and therefore subject to human trampling) using rarefaction curves and a diversity/dominance approach during a two year study period. Our results indicate that limiting human trampling seems to be a key factor in driving changes in the plant diversity of dune systems. In 2007 the regression lines of species abundance as a function of rank showed steep slopes and high Y-intercept values in all sectors, indicating a comparable level of stress and dominance across the entire study site. On the contrary, in 2009 the regression lines of the two fenced sectors clearly diverge from that of the open sector, showing less steep slopes. This change in the slopes of the tendency lines, evidenced by the diversity/dominance diagrams and related to an increase in species diversity, suggests the recovery of plant communities in the two fences between 2007 and 2009. In general, plant communities subject to trampling tended to be poorer in species and less structured, since only dominant and tolerant plant species persisted. Furthermore, limiting trampling appears to have produced positive changes in the dune vegetation assemblage after a period of only two years. These results are encouraging for the management of coastal dune systems. They highlight how a simple and cost-effective management strategy, based on passive recovery conservation measures (i.e., fence building), can be a quick (1–2 years) and effective method for improving and safeguarding the diversity of dune plant communities.

  8. Experimental plant communities develop phylogenetically overdispersed abundance distributions during assembly.

    Science.gov (United States)

    Allan, Eric; Jenkins, Tania; Fergus, Alexander J F; Roscher, Christiane; Fischer, Markus; Petermann, Jana; Weisser, Wolfgang W; Schmid, Bernhard

    2013-02-01

    The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that

  9. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages.

    Directory of Open Access Journals (Sweden)

    Guang Hu

    Full Text Available Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS vs. the saplings-to-trees transition (ST. Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation.

  10. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages.

    Science.gov (United States)

    Hu, Guang; Feeley, Kenneth J; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation.

  11. Coastline Protection by a Submerged Breakwater

    Science.gov (United States)

    Valentine, B. D.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Coastal communities are in danger of the impact caused by storm surge and waves. Storm surge brings the water level to a higher elevation and farther inland. This rise in water level increases the chance of a higher number and larger set of waves approaching shorelines, and it can potentially devastate the coastal infrastructure. In this study, we evaluate the performance of a submerged, horizontal breakwater located near shore. Unlike other types of breakwaters, such as the ones that extend to the surface, either fixed or floating, a submerged horizontal breakwater does not create any visual distraction or limit most of the recreational and commercial activities in the nearshore areas. The Level I Green-Naghdi (GN) nonlinear water wave equations are utilized here to study the wave transformation over a submerged breakwater that is located in shallow water. The GN theory is based on the theory of directed fluid sheets and assumes an incompressible and inviscid fluid; no assumption on the rotationality of the flow is required. In this approach, the nonlinear boundary conditions and the averaged conservation laws are satisfied exactly. The reflection and transmission coefficients due to nonlinear shallow water waves are determined implementing two approaches which use Goda's (1976) and Grue's (1992) methods. The results are compared with the existing laboratory experiments, and close agreement is observed overall. Preliminary results of the performance of the breakwater on dissipating storm waves during Hurricane Ike (2008), approaching the shore of Galveston, Texas, are presented.

  12. Growth rate, protein:RNA ratio and stoichiometric homeostasis of submerged macrophytes under eutrophication stress

    OpenAIRE

    Xing W.; Shi Q.; Liu H.; Liu G.

    2016-01-01

    Growth rate hypothesis (GRH) and stoichiometric homeostasis of photoautotrophs have always been questioned. However, little is known about GRH and stoichiometric homeostasis of aquatic plants, especially submerged macrophytes. Therefore, we aim to test the GRH and explore stoichiometric homeostasis of four freshwater submerged macrophytes under eutrophication stress. At the single species level and the multi-species level, N:P ratios ...

  13. Plant communities of the Soutpansberg Arid Northern Bushveld

    Directory of Open Access Journals (Sweden)

    Theo H.C. Mostert

    2009-01-01

    Full Text Available The Soutpansberg Arid Northern Bushveld is one of eight major vegetation types (MVT described for the Soutpansberg-Blouberg region. The plant communities of this MVT are described in detail. Main ecological drivers of the vegetation structure and species composition of these communities are discussed and some conservation recommendations are made. Phytosociological data from a subset of 72 Braun-Blanquet sample plots collected in the Soutpansberg Arid Northern Bushveld were classified using Two-way Indicator Species Analysis (TWINSPAN and ordinated using a Detrended Correspondence Analysis (DECORANA. The resulting classification was further refined with table-sorting procedures based on the Braun-Blanquet floristic-sociological approach to vegetation classification using the computer software MEGATAB and JUICE. Eight plant communities were identified and described as Commiphora tenuipetiolata-Adansonia digitata short open woodland, Ledebouria ovatifolia-Commiphora mollis short bushland, Phyllanthus reticulatus-Acacia nigrescens short bushland, Tinnea rhodesiana-Combretum apiculatum short bushland, Dichrostachys cinerea subsp. africana-Spirostachys africana low thickets, Themeda triandra-Pterocarpus rotundifolius short closed grassland on steep basaltic slopes, Cyperus albostriatus-Syzygium cordatum sandveld wetlands, and Sesamothamnus lugardii-Catophractes alexandri tall sparse shrubland. These plant communities are event-driven ecosystems, predominantly infl uenced by frequent droughts, exposure to desiccation and unpredictable rainfall events. The complex topography of the Soutpansberg further contributes to the aridity of these ecosystems. The classifi cation and ordination analyses show similar groupings in the vegetation of the Soutpansberg Arid Mountain Bushveld. This confi rms the usefulness of complimentary analysis, using both classifi cation and ordination methods on a single data set in order to examine patterns and to search for

  14. Diversity of MAPs in some plant communities of Stara Planina

    Directory of Open Access Journals (Sweden)

    Obratov-Petković Dragica

    2006-01-01

    Full Text Available The high floristic diversity of Stara Planina was the starting base for the research of medicinal and aromatic plants (MAPs in individual forest and meadow communities. The sites Javor and Prelesje, forest community Fagetum moesiacae montanum B. Jov. 1953, pioneer community of birch Betuletum verrucosae s.l. and meadow community Agrostietum vulgaris (capillaris Pavlović, Z. 1955, were researched as follows: soil types, floristic composition and structure of the community, percentage of MAPs, as well as the selection of species which, according to the predetermined criteria can be recommended for further exploitation. The study shows that the soil of the forest communities is eutric brown, and meadow soils are dystric and eutric humus-siliceous. The percentage of MAPs in the floristic structure of the study sites in forest and meadow communities is 32.35%. The following species can be recommended for the collection and utilisation: Hypericum perforatum L., Asperula odorata L., Dryopteris filix-mas (L Schott. Urtica dioica L., Euphorbia amygdaloides L., Prunella grandiflora L. Tanacetum vulgare L., Achillea millefolium L., Rumex acetosa L., Campanula glomerata L., Stachys officinalis (L Trevis., Plantago lanceolata W. et K., Potentilla erecta (L Rauchel, Chamaespartium sagittale (L P. Gibbs. Cynanchum vincetoxicum (L Pers., Euphrasia stricta Host., Fagus moesiaca (Matt Liebl. and Fragaria vesca L.

  15. Alpine plant functional group responses to fertiliser addition depend on abiotic regime and community composition.

    NARCIS (Netherlands)

    Onipchenko, V.G.; Makarov, M.I.; Akmetzhanova, A.A.; Soudzilovskaia, N.A.; Aibazova, F.U.; Elkanova, M.K.; Stogova, A.V.; Cornelissen, J.H.C.

    2012-01-01

    Background and aims: We ask how productivity responses of alpine plant communities to increased nutrient availability can be predicted from abiotic regime and initial functional type composition. Methods: We compared four Caucasian alpine plant communities (lichen heath, Festuca varia grassland,

  16. Additive and interactive effects of functionally dissimilar soil organisms on a grassland plant community

    NARCIS (Netherlands)

    Ladygina, N.; Henry, F.; Kant, M.R.; Koller, R.; Reidinger, S.; Rodriguez, A.; Saj, S.; Sonnemann, I.; Witt, C.; Wurst, S.

    2010-01-01

    The productivity and diversity of plant communities are affected by soil organisms such as arbuscular mycorrhizal fungi (AMF), root herbivores and decomposers. However, it is unknown how interactions between such functionally dissimilar soil organisms affect plant communities and whether the

  17. Aquatic Plant Control Research Program: The Rhizosphere Microbiology of Rooted Aquatic Plants.

    Science.gov (United States)

    1988-04-01

    540-553. Bagyaraj, C. J., A. Manjunath, and R. B. Patil. 1979. Occurrence of vesicular- arbuscular mycorrhizas in some tropical aquatic plants...39-45. Chaubal, R., G. D. Charma, and R. R. Mishra. 1982. Vesicular- arbuscular mycorrhiza in subtropical aquatic and marshy plant communities...11A:29-35. Clayton, J. S. and D. J. Bagyaraj. 1984. Vesicular- arbuscular mycorrhizas in submerged aquatic plants of New Zealand. Aquatic Botany. 19:251

  18. Advances of Community-Level Plant DNA Barcoding in China.

    Science.gov (United States)

    Pei, Nancai; Chen, Bufeng; Kress, W J

    2017-01-01

    DNA barcoding is a commonly used bio-technology in multiple disciplines including biology, environmental science, forensics and inspection, etc. Forest dynamic plots provide a unique opportunity to carry out large-scale, comparative, and multidisciplinary research for plant DNA barcoding. The paper concisely reviewed four previous progresses in China; specifically, species discrimination, community phylogenetic reconstruction, phylogenetic community structure exploration, and biodiversity index evaluation. Further, we demonstrated three major challenges; specifically, building the impetus to generate DNA barcodes using multiple plant DNA markers for all woody species at forest community levels, analyzing massive DNA barcoding sequence data, and promoting theoretical innovation. Lastly, we raised five possible directions; specifically, proposing a "purpose-driven barcode" fit for multi-level applications, developing new integrative sequencing strategies, pushing DNA barcoding beyond terrestrial ecosystem, constructing national-level DNA barcode sequence libraries for special plant groups, and establishing intelligent identification systems or online server platforms. These efforts will be potentially valuable to explore large-scale biodiversity patterns, the origin and evolution of life, and will also facilitate preservation and utilization of biodiversity resources.

  19. Phytochemical diversity drives plant-insect community diversity.

    Science.gov (United States)

    Richards, Lora A; Dyer, Lee A; Forister, Matthew L; Smilanich, Angela M; Dodson, Craig D; Leonard, Michael D; Jeffrey, Christopher S

    2015-09-01

    What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores.

  20. Plant Community Traits of Shohada Protected Area, West Azerbijan, Iran

    Directory of Open Access Journals (Sweden)

    Abdollah HASSANZADEH GORTTAPEH

    2010-03-01

    Full Text Available Shohada Protected Area, consisting of Shohada Valley and it�s adjacent areas with an area of 577 hectares is located in south of Urmia, and is known as an important natural plant station of Urmia. It is studied with respect to the important factors which influence the vegetation cover in whole, particularly, with regard the composition and formation of plant communities. To study the area, Brown-Blanquet�s method was used. Plant samples were taken from 77 sample plots. The study resulted in recognition of four herbaceous types and seven shrub types in the studied area. In addition, the investigation led to the fact that the most important factors which influence the vegetation cover, are: geographical orientation, altitude, gradient and soil texture. The study also resulted in preparation of a colored vegetation map with a scale of 1:20000.

  1. Plant Community Traits of Shohada Protected Area, West Azerbijan, Iran

    Directory of Open Access Journals (Sweden)

    Abdollah HASSANZADEH GORTTAPEH

    2010-03-01

    Full Text Available Shohada Protected Area, consisting of Shohada Valley and its adjacent areas with an area of 577 hectares is located in south of Urmia, and is known as an important natural plant station of Urmia. It is studied with respect to the important factors which influence the vegetation cover in whole, particularly, with regard the composition and formation of plant communities. To study the area, Brown-Blanquets method was used. Plant samples were taken from 77 sample plots. The study resulted in recognition of four herbaceous types and seven shrub types in the studied area. In addition, the investigation led to the fact that the most important factors which influence the vegetation cover, are: geographical orientation, altitude, gradient and soil texture. The study also resulted in preparation of a colored vegetation map with a scale of 1:20000.

  2. Selection for niche differentiation in plant communities increases biodiversity effects.

    Science.gov (United States)

    Zuppinger-Dingley, Debra; Schmid, Bernhard; Petermann, Jana S; Yadav, Varuna; De Deyn, Gerlinde B; Flynn, Dan F B

    2014-11-06

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.

  3. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland.

    NARCIS (Netherlands)

    van der Heijden, M.G.A.; Bakker, R.; Verwaal, J.; Scheublin, T.R.; Rutten, M.; van Logtestijn, R.S.P; Staehlin, C.

    2006-01-01

    Symbiotic interactions are thought to play a key role in ecosystems. Empirical evidence for the impact of symbiotic bacteria on plant communities is, however, extremely scarce because of experimental constraints. Here, in three complementary experiments, we show that nitrogen-fixing rhizobia

  4. Symbiontic bacteria as a determinant of plant community structure and plant productivity in dune grassland.

    NARCIS (Netherlands)

    van der Heijden, M.G.A.; Bakker, R.; Verwaal, J.; Scheublin, T.R.; Rutten, M.; van Logtestijn, R.S.P; Staehelin, C.

    2006-01-01

    Symbiotic interactions are thought to play a key role in ecosystems. Empirical evidence for the impact of symbiotic bacteria on plant communities is, however, extremely scarce because of experimental constraints. Here, in three complementary experiments, we show that nitrogen-fixing rhizobia

  5. Plant and litter influences on earthworm abundance and community structures in a tropical wet forest

    Science.gov (United States)

    G. Gonzalez; X. Zou

    1999-01-01

    Plant communities differ in species composition and litter input. To examine the influence of plant species on the abundance and community structure of soil fauna, we sampled earthworms in areas close to and away from the bases of Dacryodes excelsa and Heliconia caribaea, two distinct plant communities within a tropical wet forest in Puerto Rico. We also carried out a...

  6. Arctic Late Cretaceous and Paleocene Plant Community Succession

    Science.gov (United States)

    Herman, Alexei; Spicer, Robert; Daly, Robert; Jolley, David; Ahlberg, Anders; Moiseeva, Maria

    2010-05-01

    The Arctic abounds with Late Cretaceous and Paleocene plant fossils attesting to a thriving, diverse, but now extinct polar ecosystem that sequestered vast amounts of carbon. Through detailed examination of plant remains and their distributions in time and space with respect to their entombing sedimentary facies, it has been possible to reconstruct changes in Arctic vegetation composition and dynamics through the Late Cretaceous and into the Paleocene. Based on over 10,000 leaf remains, fossil wood and palynomorph assemblages from northeastern Russia and northern Alaska and palynological data from elsewhere in the Arctic we identify a number of successional plant communities (SPCs) representing seral development from early (pioneer), through middle to late SPCs and climax vegetation. We recognise that (1) Equisetites and some ferns (typically Birisia, but after the beginning of the Maastrichtian, Onoclea) were obligatory components of the early SPCs; (2) first rare angiosperms (e.g. the dicot Vitiphyllum multifidum) appeared in the middle SPCs of the Arctic in the Early - Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the middle SPCs of the Arctic, but were still rare in the earlier and later SPCs; (4) monocots appeared in the Maastrichtian early SPCs; (5) all Arctic Cretaceous late SPCs (and climax vegetation) were dominated by conifers; (6) Arctic SPCs were more numerous and diverse under warm climates than cold; (7) during the Albian and late Cretaceous, advanced (Cenophytic, angiosperm-dominated) plant communities coexisted with those of a more relictual (Mesophytic, dominated by ferns and gymnosperms) aspect, and plants composing these communities did not mix; (8) coal-forming environments (mires) remained conifer, fern and bryophyte dominated throughout the late Cretaceous and Paleocene with little penetration of woody angiosperm components and thus are conservative and predominantly Mesophytic in character; (9) bryophytes

  7. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  8. Implementation of Submerged Arc Welding Training. Final Report.

    Science.gov (United States)

    Bowick, Earl; Todd, John

    A unit on submerged arc welding (SAW) was developed and integrated into the welding program at Seattle Central Community College (Washington) during the period December 1983 through May 1984. During this time, 10 major users of SAW in the area were contacted and mailed questionnaires. Follow up consisted of telephone calls and personal contact as…

  9. Effects of prolonged elevated water salinity on submerged ...

    African Journals Online (AJOL)

    environmental change, global warming. * To whom all correspondence should be addressed. e-mail: ian.russell@sanparks.org. Received 9 March 2017; accepted in revised form 10 October 2017. INTRODUCTION. Estuarine submerged macrophyte communities can be highly variable at both spatial and temporal scales, ...

  10. Relationships between the biomass of waterfowl and submerged ...

    African Journals Online (AJOL)

    The Wilderness Lakes system, comprising three estuarine lakes (Eilandvlei, Langvlei and Rondevlei), supports a diverse waterbird community, which includes 12 duck species and the abundant Red-knobbed Coot Fulica cristata. Biannual counts of waterfowl (ducks and Red-knobbed Coot) and assessments of submerged ...

  11. The soil microbial community predicts the importance of plant traits in plant-soil feedback.

    Science.gov (United States)

    Ke, Po-Ju; Miki, Takeshi; Ding, Tzung-Su

    2015-04-01

    Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and trait-based ecology. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. A solar thermal electric power plant for small communities

    Science.gov (United States)

    Holl, R. J.

    1979-01-01

    A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.

  13. EFFECTS OF LIGHT REDUCTION ON GROWTH OF THE SUBMERGED MACROPHYTE VALLISNERIA AMERICANA AND THE COMMUNITY OF ROOT-ASSOCIATED HETEROTROPHIC BACTERIA

    Science.gov (United States)

    A shading experiment was conducted over a growing season to measure the effects of light reduction on Vallisneria americana in Perdido Bay on the Florida-Alabama border, and to determine the response of heterotrophic bacteria in the rhizosphere. Plants subjected to 92% light redu...

  14. Flow Velocity and Morphology of a Submerged Patch of the Aquatic Species

    NARCIS (Netherlands)

    Cornacchia, L.; Licci, S.; van de Koppel, J.; van der Wal, D.; Wharton, G.; Puijalon, S.; Bouma, T.J.

    2016-01-01

    The interaction between macrophytes and hydrodynamic conditions is animportant feature in many aquatic ecosystems. Submerged macrophytes can formmonospecific patches that interact with the flow and alter current velocity; withinthe same vegetation patch, plants are exposed to different levels of

  15. Submergence induced changes of molecular species in membrane lipids in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Mulan Wang

    2016-06-01

    Full Text Available The composition of membrane lipids is sensitive to environmental stresses. Submergence is a type of stress often encountered by plants. However, how the molecular species of membrane lipids respond to submergence has not yet been characterised. In this study, we used a lipidomic approach to profile the molecular species of membrane lipids in whole plants of Arabidopsis thaliana that were completely submerged for three days. The plants survived one day of submergence, after which, we found that the total membrane lipids were only subtly decreased, showing significant decreases of monogalactosyldiacylglycerol (MGDG and phosphatidylcholine (PC and an increase of phosphatidic acid (PA; however, the basic lipid composition was retained. In contrast, three days of submergence caused plants to die, and the membranes deteriorated via the rapid loss of 96% of lipid content together with a 229% increase in PA. The turnover of molecular species from PG and MGDG to PA indicated that submergence-induced lipid changes occurred through PA-mediated degradation. In addition, molecular species of extraplastidic PG degraded sooner than plastidic ones, lyso-phospholipids exhibited various patterns of change, and the double-bond index (DBI remained unchanged until membrane deterioration. Our results revealed the unique changes of membrane lipids upon submergence and suggested that the major cause of the massive lipid degradation could be anoxia.

  16. The stubble-field plant communities on lowland complexes in South-Eastern Poland. P. I. Plant communities of the Panico-Setarion alliance

    Directory of Open Access Journals (Sweden)

    Franciszek Pawłowski

    2013-12-01

    Full Text Available Floristic diversity is characteristic for stubble-field plant communities. Those communities consist of both the species remaining after harvesting of grain and of the species developing in rootplant communities. The first part of this paper describes the plant communities of poor sites in the investigated region. It is based on 90 phytosociological records taken in August and September of 1972-1975 and on soil investigations. The Panico-Setarion alliance was made up of: 1 the Digitarietum ischaemi association, 2 the Setaria glauca community and 3 the Ecbinochloo-Setarietum association, the Setaria glauca community was divided into smaller phytosociological units.

  17. Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity.

    Science.gov (United States)

    Stein, Claudia; Rissmann, Cornelia; Hempel, Stefan; Renker, Carsten; Buscot, François; Prati, Daniel; Auge, Harald

    2009-02-01

    Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.

  18. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata

    DEFF Research Database (Denmark)

    Pedersen, Ole; Vos, Harrie; Colmer, Timothy David

    2006-01-01

    This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on flood-prone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged...... the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial...

  19. Species area relationships in mediterranean-climate plant communities

    Science.gov (United States)

    Keeley, Jon E.; Fotheringham, C.J.

    2003-01-01

    Aim To determine the best-fit model of species–area relationships for Mediterranean-type plant communities and evaluate how community structure affects these species–area models.Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean-climate regions.Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi-log slopes at 1–100 m2 and 100–1000 m2. Dominance–diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series.Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species–area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance–diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The

  20. The Brazilian research contribution to knowledge of the plant communities from Antarctic ice free areas

    Directory of Open Access Journals (Sweden)

    ANTONIO B. PEREIRA

    2013-09-01

    Full Text Available This work aims to summarize the results of research carried out by Brazilian researchers on the plant communities of Antarctic ice free areas during the last twenty five years. Since 1988 field work has been carried out in Elephant Island, King George Island, Nelson Island and Deception Island. During this period six papers were published on the chemistry of lichens, seven papers on plant taxonomy, five papers on plant biology, two studies on UVB photoprotection, three studies about the relationships between plant communities and bird colonies and eleven papers on plant communities from ice free areas. At the present, Brazilian botanists are researching the plant communities of Antarctic ice free areas in order to understand their relationships to soil microbial communities, the biodiversity, the distribution of the plants populations and their relationship with birds colonies. In addition to these activities, a group of Brazilian researchers are undertaking studies related to Antarctic plant genetic diversity, plant chemistry and their biotechnological applications.

  1. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects.

    Science.gov (United States)

    Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H

    2010-10-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon

  2. Shrub communities as inhibitors of plant succession in southern Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Meilleur, A.; Veronneau, H.; Bouchard, A. (Institut de Recherche en Biologie Vegetale, Quebec (Canada))

    The purpose of our research was to identify shrub species growing in southern Quebec that inhibit ecological succession in power-line corridors. Results are presented in three parts. First, clonal characteristics that allowed the establishment of stable communities were identified. Second, successional vector analysis identified those species that have the potential to inhibit succession. In poorly drained sites those species were Cornus stolonifera, C. obliqua, Salix petiolaris, and Spiraea alba. In well-drained sites, those species were Zanthoxylum americanum, Rubus idaeus, Spiraea alba, Rhus typhina, and Thuja occidentalis. Third, analysis of variance showed that there is a significantly larger number of tree seedlings found in adjacent herbaceous communities than found under the dense cover of Cornus stolonifera, C. obliqua, Salix petiolaris, Spiraea alba, Rhus typhina, Rubus idaeus, Thuya occidentalis, and Zanthoxylum americanum. These results indicate that the planting of selected shrub species could, through biological control, delay reforestation. 58 refs., 6 figs., 6 tabs.

  3. Population and community ecology of the rare plant amsinckia grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  4. Influence of Host Plant on Thaumetopoea pityocampa Gut Bacterial Community.

    Science.gov (United States)

    Strano, Cinzia P; Malacrinò, Antonino; Campolo, Orlando; Palmeri, Vincenzo

    2018-02-01

    Microbial communities associated to the gut of insects are attracting an increasing interest, mainly because of their role in influencing several host life-traits. The characterization of the gut microbial community is pivotal for understanding insect ecology and, thus, to develop novel pest management strategies. The pine processionary moth, Thaumetopoea pytiocampa (Denis & Schiff.) (Lepidoptera: Thaumetopoeidae), is a severe defoliator of pine forests, able to feed on several pine species. In this work, we performed a metabarcoding analysis to investigate, for the first time, the diversity of the gut bacterial community of pine processionary larvae associated with three different host pine species (Pinus halepensis, Pinus nigra subsp. laricio, and Pinus pinaster). We found that the gut microbial community of T. pityocampa larvae collected on P. halapensis was different from that associated with larvae collected from P. nigra and P. pinaster. Moreover, the high presence of bacteria belonging to the genera Modestobacter, Delftia, and unidentified Methylobacteriaceae retrieved in larvae feeding on P. halapensis suggested that specific interactions can occur. Our results provide the evidence that different host plant differently impact on the microbiota diversity of T. pityocampa larvae, contributing to the general knowledge of this pest with information that could be useful in shaping the next generation of pest control strategies.

  5. Engineering a plant community to deliver multiple ecosystem services.

    Science.gov (United States)

    Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine

    2015-06-01

    The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food

  6. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo

    2016-10-27

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  7. Distance and environmental difference in alpine plant communities

    Science.gov (United States)

    Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.

    2017-01-01

    Differences in plant communities are a response to the abiotic environment, species interactions, and dispersal. The role of geographic distance relative to the abiotic environment is explored for alpine tundra vegetation from 319 plots of four regions along the Rocky Mountain cordillera in the USA. The site by species data were ordinated using nonmetric multidimensional scaling to produce dependent variables for use in best-subsets regression. For independent variables, observations of local topography and microtopography were used as environmental indicators. Two methods of including distance in studies of vegetation and environment are used and contrasted. The relative importance of geographic distance in accounting for the pattern of alpine tundra similarity indicates that location is a factor in plant community composition. Mantel tests provide direct correlations between difference and distance but have known weaknesses. Moran spatial eigenvectors used in regression based approaches have greater geographic specificity, but require another step, ordination, in creating a vegetation variable. While the spatial eigenvectors are generally preferable, where species–environment relations are weak, as seems to be the case for the alpine sites studied here, the fewer abstractions of the Mantel test may be useful.

  8. Coastal Freshwater Wetland Plant Community Response to Seasonal Drought and Flooding in Northwestern Costa Rica

    Science.gov (United States)

    In tropical wet-dry climates, seasonal hydrologic cycles drive wetland plant community change and produce distinct seasonal plant assemblages. In this study, we examined the plant community response to seasonal flooding and drought in a large coastal freshwater wetland in northwe...

  9. Divergent composition but similar function of soil food webs beneath individual plants: plant species and community effects

    NARCIS (Netherlands)

    Bezemer, T.M.; Fountain, M.T.; Barea, J.M.; Christensen, S.; Dekker, S.C.; Duyts, H.; van Hal, R.; Harvey, J.A.; Hedlund, K.; Maraun, M.; Mikola, J.; Mladenov, A.G.; Robin, C.; de Ruiter, P.C.; Scheu, S.; Setälä, H.; Milauer, P.; Van der Putten, W.H.

    2010-01-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and

  10. Effects of taxonomy, sediment, and water column on C:N:P stoichiometry of submerged macrophytes in Yangtze floodplain shallow lakes, China.

    Science.gov (United States)

    Su, Haojie; Wu, Yao; Xie, Ping; Chen, Jun; Cao, Te; Xia, Wulai

    2016-11-01

    Carbon (C), nitrogen (N) and phosphorus (P) are the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb nutrients from sediments by root uptake. However, the C:N:P stoichiometric signatures of plant tissue are affected by many additional factors such as taxonomy, nutrient availability, and light availability. We first revealed the relative importance of taxonomy, sediment, and water column on plant C:N:P stoichiometry using variance partitioning based on partial redundancy analyses. Results showed that taxonomy was the most important factor in determining C:N:P stoichiometry, then the water column and finally the sediment. In this study, a significant positive relationship was found between community C concentration and macrophyte community biomass, indicating that the local low C availability in macrophytes probably was the main reason why submerged macrophytes declined in Yangtze floodplain shallow lakes. Based on our study, it is suggested that submerged macrophytes in Yangtze floodplain shallow lakes are primarily limited by low light levels rather than nutrient availability.

  11. Climate impacts on bird and plant communities from altered animal-plant interactions

    Science.gov (United States)

    Martin, Thomas E.; Maron, John L.

    2012-01-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant–animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  12. The use of bottle caps as submerged aerated filter medium.

    Science.gov (United States)

    Damasceno de Oliveira, Laurence; Motlagh, Amir Mohaghegh; Goel, Ramesh; de Souza Missagia, Beatriz; Alves de Abreu Filho, Benício; Lautenschlager, Sandro Rogério

    2014-01-01

    In this study, a submerged aerated filter (SAF) using bottle caps as a support medium was evaluated. The system was fed with effluent from an upflow anaerobic sludge blanket system at ETE 2-South wastewater treatment plant, under different volumetric organic load rates (VOLRs). The population of a particular nitrifying microbial community was assessed by fluorescent in situ hybridization with specific oligonucleotide probes. The system showed an average removal of chemical oxygen demand (COD) equal to 76% for VOLRs between 2.6 and 13.6 kg COD m(-3)_media.day(-1). The process of nitrification in conjunction with the removal of organic matter was observed from applying VOLRs lower than 5.5 kg COD m(-3)_media.day(-1) resulting in 78% conversion of NH4(+)-N. As the applied organic load was reduced, an increase in the nitrifying bacteria population was observed compared with total 4'-6-diamidino-2-phenylindole (DAPI) stained cells. Generally, SAF using bottle caps as a biological aerated filter medium treating wastewater from an anaerobic system showed promising removal of chemical oxygen demand (COD) and conversion of NH4(+)-N.

  13. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques.

    Science.gov (United States)

    Nunan, Naoise; Daniell, Timothy J; Singh, Brajesh K; Papert, Artemis; McNicol, James W; Prosser, James I

    2005-11-01

    Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.

  14. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Science.gov (United States)

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  15. A New P System to Model the Subalpine and Alpine Plant Communities

    OpenAIRE

    Colomer, M. Angels; Fondevilla, Cristian; Valencia Cabrera, Luis

    2011-01-01

    In this work we present a P system based model of the ecosystem dynamics of plant communities. It is applied to four National Hunting Reservoirs in Catalan Pyrenees (Spain). In previous works several natural high- mountain- ecosystems and population dynamics were modeled, but in those works grass was considered unlimited and changes in plant communities were not taken into account. In our new model we take advantage of the modularity of P systems, adding the plant communities t...

  16. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Goldstein, Leah; Kraft, Nathan

    2010-01-01

    between these approaches. We synthesized results from four experimental water addition studies with a correlative analysis of community changes across a large natural precipitation gradient in the United States. We investigated whether community composition, summarized with plant functional traits...

  17. Humans as long-distance dispersers of rural plant communities.

    Directory of Open Access Journals (Sweden)

    Alistair G Auffret

    Full Text Available Humans are known for their capacity to disperse organisms long distances. Long-distance dispersal can be important for species threatened by habitat destruction, but research into human-mediated dispersal is often focused upon few and/or invasive species. Here we use citizen science to identify the capacity for humans to disperse seeds on their clothes and footwear from a known species pool in a valuable habitat, allowing for an assessment of the fraction and types of species dispersed by humans in an alternative context. We collected material from volunteers cutting 48 species-rich meadows throughout Sweden. We counted 24,354 seeds of 197 species, representing 34% of the available species pool, including several rare and protected species. However, 71 species (36% are considered invasive elsewhere in the world. Trait analysis showed that seeds with hooks or other appendages were more likely to be dispersed by humans, as well as those with a persistent seed bank. More activity in a meadow resulted in more dispersal, both in terms of species and representation of the source communities. Average potential dispersal distances were measured at 13 km. We consider humans capable seed dispersers, transporting a significant proportion of the plant communities in which they are active, just like more traditional vectors such as livestock. When rural populations were larger, people might have been regular and effective seed dispersers, and the net rural-urban migration resulting in a reduction in humans in the landscape may have exacerbated the dispersal failure evident in declining plant populations today. With the fragmentation of habitat and changes in land use resulting from agricultural change, and the increased mobility of humans worldwide, the dispersal role of humans may have shifted from providers of regular local and landscape dispersal to providers of much rarer long-distance and regional dispersal, and international invasion.

  18. Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water.

    Science.gov (United States)

    Long, Yan; Yi, Hao; Chen, Sili; Zhang, Zhengke; Cui, Kai; Bing, Yongxin; Zhuo, Qiongfang; Li, Bingxin; Xie, Shuguang; Guo, Qingwei

    2016-10-01

    Both bacteria and archaeal communities can play important roles in biogeochemical processes in constructed wetland (CW) system. However, the influence of plant type on microbial community in surface water CW remains unclear. The present study investigated bacterial and archaeal communities in five surface water CW systems with different plant species. The abundance, richness, and diversity of both bacterial and archaeal communities considerably differed in these five CW systems. Compared with the other three CW systems, the CW systems planted with Vetiveria zizanioides or Juncus effusus L. showed much higher bacterial abundance but lower archaeal abundance. Bacteria outnumbered archaea in each CW system. Moreover, the CW systems planted with V. zizanioides or J. effusus L. had relatively lower archaeal but higher bacterial richness and diversity. In each CW system, bacterial community displayed much higher richness and diversity than archaeal community. In addition, a remarkable difference of both bacterial and archaeal community structures was observed in the five studied CW systems. Proteobacteria was the most abundant bacterial group (accounting for 33-60 %). Thaumarchaeota organisms (57 %) predominated in archaeal communities in CW systems planted with V. zizanioides or J. effusus L., while Woesearchaeota (23 or 24 %) and Euryarchaeota (23 or 15 %) were the major archaeal groups in CW systems planted with Cyperus papyrus or Canna indica L. Archaeal community in CW planted with Typha orientalis Presl was mainly composed of unclassified archaea. Therefore, plant type exerted a considerable influence on microbial community in surface water CW system.

  19. Planting Trees in Designed and Built Community Landscapes - Checklists for Success

    Science.gov (United States)

    Mary K. Reynolds; H. Sharon Ossenbruggen

    Trees create green spaces in communities. The right trees in the right places benefit you, your home, and your community now and in the future. It is essential to select living trees to create a sense of place within communities. This publication helps citizens create community green spaces. It encourages both experts and amateurs to plant and grow trees correctly, and...

  20. Bacterial communities involved in sulfur transformations in wastewater treatment plants.

    Science.gov (United States)

    Meyer, Daniel Derrossi; de Andrade, Pedro Avelino Maia; Durrer, Ademir; Andreote, Fernando Dini; Corção, Gertrudes; Brandelli, Adriano

    2016-12-01

    The main sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB) in six wastewater treatment plants (WWTPs) located at southern Brazil were described based on high-throughput sequencing of the 16S rDNA. Specific taxa of SRB and SOB were correlated with some abiotic factors, such as the source of the wastewater, oxygen content, sample type, and physical chemical attributes of these WWTPs. When the 22 families of SRB and SOB were clustered together, the samples presented a striking distribution, demonstrating grouping patterns according to the sample type. For SOB, the most abundant families were Spirochaetaceae, Chromatiaceae, Helicobacteriaceae, Rhodospirillaceae, and Neisseriaceae, whereas, for SRB, were Syntrophaceae, Desulfobacteraceae, Nitrospiraceae, and Desulfovibriaceae. The structure and composition of the major families related to the sulfur cycle were also influenced by six chemical attributes (sulfur, potassium, zinc, manganese, phosphorus, and nitrogen). Sulfur was the chemical attribute that most influenced the variation of bacterial communities in the WWTPs (λ = 0.14, p = 0.008). The OTUs affiliated to Syntrophus showed the highest response to the increase of total sulfur. All these findings can contribute to improve the understanding in relation to the sulfur-oxidizing and sulfate-reducing communities in WWTPs aiming to reduce H2S emissions.

  1. Over-expression of Sub1 A, a submergence tolerance gene from ...

    African Journals Online (AJOL)

    Sub1A, an ethylene-response-factor-like (ERE-like) gene, mediates the extinguished submergence tolerance of rice. To gain further insight into the function of Sub1A in other species, we transformed tobacco plants with the gene under the control of the ubiquitin promoter. Compared to the wild-type plants, transgenic plants ...

  2. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests.

    Science.gov (United States)

    Kreyling, Juergen; Haei, Mahsa; Laudon, Hjalmar

    2012-02-01

    Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature -5.5 vs. -2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (-82%) and the most abundant mosses Pleurozium schreberi (-74%) and Dicranum scoparium (-60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (-50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.

  3. Decadal changes in north-American tundra plant communities

    Science.gov (United States)

    Villarreal, S.; Johnson, D. R.; Webber, P.; Ebert-May, D.; Hollister, R. D.; Tweedie, C. E.

    2013-12-01

    Improving our understanding of how tundra vegetation responds to environmental change over decadal time scales is important. Tundra plants and ecosystems are well-recognized for their susceptibility to be impacted by climate warming; changes in land-atmosphere carbon, water, and energy balance in tundra landscapes have the potential to impact regional to global-scale climate, and relatively few studies examining change in tundra landscapes have spanned decadal time scales. The majority of our understanding of tundra vegetation responses to environmental change has been derived from studies along environmental gradients, experimental manipulations, and modeling. This study synthesizes the rescue and resampling of historic vegetation study sites established during the 1960's and 1970's at three arctic tundra locations (Baffin Island, Canada, Barrow, Alaska, and Atqasuk, Alaska), and one alpine tundra location (Niwot Ridge, Colorado). We conducted a meta-analysis to examine decadal changes in plant community composition, species richness, species evenness, and species diversity at all locations and for three broad soil moisture classes (dry, moist, wet). For all sites, except Baffin Island, change over the last decade was compared with long term change to determine if rates of change have altered over time. Change in plant community composition was most dramatic at Barrow and Baffin Island (P relative to rates documented in the mid 1960's. There were no changes in species richness at any of the locations, but there appears to be acceleration in the loss of species richness for dry and moist tundra. Species evenness increased at Atqasuk and in dry and wet tundra but decreased at Niwot Ridge in moist tundra. A loss in species diversity was detected in moist tundra in the decadal study, while diversity increased for dry and wet tundra. Baffin Island was the only location to show evidence of an increase in species diversity. This study appears to be among the first to

  4. Mineralogical composition changes of postagrogenic soils under different plant communities.

    Science.gov (United States)

    Churilin, Nikita; Chizhikova, Natalia; Varlamov, Evgheni; Churilina, Alexandra

    2017-04-01

    Plant communities play the leading role in transformation of soil. The need of studying former arable lands increases due to large number of abandoned lands in Russia. It is necessary to study mineralogical composition of soils involved into natural processes to understand the trends of their development after agricultural activities in the past. The aim of the study is to identify changes in mineralogical composition of soils under the influence of different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation. Soil profiles were dug on interfluve. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16-year-old birch forest where dominants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16-year-old spruce forest with no herbaceous vegetation and 70-year-old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To separate soil fractions <1 micron, 1-5 micron and 5-10 micron samples were rubbed into a thick paste and sedimented. Oriented preparations of fractions were examined by XRD method. The results show that podzol processes lead to significant changes of mineral content. We noticed a clear differentiation of studied soils both in the content of fraction and composition of minerals. Mineralogical composition and major mineral phases correlation of profiles under 70 years and 16 years of spruce forests are different. Mineralogical content in upper part of profile under the young spruce is more differentiated than in old spruce forest: the amount of quartz and kaolinite increases in upper horizon, although in this case the overall pattern of profile formation of clay material during podzolization remains unchanged. There is more substantial desilting under the birch forest

  5. Composition of fungal soil communities varies with plant abundance and geographic origin.

    Science.gov (United States)

    Reininger, Vanessa; Martinez-Garcia, Laura B; Sanderson, Laura; Antunes, Pedro M

    2015-09-14

    Interactions of belowground fungal communities with exotic and native plant species may be important drivers of plant community structure in invaded grasslands. However, field surveys linking plant community structure with belowground fungal communities are missing. We investigated whether a selected number of abundant and relatively rare plants, either native or exotic, from an old-field site associate with different fungal communities. We also assessed whether these plants showed different symbiotic relationships with soil biota through their roots. We characterized the plant community and collected roots to investigate fungal communities using 454 pyrosequencing and assessed arbuscular mycorrhizal colonization and enemy-induced lesions. Differences in fungal communities were considered based on the assessment of α- and β diversity depending on plant 'abundance' and 'origin'. Plant abundance and origin determined the fungal community. Fungal richness was higher for native abundant as opposed to relatively rare native plant species. However, this was not observed for exotics of contrasting abundance. Regardless of their origin, β diversity was higher for rare than for abundant species. Abundant exotics in the community, which happen to be grasses, were the least mycorrhizal whereas rare natives were most susceptible to enemy attack. Our results suggest that compared with exotics, the relative abundance of remnant native plant species in our old-field site is still linked to the structure of belowground fungal communities. In contrast, exotic species may act as a disturbing agent contributing towards the homogenization of soil fungal communities, potentially changing feedback interactions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  6. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors

    OpenAIRE

    Robles Martínez, Ángel; Durán Pinzón, Freddy; Ruano García, María Victoria; Ribes Bertomeu, José; Rosado Muñoz, Alfredo; SECO TORRECILLAS, AURORA; Ferrer, J.

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON® , Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on off and PID algorithms were implemented to control the follo...

  7. Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem

    Science.gov (United States)

    Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment. PMID:24586947

  8. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    Science.gov (United States)

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  9. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into

  10. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings.

    Science.gov (United States)

    Tamang, Bishal G; Magliozzi, Joseph O; Maroof, M A Saghai; Fukao, Takeshi

    2014-10-01

    Complete inundation at the early seedling stage is a common environmental constraint for soybean production throughout the world. As floodwaters subside, submerged seedlings are subsequently exposed to reoxygenation stress in the natural progression of a flood event. Here, we characterized the fundamental acclimation responses to submergence and reoxygenation in soybean at the seedling establishment stage. Approximately 90% of seedlings succumbed during 3 d of inundation under constant darkness, whereas 10 d of submergence were lethal to over 90% of seedlings under 12 h light/12 h dark cycles, indicating the significance of underwater photosynthesis in seedling survival. Submergence rapidly decreased the abundance of carbohydrate reserves and ATP in aerial tissue of seedlings although chlorophyll breakdown was not observed. The carbohydrate and ATP contents were recovered upon de-submergence, but sudden exposure to oxygen also induced lipid peroxidation, confirming that reoxygenation induced oxidative stress. Whole transcriptome analysis recognized genome-scale reconfiguration of gene expression that regulates various signalling and metabolic pathways under submergence and reoxygenation. Comparative analysis of differentially regulated genes in shoots and roots of soybean and other plants defines conserved, organ-specific and species-specific adjustments which enhance adaptability to submergence and reoxygenation through different metabolic pathways. © 2014 John Wiley & Sons Ltd.

  11. Developing restoration planting mixes for active ski slopes: a multi-site reference community approach.

    Science.gov (United States)

    Burt, Jennifer Williamson

    2012-03-01

    Downhill ski areas occupy large expanses of mountainous lands where restoration of ecosystem function is of increasing importance and interest. Establishing diverse native plant communities on ski runs should enhance sediment and water retention, wildlife habitat, biodiversity and aesthetics. Because ski slopes are managed for recreation, ski slope revegetation mixes must consist of low-stature or herbaceous plants that can tolerate typical environmental conditions on ski slopes (high elevation, disturbed soils, open, steep slopes). The most appropriate reference communities for selecting ski slope revegetation species are thus successional, or seral plant communities in similar environments (i.e., other ski slopes). Using results from a broad-scale reference community analysis, I evaluated plant communities naturally occurring on ski slopes from 21 active and abandoned ski areas throughout the northern Sierra Nevada to identify native plant species suitable for use in ski slope restoration. I constructed a baseline planting palette of regionally appropriate plant species (for restoration of either newly created or already existing ski runs) that is functionally diverse and is likely to succeed across a broad range of environments. I also identify a more comprehensive list of species for more specialized planting mixes based on site-specific goals and particular environmental settings. Establishing seral plant communities may be an appropriate restoration goal for many other types of managed lands, including roadsides, firebreaks and utility rights-of-way. This study describes an ecological (and potentially cost-effective) approach to developing restoration planting palettes for such managed lands.

  12. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  13. Biological support media influence the bacterial biofouling community in reverse osmosis water reclamation demonstration plants.

    Science.gov (United States)

    Ferrera, Isabel; Mas, Jordi; Taberna, Elisenda; Sanz, Joan; Sánchez, Olga

    2015-01-01

    The diversity of the bacterial community developed in different stages of two reverse osmosis (RO) water reclamation demonstration plants designed in a wastewater treatment plant (WWTP) in Tarragona (Spain) was characterized by applying 454-pyrosequencing of the 16S rRNA gene. The plants were fed by secondary treated effluent to a conventional pretreatment train prior to the two-pass RO system. Plants differed in the material used in the filtration process, which was sand in one demonstration plant and Scandinavian schists in the second plant. The results showed the presence of a highly diverse and complex community in the biofilms, mainly composed of members of the Betaproteobacteria and Bacteroidetes in all stages, with the presence of some typical wastewater bacteria, suggesting a feed water origin. Community similarities analyses revealed that samples clustered according to filter type, highlighting the critical influence of the biological supporting medium in biofilm community structure.

  14. Workshop on ROVs and deep submergence

    Science.gov (United States)

    The deep-submergence community has an opportunity on March 6 to participate in a unique teleconferencing demonstration of a state-of-the-art, remotely operated underwater research vehicle known as the Jason-Medea System. Jason-Medea has been developed over the past decade by scientists, engineers, and technicians at the Deep Submergence Laboratory at Woods Hole Oceanographic Institution. The U.S. Navy, the Office of the Chief of Naval Research, and the National Science Foundation are sponsoring the workshop to explore the roles that modern computational, communications, and robotics technologies can play in deep-sea oceanographic research.Through the cooperation of Electronic Data Systems, Inc., the Jason Foundation, and Turner Broadcasting System, Inc., 2-1/2 hours of air time will be available from 3:00 to 5:30 PM EST on March 6. Twenty-seven satellite downlink sites will link one operating research vessel and the land-based operation with workshop participants in the United States, Canada, the United Kingdom, and Bermuda. The research ship Laney Chouest will be in the midst of a 3-week educational/research program in the Sea of Cortez, between Baja California and mainland Mexico. This effort is focused on active hydrothermal vents driven by heat flow from the volcanically active East Pacific Rise, which underlies the sediment-covered Guaymas Basin. The project combines into a single-operation, newly-developed robotic systems, state-of-the-art mapping and sampling tools, fiber-optic data transmission from the seafloor, instantaneous satellite communication from ship to shore, and a sophisticated array of computational and telecommunications networks. During the workshop, land-based scientists will observe and participate directly with their seagoing colleagues as they conduct seafloor research.

  15. Mathematical modeling of heat transfer in plant community

    Directory of Open Access Journals (Sweden)

    Finnikov K.A.

    2011-12-01

    Full Text Available The conductive, convective and radiation heat exchange process in a natural system including plants aggregation, air lower layer and ground upper layer, is examined. The mathematical model of process is formulated in 1d unsteady approach. The numerical simulation of plants aggregation cooling is performed for the case of a radiation frost. It is found up that mutual influence of plants in an aggregation on the heat exchange with environment grows with the increase of plants size and plants number per ground area. The influence leads to that lower parts of plants are cooled slower, while upper parts are cooled faster. The estimations are made for the quantity of heat emitted in a thermogenic plant that is enough to prevent the plant cold stress. It is shown that in presence of enforced air flow the rate of plants cooling is noticeably lower, as well as the quantity of heat enough to prevent the plant cold stress.

  16. Subordinate plant species moderate drought effects on earthworms communities in grasslands

    OpenAIRE

    Mariotte Pierre; Le Bayon Renee-Claire; Eisenhauer Nico; Guenat Claire; Buttler Alexandre

    2016-01-01

    Loss of plant diversity resulting from forecasted drought events is likely to alter soil functioning and affect earthworm communities. Plant soil interactions are expected to play an important role in mediating climate change effects on soil decomposers. In this study we test above belowground linkages after drought by focusing on the effects of subordinate plant species on earthworm communities. Using a combination of subordinate species removal and experimental drought we show that subordin...

  17. Impact of heavy metals on photosynthetic pigment content in roadside plant communities

    Science.gov (United States)

    Popova, Elena

    2017-11-01

    The research is dedicated to the study of the impact of heavy metals (As, Cr, Cu, Mo, Ni, Pb, Sr, Zn) found in plant samples on photosynthetic pigments in anthropogenic roadside plant communities. In the process of research, the anthropogenic load intensity for the selected sites (1 substances. The obtained data may be used to forecast dynamics of plant populations and communities in the polluted areas and to monitor conditions of natural ecosystems.

  18. Mathematical modeling of heat transfer in plant community

    OpenAIRE

    Finnikov K.A.; Korzun A.M.; Kolesnichenko A.V.

    2011-01-01

    The conductive, convective and radiation heat exchange process in a natural system including plants aggregation, air lower layer and ground upper layer, is examined. The mathematical model of process is formulated in 1d unsteady approach. The numerical simulation of plants aggregation cooling is performed for the case of a radiation frost. It is found up that mutual influence of plants in an aggregation on the heat exchange with environment grows with the increase of plants size and plants nu...

  19. Interplay between Senecio jacobaea and plant, soil and aboveground insect herbivore community composition

    NARCIS (Netherlands)

    Bezemer, T.M.; Harvey, J.A.; Kowalchuk, G.A.; Korpershoek, H.; Van der Putten, W.H.

    2006-01-01

    To elucidate the factors that affect the performance of plants in their natural environment, it is essential to study interactions with other neighboring plants, as well as with above- and belowground higher trophic organisms. We used a long-term field experiment to study how local plant community

  20. Interplay between Senecio jacobaea and plant, soil, and aboveground insect community composition

    NARCIS (Netherlands)

    Bezemer, T.M.; Harvey, J.A.; Kowalchuk, G.A.; Korpershoek, H.; Putten, van der W.H.

    2006-01-01

    To elucidate the factors that affect the performance of plants in their natural environment, it is essential to study interactions with other neighboring plants, as well as with above- and belowground higher trophic organisms. We used a long-term field experiment to study how local plant community

  1. The role of biotic interactions in plant community assembly: What is the community species pool?

    Science.gov (United States)

    Švamberková, Eva; Vítová, Alena; Lepš, Jan

    2017-11-01

    Differences in plant species composition between a community and its species pool are considered to reflect the effect of community filters. If we define the species pool as a set of species able to reach a site and form a viable population in a given abiotic environment (i.e. to pass the dispersal and abiotic filter), the difference in species composition should correspond to the effect of biotic interactions. However, most of the operational definitions of the species pool are based on co-occurrence patterns and thus also reflect the effect of biotic relationships, including definitions based on functional plant traits, Ellenberg indicator values or Beals index. We conducted two seed introduction experiments in an oligotrophic wet meadow with the aim of demonstrating that many species excluded, according to the above definitions, from a species pool are in fact able to establish there successfully if competition is removed. In sowing experiments, we studied the establishment and survival of species after the removal of competition (i.e. in artificial gaps) and in intact vegetation. We also investigated inter-annual variability of seed germination and seedling establishment and competitive exclusion of sown species. The investigated species also included those from very different habitats (i.e. species with very low corresponding Beals index or Ellenberg indicator values that were different from the target community weighted mean). Many of these species were able to grow in the focal wet meadow if competition was removed, but they did not establish and survive in the intact community. These species are thus not limited by abiotic conditions, but by the biotic filter. We also recorded a great inter-annual variability in seed germination and seedling establishment. Competitive exclusion of species with different ecological requirements could be quite fast (one and half seasons) in some species, but some non-resident species were able to survive several seasons; the

  2. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands.

    Science.gov (United States)

    Viketoft, Maria; Bengtsson, Janne; Sohlenius, Björn; Berg, Matty P; Petchey, Owen; Palmborg, Cecilia; Huss-Danell, Kerstin

    2009-01-01

    An important component of plant-soil feedbacks is how plant species identity anddiversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years after the establishment of experimental grassland plots at the BIODEPTH site in northern Sweden. This is a substantially longer time than most other experimental studies of plant effects on soil fauna. We address the hypotheses that (la) higher species or functional diversity of plants increases nematode diversity, as well as influences nematode community composition. Alternatively, (1b) individual plant species traits are most important for nematode diversity and community composition. (2) Plant effects on soil organisms will decrease with increasing number of trophic links between plants and soil fauna. Plant species identity was often more important than plant diversity for nematode community composition, supporting hypothesis 1b. There was a weak positive relation between plant and nematode richness;which could be attributed to the presence of the legume Trifolium pratense, but also to some other plant species, suggesting a selection or sampling effect. Several plant species in different functional groups affected nematode community composition. For example, we found that legumes increased bacterial-feeding nematodes, most notably r-selected Rhabditida, while fungal-feeding nematodes were enhanced by forbs. Other bacterial feeders and obligate root feeders were positively related to grasses. Plant effects were usually stronger on plant-, bacterial- and fungal-feeding nematodes than on omnivores/predators, which supports hypothesis 2. Our study suggests that plant identity has stronger effects than plant diversity on nematode community composition, but when comparing our results with similar previous studies the effects of particular plant species appear to vary. We

  3. [Ammonia-oxidizing bacteria community composition at the root zones of aquatic plants after ecological restoration].

    Science.gov (United States)

    Xing, Peng; Kong, Fan-xiang; Chen, Kai-ning; Chen, Mei-jun; Wu, Xiao-dong

    2008-08-01

    To investigate the effects of aquatic plants on ammonia-oxidizing bacteria (AOB) at their root zones, four species of aquatic plants were selected, Phragmites communis, Typha angustifolia L., Potamogeton crispus L., and Limnanthemun nymphoides, which were widely used in ecological restorations. AOB in the samples were enumerated by most-probable-number (MPN) method. Nested polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) procedures were performed with ammonia oxidizer-selective primers. Main DGGE bands were excised from the gel and sequenced for phylogenetic affiliation. Results indicate that AOB densities are always higher at the root zones of emergent plants (Phragmites communis 2.8 x 10(5) cells/g and Typha angustifolia L.4.3 x 10(5) cells/g) than those of submerged and floating-leaved plant (Potamogeton crispus L. 9.3 x 10(4) cells/g and Limnanthemun nymphoides 7.7 x 10(4) cells/g). At the root zones, the oxidation-reduction potential is above zero and NH4+ concentration is lower than it in the bare surface sediment. Fourteen major bands were recovered from the DGGE gel, re-amplified and sequenced. Although the identified bands have their respective similar sequences in GenBank, most of them are related to Nitrosomonas-like. This type of bacteria would play an important role of nitrogen cycle in lake sediment after ecological restoration.

  4. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Directory of Open Access Journals (Sweden)

    Martina Janoušková

    Full Text Available Inoculation with arbuscular mycorrhizal fungi (AMF may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  5. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Science.gov (United States)

    Janoušková, Martina; Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  6. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  7. Flow and scour around vertical submerged structures

    Indian Academy of Sciences (India)

    Although past investigations establish the effect of various parameters on scour around vertical submerged structures for live and clear water condition, yet further studies are required to analyze the scour around group of submerged structures for various bed sediments, understand the flow physics around the group and ...

  8. Clonal variation in the thermal response of the submerged aquatic macrophyte Potamogeton pectinatus

    NARCIS (Netherlands)

    Pilon, J.; Santamaria, L.

    2002-01-01

    Broadly distributed plants have to cope with dramatic differences across latitude in the prevailing environmental temperature. We investigated the effect of water temperature on plant morphology, biomass accumulation and oxygen-exchange for five clones of the submerged aquatic macrophyte Potamogeton

  9. Responses of community-level plant-insect interactions to climate warming in a meadow steppe.

    Science.gov (United States)

    Zhu, Hui; Zou, Xuehui; Wang, Deli; Wan, Shiqiang; Wang, Ling; Guo, Jixun

    2015-12-21

    Climate warming may disrupt trophic interactions, consequently influencing ecosystem functioning. Most studies have concentrated on the temperature-effects on plant-insect interactions at individual and population levels, with a particular emphasis on changes in phenology and distribution. Nevertheless, the available evidence from the community level is limited. A 3-year field manipulative experiment was performed to test potential responses of plant and insect communities, and plant-insect interactions, to elevated temperature in a meadow steppe. Warming increased the biomass of plant community and forbs, and decreased grass biomass, indicating a shift from grass-dominant to grass-forb mixed plant community. Reduced abundance of the insect community under warming, particularly the herbivorous insects, was attributed to lower abundance of Euchorthippus unicolor and a Cicadellidae species resulting from lower food availability and higher defensive herbivory. Lower herbivore abundance caused lower predator species richness because of reduced prey resources and contributed to an overall decrease in insect species richness. Interestingly, warming enhanced the positive relationship between insect and plant species richness, implying that the strength of the plant-insect interactions was altered by warming. Our results suggest that alterations to plant-insect interactions at a community level under climate warming in grasslands may be more important and complex than previously thought.

  10. Strong linkage between plant and soil fungal communities along a successional coastal dune system.

    Science.gov (United States)

    Roy-Bolduc, Alice; Laliberté, Etienne; Boudreau, Stéphane; Hijri, Mohamed

    2016-10-01

    Complex interactions between plants and soil microorganisms drive key ecosystem and community properties such as productivity and diversity. In nutrient-poor systems such as sand dunes, plant traits and fungal symbioses related to nutrient acquisition can strongly influence vegetation dynamics. We investigated plant and fungal communities in a relic foredune plain located on an archipelago in Québec, Canada. We detected distinct communities across the edaphic and successional gradient. Our results showed a clear increase in plant species richness, as well as in the diversity of nutrient-acquisition strategies. We also found a strong correlation between aboveground vegetation and soil fungal communities, and both responded similarly to soil physicochemical properties. Soil pH influenced the composition of plant and fungal communities, and could act as an important environmental filter along this relic foredune plain. The increasing functional diversity in plant nutrient-acquisition strategies across the gradient might favor resource partitioning and facilitation among co-occurring plant species. The coordinated changes in soil microbial and plant communities highlight the importance of aboveground-belowground linkages and positive biotic interactions during ecological succession in nutrient-poor environments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Species divergence and trait convergence in experimental plant community assembly

    NARCIS (Netherlands)

    Fukami, T.; Bezemer, T.M.; Mortimer, S.R.; Van der Putten, W.H.

    2005-01-01

    Despite decades of research, it remains controversial whether ecological communities converge towards a common structure determined by environmental conditions irrespective of assembly history. Here, we show experimentally that the answer depends on the level of community organization considered. In

  12. [Effects of phytase transgenic corn planting on soil nematode community].

    Science.gov (United States)

    Zhao, Zong-Chao; Su, Ying; Mou, Wen-Ya; Liu, Man-Qiang; Chen, Xiao-Yun; Chen, Fa-Jun

    2014-04-01

    A healthy soil ecosystem is essential for nutrient cycling and energy conversion, and the impact of exogenous genes from genetically modified crops had aroused wide concerns. Phytase transgenic corn (i. e., the inbred line BVLA430101) was issued a bio-safety certificate on 27 September 2009 in China, which could improve the efficiency of feed utilization, reduce environmental pollution caused by animal manure. In this study, the abundance of trophic groups, community structure and ecological indices of soil nematodes were studied over the growing cycle of phytase transgenic corn (ab. transgenic corn) and control conventional parental corn (ab. control corn) in the field. Totally 29 and 26 nematode genera were isolated from transgenic corn and control corn fields, respectively. The abundances of bacterivores and omnivores-predators, the total number of soil nematodes, and the Shannon index (H) were significantly greater under transgenic corn than under control corn, while the opposite trend was found for the relative abundance of herbivores and the maturity index (Sigma MI) of soil nematodes. Repeated-measures analysis of variance (ANOVA) did not detect any significant effects of transgenic corn on the composition and abundance of nematode trophic groups and ecological indices of soil nematodes. Furthermore, the Student-T test showed that the abundances of bacterivores and omnivores-predators and the total number of soil nematodes during the milk-ripe stage were significant higher in the transgenic corn field than in the control corn field. The effects of transgenic corn planting on soil nematodes might be related to the increase in the nitrogen content of field soil under transgenic corn compared to control corn.

  13. Fuel breaks affect nonnative species abundance in Californian plant communities

    Science.gov (United States)

    Kyle E Merriam; Jon E. Keeley; Jan L. Beyers

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment...

  14. Species Richness of Yeast Communities in Floral Nectar of Southern Spanish Plants

    OpenAIRE

    Pozo, María I.; Herrera, Carlos M.; Bazaga, Pilar

    2011-01-01

    Floral nectar of insect-pollinated plants often contains dense yeast populations, yet little quantitative information exists on patterns and magnitude of species richness of nectar-dwelling yeasts in natural plant commu- nities. This study evaluates yeast species richness at both the plant community and plant species levels in a montane forest area in southern Spain, and also explores possible correlations between the incidence of different yeast species in nectar and their reported tolerance...

  15. Knowledge and use of wild edible plants in rural communities along Paraguay River, Pantanal, Brazil

    OpenAIRE

    Bortolotto, Ieda Maria; Amorozo, Maria Christina de Mello; Neto, Germano Guarim; Oldeland, Jens; Damasceno-Junior, Geraldo Alves

    2015-01-01

    Background Wild plants are used as food for human populations where people still depend on natural resources to survive. This study aimed at identifying wild plants and edible uses known in four rural communities of the Pantanal-Brazil, estimating the use value and understanding how distance to the urban areas, gender, age and number of different environments available in the vicinity can influence the knowledge and use of these plants by local people. Methods Data on edible plants with known...

  16. Soil microbial communities alter leaf chemistry and influence allelopathic potential among coexisting plant species.

    Science.gov (United States)

    Meiners, Scott J; Phipps, Kelsey K; Pendergast, Thomas H; Canam, Thomas; Carson, Walter P

    2017-04-01

    While both plant-soil feedbacks and allelochemical interactions are key drivers of plant community dynamics, the potential for these two drivers to interact with each other remains largely unexplored. If soil microbes influence allelochemical production, this would represent a novel dimension of heterogeneity in plant-soil feedbacks. To explore the linkage between soil microbial communities and plant chemistry, we experimentally generated soil microbial communities and evaluated their impact on leaf chemical composition and allelopathic potential. Four native perennial old-field species (two each of Aster and Solidago) were grown in pairwise combination with each species' soil microbial community as well as a sterilized inoculum. We demonstrated unequivocally that variation in soil microbial communities altered leaf chemical fingerprints for all focal plant species and also changed their allelopathic potential. Soil microbes reduced allelopathic potential in bioassays by increasing germination 25-54% relative to sterile control soils in all four species. Plants grown with their own microbial communities had the lowest allelopathic potential, suggesting that allelochemical production may be lessened when growing with microbes from conspecifics. The allelopathic potential of plants grown in congener and confamilial soils was indistinguishable from each other, indicating an equivalent response to all non-conspecific microbial communities within these closely related genera. Our results clearly demonstrated that soil microbial communities cause changes in leaf tissue chemistry that altered their allelopathic properties. These findings represent a new mechanism of plant-soil feedbacks that may structure perennial plant communities over very small spatial scales that must be explored in much more detail.

  17. Ethylene response factor BnERF2-like (ERF2.4 from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yanyan Lv

    2016-06-01

    Full Text Available Ethylene response factor proteins play an important role in regulating a variety of stress responses in plants, but their exact functions in submergence stress are not well understood. In this study, we isolated BnERF2.4 from Brassica napus L. to study its function in submergence tolerance. The expression of the BnERF2.4 gene in B. napus and the expression of antioxidant enzyme genes in transgenic Arabidopsis were analyzed by quantitative RT-PCR. The expression of BnERF2.4 was induced by submergence in B. napus and the overexpression of BnERF2.4 in Arabidopsis increased the level of tolerance to submergence and oxidative stress. A histochemical method detected lower levels of H2O2, O2•− and malondialdehyde (MDA in transgenic Arabidopsis. Compared to the wild type, transgenic lines also had higher soluble sugar content and higher activity of antioxidant enzymes, which helped to protect plants against the oxidative damage caused by submergence. It was concluded that BnERF2.4 increased the tolerance of plants to submergence stress and may be involved in regulating soluble sugar content and the antioxidant system in defense against submergence stress.

  18. An account of the plant communities of Tussen die Riviere Game Farm, Orange Free State

    Directory of Open Access Journals (Sweden)

    M. J.A. Werger

    1973-09-01

    Full Text Available As part of the IBP survey of conservation sites, the vegetation of Tussen die Riviere Game Farm,Orange Free State, was surveyed and analysed according to the Braun-Blanquet phytosociological method. A classification of the plant communities occurring there is given. A way by which a hierarchical classification of plant communities in South Africa community is physiognomically classified according of this system are discussed briefly.could be constructed, is suggested. Each plant to Fosberg's (1967 system. Two disadvantages of this system are discussed briefly.

  19. An account of the plant communities of Tussen die Riviere Game Farm, Orange Free State

    Directory of Open Access Journals (Sweden)

    M. J.A. Werger

    1973-07-01

    Full Text Available As part of the IBP survey of conservation sites, the vegetation of Tussen die Riviere Game Farm,Orange Free State, was surveyed and analysed according to the Braun-Blanquet phytosociological method. A classification of the plant communities occurring there is given. A way by which a hierarchical classification of plant communities in South Africa community is physiognomically classified according of this system are discussed briefly.could be constructed, is suggested. Each plant to Fosberg's (1967 system. Two disadvantages of this system are discussed briefly.

  20. Traits underlying community consequences of plant intra-specific diversity.

    Directory of Open Access Journals (Sweden)

    Luis Abdala-Roberts

    Full Text Available A plant's performance and interactions with other trophic levels are recorgnized to be contingent upon plant diversity and underlying associational dynamics, but far less is known about the plant traits driving such phenomena. We manipulated diversity in plant traits using pairs of plant and a substitutive design to elucidate the mechanisms underlying diversity effects operating at a fine spatial scale. Specifically, we measured the effects of diversity in sex (sexual monocultures vs. male and female genotypes together and growth rate (growth rate monocultures vs. fast- and slow-growing genotypes together on growth of the shrub Baccharis salicifolia and on above- and belowground consumers associated with this plant. We compared effects on associate abundance (# associates per plant vs. density (# associates per kg plant biomass to elucidate the mechanisms underlying diversity effects; effects on abundance but not density suggest diversity effects are mediated by resource abundance (i.e. plant biomass alone, whereas effects on density suggest diversity effects are mediated by plant-based heterogeneity or quality. Sexual diversity increased root growth but reduced the density (but not abundance of the dietary generalist aphid Aphis gossypii and its associated aphid-tending ants, suggesting sex mixtures were of lower quality to this herbivore (e.g. via reduced plant quality, and that this effect indirectly influenced ants. Sexual diversity had no effect on the abundance or density of parasitoids attacking A. gossypii, the dietary specialist aphid Uroleucon macolai, or mycorrhizae. In contrast, growth rate diversity did not influence plant growth or any associates except for the dietary specialist aphid U. macolai, which increased in both abundance and density at high diversity, suggesting growth rate mixtures were of higher quality to this herbivore. These results highlight that plant associational and diversity effects on consumers are contingent

  1. Relative Importance and Knowledge Distribution of Medicinal Plants in a Kichwa Community in the Ecuadorian Amazon

    Directory of Open Access Journals (Sweden)

    Brian Joseph Doyle

    2017-01-01

    Full Text Available Traditional knowledge, such as knowledge of the use of plants as medicine, influences how indigenous people manage forest resources. Gender and age-associated differences in traditional knowledge may impact forest resource management because of the traditional division of labor. We interviewed 18 men and 18 women between 9 and 74 years old in San José de Payamino, an indigenous community of the Kichwa ethnicity in the Ecuadorian Amazon, to determine if there are gender or age-associated differences in medicinal plant knowledge among the Payamino people and to identify the most important species from a sample of medicinal plants. Individuals were interviewed using a tablet that displayed images of 34 plants, which had been cited by traditional healers in the community. Quantitative analysis provided insight into the relative importance of plants in the sample as well as the distribution of medicinal plant knowledge among members of the community. The most important plants were Tradescantia zanonia and Monolena primuliflora. These plants should be considered candidates for further investigation. There was a positive correlation between age and knowledge of medicinal plants, but no significant difference between genders. Our results suggest that an interview method that relies on digital images can reveal differences in the importance of medicinal plants as well as provide insight into the distribution of traditional medical knowledge. While men and women are likely to manage forest resources similarly, younger members of the community may not have the same regard for forest resources as their elder counterparts.

  2. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Directory of Open Access Journals (Sweden)

    Bachir Iffis

    2017-08-01

    Full Text Available Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate

  3. Amazonian dark Earth and plant species from the Amazon region contribute to shape rhizosphere bacterial communities.

    Science.gov (United States)

    Barbosa Lima, Amanda; Cannavan, Fabiana Souza; Navarrete, Acacio Aparecido; Teixeira, Wenceslau Geraldes; Kuramae, Eiko Eurya; Tsai, Siu Mui

    2015-05-01

    Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata). Bacterial community structure was evaluated using terminal restriction fragment length polymorphism (T-RFLP) and bacterial community composition by V4 16S rRNA gene region pyrosequencing. T-RFLP analysis showed effect of soil types and plant species on rhizosphere bacterial community structure. Differential abundance of bacterial phyla, such as Acidobacteria, Actinobacteria, Verrucomicrobia, and Firmicutes, revealed that soil type contributes to shape the bacterial communities. Furthermore, bacterial phyla such as Firmicutes and Nitrospira were mostly influenced by plant species. Plant roots influenced several soil chemical properties, especially when plants were grown in ADE. These results showed that differences observed in rhizosphere bacterial community structure and composition can be influenced by plant species and soil fertility due to variation in soil attributes.

  4. Stubble-field plant communities in the Lublin region. P. IV. A comparison of the characteristic of stubble-field plant communities

    Directory of Open Access Journals (Sweden)

    Maria Jędruszczk

    2013-12-01

    Full Text Available This part of a series of paper presents a comparative characterization of selected stubble-field plant communities described in parts I-III. It encompasses the most important characteristic of the communities as well as the habitas in which they occur. In the differentiated climatically, geomorphologically, hydrologically and, most of all, in respect to soil type conditions of mideastern Poland, more precisely in the old limits of the Lublin voivodship, 6 types of stubble-field plant communities have been described and further classified into subunits; all of which have been isolated on the basis of the floristic composition of 330 analysed phytosociologocal records. The selected stubble-field plant communities were assigned to the suborder Polygono-Chenopodietalia. Among them, 3 plant associations known from root crop fields were identified: 2 belonging to the alliance Panico-Setarion (Digitarietum ischaemi and Echinochloo-Setarietum and 1 belonging to Eu-Polygono-Chenopodion (Oxalido-Chenopodietum polyspermi. On most of the grain stubble-field of the Lublin region (almost 77% of the records communities were found which could be assigned only to the alliances: community Setaria glauca-Scleranthus annuus to Panico-Setarion, community Veronica persica-Sonchus asper to Eu-Polygono-Chenopodion and community Rorippa sylvestris-Oxalis stricta which is an intermediate from between these alliances. The floristic types identified here, as well as their lower rancs (subassocietions variants, subvariants were a reflection of the mechanical composition, nutritional, hydrological and pH conditions of the soils in their habitas and confirmed the high differentiation of soil conditions over the studied area.

  5. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs. Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.

  6. Are cattle surrogate wildlife? Savanna plant community composition explained by total herbivory more than herbivore type.

    Science.gov (United States)

    Veblen, Kari E; Porensky, Lauren M; Riginos, Corinna; Young, Truman P

    2016-09-01

    The widespread replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: (1) loss or reduction in numbers of individual wildlife species or guilds and (2) addition of livestock to the system. Each can have important implications for plant community dynamics. Yet very few studies have experimentally addressed the individual, combined, and potentially interactive effects of wild vs. domestic herbivore species on herbaceous plant communities within a single system. Additionally, there is little information about whether, and in which contexts, livestock might functionally replace native herbivore wildlife or, alternatively, have fundamentally different effects on plant species composition. The Kenya Long-term Exclosure Experiment, which has been running since 1995, is composed of six treatment combinations of mega-herbivores, meso-herbivore ungulate wildlife, and cattle. We sampled herbaceous vegetation 25 times between 1999 and 2013. We used partial redundancy analysis and linear mixed models to assess effects of herbivore treatments on overall plant community composition and key plant species. Plant communities in the six different herbivore treatments shifted directionally over time and diverged from each other substantially by 2013. Plant community composition was strongly related (R2  = 0.92) to residual plant biomass, a measure of herbivore utilization. Addition of any single herbivore type (cattle, wildlife, or mega-herbivores) caused a shift in plant community composition that was proportional to its removal of plant biomass. These results suggest that overall herbivory pressure, rather than herbivore type or complex interactions among different herbivore types, was the main driver of changes in plant community composition. Individual plant species, however, did respond most strongly to either wild ungulates or cattle. Although these results suggest considerable functional similarity between

  7. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)

    2013-04-15

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  8. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    Directory of Open Access Journals (Sweden)

    MAJID ALI

    2013-04-01

    Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  9. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Directory of Open Access Journals (Sweden)

    Azucena Canto

    2017-07-01

    Full Text Available We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  10. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits.

    Science.gov (United States)

    Canto, Azucena; Herrera, Carlos M; Rodriguez, Rosalina

    2017-01-01

    We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  11. Notification: Hotline Complaint – Drinking Water Treatment Plant at the Fort Belknap Indian Community

    Science.gov (United States)

    Project #OA-FY13-0076, November 13, 2012. On March 22, 2012, the Office of Inspector General (OIG) received a hotline complaint on the construction of the Drinking Water Treatment Plant (DWTP) at the Fort Belknap Indian Community.

  12. NPDES Permit for the Blackfeet Community Water Treatment Plant in Montana

    Science.gov (United States)

    Under NPDES permit MT-0030643, the Blackfeet Tribe is authorized to discharge from its Blackfoot Community Water Treatment Plant in Glacier County, Montana, to an unnamed intermittent stream which flows to Two Medicine River.

  13. Management of aspen plant communities on the National Elk Refuge, Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — There are 1,860 acres (753 ha) of aspen (Populus tremuloides) plant communities on the National Elk Refuge (NER). Aspen is an important tree species on the Refuge,...

  14. The effects of glyphosate and aminopyralid on an artifical plant communities

    Science.gov (United States)

    The US EPA has responsibility for registration of pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The potential adverse effects of pesticides to nontarget terrestrial plant communities are a concern that must be addressed in the pesticide regist...

  15. Subalpine meadow plant communities in Yosemite and Sequoia and Kings Canyon National Parks, 2011-2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This publication presents data collected within meadows from samples used to assess meadow plant community responses to recreational pack stock as part of a USGS...

  16. Community structure of actively growing bacterial populations in plant pathogen suppressive soil

    NARCIS (Netherlands)

    Hjort, K.; Lembke, A.; Speksnijder, A.G.C.L.; Smalla, K.; Jansson, J.K.

    2007-01-01

    The bacterial community in soil was screened by using various molecular approaches for bacterial populations that were activated upon addition of different supplements. Plasmodiophora brassicae spores, chitin, sodium acetate, and cabbage plants were added to activate specific bacterial populations

  17. Growth rate, protein:RNA ratio and stoichiometric homeostasis of submerged macrophytes under eutrophication stress

    Directory of Open Access Journals (Sweden)

    Xing W.

    2016-01-01

    Full Text Available Growth rate hypothesis (GRH and stoichiometric homeostasis of photoautotrophs have always been questioned. However, little is known about GRH and stoichiometric homeostasis of aquatic plants, especially submerged macrophytes. Therefore, we aim to test the GRH and explore stoichiometric homeostasis of four freshwater submerged macrophytes under eutrophication stress. At the single species level and the multi-species level, N:P ratios of Potamogeton maackianus, Myriophyllum spicatum, Vallisneria natans and Ceratophyllum demersum had no consistent trends with growth rates. However, protein:RNA ratios of P. maackianus, M. spicatum and V. natans all correlated negatively with growth rates, demonstrating GRH can apply to freshwater submerged macrophytes, even though they are threatening by eutrophication stress. Protein:RNA ratios positively correlated with N:P ratios in culture media and tissues in submerged macrophytes except in P. maackianus (30d, suggesting effects of varying N:P ratios in culture media on protein:RNA ratios are basically in concert with tissue N:P ratios under short-time eutrophication stress. Stoichiometric homeostasis coefficients (HN:P indicated submerged macrophytes have weak homeostasis. Stoichiometric homeostasis of V. natans was stronger than those of P. maackianus, M. spicatum and C. demersum. The differences in GRH and homeostasis of the four submerged macrophytes may be due to species traits.

  18. Research efforts for detection and recovery of submerged oil

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K. [United States Coast Guard, Groton, CT (United States). Research and Development Center

    2009-07-01

    Submerged oil can sink and destroy shellfish and other marine populations in addition to causing closure of water intakes at industrial facilities and power plants. However, current methods to find and recover oil from spills involving submerged oil are inadequate. The underwater environment presents major challenges such as poor visibility, difficulty in tracking oil spill movement, colder temperatures, inadequate containment methods and problems with the equipment's interaction with water. This paper reported on a multi-year project launched by the Research and Development Center of the United States Coast Guard to develop a complete approach for spills of submerged oil. The project involved detection technologies and recovery methods for oil on the bottom of any body of water. Proof of concept (POC) and prototype tests of potential detection technologies were evaluated during tests at the Ohmsett facility in Leonardo, New Jersey. The technologies included sonar, laser fluorometry, real-time mass spectrometry and in-situ fluorometry. This paper described the development of a complete specification for an integrated recovery system along with a plan for future development. 9 refs., 2 tabs., 11 figs.

  19. Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Wisz, Mary S.; Strandberg, Beate

    2014-01-01

    Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based...... on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy...... height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were...

  20. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Science.gov (United States)

    Sonnemann, Ilja; Pfestorf, Hans; Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root

  1. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    OpenAIRE

    Mangal Singh; Ashutosh Awasthi; Sumit K. Soni; Rakshapal Singh; Rajesh K. Verma; Alok Kalra

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationshi...

  2. Purple pitcher plant (Sarracenia rosea Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    Directory of Open Access Journals (Sweden)

    Matthew J Abbott

    Full Text Available Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment. There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  3. Purple pitcher plant (Sarracenia rosea) Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    Science.gov (United States)

    Abbott, Matthew J; Battaglia, Loretta L

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  4. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities

    Energy Technology Data Exchange (ETDEWEB)

    Crutsinger, Greg [University of Tennessee, Knoxville (UTK); Reynolds, Nicholas [University of Tennessee, Knoxville (UTK); Classen, Aimee T [ORNL; Sanders, Dr. Nathan James [University of Tennessee, Knoxville (UTK)

    2008-01-01

    Intraspecific diversity within plant species is increasingly recognized as an important influence on the structure of associated arthropod communities, though whether there are congruent responses of above- and belowground communities to intraspecific diversity remains unclear. In this study, we compare the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak influence on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, including herbivore and predator trophic levels. In contrast, there were minimal effects of genotypic diversity in litter on microarthropods. Our study illustrates that incorporating both above- and belowground perspective into community genetics studies leads to very different conclusions about the importance of intraspecific diversity, than when considering aboveground responses in isolation.

  5. Seed bank and big sagebrush plant community composition in a range margin for big sagebrush

    Science.gov (United States)

    Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.

    2016-01-01

    The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.

  6. Biodiversity at the plant-soil interface: microbial abundance and community structure respond to litter mixing.

    Science.gov (United States)

    Chapman, Samantha K; Newman, Gregory S

    2010-03-01

    The interactive effects of diversity in plants and microbial communities at the litter interface are not well understood. Mixtures of plant litter from different species often decompose differently than when individual species decompose alone. Previously, we found that litter mixtures of multiple conifers decomposed more rapidly than expected, but litter mixtures that included conifer and aspen litter did not. Understanding the mechanisms underlying these diversity effects may help explain existing anomalous decay dynamics and provide a glimpse into the elusive linkage between plant diversity and the fungi and bacteria that carry out decomposition. We examined the microbial communities on litter from individual plant species decomposing both in mixture and alone. We assessed two main hypotheses to explain how the decomposer community could stimulate mixed-litter decomposition above predicted rates: either by being more abundant, or having a different or more diverse community structure than when microbes decompose a single species of litter. Fungal, bacterial and total phospholipid fatty acid microbial biomass increased by over 40% on both conifer and aspen litter types in mixture, and microbial community composition changed significantly when plant litter types were mixed. Microbial diversity also increased with increasing plant litter diversity. While our data provide support for both the increased abundance hypothesis and the altered microbial community hypothesis, microbial changes do not translate to predictably altered litter decomposition and may only produce synergisms when mixed litters are functionally similar.

  7. Plant community influence on soil microbial response after a wildfire in Sierra Nevada National Park (Spain).

    Science.gov (United States)

    Bárcenas-Moreno, Gema; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Mataix-Beneyto, Jorge

    2016-12-15

    Plant community influence on microbial response after fire has been studied in a Sierra Nevada National Park area affected by a wildfire in 2005. Two different plant communities adapted to different altitudes were selected to analyse possible differences on soil microbial recolonisation process after fire, in oak forest and high mountain shrub communities. Microbial abundance, activity and community composition were monitored to evaluate medium-term changes. Microbial abundance was studied by mean of microbial biomass carbon and plate count methods; microbial activity was analysed by microbial respiration and bacterial growth while microbial community composition was determined by analysing phospholipid fatty acid pattern. Under unburnt conditions oak forest showed higher nutrient content, pH and microbial abundance and activity values than the high mountain shrubs community. Different parameters studied showed different trends with time, highlighting important changes in microbial community composition in high mountain shrubs from first sampling to the second one. Post-fire recolonisation process was different depending on plant community studied. Highlighting fungal response and microbial activity were stimulated in burnt high mountain shrubs community whilst it was negatively affected in oak forest. Fire induced changes in oak forest were almost neutralized 20months after the fire, while high mountain shrubs community still showed fire-induced changes at the end of the study. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizobacterial communities of 29 pioneer plants belonging to 12 species were investigated in an alpine ecosystem to assess if plants from different species could select for specific rhizobacterial communities. Rhizospheres and unvegetated soils were collected from a floristic pioneer stage plot at 2,400 m a.s.l. in the forefield of Weisskugel Glacier (Matsch Valley, South Tyrol, Italy), after 160 years of glacier retreat. To allow for a culture-independent perspective, total environmental DNA was extracted from both rhizosphere and bare soil samples and analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and Denaturing Gradient Gel Electrophoresis (DGGE). ARISA fingerprinting showed that rhizobacterial genetic structure was extremely different from bare soil bacterial communities while rhizobacterial communities clustered strictly together according to the plant species. Sequencing of DGGE bands showed that rhizobacterial communities were mainly composed of Acidobacteria and Proteobacteria whereas bare soil was colonized by Acidobacteria and Clostridia. UniFrac significance calculated on DGGE results confirmed the rhizosphere effect exerted by the 12 species and showed different bacterial communities (P < 0.05) associated with all the plant species. These results pointed out that specific rhizobacterial communities were selected by pioneer plants of different species in a high mountain ecosystem characterized by oligotrophic and harsh environmental conditions, during an early primary succession.

  9. Plant community composition determines the strength of top-down control in a soil food web motif.

    Science.gov (United States)

    Thakur, Madhav Prakash; Eisenhauer, Nico

    2015-03-16

    Top-down control of prey by predators are magnified in productive ecosystems due to higher sustenance of prey communities. In soil micro-arthropod food webs, plant communities regulate the availability of basal resources like soil microbial biomass. Mixed plant communities are often associated with higher microbial biomass than monocultures. Therefore, top-down control is expected to be higher in soil food webs of mixed plant communities. Moreover, higher predator densities can increase the suppression of prey, which can induce interactive effects between predator densities and plant community composition on prey populations. Here, we tested the effects of predator density (predatory mites) on prey populations (Collembola) in monoculture and mixed plant communities. We hypothesized that top-down control would increase with predator density but only in the mixed plant community. Our results revealed two contrasting patterns of top-down control: stronger top-down control of prey communities in the mixed plant community, but weaker top-down control in plant monocultures in high predator density treatments. As expected, higher microbial community biomass in the mixed plant community sustained sufficiently high prey populations to support high predator density. Our results highlight the roles of plant community composition and predator densities in regulating top-down control of prey in soil food webs.

  10. Species richness and floristic composition of Choco Region plant communities Species richness and floristic composition of Choco Region plant communities

    Directory of Open Access Journals (Sweden)

    Gentry Alwyn H.

    1986-12-01

    Full Text Available The Chocó phytogeographical region of coastal Colombia and adjacent Ecuador is well known as a region of unusually high endemism in plants (GENTRY, 1982a, 1986b, birds (TERBORGH & WINTER, 1982, and butterflies (BROWN, 1975, 1982. The region is also reputed to be unusually diverse biologically (GENTRY, 1978, 1982a but much of the data base for this assumption is rather anecdotal and for birds and heliconiinae butterflies (probably the best known groups of organisms it is clear that faunistic community diversity of the coastal Chocó is substantially less than in much of upper Amazonia (J. TERBORGH, pers. comm., K. BROWN, pers. comm.. El Choco la región fitogeográfica de la costa de Colombia y adyacente al Ecuador es conocido como una región de inusualmente alto endemismo en plantas (Gentry, 1982a, 1986b, pájaros (Terborgh y Winter, 1982, y las mariposas (Brown, 1975, 1982. La región también es conocida por ser inusualmente diversa biológicamente (Gentry, 1978, 1982a, pero gran parte de la base de datos para estesuposición es bastante anecdótico y para las aves y mariposas Heliconiinae (prooably los grupos más conocidos de organismos, está claro que la diversidad faunística comunidad del Chaco costera es sustancialmente menor que en gran parte de la Amazonia superior (J. Terborgh, com. pers., K . BROWN, com. pers..El único dato de nivel comunitario disponible para las plantas de la costa Colombia es la forma incompleta analizado 1000 m2 muestra de todas las plantas de más de2.5 cm dbh procedente de Tutunendó, incluido en Gentry (1982b de los patrones de diversidad neotropicales. Choco muestra de Gentry tenía el más alto número de especies de una serie de sitios de muestra y similares que llegaron a la conclusión de que nivel de riqueza de especies vegetales comunidad aumenta directamente con la precipitación. Muchos 1.000 m2 adicionales están disponibles, tanto desde el Chocoregión y de las especies ricas en bosques de Alto

  11. Improvement of Photosynthesis by Sub1 QTL in Rice Under Submergence: Probed by Chlorophyll Fluorescence OJIP Transients

    Directory of Open Access Journals (Sweden)

    Panda Debabrata

    2011-09-01

    Full Text Available The influence of submergence on the photosynthetic activity in rice plants either possessing or not possessing Sub1 QTL i.e. Swarna and Swarna Sub1 cultivars (cv. were evaluated under simulated complete submergence. The leaf photosynthetic rate and stomatal conductance decreased in both the cv. during the progression of submergence as compared to control plant but significant varietal differences was observed after 1 day (d of submergence. Submergence also alters the photo-system (PS II activity, as reflected in a decrease in the values of Fo, Fm and the Fv/Fm ratio and degradation of chlorophyll, more in Swarna than that of Swarna Sub1. Under complete submergence the shape of the OJIP transient also changed in rice leaves with decrease in maximal fluorescence (P=Fm intensity, resulted lowering of variable fluorescence levels. The decrease was more pronounced in Swarna compared to the Swarna Sub1 cv. Thus, Swarna Sub1 improves photosynthetic activity showing more photosynthetic rate compared to Swarna under submergence because, of less degradation of chlorophyll, higher stomatal conductance, and efficient PS II activity.

  12. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Directory of Open Access Journals (Sweden)

    Adrian Zwolicki

    Full Text Available We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina. Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  13. Ethnoveterinary medicinal plants used by the Maale and Ari ethnic communities in southern Ethiopia

    NARCIS (Netherlands)

    Kidane, B.; Maesen, van der L.J.G.; Andel, van T.; Asfaw, Z.

    2014-01-01

    Ethnopharmacological relevance: Livestock production is an integral part of the agricultural system in Ethiopia. Medicinal plants are used and are important for rural communities for the treatment of livestock diseases. We studied and analysed the traditional medicinal plants used for the treatment

  14. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  15. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  16. A systematic review of arthropod community diversity in association with invasive plants

    Directory of Open Access Journals (Sweden)

    Ryan Spafford

    2013-04-01

    Full Text Available Invasive plants represent a significant financial burden for land managers and also have the potential to severely degrade ecosystems. Arthropods interact strongly with plants, relying on them for food, shelter, and as nurseries for their young. For these reasons, the impacts of plant invasions are likely strongly reflected by arthropod community dynamics including diversity and abundances. A systematic review was conducted to ascertain the state of the literature with respect to plant invaders and their associated arthropod communities. We found that the majority of studies did not biogeographically contrast arthropod community dynamics from both the home and away ranges and that studies were typically narrow in scope, focusing only on the herbivore feeding guild, rather than assessing two or more trophic levels. Importantly, relative arthropod richness was significantly reduced on invasive plant species. Phylogenetic differences between the invasive and local plant community as well as the plant functional group impact arthropod diversity patterns. A framework highlighting some interaction mechanisms between multiple arthropod trophic levels and native and invasive plants is discussed and future research directions relating to these interactions and the findings herein are proposed.

  17. Community analysis of pitcher plant bogs of the Little River Canyon National Preserve, Alabama

    Science.gov (United States)

    Robert Carter; Terry Boyer; Heather McCoy; Andrew J. Londo

    2006-01-01

    Pitcher plant bogs of the Little River Canyon National Preserve in northern Alabama contain the federally endangered green pitcher plant [Sarracenia oreophila (Kearney) Wherry]. Multivariate analysis of the bog vegetation and environmental variables revealed three communities with unique species compositions and soil characteristics. The significant...

  18. Regional gradient analysis and spatial pattern of woody plant communities in Oregon forests.

    Science.gov (United States)

    J.L. Ohmann; T.A. Spies

    1998-01-01

    Knowledge of regional-scale patterns of ecological community structure, and of factors that control them, is largely conceptual. Regional- and local-scale factors associated with regional variation in community composition have not been quantified. We analyzed data on woody plant species abundance from 2443 field plots across natural and seminatural forests and...

  19. Chronic wind and plant communities in dunes: Total biomass, inter-specific competition, and species abundance

    NARCIS (Netherlands)

    He, W.M.; Xi, W.M.; Anten, N.P.R.

    2013-01-01

    Chronic wind is an important ecological factor, but its direct roles in shaping plant communities remain poorly understood. We hypothesized that chronic wind can modulate community productivity, inter-specific competition, and species abundance in inland dunes. We conducted an experiment with three

  20. DIFFERENTIATION IN N15 UPTAKE AND THE ORGANIZATION OF AN ARCTIC TUNDRA PLANT COMMUNITY

    Science.gov (United States)

    We used N15 soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most abundant species were well differentiated with respect to...

  1. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils

    NARCIS (Netherlands)

    Yergeau, E.; Bezemer, T.M.; Hedlund, K.; Mortimer, S.R.; Kowalchuk, G.A.; Van der Putten, W.H.

    2010-01-01

    Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community

  2. Ethnobotany of wild plants used for starting fermented beverages in Shui communities of southwest China

    OpenAIRE

    Hong, Liya; Zhuo, Jingxian; Lei, Qiyi; Zhou, Jiangju; Ahmed, Selena; Wang, Chaoying; Long, Yuxiao; Li, Feifei; Long, Chunlin

    2015-01-01

    Background Shui communities of southwest China have an extensive history of using wild plants as starters (Xiaoqu) to prepare fermented beverages that serve important roles in interpersonal relationships and cultural events. While the practice of using wild plants as starters for the preparation of fermented beverages was once prevalent throughout China, this tradition has seen a decline nationally since the 1930s. The traditional technique of preparing fermented beverages from wild plant sta...

  3. Hydrology, shore morphology and species traits affect seed dispersal, germination and community assembly in shoreline plant communities

    NARCIS (Netherlands)

    van Leeuwen, Casper H. A.; Sarneel, Judith M.; van Paassen, Jose; Rip, Winnie J.; Bakker, Elisabeth S.

    1. Seed dispersal and germination are two primary processes influencing plant community assembly. On freshwater shores, water levels regulate both processes. However, it is still unclear how water levels, shore morphology and species traits interactively affect seed dispersal and germination, and

  4. Hydrology, shore morphology and species traits affect seed dispersal, germination and community assembly in shoreline plant communities

    NARCIS (Netherlands)

    Van Leeuwen, C.H.A.; Sarneel, J.M.; van Paassen, José; Rip, W.J.; Bakker, E.S.

    2014-01-01

    Summary 1.Seed dispersal and germination are two primary processes influencing plant community assembly. On freshwater shores, water levels regulate both processes. However, it is still unclear how water levels, shore morphology and species traits interactively affect seed dispersal and germination,

  5. Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India.

    Science.gov (United States)

    Panghal, Manju; Arya, Vedpriya; Yadav, Sanjay; Kumar, Sunil; Yadav, Jaya Parkash

    2010-01-28

    Plants have traditionally been used as a source of medicine in India by indigenous people of different ethnic groups inhabiting various terrains for the control of various ailments afflicting human and their domestic animals. The indigenous community of snake charmers belongs to the 'Nath' community in India have played important role of healers in treating snake bite victims. Snake charmers also sell herbal remedies for common ailments. In the present paper an attempt has been made to document on ethno botanical survey and traditional medicines used by snake charmers of village Khetawas located in district Jhajjar of Haryana, India as the little work has been made in the past to document the knowledge from this community. Ethno botanical data and traditional uses of plants information was obtained by semi structured oral interviews from experienced rural folk, traditional herbal medicine practitioners of the 'Nath' community. A total of 42 selected inhabitants were interviewed, 41 were male and only one woman. The age of the healers was between 25 years and 75 years. The plant specimens were identified according to different references concerning the medicinal plants of Haryana and adjoining areas and further confirmation from Forest Research Institute, Dehradun. The present study revealed that the people of the snake charmer community used 57 medicinal plants species that belonged to 51 genera and 35 families for the treatment of various diseases. The study has brought to light that the main diseases treated by this community was snakebite in which 19 different types of medicinal plants belongs to 13 families were used. Significantly higher number of medicinal plants was claimed by men as compared to women. The highest numbers of medicinal plants for traditional uses utilized by this community were belonging to family Fabaceae. This community carries a vast knowledge of medicinal plants but as snake charming is banned in India as part of efforts to protect India

  6. The root herbivore history of the soil affects the productivity of a grassland plant community and determines plant response to new root herbivore attack.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known whether these root herbivore history effects (i are detectable at the plant community level and/or (ii also determine plant species and plant community responses to new root herbivore attack. The present greenhouse study determined root herbivore history effects of click beetle larvae (Elateridae, Coleoptera, genus Agriotes in a model grassland plant community consisting of six common species (Achillea millefolium, Plantago lanceolata, Taraxacum officinale, Holcus lanatus, Poa pratensis, Trifolium repens. Root herbivore history effects were generated in a first phase of the experiment by growing the plant community in soil with or without Agriotes larvae, and investigated in a second phase by growing it again in the soils that were either Agriotes trained or not. The root herbivore history of the soil affected plant community productivity (but not composition, with communities growing in root herbivore trained soil producing more biomass than those growing in untrained soil. Additionally, it influenced the response of certain plant species to new root herbivore attack. Effects may partly be explained by herbivore-induced shifts in the community of arbuscular mycorrhizal fungi. The root herbivore history of the soil proved to be a stronger driver of plant growth on the community level than an actual root herbivore attack which did not affect plant community parameters. History effects have to be taken into account when predicting the impact of root herbivores on grasslands.

  7. Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment.

    Science.gov (United States)

    Yeeles, Peter; Lach, Lori; Hobbs, Richard J; van Wees, Mary; Didham, Raphael K

    2017-02-01

    Understanding the relationship between plant diversity and diversity at higher trophic levels is important from both conservation and restoration perspectives. Although there is strong evidence for bottom-up maintenance of biodiversity, this is based largely on studies of simplified grassland systems. Recently, studies in the TreeDivNet global network of tree diversity experiments have begun to test whether these findings are generalizable to more complex ecosystems, such as woodlands. We monitored invertebrate community reassembly over 5 yr of experimental woodland restoration at the TreeDivNet Ridgefield site in southwest Australia, testing the effects of woody plant species richness and herb-layer manipulation on invertebrate community structure and ant species composition. From 2010 to 2014, we sampled ground-dwelling invertebrates using pitfall traps in herbicide vs. no-herbicide subplots nested within each of 10 woody plant treatments varying in richness from zero (bare controls) to eight species, which produced a total of 211, 235 invertebrates, including 98, 979 ants belonging to 74 species. In mixed model analyses, the presence of woody plants was an important driver of faunal community reassembly (relative to bare control plots), but faunal responses to woody plant treatment combinations were idiosyncratic and unrelated to woody plant richness across treatments. We also found that a herbicide-induced reduction in herbaceous plant cover and richness had a positive effect on ant richness and caused more rapid convergence of invertebrate community composition toward the composition of a woodland reference site. These findings show that woody plant richness did not have direct positive effects on the diversity and community reassembly trajectories of higher trophic levels in our woodland system. From a management perspective, this suggests that even low-diversity restoration or carbon sequestration plantings can potentially lead to faunal reassembly outcomes

  8. Multiple mechanisms of early plant community assembly with stochasticity driving the process.

    Science.gov (United States)

    Marteinsdóttir, Bryndís; Svavarsdóttir, Kristín; Thórhallsdóttir, Thóra Ellen

    2018-01-01

    Initial plant establishment is one of the most critical phases in ecosystem development, where an early suite of physical (environmental filtering), biological (seed limitation, species interactions) and stochastic factors may affect successional trajectories and rates. While functional traits are commonly used to study processes that influence plant community assembly in late successional communities, few studies have applied them to primary succession. The objective here was to determine the importance of these factors in shaping early plant community assembly on a glacial outwash plain, Skeiðarársandur, in SE Iceland using a trait based approach. We used data on vascular plant assemblages at two different spatial scales (community and neighborhood) sampled in 2005 and 2012, and compiled a dataset on seven functional traits linked to species dispersal abilities, establishment, and persistence for all species within these assemblages. Trait-based null model analyses were used to determine the processes that influenced plant community assembly from the regional species pool into local communities, and to determine if the importance of these processes in community assembly was dependent on local environment or changed with time. On the community scale, for most traits, random processes dominated the assembly from the regional species pool. However, in some communities, there was evidence of non-random assembly in relation to traits linked to species dispersal abilities, persistence, and establishment. On the neighborhood scale, assembly was mostly random. The relative importance of different processes varied spatially and temporally and the variation was linked to local soil conditions. While stochasticity dominated assembly patterns of our early successional communities, there was evidence of both seed limitation and environmental filtering. Our results indicated that as soil conditions improved, environmental constraints on assembly became weaker and the

  9. The stuble-field plant communities in South-East Poland. Part V. The comparative characteristics of stuble-fleld plant communities

    Directory of Open Access Journals (Sweden)

    Czesława Trąba

    2013-12-01

    Full Text Available In this of the presented paper results of the studies conducted in preceding four parts (I-IV were synthetically assumed. On that background a comparative characteristics of specified stuble-field plant communities was conducted. It contains the most important features of communities and seats, in which they appear. In climatically, geomorphologically, hydrologically and with respect to soils differentiated conditions of South-East Poland, especially in former Rzeszów region, there were described stubble-field plant communities occurring as well on lowland, as on highland agricultural utility complexes. There were analysed 359 phytosociological records, in which 232 ones came from lowland, while 127 from highland complexes. The specified communities were included to two orders: Secali-Violetalia arvensis (suborder Polygono-Chenopodienalia : alliances Eu-Polygono-Chenopodion and Panico-Setarion and Cyperetalia fusci (alliance Nanocyperion flavescentis. On the lowland agricultural utility complexes specified were seven types of communities: 3 belonged to Panico-Setarion alliance (association Digitarietum ischaemi; community with Setaria glauca and association Echinochloo-Setarietum, 2 to Eu-Polygono-Chenopodion alliance (the community with Euphorbia esula and Oxalis stricta as well the community with Veronica persica, while 2 associations from the Nanocyperion flavescentis (Hyperico-Spergularietum and Centunculo-Anthocerotetum alliance. On the other hand, on the highland complexes of South-East Poland only 3 communities were found: 1 with Setaria glauca included to Panico-Setarion alliance, 2 with Veronica persica from Eu-Polygono-Chenopodion alliance and 3 Centunculo-Anthocerotetum association from Nanocyperion flavescentis alliance. The specified floral types, as well as lower units (variants and sub variants, reflected the mechanical structure, hydrological conditions and pH soils in their seats, what confrumed a great differentiation of soil

  10. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-01-01

    that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water–gas interface (cf. aquatic insects). When gas films were removed artificially......When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas–water interface...... to promote O2 uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O2 from floodwaters when in darkness and CO2 entry when in light. O2 microprofiles showed...

  11. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack.

    Science.gov (United States)

    Ardanov, Pavlo; Sessitsch, Angela; Häggman, Hely; Kozyrovska, Natalia; Pirttilä, Anna Maria

    2012-01-01

    Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L.) cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L.) by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host.

  12. Plants of the fynbos biome harbour host species-specific bacterial communities.

    Science.gov (United States)

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Root Zone Microbial Communities and Restoration of Plant Communities in Owens Valley, California - Phase 1

    National Research Council Canada - National Science Library

    Fredrickson, Herbert; Furey, John; Price, David; Foote, Chris; Richmond, Margaret

    2007-01-01

    .... These interrelationships depend on soil characteristics affecting the microbial communities. This study was designed to provide survey information on microbial communities in soils from native and disturbed areas at ten locations spanning Owens Valley...

  14. Economically and ecologically important plant communities in high altitude coniferous forest of Malam Jabba, Swat, Pakistan.

    Science.gov (United States)

    Sher, Hassan; Al Yemeni, Mohammad

    2011-01-01

    A study on the economically important plant communities was carried out during summer 2008 in various parts of Malam Jabba valley, Swat. The principal aim of the study was phytosociological evaluation with special reference to the occurrence of commercially important medicinal plant species in coniferous forest of the study area. Secondly to prepare ethnobotanical inventory of the plant resources of the area, as well as to evaluate the conservation status of important medicinal and aromatic plants (MAPs) through rapid vulnerable assessment (RVA) procedure. The study documented 90 species of ethnobotanical importance, out of these 71 spp used as medicinal plant, 20 spp fodder plant, 10 spp vegetables, 14 spp wild fruit, 18 spp fuel wood, 9 spp furniture and agricultural tools, 9 spp thatching, fencing and hedges, 4 spp honey bee, 2 spp evil eyes, 2 spp religious and 3 spp as poison. Phytosociologically six plant communities were found, comprising five herbs-shrubs-trees communities and one meadow community. Further study is, therefore, required to quantify the availability of species and to suggest suitable method for their production and conservation. Recommendations are also given in the spheres of training in identification, sustainable collection, value addition, trade monitoring and cooperative system of marketing.

  15. Inulinase Production by a Mexican Semi-Desert Xerophylic Penicillium citrinum Strain under Submerged Culture

    OpenAIRE

    Adriana C. Flores-Gallegos; Jesús Morlett-Chávez; Aguilar, Cristóbal N.; Raúl Rodríguez-Herrera

    2012-01-01

    The aim of the study was to produce inulinase under submerged culture (SmC) by a xerophylic fungal strain isolated from the Mexican semi-dessert and to verify its potential as an industrial inulinase producer. This enzyme can be obtained from microorganisms that live in close association with inulin plant store tissues. Inulin is a widespread plant polyfructan that serves as a storage polysaccharide in several plants and its depolymerization involves the action of inulinase. Inulinases are cl...

  16. Simulation of plant communities with a cellular automaton

    Energy Technology Data Exchange (ETDEWEB)

    Gassmann, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    With a modelling approach based on cellular automata, five observed types of plant development can be simulated. In addition, the proposed model shows a strong tendency towards the formation of patches and a high degree of dynamical and structural instability leading to limits of predictability for the asymptotic solution chosen by the system among several possible metastable patterns (multistability). Further, external fluctuations can be shown to have advantages for certain plant types. The presented model unifies the fundamental dichotomy in vegetation dynamics between determinism (understood as predictability) and disorder (chance effects) by showing the outcome of both classical theories as special cases. (author) 2 figs., 4 refs.

  17. Community Visions for the Paducah Gaseous Diffusion Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    Ormsbee, Lindell e [Civil Engineering, Univ. of KY; Kipp, James A [Univ. of KY, Kentucky water research Institute

    2011-09-01

    This report focuses on assessing community preferences for the future use of the PGDP site, given the site's pending closure by US DOE. The project approach fostered interaction and engagement with the public based on lessons learned at other complex DOE environmental cleanup sites and upon the integration of a number of principles and approaches to public engagement from the Project Team's local, state, regional and international public engagement experience. The results of the study provide the community with a record of the diversity of values and preferences related to the environmental cleanup and future use of the site.

  18. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities.......Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  19. Four decades of plant community change in the Alpine tundra of southwest Yukon, Canada.

    Science.gov (United States)

    Danby, Ryan K; Koh, Saewan; Hik, David S; Price, Larry W

    2011-09-01

    Repeat measurements from long-term plots provide precise data for studying plant community change. In 2010, we visited a remote location in Yukon, Canada, where a detailed survey of alpine tundra communities was conducted in 1968. Plant community composition was resurveyed on the same four slopes using the same methods as the original study. Species richness and diversity increased significantly over the 42 years and non-metric multidimensional scaling indicated that community composition had also changed significantly. However, the direction and magnitude of change varied with aspect. Dominant species were not replaced or eliminated but, instead, declined in relative importance. Fine-scale changes in vegetation were evident from repeat photography and dendro-ecological analysis of erect shrubs, supporting the community-level analysis. The period of study corresponds to a mean annual temperature increase of 2 degrees C, suggesting that climate warming has influenced these changes.

  20. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation

    DEFF Research Database (Denmark)

    Cazzanelli, Matteo; Perlt, Trine Warming; Christoffersen, Kirsten Seestern

    2008-01-01

    Several studies have shown that submerged macrophytes provide a refuge for zooplankton against fish predation, whereas the role of emergent and floating-leaved species, which are often dominant in eutrophic turbid lakes, is far less investigated. Zooplankton density in open water and amongst...... water, even during periods where the predation pressure was presumably high (during the recruitment of 0+ fish fry). Zooplankton abundance in open water and among vegetation exhibited low values in July and peaked in August. Bosmina and Ceriodaphnia dominated the zooplankton community in the littoral...... modifications in the predation pressure, refuge availability and concentration of cyanobacteria in the lake. It is suggested that emergent and floating-leaved macrophytes may play an important role in enhancing water clarity due to increased grazing pressure by zooplankton migrating into the plant stands...

  1. Selective herbicide applications for low impact vegetation management of exotic species and enhancement of native plant communities

    Science.gov (United States)

    Max. Williamson

    1998-01-01

    Selective and specific management for the control of exotic (non-native) plants is necessary for preservation of native plant communities. Managers of federal, state, or county land holdings and parks, wildlife areas, recreation areas, and historic sites are frequently charged with selectively managing the enhancement of desirable or native plant communities. In...

  2. Central Florida community tree guide: benefits, costs, and strategic planting

    Science.gov (United States)

    Paula J. Peper; E. Gregory McPherson; James R. Simpson; Shannon N. Albers; Qingfu Xiao

    2010-01-01

    Trees make our cities more attractive and provide many ecosystem services, including air quality improvement, energy conservation, stormwater interception, and atmospheric carbon dioxide reduction. These benefits must be weighed against the costs of maintaining trees, including planting, pruning, irrigation, administration, pest control, liability, cleanup, and removal...

  3. Tropical community tree guide: benefits, costs, and strategic planting

    Science.gov (United States)

    Kelaine E. Vargas; Gregory E. McPherson; James R. Simpson; Paula J. Peper; Shelley L. Gardner; Qingfu Xiao

    2008-01-01

    Even as they increase the beauty of our surroundings, trees provide us with a great many ecosystem services, including air quality improvement, energy conservation, stormwater interception, and atmospheric carbon dioxide reduction. These benefits must be weighed against the costs of maintaining trees, including planting, pruning, irrigation, administration, pest...

  4. Interior West community tree guide: benefits, costs, and strategic planting

    Science.gov (United States)

    Kelaine E. Vargas; Gregory E. McPherson; James R. Simpson; Paula J. Peper; Shelley L. Gardner; Qingfu. Xiao

    2007-01-01

    Even as they increase the beauty of our surroundings, trees provide us with a great many ecosystem services, including air quality improvement, energy conservation, stormwater interception, and atmospheric carbon dioxide reduction. These benefits must be weighed against the costs of maintaining trees, including planting, pruning, irrigation, administration, pest...

  5. Lower Midwest community tree guide: benefits, costs, and strategic planting

    Science.gov (United States)

    Paula J. Peper; E. Gregory McPherson; James R. Simpson; Kelaine E. Vargas; Qingfu Xiao

    2009-01-01

    Even as they increase the beauty of our surroundings, trees provide us with a great many ecosystem services, including air quality improvement, energy conservation, stormwater interception, and atmospheric carbon dioxide reduction. These benefits must be weighed against the costs of maintaining trees, including planting, pruning, irrigation, administration, pest...

  6. THE ROLE OF THERMAL REGIMEN IN TUNDRA PLANT COMMUNITY RESTORATION

    Science.gov (United States)

    Mineral extraction activities in the Arctic regions of the world produce long-lasting ecological disturbances. Assisted recovery from such disturbances may require restoration of the tundra thermal regime. We transplanted plugs of entire root zone and live tundra plants to a dist...

  7. The delineation of plant communities in relatively homogenous ...

    African Journals Online (AJOL)

    A relatively homogenous area of grassland was sampled by means of 2204 systematically place 0.5 m squared quadrats for the presence or absence of all vascular plants this data was processed by the method of normal association analysis which provided an hierarchical subdivision of the vegetation. This subdivision ...

  8. Earthworm abundance and distribution pattern in contrasting plant communities within a tropical wet forest in Puerto Rico

    Science.gov (United States)

    G. Gonzalez; X. Zou; A. Sabat; N. Fetcher

    1999-01-01

    Plant communities may impose strong control on soil fauna properties. We examined the abundance and distribution pattern of earthworms in two contrasting plant communities within a tropical wet forest in Puerto Rico. The Dacryodes community occurs in well-drained soils and is dominated by Dacryodes excels, Manilkara bidentata, Guarea guidonea, and Sloanea berteriana....

  9. The biodiversity and stability of alpine meadow plant communities in ...

    African Journals Online (AJOL)

    Kobresia pygmaea meadow community diversities in relation to altitude gradients (4200, 4300, 4400, 4450) on free grazing grassland was studied in the range of Chenduo county, Yushu prefecture, Qinghai province. Species richness and diversity index of vegetations in the four altitudes were comparatively analyzed.

  10. Using geomorphology to map plant community distribution in complex polygonal tundra landscapes

    Science.gov (United States)

    Sloan, V. L.; Gangodagamage, C.; Iversen, C. M.; Norby, R. J.; Wullschleger, S. D.

    2014-12-01

    Climate change over the next century is expected to substantially alter Arctic ecosystem structure and function, resulting in important feedbacks to global climate. Representing Arctic landscapes in the carbon cycle and climate models, however, is challenging because vegetation and soils vary over small spatial scales. Robust approaches are needed for identifying distinct plant communities for fine-scale model parameterizations, and for mapping the distribution of these communities to enable scaling from plot to grid-cell. Here, we demonstrate how a novel technique using LiDAR-derived metrics to delineate micro-topographic features can also be applied to mapping plant community distribution in a polygonal tundra landscape on the Barrow Environmental Observatory (BEO), Alaska. We recorded species composition in 48, 1 x 1 m plots located across contrasting ice-wedge polygon types on the BEO in July 2012. One-way cluster analysis and non-metric multidimensional scaling identified four major plant communities, namely i) tall Carex (sedge) dominated communities, ii) mixed tall graminoid-forb-moss communities, iii) dry graminoid-lichen communities and iv) low-stature, lichen dominated-communities. These communities were strongly linked to micro-topography, corresponding with i) low centers ii) troughs, iii) rims and transitional polygon centers, and iv) high centers. We therefore combined plant community type with geomorphological analyses using high-resolution LiDAR-derived metrics (e.g. slope, curvature, flowpath distances) to delineate micro-topographic features to produce a vegetation map. The map was verified using 24 field survey transects in which plant community boundaries were mapped using DGPS. The approach performed well, with only a small (5%) over-estimate of the extent of trough communities and a corresponding under-estimate of rim and transitional center communities. Overall, these analyses provide a framework which can be used for parameterizing fine

  11. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    Science.gov (United States)

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. © 2014 John Wiley & Sons Ltd.

  12. Coal mining activities change plant community structure due to air pollution and soil degradation.

    Science.gov (United States)

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  13. Distinguishing Early Successional Plant Communities Using Ground-Level Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Itiya Aneece

    2015-12-01

    Full Text Available Abandoned agricultural fields have recently become more abundant in the U.S. and remain susceptible to species invasions after cultivation disturbance. As invasive species become more widespread with increases in anthropogenic activities, we need more effective ways to use limited resources for conservation of native ecosystems. Remote sensing can help us monitor the spread and effects of invasive species, and thus determine the species and locations to target for conservation. To examine this potential, we studied plant communities dominated by exotic invasive plant species in secondary successional fields in northern Virginia using ground-level hyperspectral data. Within these communities, ordination analyses of vegetation surveys revealed differences in species compositions among plots and fields. These differences among communities were also observed in the spectral data. Stepwise multiple linear regression analyses to determine which species influenced the ordination axes revealed that many of the influential species are considered invasive, again underscoring the influence of invasive species on community properties. Stepwise regression analyses also revealed that the most influential wavelengths for discrimination were distributed along the spectral profile from the visible to the near-infrared regions. A discriminant analysis using wavelengths selected with a principal components analysis demonstrated that different plant communities were separable using spectral data. These spectrally observable differences suggest that we can use hyperspectral data to distinguish among invasive-dominated successional plant communities in this region.

  14. PLANT COMMUNITIES WITH ARNICA MONTANA IN NATURAL HABITATS FROM THE CENTRAL REGION OF ROMANIAN EASTERN CARPATHIANS

    Directory of Open Access Journals (Sweden)

    Constantin MARDARI

    2015-12-01

    Full Text Available Arnica montana is a species of European Union interest, whose harvest from the wild and exploitation should be made under certain management measures. In Romania it is a vulnerable species due to excessive collection. It is a species with European areal occuring in pastures, meadows, forest glades, shrubs communities of mountain to the subalpine regions and, isolated, up to the alpine belt. Most of the plant communities with Arnica montana are semi-natural, with a floristic composition in which there are numerous rare or threatened species also supporting the need of their conservation. Our study was focused on a numerical classification (hierarchical, using Flexible ß algorithm and Bray-Curtis dissimilarity based on 48 plots, of the plant communities with Arnica montana from the central region of Romanian Eastern Carpathians and on the investigation of the effect of some environmental variables (Ellenberg indicator values, altitude, heat load index on their floristic composition (100 m2 scale. Vegetation – environment relationship was assessed via detrended correspondence analysis and canonical correspondence analysis with Monte Carlo test. Six plant communities with Arnica montana were identified (communities of Festuca rubra with Agrostis capillaris, Festuca nigrescens, Vaccinium myrtillus, Nardus stricta, Vaccinium gaultherioides and Juniperus sibirica with a floristic composition mainly shaped by altitude, temperature and soil nitrogen content. Details related to location and sites characteristics, diagnostic species, floristic composition, presence of other rare or threatened species and Arnica montana abundance were presented for all these plant communities.

  15. Species richness of yeast communities in floral nectar of southern Spanish plants.

    Science.gov (United States)

    Pozo, María I; Herrera, Carlos M; Bazaga, Pilar

    2011-01-01

    Floral nectar of insect-pollinated plants often contains dense yeast populations, yet little quantitative information exists on patterns and magnitude of species richness of nectar-dwelling yeasts in natural plant communities. This study evaluates yeast species richness at both the plant community and plant species levels in a montane forest area in southern Spain, and also explores possible correlations between the incidence of different yeast species in nectar and their reported tolerance to high sugar concentrations, and between yeast diversity and pollinator composition. Yeast species occurring in a total of 128 field-collected nectar samples from 24 plant species were identified by sequencing the D1/D2 domain of the large subunit rDNA, and rarefaction-based analyses were used to estimate yeast species richness at the plant community and plant species levels, using nectar drops as elemental sampling units. Individual nectar samples were generally characterized by very low species richness (1.2 yeast species/sample, on average), with the ascomycetous Metschnikowia reukaufii and Metschnikowia gruessii accounting altogether for 84.7% of the 216 isolates identified. Other yeasts recorded included species in the genera Aureobasidium, Rhodotorula, Cryptococcus, Sporobolomyces, and Lecythophora. The shapes and slopes of observed richness accumulation curves were quite similar for the nectar drop and plant species approaches, but the two approaches yielded different expected richness estimates. Expected richness was higher for plant species-based than for nectar drop-based analyses, showing that the coverage of nectar yeast species occurring in the region would be improved by sampling additional host plant species. A significant correlation was found between incidence of yeast species in nectar and their reported ability to grow in a medium containing 50% glucose. Neither diversity nor incidence of yeasts was correlated with pollinator composition across plant species.

  16. Interactive effects of deer exclusion and exotic plant removal on deciduous forest understory communities

    Science.gov (United States)

    Bourg, Norman; McShea, William J.; Herrmann, Valentine; Stewart, Chad M.

    2017-01-01

    Mammalian herbivory and exotic plant species interactions are an important ongoing research topic, due to their presumed impacts on native biodiversity. The extent to which these interactions affect forest understory plant community composition and persistence was the subject of our study. We conducted a 5-year, 2 × 2 factorial experiment in three mid-Atlantic US deciduous forests with high densities of white-tailed deer (Odocoileus virginianus) and exotic understory plants. We predicted: (i) only deer exclusion and exotic plant removal in tandem would increase native plant species metrics; and (ii) deer exclusion alone would decrease exotic plant abundance over time. Treatments combining exotic invasive plant removal and deer exclusion for plots with high initial cover, while not differing from fenced or exotic removal only plots, were the only ones to exhibit positive richness responses by native herbaceous plants compared to control plots. Woody seedling metrics were not affected by any treatments. Deer exclusion caused significant increases in abundance and richness of native woody species >30 cm in height. Abundance changes in two focal members of the native sapling community showed that oaks (Quercus spp.) increased only with combined exotic removal and deer exclusion, while shade-tolerant maples (Acer spp.) showed no changes. We also found significant declines in invasive Japanese stiltgrass (Microstegium vimineum) abundance in deer-excluded plots. Our study demonstrates alien invasive plants and deer impact different components and life-history stages of the forest plant community, and controlling both is needed to enhance understory richness and abundance. Alien plant removal combined with deer exclusion will most benefit native herbaceous species richness under high invasive cover conditions while neither action may impact native woody seedlings. For larger native woody species, only deer exclusion is needed for such increases. Deer exclusion directly

  17. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  18. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth.

    Science.gov (United States)

    Wang, Ziting; Li, Tong; Wen, Xiaoxia; Liu, Yang; Han, Juan; Liao, Yuncheng; DeBruyn, Jennifer M

    2017-01-01

    Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years) conservation (chisel plow, zero) and conventional (plow) tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS) gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1) differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2) tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in tillage regimes may

  19. Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant.

    Science.gov (United States)

    Oh, Seungdae; Hammes, Frederik; Liu, Wen-Tso

    2018-01-01

    Microorganisms inhabiting filtration media of a drinking water treatment plant can be beneficial, because they metabolize biodegradable organic matter from source waters and those formed during disinfection processes, leading to the production of biologically stable drinking water. However, which microbial consortia colonize filters and what metabolic capacity they possess remain to be investigated. To gain insights into these issues, we performed metagenome sequencing and analysis of microbial communities in three different filters of a full-scale drinking water treatment plant (DWTP). Filter communities were sampled from a rapid sand filter (RSF), granular activated carbon filter (GAC), and slow sand filter (SSF), and from the Schmutzdecke (SCM, a biologically active scum layer accumulated on top of SSF), respectively. Analysis of community phylogenetic structure revealed that the filter bacterial communities significantly differed from those in the source water and final effluent communities, respectively. Network analysis identified a filter-specific colonization pattern of bacterial groups. Bradyrhizobiaceae were abundant in GAC, whereas Nitrospira were enriched in the sand-associated filters (RSF, SCM, and SSF). The GAC community was enriched with functions associated with aromatics degradation, many of which were encoded by Rhizobiales (∼30% of the total GAC community). Predicting minimum generation time (MGT) of prokaryotic communities suggested that the GAC community potentially select fast-growers (structure, colonization pattern, and metabolic capacity that potentially contributes to organic matter removal achieved in the biofiltration stages of the full-scale DWTP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Planting the Seed: An Evaluation of a Community Youth Summit

    Directory of Open Access Journals (Sweden)

    Corliss Outley

    2010-09-01

    Full Text Available Meaningful youth engagement produces benefits both to youth and to the community in which they live. This paper discusses a day-long youth summit held for 289 middle school students. Youth attended a combination of mass and break-out sessions based on America’s Promise Five Promises. Planners and evaluators assessed proximal student outcomes throughout the day. A two question visual analog scale was developed and utilized to assess students’ perceptions of learning and enjoyment.

  1. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Eiko E Kuramae

    Full Text Available We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age in pots associated with four maize cultivars, including two genetically modified (GM cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA. The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most "active" fungi (as recovered via RNA. Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production. Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.

  2. The Upper Mississippi River floodscape: spatial patterns of flood inundation and associated plant community distributions

    Science.gov (United States)

    DeJager, Nathan R.; Rohweder, Jason J.; Yin, Yao; Hoy, Erin E.

    2016-01-01

    Questions How is the distribution of different plant communities associated with patterns of flood inundation across a large floodplain landscape? Location Thirty-eight thousand nine hundred and seventy hectare of floodplain, spanning 320 km of the Upper Mississippi River (UMR). Methods High-resolution elevation data (Lidar) and 30 yr of daily river stage data were integrated to produce a ‘floodscape’ map of growing season flood inundation duration. The distributions of 16 different remotely sensed plant communities were quantified along the gradient of flood duration. Results Models fitted to the cumulative frequency of occurrence of different vegetation types as a function of flood duration showed that most types exist along a continuum of flood-related occurrence. The diversity of community types was greatest at high elevations (0–10 d of flooding), where both upland and lowland community types were found, as well as at very low elevations (70–180 d of flooding), where a variety of lowland herbaceous communities were found. Intermediate elevations (20–60 d of flooding) tended to be dominated by floodplain forest and had the lowest diversity of community types. Conclusions Although variation in flood inundation is often considered to be the main driver of spatial patterns in floodplain plant communities, few studies have quantified flood–vegetation relationships at broad scales. Our results can be used to identify targets for restoration of historical hydrological regimes or better anticipate hydro-ecological effects of climate change at broad scales.

  3. Plant communities of the Ebenhaezer section of the Mountain Zebra National Park

    Directory of Open Access Journals (Sweden)

    J. de Klerk

    2003-12-01

    Full Text Available The long-term conservation of viable ecosystems requires a broader understanding of the ecological processes involved. Because ecosystems react differently to different management practices, it is important to have a description and classification of the vegetation of an area available. As part of a vegetation survey programme for the newly acquired farms to be incorporated into the Mountain Zebra National Park, the vegetation of the Ebenhaezer section was investigated. Ahierarchical classification, vegetation map, description and ecological interpretation of the plant communities of the study area are presented. ATWINSPAN classification, refined by Braun-Blanquet procedures revealed eight distinct plant communities. Habitat factors associated with differences in vegetation include topography, soil form and grazing. Descriptions of the plant communities include diagnostic species as well as prominent and less conspicuous species of the tree, shrub and herbaceous layers.

  4. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    Energy Technology Data Exchange (ETDEWEB)

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  5. Use of Medical Plants in Schools Communities from Sinop, Mato Grosso.

    Directory of Open Access Journals (Sweden)

    A. C. M. Urtado

    2013-03-01

    Full Text Available Abstract: This study was conducted in Sinop, Mato Grosso, on two school communities. It was applied semi-structured questionnaires with questions focused on socioeconomic and the use of medicinal plants. It has as finality proved the effective use of medicinal plants on the everyday and a levy of the most used plant. The general profile of the respondents has shown that the women detain the major part of the knowledge, and that pass this uses to the future generations and friends, and find these plants on specialty stores, backyards, supermarket, root stores, bush and fairs. The plants that were found more frequently was (Ruta graveolens L., Babosa (Aloe vera L., Erva-Cidreira (Lippia alba Mill., Erva-Santa-Maria (Chenopodium ambrosioides L., Boldo (Plectranthus amboinicus Spreng., Hortel(Menta x vilosa Huds. e Terramicina (Alternanthera dentata Moench..Keywords: medical plants, Sinop, school.

  6. Root Zone Microbial Communities and Restoration of Plant Communities in Owens Valley, California - Phase 1

    Science.gov (United States)

    2007-09-01

    community is composed of Ambrosia dumosa (burrobush), Artemisia spinescens (bud sage), Atriplex con- fertifolia (schadscale), Atriplex polycarpa...pauciflora (desert milkaster). • The dryland nonalkaline scrub community is composed of Artemisia tridentata (big sagebrush), Chrysothamnus teretifolius...locations all show significantly heavier ratios, probably indicating ordinary fertilizer with heavier nitrogen via the Haber process. Autotrophs

  7. Evapotranspiration over spatially extensive plant communities in the Big Cypress National Preserve, southern Florida, 2007-2010

    Science.gov (United States)

    Shoemaker, W. Barclay; Lopez, Christian D.; Duever, Michael J.

    2011-01-01

    Evapotranspiration (ET) was quantified over plant communities within the Big Cypress National Preserve (BCNP) using the eddy covariance method for a period of 3 years from October 2007 to September 2010. Plant communities selected for study included Pine Upland, Wet Prairie, Marsh, Cypress Swamp, and Dwarf Cypress. These plant communities are spatially extensive in southern Florida, and thus, the ET measurements described herein can be applied to other humid subtropical locations such as the Everglades.

  8. Impeller Submergence Depth for Stirred Tanks

    Directory of Open Access Journals (Sweden)

    Thiyam T. Devi

    2011-11-01

    Full Text Available Impeller submergence governs the performance of mixing tanks employed in oxygen transfer operation. Present work experimentally investigates the effect of impeller submergence depths on oxygen transfer and corresponding power consumption. It has been found that at higher range of impeller submergence, mixing tanks consume less power and gives higher values of oxygen transfer coefficient. Optimal range of submergence depth is 0.7 to 0.9 times the impeller diameter. Copyright ©2011 BCREC UNDIP. All rights reserved.(Received: 4th March 2011; Revised: 12nd July 2011; Accepted: 14th July 2011[How to Cite: T.T. Devi, A.P. Sinha, M. Thakre, and B. Kumar. (2011. Impeller Submergence Depth for Stirred Tanks. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 123-128. doi:10.9767/bcrec.6.2.826.123-128][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.826.123-128 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/826] | View in 

  9. Allelopathy and resource competition: the effects of Phragmites australis invasion in plant communities.

    Science.gov (United States)

    Uddin, Md Nazim; Robinson, Randall William

    2017-12-01

    Phragmites australis, a ubiquitous wetland plant, has been considered one of the most invasive species in the world. Allelopathy appears to be one of the invasion mechanisms, however, the effects could be masked by resource competition among target plants. The difficulty of distinguishing allelopathy from resource competition among plants has hindered investigations of the role of phytotoxic allelochemicals in plant communities. This has been addressed via experiments conducted in both the greenhouse and laboratory by growing associated plants, Melaleuca ericifolia, Rumex conglomeratus, and model plant, Lactuca sativa at varying densities with the allelopathic plant, P. australis, its litter and leachate of P. australis litter. This study investigated the potential interacting influences of allelopathy and resource competition on plant growth-density relationships. In greenhouse, the root exudates mediated effects showed the strongest growth inhibition of M. ericifolia at high density whereas litter mediated results revealed increased growth at medium density treatments compared to low and high density. Again, laboratory experiments related to seed germination and seedling growth of L. sativa and R. conglomeratus exhibited phytotoxicity decreased showing positive growth as plant density increased and vice versa. Overall, the differential effects were observed among experiments but maximum individual plant biomass and some other positive effects on plant traits such as root and shoot length, chlorophyll content occurred at an intermediate density. This was attributed to the sharing of the available phytotoxin among plants at high densities which is compatible to density-dependent phytotoxicity model. The results demonstrated that plant-plant interference is the combined effect of allelopathy and resource competition with many other factors but this experimental design, target-neighbor mixed-culture in combination of plant grown at varying densities with varying

  10. Arbuscular mycorrhizal fungal communities in forest plant roots are simultaneously shaped by host characteristics and canopy-mediated light availability

    NARCIS (Netherlands)

    Koorem, Kadri; Tulva, Ingmar; Davison, John; Jairus, Teele; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Moora, Mari

    2017-01-01

    Background and aims The majority of terrestrial plant species associate with arbuscular mycorrhizal (AM) fungi, to exchange carbon compounds with nutrients. However, the factors that determine the composition of AM fungal communities in individual plant roots remain poorly understood. We

  11. Effects of single and multiple applications of glyphosate or aminopyralid on simple constructed plant communities.

    Science.gov (United States)

    Pfleeger, Thomas; Blakeley-Smith, Matthew; Lee, E Henry; King, George; Plocher, Milton; Olszyk, David

    2014-10-01

    To determine effects of multiple applications of herbicides on small constructed plant communities, Prunella vulgaris L.var. lanceolata Fern, Festuca roemeri (Pavlick) Alexeev, Clarkia amoena (Lehm.) Nels., and Cynosurus echinatus L. were grown together in small field plots. Plants were treated with glyphosate at target concentrations of 0 × , 0.01 × , 0.1 × , and 0.2× a field application rate (FAR) of 1122 g ha(-1) active ingredient (a.i.) for 3 yr in 1 location, and for 2 yr in a second location. Plants also were treated with aminopyralid at 0 × , 0.037 × , 0.136 × , and 0.5× FAR of 123 g ha(-1) a.i. for 2 yr in 2 locations. Plants received 1, 2, or 3 applications of each herbicide each year. Species and community responses depended on herbicide concentration and number of applications. With glyphosate, plant volume (modified formula for a cone) tended to decrease for all species (especially C. echinatus), and the decreases generally became larger with more applications. Plant communities exposed to the 2 greatest concentrations initially differed from controls but then appeared to recover. With aminopyralid, C. amoena was essentially eliminated from the communities, especially at the 2 greatest FARs, whereas the other 3 species tended to have significant increases in volume, especially at the 2 smallest FARs. With aminopyralid, increasing numbers of applications produced variable results, and the plant community volume never tended to recover. Published 2014 Wiley Periodicals Inc., on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  12. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life-history traits related to both species persistence and dispersal modified plant...... sensitivity to habitat loss, indicating that both landscape and local processes determined large-scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented...

  13. Exploratory Retrospective Analysis of Power Plant Emissions in Vulnerable Communities in the United States

    Science.gov (United States)

    Declet-Barreto, J.; Pham, M.

    2016-12-01

    Carbon emissions trading has been implemented in parts of the United States (and elsewhere) to reduce greenhouse gas emissions. Data from one such program focused on power plant emissions in the U.S. Northeast and Mid-Atlantic, the Regional Greenhouse Gas Initiative (RGGI), have shown that regionally, power sector carbon dioxide emissions have been reduced since the adoption of the program in 2009. However, it is not known what the spatial distributions of such reductions have been in individual plants, and if emissions reductions have ocurred in plants impacting low-income and ethnic minority communities, arguably the populations most overburdened by health threats from co-pollutants (e.g., fine particulates, nitrous oxides, and sulfurous oxides) emitted along greenhouse gases. In this research, we explore the trajectory of power plant emissions in the RGGI region in vulnerable communities. This is a first, exploratory step in understanding the environmental justice implications of market-based carbon reduction policies.

  14. Plant communities on infertile soils are less sensitive to climate change.

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen; Fernandez-Going, Barbara; Eskelinen, Anu; Copeland, Stella

    2015-11-01

    Much evidence suggests that plant communities on infertile soils are relatively insensitive to increased water deficit caused by increasing temperature and/or decreasing precipitation. However, a multi-decadal study of community change in the western USA does not support this conclusion. This paper tests explanations related to macroclimatic differences, overstorey effects on microclimate, variation in soil texture and plant functional traits. A re-analysis was undertaken of the changes in the multi-decadal study, which concerned forest understorey communities on infertile (serpentine) and fertile soils in an aridifying climate (southern Oregan) from 1949-1951 to 2007-2008. Macroclimatic variables, overstorey cover and soil texture were used as new covariates. As an alternative measure of climate-related change, the community mean value of specific leaf area was used, a functional trait measuring drought tolerance. We investigated whether these revised analyses supported the prediction of lesser sensitivity to climate change in understorey communities on infertile serpentine soils. Overstorey cover, but not macroclimate or soil texture, was a significant covariate of community change over time. It strongly buffered understorey temperatures, was correlated with less change and averaged >50 % lower on serpentine soils, thereby counteracting the lower climate sensitivity of understorey herbs on these soils. Community mean specific leaf area showed the predicted pattern of less change over time in serpentine than non-serpentine communities. Based on the current balance of evidence, plant communities on infertile serpentine soils are less sensitive to changes in the climatic water balance than communities on more fertile soils. However, this advantage may in some cases be lessened by their sparser overstorey cover. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email

  15. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants.

    Science.gov (United States)

    Marques, Joana M; da Silva, Thais F; Vollu, Renata E; Blank, Arie F; Ding, Guo-Chun; Seldin, Lucy; Smalla, Kornelia

    2014-05-01

    The hypothesis that sweet potato genotypes containing different starch yields in their tuberous roots can affect the bacterial communities present in the rhizosphere (soil adhering to tubers) was tested in this study. Tuberous roots of field-grown sweet potato of genotypes IPB-149 (commercial genotype), IPB-052, and IPB-137 were sampled three and six months after planting and analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analysis of 16S rRNA genes PCR-amplified from total community DNA. The statistical analysis of the DGGE fingerprints showed that both plant age and genotypes influenced the bacterial community structure in the tuber rhizosphere. Pyrosequencing analysis showed that the IPB-149 and IPB-052 (both with high starch content) displayed similar bacterial composition in the tuber rhizosphere, while IPB-137 with the lowest starch content was distinct. In comparison with bulk soil, higher 16S rRNA gene copy numbers (qPCR) and numerous genera with significantly increased abundance in the tuber rhizosphere of IPB-137 (Sphingobium, Pseudomonas, Acinetobacter, Stenotrophomonas, Chryseobacterium) indicated a stronger rhizosphere effect. The genus Bacillus was strongly enriched in the tuber rhizosphere samples of all sweet potato genotypes studied, while other genera showed a plant genotype-dependent abundance. This is the first report on the molecular identification of bacteria being associated with the tuber rhizosphere of different sweet potato genotypes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Constructing more informative plant-pollinator networks: visitation and pollen deposition networks in a heathland plant community.

    Science.gov (United States)

    Ballantyne, G; Baldock, Katherine C R; Willmer, P G

    2015-09-07

    Interaction networks are widely used as tools to understand plant-pollinator communities, and to examine potential threats to plant diversity and food security if the ecosystem service provided by pollinating animals declines. However, most networks to date are based on recording visits to flowers, rather than recording clearly defined effective pollination events. Here we provide the first networks that explicitly incorporate measures of pollinator effectiveness (PE) from pollen deposition on stigmas per visit, and pollinator importance (PI) as the product of PE and visit frequency. These more informative networks, here produced for a low diversity heathland habitat, reveal that plant-pollinator interactions are more specialized than shown in most previous studies. At the studied site, the specialization index [Formula: see text] was lower for the visitation network than the PE network, which was in turn lower than [Formula: see text] for the PI network. Our study shows that collecting PE data is feasible for community-level studies in low diversity communities and that including information about PE can change the structure of interaction networks. This could have important consequences for our understanding of threats to pollination systems. © 2015 The Authors.

  17. Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors.

    Science.gov (United States)

    Williams, Thomas R; Marco, Maria L

    2014-08-12

    The aerial surfaces of plants, or phyllosphere, are microbial habitats important to plant and human health. In order to accurately investigate microbial interactions in the phyllosphere under laboratory conditions, the composition of the phyllosphere microbiota should be representative of the diversity of microorganisms residing on plants in nature. We found that Romaine lettuce grown in the laboratory contained 10- to 100-fold lower numbers of bacteria than age-matched, field-grown lettuce. The bacterial diversity on laboratory-grown plants was also significantly lower and contained relatively higher proportions of Betaproteobacteria as opposed to the Gammaproteobacteria-enriched communities on field lettuce. Incubation of field-grown Romaine lettuce plants in environmental growth chambers for 2 weeks resulted in bacterial cell densities and taxa similar to those on plants in the field but with less diverse bacterial populations overall. In comparison, the inoculation of laboratory-grown Romaine lettuce plants with either freshly collected or cryopreserved microorganisms recovered from field lettuce resulted in the development of a field-like microbiota on the lettuce within 2 days of application. The survival of an inoculated strain of Escherichia coli O157:H7 was unchanged by microbial community transfer; however, the inoculation of E. coli O157:H7 onto those plants resulted in significant shifts in the abundance of certain taxa. This finding was strictly dependent on the presence of a field-associated as opposed to a laboratory-associated microbiota on the plants. Phyllosphere microbiota transplantation in the laboratory will be useful for elucidating microbial interactions on plants that are important to agriculture and microbial food safety. The phyllosphere is a habitat for a variety of microorganisms, including bacteria with significant relevance to plant and human health. Some indigenous epiphytic bacteria might affect the persistence of human food

  18. Can DNA sequencing show differences between microbial communities in Polish and Danish wastewater treatment plants?

    Science.gov (United States)

    Miłobędzka, A; Muszyński, A

    2017-03-01

    The microbial populations in the activated sludge of two Polish wastewater treatment plants (WWTPs) were identified and quantified using Illumina sequencing of 16S ribosomal RNA amplicons over a 2-year period. Their dynamics over time were compared to Danish WWTPs (data collected in previous studies by Center for Microbial Communities, Aalborg University). The bacterial communities in Polish and Danish WWTPs were similar to each other, but the microbial diversity in Polish WWTPs was lower. The dominant genera in Polish WWTPs were more abundant than in Danish WWTPs; 30 of them constituted more than half the of activated sludge community. Polish WWTPs showed a higher abundance of bacteria involved in nitrogen and chemical oxygen demand removal (Proteobacteria and Bacteroidetes), while polyphosphate-acculumating bacteria were the dominant bacterial group in Danish plants. The microbial community structures in the examined Polish WWTPs were relatively similar to each other and showed strong seasonal variations which are not normally observed in Danish WWTPs.

  19. Ecological effects of transgene persistence on plant communities in the presence and absence of drift levels of glyphosate herbicide

    Science.gov (United States)

    In 2005, plant communities were constructed in outdoor sunlit chambers that contained 3 round tubs having a surface area of 1.2 m2 and a depth of 0.6 m. Six plant types were planted in triplicate using the same spatial arrangement in each tub. Three of the six plant types were se...

  20. Earthworms drive succession of both plant and Collembola communities in post-mining sites

    Science.gov (United States)

    Mudrák, Ondřej; Uteseny, Karoline; Frouz, Jan

    2016-04-01

    Previous field observations indicated that earthworms promote late-successional plant species and reduce collembolan numbers at post-mining sites in the Sokolov coal mining district (Czech Republic). Here, we established a laboratory pot experiment to test the effect of earthworms (Aporrectodea caliginosa Savigny and Lumbricus rubellus Hoffm.) and litter of low, medium, and high quality (the grass Calamagrostis epigejos, the willow Salix caprea, and the alder Alnus glutinosa, respectively) on late successional plants (grasses Arrhenatherum elatius and Agrostis capillaris, legumes Lotus corniculatus and Trifolium medium, and non-leguminous dicots Centaurea jacea and Plantago lanceolata) in spoil substrate originating from Sokolov post-mining sites and naturally inhabited by abundant numbers of Collembola. The earthworms increased plant biomass, especially that of the large-seeded A. elatius, but reduced the number of plant individuals, mainly that of the small-seeded A. capillaris and both legumes. Litter quality affected plant biomass, which was highest with S. caprea litter, but did not change the number of plant individuals. Litter quality did not modify the effect of earthworms on plants; the effect of litter quality and earthworms was only additive. Species composition of Collembola community was altered by litter quality, but earthworms reduced the number of individuals, increased the number of species, and increased species evenness consistently across the litter qualities. Because the results of this experiment were consistent with the field observations, we conclude that earthworms help drive succession of both plant and Collembola communities on post-mining sites.

  1. Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec

    National Research Council Canada - National Science Library

    Bartemucci, Paula; Messier, Christian; Canham, Charles D

    2006-01-01

    We have characterized overstory light transmission, understory light levels, and plant communities in mixed wood boreal forests of northwestern Quebec with the objective of understanding how overstory...

  2. Plant communities of field boundaries in Finnish farmland

    Directory of Open Access Journals (Sweden)

    S. TARMI

    2008-12-01

    Full Text Available To determine the importance of field boundary habitats for farmland biodiversity, we surveyed a total of 193 boundaries from four climatically and agriculturally dissimilar regions in Finland. We measured the current plant species richness and composition of the boundaries, and based on the differences in vegetation characteristics, we describe six boundary types. The observed plant species were mainly indicators of fresh to wet soils and moderate to rich mineral nitrogen content. The most frequent species were tall, perennial monocots and dicots indicating the high productivity of thevegetation. Moreove, herbicide-tolerant species were common. No species rare for Finland were found.In animal husbandry regions, the most frequent species were sown grassland species and typical grassland weeds. In cereal production regions, fast-spreading root weeds tolerant of herbicides were the most frequent. Mean species richness was highest in the cluster Ca-lamagrostis-Phalaris (24 species (s/boundary (b, which we considered as representative of moist sites with some disturbance by agricultural practices. Most species-poor were the clusters Elymus-Anthriscus (14 s/band Elymus-Cirsium (16 s/b,both found predominantly in cereal production regions in southern Finland. Our results suggest that the biodiversity value of boundaries is lowest in the most intensive cereal production areas and highest in areas of mixed farming.;

  3. Socioeconomic impacts of nuclear power plant siting: a case study of two New England communities

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, B. J.

    1976-01-01

    An examination is presented of the social, economic and political/institutional impacts of two operating nuclear power complexes on two New England communities. The work is one of a series planned to broaden knowledge of the effects of large energy-generating facilities upon the social structure of local communities. Its primary objectives are to investigate and assess social and economic impacts resulting from construction and operation of nuclear power plants and to generate hypotheses about such impacts for future testing.

  4. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    OpenAIRE

    Wei Hui; Tucker Melvin P; Baker John O; Harris Michelle; Luo Yonghua; Xu Qi; Himmel Michael E; Ding Shi-You

    2012-01-01

    Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it d...

  5. Distribution of plant communities in the Badlands of the Upper Llobregat Basin (Southeastern Pyrenees)

    OpenAIRE

    Guardia, Roser; Josep M. Ninot

    2017-01-01

    The plant communities of the badlands of a pre-Pyrenean area were studied by means of a geomorphological selection of the eroded areas and 71 phytocoenological relevés with topographic data. The relevés were subdivided into two groups, according to the two kinds of substratum (Eocene marls and Upper Cretaceous clays), and then submitted to Correspondence Analysis. According to these analyses and to abiotic parameters, nine vegetation types can be distinguished. Each community is characterized...

  6. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest

    OpenAIRE

    Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.

    2014-01-01

    In this study we sequenced bacterial communities present on tree leaves in a neotropical forest in Panama, to quantify the poorly understood relationships between bacterial biodiversity on leaves (the phyllosphere) vs. host tree attributes. Bacterial community structure on leaves was highly correlated with host evolutionary relatedness and suites of plant functional traits related to host ecological strategies for resource uptake and growth/mortality tradeoffs. The abundance of several bacter...

  7. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies

    Science.gov (United States)

    Maron, J.L.; Estes, J.A.; Croll, D.A.; Danner, E.M.; Elmendorf, S.C.; Buckelew, S.L.

    2006-01-01

    The ramifying effects of top predators on food webs traditionally have been studied within the framework of trophic cascades. Trophic cascades are compelling because they embody powerful indirect effects of predators on primary production. Although less studied, indirect effects of predators may occur via routes that are not exclusively trophic. We quantified how the introduction of foxes onto the Aleutian Islands transformed plant communities by reducing abundant seabird populations, thereby disrupting nutrient subsidies vectored by seabirds from sea to land. We compared soil and plant fertility, plant biomass and community composition, and stable isotopes of nitrogen in soil, plants, and other organisms on nine fox-infested and nine historically fox-free islands across the Aleutians. Additionally, we experimentally augmented nutrients on a fox-infested island to test whether differences in plant productivity and composition between fox-infested and fox-free islands could have arisen from differences in nutrient inputs between island types. Islands with historical fox infestations had soils low in phosphorus and nitrogen and plants low in tissue nitrogen. Soils, plants, slugs, flies, spiders, and bird droppings on these islands had low d15N values indicating that these organisms obtained nitrogen from internally derived sources. In contrast, soils, plants, and higher trophic level organisms on fox-free islands had elevated d15N signatures indicating that they utilized nutrients derived from the marine environment. Furthermore, soil phosphorus (but not nitrogen) and plant tissue nitrogen were higher on fox-free than fox-infested islands. Nutrient subsidized fox-free islands supported lush, high biomass plant communities dominated by graminoids. Fox-infested islands were less graminoid dominated and had higher cover and biomass of low-lying forbs and dwarf shrubs. While d15N profiles of soils and plants and graminoid biomass varied with island size and distance from

  8. Ethnobotany of wild plants used for starting fermented beverages in Shui communities of southwest China.

    Science.gov (United States)

    Hong, Liya; Zhuo, Jingxian; Lei, Qiyi; Zhou, Jiangju; Ahmed, Selena; Wang, Chaoying; Long, Yuxiao; Li, Feifei; Long, Chunlin

    2015-05-28

    Shui communities of southwest China have an extensive history of using wild plants as starters (Xiaoqu) to prepare fermented beverages that serve important roles in interpersonal relationships and cultural events. While the practice of using wild plants as starters for the preparation of fermented beverages was once prevalent throughout China, this tradition has seen a decline nationally since the 1930s. The traditional technique of preparing fermented beverages from wild plant starters remains well preserved in the Shui communities in southwest China and provides insight on local human-environment interactions and conservation of plant biodiversity for cultural purposes. The present study sought to examine the ethnobotany of wild plants used as starters for the preparation of fermented beverages including an inventory of plants used as a starter in liquor fermentation and associated knowledge and practices. Field surveys were carried out that consisted of semi-structured surveys and plant species inventories. One hundred forty-nine informants in twenty Shui villages were interviewed between July 2012 and October 2014 to document knowledge associated with wild plants used as a liquor fermentation starter. The inventories involved plant voucher specimens and taxonomic identification of plant collections. A total of 103 species in 57 botanical families of wild plants were inventoried and documented that are traditionally used as starters for preparing fermented beverages by Shui communities. The majority of the species (93.2%) have multiple uses in addition to being used as a starter with medicinal purposes being the most prevalent. Shui women are the major harvesters and users of wild plants used as starters for preparing fermented beverages and transfer knowledge orally from mother to daughter. Findings from this study can serve as a basis for future investigation on fermented beverages and foods and associated knowledge and cultural practices. However, with rapid

  9. How plants connect pollination and herbivory networks and their contribution to community stability.

    Science.gov (United States)

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  10. Effect of a chemical manufacturing plant on community cancer rates

    Directory of Open Access Journals (Sweden)

    Churches Tim

    2005-04-01

    Full Text Available Abstract Background We conducted a retrospective study to determine if potential past exposure to dioxin had resulted in increased incidence of cancer in people living near a former manufacturing plant in New South Wales, Australia. During operation, from 1928 to 1970, by-products of the manufacturing process, including dioxin and other chemical waste, were dumped into wetlands and mangroves, discharged into a nearby bay and used to reclaim land along the foreshore, leaving a legacy of significant dioxin contamination. Methods We selected 20 Census Collector Districts within 1.5 kilometres of the former manufacturing plant as the study area. We obtained data on all cases of cancer and deaths from cancer in New South Wales from 1972 to 2001. We also compared rates for some cancer types that have been associated with dioxin exposure. Based on a person's residential address at time of cancer diagnosis, or at time of death due to cancer, various geo-coding software and processes were used to determine which collector district the case or death should be attributed to. Age and sex specific population data were used to calculate standardised incidence ratios and standardised mortality ratios, to compare the study area to two comparison areas, using indirect standardisation. Results During the 30-year study period 1,106 cases of cancer and 524 deaths due to cancer were identified in the study area. This corresponds to an age-sex standardised rate of 3.2 cases per 1,000 person-years exposed and 1.6 deaths per 1,000 person-years exposed. The study area had a lower rate of cancer and deaths from cancer than the comparison areas. The case incidence and mortality due to lung and bronchus carcinomas and haematopoietic cancers did not differ significantly from the comparison areas for the study period. There was no obvious geographical trend in ratios when comparing individual collector districts to New South Wales according to distance from the potential

  11. Hierarchical spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine B.; Møller, Jesper; Waagepetersen, Rasmus

    2009-01-01

    A complex multivariate spatial point pattern of a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially a maximum...... likelihood approach to inference where problems arise due to unknown interaction radii for the plants. We next demonstrate that a Bayesian approach provides a flexible framework for incorporating prior information concerning the interaction radii. From an ecological perspective, we are able both to confirm...

  12. Spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine; Møller, Jesper; Waagepetersen, Rasmus Plenge

    A complex multivariate spatial point pattern for a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially...... a maximum likelihood approach to inference where problems arise due to unknown interaction radii for the plants. We next demonstrate that a Bayesian approach provides a flexible framework for incorporating prior information concerning the interaction radii. From an ecological perspective, we are able both...

  13. Legacy of historic ozone exposure on plant community and food web structure.

    Science.gov (United States)

    Martínez-Ghersa, M Alejandra; Menéndez, Analía I; Gundel, Pedro E; Folcia, Ana M; Romero, Ana M; Landesmann, Jennifer B; Ventura, Laura; Ghersa, Claudio M

    2017-01-01

    Information on whole community responses is needed to predict direction and magnitude of changes in plant and animal abundance under global changes. This study quantifies the effect of past ozone exposure on a weed community structure and arthropod colonization. We used the soil seed bank resulting from a long-term ozone exposure to reestablish the plant community under a new low-pollution environment. Two separate experiments using the same original soil seed bank were conducted. Plant and arthropod richness and species abundance was assessed during two years. We predicted that exposure to episodic high concentrations of ozone during a series of growing cycles would result in plant assemblies with lower diversity (lower species richness and higher dominance), due to an increase in dominance of the stress tolerant species and the elimination of the ozone-sensitive species. As a consequence, arthropod-plant interactions would also be changed. Species richness of the recruited plant communities from different exposure histories was similar (≈ 15). However, the relative abundance of the dominant species varied according to history of exposure, with two annual species dominating ozone enriched plots (90 ppb: Spergula arvensis, and 120 ppb: Calandrinia ciliata). Being consistent both years, the proportion of carnivore species was significantly higher in plots with history of higher ozone concentration (≈3.4 and ≈7.7 fold higher in 90 ppb and 120 ppb plots, respectively). Our study provides evidence that, past history of pollution might be as relevant as management practices in structuring agroecosystems, since we show that an increase in tropospheric ozone may influence biotic communities even years after the exposure.

  14. Legacy of historic ozone exposure on plant community and food web structure.

    Directory of Open Access Journals (Sweden)

    M Alejandra Martínez-Ghersa

    Full Text Available Information on whole community responses is needed to predict direction and magnitude of changes in plant and animal abundance under global changes. This study quantifies the effect of past ozone exposure on a weed community structure and arthropod colonization. We used the soil seed bank resulting from a long-term ozone exposure to reestablish the plant community under a new low-pollution environment. Two separate experiments using the same original soil seed bank were conducted. Plant and arthropod richness and species abundance was assessed during two years. We predicted that exposure to episodic high concentrations of ozone during a series of growing cycles would result in plant assemblies with lower diversity (lower species richness and higher dominance, due to an increase in dominance of the stress tolerant species and the elimination of the ozone-sensitive species. As a consequence, arthropod-plant interactions would also be changed. Species richness of the recruited plant communities from different exposure histories was similar (≈ 15. However, the relative abundance of the dominant species varied according to history of exposure, with two annual species dominating ozone enriched plots (90 ppb: Spergula arvensis, and 120 ppb: Calandrinia ciliata. Being consistent both years, the proportion of carnivore species was significantly higher in plots with history of higher ozone concentration (≈3.4 and ≈7.7 fold higher in 90 ppb and 120 ppb plots, respectively. Our study provides evidence that, past history of pollution might be as relevant as management practices in structuring agroecosystems, since we show that an increase in tropospheric ozone may influence biotic communities even years after the exposure.

  15. Agave salmiana Plant Communities in Central Mexico as Affected by Commercial Use

    Science.gov (United States)

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal ( Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha-1) in the short-use areas and less (892 plants ha-1) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha-1) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  16. Soil-landform-plant-community relationships of a periglacial landscape on Potter Peninsula, maritime Antarctica

    Science.gov (United States)

    Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.

    2015-05-01

    Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on the monitoring of climate change in maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated on Potter Peninsula, King George Island, maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a QuickBird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities on Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils that have greater moisture or are poorly drained, and with acid to neutral pH, are favourable for moss sub-formations. Saline, organic-matter-rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felsenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens at the highest surface. Lichens sub-formations cover the largest vegetated area, showing varying associations with mosses.

  17. Knowledge and use of wild edible plants in rural communities along Paraguay River, Pantanal, Brazil.

    Science.gov (United States)

    Bortolotto, Ieda Maria; Amorozo, Maria Christina de Mello; Neto, Germano Guarim; Oldeland, Jens; Damasceno-Junior, Geraldo Alves

    2015-05-30

    Wild plants are used as food for human populations where people still depend on natural resources to survive. This study aimed at identifying wild plants and edible uses known in four rural communities of the Pantanal-Brazil, estimating the use value and understanding how distance to the urban areas, gender, age and number of different environments available in the vicinity can influence the knowledge and use of these plants by local people. Data on edible plants with known uses by communities were obtained through semi-structured interviews. A form with standardized information was used for all communities in order to obtain comparable data for analysis. For the quantitative analysis of the factors that could influence the number of species known by the population, a generalized linear model (GLM) was conducted using a negative binomial distribution as the data consisted of counts (number of citations). A total of 54 wild species were identified with food uses, included in 44 genera and 30 families of angiosperms. Besides food use, the species are also known as medicine, bait, construction, technology and other. The species with the highest use value was Acrocomia aculeata. Older people, aged more than 60 years, and those living in more remote communities farther from cities know more wild edible plants. Statistical analysis showed no difference regarding gender or number of vegetation types available in the vicinity and the number of plants known by locals. This study indicated more knowledge retained in communities more distant from the urban area, indifference in distribution of knowledge between genders and the higher cultural competence of elderly people in respect to knowledge of wild edible botanicals.

  18. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack.

    Directory of Open Access Journals (Sweden)

    Pavlo Ardanov

    Full Text Available Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L. cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L. by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host.

  19. Laser Beam Submerged Arc Hybrid Welding

    Science.gov (United States)

    Reisgen, Uwe; Olschok, Simon; Jakobs, Stefan; Schleser, Markus; Mokrov, Oleg; Rossiter, Eduardo

    The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The high deposition rate of the SA process in combination with the laser beam process offers, providing the appropriate choice of weld preparation, the possibility of welding plates with a thickness larger than 20° mm in a single pass, and also of welding thicker plates with the double-sided single pass technique.

  20. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.

    Science.gov (United States)

    Pescador, David S; Sierra-Almeida, Ángela; Torres, Pablo J; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  1. Plant community responses to simultaneous changes in temperature, nitrogen availability, and invasion.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community.This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.

  2. Plant communities, wetlands and landscapes of the Parque Nacional de Banhine, Moçambique

    Directory of Open Access Journals (Sweden)

    M. Stalmans

    2005-12-01

    Full Text Available The Parque Nacional de Banhine (Banhine National Park was proclaimed during 1972. It covers 600 000 ha in Moçambique to the east of the Limpopo River. Until recently, this park, originally and popularly known as the ‘Serengeti of Moçambique’, was characterised by neglect and illegal hunting that caused the demise of most of its large wildlife. New initiatives aimed at rehabilitating the park have been launched within the scope of the Greater Limpopo Transfrontier Park. A vegetation map was required as input to its management plan. The major objectives of the study were firstly to understand the environmental determinants of the vegetation, secondly to identify and describe individual plant communities in terms of species composition and structure and thirdly to delineate landscapes in terms of their plant community and wetland make-up, environmental determinants and distribution. A combination of fieldwork and analysis of LANDSAT satellite imagery was used. A total of 115 sample plots were surveyed. Another 222 sample points were briefly assessed from the air to establish the extent of the different landscapes. The ordination results clearly indicate the overriding importance of moisture availability in determining vegetation composition in the Parque Nacional de Banhine. Eleven distinct plant communities were recognised. They are described in terms of their structure, composition and distribution. These plant communities have strong affinities to a number of communities found in the Limpopo National Park to the west. The sandveld community is relatively the most species-rich of all communities. Different combinations of these plant communities can be grouped in five major landscapes, namely the Wetland, Grassland, Mopane, Sandveld and Androstachys landscape. These different landscapes hold six different wetland types as defined by the RAMSAR classification. The landscapes with their individual plant communities and wetland types represent

  3. Spatial and phylogenetic variation in plant defense in a tropical moist forest canopy community

    Science.gov (United States)

    McManus, K. M.; Asner, G. P.; Martin, R.

    2013-12-01

    Plants employ physical and chemical defenses to mitigate damage caused by herbivory. Spatial patterns of plant defense may provide insight into the role of plant-herbivore interactions in the assembly of plant communities. Within plant communities, the spatial overdispersion of anti-herbivore defenses by individuals may reflect a strategy to avoid host shifts from herbivore assemblages of neighboring plants. However, variation in plant defense may also result from trade-offs between foliar investment into defense and growth, mediated by variations in abiotic nutrient availability, or constrained by phylogeny. We measured four defensive traits (leaf toughness, total phenols, condensed tannins, and hydrolysable tannins) and three growth traits (LMA, C:N, total protein) of outer canopy foliage for 345 canopy trees representing 78 species, 65 genera, and 34 families in a moist tropical rainforest on Barro Colorado Island, Panama. The outer canopy provides an important, but rarely evaluated, cross-sectional image of the tropical forest ecosystem, and observations at this scale may provide an important link between field and remote sensing based studies. We used existing data on edaphic and geological properties to investigate the relationships of abiotic nutrient variation on variation in defense. Using regression and nested random-effects variance modeling, we found strong phylogenetic association with defensive traits at the family and species level, and little evidence for a trade-off between defensive traits. Greater understanding of phylogenetic structure in trait variation may yield improved characterizations of tropical biodiversity, from functional traits to risk assessments.

  4. Cascading effects of fire retardant on plant-microbe interactions, community composition, and invasion.

    Science.gov (United States)

    Marshall, Abigail; Waller, Lauren; Lekberg, Ylva

    2016-06-01

    Climate change, historical fire suppression, and a rise in human movements in urban-forest boundaries have resulted in an increased use of long-term fire retardant (LTFR). While LTFR is an effective fire-fighting tool, it contains high concentrations of nitrogen and phosphorus, and little is known about how this nutrient pulse affects terrestrial ecosystems. We used field surveys and greenhouse experiments to quantify effects of LTFR on plant productivity, community composition, and plant interactions with the ubiquitous root symbiont arbuscular mycorrhizal fungi (AMF). In the field, LTFR applications were associated with persistent shifts in plant communities toward exotic annuals with little or no dependency of AMF. Plants exposed to LTFR were less colonized by AMF, both in field surveys and in the greenhouse, and this was most likely due to the substantial and persistent increase in soil available phosphorus. All plants grew bigger with LTFR in the greenhouse, but the invasive annual cheatgrass (Bromus tectorum) benefitted most. While LTFR can control fires, it may cause long-term changes in soil nutrient availabilities, disrupt plant interactions with beneficial soil microbes, and exasperate invasion by some exotic plants.

  5. Plant community diversity influences allocation to direct chemical defence in Plantago lanceolata.

    Directory of Open Access Journals (Sweden)

    Anne Mraja

    Full Text Available BACKGROUND: Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking. METHODOLOGY/PRINCIPAL FINDINGS: We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment to investigate foliar concentrations of the iridoid glycosides (IG, catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations. CONCLUSIONS/SIGNIFICANCE: Our results clearly show that plants growing in communities of varying species richness and composition differ in their defensive chemistry, which may modulate plant susceptibility to enemy attack and consequently their interactions with higher trophic level organisms.

  6. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China)

    National Research Council Canada - National Science Library

    Xing, Wei; Wu, Haoping; Shi, Qiao; Hao, Beibei; Liu, Han; Wang, Zhixiu; Liu, Guihua

    2015-01-01

    .... We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements...

  7. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance

    NARCIS (Netherlands)

    Mommer, L; Pons, TL; Wolters-Arts, M; Venema, JH; Visser, EJW

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be continued photosynthesis under water, but this possibility has received only

  8. Plants utilization by the communities of Bharsar and adjoining area of Pauri Garhwal District, Uttarakhand, India

    Directory of Open Access Journals (Sweden)

    ANAND S. BISHT

    2014-04-01

    Full Text Available Bisht AS, Sharma KD. 2014. Plants utilization by the communities of Bharsar and adjoining area of Pauri Garhwal District, Uttarakhand, India. Biodiversitas 15: 92-98. Garhwal Himalaya possesses luxuriant a varied vegetation with in the Himalaya region. Almost every plant has economic value in the form of shelter, food, water, medicine, fuel and industrial products and fodder. Surveys were conducted in entire Bharsar, Pauri Garhwal district of Uttarakhand, India in order to get information on traditional uses of plants by local inhabitants. A total of 169 plants were collected of which 40 species of vegetables, 19 species of forest and agroforestry, 24 species of ornamental flower, 71 species of less known medicinal plants and 15 species of agricultural crops were found economically important as they are used by the people frequently for various purposes.

  9. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens.

    Science.gov (United States)

    Zachow, Christin; Berg, Christian; Müller, Henry; Monk, Jana; Berg, Gabriele

    2016-10-10

    Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The most used medicinal plants by communities in Mahaboboka, Amboronabo, Mikoboka, Southwestern Madagascar.

    Science.gov (United States)

    Randrianarivony, Tabita N; Ramarosandratana, Aro Vonjy; Andriamihajarivo, Tefy H; Rakotoarivony, Fortunat; Jeannoda, Vololoniaina H; Randrianasolo, Armand; Bussmann, Rainer W

    2017-03-09

    This paper reports a study undertaken in three remote communities (Mahaboboka, Amboronabo, Mikoboka), located in Sakaraha, Southwestern Madagascar. Not only villages are far away from sanitary infrastructures and doctors but drugs and consulting fees are unaffordable to villagers. They rely essentially on natural resources for health care as for most of rural areas in Madagascar. This paper aims to document medicinal plants used by communities in Sakaraha and to present the most important plant species used in traditional medicine. Semi - structured interview was conducted within 214 informants in 34 villages of the study area. Different ailments encountered in the site study were classified in various categories. For data analysis, frequency of citation (Fq), Informant Consensus Factor (Fic), Fidelity Level (FL) and Use Value (UV) were assessed to find agreement among informants about the use of plants as remedies. Mann-Whitney, Kruskall-Wallis and Spearman correlation tests were performed to determine use of medicinal plants following social status of informants. A total of 235 medicinal plant species belonging to 198 genera and 75 families were inventoried. The richest families in species used for medicinal purposes were: Fabaceae, Apocynaceae, Rubiaceae, Euphorbiaceae, Asteraceae, and Poaceae. Plant species cited by informants were used to treat 76 various ailments classified in 13 categories. Leaves and leafy twigs were the most used plant parts and decoction was the mostly cited way of preparation of these medicinal plants species. In average, local people cited 6.7 ± 6.03 medicinal taxa among them, Cedrelopsis grevei is the most cited medicinal plants (Fq. 0.28). With Cedrelopsis grevei (UV = 0.48), Henonia scoparia (UV = 0.43) are mostly used species. Leonotis nepetifolia (FL = 96%) and Strychnos henningsii (FL = 92%) are plant species claimed by high percentage of informants to treat the Digestive System Disorder. This study

  11. Plant invasions: Merging the concepts of species invasiveness and community invasibility

    Czech Academy of Sciences Publication Activity Database

    Richardson, D. M.; Pyšek, Petr

    2006-01-01

    Roč. 30, č. 3 (2006), s. 409-431 ISSN 0309-1333 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species invasiveness * community invasibility Subject RIV: EF - Botanics Impact factor: 1.278, year: 2006

  12. Plant community development after 28 years in small group-selection openings

    Science.gov (United States)

    Philip M. McDonald; Phillip E. Reynolds

    1999-01-01

    Thirty openings, 9, 18, and 27 meters in diameter, were created by group-selection harvest on a high quality site in northern California in 1963. In 1991, or 28 years after site preparation, the plant community in the openings had stabilized at 55 species. A major shift was from annuals to perennials. New seedlings of ponderosa and sugar pine were able to become...

  13. Establishment of different riparian plant communities from the same soil seed bank

    NARCIS (Netherlands)

    ter Heerdt, Gerhardus

    2016-01-01

    This thesis shows that weather conditions during the first year of establishment, strongly affect the composition of riparian plant communities. This is one of the factors determining if some goals of the Water Framework Directive and Natura 2000, reed beds and accompanying bird species, can be met.

  14. Blue oak plant communities of southern San Luis Obispo and northern Santa Barbara Counties, California

    Science.gov (United States)

    Mark I. Borchert; Nancy D. Cunha; Patricia C. Krosse; Marcee L. Lawrence

    1993-01-01

    An ecological classification system has been developed for the Pacific Southwest Region of the Forest Service. As part of that classification effort, blue oak (Quercus douglasii) woodlands and forests of southern San Luis Obispo and northern Santa Barbara Counties in Los Padres National Forest were classified into I3 plant communities using...

  15. The Effects of Disturbance History on Ground-Layer Plant Community Composition in British Columbia

    Directory of Open Access Journals (Sweden)

    Michael Ton

    2016-05-01

    Full Text Available Plant communities are sensitive to perturbations and may display alternative recovery pathways depending on disturbance history. In sub-boreal lodgepole pine forests of central interior British Columbia, Canada, fire and logging are two widespread landscape disturbances that overlap in many regions. We asked whether cumulative, short-interval disturbance from logging and fire resulted in different ground-layer plant communities than resulted from fire alone. Using field-collected data, we compared the taxonomic composition and functional traits of 3-year old plant communities that were either harvested 6-to-13 years prior, or not harvested prior to being burned in a large stand-replacing fire. The taxonomic composition diverged between the two treatments, driven primarily by differences in a few key indicator species such as Petasites frigidus and Vaccinium membranaceum. Analysis of individual species’ morphological traits indicated that only a few species vary in size in relation to disturbance history. Our data suggest that a history of forest harvest leaves a subtle footprint on post-fire ground-layer plant communities at early stages of succession.

  16. [Taxonomic diversity of the plant communities in Pangquangou Nature Reserve, Shanxi Province, China].

    Science.gov (United States)

    Zhao, Xiao-na; Qin, Xiao-juan; Dong, Gang; Zhang, Feng

    2014-12-01

    In order to explore the relationship between the taxonomic diversity of plant communities' and environmental factors in Pangquangou Nature Reserve, Shanxi Province, 33 stands of the plant communities and environmental information were investigated, respectively. Moreover, the taxonomic variability index (delta+) and the average taxonomic differences index (delta+) of the communities were analyzed as well as the relationships between delta+ and delta+ with environmental factors were discussed. The results showed that the average values of delta+ and delta+ were 270 and 76.5, respectively. Delta+ was negatively correlated with altitude and slope, A+ and latitude had a significant positive correlation, and delta+ and slope had a significant negative correlation. Based on the distributions of the 33 stands in the confidence funnel, the plant communities had a higher taxonomic diversity in Pangquangou Nature Reserve, which resulted from that the plant resources and eco-environment had been effectively conserved with little disturbance from human activities since the establishment of the nature reserve for more than 30 years.

  17. The use of indigenous plants as food by a rural community in the ...

    African Journals Online (AJOL)

    In this short contribution the author, a Masters in Environmental Education student, introduces his research into a rural community's knowledge about, attitudes towards and extensive use of plants which grow wild in their locality, with specific reference to their diet. Taking an ethnographic approach to the study of people's ...

  18. Phytosociology and plant community utilisation by vervet monkeys of the Blydeberg Conservancy, Limpopo Province

    Directory of Open Access Journals (Sweden)

    A.S. Barret

    2006-12-01

    Full Text Available The plant communities of the Blydeberg Conservancy were investigated as part of a research project on the foraging ecology of vervet monkeys Cercopithecus aethiops pygerythrus (senso lato in mixed lowveld bushveld and sour lowveld bushveld areas. To date there are no formal management plans for vervet monkeys. This is attributed to the limited knowledge of vervets and their utilisation of and impacts on ecosystems. From a TWINSPAN classification refined by Braun-Blanquet procedures, ten plant communities that can be placed into four major groups were identified. A classification and description of these communities, including a vegetation map are presented. Diagnostic species as well as prominent and less conspicuous species of tree, shrub, herb and grass strata are outlined. Of the ten available plant communities, the vervets utilised only six during the study period. There was an abundant supply of various food sources throughout the year, with movement patterns mostly coinciding with the fruiting times of several tree and other plant species.

  19. Are cattle surrogate wildlife? Savannah plant community composition explained by total herbivory, not herbivore identity

    Science.gov (United States)

    The replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: 1) loss or reduction in numbers of individual wildlife species or guilds, and 2) addition of livestock to the system. Each has important implications for plant community d...

  20. Plants impact structure and function of bacterial communities in Arctic soils

    NARCIS (Netherlands)

    Kumar, Manoj; Mannisto, Minna K.; van Elsas, Jan Dirk; Nissinen, Riitta M.

    Microorganisms are prime drivers of ecosystem functions in the Arctic, and they are essential for vegetation succession. However, very little is known about the phylogenetic and functional diversities of the bacterial communities associated with Arctic plants, especially in low organic matter soils.

  1. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing

    NARCIS (Netherlands)

    Kuramae, E.E.; Verbruggen, E.; Hillekens, R.H.E.; De Hollander, M.; Röling, W.F.M.; Van der Heijden, M.G.A.; Kowalchuk, G.A.

    2013-01-01

    We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age) in pots associated with four maize cultivars, including two genetically modified (GM) cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA

  2. Restoration of native plant communities infested by invasive weeds -- Sawmill Creek Research Natural Area

    Science.gov (United States)

    Peter Rice

    2000-01-01

    Invasive alien weeds established themselves on the Sawmill Creek Research Natural Area, harming elk feeding grounds and threatening the integrity of the native plant community. Management enacted herbicide control over several growing seasons, resulting in greater elk winter forage on study plots. Monitoring the long-term effects of herbicide as a restoration tool...

  3. Negative Plant–Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.G.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant–soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  4. Mountain Pine Beetles and Invasive Plant Species Findings from a Survey of Colorado Community Residents

    Science.gov (United States)

    Courtney Flint; Hua Qin; Michael Daab

    2008-01-01

    The US Forest Service, Pacific Northwest Research Station funded research to assess community responses to forest disturbance by mountain pine beetles (Dendroctonus ponderosae) and public reaction to invasive plants in north central Colorado. In the Spring of2007, 4,027 16-page questionnaires were mailed to randomly selected households with addresses in Breckenridge,...

  5. SPECIES AND ROTATION FREQUENCY INFLUENCE SOIL NITROGEN IN SIMPLIFIED TROPICAL PLANT COMMUNITIES

    Science.gov (United States)

    JOHN J. EWEL

    2006-01-01

    Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N...

  6. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion

    Science.gov (United States)

    B. M. Connolly; D. E. Pearson; R. N. Mack

    2014-01-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food...

  7. Independent Effects of Invasive Shrubs and Deer Herbivory on Plant Community Dynamics

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Ward

    2016-12-01

    Full Text Available Both invasive species and deer herbivory are recognized as locally important drivers of plant community dynamics. However, few studies have examined whether their effects are synergistic, additive, or antagonistic. At three study areas in southern New England, we examined the interaction of white-tailed deer (Odocoileus virginianus Zimmermann herbivory and three levels of invasive shrub control over seven growing seasons on the dynamics of nine herbaceous and shrub guilds. Although evidence of synergistic interactions was minimal, the separate effects of invasive shrub control and deer herbivory on plant community composition and dynamics were profound. Plant communities remained relatively unchanged where invasive shrubs were not treated, regardless if deer herbivory was excluded or not. With increasing intensity of invasive shrub control, native shrubs and forbs became more dominant where deer herbivory was excluded, and native graminoids became progressively more dominant where deer herbivory remained severe. While deer exclusion and intensive invasive shrub control increased native shrubs and forbs, it also increased invasive vines. Restoring native plant communities in areas with both established invasive shrub thickets and severe deer browsing will require an integrated management plan to eliminate recalcitrant invasive shrubs, reduce deer browsing intensity, and quickly treat other opportunistic invasive species.

  8. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests

    NARCIS (Netherlands)

    Verheyen, K.; Baeten, L.; Frenne, De P.; Bernhardt-Römermann, M.; Brunet, J.; Cornelis, J.; Decocq, G.; Eriksson, O.; Dierschke, H.; Hommel, P.W.F.M.

    2012-01-01

    1. Atmospheric nitrogen (N) deposition is expected to change forest understorey plant community composition and diversity, but results of experimental addition studies and observational studies are not yet conclusive. A shortcoming of observational studies, which are generally based on resurveys or

  9. Species distribution modelling for plant communities: Stacked single species or multivariate modelling approaches?

    Science.gov (United States)

    Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald

    2014-01-01

    Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...

  10. Plant community dynamics in the shortgrass steppe 24 years after reversal of a grazing exclosure experiment

    Science.gov (United States)

    State and Transition Models are important decision-support tools for rangeland managers that suggest directional effects of both long-term grazing imposition and relaxation on plant community composition. However, most studies of the effects of grazing on semiarid rangelands evaluate only one direct...

  11. Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities

    NARCIS (Netherlands)

    Vos, M.; Berrocal, S.M.; Karamaouna, F.; Hemerik, L.; Vet, L.E.M.

    2001-01-01

    We have examined the effects of herbivore diversity on parasitoid community persistence and stability mediated by nonspecific information from herbivore-infested plants. First, we investigated host location and patch time allocation in the parasitoid Cotesia glomerata in environments where host

  12. Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities

    NARCIS (Netherlands)

    Vos, M.; Berrocal, S.M.; Karamaouna, F.; Hemerik, L.; Vet, L.E.M.

    2001-01-01

    We have examined the effects of herbivore diversity on parasitoid community persistence and stability, mediated by nonspecific information from herbivore-infested plants. First, we investigated host location and patch time allocation in the parasitoid Cotesia glomerata in environments where host

  13. Control of Boreal Forest Soil Microbial Communities and Processes by Plant Secondary Compounds

    Science.gov (United States)

    Leewis, M. C.; Leigh, M. B.

    2016-12-01

    Plants release an array of secondary plant metabolites (SPMEs), which vary widely between plant species/progenies and may drive shifts in soil microbial community structure and function. We hypothesize that SPMEs released through litterfall and root turnover in the boreal forest control ecosystem carbon cycling by inhibiting microbial decomposition processes, which are overcome partially by increased aromatic biodegradation of microbial communities that also fortuitously prime soils for accelerated biodegradation of contaminants. Soils and litter (stems, roots, senescing leaves) were collected from 3 different birch progenies from Iceland, Finland, and Siberia that have been reported to contain different SPME content (low, medium, high, respectively) due to differences in herbivory pressure over their natural history, as well as black spruce, all growing in a long-term common tree garden at the Kevo Subarctic Field Research Institute, Finland. We characterized the SPME content of these plant progenies and used a variety of traditional microbiological techniques (e.g., enzyme assays, litter decomposition and contaminant biodegradation rates) and molecular techniques (e.g., high-throughput amplicon sequencing for bacteria and fungi) to assess how different levels of SPMEs may correlate to shifts in microbial community structure and function. Microbial communities (bacterial and fungal) significantly varied in composition as well as leaf litter and diesel biodegradation rates, in accordance with the phytochemistry of the trees present. This study offers novel, fundamental information about phytochemical controls on ecosystem processes, resilience to contaminants, and microbial decomposition processes.

  14. De plantengemeenschappen van de Wassenaarse duinen = (The plant communities of the Wassenaar dunes near The Hague)

    NARCIS (Netherlands)

    Boerboom, J.H.A.

    1960-01-01

    The plant communities on about 1800 ha of dunes were studied before any consequences could be observed of percolation since 1955 of fresh water stored underground for mains supply. Classification was by the French-Swiss and sometimes the Scandinavian sociological system. Some difficulties of

  15. Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia

    Science.gov (United States)

    2014-01-01

    Background Around 80% of the people of Ethiopia are estimated to be relying on medicinal plants for the treatment of different types of human health problems. The purpose of this study was to describe and analyse the use and management of medicinal plants used for the treatment of human health problems by the Maale and Ari communities in southern Ethiopia. Methods Quantitative and qualitative ethnobotanical field inquiries and analytical methods including individual and focus group discussions (18), observations, individual interviews (n = 74), preference ranking and paired comparison were used. Data were collected in three study sites and from two markets; the latter surveyed every 15 days from February 2011 to February 2012. Results A total of 128 medicinal plant species, belonging to 111 genera and 49 families, used as herbal medicine by Maale and Ari communities were documented. Predominantly harvested plant parts were leaves, which are known to have relatively low impact on medicinal plant resources. Species with high familiarity indices included Solanum dasyphyllum, Indigofera spicata, Ruta chalepensis, Plumbago zeylanica and Meyna tetraphylla. Low Jaccards similarity indices (≤ 0.33) indicated little correspondence in medicinal plant use among sites and between ethnic communities. The dominant ways of medicinal plant knowledge acquisition and transfer is vertical: from parents to children through oral means. Gender and site significantly influenced the number of human medicinal plants known currently in the study sites. Age was only a factor of significance in Maale. Marketing of medicinal plants harvested from wild and semi-wild stands is not common. Expansion of agricultural land and lack of cultivation efforts by local communities are mentioned by locals to affect the availability of medicinal plant resources. Conclusion S. dasyphyllum, I. spicata, P. zeylanica, M. tetraphylla, and Oxalis radicosa need to be considered for phytochemical and

  16. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  17. Functional traits of the understory plant community of a pyrogenic longleaf pine forest across environmental gradients.

    Science.gov (United States)

    Ames, Gregory M; Anderson, Steven M; Ungberg, Eric A; Wright, Justin P

    2017-08-01

    Understanding and predicting the response of plant communities to environmental changes and disturbances such as fire requires an understanding of the functional traits present in the system, including within and across species variability, and their dynamics over time. These data are difficult to obtain as few studies provide comprehensive information for more than a few traits or species, rarely cover more than a single growing season, and usually present only summary statistics of trait values. As part of a larger study seeking to understand the dynamics of plant communities in response to different prescribed fire regimes, we measured the functional traits of the understory plant communities located in over 140 permanent plots spanning strong gradients in soil moisture in a pyrogenic longleaf pine forest in North Carolina, USA, over a four-year period from 2011 and 2014. We present over 120,000 individual trait measurements from over 130 plant species representing 91 genera from 47 families. We include data on the following 18 traits: specific leaf area, leaf dry matter content, leaf area, leaf length, leaf width, leaf perimeter, plant height, leaf nitrogen, leaf carbon, leaf carbon to nitrogen ratio, water use efficiency, time to ignition, maximum flame height, maximum burn temperature, mass-specific burn time, mass-specific smolder time, branching architecture, and the ratio of leaf matter consumed by fire. We also include information on locations, soil moisture, relative elevation, soil bulk density, and fire histories for each site. © 2017 by the Ecological Society of America.

  18. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Directory of Open Access Journals (Sweden)

    Lia C R S Teixeira

    Full Text Available Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies, Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  19. Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities

    Science.gov (United States)

    Carvalhais, Lilia C.; Muzzi, Frederico; Tan, Chin-Hong; Hsien-Choo, Jin; Schenk, Peer M.

    2013-01-01

    Plants in natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of roots and the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we examined Arabidopsis thaliana roots and shoots in the presence or absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect on Arabidopsis shoots in the presence of soil microbes compared to plants grown in microbe-free soil under otherwise identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also led to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in nitrogen uptake, oxidative stress/redox signaling, and salicylic acid (SA)-mediated plant defense while upregulating jasmonate (JA) signaling, cell wall organization/biosynthesis and photosynthesis. Multi-species analyses such as simultaneous transcriptional profiling of plants and their interacting microorganisms (metatranscriptomics) coupled to metagenomics may further increase our understanding of the intricate networks underlying plant-microbe interactions. PMID:23847639

  20. Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities

    Directory of Open Access Journals (Sweden)

    Lilia C Carvalhais

    2013-07-01

    Full Text Available Plants in natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of roots and the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we examined Arabidopsis thaliana roots and shoots in the presence or absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect on Arabidopsis shoots in the presence of soil microbes compared to plants grown in microbe-free soil under otherwise identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also led to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in nitrogen uptake, oxidative stress/redox signaling, cell wall modification and salicylic acid (SA-mediated plant defense while upregulating jasmonate (JA signaling and photosynthesis. Multi-species analyses such as simultaneous transcriptiptional profiling of plants and their interacting microorganisms (metatransciptomics coupled to metagenomics may further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.

  1. Lags in the response of mountain plant communities to climate change.

    Science.gov (United States)

    Alexander, Jake M; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J; Sanders, Nathan J; Pellissier, Loïc

    2018-02-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: "dispersal lags" affecting plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. © 2017 John Wiley & Sons Ltd.

  2. Lags in the response of mountain plant communities to climate change

    Science.gov (United States)

    Alexander, Jake M.; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I.; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A.; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J.; Sanders, Nathan J.; Pellissier, Loïc

    2018-01-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. PMID:29112781

  3. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.

    Science.gov (United States)

    Khodakovskaya, Mariya V; Kim, Bong-Soo; Kim, Jong Nam; Alimohammadi, Mohammad; Dervishi, Enkeleda; Mustafa, Thikra; Cernigla, Carl E

    2013-01-14

    Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An Index for Measuring Functional Diversity in Plant Communities Based on Neural Network Theory

    Directory of Open Access Journals (Sweden)

    Naiqi Song

    2013-01-01

    Full Text Available Functional diversity in plant communities is a key driver of ecosystem processes. The effective methods for measuring functional diversity are important in ecological studies. A new method based on neural network, self-organizing feature map (SOFM index, was put forward and described. A case application to the study of functional diversity of Phellodendron amurense communities in Xiaolongmen Forest Park of Beijing was carried out in this paper. The results showed that SOFM index was an effective method in the evaluation of functional diversity and its change in plant communities. Significant nonlinear correlations of SOFM index with the common used methods, FAD, MFAD, FDp, FDc, FRic, and FDiv indices, also proved that SOFM index is useful in the studies of functional diversity.

  5. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities

    Directory of Open Access Journals (Sweden)

    Kristin Aleklett

    2015-02-01

    Full Text Available Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed–Pilosella aurantiaca as well as two neighboring plant species (Oxeye daisy–Leucanthemum vulgare and Alsike clover–Trifolium hybridum. Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.

  6. Traditional uses of medicinal plants used by Indigenous communities for veterinary practices at Bajaur Agency, Pakistan.

    Science.gov (United States)

    Aziz, Muhammad Abdul; Khan, Amir Hasan; Adnan, Muhammad; Ullah, Habib

    2018-01-29

    The pastoral lifestyle of Indigenous communities of Bajaur Agency is bringing them close to natural remedies for treating their domestic animals. Several studies have been conducted across the globe describing the importance of traditional knowledge in veterinary care. Therefore, this study was planned with the aim to record knowledge on ethnoveterinary practices from the remote areas and share sit with other communities through published literature. Data was gathered from community members through semi-structured interviews and analyzed through informant consensus factor (Fic) to evaluate the consent of current ethnoveterinary practices among the local people. In total, 73 medicinal plants were recorded under the ethnoveterinary practices. Most widely used medicinal plants with maximum use reports (URs) were Visnaga daucoides Gaertn., Foeniculum vulgare Mill., Solanum virginianum L., Withania somnifera (L.) Dunal, Glycyrrhiza glabra L., and Curcuma longa L. New medicinal values were found with confidential level of citations for species including Heracleum candicans and Glycerhiza glabra. Family Apiaceae was the utmost family with high number (7 species) of medicinal plants. Maximum number of medicinal plants (32) was used for gastric problems. High Fic was recorded for dermatological (0.97) followed by reproductive (0.93) and gastrointestinal disorders (0.92). The main route of remedies administration was oral. Current study revealed that the study area has sufficient knowledge on ethnoveterinary medicinal plants. This knowledge is in the custody of nomadic grazers, herders, and aged community members. Plants with new medicinal uses need to be validated phytochemically and pharmacologically for the development of new alternative drugs for veterinary purposes.

  7. Relationships between plant community functioning and soil carbon stocks in permanent mowed grasslands

    Science.gov (United States)

    Masson, Solène; Tasseta, Elise; Morvan-Bertrand, Annette; Amiaud, Bernard; Cliquet, Jean-Bernard; Klumpp, Katja; Louault, Frédérique; Lemauviel-Lavenant, Servane

    2017-04-01

    Grasslands represent the most widespread ecosystems on the surface of the earth and provide many ecosystem services. They are managed by farmers in order to produce provisioning services through forage production. They also offer regulation services for the humankind such as carbon (C) storage. According to their management, grasslands may constitute a C source or a sink. Plants control both C input through photosynthesis and C output release directly via their own respiration and indirectly via soil microflora respiration through organic matter mineralization. Plants can thus be considered as a gas stream center. To better understand the role of vegetation on soil C stocks, the P2C "Plant Pilot Carbon" project aims at evaluate C stocks in mowed permanent grasslands characterized by various edaphic and climatic conditions and identify the drivers (vegetation composition, plant community functioning, management, history) of soil C stocks. We focused on 32 grasslands selected over two French Regional Natural Parks (Normandy-Maine / Lorraine) and an experimental farm (ACBB SOERE, Theix, Auvergne). We measured then their floristic composition as well as their functional composition through a trait based approach. Leaf traits (SLA, LDMC, LNC, LC/N) were measured at the plant community level (community weighed mean traits) and soil C stocks were analyzed in the top soil (0-10 cm) and in a deeper layer (10-30 cm). The grassland sampling has allowed to obtain a great variability of both soil C stocks and plant community functioning which give the opportunity to assess the relationships between C stocks and vegetation considering climatic, edaphic and management parameters

  8. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Yomi

    29(1): 1-6. Fraile ER, Bernardinelli SE, Handel M, Jauregui AM (1978). Selección de cepas de Mucor sp productoras de enzimas coagulantes de leche. Rev. Arg. Microbiol. 10(2): 65-69. Ghareib M, Hamdy HS, Khalil AA (2001). Production of intracellular milk clotting enzyme in submerged cultures of Fusarium subglutinans.

  9. Topology optimization for submerged buoyant structures

    NARCIS (Netherlands)

    Picelli, R.; van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; van Keulen, A.

    2017-01-01

    This paper presents an evolutionary structural topology optimization method for the design of completely submerged buoyant modules with design-dependent fluid pressure loading. This type of structure is used to support offshore rig installation and pipeline transportation at all water depths. The

  10. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Fungal milk-clotting enzymes have gained value as bovine Chymosin substitutes in the cheese industry. In this work, the effects of culture conditions on the production of extracellular milk clotting enzymes from Mucor mucedo DSM 809 in submerged fermentation were studied. The maximum activity was observed after 48 h ...

  11. Understanding past, contemporary, and future dynamics of plants, populations, and communities using Sonoran Desert winter annuals.

    Science.gov (United States)

    Huxman, Travis E; Kimball, Sarah; Angert, Amy L; Gremer, Jennifer R; Barron-Gafford, Greg A; Venable, D Lawrence

    2013-07-01

    Global change requires plant ecologists to predict future states of biological diversity to aid the management of natural communities, thus introducing a number of significant challenges. One major challenge is considering how the many interacting features of biological systems, including ecophysiological processes, plant life histories, and species interactions, relate to performance in the face of a changing environment. We have employed a functional trait approach to understand the individual, population, and community dynamics of a model system of Sonoran Desert winter annual plants. We have used a comprehensive approach that connects physiological ecology and comparative biology to population and community dynamics, while emphasizing both ecological and evolutionary processes. This approach has led to a fairly robust understanding of past and contemporary dynamics in response to changes in climate. In this community, there is striking variation in physiological and demographic responses to both precipitation and temperature that is described by a trade-off between water-use efficiency (WUE) and relative growth rate (RGR). This community-wide trade-off predicts both the demographic and life history variation that contribute to species coexistence. Our framework has provided a mechanistic explanation to the recent warming, drying, and climate variability that has driven a surprising shift in these communities: cold-adapted species with more buffered population dynamics have increased in relative abundance. These types of comprehensive approaches that acknowledge the hierarchical nature of biology may be especially useful in aiding prediction. The emerging, novel and nonstationary climate constrains our use of simplistic statistical representations of past plant behavior in predicting the future, without understanding the mechanistic basis of change.

  12. Climate legacy and lag effects on dryland plant communities in the southwestern U.S.

    Science.gov (United States)

    Bunting, Erin; Munson, Seth M.; Villarreal, Miguel

    2017-01-01

    Climate change effects on vegetation will likely be strong in the southwestern U.S., which is projected to experience large increases in temperature and changes in precipitation. Plant communities in the southwestern U.S. may be particularly vulnerable to climate change as the productivity of many plant species is strongly water-limited. This study examines the relationship between climate and vegetation condition using a time-series of Landsat imagery across grassland, shrubland, and woodland communities on the Colorado Plateau, USA. We improve on poorly understood inter-annual climate-vegetation relationships by exploring how the responses of different plant communities depend on climate legacies (>12 months) and lag behind shorter-term (3–12 month) changes in water availability. Our results show a prolonged drying trend on the Colorado Plateau since the early 1990s that was punctuated in several years by intense droughts. In areas that experienced sustained dry conditions or a drying trend, vegetation greenness (a proxy for production) increased linearly when conditions were interrupted by wetting events. In contrast, in areas that experienced sustained wet conditions or a wetting trend, vegetation greenness was weakly or not related to wetting events, indicating that production may saturate if vegetation experiences sufficient water availability. Shrubland and woodland communities had stronger relationships with climate at long lags (6–12 months) and many maintained greenness under sustained water deficit, whereas grassland communities had stronger relationships at short lags (3–6 months) and lost greenness even in periods of short-term drought. The results of our study show the importance of identifying climate legacies and lags when assessing indicators of ecological drought, which can be used to improve forecasts of which plant communities will be vulnerable under future climate change.

  13. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis weeds and plant community composition.

    Directory of Open Access Journals (Sweden)

    Collin W Ahrens

    Full Text Available Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB and redtop (RT, where the glyphosate resistance (GR trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  14. Annual Glyphosate Treatments Alter Growth of Unaffected Bentgrass (Agrostis) Weeds and Plant Community Composition

    Science.gov (United States)

    Ahrens, Collin W.; Auer, Carol A.

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities. PMID:23226530

  15. THE INFLUENCE OF SUBMERGED MACROPHYTES ON SEDIMENTARY DIATOM ASSEMBLAGES(1).

    Science.gov (United States)

    Vermaire, Jesse C; Prairie, Yves T; Gregory-Eaves, Irene

    2011-12-01

    Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long-term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole-lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P macrophyte, nutrient-limited lakes (BiomEpiV ≥525 μg · L(-1) ; total phosphorus [TP] macrophyte, nutrient-limited lakes (BiomEpiV eutrophic lakes (TP ≥35 μg · L(-1) ; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance. © 2011 Phycological Society of America.

  16. The mechanism of improved aeration due to gas films on leaves of submerged rice.

    Science.gov (United States)

    Verboven, Pieter; Pedersen, Ole; Ho, Quang Tri; Nicolai, Bart M; Colmer, Timothy D

    2014-10-01

    Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a three-dimensional leaf anatomy model. The anatomy and dark respiration of leaves of rice (Oryza sativa L.) were measured and used to compute O2 fluxes and partial pressure of O2 (pO2 ) in the DBL, gas film and leaf when submerged. The effects of floodwater pO2 , DBL thickness, cuticle permeability, presence of gas film and stomatal opening were explored. Under O2 -limiting conditions of the bulk water (pO2  gas film significantly increases the O2 flux into submerged leaves regardless of whether stomata are fully or partly open. With a gas film, tissue pO2 substantially increases, even for the slightest stomatal opening, but not when stomata are completely closed. The effect of gas films increases with decreasing cuticle permeability. O2 flux and tissue pO2 decrease with increasing DBL thickness. The present modelling analysis provides a mechanistic understanding of how leaf gas films facilitate O2 entry into submerged plants. © 2014 John Wiley & Sons Ltd.

  17. Ontogenetic shifts in plant-plant interactions in a rare cycad within angiosperm communities.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Dovčiak, Martin

    2014-06-01

    Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant-plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.

  18. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    Science.gov (United States)

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  19. An ethnobotanical survey of medicinal plants used by communities of Northern Kordofan region, Sudan.

    Science.gov (United States)

    Suleiman, Mohamed Hammad Adam

    2015-12-24

    The present study provides significant ethnopharmacological information on plant species used in North Kordofan region, western Sudan. The study was undertaken with an aim to document the medicinal uses of the species known to some Northern Kordofan communities. The study was conducted between 2012 and 2013. The plants were identified and voucher specimens prepared. Information was collected by means of semi-structured interviews with 258 informants (195 men and 63 women). In addition, the use value (UV) of the species was determined and the informant consensus factor (ICF) was calculated for the medicinal plants researched in the study. Further analysis was carried out to compare results with previous studies from the study area and other regions of Sudan. A total of 44 plant species representing 24 families were found to be commonly used in the treatment of 73 different human health problems. The families most represented were Leguminosae (18%), Caesalpiniaceae (9%), Malvaceae (9%), Asclepiadaceae (6.8%) and Combretaceae (6.8%). The highest number of plant species are used against digestive system disorders (23 species) followed by microbial infections (21 species) and dermatology (19 species). Among all the plant parts leaves (20%), roots (19%), fruits and bark (14% each) were the most preferred plant parts used by the informants. There was strong agreement among the informants as to the usages of the plants (informant consensus factor 0.63-0.93). The most important plants on the basis of use-value were Acacia nilotica, Acacia seyal, Balanites aegyptiaca, Cassia occidentalis, Cassia senna, Guiera senegalensis and Tamarindus indica. This study has helped to document information that may otherwise be lost to future generations. This is the first ethnobotanical study in which statistical calculations about plants are carried out by means of the ICF and UV methods in the study area. Plants with high ICF and UV values should be subjected for further phytochemical and

  20. Bacterial Communities and Antibiotic Resistance Communities in a Full-Scale Hospital Wastewater Treatment Plant by High-Throughput Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Youngho Ahn

    2016-12-01

    Full Text Available The community of whole microbes and antibiotic resistance bacteria (ARB in hospital wastewater treatment plants (WWTP receiving domestic wastewater (DWW and hospital wastewater (HWW was investigated. Samples from an influent of a secondary clarifier, at each treatment train, were characterized for the whole microbial community and ARB on the antibiotic resistance database, based on high-throughput pyrosequencing. The pyrosequencing analysis revealed that the abundance of Bacteroidetes in the DWW sample was higher (~1.6 times than in the HWW sample, whereas the abundance of Proteobacteria in the HWW sample was greater than in the DWW sample. At the top twenty of the genus level, distinct genera were observed—Saprospiraceae in the DWW and Zoogloea in the HWW. Apart from the top twenty genera, minor genera showed various antibiotic resistance types based on the antibiotic resistance gene database.

  1. Factors involved in spatiotemporal dynamics of submerged macrophytes in a Portuguese coastal lagoon under Mediterranean climate

    Science.gov (United States)

    Antunes, Cristina; Correia, Otília; Marques da Silva, Jorge; Cruces, Anabela; Freitas, Maria da Conceição; Branquinho, Cristina

    2012-09-01

    Submerged macrophytes are key in coastal ecosystems, with important structural and functional roles. Thus, the characterization of the submerged aquatic vegetation dynamics is of prime importance for assessing the ecological status of coastal ecosystems. The main aim of this study was to assess the spatial and temporal dynamics of submerged macrophytes biomass in a temporarily open coastal lagoon in Melides, Portugal, and to evaluate the physiological performance of the dominant macrophyte in the system. This lagoon is subject to several disturbances such as the dramatic changes in water physicochemical parameters over time, since temporarily opens to the sea occur renewing the lagoon water content. Moreover it is under a Mediterranean climate with the inherently high temporal variability of precipitation and high temperatures during the summer. Our study shows that the submerged macrophyte community was dominated initially by Ruppia cirrhosa and then replaced by Potamogeton pectinatus, which showed a marked temporal and spatial pattern with extremely high values of biomass in August and in the inner part of the lagoon. The spatial and temporal biomass patterns in submerged macrophytes were mainly related with water level, salinity, pH and transparency. The physiological performance of R. cirrhosa was lower when there was greater biomass accumulation and in extremely shallow waters, whereas physiological vigor seemed to be greater at moderate temperatures and in areas with higher salinity and dissolved oxygen. The data from this study can be used to predict submerged biomass macrophyte responses to extreme water quality changes and to feed a decision support system for the best period to promote the seasonal artificial breaching of the sandy barrier.

  2. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    Science.gov (United States)

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Exploring the plant-associated bacterial communities in Medicago sativa L.

    Science.gov (United States)

    Pini, Francesco; Frascella, Arcangela; Santopolo, Luisa; Bazzicalupo, Marco; Biondi, Emanuele G; Scotti, Carla; Mengoni, Alessio

    2012-05-20

    Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level. Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important part of biodiversity in this

  4. Ethnopharmacological evaluation of medicinal plants used against malaria by quilombola communities from Oriximiná, Brazil.

    Science.gov (United States)

    Oliveira, Danilo R; Krettli, Antoniana U; Aguiar, Anna Caroline C; Leitão, Gilda G; Vieira, Mariana N; Martins, Karine S; Leitão, Suzana G

    2015-09-15

    Malaria is the most important parasitic disease in the world, including in the Amazon region, due to its high incidence. In addition, malaria is difficult to control because of the geographical characteristics of the endemic Amazon region. The quilombola communities of Oriximina, located in remote rainforest areas, have extensive experience with medicinal plants due to their close contact with and dependence on local biodiversity as a therapeutic resource. To search for active bioproducts against malaria, based on in vitro tests using blood culture-derived parasites and plants selected by an ethno-directed approach in traditional quilombola communities of Oriximiná, in the Amazon region of Brazil. Ethnobotanical data were collected from 35 informants in the quilombola communities of Oriximiná, Brazil, by a free-listing method for the survey of species locally indicated to be effective against malaria and related symptoms. Data were analyzed by salience index (S) and major use agreement. The activity of extracts from 11 plants, selected based on their Salience values (four plants with S>1; seven plants with Scultures of W2 clone Plasmodium falciparum parasites resistant to chloroquine. Thirty-five ethnospecies comprising 40 different plants belonging to 23 botanical families and 37 genera were listed as antimalarials by the ethno-directed approach. Among these, 11 species selected based on their S values were assayed against P. falciparum. The most active plant extracts, with an IC50 as low as 1.6μg/mL, were obtained from Aspidosperma rigidum (Apocynaceae), Bertholletia excelsa (Lecythidaceae) and Simaba cedron (Simaroubaceae), all of which displayed an S value>1. A strong correlation between the consensus of the informants from quilombola communities living in a malaria endemic area and the salience index indicating antiplasmodial activity was observed, where the ethnospecies mostly cited to be effective against malaria produced the most active plant extracts in

  5. Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru).

    Science.gov (United States)

    Vásquez-Ocmín, Pedro; Cojean, Sandrine; Rengifo, Elsa; Suyyagh-Albouz, Soulaf; Amasifuen Guerra, Carlos A; Pomel, Sébastien; Cabanillas, Billy; Mejía, Kember; Loiseau, Philippe M; Figadère, Bruno; Maciuk, Alexandre

    2018-01-10

    In the Peruvian Amazon, the use of medicinal plants is a common practice. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point for this work was a set of interviews of people living in rural communities from the Peruvian Amazon about their uses of plants. Protozoan diseases are a public health issue in the Amazonian communities, who partly cope with it by using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help identify new antiprotozoal compounds. to inventory and validate the use of medicinal plants by rural people of Loreto region. Rural mestizos were interviewed about traditional medication of parasite infections with medicinal plants. Ethnopharmacological surveys were undertaken in two villages along Iquitos-Nauta road (Loreto region, Peru), namely 13 de Febrero and El Dorado communities. Forty-six plants were collected according to their traditional use for the treatment of parasitic diseases, 50 ethanolic extracts (different parts for some of the plants) were tested in vitro on Plasmodium falciparum (3D7 sensitive strain and W2 chloroquine resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Cytotoxic assessment (HUVEC cells) of the active extracts was performed. Two of the most active plants were submitted to preliminary bioguided fractionation to ascertain and explore their activities. From the initial plants list, 10 were found to be active on P. falciparum, 15 on L. donovani and 2 on the three parasites. The ethanolic extract from Costus curvibracteatus (Costaceae) leaves and Grias neuberthii (Lecythidaceae) bark showed strong in vitro activity on P. falciparum (sensitive and resistant strain) and L. donovani and moderate activity on T. brucei gambiense. The Amazonian forest communities in Peru represents a source of knowledge on the use of medicinal plants. In this work

  6. Microbiomes: unifying animal and plant systems through the lens of community ecology theory.

    Science.gov (United States)

    Christian, Natalie; Whitaker, Briana K; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  7. Associations between an Invasive Plant (Taeniatherum caput-medusae, Medusahead and Soil Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Understanding plant-microbe relationships can be important for developing management strategies for invasive plants, particularly when these relationships interact with underlying variables, such as habitat type and seedbank density, to mediate control efforts. In a field study located in California, USA, we investigated how soil microbial communities differ across the invasion front of Taeniatherum caput-medusae (medusahead, an annual grass that has rapidly invaded most of the western USA. Plots were installed in habitats where medusahead invasion is typically successful (open grassland and typically not successful (oak woodland. Medusahead was seeded into plots at a range of densities (from 0-50,000 seeds/m2 to simulate different levels of invasion. We found that bacterial and fungal soil community composition were significantly different between oak woodland and open grassland habitats. Specifically, ectomycorrhizal fungi were more abundant in oak woodlands while arbuscular mycorrhizal fungi and plant pathogens were more abundant in open grasslands. We did not find a direct effect of medusahead density on soil microbial communities across the simulated invasion front two seasons after medusahead were seeded into plots. Our results suggest that future medusahead management initiatives might consider plant-microbe interactions.

  8. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Directory of Open Access Journals (Sweden)

    D. B. Metcalfe

    2011-08-01

    Full Text Available Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R is a key prerequisite for accurate prediction of the future carbon (C balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil – such as soil microbes, plant roots and their mycorrhizal symbionts – each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge.

    Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future

  9. Relations of alpine plant communities across environmental gradients: Multilevel versus multiscale analyses

    Science.gov (United States)

    Malanson, George P.; Zimmerman, Dale L.; Kinney, Mitch; Fagre, Daniel B.

    2017-01-01

    Alpine plant communities vary, and their environmental covariates could influence their response to climate change. A single multilevel model of how alpine plant community composition is determined by hierarchical relations is compared to a separate examination of those relations at different scales. Nonmetric multidimensional scaling of species cover for plots in four regions across the Rocky Mountains created dependent variables. Climate variables are derived for the four regions from interpolated data. Plot environmental variables are measured directly and the presence of thirty-seven site characteristics is recorded and used to create additional independent variables. Multilevel and best subsets regressions are used to determine the strength of the hypothesized relations. The ordinations indicate structure in the assembly of plant communities. The multilevel analyses, although revealing significant relations, provide little explanation; of the site variables, those related to site microclimate are most important. In multiscale analyses (whole and separate regions), different variables are better explanations within the different regions. This result indicates weak environmental niche control of community composition. The weak relations of the structure in the patterns of species association to the environment indicates that either alpine vegetation represents a case of the neutral theory of biogeography being a valid explanation or that it represents disequilibrium conditions. The implications of neutral theory and disequilibrium explanations are similar: Response to climate change will be difficult to quantify above equilibrium background turnover.

  10. Interactions for pollinator visitation and their consequences for reproduction in a plant community

    Science.gov (United States)

    Hegland, Stein Joar; Totland, Ørjan

    2012-08-01

    Competition and facilitation in species interactions attract much attention in ecology, but their relative importance has seldom been evaluated in a community context. We assessed competitive and facilitative interactions for pollinator visitation among co-flowering species in a plant community, investigated the subsequent consequences for plant reproduction, and investigated whether effects could be trait-based. We removed the flowers of two species attractive to pollinators, in two separate experiments and assessed the effects on pollinator visitation rates and components of reproductive success in 11 co-flowering focal herb species. Overall, most focal species appear not to interact with the removal species with respect to pollinator visitation and subsequent reproduction (neutral interactions). Three focal species in the community had significantly higher reproductive responses (fruit production and seed weight) in the presence of the attractive removal species (facilitative interactions), but species interaction effects were less pronounced in species' flower visitation rates. A community-wide meta-analysis demonstrated that the two experiments did not have a significant effect on either facilitation or competition, and that there was no overall correlation between effect sizes for visitation and reproduction. Based on species-specific responses, it seems likely that floral traits such as similar flower colors contribute to interspecific facilitation of pollinator visitation and, in particular, that high pollinator dependence for plant reproduction, and associated pollen limitation, may contribute to subsequent interaction effects on reproduction in the focal species.

  11. Woody plant encroachment into grasslands: spatial patterns of functional group distribution and community development.

    Science.gov (United States)

    Liu, Feng; Archer, Steven R; Gelwick, Frances; Bai, Edith; Boutton, Thomas W; Wu, Xinyuan Ben

    2013-01-01

    Woody plant encroachment into grasslands has been globally widespread. The woody species invading grasslands represent a variety of contrasting plant functional groups and growth forms. Are some woody plant functional types (PFTs) better suited to invade grasslands than others? To what extent do local patterns of distribution and abundance of woody PFTs invading grasslands reflect intrinsic topoedaphic properties versus plant-induced changes in soil properties? We addressed these questions in the Southern Great Plains, United States at a subtropical grassland known to have been encroached upon by woody species over the past 50-100 years. A total of 20 woody species (9 tree-statured; 11 shrub-statured) were encountered along a transect extending from an upland into a playa basin. About half of the encroaching woody plants were potential N2-fixers (55% of species), but they contributed only 7% to 16 % of the total basal area. Most species and the PFTs they represent were ubiquitously distributed along the topoedaphic gradient, but with varying abundances. Overstory-understory comparisons suggest that while future species composition of these woody communities is likely to change, PFT composition is not. Canonical correspondence analysis (CCA) ordination and variance partitioning (Partial CCA) indicated that woody species and PFT composition in developing woody communities was primarily influenced by intrinsic landscape location variables (e.g., soil texture) and secondarily by plant-induced changes in soil organic carbon and total nitrogen content. The ubiquitous distribution of species and PFTs suggests that woody plants are generally well-suited to a broad range of grassland topoedaphic settings. However, here we only examined categorical and non-quantitative functional traits. Although intrinsic soil properties exerted more control over the floristics of grassland-to-woodland succession did plant modifications of soil carbon and nitrogen concentrations, the latter

  12. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    Directory of Open Access Journals (Sweden)

    Martin A. Mörsdorf

    2015-03-01

    Full Text Available In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in

  13. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities.

    Science.gov (United States)

    Mörsdorf, Martin A; Ravolainen, Virve T; Støvern, Leif Einar; Yoccoz, Nigel G; Jónsdóttir, Ingibjörg Svala; Bråthen, Kari Anne

    2015-01-01

    In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in ecology as only rules

  14. Extrafloral nectaries alter arthropod community structure and mediate peach (Prunus persica) plant defense.

    Science.gov (United States)

    Mathews, Clarissa R; Bottrell, Dale G; Brown, Mark W

    2009-04-01

    We investigated the role of extrafloral nectaries (EFNs) in mediating plant defense for newly established peach (Prunus persica) trees. We used peaches of a single cultivar ("Lovell") that varied with respect to EFN leaf phenotype (with or without EFNs) to determine if the EFNs affected the structure of the arthropod community colonizing newly planted seedlings. We also tested if the plants producing EFNs benefited from reduced herbivory or enhanced productivity. In the first year following planting, the young peach trees with EFNs were dominated by ants, and arthropod community diversity was lower than for trees without EFNs. The young trees with EFNs harbored fewer herbivores and experienced a twofold reduction in folivory compared to trees without EFNs. Productivity was also enhanced for the trees with EFNs, which attained significantly higher rates of trunk growth, greater terminal carbon composition, and a threefold increase in buds produced in subsequent years. In the second year of the field study, ants remained numerically dominant on trees with EFNs, but arthropod community diversity was higher than for trees without EFNs. An additional study revealed that folivory rates in May increased dramatically for trees with EFNs if ants were excluded from their canopies, indicating that ants have a protective function when the perennial trees produce new leaves. However, in later months, regardless of ants' presence, the trees with EFNs suffered less folivory than trees lacking EFNs. The diversity and richness of the predator trophic group increased when ants were excluded from trees with EFNs, but overall community diversity (i.e., herbivores and predators combined) was not affected by the ants' presence. Our research indicates that the EFNs play an important role in attracting predators that protect the trees from herbivores, and the EFN host-plant characteristic should be retained in future peach cultivar selections. Furthermore, peach production programs aimed

  15. Characterization and mapping of plant communities at Hennequin Point, King George Island, Antarctica

    Directory of Open Access Journals (Sweden)

    Filipe de C. Victoria

    2013-08-01

    Full Text Available King George Island is the largest island and the principal area used for research bases in Antarctica. Argentina, Brazil, Chile, China, Poland, Russia, South Korea and Uruguay have permanent open bases on this island. Other countries have seasonal summer stations on different parts of this island, which demonstrates that human impact is strong on King George Island relative to other areas in the maritime and continental Antarctica. The objective of this work was to present a phytosociological approach for ice-free areas of Hennequin Point, eastern coast of Admiralty Bay, King George Island. The study started with the classification and description of the plant communities based primarily on phytosociological and biodiversity data. The area was mapped using an Astech Promark II® DGPS, yielding sub-metric precision after post-processing with software. The plant communities were described as follows: (1 lichen and moss cushion formation; (2 moss carpet formation; (3 fellfield formation; (4 grass and cushion chamaephyte formation; and (5 Deschampsia Antarctica–lichen formation. Characterizations and distributions of the plant communities are presented on a map at a scale of 1:5000. The plant communities found at Hennequin Point, in general, differ from those found in other areas of the Admiralty Bay region, probably because of the concentration of skua nests in the area and the relief singularities. We conclude by highlighting the importance of the study of plant species found in the ice-free areas of the Antarctic with respect to environmental monitoring and for evaluating global climate and environmental changes.

  16. Soil microbial community composition changes according to the tillage practice and plant development stage

    Science.gov (United States)

    Degrune, Florine; Dufrêne, Marc; Colinet, Gilles; Taminiau, Bernard; Hiel, Marie-Pierre; Daube, Georges; Vandenbol, Micheline

    2015-04-01

    Soil microorganisms are abundant and diverse and can have both beneficial and adverse effects on crop growth. Some, such as plant-growth-promoting rhizobacteria and mycorrhizae, are well known to favor crop productivity and plant health. They are notably involved in key processes such as improving plant nutrient acquisition, and they also play major roles in stimulating plant growth and protecting plants against pathogens by producing bioactive substances. Conversely, both agricultural practices and the plant development stage are known to influence the physical and chemical properties of the soil and hence the abundance and diversity of soil microorganisms. Here we investigated the impact of both tillage practice (conventional versus reduced tillage) and plant development stage (germination versus flowering) on the microbial community composition of an agricultural soil supporting a faba bean crop. Samples were taken at a depth of 15-20 cm from a silty soil in Belgium. For bacteria, we observed significant shifts in community composition according to both factors. Some changes were strongly related to the plant development stage and others to the tillage practice. Some taxa, including Gemmatimonas, Xanthomonadaceae, and Sinobacteraceae, showed a higher relative abundance at the flowering stage than at the germination stage, but no effect of tillage practice. Other taxa, including Flovobacterium, Chitinophaga, and Luteolibacter, showed a higher relative abundance under conventional tillage than under reduced tillage, but no change according to the stage of plant development. For fungi, significant shifts in community composition were observed according to the plant development stage. No effect of tillage practice was observed. The relative abundances of certain taxa, including Chaetomium and Clavicipitaceae, were higher during germination than during flowering, whereas other taxa, including Minimedusa and Teberdinia, showed a higher relative abundance during

  17. Survey of Plant Communities and Use by White-tailed Deer of Woody Plants in Two Forests at Erie National Wildlife Refuge 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the present research project is to develop and implement a protocol for short- and long-term monitoring of forest plant communities on National...

  18. Ecology of some mire and bog plant communities in the Western Italian Alps

    Directory of Open Access Journals (Sweden)

    Giorgio BUFFA

    2003-02-01

    Full Text Available During a mire vegetation study, conducted mainly in the subalpine-alpine sector of the Western Italian Alps, the ecology of several plant communities and numerous moss species of this kind of vegetation was evaluated. The study area covered the Piedmontese sector of the Graian Alps, the eastern sector of the Aosta Valley as well as certain localities of the Pennine Alps, the Canavese district and the Maritime Alps. They have a rocky substratum representative of the various regional lithologies and include the main sectors characterised by the highest precipitation. Three hundred and twenty two relevées were made using the phytosociological method and the pH and the conductivity of the water table and its depth were measured directly. Cluster Analysis allowed a classification of the samples and the identification of various groups of plant communities. Ordination performed by DCA and CCA allowed us to identify the ecological features of the various plant communities by using the values of the main environmental parameters, measured directly in the field, and certain climatic parameters (altitude and mean annual precipitation available. The use of climatic parameters is an important result for identifying communities which show greater oceanicity, something that is underlined also by the presence of indicator species such as Sphagnum papillosum and S. subnitens. Furthermore the communities are arranged in a "poor-rich" gradient, and are also profoundly influenced by depth to water table which is inversely correlated to the pH. Therefore we find certain kinds of communities all with a very low water table and which are little affected by its chemistry. Other groups share the fact that the water table is outcropping or near the surface and are distinguishable for their pH values and conductivity. We discuss the different response of the bryophytes and vascular plants of these communities to the environmental parameters considered, in light of their

  19. Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial communities.

    Directory of Open Access Journals (Sweden)

    Anouk Zancarini

    Full Text Available Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM. First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA. Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.

  20. Assessing self-organization of plant communities--A thermodynamic approach

    Science.gov (United States)

    Lin, H.; Cao, M.; Stoy, P.; Zhang, Y.

    2013-12-01

    Thermodynamics is a powerful tool for the study of system development and has the potential to be applied to studies of ecological complexity. Here, we develop a set of thermodynamic indicators including energy capture and energy dissipation to quantify plant community self-organization. The study ecosystems included a tropical seasonal rainforest, an artificial tropical rainforest, a rubber plantation, and two Chromolaena odorata (L.) R.M. King & H. Robinson communities aged 13 years and 1 year. The communities represent a complexity transect from primary vegetation, to transitional community, economic plantation, and fallows and are typical for Xishuangbanna, southwestern China. The indicators of ecosystem self-organization are sensitive to plant community type and seasonality, and demonstrate that the tropical seasonal rainforest is highly self-organized and plays an important role in local environmental stability via the land surface thermal regulation. The rubber plantation is at a very low level of self-organization as quantified by the thermodynamic indicators, especially during the dry season. The expansion of the area of rubber plantation and shrinkage of tropical seasonal rainforest would likely induce local surface warming and a larger daily temperature range.

  1. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    Science.gov (United States)

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Distinctive fungal communities in an obligate African ant-plant mutualism.

    Science.gov (United States)

    Baker, Christopher C M; Martins, Dino J; Pelaez, Julianne N; Billen, Johan P J; Pringle, Anne; Frederickson, Megan E; Pierce, Naomi E

    2017-03-15

    Three ant species nest obligately in the swollen-thorn domatia of the African ant-plant Vachellia (Acacia) drepanolobium, a model system for the study of ant-defence mutualisms and species coexistence. Here we report on the characteristic fungal communities generated by these ant species in their domatia. First, we describe behavioural differences between the ant species when presented with a cultured fungal isolate in the laboratory. Second, we use DNA metabarcoding to show that each ant species has a distinctive fungal community in its domatia, and that these communities remain characteristic of the ant species over two Kenyan sampling locations separated by 190 km. Third, we find that DNA extracted from female alates of Tetraponera penzigi and Crematogaster nigriceps contained matches for most of the fungal metabarcodes from those ant species' domatia, respectively. Fungal hyphae and other debris are also visible in sections of these alates' infrabuccal pockets. Collectively, our results indicate that domatium fungal communities are associated with the ant species occupying the tree. To the best of our knowledge, this is the first record of such ant-specific fungal community-level differences on the same myrmecophytic host species. These differences may be shaped by ant behaviour in the domatia, and by ants vectoring fungi when they disperse to establish new colonies. The roles of the fungi with respect to the ants and their host plant remain to be determined. © 2017 The Author(s).

  3. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    Recent studies from mountainous areas of small spatial extent (warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate......-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within

  4. Receding water line and interspecific competition determines plant community composition and diversity in wetlands in Beijing.

    Science.gov (United States)

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  5. Receding water line and interspecific competition determines plant community composition and diversity in wetlands in Beijing.

    Directory of Open Access Journals (Sweden)

    Zhengjun Wang

    Full Text Available Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and

  6. Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing

    Science.gov (United States)

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  7. Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities.

    Science.gov (United States)

    Purschke, Oliver; Sykes, Martin T; Poschlod, Peter; Michalski, Stefan G; Römermann, Christine; Durka, Walter; Kühn, Ingolf; Prentice, Honor C

    2014-03-01

    Plant communities and their ecosystem functions are expected to be more resilient to future habitat fragmentation and deterioration if the species comprising the communities have a wide range of dispersal and persistence strategies. However, the extent to which the diversity of dispersal and persistence traits in plant communities is determined by the current and historical characteristics of sites and their surrounding landscape has yet to be explored.Using quantitative information on long-distance seed dispersal potential by wind and animals (dispersal in space) and on species' persistence/longevity (dispersal in time), we (i) compared levels of dispersal and persistence trait diversity (functional richness, FRic, and functional divergence, FDiv) in seminatural grassland plant communities with those expected by chance, and (ii) quantified the extent to which trait diversity was explained by current and historical landscape structure and local management history - taking into account spatial and phylogenetic autocorrel.Null model analysis revealed that more grassland communities than expected had a level of trait diversity that was lower or higher than predicted, given the level of species richness. Both the range (FRic) and divergence (FDiv) of dispersal and persistence trait values increased with grassland age. FDiv was mainly explained by the interaction between current grazing intensity and the amount of grassland habitat in the surrounding landscape in 1938. Synthesis . The study suggests that the variability of dispersal and persistence traits in grassland plant communities is driven by deterministic assembly processes, with both history and current management (and their interactions), playing a major role as determinants of trait diversity. While a long continuity of grazing management is likely to have promoted the diversity of dispersal and persistence traits in present-day grasslands, communities in sites that are well grazed at the present day, and were

  8. Numerical study on tsunami hazard mitigation using a submerged breakwater.

    Science.gov (United States)

    Ha, Taemin; Yoo, Jeseon; Han, Sejong; Cho, Yong-Sik

    2014-01-01

    Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated.

  9. Numerical Study on Tsunami Hazard Mitigation Using a Submerged Breakwater

    Directory of Open Access Journals (Sweden)

    Taemin Ha

    2014-01-01

    Full Text Available Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated.

  10. Plasticity as a plastic response: how submergence-induced leaf elongation in Rumex palustris depends on light and nutrient availability in its early life stage.

    Science.gov (United States)

    Huber, Heidrun; Chen, Xin; Hendriks, Marloes; Keijsers, Danny; Voesenek, Laurentius A C J; Pierik, Ronald; Poorter, Hendrik; de Kroon, Hans; Visser, Eric J W

    2012-04-01

    Plants may experience different environmental cues throughout their development which interact in determining their phenotype. This paper tests the hypothesis that environmental conditions experienced early during ontogeny affect the phenotypic response to subsequent environmental cues. This hypothesis was tested by exposing different accessions of Rumex palustris to different light and nutrient conditions, followed by subsequent complete submergence. Final leaf length and submergence-induced plasticity were affected by the environmental conditions experienced at early developmental stages. In developmentally older leaves, submergence-induced elongation was lower in plants previously subjected to high-light conditions. Submergence-induced elongation of developmentally younger leaves, however, was larger when pregrown in high light. High-light and low-nutrient conditions led to an increase of nonstructural carbohydrates in the plants. There was a positive correlation between submergence-induced leaf elongation and carbohydrate concentration and content in roots and shoots, but not with root and shoot biomass before submergence. These results show that conditions experienced by young plants modulate the responses to subsequent environmental conditions, in both magnitude and direction. Internal resource status interacts with cues perceived at different developmental stages in determining plastic responses to the environment. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  11. Rainfall and soils modify plant community response to grazing in Serengeti National Park.

    Science.gov (United States)

    Anderson, T Michael; Ritchie, Mark E; McNaughton, Samuel J

    2007-05-01

    Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.

  12. Incorporating Peatland Plant Communities into the Enzymic 'Latch' Hypothesis: Can Vegetation Influence Carbon Storage Mechanisms?

    Science.gov (United States)

    Romanowicz, K. J.; Daniels, A. L.; Potvin, L. R.; Kane, E. S.; Kolka, R. K.; Chimner, R. A.; Lilleskov, E. A.

    2012-12-01

    High water table conditions in peatland ecosystems are known to favor plant production over decomposition and carbon is stored. Dominant plant communities change in response to water table but little is know of how these changes affect belowground carbon storage. One hypothesis known as the enzymic 'latch' proposed by Freeman et al. suggests that oxygen limitations due to high water table conditions inhibit microorganisms from synthesizing specific extracellular enzymes essential for carbon and nutrient mineralization, allowing carbon to be stored as decomposition is reduced. Yet, this hypothesis excludes plant community interactions on carbon storage. We hypothesize that the dominant vascular plant communities, sedges and ericaceous shrubs, will have inherently different effects on peatland carbon storage, especially in response to declines in water table. Sedges greatly increase in abundance following water table decline and create extensive carbon oxidation and mineralization hotspots through the production of deep roots with aerenchyma (air channels in roots). Increased oxidation may enhance aerobic microbial activity including increased enzyme activity, leading to peat subsidence and carbon loss. In contrast, ericaceous shrubs utilize enzymatically active ericoid mycorrhizal fungi that suppress free-living heterotrophs, promoting decreased carbon mineralization by mediating changes in rhizosphere microbial communities and enzyme activity regardless of water table declines. Beginning May 2010, bog monoliths were harvested, housed in mesocosm chambers, and manipulated into three vegetation treatments: unmanipulated (+sedge, +Ericaceae), sedge (+sedge, -Ericaceae), and Ericaceae (-sedge, +Ericaceae). Following vegetation manipulations, two distinct water table manipulations targeting water table seasonal profiles were implemented: (low intra-seasonal variability, higher mean water table; high intra-seasonal variability, lower mean water table). In 2012, peat

  13. Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots

    Directory of Open Access Journals (Sweden)

    Guillaume eBourdel

    2016-05-01

    Full Text Available Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous patterns of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollut