WorldWideScience

Sample records for submerged liquid jets

  1. Structure of strongly underexpanded gas jets submerged in liquids – Application to the wastage of tubes by aggressive jets

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Francis, E-mail: roger@ensma.fr [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Carreau, Jean-Louis; Gbahoué, Laurent; Hobbes, Philippe [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Allou, Alexandre; Beauchamp, François [CEA, DEN, Cadarache, DTN/STPA/LTRS, 13108 Saint-Paul lez, Durance Cedex (France)

    2014-07-01

    Highlights: • Underexpanded gas jets submerged in liquids behave similarly to homogeneous gas jets. • The counter rotating vortex pairs of jet produce discrete imprints on the targets. • The shape of hollows made on the targets is explained by the jet structure. • The erosion–corrosion phenomenon well explains the wastage of exchange tubes. - Abstract: Strongly underexpanded gas jets submerged in a liquid at rest behave similarly to underexpanded homogeneous gas jets. The existence of the Taylor-Görtler vortices around the inner zone of the gas jets is demonstrated in free gas jets submerged in water by means of optical probe. In the near field, the same phenomenon produces discrete imprints, approximately distributed in a circle, when underexpanded nitrogen jet submerged in liquid sodium hydroxide and underexpanded water vapour jet submerged in liquid sodium impact onto AU{sub 4}G-T{sub 4} and Incoloy 800{sup ®} alloy targets respectively. For a jet-target couple, the volume of the hollow is satisfactorily related to the strain energy density of the material and the kinetic energy of the gas jet. However, the comparison between volumes of hollows produced by both jets also indicates strong corrosive action of the medium on targets. This allows better understanding of the mechanism of wastage of tubes employed in steam generators integrated in liquid metal fast breeder reactors.

  2. Boiling hysteresis of impinging circular submerged jets with highly wetting liquids

    International Nuclear Information System (INIS)

    Zhou, D.W.; Ma, C.F.; Yu, J.

    2004-01-01

    An experimental study was carried out to characterize the boiling hysteresis of impinging circular submerged jets with highly wetting liquids. The effects of noncondensable gases and surface aging on boiling curves were considered. The present study focused on the effects of jet parameters (jet exit velocity, radial distance from the stagnation point and nozzle diameter) and fluid subcooling on incipient boiling superheat and superheat excursion, as well as the physical mechanism of boiling hysteresis. Results show that the incipient boiling superheat decreases only with fluid subcooling regardless of jet parameters, and that the superheat excursion increases with nozzle diameter and radial distance from the stagnation point and decreasing jet exit velocity and fluid subcooling. Boiling hysteresis occurs due to deactivation of vapor embryos within larger cavities. Three anomalous phenomena at boiling inception are recorded and discussed in terms of irregular activation of vapor embryos

  3. Computer simulation of mobilization and mixing of kaolin with submerged liquid jets in 25,000-gallon horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Eyler, L.L.; Mahoney, L.A.

    1995-03-01

    This report presents and analyzes results of computer model simulation of mobilization and mixing of kaolin using the TEMPEST code. The simulations are conducted in a horizontal cylindrical geometry replicating a 95 m 3 (25,000 gal) test tank at ORNL, which is scaled to approximate Melton Valley Storage tanks, which are 190 m 3 (50,000 gal). Mobilization and mixing is accomplished by two submerged liquid jets. Two configurations are simulated, one with the jets located at the center of the tank lengthwise and one with the jets located 1/4 tank length from one end. Computer simulations of both jet and suction configurations are performed. Total flow rates of 50, 100, and 200 gpm are modeled, corresponding to jet velocities of 1.52, 3.05, 6.10 m/s (5, 10, 20 ft/s). Calculations were performed to a time of 2 h for the center jet location and to a little over 1 h for the quarter jet location. This report presents computer and fluid properties model basis, preliminary numerical testing, and results. The results are presented in form of flow field and sludge layer contours. Degree of mobilization is presented as fraction of initial sludge layer remaining as a function of time. For the center jet location at 200 gpm, the sludge layer is completely mobilized in just over 1 h. For 100 gpm flow, about 5% of the sludge layer remains after 2 h. For 50 gpm flow, nearly 40% of the initial sludge layer remains after 2 h. For the quarter jets at 200 gpm, about 10% of the initial sludge layer remains after 1 h. For 100 gpm, about 40% of the sludge layer remains after 1 h. The boundary of the sludge layer is defined as 98% max packing for the particles. Mixing time estimates for these cases range from between 9.4 h and 16.2 h. A more critical evaluation and comparison of predictions and the test results is needed

  4. Numerical study of the underexpanded nitrogen jets submerged into liquid sodium in the frame of Sodium-cooled Fast Reactor (SFRs)

    International Nuclear Information System (INIS)

    Chen, F.; Allou, A.; Parisse, J.D.

    2017-01-01

    The study of the consequences of a gas leakage in the secondary/ tertiary heat exchangers is one of the essential points in the safety analysis of Sodium-cooled Fast nuclear Reactors (SFRs). This work is in the frame of the technology of the Compact plates Sodium-Gas heat Exchangers (ECSG) which is an alternative to conventional steam Rankine cycles. The overpressure of the tertiary nitrogen loop causes the formation of underexpanded gas jets submerged in the liquid sodium. In order to establish a safety evaluation, it would be an asset to be able to estimate the leakage. The gas leak detection by the acoustic method based on the bubbles field has been proposed. It requires then a delicate knowledge of the bubble field. This work contributes to development a numerical tool and its validation to model the transport and the production of bubbles in the downstream of underexpanded gas jets. The code CANOP modeling bi-phasic compressible flow is investigated under the actual condition of the underexpanded nitrogen jets submerged in the liquid sodium in an ECSG channel. Expensive computational cost is limited by using an Adaptive Mesh Refinement. (author)

  5. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroyuki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth under submerged condition divided by the cutting depth in air at the same standoff distance. The relative cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  6. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  7. Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current

    DEFF Research Database (Denmark)

    Chen, H. B.; Larsen, Torben

    1995-01-01

    This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically and...

  8. Submerged cutting of steel by abrasive water jets

    International Nuclear Information System (INIS)

    Haferkamp, H.; Louis, H.; Meier, G.

    1990-01-01

    A special cutting head for underwater use was designed and built. Tests were carried out to find out useful parameters for submerged cutting. With regard to the production of secondary waste the abrasive flow rate had to be minimized. This was achieved by using a small water jet nozzle (up to 0.4 mm diameter) and a high pressure (up to 4000 bar) with an optimal abrasive flow rate of about 5 g/s. In the case of a higher ambient pressure a decrease of the cutting performance was measured. But this decrease is not important regarding decommissioning because the ambient pressure is less than 2 bar. An air mantle nozzle was adapted to the cutting head to improve the working distance under water. The air mantle surrounding the abrasive jet lowers the friction between jet and surrounding water and increases the cutting efficiency in the case of greater working distances. (author)

  9. Experimental investigation of submerged single jet impingement using Cu–water nanofluid

    International Nuclear Information System (INIS)

    Li Qiang; Xuan Yimin; Yu Feng

    2012-01-01

    Jet impingement cooling is a vital technique for thermal management of electronic devices of high-heat-flux by impinging fluid on a heater surface due to its high local heat transfer rates. In this paper, two types of Cu–water nanofluids (Cu particles with 25 nm diameter or 100 nm) are introduced into submerged single jet impingement cooling system as the working fluid. The heat transfer features of the nanofluids were experimentally investigated. The effects of the nanoparticle concentration, Reynolds number, nozzle-to-plate distance, fluid temperature, and nanoparticle diameter on the heat transfer performances of the jet impingement of nanofluids are discussed. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid. The convective heat transfer coefficient of Cu–water nanofluid with the volume fraction of 3.0% has 52% higher than the pure water. The experiments also revealed that the suspended nanoparticles brought almost no extra addition of pressure drop in both submerged single jet impingement. In addition, by considering the effects of the suspended nanoparticles as well as the condition of impinging jet, a new heat transfer correlation of nanofluids for the submerged single jet impingement has been proposed. - Highlights: ► Cu–water nanofluids are introduced into submerged single jet impingement. ► The affecting parameters on the heat transfer performances of nanofluids are discussed. ► New heat transfer correlation of nanofluid for single jet impingement is proposed.

  10. A new approach on anti-vortex devices at water intakes including a submerged water jet

    Science.gov (United States)

    Tahershamsi, Ahmad; Rahimzadeh, Hassan; Monshizadeh, Morteza; Sarkardeh, Hamed

    2018-04-01

    A new approach on anti-vortex methods as hydraulic-based anti-vortex was investigated experimentally in the present study. In the investigated method, a submerged water jet is used as the anti-vortex mechanism. The added jet acts as a source of external momentum. This leads to change the intake-induced hydrodynamic pattern in the near-field of the intake structure, which can prevent formation of undesirable intake vortices. The experiments were carried out on a horizontal pipe intake. By performing 570 test cases in two different categories, including the inclined jet with respect to the axis of the intake, and the inclined jet with respect to the water surface, the effects of the jet inclination angle on the anti-vortex performance were investigated. It was found that the inclined jet with respect to the water surface is the best alternative to consider as the water jet injection pattern. Results showed that using the inclined jet with respect to the water surface can simply reduce the amounts of the expected water jet momentum more than 50% compared to that of the similar condition of the horizontal injection pattern. Moreover, it was concluded that the intake critical submergence can easily be minimized using the inclined jet with respect to the water surface.

  11. Disintegration of a Liquid Jet

    Science.gov (United States)

    Haenlein, A

    1932-01-01

    This report presents an experimental determination of the process of disintegration and atomization in its simplest form, and the influence of the physical properties of the liquid to be atomized on the disintegration of the jet. Particular attention was paid to the investigation of the process of atomization.

  12. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....

  13. CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances

    Science.gov (United States)

    Huda, Nazmul; Naser, J.; Brooks, G.; Reuter, M. A.; Matusewicz, R. W.

    2010-02-01

    Fluid flow phenomena in a cylindrical bath stirred by a top submerged lance (TSL) gas injection was investigated by using the computational fluid dynamic (CFD) modeling technique for an isothermal air-water system. The multiphase flow simulation, based on the Euler-Euler approach, elucidated the effect of swirl and nonswirl flow inside the bath. The effects of the lance submergence level and the air flow rate also were investigated. The simulation results for the velocity fields and the generation of turbulence in the bath were validated against existing experimental data from the previous water model experimental study by Morsi et al.[1] The model was extended to measure the degree of the splash generation for different liquid densities at certain heights above the free surface. The simulation results showed that the two-thirds lance submergence level provided better mixing and high liquid velocities for the generation of turbulence inside the water bath. However, it is also responsible for generating more splashes in the bath compared with the one-third lance submergence level. An approach generally used by heating, ventilation, and air conditioning (HVAC) system simulations was applied to predict the convective mixing phenomena. The simulation results for the air-water system showed that mean convective mixing for swirl flow is more than twice than that of nonswirl in close proximity to the lance. A semiempirical equation was proposed from the results of the present simulation to measure the vertical penetration distance of the air jet injected through the annulus of the lance in the cylindrical vessel of the model, which can be expressed as L_{va} = 0.275( {do - di } )Frm^{0.4745} . More work still needs to be done to predict the detail process kinetics in a real furnace by considering nonisothermal high-temperature systems with chemical reactions.

  14. Influences of hydrodynamic conditions, nozzle geometry on appearance of high submerged cavitating jets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available Based on visualization results of highly-submerged cavitating water jet obtained with digital camera, the influences of related parameters such as: injection pressure, nozzle diameter and geometry, nozzle mounting (for convergent / divergent flow, cavitation number and exit jet velocity, were investigated. In addition, the influence of visualization system position was also studied. All the parameters have been found to be of strong influence on the jet appearance and performance. Both hydro-dynamical and geometrical parameters are playing the main role in behavior and intensity of cavitation phenomenon produced by cavitating jet generator. Based on our considerable previous experience in working with cavitating jet generator, the working conditions were chosen in order to obtain measurable phenomenon. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  15. Time-frequency analysis of submerged synthetic jet

    Science.gov (United States)

    Kumar, Abhay; Saha, Arun K.; Panigrahi, P. K.

    2017-12-01

    The coherent structures transport the finite body of fluid mass through rolling which plays an important role in heat transfer, boundary layer control, mixing, cooling, propulsion and other engineering applications. A synthetic jet in the form of a train of vortex rings having coherent structures of different length scales is expected to be useful in these applications. The propagation and sustainability of these coherent structures (vortex rings) in downstream direction characterize the performance of synthetic jet. In the present study, the velocity signal acquired using the S-type hot-film probe along the synthetic jet centerline has been taken for the spectral analysis. One circular and three rectangular orifices of aspect ratio 1, 2 and 4 actuating at 1, 6 and 18 Hz frequency have been used for creating different synthetic jets. The laser induced fluorescence images are used to study the flow structures qualitatively and help in explaining the velocity signal for detection of coherent structures. The study depicts four regions as vortex rollup and suction region (X/D h ≤ 3), steadily translating region (X/D h ≤ 3-8), vortex breakup region (X/Dh ≤ 4-8) and dissipation of small-scale vortices (X/D h ≤ 8-15). The presence of coherent structures localized in physical and temporal domain is analyzed for the characterization of synthetic jet. Due to pulsatile nature of synthetic jet, analysis of velocity time trace or signal in time, frequency and combined time-frequency domain assist in characterizing the signatures of coherent structures. It has been observed that the maximum energy is in the first harmonic of actuation frequency, which decreases slowly in downstream direction at 6 Hz compared to 1 and 18 Hz of actuation.

  16. Appearance of high submerged cavitating jet: The cavitation phenomenon and sono luminescence

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available In order to study jet structure and behaviour of cloud cavitation within time and space, visualization of highly submerged cavitating water jet has been done using Stanford Optics 4 Quick 05 equipment, through endoscopes and other lenses with Drello3244 and Strobex Flash Chadwick as flashlight stroboscope. This included obligatory synchronization with several types of techniques and lenses. Images of the flow regime have been taken, allowing calculation of the non-dimensional cavitation cloud length under working conditions. Consequently a certain correlation has been proposed. The influencing parameters, such as; injection pressure, downstream pressure and cavitation number were experimentally proved to be very significant. The recordings of sono-luminescence phenomenon proved the collapsing of bubbles everywhere along the jet trajectory. In addition, the effect of temperature on sono-luminescence recordings was also a point of investigation. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  17. Liquid jets for experiments on complex fluids

    International Nuclear Information System (INIS)

    Steinke, Ingo

    2015-02-01

    The ability of modern storage rings and free-electron lasers to produce intense X-ray beams that can be focused down to μm and nm sizes offers the possibility to study soft condensed matter systems on small length and short time scales. Gas dynamic virtual nozzles (GDVN) offer the unique possibility to investigate complex fluids spatially confined in a μm sized liquid jet with high flow rates, high pressures and shear stress distributions. In this thesis two different applications of liquid jet injection systems have been studied. The influence of the shear flow present in a liquid jet on colloidal dispersions was investigated via small angle X-ray scattering and a coherent wide angle X-ray scattering experiment on a liquid water jet was performed. For these purposes, liquid jet setups that are capable for X-ray scattering experiments have been developed and the manufacturing of gas dynamic virtual nozzles was realized. The flow properties of a liquid jet and their influences on the liquid were studied with two different colloidal dispersions at beamline P10 at the storage ring PETRA III. The results show that high shear flows present in a liquid jet lead to compressions and expansions of the particle structure and to particle alignments. The shear rate in the used liquid jet could be estimated to γ ≥ 5.4 . 10 4 Hz. The feasibility of rheology studies with a liquid jet injection system and the combined advantages is discussed. The coherent X-ray scattering experiment on a water jet was performed at the XCS instrument at the free-electron laser LCLS. First coherent single shot diffraction patterns from water were taken to investigate the feasibility of measuring speckle patterns from water.

  18. Simulation Of Gas Focused Liquid Jets

    OpenAIRE

    Zahoor, Rizwan

    2018-01-01

    The main aim of dissertation is to develop an experimentally verified computational fluid dynamic (CFD) model of micron-sized liquid jet, produced by an injection molded Gas Dynamic Virtual Nozzle (GDVN). In these nozzles, liquid jets are efficiently orientedly transporting mass and momentum. They are produced by intelligently projecting hydrodynamic focusing effect from a high-speed stream of a co-flowing lower density and lower viscosity gas on a stream of liquid from a feeding capillary. L...

  19. Apparatus for the in situ inspection of tubes while submerged in a liquid

    International Nuclear Information System (INIS)

    Abell, G.E.; Plavsity, L.; Sattler, F.J.

    1979-01-01

    Apparatus is described for the in situ inspection of tubes which are submerged in a liquid such as the primary coolant of a nuclear reactor. A sensor is withdrawn from a tube by a cable. Means are provided for removing the liquid from and drying the cable. The liquid is returned to the tubes preventing the spread of deleterious liquids to otherwise benign environments and fouling of the drive mechanism used to control cable movements

  20. Effect of non-condensation gas on pressure oscillation of submerged steam jet condensation

    International Nuclear Information System (INIS)

    Zhao, Quanbin; Cong, Yuelei; Wang, Yingchun; Chen, Weixiong; Chong, Daotong; Yan, Junjie

    2016-01-01

    Highlights: • Oscillation intensity of steam–air jet increases with rise of water temperature. • Oscillation intensity reduces obviously when air is mixed. • Both first and second dominant frequencies decrease with rise of air mass fraction. • Air has little effect on power of 1st & 2nd frequency bands under low temperature. • The maximum oscillation power occurs under case of A = 1% and T ⩾ 50 °C. - Abstract: The effect of air with low mass fraction on the oscillation intensity and oscillation frequency of a submerged steam jet condensation is investigated under stable condensation region. With air mixing in steam, an obvious dynamic pressure peak appears along the jet direction. The intensity peak increases monotonously with the rise of steam mass flux and water temperature. Peak position moves downstream with the rise of air mass fraction. Moreover, when compared with that of pure steam jet, the oscillation intensity clearly decreases as air is mixed. However, when water temperature is lower than approximately 45 °C, oscillation intensity increases slightly with the rise of air mass fraction, and when water temperature is higher than 55 °C, the oscillation intensity decreases greatly with the rise of air mass fraction. Both the first and second dominant frequencies decrease with rise of air mass fraction. Finally, effect of air mass fractions on the oscillation power of the first and second dominant frequency bands shows similar trends. Under low water temperature, the mixed air has little effect on the oscillation power of both first and second frequency bands. However, when water temperature is high, the oscillation power of both first and second frequency bands appears an obvious peak when air mass fraction is about 1%. With further rise of air mass fraction, the oscillation power decreases gradually.

  1. Theoretical study on device efficiency of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Gao Chuanchang; Lu Hongqi; Wang Shicheng; Cheng Mingchuan

    2001-01-01

    The influence of the main factors on device efficiency of pulsed liquid jet pump with gas-liquid piston is analysed, the theoretical equation and its time-averaged solution of pulsed liquid jet pump device efficiency are derived. The theoretical and experimental results show that the efficiency of transmission of energy and mass to use pulsed jet is greatly raised, compared with steady jet, in the same device of liquid jet pump. The calculating results of time-averaged efficiency of pulsed liquid jet pump are approximately in agreement with the experimental results in our and foreign countries

  2. Bouncing and Merging of Liquid Jets

    Science.gov (United States)

    Saha, Abhishek; Li, Minglei; Law, Chung K.

    2014-11-01

    Collision of two fluid jets is a technique that is utilized in many industrial applications, such as in rocket engines, to achieve controlled mixing, atomization and sometimes liquid phase reactions. Thus, the dynamics of colliding jets have direct impact on the performance, efficiency and reliability of such applications. In analogy with the dynamics of droplet-droplet collision, in this work we have experimentally demonstrated, for n-alkane hydrocarbons as well as water, that with increasing impact inertia obliquely colliding jets also exhibit the same nonmonotonic responses of merging, bouncing, merging again, and merging followed by disintegration; and that the continuous entrainment of the boundary layer air over the jet surface into the colliding interfacial region leads to two distinguishing features of jet collision, namely: there exists a maximum impact angle beyond which merging is always possible, and that merging is inhibited and then promoted with increasing pressure. These distinct response regimes were mapped and explained on the bases of impact inertia, deformation of the jet surface, viscous loss within the jet interior, and the thickness and pressure build-up within the interfacial region in order to activate the attractive surface van der Waals force to effect merging.

  3. Turbulence characteristics in cylindrical liquid jets

    International Nuclear Information System (INIS)

    Mansour, A.; Chigier, N.

    1994-01-01

    A study has been made of the flow patterns and turbulence characteristics in free liquid jets in order to determine the rate of decay of turbulence properties along the jet. Mean streamwise velocities and streamwise velocities and streamwise and cross-streamwise turbulence intensities were measured using laser Doppler velocimetry. The jet Reynolds number was varied between 1000 and 30 000, with the diameter of the liquid jet D=3.051 mm. Using a power law model for the time decay of turbulence kinetic energy, it was found that turbulence decays, on average with an exponent N=1, independent of the Reynolds number. A constant power for the decay implies Reynolds number similarity throughout this range. Substantial reductions in the degree of anisotropy occur downstream from the injector exit as the jet relaxes from a fully developed turbulent pipe flow profile to a flat profile. For the intermediate range of Reynolds numbers (10 000--20 000), the relaxation distance was 20D, almost independent of the Reynolds number. At high values of Reynolds number (20 000--30 000), the relaxation process was very fast, generally within three diameters from the injector exit

  4. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  5. Experimental study on performance of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Xu Weihui; Gao Chuanchang; Qin Haixia

    2010-01-01

    The device performance characteristics of transformer type pulsed liquid pump device were experimentally studied. The effects of the area ratio, work pressure and pulse parameters on the performance of the pulsed liquid jet pump device were performed in the tests. The potency of pulsed jet on improving the performance of the liquid jet pump device was also studied through the comparison with invariable jet pump at the same conditions. The results show that the pulsed jet can significantly improve the performance of transformer type jet pump devices. Area ratio and pulse parameters are the critical factors to the performance of the pulsed liquid jet pump device. The jet pump device performances are significantly improved by reducing the area ratio or by increasing the pulsed frequency. The flux characteristics of the pulsed liquid jet pump device presents the typical negative linear,the potency of pulsed jet in improving the performance of jet pump device with small area ratio can be more significant. The efficiency curve of pulsed liquid jet pump is similar to the parabola. At higher pulsed frequency, the top efficiency point of the pulsed jet pump moves to the higher flow ratio. The high efficiency area of the pulsed jet pump also is widened with the increase of the pulsed frequency. (authors)

  6. Breakup of free liquid jets influenced by external mechanical vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Lad, V N; Murthy, Z V P, E-mail: vnl@ched.svnit.ac.in, E-mail: zvpm@ched.svnit.ac.in, E-mail: zvpm2000@yahoo.com [Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology—Surat, Surat—395007, Gujarat (India)

    2017-02-15

    The breakup of liquid jets has been studied with various test liquids using externally imposed mechanical vibrations. Images of the jets were captured by a high speed camera up to the speed of 1000 frames per second, and analyzed to obtain the profile of the jet and breakup length. The dynamics of the jets have also been studied to understand the effects of additives—a surfactant and polymer—incorporating externally imposed mechanical vibrations. Different types of breakup modes have been explored with respect to the Weber number and Ohnesorge number. The introduction of mechanical vibrations have caused jet breakup with separated droplets at a comparatively lower Weber number. The region of jet breakup by neck formation at constant jet velocities also contracted due to mechanical vibrations. (paper)

  7. Improving of Mixing by Submerged Rotary Jet (SRJ) System in a Large Industrial Storage Tank by CFD Techniques

    Science.gov (United States)

    Barekatain, H.; Hashemabadi, S. H.

    2011-09-01

    This paper reports the result of a CFD (Computational Fluid Dynamics) study on the Submerged Rotary Jet (SRJ) mixing system in a large industrial crude oil storage tank (one million barrels). This system has been installed on the tank just for reduction of sludge, but improper installation causes more accumulation of sludge on one side of tank. The main question is: How can we improve the mixing operation in this tank? For the purpose, a three dimensional modeling is carried out using an in-house CFD code and RNG k-ɛ model for turbulence prediction. The results show that pump suction location and crude oil velocity in tank are most effective factors on the sludge amount. Then, different ways such as increasing of jet flow rate, increasing and decreasing of tank height and reducing of nozzle diameter have been investigated. Finally, in this case, the results show the sedimentation of sludge in whole tank can be removed by 20% increasing of jet flow rate.

  8. Liquid jet experiments: relevance to inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1981-01-01

    In order to try to find a reactor design which offered protection against neutron damage, studies were undertaken at LLNL (the Lawrence Livermore National Laboratory) of self-healing, renewable liquid-wall reactor concepts. In conjuction with these studies, were done a seris of small-scale aer jet experiments were done over the past several years at UCD (University of California, Davis Campus) to simulate the behavior of liquid lithium (or lithium-lead) jets in these liquid-wall fusion reactor concepts. Extropolating the results of these small-scale experiments to the large-scale lithium jets, tentatively concluded that the lithium jet can be re-established after the microexplosion, and with careful design the jets should not breakup due to instabilities during the relatively quiscent period between MICROEXPLOSIONS

  9. Single-phase liquid jet impingement heat transfer

    International Nuclear Information System (INIS)

    Webb, B.W.; Ma, C.F.

    1995-01-01

    Impinging liquid jets have been demonstrated to be an effective means of providing high heat/mass transfer rates in industrial transport processes. When a liquid jet strikes a surface, thin hydrodynamic and thermal boundary layers from in the region directly beneath due to the jet deceleration and the resulting increase in pressure. The flow is then forced to accelerate in a direction parallel to the target surface in what is termed the wall jet or parallel flow zone. The thickness of the hydrodynamic and thermal boundary layers in the stagnation region may be of the order of tens of micrometers. Consequently, very high heat/mass transfer coefficients exist in the stagnation zone directly under the jet. Transport coefficients characteristic of parallel flow prevail in the wall jet region. The high heat transfer coefficients make liquid jet impingement an attractive cooling option where high heat fluxes are the norm. Some industrial applications include the thermal treatment of metals, cooling of internal combustion engines, and more recently, thermal control of high-heat-dissipation electronic devices. Both circular and planar liquid jets have attracted research attention. 180 refs., 35 figs., 11 tabs

  10. Liquid gallium jet-plasma interaction studies in ISTTOK tokamak

    International Nuclear Information System (INIS)

    Gomes, R.B.; Fernandes, H.; Silva, C.; Sarakovskis, A.; Pereira, T.; Figueiredo, J.; Carvalho, B.; Soares, A.; Duarte, P.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Tale, I.; Alekseyv, A.

    2009-01-01

    Liquid metals have been pointed out as a suitable solution to solve problems related to the use of solid walls submitted to high power loads allowing, simultaneously, an efficient heat exhaustion process from fusion devices. The most promising candidate materials are lithium and gallium. However, lithium has a short liquid state temperature range when compared with gallium. To explore further this property, ISTTOK tokamak is being used to test the interaction of a free flying liquid gallium jet with the plasma. ISTTOK has been successfully operated with this jet without noticeable discharge degradation and no severe effect on the main plasma parameters or a significant plasma contamination by liquid metal. Additionally the response of an infrared sensor, intended to measure the jet surface temperature increase during its interaction with the plasma, has been studied. The jet power extraction capability is extrapolated from the heat flux profiles measured in ISTTOK plasmas.

  11. CPV cells cooling system based on submerged jet impingement: CFD modeling and experimental validation

    Science.gov (United States)

    Montorfano, Davide; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Pedretti, Andrea

    2014-09-01

    Concentrating photovoltaic (CPV) cells offer higher efficiencies with regard to the PV ones and allow to strongly reduce the overall solar cell area. However, to operate correctly and exploit their advantages, their temperature has to be kept low and as uniform as possible and the cooling circuit pressure drops need to be limited. In this work an impingement water jet cooling system specifically designed for an industrial HCPV receiver is studied. Through the literature and by means of accurate computational fluid dynamics (CFD) simulations, the nozzle to plate distance, the number of jets and the nozzle pitch, i.e. the distance between adjacent jets, were optimized. Afterwards, extensive experimental tests were performed to validate pressure drops and cooling power simulation results.

  12. The influence of the stagnation zone on the fluid dynamics at the nozzle exit of a confined and submerged impinging jet

    Science.gov (United States)

    Jeffers, Nicholas; Stafford, Jason; Conway, Ciaran; Punch, Jeff; Walsh, Edmond

    2016-02-01

    Low profile impinging jets provide a means to achieve high heat transfer coefficients while occupying a small quantity of space. Consequently, they are found in many engineering applications such as electronics cooling, annealing of metals, food processing, and others. This paper investigates the influence of the stagnation zone fluid dynamics on the nozzle exit flow condition of a low profile, submerged, and confined impinging water jet. The jet was geometrically constrained to a round, 16-mm diameter, square-edged nozzle at a jet exit to target surface spacing ( H/ D) that varied between 0.25 choice of inlet boundary conditions in numerical models, and it was found that it is necessary to model a jet tube length {{ L}{/}{ D}} > 0.5—where D is the inner diameter of the jet—in order to minimise modelling uncertainty.

  13. Liquid jets for fast plasma termination in tokamaks

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Putvinskij, S.V.; Parks, P.B.

    1997-01-01

    Recent simulations by Putvisnkij et al. (PSI Conference, 1996) have shown that introducing impurities into the plasma in order to mitigate adverse disruption effects in ITER may actually be deleterious because of a potentially unwelcome phenomenon: generation of multi-MeV runaway electrons by the collisional avalanche mechanism (Rosenbluth, M.N., et al., in Fusion Energy 1996 (Proc. 16th Int. Conf. Montreal, 1996) Vol. 2, IAEA, Vienna (in press) Paper FP-26). The injection of a liquid hydrogen jet to deliver a massive density increase is proposed as a means of avoiding runaways, while providing the same beneficial effects as impurities. A discussion of many jet related topics, such as ablation/penetration, jet breakup time and stability, is presented. Owing to an ablation pressure instability, it is predicted that the jet will quickly break up into a regular chain of droplets with dimensions of approximately the size of the jet radius. It is found that while deep penetration in the plasma can easily be achieved, bubble growth and disruptive boiling (flashing) during the propagation in the vacuum gap between the nozzle exit and the plasma are the main processes limiting the jet survival time. Calculations indicate that for ITER reference parameters, the jet can remain coherent in vacuum for a distance ∼ 1 m before disintegrating. On the basis of this present understanding, the prospect for the safe termination of ITER discharges by high density liquid jet injection appears promising. (author). 20 refs, 6 figs, 3 tabs

  14. Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames

    Science.gov (United States)

    2016-05-15

    Conference Paper 3. DATES COVERED (From - To) 18 Mar 2016 – 15 May 2016 4. TITLE AND SUBTITLE Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet...perform, display, or disclose the work. 13. SUPPLEMENTARY NOTES For presentation at 28th Annual Conference on Liquid Atomization and Spray Systems...serious problems in the development of liquid rocket engines. In order to understand and predict them, it is necessary to understand how representative

  15. Shock and vibration protection of submerged jet impingement cooling systems: Theory and experiment

    International Nuclear Information System (INIS)

    Haji Hosseinloo, Ashkan; Tan, Siow Pin; Yap, Fook Fah; Toh, Kok Chuan

    2014-01-01

    In the recent years, advances in high power density electronics and computing systems have pushed towards more advanced thermal management technologies and higher-capacity cooling systems. Among different types of cooling systems, jet impingement technology has gained attention and been widely used in different industries for its adaptability, cooling uniformity, large heat capacity, and ease of its localization. However, these cooling systems may not function properly in dynamically harsh environment inherent in many applications such as land, sea and air transportation. In this research article, a novel double-chamber jet impingement cooling system is fabricated and its performance is studied in harsh environment. Using the authors' previous studies, isolators with optimum properties are selected to ruggedize the chassis containing the cooling chamber against shock and random vibration. Experiments are conducted on both hard-mounted and isolated chassis and the cooling performance of the system is assessed using the inlet, and impingement surface temperatures of the cooling chamber. The experimental results show the isolation system prevents any failure that otherwise would occur, and also does not compromise the thermal performance of the system. - Highlights: • A novel double-chamber jet impingement cooling system was designed and fabricated. • Comprehensive set of random vibration and shock tests are conducted. • The isolation system proved to protect the cooling system properly against mechanical failure. • Cooling system performance was not significantly affected by the input random vibration and shock

  16. Analysis of the interaction between a submerged jet and a receiver-diffuser in a reverse-flow diverter. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1983-01-01

    Two mathematical models of the interaction between a submerged jet emanating from the nozzle of a reverse flow diverter (RFD) and a receiver-diffuser of a venturi-like reverse flow diverter are presented and compared with experimental data. Both models predict the output characteristics fairly accurately, although the experimentally measured flow is observed to saturate at higher values of jet dynamic pressure and at lower values of output load impedances. An analysis based on the inviscid flow model indicates cavitation as the likely cause of the flow saturation

  17. Conidiation of Penicillium camemberti in submerged liquid cultures is dependent on the nitrogen source.

    Science.gov (United States)

    Boualem, Khadidja; Labrie, Steve; Gervais, Patrick; Waché, Yves; Cavin, Jean-François

    2016-02-01

    To study the ability of a commercial Penicillium camemberti strain, used for Camembert type cheese ripening, to produce conidia during growth in liquid culture (LC), in media containing different sources of nitrogen as, industrially, conidia are produced by growth at the surface of a solid state culture because conidiation in stirred submerged aerobic LC is not known. In complex media containing peptic digest of meat, hyphae ends did not differentiate into phialides and conidia. Contrarily, in a synthetic media containing KNO3 as sole nitrogen source, hyphae ends differentiated into phialides producing 0.5 × 10(7) conidia/ml. Conidia produced in LC were 25 % less hydrophobic than conidia produced in solid culture, and this correlates with a seven-times-lower expression of the gene rodA encoding hydrophobin RodA in the mycelium grown in LC. Conidiation of P. camembertii is stimulated in iquid medium containing KNO3 as sole source of nitrogen and therefore opens up opportunities for using liquid medium in commercial productions.

  18. COMPARATIVE EVALUTION OF CEPHALOSPORIN-C PRODUCTION IN SOLID STATE FERMENTATION AND SUBMERGED LIQUID CULTURE

    Directory of Open Access Journals (Sweden)

    Mahdi Rezazarandi

    2012-08-01

    Full Text Available The advantages of solid state fermentation (SSF utilization in producing enzymes & secondary metabolites have been shown, whereas, submerged liquid fermentation (SLF condition has the major usage in industrial production of antibiotics. As an antibiotic of B-lactams group, cephalosporin-C (CPC is indicated due to its wide effect and broad convention in treatment of infectious diseases. Regarding industrial production of CPC regularly done in SLF condition, we compared CPC production sum in SLF and SSF conditions. In this analysis, A. chrysogenum was employed, which was inoculated to SLF and SSF, while internal fermenter conditions were totally under control. After extraction of CPC, productions in two states of SLF and SSF were compared using the cylinder plate method. According to Antibiotic assay and production amount comparison, results expressed a ratio of development of production in SSF conditions to SLF conditions. Regarding previous studies on a solid state fermenter and its advantages, in this study, convenience of SSF conditions compared to SLF conditions was experimented. Also mentioning that maintaining the condition of solid state fermenter is more comfortable and practical than liquid state fermenter, using a solid based fermenter to produce antibiotics, especially CPC, can be appropriate. Considering appropriate control conditions of SSF to produce secondary metabolites, decrease in expenses, and increase of production, taking advantage of it in order to increase production parallel to modern methods, such as genetically manipulating CPC producing microorganisms are recommended to pharmacological industries. Also, to make this method applicable, further studies in industrial criterion seem necessary.

  19. Transverse liquid fuel jet breakup, burning, and ignition

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.

    1990-01-01

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  20. Combined aerodynamic and electrostatic atomization of dielectric liquid jets

    Science.gov (United States)

    Kourmatzis, Agissilaos; Ergene, Egemen L.; Shrimpton, John S.; Kyritsis, Dimitrios C.; Mashayek, Farzad; Huo, Ming

    2012-07-01

    The electrical and atomization performance of a plane-plane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35 bar corresponding to injection velocities of up to 50 m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15-35 bar range, and an arithmetic mean diameter D 10 as low as 0.2 d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460-469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q v ~ 2 C/m3 cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number ( We j) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q v ~ 6 C/m3, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that `turbulent' primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets.

  1. Innovation Incubator: LiquidCool Solutions Technical Evaluation. Laboratory Study and Demonstration Results of a Directed-Flow, Liquid Submerged Server for High-Efficiency Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric J [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-12

    LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.

  2. Numerical investigation on liquid sheets interaction characteristics of liquid-liquid coaxial swirling jets in bipropellant thruster

    International Nuclear Information System (INIS)

    Ding, Jia-Wei; Li, Guo-Xiu; Yu, Yu-Song

    2016-01-01

    Highlights: • A LES-VOF model is conducted to simulate atomization of coaxial swirling jets. • Structure and flow field of coaxial swirling jets are investigated. • Merging process occurs at the nozzle exit and generates additional perturbation. • The Rayleigh mode instability dominates the breakup of ligaments. - Abstract: Spray atomization process of a liquid-liquid coaxial swirl injector in bipropellant thruster has been investigated using volume of fluid (VOF) method coupled with large eddy simulation methodology. With fine grid resolution, detailed flow field of interacted liquid sheet has been captured and analyzed. For coaxial swirling jet, static pressure drop in the region between the liquid sheets makes two liquid sheets to approach each other and merge. A strong pressure, velocity and turbulent fluctuations are calculated near the contact position of two coaxial jets. Simulation results indicate that additional perturbations are generated due to strong radial and axial shear effects between coaxial jets. Observation of droplet formation process reveals that the Rayleigh mode instability dominates the breakup of the ligament. Droplet diameter and distribution have been investigated quantitatively. The mean diameter of the coaxial jets is between that of the inner and the outer jets. Compared with the individual swirling jets, wider size distributions of droplets are produced in the coaxial jets.

  3. Measurements of air entrainment by vertical plunging liquid jets

    Science.gov (United States)

    El Hammoumi, M.; Achard, J. L.; Davoust, L.

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling.

  4. Measurements of air entrainment by vertical plunging liquid jets

    Energy Technology Data Exchange (ETDEWEB)

    El Hammoumi, M. [Faculte des Sciences et Techniques, Departement de Physique, Laboratoire de Mecanique Appliquee, Fes (Morocco); Achard, J.L.; Davoust, L. [Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), Grenoble (France)

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We{sub n} to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling. (orig.)

  5. Flow transition criteria of a liquid jet into a liquid pool

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shimpei, E-mail: s1630195@u.tsukuba.ac.jp [Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Abe, Yutaka [Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Koyama, Kazuya [Reactor Core and Safety Design Department, Mitsubishi FBR Systems, Inc., 2-34-17 Jingumae, Shibuya, Tokyo 150-0001 (Japan)

    2017-04-15

    Highlights: • Jet breakup and droplet formation in immiscible liquid-liquid systems was studied experimentally. • The observed jet breakup behavior was classified into characteristic regimes. • The droplet size distribution was analyzed using image processing. • The variation of droplet size was compared with available melt-jet experiments. • Extrapolation to the expected SFR conditions implied that most of the hydrodynamic conditions would be the atomization regime. - Abstract: To better understand the fundamental interactions between melt jet and coolant during a core-disruptive accident at a sodium-cooled fast reactor, the jet breakup and droplet formation in immiscible liquid-liquid systems were studied experimentally. Experiments using two different pairs of test fluids were carried out at isothermal conditions. The observed jet breakup behavior was classified into characteristic regimes based on the classical Ohnesorge classification in liquid-gas systems. The variation in breakup length obtained in the present liquid-liquid system was similar to that in a liquid-gas system. The droplet size distribution in each breakup regime was analyzed using image processing and droplet formation via pinch-off, satellite formation, and entrainment was observed. The measured droplet size was compared with those available from melt jet experiments. Based on the observation and analysis results, the breakup regimes were organized on a dimensionless operating diagram, with the derived correlations representing the criteria for regime boundaries of a liquid-liquid system. Finally, the experimental data were extrapolated to the expected conditions of a sodium-cooled fast reactor. From this, it was implied that most of the hydrodynamic conditions during an accident would be close to the atomization regime, in which entrainment is the dominant process for droplet formation.

  6. Supersonic liquid jets: Their generation and shock wave characteristics

    Science.gov (United States)

    Pianthong, K.; Zakrzewski, S.; Behnia, M.; Milton, B. E.

    The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s.

  7. Analysis of High Speed Jets Produced by a Servo Tube Driven Liquid Jet Injector

    Science.gov (United States)

    Portaro, Rocco; Ng, Hoi Dick

    2017-11-01

    In today's healthcare environment many types of medication must be administered through the use of hypodermic needles. Although this practice has been in use for many years, drawbacks such as accidental needle stick injuries, transmission of deadly viruses and bio-hazardous waste are still present. This study focuses on improving a needle free technology known as liquid jet injection, through the implementation of a linear servo tube actuator for the construction of a fully closed loop liquid jet injection system. This device has the ability to deliver both micro- and macro- molecules, high viscosity fluids whilst providing real time control of the jet pressure profile for accurate depth and dispersion control. The experiments are conducted using a prototype that consists of a 3 kW servo tube actuator, coupled to a specially designed injection head allowing nozzle size and injection volume to be varied. The device is controlled via a high speed servo amplifier and FPGA. The high speed jets emanating from the injector are assessed via high speed photography and through the use of a force transducer. Preliminary results indicate that the system allows for accurate shaping of the jet pressure profile, making it possible to target different tissue depths/types accurately.

  8. Combined aerodynamic and electrostatic atomization of dielectric liquid jets

    Energy Technology Data Exchange (ETDEWEB)

    Kourmatzis, Agissilaos [University of Sydney, Clean Combustion Research Group, Aerospace, Mechanical and Mechatronic Engineering, Sydney, NSW (Australia); Ergene, Egemen L.; Mashayek, Farzad [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom); Kyritsis, Dimitrios C.; Huo, Ming [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, IL (United States)

    2012-07-15

    The electrical and atomization performance of a plane-plane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35 bar corresponding to injection velocities of up to 50 m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15-35 bar range, and an arithmetic mean diameter D{sub 10} as low as 0.2d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460-469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q{sub v}{proportional_to} 2 C/m{sup 3} cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number (We{sub j}) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q{sub v}{proportional_to} 6 C/m{sup 3}, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that 'turbulent' primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets

  9. Liquid jets injected into non-uniform crossflow

    Science.gov (United States)

    Tambe, Samir

    An experimental study has been conducted with liquid jets injected transversely into a crossflow to study the effect of non-uniformities in the crossflow velocity distribution to the jet behavior. Two different non-uniform crossflows were created during this work, a shear-laden crossflow and a swirling crossflow. The shear-laden crossflow was generated by merging two independent, co-directional, parallel airstreams creating a shear mixing layer at the interface between them. The crossflow exhibited a quasi-linear velocity gradient across the height of the test chamber. By varying the velocities of the two airstreams, the sense and the slope of the crossflow velocity gradient could be changed. Particle Image Velocimetry (PIV) studies were conducted to characterize the crossflow. The parameter, UR, is defined as the ratio of the velocities of the two streams and governs the velocity gradient. A positive velocity gradient was observed for UR > 1 and a negative velocity gradient for UR Phase Doppler Particle Anemometry (PDPA) studies were conducted to study the penetration and atomization of 0.5 mm diameter water jets injected into this crossflow. The crossflow velocity gradient was observed to have a significant effect on jet penetration as well as the post breakup spray. For high UR (> 1), jet penetration increased and the Sauter Mean Diameter (SMD) distribution became more uniform. For low UR (Doppler Velocimetry (LDV) was used to study the crossflow velocities. The axial (Ux) and the tangential (Utheta) components of the crossflow velocity were observed to decrease with increasing radial distance away from the centerbody. The flow angle of the crossflow was smaller than the vane exit angle, with the difference increasing with the vane exit angle. Water jets were injected from a 0.5 mm diameter orifice located on a cylindrical centerbody. Multi-plane PIV measurements were conducted to study the penetration and droplet velocity distribution of the jets. The jets were

  10. Penetration of Liquid Jets into a High-velocity Air Stream

    Science.gov (United States)

    Chelko, Louis J

    1950-01-01

    Data are presented showing the penetration characteristics of liquid jets directed approximately perpendicular to a high-velocity air stream for jet-nozzle-throat diameters from 0.0135 to 0.0625 inch, air stream densities from 0.0805 to 0.1365 pound per cubic foot, liquid jet velocities from 168.1 to 229.0 feet per second and a liquid jet density of approximately 62 pounds per cubic foot. The data were analyzed and a correlation was developed that permitted the determination of the penetration length of the liquid jet for any operation condition within the range of variables investigated.

  11. Initial instability of round liquid jet at subcritical and supercritical environments

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2016-01-01

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N_2) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N_2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N_2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N_2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  12. High Fidelity Simulation of Transcritical Liquid Jet in Crossflow

    Science.gov (United States)

    Li, Xiaoyi; Soteriou, Marios

    2017-11-01

    Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.

  13. Study on flow characteristics of chemically reacting liquid jet

    International Nuclear Information System (INIS)

    Hong Seon Dae; Okamoto, Koji; Takata, Takashi; Yamaguchi, Akira

    2004-07-01

    Tube rupture accidents in steam generators of sodium-cooled fast breeder reactors are important for safety because the rupture may propagates to neighboring tubes due to sodium-water reaction. In order to clarify the thermal-hydraulic phenomena in the accidents, the flow pattern and the interface in multi-phase flow must be investigated. The JNC cooperative research scheme on the nuclear fuel cycle with the University of Tokyo has been carried to develop a simultaneous measurement system of concentration and velocity profiles and to evaluate influence of chemical reaction on mixing phenomena. In the experiments, aqueous liquor of acetic acid and ammonium hydroxide are selected as a simulant fluid instead of liquid sodium and water vapor. The following conclusions are obtained in this research. Laser Induced Fluorescence (LIF) technique was adopted to measure reacting zone and pH distribution in chemically reacting liquid round free jet. As a result, it was found that the chemical reaction, which took place at the interface between the jet and outer flow, suppressed the mixing phenomenon (in 2001 research). Dynamic Particle Image Velocimetry (PIV) method was developed to measure instantaneous velocity profile with high temporal resolution. In the Dynamic PIV, a high-speed video camera coupled with a high-speed laser pulse generator was implemented. A time-line trend of interfacial area in the free jet was investigated with the Dynamic PIV. This technique was also applied to a complicated geometry (in 2002 research). A new algorithms for image analysis was developed to evaluated the Dynamic PIV data in detail. The characteristics of the mixing phenomenon with reacting jet such as the turbulent kinetic energy and the Reynolds stress were estimated in a spatial and temporal spectrum (in 2003 research). (author)

  14. Impinging jet spray formation using non-Newtonian liquids

    Science.gov (United States)

    Rodrigues, Neil S.

    Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size

  15. Acoustic signature analysis of the interaction between a dc plasma jet and a suspension liquid jet

    International Nuclear Information System (INIS)

    Rat, V; Coudert, J F

    2009-01-01

    Suspension plasma spraying allows forming finely structured coatings by injecting suspensions of ceramic particles within a dc plasma jet. The electric arc motion in dc plasma torch is the main acoustic source which is modified by the injection of suspension. The analyses of cross-correlations between the arc voltage and the acoustic signal show a decrease in time propagations due to local cooling of the plasma jet when injecting suspensions. Moreover, power spectra highlight acoustic amplifications below a certain frequency threshold and attenuations above. A simplified model of the frequency acoustic response of a two-phase vaporizing mixture is used to interpret experimental measurements. These acoustic effects are due to the dynamics of thermal transfers between vaporizing liquid and plasma.

  16. Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid

    International Nuclear Information System (INIS)

    Norberg, Seth A; Johnsen, Eric; Tian, Wei; Kushner, Mark J

    2014-01-01

    In the use of atmospheric pressure plasma jets in biological applications, the plasma-produced charged and neutral species in the plume of the jet often interact with a thin layer of liquid covering the tissue being treated. The plasma-produced reactivity must then penetrate through the liquid layer to reach the tissue. In this computational investigation, a plasma jet created by a single discharge pulse at three different voltages was directed onto a 200 µm water layer covering tissue followed by a 10 s afterglow. The magnitude of the voltage and its pulse length determined if the ionization wave producing the plasma plume reached the surface of the liquid. When the ionization wave touches the surface, significantly more charged species were created in the water layer with H 3 O + aq , O 3 − aq , and O 2 − aq being the dominant terminal species. More aqueous OH aq , H 2 O 2aq , and O 3aq were also formed when the plasma plume touches the surface. The single pulse examined here corresponds to a low repetition rate plasma jet where reactive species would be blown out of the volume between pulses and there is not recirculation of flow or turbulence. For these conditions, N x O y species do not accumulate in the volume. As a result, aqueous nitrites, nitrates, and peroxynitrite, and the HNO 3aq and HOONO aq , which trace their origin to solvated N x O y , have low densities. (paper)

  17. An experimental study on downstream of the transition of the chemically reacting liquid round free jet

    International Nuclear Information System (INIS)

    Hong, S.D.; Sugii, Y.; Okamoto, K.; Madarame, H.

    2002-01-01

    An experimental study was conducted on the chemically reacting liquid round free jet, Laser Induced Fluorescence (LIF) technique was adopted to evaluate the diffusion width of the jet into liquid streams. In the fluid engineering, it is very important to evaluate the characteristics of reacting jet for the safety of the nuclear reactor. In this study, the jet profile of downstream region far away from the transition point was evaluated, providing comparisons between reacting and non-reacting jet case. The concentration of the jet solution was varied from 0.01 mol/L to 0.5 mol/L in reacting cases. In the downstream far away from the transition point, the jet profiles between reacting cases and non-reacting cases were visualized quite different. It was concluded that the chemical reaction affects the momentum diffusion of the jet in the downstream region. (author)

  18. Deformation and dewetting of thin liquid films induced by moving gas jets

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2013-01-01

    We study the deformation of thin liquid films subjected to impinging air-jets that are moving with respect to the substrate. The height profile and shape of the deformed liquid film is evaluated experimentally and numerically for different jet Reynolds numbers and translation speeds, for different

  19. Test Model for Dynamic Characteristics of a Cantilevered Simple Cylindrical Structure Submerged in a Liquid

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Tae Sung; Kim, Hoe Woong; Kim, Jong Bum

    2013-01-01

    A coolant free surface level is dependent on the operating conditions, and thus the fluid added mass caused by contacting sodium with the structure affects the dynamic characteristic of the UIS. In this study, a numerical analysis model was proposed and a feasibility study was performed through structural testing. The dynamic characteristics for a simple cylindrical structure simulating the UIS outer cylinder will be tested. Currently, the FE analyses were carried out to confirm the effect of water chamber structure on the natural frequency of the test model. The submerged condition of a UIS cylinder affects its natural frequency. A test model of a simple cylindrical structure was prepared to conduct a dynamic test, and each structure component of the test equipment may affect the natural frequency. A cup-shaped cylindrical structure was applied to develop the numerical analysis method for a structure submerged in water and it was verified through a structural test. With this numerical analysis model, the effect of the water chamber material for a simple cylindrical structure was studied. The candidate materials for water chamber were acryl and 316SS with different thicknesses. Both materials showed a higher natural frequency than the reference model. A water chamber made of 316SS with a thick wall gave a closer result to the reference natural frequency than an acryl chamber. The expected natural frequency of the test facility has about a 4% difference based on the reference value, considering a water chamber with a 1 cm thickness. This result will be verified through an ongoing future structural test activity

  20. Photoionization of Sodium Salt Solutions in a Liquid Jet

    Energy Technology Data Exchange (ETDEWEB)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-06-05

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces.

  1. Photoionization of Sodium Salt Solutions in a Liquid Jet

    International Nuclear Information System (INIS)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-01-01

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces

  2. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow

    Science.gov (United States)

    Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo

    2017-05-01

    The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.

  3. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    Science.gov (United States)

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases. Copyright © 2014 The British Mycological Society. All rights reserved.

  4. Single-walled nanohorns and other nanocarbons generated by submerged arc discharge between carbon electrodes in liquid argon and other media

    International Nuclear Information System (INIS)

    Vasu, K; Pramoda, K; Govindaraj, A; Rao, C N R; Moses, K

    2014-01-01

    Arc discharge between two graphite electrodes submerged in different liquid media yields various dimensional nanocarbon structures such as 1D carbon nanotubes and 2D graphene. Single-walled carbon nanohorns (SWNHs) prepared by submerged arc discharge in liquid nitrogen medium are found to have nitrogen impurities. Here, we report the structure and properties of pure and nitrogen-doped SWNHs obtained by submerged arc discharge in a liquid argon medium. The absence of an XPS N 1s signal, which is present in nanohorns obtained in liquid nitrogen, indicate that the nanohorns are free from nitrogen impurities. Raman spectra show a strong defect-induced D band and current–voltage characteristics show a slight nonlinear behavior. N 2 adsorption of pure SWNHs shows type-IV isotherms with a surface area of 300 m 2 g −1 . Adsorption of CO 2 and H 2 in pure SWNHs has also been measured. Arc discharge in other liquid media such as water, ethanol, dimethylformamide (DMF), n-methyl pyrrolidone (NMP), formamide, benzene, heptane and acetone yields different nanocarbon structures including multi-walled carbon nanotubes (MWNTs), few-layer graphene, carbon onions and carbon nanoparticles. (papers)

  5. Atomization of liquids in a Pease-Anthony Venturi scrubber. Part I. Jet dynamics.

    Science.gov (United States)

    Gonçalves, J A S; Costa, M A M; Henrique, P R; Coury, J R

    2003-02-28

    Jet dynamics, in particular jet penetration, is an important design parameter affecting the collection efficiency of Venturi scrubbers. A mathematical description of the trajectory, break-up and penetration of liquid jets initially transversal to a subsonic gas stream is presented. Experimental data obtained from a laboratory scale Venturi scrubber, operated with liquid injected into the throat through a single orifice, jet velocities between 6.07 and 15.9 m/s, and throat gas velocities between 58.3 and 74.9 m/s, is presented and used to validate the model.

  6. A Review on Empirical Correlations for Jet/Spray Trajectory of Liquid Jet in Uniform Cross Flow

    Directory of Open Access Journals (Sweden)

    Soo-Young No

    2015-12-01

    Full Text Available The empirical correlations for the prediction of jet/spray penetration of liquid jet in subsonic uniform crossflow are reviewed in this study. Considerable number of empirical correlations had been proposed by many investigators. It has generally known that the jet/spray trajectory of a liquid jet in a cross-flow is a function of the liquid to air momentum flux ratio and the normalized distance in the airstream direction from the injector. However, several researchers incorporated the Weber number, liquid-to-water or air viscosity ratio, pressure ratio or Reynolds number, temperature ratio in the empirical correlations. Two different classification methods of correlations, i.e. classification based on mathematic functional form and classification based on flow regime, are introduced in this study. The one classification of existing correlations based on functional form includes correlations in a power-law, logarithmic, and exponential forms, respectively. The other classification of previous correlations based on flow regime includes one, two and three regime, correlations. Correlations in a power-law functional form can be further divided into three groups such as momentum flux ratio, Weber number and other parameters forms. Correlations in logarithmic functional form can be also grouped as momentum flux ratio and Weber number forms. Most of the evaluation studies reported the significant discrepancies of predicted values by the existing correlations. The possible reasons for discrepancies will be summarized as measurement technique, assumptions made in defining terms in the liquid to air momentum flux ratio, difficulties in defining the boundaries of the liquid jets, turbulence level in the core and boundary layer of incoming jet and gas flows, nozzle/injector geometry and its position in the crossflow. However, it can be found from the several evaluation studies that the power-law functional form with momentum flux ratio and two regimes

  7. Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow

    Energy Technology Data Exchange (ETDEWEB)

    Beloki Perurena, J. [von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese (Belgium)]|[RWTH Aachen University, Shock Wave Laboratory, Aachen (Germany); Asma, C.O. [von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese (Belgium)]|[Ghent University, Department of Flow, Heat and Combustion Mechanics, Ghent (Belgium); Theunissen, R. [von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese (Belgium)]|[Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands); Chazot, O. [von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese (Belgium)

    2009-03-15

    The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum-flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum-flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector's aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d{sub j}{proportional_to} 40, independent of the momentum-flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a fast Fourier algorithm and characteristic Strouhal numbers of St=0.18 for the liquid jet breakup and of St=0.011 for the separation shock fluctuation are obtained. (orig.)

  8. Flashing liquid jets and two-phase droplet dispersion

    International Nuclear Information System (INIS)

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-01-01

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future

  9. Temperature profiles in a steam-liquid sodium jet. Application to wastage

    International Nuclear Information System (INIS)

    Park, K.H.

    1983-12-01

    The first part of this work presents a certain number of recalls concerning wastage, jets, sonic jets, turbulent jets reactive or not. The aim of this thesis is to group the theoretical formulas concerning gaseous jets in liquids, to determine from experiments the temperature distributions inside the reactive jet, and to establish correlations between the theory and the experiments carried out to obtain a model representative of the temperature distribution in steam jets into liquid sodium. The theoretical development is presented (differential and integral approaches), as also the experiments (JONAS) developed to determine the temperature distribution. The field of validity of experiments and approximations is then defined in view of application to wastage [fr

  10. Domain-adaptive finite difference methods for collapsing annular liquid jets

    Science.gov (United States)

    Ramos, J. I.

    1993-01-01

    A domain-adaptive technique which maps a time-dependent, curvilinear geometry into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets. A method of lines is used to solve the one-dimensional fluid dynamics equations written in weak conservation-law form, and upwind differences are employed to evaluate the axial convective fluxes. The unknown, time-dependent, axial location of the downstream boundary is determined from the solution of an ordinary differential equation which is nonlinearly coupled to the fluid dynamics and gas concentration equations. The equation for the gas concentration in the annular liquid jet is written in strong conservation-law form and solved by means of a method of lines at high Peclet numbers and a line Gauss-Seidel method at low Peclet numbers. The effects of the number of grid points along and across the annular jet, time step, and discretization of the radial convective fluxes on both the steady state mass absorption rate and the jet's collapse rate have been analyzed on staggered and non-staggered grids. The steady state mass absorption rate and the collapse of annular liquid jets are determined as a function of the Froude, Peclet and Weber numbers, annular jet's thickness-to-radius ratio at the nozzle exit, initial pressure difference across the annular jet, nozzle exit angle, temperature of the gas enclosed by the annular jet, pressure of the gas surrounding the jet, solubilities at the inner and outer interfaces of the annular jet, and gas concentration at the nozzle exit. It is shown that the steady state mass absorption rate is proportional to the inverse square root of the Peclet number except for low values of this parameter, and that the possible mathematical incompatibilities in the concentration field at the nozzle exit exert a great influence on the steady state mass absorption rate and on the jet collapse. It is also shown that the steady state mass absorption

  11. ISTTOK tokamak plasmas influence on a liquid gallium jet dynamic behavior

    International Nuclear Information System (INIS)

    Gomes, R.B.; Silva, C.; Fernandes, H.; Duarte, P.; Nedzelskiy, I.; Lielausis, O.; Klyukin, A.; Platacis, E.

    2011-01-01

    The main concern in using free flowing liquid metals in fusion devices is related to their interaction with magnetic fields. On ISTTOK tokamak, liquid gallium jets are injected deep into the plasma along a vertical direction. The influence of the plasma interaction on the jet has been investigated monitoring the liquid metal behavior using a fast frame camera. A radial shift on its trajectory has been detected and found to depend on the toroidal magnetic field magnitude and principally on the plasma position within the chamber. The analysis performed to understand the dynamics of the jet perturbation by the plasma is presented in this paper. The jet surface temperature increase during this interaction has also been measured, using absolutely calibrated multichannel IR sensors, to evaluate the jet power exhaustion capability.

  12. ISTTOK tokamak plasmas influence on a liquid gallium jet dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, R.B., E-mail: gomes@ipfn.ist.utl.pt [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Silva, C.; Fernandes, H.; Duarte, P.; Nedzelskiy, I. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lielausis, O.; Klyukin, A.; Platacis, E. [Association EURATOM/University of Latvia, Institute of Solid State Physics, 8 Kengaraga Str., LV-1063 Riga (Latvia)

    2011-08-01

    The main concern in using free flowing liquid metals in fusion devices is related to their interaction with magnetic fields. On ISTTOK tokamak, liquid gallium jets are injected deep into the plasma along a vertical direction. The influence of the plasma interaction on the jet has been investigated monitoring the liquid metal behavior using a fast frame camera. A radial shift on its trajectory has been detected and found to depend on the toroidal magnetic field magnitude and principally on the plasma position within the chamber. The analysis performed to understand the dynamics of the jet perturbation by the plasma is presented in this paper. The jet surface temperature increase during this interaction has also been measured, using absolutely calibrated multichannel IR sensors, to evaluate the jet power exhaustion capability.

  13. A Review of the Effective Factors for Lovastatin Production by Aspergillus Terreus Atcc 20542 in Liquid Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    F Jaberi Ansari

    2016-12-01

    Full Text Available BACKGROUND AND OBJECTIVE: Deposition of cholesterol in the arteries is the one of the main causes of cardiovascular disease. Lovastatin is a blood cholesterol-lowering drug that inhibits 3-Hydroxy 3-methyl glutaryl-CoA reductase (HMG-CoA reductase enzyme. The aim of this study was to evaluate the effective factors for lovastatin production by Aspergillus terreus ATCC 20542. METHODS: This study is a literature review, In order to gather information, articles containing one of the words in their text, including: Cardiovascular disease, Lovastatin, HMG-CoA reductase, Liquid submerged fermentation, Aspergillus terreus were searched between 1960 and 2016 in PUBMED, NATURE, SCIENCE DIRECT and WHO databases. FINDINGS: A total of 180 papers found that of these, 70 were diagnosed article suitable for this study. According to the results, lactose as the best carbon source, soya been and yeast extract as the nitrogen source, C/N ratio of 41.3, the 107 spores/ml, the pH equal to 6.5, Fe, Zn, Mn as mineral elements and inducer such as linoleic acid at a optimum concentration causes the highest amount of lovastatin. CONCLUSION: The study shows, the source of carbon and nitrogen, the C/N, the amount and type of inoculation, pH, minerals and inducer are the most important factors affecting the morphology and oxygen uptake by the, Aspergillus terreus and hence also affect the production of lovastatin

  14. Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture.

    Science.gov (United States)

    Akao, Takeshi; Gomi, Katsuya; Goto, Kuniyasu; Okazaki, Naoto; Akita, Osamu

    2002-07-01

    In solid-state cultures (SC), Aspergillus oryzae shows characteristics such as high-level production and secretion of enzymes and hyphal differentiation with asexual development which are absent in liquid (submerged) culture (LC). It was predicted that many of the genes involved in the characteristics of A. oryzae in SC are differentially expressed between SC and LC. We generated two subtracted cDNA libraries with bi-directional cDNA subtractive hybridizations to isolate and identify such genes. Among them, we identified genes upregulated in or specific to SC, such as the AOS ( A. oryzae SC-specific gene) series, and those downregulated or not expressed in SC, such as the AOL ( A. oryzae LC-specific) series. Sequencing analyses revealed that the AOS series and the AOL series contain genes encoding extra- and intracellular enzymes and transport proteins. However, half were functionally unclassified by nucleotide sequences. Also, by expression profile, the AOS series comprised two groups. These gene products' molecular functions and physiological roles in SC await further investigation.

  15. On the Surface Breakup of a Non-turbulent Round Liquid Jet in Cross-flow

    Science.gov (United States)

    Behzad, Mohsen; Ashgriz, Nasser

    2011-11-01

    The atomization of a non-turbulent liquid jet injected into a subsonic cross-flow consists of two parts: (1) primary breakup and (2) secondary breakup. Two distinct regimes for the liquid jet primary breakup have been recognized; the so called column breakup and surface breakup. In the column breakup mode, the entire liquid jet undergoes disintegration into large liquid lumps. Quiet differently in the surface breakup regime, liquid fragments with various sizes and shapes are separated from the surface of the jet. Despite many experimental studies the mechanisms of jet surface breakup is not fully understood. Thus this study aims at providing useful observations regarding the underlying physics involving the surface breakup mechanism of a liquid jet in cross-flow, using detailed numerical simulations. The results show that a two-stage mechanism can be responsible for surface breakup. In the first stage, a sheet-like structure extrudes towards the downstream, and in the second stage it disintegrates into ligaments and droplets due to aerodynamic instability.

  16. Visualization of interfacial behavior of liquid jet in pool

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Abe, Yutaka; Fujiwara, Akiko; Nariai, Hideki; Matsuo, Eiji; Chitose, Keiko; Koyama, Kazuya; Itoh, Kazuhiro

    2008-01-01

    For the safety design of the Fast Breeder Reactor (FBR), it is strongly required that the post accident heat removal (PAHR) is achieved after a postulated core disruptive accident (CDA). In the PAHR, it is important that the molten core material is quenched (breakup) in sodium coolant. In the previous studies, it is pointed out that the jet breakup behavior is significantly influenced by the fragmentation behavior on the jet surface in the coolant. However, the process from interfacial instability to fragmentation on the jet surface to jet breakup is not elucidated in detail yet. In the present study, the jet breakup behavior is observed to obtain the fragmentation behavior on the jet surface in coolant in detail. The transparent fluid is used as the core material and is injected into the water as the coolant. The velocity distribution of internal flow of the jet is measured by PIV technique and shear stress is calculated from PIV results. From experimental results, unstable interfacial wave is confirmed as upstream and grown up toward downstream. The fragments are torn apart at the end of developed wave. Shear stress is strongly acted on jet surface. From the results, the correlation between the interfacial behavior of the jet and the generation process of fragments are discussed. (author)

  17. On the spatial stability of a liquid jet in the presence of vapor cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Ming; Ning, Zhi, E-mail: zhining@bjtu.edu.cn; Lu, Mei; Yan, Kai; Fu, Juan; Sun, Chunhua [College of Mechanical and Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2013-11-15

    A dispersion equation describing the effect of temperature differences on the stability of three-dimensional cylindrical liquid jets in the presence of vapor cavities is presented by the use of linear stability analysis. The mathematical model and its solving method are verified by comparing them with the data in the literature, and then the effect of temperature differences between jet and surrounding gas on the spatial stability of liquid jet is investigated. Some conclusions can be drawn from the results of this investigation: (1) the temperature difference destabilizes the liquid jet when the jet liquid is cooler than the surrounding gas, (2) the smallest atomized droplet without taking into account the effect of temperature differences is significantly larger than that when the effect of temperature differences is taken into account, (3) the effect of temperature differences on the stability of liquid jet has little relationship with azimuthal wave modes, (4) cavitation destabilizes the liquid jet when the value of the bubble volume fraction is not greater than 0.1 (0 ≤ α ≤ 0.1), and the temperature difference can weaken this effect of cavitation on the stability of liquid jet, and (5) cavitation is responsible for generating smaller droplets, the effect of cavitation on the critical wave number with and without taking into account the effect of temperature differences is quite different, and temperature difference is likely to fully restrain the effect of cavitation on the critical wave number; however, cavitation is again responsible for generating smaller droplets despite the effect of temperature differences when the bubble volume fraction α = 0.1. These findings may explain some observations of practical atomizer performance.

  18. Numerical modelling of heat transfer in a cavity due to liquid jet impingement for liquid supported stretch blow moulding

    Science.gov (United States)

    Smyth, Trevor; Menary, Gary; Geron, Marco

    2018-05-01

    Impingement of a liquid jet in a polymer cavity has been modelled numerically in this study. Liquid supported stretch blow moulding is a nascent polymer forming process using liquid as the forming medium to produce plastic bottles. The process derives from the conventional stretch blow moulding process which uses compressed air to deform the preform. Heat transfer away from the preform greatly increases when a liquid instead of a gas is flowing over a solid; in the blow moulding process the temperature of the preform is tightly controlled to achieve optimum forming conditions. A model was developed with Computational Fluid Dynamics code ANSYS Fluent which allows the extent of heat transfer between the incoming liquid and the solid preform to be determined in the initial transient stage, where a liquid jet enters an air filled preform. With this data, an approximation of the extent of cooling through the preform wall can be determined.

  19. Newtonian liquid jet impaction on a high-speed moving surface

    International Nuclear Information System (INIS)

    Keshavarz, B.; Green, S.I.; Davy, M.H.; Eadie, D.T.

    2011-01-01

    Highlights: ► We studied experimentally the interaction of a liquid jet with a moving surface. ► Decreasing the Reynolds number reduced the incidence of splash. ► The Weber number had a much smaller impact on splash than the Reynolds number. ► The jet impingement angle had only a small effect on the splash. ► Increasing the surface roughness substantially decreased the splash threshold. - Abstract: In the railroad industry a friction modifying agent may be applied to the rail or wheel in the form of a liquid jet. In this mode of application the interaction between the high-speed liquid jet and a fast moving surface is important. Seven different Newtonian liquids with widely varying shear viscosities were tested to isolate the effect of viscosity from other fluid properties. Tests were also done on five surfaces of different roughness heights to investigate the effects of surface roughness. High-speed video imaging was employed to scrutinize the interaction between the impacting jet and the moving surface. For all surfaces, decreasing the Reynolds number reduced the incidence of splash and consequently enhanced the transfer efficiency. At the elevated Weber numbers of the testing, the Weber number had a much smaller impact on splash than the Reynolds number. The ratio of the surface velocity to the jet velocity has only a small effect on the splash, whereas increasing the roughness-height-to-jet-diameter ratio substantially decreased the splash threshold.

  20. Use of one-dimensional Cosserat theory to study instability in a viscous liquid jet

    International Nuclear Information System (INIS)

    Bogy, D.B.

    1978-01-01

    The problem of the instability of an incompressible viscous liquid jet is considered within the context of one-dimensional Cosserat equations. Linear stability analyses are performed for both the infinite and semi-infinite jets. The results obtained for the inviscid case are compared with the corresponding results derived from ideal fluid equations. They are also compared with recent results by other authors obtained from a different set of one-dimensional jet equations. Solutions are also obtained, within the framework of the linearized theory, to the jet break-up problems formulated as an initial-value problem for the infinite jet and as a boundary-value problem for the semi-infinite jet

  1. Cavitation induced by high speed impact of a solid surface on a liquid jet

    Science.gov (United States)

    Farhat, Mohamed; Tinguely, Marc; Rouvinez, Mathieu

    2009-11-01

    A solid surface may suffer from severe erosion if it impacts a liquid jet at high speed. The physics behind the erosion process remains unclear. In the present study, we have investigated the impact of a gun bullet on a laminar water jet with the help of a high speed camera. The bullet has a flat front and 11 mm diameter, which is half of jet diameter. The impact speed was varied between 200 and 500 ms-1. Immediately after the impact, a systematic shock wave and high speed jetting were observed. As the compression waves reflect on the jet boundary, a spectacular number of vapour cavities are generated within the jet. Depending on the bullet velocity, these cavities may grow and collapse violently on the bullet surface with a risk of cavitation erosion. We strongly believe that this transient cavitation is the main cause of erosion observed in many industrial applications such as Pelton turbines.

  2. Numerical Investigation on Sensitivity of Liquid Jet Breakup to Physical Fuel Properties with Experimental Comparison

    Science.gov (United States)

    Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank

    2016-11-01

    One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.

  3. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, Arslanbey Campus, 41285, Kocaeli (Turkey)

    2017-02-15

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  4. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    International Nuclear Information System (INIS)

    Kibar, Ali

    2017-01-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  5. Numerical simulation on stir system of jet ballast in high level liquid waste storage tank

    International Nuclear Information System (INIS)

    Lu Yingchun

    2012-01-01

    The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD commercial software was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank. (author)

  6. Study of the Behaviour of a Pulsed Liquid Jet Target

    CERN Document Server

    Johnson, C D

    2000-01-01

    This Web document describes laboratory tests of a water jet using a Nordson piston pump (Model 25B 16:1, Nordson Corp. Ohio, USA) and 5 mm diameter Nordson needle valve (A7A-LBS) - a high-tech water pistol! These tests are a preliminary stage in the development of a mercury-jet pion-production target for a neutrino factory based on a muon storage ring [Refs.1,2]. Click on pictures for enlarged images.

  7. A Study on the Influence of the Nozzle Lead Angle on the Performance of Liquid Metal Electromagnetic Micro-Jetting

    Directory of Open Access Journals (Sweden)

    Zhiwei Luo

    2016-12-01

    Full Text Available To improve the jetting performance of liquid metals, an electromagnetic micro-jetting (EMJ valve that realizes drop-on-demand (DOD jetting while not involving any valve core or moving parts was designed. The influence of the lead angle of the nozzle on the jetting of liquid metal gallium (Ga was investigated. It was found that the Lorentz force component parallel to the nozzle that jets the electrified liquid Ga is always larger than its internal friction; thus, jet can be generated with any lead angle but with different kinetic energies. Experimental results show that the mass of the jetting liquid, the jetting distance, the initial velocity of the jet, and the resulting kinetic energy of the jet increase first and then decrease. When the lead angle is 90°, the mass of the jetting liquid and the kinetic energy are at their maximum. When the angle is 80°, the initial velocity achieves its maximum, with a calculated value of 0.042 m/s. Moreover, very close and comparatively high kinetic energies are obtained at 80° and 90°, indicating that angles in between this range can produce a preferable performance. This work provides an important theoretical basis for the design of the EMJ valve, and may promote the development and application of micro electromagnetic jetting technology.

  8. Flow evolution of a turbulent submerged two-dimensional rectangular free jet of air. Average Particle Image Velocimetry (PIV) visualizations and measurements

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2013-01-01

    Highlights: • Zone of flow establishment contains a newly identified undisturbed region of flow. • In the undisturbed region of flow the velocity profile is similar to the exit one. • In undisturbed region of flow the height of average PIV visualizations is constant. • In the undisturbed region of flow the turbulence on the centerline is equal to exit. • Length of undisturbed region of flow decreases with Reynolds number increase. -- Abstract: The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, L U , which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, L CH , or by a constant turbulence on the centerline, with length L CT . The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has

  9. Impact of a single drop on the same liquid: formation, growth and disintegration of jets

    Science.gov (United States)

    Agbaglah, G. Gilou; Deegan, Robert

    2015-11-01

    One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.

  10. Liquid-metal-jet anode electron-impact x-ray source

    International Nuclear Information System (INIS)

    Hemberg, O.; Otendal, M.; Hertz, H.M.

    2003-01-01

    We demonstrate an anode concept, based on a liquid-metal jet, for improved brightness in compact electron-impact x-ray sources. The source is demonstrated in a proof-of-principle experiment where a 50 keV, ∼100 W electron beam is focused on a 75 μm liquid-solder jet. The generated x-ray flux and brightness is quantitatively measured in the 7-50 keV spectral region and found to agree with theory. Compared to rotating-anode sources, whose brightness is limited by intrinsic thermal properties, the liquid-jet anode could potentially be scaled to achieve a brightness >100x higher than current state-of-the-art sources. Applications such as mammography, angiography, and diffraction would benefit from such a compact high-brightness source

  11. New type of discharge-produced plasma source for extreme ultraviolet based on liquid tin jet electrodes

    NARCIS (Netherlands)

    Koshelev, K.N.; Krivtsun, V.M.; Ivanov, V.; Yakushev, O.; Chekmarev, A.; Koloshnikov, V.; Snegirev, E.; Medvedev, Viacheslav

    2012-01-01

    A new approach for discharge-produced plasma (DPP) extreme ultraviolet (EUV) sources based on the usage of two liquid metallic alloy jets as discharge electrodes has been proposed and tested. Discharge was ignited using laser ablation of one of the cathode jets. A system with two jet electrodes was

  12. Computer modeling of jet mixing in INEL waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.

    1994-01-01

    The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations

  13. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  14. Criteria for disintegration of an uncharged conducting liquid jet in a transverse electric field

    Science.gov (United States)

    Zubareva, O. V.; Zubarev, N. M.; Volkov, N. B.

    2018-01-01

    An uncharged conducting liquid cylindrical column (a jet for applications) placed between a pair of flat electrodes is considered. In the trivial case, when the electric field is absent, the jet with circular cross-section is the only possible equilibrium configuration of the system. In the presence of a potential difference between the electrodes, the jet is deformed by the electrostatic forces: its cross-section stretches along the electric field lines. In the case of the mutual compensation of the electrostatic and capillary forces, a new equilibrium configuration of the jet can appear. In a sufficiently strong field, the balance of the forces becomes impossible, and the jet disintegrates (splits into two separate jets). In the present work, we find the range of the parameters (the applied potential difference and the interelectrode distance), where the problem of finding the equilibrium configurations of the jet has solutions. Also we obtain the conditions under which the solutions do not exist and, consequently, the jet splits. The results are compared with the previously studied limiting case of infinite interelectrode distance.

  15. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  16. Laser cutting of silicon with the liquid jet guided laser using a chlorine-containing jet media

    Energy Technology Data Exchange (ETDEWEB)

    Hopman, Sybille; Mayer, Kuno; Fell, Andreas; Mesec, Matthias; Granek, Filip [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    2011-03-15

    In this paper results for liquid media are presented, which are used the first time as liquid jet for cutting of silicon with laser chemical processing (LCP). The liquids contain a perfluoro-carbon compound as solvent and elemental chlorine as etching agent for silicon. Experiments were performed to investigate its influence on groove form and maximum achieved groove depth. It is shown that with the addition of low-concentration chlorine, the groove depth can already be significantly increased. The groove shape could be changed from a V-profile to a U-profile. Furthermore, an about four times greater groove depth was achieved by applying a saturated chlorine solution compared to groove depths without using chlorine. Finally, a theory is given and discussed to describe the phenomena observed. (orig.)

  17. Experiments with Liquid Propellant Jet Ignition in a Ballistic Compressor

    National Research Council Canada - National Science Library

    Birk, Avi

    1998-01-01

    .... The apparatus consists of an inline ballistic compressor and LP injector. The rebound of the ballistic compressor piston was arrested, trapping 40 to 55 MPa of 750 to 8500 C argon for ignition of circular jets in a windowed test chamber...

  18. Visualization of high speed liquid jet impaction on a moving surface.

    Science.gov (United States)

    Guo, Yuchen; Green, Sheldon

    2015-04-17

    Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing.

  19. Control of ROS and RNS productions in liquid in atmospheric pressure plasma-jet system

    Science.gov (United States)

    Uchida, Giichiro; Ito, Taiki; Takenaka, Kosuke; Ikeda, Junichiro; Setsuhara, Yuichi

    2016-09-01

    Non-thermal plasma jets are of current interest in biomedical applications such as wound disinfection and even treatment of cancer tumors. Beneficial therapeutic effects in medical applications are attributed to excited species of oxygen and nitrogen from air. However, to control the production of these species in the plasma jet is difficult because their production is strongly dependent on concentration of nitrogen and oxygen from ambient air into the plasma jet. In this study, we analyze the discharge characteristics and the ROS and RNS productions in liquid in low- and high-frequency plasma-jet systems. Our experiments demonstrated the marked effects of surrounding gas near the plasma jet on ROS and RNS productions in liquid. By controlling the surround gas, the O2 and N2 main plasma jets are selectively produced even in open air. We also show that the concentration ratio of NO2- to H2O2 in liquid is precisely tuned from 0 to 0.18 in deionized water by changing N2 gas ratio (N2 / (N2 +O2)) in the main discharge gas, where high NO2- ratio is obtained at N2 gas ratio at N2 / (N2 +O2) = 0 . 8 . The low-frequency plasma jet with controlled surrounding gas is an effective plasma source for ROS and RNS productions in liquid, and can be a useful tool for biomedical applications. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  20. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  1. The mechanism of liquid metal jet formation in the cathode spot of vacuum arc discharge

    Science.gov (United States)

    Gashkov, M. A.; Zubarev, N. M.; Mesyats, G. A.; Uimanov, I. V.

    2016-08-01

    We have theoretically studied the dynamics of molten metal during crater formation in the cathode spot of vacuum arc discharge. At the initial stage, a liquid-metal ridge is formed around the crater. This process has been numerically simulated in the framework of the two-dimensional axisymmetric heat and mass transfer problem in the approximation of viscous incompressible liquid. At a more developed stage, the motion of liquid metal loses axial symmetry, which corresponds to a tendency toward jet formation. The development of azimuthal instabilities of the ridge is analyzed in terms of dispersion relations for surface waves. It is shown that maximum increments correspond to instability of the Rayleigh-Plateau type. Estimations of the time of formation of liquid metal jets and their probable number are obtained.

  2. Exact Solution of the Two-Dimensional Problem on an Impact Ideal-Liquid Jet

    Science.gov (United States)

    Belik, V. D.

    2018-05-01

    The two-dimensional problem on the collision of a potential ideal-liquid jet, outflowing from a reservoir through a nozzle, with an infinite plane obstacle was considered for the case where the distance between the nozzle exit section and the obstacle is finite. An exact solution of this problem has been found using methods of the complex-variable function theory. Simple analytical expressions for the complex velocity of the liquid, its flow rate, and the force of action of the jet on the obstacle have been obtained. The velocity distributions of the liquid at the nozzle exit section, in the region of spreading of the jet, and at the obstacle have been constructed for different distances between the nozzle exit section and the obstacle. Analytical expressions for the thickness of the boundary layer and the Nusselt number at the point of stagnation of the jet have been obtained. A number of distributions of the local friction coefficient and the Nusselt number of the indicated jet are presented.

  3. Modélisation des jets diphasiques liquide vapeur et du "Rain-Out"

    OpenAIRE

    Touil , Abdellah

    2005-01-01

    This work aims at modelling flashing liquid jets. It deals particularly with velocity and diameter of droplets formed near the orifice (orifice diameters between a few millimetres and a few decimetres). The model not only calculates changes of temperature, fluid concentration, size and velocity of droplets, but also « rain-out » fraction (liquid which falls down on the ground). This work contributes to developoing tools for estimating safety distances. An experimental program allowed measurin...

  4. Formula for radial profiles of temperature in steam-liquid sodium reactive jets

    International Nuclear Information System (INIS)

    Hobbes, P.; Mora-Perez, J.L.; Carreau, J.L.; Gbahoue, L.; Roger, F.

    1987-01-01

    One of the important problems of the study of distribution of temperatures in the reactive steam-liquid sodium jet rests in the mathematical formulation of their radial effects. During the experiment, two forms have been brought to light: from a certain distance of the injector, the radial distribution of temperature can be represented, in a classical way, by an error function curve; close to the injector, the radial profile allows for a minimum located on the axis of the jet. An energy balance permits, by dividing the jet in three parts: a central nucleus composed of practically pure gas, a gas ring plus drops and a liquid peripheral area plus bubbles, to obtain a mathematical formulation of the profiles, close to the injection which accounts quite well for the experimental points and their form

  5. Diagnostics of high-speed liquid lithium jet for IFMIF/EVEDA lithium test loop

    International Nuclear Information System (INIS)

    Kanemura, Takuji; Kondo, Hiroo; Furukawa, Tomohiro; Sugiura, Hirokazu; Horiike, Hiroshi; Yamaoka, Nobuo; Ida, Mizuho; Nakamura, Kazuyuki; Matsushita, Izuru

    2011-01-01

    Regarding R and Ds on the International Fusion Materials Irradiation Facility (IFMIF), hydraulic stability of the liquid Li jet simulating the IFMIF Li target is planned to be validated using EVEDA Li Test Loop (ELTL). IFMIF is an accelerator-based deuteron-lithium (Li) neutron source for research and development of fusion reactor materials. The stable Li target is required in IFMIF to maintain the quality of the neutron fluence and integrity of the Li target itself. This paper presents diagnostics of the Li jet to be implemented in validation tests of the jet stability in ELTL, and those specifications and methodologies are introduced. In the tests, the following physical parameters need to be measured; thickness of the jet; surface structure (height, length/width and frequency of free-surface waves); local flow velocity at the free surface; and Li evaporation rate. With regard to measurement of jet thickness and the surface wave height, a contact-type liquid level sensor is to be used. As for measurement of wave velocity and visual understanding of detailed free-surface structure, a high-speed video camera is to be leveraged. With respect to Li evaporation measurement, weight change of specimens installed near the free surface and frequency change of a crystal quartz are utilized. (author)

  6. Breakup characteristics of power-law liquid sheets formed by two impinging jets

    International Nuclear Information System (INIS)

    Bai, Fuqiang; Diao, Hai; Chang, Qing; Wang, Endong; Du, Qing; Zhang, Mengzheng

    2014-01-01

    The breakup characteristics of the shear-thinning power-law liquid sheets formed by two impinging jets have been investigated with the shadowgraph technique. This paper focuses on the effects of spray parameters (jet velocity), physical parameters (viscosity) and geometry parameters (impinging angle and nozzle cross-sectional shape) on the breakup behaviors of liquid sheets. The breakup mode, sheet length and expansion angle of the sheet are extracted from the spray images obtained by a high speed camera. Impinging angle and Weber number play the similar roles in promoting the breakup of liquid sheets. With the increase of jet velocity, five different breakup modes are observed and the expansion angle increases consistently after the closed-rim mode while the sheet length first increases and then decreases. But there exists a concave consisting of a fierce drop and a second rising process on the sheet length curve for the fluid with smaller viscosity. Different nozzle cross-sectional shapes emphasize significant effects on the sheet length and expansion angle of liquid sheets. At a fixed Weber number, the liquid sheet with greater viscosity has a greater sheet length and a smaller expansion angle due to the damping effect of viscosity. (papers)

  7. Application of molecular simulations: Insight into liquid bridging and jetting phenomena

    Directory of Open Access Journals (Sweden)

    I. Nezbeda

    2015-03-01

    Full Text Available Molecular dynamics simulations have been performed on pure liquid water, aqueous solutions of sodium chloride, and polymer solutions exposed to a strong external electric field with the goal to gain molecular insight into the structural response to the field. Several simulation methodologies have been used to elucidate the molecular mechanisms of the processes leading to the formation of liquid bridges and jets (in the production of nanofibers. It is shown that in the established nanoscale structures, the molecules form a chain with their dipole moments oriented parallel to the applied field throughout the entire sample volume. The presence of ions may disturb this structure leading to its ultimate disintegration into droplets; the concentration dependence of the threshold field required to stabilize a liquid column has been determined. Conformational changes of the polymer in the jetting process have also been observed.

  8. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    Science.gov (United States)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2017-01-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  9. Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet

    International Nuclear Information System (INIS)

    Basu, Saptarshi; Cetegen, Baki M.

    2008-01-01

    Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mass transfer within individual droplets exposed to the HVOF environment and precipitation of ceramic precursors. A parametric study is presented for the initial droplet size, concentration of the dissolved salts and the external temperature and velocity field of the HVOF jet to explore processing conditions and injection parameters that lead to different precipitate morphologies. It is found that the high velocity of the jet induces shear break-up into several μm diameter droplets. This leads to better entrainment and rapid heat-up in the HVOF jet. Upon processing, small droplets (<5 μm) are predicted to undergo volumetric precipitation and form solid particles prior to impact at the deposit location. Droplets larger than 5 μm are predicted to form hollow or precursor containing shells similar to those processed in a DC arc plasma. However, it is found that the lower temperature of the HVOF jet compared to plasma results in slower vaporization and solute mass diffusion time inside the droplet, leading to comparatively thicker shells. These shell-type morphologies may further experience internal pressurization, resulting in possibly shattering and secondary atomization of the trapped liquid. The consequences of these different particle states on the coating microstructure are also discussed in this article

  10. Friction coefficient of an intact free liquid jet moving in air

    Science.gov (United States)

    Comiskey, P. M.; Yarin, A. L.

    2018-04-01

    Here, we propose a novel method of determining the friction coefficient of intact free liquid jets moving in quiescent air. The middle-size jets of this kind are relevant for such applications as decorative fountains, fiber-forming, fire suppression, agriculture, and forensics. The present method is based on measurements of trajectories created using a straightforward experimental apparatus emulating such jets at a variety of initial inclination angles. Then, the trajectories are described theoretically, accounting for the longitudinal traction imposed on such jets by the surrounding air. The comparison of the experimental data with the theoretical predictions shows that the results can be perfectly superimposed with the friction coefficient {C_{{fd}}}=5R{e_d}^{{ - 1/2 ± 0.05}}, in the 621 ≤ R{e_d} ≤ 1289 range, with Red being the Reynolds number based on the local cross-sectional diameter of the jet. The results also show that the farthest distance such jets can reach corresponds to the initial inclination angle α =35° which is in agreement with already published data.

  11. EURISOL Multi-MW Target: Investigation of the hydrodynamics of liquid metal (Hg) jet

    CERN Document Server

    Freibergs, J

    In order to develop a windowless target it is necessary to investigate the hydrodynamics of liquid metal (Hg) jet. On the basis of the schematic layout of a high-power target module presented in Ref. [2], and the parameters of the windowless target (speed of the mercury jet up to 30 m/s, diameter of jet 10-20 mm and length of jet about 1 m), a first estimation of the parameters of the main components of a Hg-loop has been obtained by the Institute of Physics, University of Latvia. A preliminary engineering design of a functional Hg-loop to be constructed soon is also proposed. A simplified water stand has been developed with the ability of testing different Hg-nozzle configurations. The tests carried out showed that the kinetic energy of the jet is so high that the coaxial water flow at contact point is transformed into small bubbles (spray). The characteristics of the jet were shown to depend on the pressure of the stand.

  12. Liquid jet impingement cooling with diamond substrates for extremely high heat flux applications

    International Nuclear Information System (INIS)

    Lienhard V, J.H.

    1993-01-01

    The combination of impinging jets and diamond substrates may provide an effective solution to a class of extremely high heat flux problems in which very localized heat loads must be removed. Some potential applications include the cooling of high-heat-load components in synchrotron x-ray, fusion, and semiconductor laser systems. Impinging liquid jets are a very effective vehicle for removing high heat fluxes. The liquid supply arrangement is relatively simple, and low thermal resistances can be routinely achieved. A jet's cooling ability is a strong function of the size of the cooled area relative to the jet diameter. For relatively large area targets, the critical heat fluxes can approach 20 W/mm 2 . In this situation, burnout usually originates at the outer edge of the cooled region as increasing heat flux inhibits the liquid supply. Limitations from liquid supply are minimized when heating is restricted to the jet stagnation zone. The high stagnation pressure and high velocity gradients appear to suppress critical flux phenomena, and fluxes of up to 400 W/mm 2 have been reached without evidence of burnout. Instead, the restrictions on heat flux are closely related to properties of the cooled target. Target properties become an issue owing to the large temperatures and large temperature gradients that accompany heat fluxes over 100 W/mm 2 . These conditions necessitate a target with both high thermal conductivity to prevent excessive temperatures and good mechanical properties to prevent mechanical failures. Recent developments in synthetic diamond technology present a possible solution to some of the solid-side constraints on heat flux. Polycrystalline diamond foils can now be produced by chemical vapor deposition in reasonable quantity and at reasonable cost. Synthetic single crystal diamonds as large as 1 cm 2 are also available

  13. System of liquid thermostatic control for jet experiments on NMR

    International Nuclear Information System (INIS)

    Selivanov, S.I.; Bogatkin, R.A.; Ershov, B.A.

    1983-01-01

    The system of liquid thermostating of a sensor of NMR spectrometer, used as a registering device in the method of continuous and interrupting stream, is described. Such method of thermostating permits to make kinetic measurements in the temperature range from -40 to +60 deg C with the accuracy +-0.1 deg C and removes the necessity for applying secondary temperature NMR standards

  14. Jet flow analysis of liquid poison injection in a CANDU reactor using source term

    International Nuclear Information System (INIS)

    Chae, Kyung Myung; Choi, Hang Bok; Rhee, Bo Wook

    2001-01-01

    For the performance analysis of Canadian deuterium uranium (CANDU) reactor shutdown system number 2 (SDS2), a computational fluid dynamics model of poison jet flow has been developed to estimate the flow field and poison concentration formed inside the CANDU reactor calandria. As the ratio of calandria shell radius over injection nozzle hole diameter is so large (1055), it is impractical to develop a full-size model encompassing the whole calandria shell. In order to reduce the model to a manageable size, a quarter of one-pitch length segment of the shell was modeled using symmetric nature of the jet; and the injected jet was treated as a source term to avoid the modeling difficulty caused by the big difference of the hole sizes. For the analysis of an actual CANDU-6 SDS2 poison injection, the grid structure was determined based on the results of two-dimensional real- and source-jet simulations. The maximum injection velocity of the liquid poison is 27.8 m/s and the mass fraction of the poison is 8000 ppm (mg/kg). The simulation results have shown well-established jet flow field. In general, the jet develops narrowly at first but stretches rapidly. Then, the flow recirculates a little in r-x plane, while it recirculates largely in r-θ plane. As the time goes on, the adjacent jets contact each other and form a wavy front such that the whole jet develops in a plate form. his study has shown that the source term model can be effectively used for the analysis of the poison injection and the simulation result of the CANDU reactor is consistent with the model currently being used for the safety analysis. In the future, it is strongly recommended to analyze the transient (from helium tank to injection nozzle hole) of the poison injection by applying Bernoulli equation with real boundary conditions

  15. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime

    Energy Technology Data Exchange (ETDEWEB)

    Berna, C., E-mail: ceberes@iie.upv.es [Instituto de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera 14, 46022 Valencia (Spain); Escrivá, A.; Muñoz-Cobo, J.L. [Instituto de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera 14, 46022 Valencia (Spain); Herranz, L.E., E-mail: luisen.herranz@ciemat.es [Unit of Nuclear Safety Research Division of Nuclear Fission, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

    2016-04-15

    Highlights: • Review of the most recent literature concerning submerged jets. • Emphasize all variables and processes occurring along the jet region. • Highlight the gaps of knowledge still existing related to submerged jets. • Enhancement of SPARC90-Jet to estimate aerosol removal under jet injection regime. • Validation of the SPARC90-Jet results against pool scrubbing experimental data. - Abstract: Submerged gaseous jets may have an outstanding relevance in many industrial processes and may be of particular significance in severe nuclear accident scenarios, like in the Fukushima accident. Even though pool scrubbing has been traditionally associated with low injection velocities, there are a number of potential scenarios in which fission product trapping in aqueous ponds might also occur under jet injection regime (like SGTR meltdown sequences in PWRs and SBO ones in BWRs). The SPARC90 code was developed to determine the fission product trapping in pools during severe accidents. The code assumes that carrier gas arrives at the water ponds at low or moderate velocities and it forms a big bubble that eventually detaches from the injection pipe. However, particle laden gases may enter the water at very high velocities resulting in a submerged gas jet instead. This work presents the fundamentals, major hypotheses and changes introduced into the code in order to estimate particle removal during gas injection in pools under the jet regime (SPARC90-Jet). A simplified and reliable approach to submerged jet hydrodynamics has been implemented on the basis of updated equations for jet hydrodynamics and aerosol removal, so that gas–liquid and droplet-particles interactions are described. The code modifications have been validated as far as possible. However, no suitable hydrodynamic tests have been found in the literature, so that an indirect validation has been conducted through comparisons against data from pool scrubbing experiments. Besides, this validation

  16. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime

    International Nuclear Information System (INIS)

    Berna, C.; Escrivá, A.; Muñoz-Cobo, J.L.; Herranz, L.E.

    2016-01-01

    Highlights: • Review of the most recent literature concerning submerged jets. • Emphasize all variables and processes occurring along the jet region. • Highlight the gaps of knowledge still existing related to submerged jets. • Enhancement of SPARC90-Jet to estimate aerosol removal under jet injection regime. • Validation of the SPARC90-Jet results against pool scrubbing experimental data. - Abstract: Submerged gaseous jets may have an outstanding relevance in many industrial processes and may be of particular significance in severe nuclear accident scenarios, like in the Fukushima accident. Even though pool scrubbing has been traditionally associated with low injection velocities, there are a number of potential scenarios in which fission product trapping in aqueous ponds might also occur under jet injection regime (like SGTR meltdown sequences in PWRs and SBO ones in BWRs). The SPARC90 code was developed to determine the fission product trapping in pools during severe accidents. The code assumes that carrier gas arrives at the water ponds at low or moderate velocities and it forms a big bubble that eventually detaches from the injection pipe. However, particle laden gases may enter the water at very high velocities resulting in a submerged gas jet instead. This work presents the fundamentals, major hypotheses and changes introduced into the code in order to estimate particle removal during gas injection in pools under the jet regime (SPARC90-Jet). A simplified and reliable approach to submerged jet hydrodynamics has been implemented on the basis of updated equations for jet hydrodynamics and aerosol removal, so that gas–liquid and droplet-particles interactions are described. The code modifications have been validated as far as possible. However, no suitable hydrodynamic tests have been found in the literature, so that an indirect validation has been conducted through comparisons against data from pool scrubbing experiments. Besides, this validation

  17. Numerical analysis of isothermal JET injection into a denser liquid pool using RD-MPS Method

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of); Park, H. S. [POSTECH, Pohang (Korea, Republic of); Jeun, G. [Hanyang Univ., Seoul (Korea, Republic of)

    2012-03-15

    In this study, the rigid body dynamics coupled moving particle semi-implicit (RD-MPS) method was used to simulate a plunging liquid jet penetrating into a denser liquid pool. The phenomenon is related to fuel-coolant interactions (FCI) during severe accidents in nuclear power plants when coolant water is forcedly injected into a melt pool. A numerical particle method like MPS enables to simulate the complex multiphase flow in that significant deformation of fluids occurs due to its inherent grid less algorithm. However, the MPS method alone cannot continue the calculation for a long time as shown in the Ikea's work due to the large deformation of fluid surfaces and the difference in both liquid densities. In the RD-MPS method, the rigid body dynamics was coupled with the moving particle semi-implicit method to increase the overall stability of calculations and to calculate the multi-phase behavior of fluids. We performed two and three dimensional calculations to simulate jet penetration behaviors in a denser liquid pool, and the result was in good agreement with that of experiment. The simulation results suggested that the coupled model be useful in simulating dynamic interactions of multi-phase incompressible fluids as well as that the 3-D simulation for the plunging jet in a confined geometry predicted better agreement with experimental results than the 2-D simulation did.

  18. Numerical analysis of isothermal JET injection into a denser liquid pool using RD-MPS Method

    International Nuclear Information System (INIS)

    Park, S.; Park, H. S.; Jeun, G.

    2012-01-01

    In this study, the rigid body dynamics coupled moving particle semi-implicit (RD-MPS) method was used to simulate a plunging liquid jet penetrating into a denser liquid pool. The phenomenon is related to fuel-coolant interactions (FCI) during severe accidents in nuclear power plants when coolant water is forcedly injected into a melt pool. A numerical particle method like MPS enables to simulate the complex multiphase flow in that significant deformation of fluids occurs due to its inherent grid less algorithm. However, the MPS method alone cannot continue the calculation for a long time as shown in the Ikea's work due to the large deformation of fluid surfaces and the difference in both liquid densities. In the RD-MPS method, the rigid body dynamics was coupled with the moving particle semi-implicit method to increase the overall stability of calculations and to calculate the multi-phase behavior of fluids. We performed two and three dimensional calculations to simulate jet penetration behaviors in a denser liquid pool, and the result was in good agreement with that of experiment. The simulation results suggested that the coupled model be useful in simulating dynamic interactions of multi-phase incompressible fluids as well as that the 3-D simulation for the plunging jet in a confined geometry predicted better agreement with experimental results than the 2-D simulation did

  19. Investigation on cone jetting regimes of liquid droplets subjected to pyroelectric fields induced by laser blasts

    Science.gov (United States)

    Gennari, Oriella; Battista, Luigi; Silva, Benjamin; Grilli, Simonetta; Miccio, Lisa; Vespini, Veronica; Coppola, Sara; Orlando, Pierangelo; Aprin, Laurent; Slangen, Pierre; Ferraro, Pietro

    2015-02-01

    Electrical conductivity and viscosity play a major role in the tip jetting behaviour of liquids subjected to electrohydrodynamic (EHD) forces, thus influencing significantly the printing performance. Recently, we developed a nozzle- and electrode-free pyro-EHD system as a versatile alternative to conventional EHD configurations and we demonstrated different applications, including inkjet printing and three-dimensional lithography. However, only dielectric fluids have been used in all of those applications. Here, we present an experimental characterization of the pyro-EHD jetting regimes, induced by laser blasts, of sessile drops in case of dielectric and conductive liquids in order to extend the applicability of the system to a wider variety of fields including biochemistry and biotechnology where conductive aqueous solutions are typically used.

  20. Computational and experimental study of the effect of mass transfer on liquid jet break-up

    Science.gov (United States)

    Schetz, J. A.; Situ, M.

    1983-06-01

    A computational method has been developed to predict the effect of mass transfer on liquid jet break-up in coaxial, low velocity gas streams. Two conditions, both with and without the effect of mass transfer on the jet break-up, are calculated, and compared with experimental results and the classical linear theory. Methanol and water were used as the injectants. The numerical solution can predict the instantaneous shape of the jet surface and the break-up time, and it is very close to the experimental results. The numerical solutions and the experimental results both indicate that the wave number of the maximum instability is about 6.9, higher than 4.51 which was predicted by Rayleigh's linear theory. The experimental results and numerical solution show that the growth of the amplitude of the trough is faster than the growth of the amplitude of the crest, especially for a rapidly vaporizing jet. The numerical solutions show that for the small rates of evaporation, the effect of the mass transfer on the interface has a stabilizing effect near the wave number for maximum instability. Inversely, it has a destabilizing effect far from the wave number for maximum instability. For rapid evaporation, the effect of the mass transfer always has a destabilizing effect and decreases the break-up time of the jet.

  1. Influence of spatial curvature of a liquid jet on the rainbow positions: Ray tracing and experimental study

    Science.gov (United States)

    Duan, Qingwei; Zhong, Ruliang; Han, Xiang'e.; Ren, Kuan Fang

    2017-07-01

    Rainbow refractometry is largely used in optical metrology of particles thanks to its advantages of being non-intrusive, precise and fast. Many authors have contributed to its development and the application in the characterization of liquid jets/droplets. The researches reported in the literature are mainly for the spherical droplets or the liquid jets which can be considered as a cylinder of constant section. However, the section of a real liquid jet, even in the simplest configuration, varies with distance from the exit. The influence of the spatial curvature of the jets must, therefore, be taken into account. In this paper, we report experimental measurements of the shifts of the rainbow positions in the horizontal and vertical directions of a liquid jet and the theoretical investigation with the vectorial complex ray model. It is shown that the shifts of rainbow positions are very sensitive to the spatial curvature of the jets. This work is hoped to provide a new approach to characterizing the structure and the instability of liquid jets.

  2. High-power liquid-lithium jet target for neutron production

    OpenAIRE

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as ...

  3. Liquid gallium jet as a limiter in tokamak: design of the stand

    International Nuclear Information System (INIS)

    Lielausis, O.; Platacis, E.; Klukins, A.

    2005-01-01

    Full text: Plasma facing surfaces should be considered as the most loaded components of the proposed fusion devices. Load densities (up to 1 GW/m 2 ) would result in unacceptably high levels of thermal stresses and erosion. Solutions have been proposed when plasma is contacting not a solid material but a liquid metal in permanent motion. Usually, because of its low Z-number, lithium is considered as the most compatible with plasma. In the given research gallium is used - an essentially more convenient in practice material, outstanding by its low saturated vapor pressure. On tokamak ISTTOK (Portugal, R=0.46m; a=0.085m; B T =0.45 T; I p =8 kA) it is proposed to replace the existing metallic limiter by a liquid gallium jet. The jet forming nozzle is connected with the constant pressure vessel (at the level 1.3 m) by a 1/4 '' SS tube. For an exact determination of the jets length on the level 0.7 m an electrically controlled flow interrupting valve is installed. The metal is brought up into the pressure vessel by an e.m. pump on permanent magnets. The loop is designed in such a way that the liquid metal remains properly insulated both from the plasma vessel walls as well as from the plasma potential

  4. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  5. Numerical investigation on cryogenic liquid jet under transcritical and supercritical conditions

    Science.gov (United States)

    Li, Liang; Xie, Maozhao; Wei, Wu; Jia, Ming; Liu, Hongsheng

    2018-01-01

    Cryogenic fluid injection and mixing under transcritical and supercritical conditions is numerically investigated with emphasis on the difference of the mechanism and characteristics between the two injections. A new solver is developed which is capable of handling the nonideality of the equation of state and the anomalies in fluid transport properties and is incorporated into the CFD software OpenFOAM. The new solver has been validated against available experimental data and exhibits a good performance. Computational results indicates that the differences between transcritical and supercritical injections are mainly induced by the pseudo-boiling phenomenon, resulting in that the transcritical jet has a longer cold liquid core and an isothermal expansion occurs at the surface of the cold core. The thickness of the supercritical mixing layer and its increase value along the jet direction are greater than its transcritical counterpart. The high-temperature jet whose initial temperature is above the pseudo-boiling temperature has the ability of enhancing the mixing of the jet with the surrounding gas.

  6. New approach of a traditional analysis for predicting near-exit jet liquid instabilities

    Science.gov (United States)

    Jaramillo, Guillermo; Collicott, Steven

    2015-11-01

    Traditional linear instability theory for round liquid jets requires an exit-plane velocity profile be assumed so as to derive the characteristic growth rates and wavelengths of instabilities. This requires solving an eigenvalue problem for the Rayleigh Equation. In this new approach, a hyperbolic tangent velocity profile is assumed at the exit-plane of a round jet and a comparison is made with a hyperbolic secant profile. Temporal and Spatial Stability Analysis (TSA and SSA respectively) are the employed analytical tools to compare results of predicted most-unstable wavelengths from the given analytical velocity profiles and from previous experimental work. The local relevance of the velocity profile in the near-exit region of a liquid jet and the validity of an inviscid formulation through the Rayleigh equation are discussed as well. A comparison of numerical accuracy is made between two different mathematical approaches for the hyperbolic tangent profile with and without the Ricatti transformation. Reynolds number based on the momentum thickness of the boundary layer at the exit plane non-dimensionalizes the problem and, the Re range, based on measurements by Portillo in 2011, is 185 to 600. Wavelength measurements are taken from Portillo's experiment. School of Mechanical Engineering at Universidad del Valle, supported by a grant from Fulbright and Colciencias. Ph.D. student at the School of Aeronautics and Astronautics Purdue University.

  7. Hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle

    International Nuclear Information System (INIS)

    Xie Bo; Yang Tongzai; Guan Rui; Weng Kuiping

    2010-01-01

    The technology of tritium extraction from lithium-lead alloy has been simulated, hydrogen extraction from lithium-lead alloy by bubbling with rotational jet nozzle being used to simulate tritium in the study based on the introduction of fluid dynamics to establish algebraic model. The results show that the higher than lithium-lead melting temperature, the higher cumulative hydrogen extraction efficiency, and gas holdup of bubble column is little affected by the impeller diameter. Gas holdup when using small aperture is slightly higher when using large aperture only at a high helium flow rate, but the smaller the aperture, the greater the bubble surface area, and a marked increase in intensity of flow circulation for liquid lithium-lead with the increase of helium flow rate, hydrogen extraction rate increases too. Moreover, influence of the jet rotational velocity on hydrogen extraction is limited. (authors)

  8. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  9. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  10. Burnout in a high heat flux boiling system with forced supply of liquid through a plane jet

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Ishii, Kazunori.

    1978-01-01

    As for pool boiling, the non-dimensional formula for the burnout heat flux of a simple, basic boiling system has been obtained. On the other hand, in forced convection boiling, the studies on the burnout in forced flow boiling in a channel have been continued, but the derivation of a non-dimensional formula applicable generally is far away from the realization because the phenomena are too complex. Accordingly, in this study, the result of the experiment on the burnout of a boiling system to which liquid is supplied by the plane jet flowing out of a thin rectangular nozzle installed near the front edge of a rectangular heating surface is reported. The experimental apparatus is described, and the experiment was carried out in the ranges of two jet thicknesses at the nozzle outlet, two incident angles of jet and from 1.5 to 15 m/s of jet velocity. Burnout occurs under the situation of sufficiently developed nuclear boiling. A part of the liquid supplied from a plane jet is blown apart by the vapor blowing out of the nuclear boiling liquid layer covering the heating surface in the nuclear boiling with sufficiently developed high heat flux. However, the nuclear boiling liquid layer itself continues to exist on the heating surface till burnout occurs. Only the entering velocity of the plane jet affects burnout heat flux. (Kako, I.)

  11. The effect of nozzle collar on signle phase and boiling heat transfer by planar impinging jet

    International Nuclear Information System (INIS)

    Shin, Chang Hwan; Yim, Seong Hwan; Cho, Hyung Hee; Wu, Seong Je

    2005-01-01

    The water jet impingement cooling is one of the techniques to remove the heat from high heat flux equipment. Local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer are investigated in the free surface jet and submerged jet. Boiling is initiated from the farthest downstream and increase of the wall temperature is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance for H/W≤1 causes significant increases and distribution changes of heat transfer. Developed boiling reduces the differences of heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to nozzle collar, H c are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increases as decreased spacing of collar to heated surface. Heat transfer is enhanced for region from the stagnation to x/W∼8 in the free surface jet and to x/W∼5 in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet comparing with higher velocity condition. It is because the increased velocity by collar is de-accelerated downstream

  12. First results of Minimum Fisher Regularisation as unfolding method for JET NE213 liquid scintillator neutron spectrometry

    International Nuclear Information System (INIS)

    Mlynar, Jan; Adams, John M.; Bertalot, Luciano; Conroy, Sean

    2005-01-01

    At JET, the NE213 liquid scintillator is being validated as a diagnostic tool for spectral measurements of neutrons emitted from the plasma. Neutron spectra have to be unfolded from the measured pulse-height spectra, which is an ill-conditioned problem. Therefore, use of two independent unfolding methods allows for less ambiguity on the interpretation of the data. In parallel to the routine algorithm MAXED based on the Maximum Entropy method, the Minimum Fisher Regularisation (MFR) method has been introduced at JET. The MFR method, known from two-dimensional tomography applications, has proved to provide a new transparent tool to validate the JET neutron spectra measured with the NE213 liquid scintillators. In this article, the MFR method applicable to spectra unfolding is briefly explained. After a mention of MFR tests on phantom spectra experimental neutron spectra are presented that were obtained by applying MFR to NE213 data in selected JET experiments. The results tend to confirm MAXED observations

  13. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    Directory of Open Access Journals (Sweden)

    MAJID ALI

    2013-04-01

    Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  14. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)

    2013-04-15

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  15. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na 2 S 2 O 3 ) in water to remove the gaseous iodine (I 2 ) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber

  16. The production of lithium oxide microspheres from the disintegration of a liquid jet

    International Nuclear Information System (INIS)

    Al-Ubaidi, M.R.; Anno, J.N.

    1989-01-01

    Microspheres of lithium hydroxide (LiOH) were produced from in-flight solidification of droplets formed by the disintegration of an acoustically driven, mechanically vibrated cylindrical liquid jet of molten LiOH. The molten material at 470 to 480 degrees C was fed through a 25-gauge (0.0267-cm bore diameter) nozzle, interiorly electroplated with silver, under ∼27.6-kPa (4-psig) pressure, and at a mechanical vibration frequency of 10 Hz. The resulting jet issued into a 5.5-cm-diam vertical glass drop tube entraining a 94.5 cm 3 /s (12 ft 3 /h) argon gas stream at 75 degrees C. The 100-cm-long drop tube was sufficient to allow the droplets of molten LiOH resulting from jet disintegration to solidify in-flight without catastrophic thermal shock, being then collected a solid microspheres. These LiOH microspheres were then vacuum processed to lithium oxide (Li 2 O). Preliminary experiments resulted in microspheres with diameters varying from 120 to 185 μm, but with evidence of impurity contamination occurring during the initial stages of the process

  17. Movement of liquid beryllium during melt events in JET with ITER-like wall

    International Nuclear Information System (INIS)

    Sergienko, G; Huber, A; Brezinsek, S; Coenen, J W; Mertens, Ph; Philipps, V; Samm, U; Arnoux, G; Matthews, G F; Nunes, I; Riccardo, V; Sirinelli, A; Devaux, S

    2014-01-01

    The ITER-like wall recently installed in JET comprises solid beryllium limiters and a combination of bulk tungsten and tungsten-coated carbon fibre composite divertor tiles without active cooling. During a beryllium power handling qualification experiment performed in limiter configuration with 5 MW neutral beam injection input power, accidental beryllium melt events, melt layer motion and splashing were observed locally on a few beryllium limiters in the plasma contact areas. The Lorentz force is responsible for the observed melt layer movement. To move liquid beryllium against the gravity force, the current flowing from the plasma perpendicularly to the limiter surface must be higher than 6 kA m −2 . The thermo-emission current at the melting point of beryllium is much lower. The upward motion of the liquid beryllium against gravity can be due to a combination of the Lorentz force from the secondary electron emission and plasma pressure force. (paper)

  18. US State Submerged Lands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submerged Lands Act (43 U.S.C. Section 1301 et seq.) grants coastal states title to natural resources located within their coastal submerged lands and navigable...

  19. In-liquid arc plasma jet and its application to phenol degradation

    KAUST Repository

    Liu, Jing-Lin Lin

    2018-02-07

    We present a new method for achieving chemical reactions induced by plasmas with liquids—an in-liquid arc plasma jet system—designed to have a few advantages over the existing methods. High-speed imaging and optical emission spectroscopy were adopted to highlight the physical aspects of the in-liquid arc plasma jet system, and the feasibility of the system was investigated in a wastewater treatment case with phenol as the model contaminant. We found that the specific energy input is a reasonable parameter by which to characterize the overall process. The phenol removal reaction could be modeled as a pseudo-first-order reaction, and the reaction constant became smaller as the phenol concentration increased. However, complete decomposition of the phenol into water and carbon dioxide required very high energy because the final intermediate, oxalic acid, is relatively stable. Detailed chemical and physical analyses, including byproducts, ions, solution acidity, and conductivity, were conducted to evaluate this new method for use in the appropriate applications.

  20. Experimental and Monte Carlo simulated spectra of a liquid-metal-jet x-ray source

    International Nuclear Information System (INIS)

    Marziani, M.; Gambaccini, M.; Di Domenico, G.; Taibi, A.; Cardarelli, P.

    2014-01-01

    A prototype x-ray system based on a liquid-metal-jet anode was evaluated within the framework of the LABSYNC project. The generated spectrum was measured using a CZT-based spectrometer and was compared with spectra simulated by three Monte Carlo codes: MCNPX, PENELOPE and EGS5. Notable differences in the simulated spectra were found. These are mainly attributable to differences in the models adopted for the electron-impact ionization cross section. The simulation that more closely reproduces the experimentally measured spectrum was provided by PENELOPE. - Highlights: • The x-ray spectrum of a liquid-jet x-ray anode was measured with a CZT spectrometer. • Results were compared with Monte Carlo simulations using MCNPX, PENELOPE, EGS5. • Notable differences were found among the Monte Carlo simulated spectra. • The key role was played by the electron-impact ionization cross-section model used. • The experimentally measured spectrum was closely reproduced by the PENELOPE code

  1. RESUS: A code for low volatile radio-nuclide release from liquids due to vapor bubble burst induced liquid jet formation and disintegration

    International Nuclear Information System (INIS)

    Koch, M.K.; Starflinger, J.; Linnemann, Th.; Brockmeier, U.; Unger, H.; Schuetz, W.

    1995-01-01

    In the field of nuclear safety, the release of volatile and low volatile radio-nuclides from liquid surfaces into a gas atmosphere is important for aerosol source term considerations particularly in late severe accident sequences. In case of a hypothetical nuclear reactor accident involving a failure of the primary system, primary coolant and radio-nuclides may be released into the containment to frequently form a liquid pool which may be contaminated by suspended or solved fuel particles and fission products. Under this scope, the release code package REVOLS/RENONS was developed for radio-nuclide release from liquid surfaces. Assuming the absence of gas or vapor bubbles in the liquid, the evaporative release of volatile components, calculated by the REVOLS code, is governed by diffusive and convective transport processes, whereas the release of low volatiles, calculated by the RENONS code, may be governed by mechanical processes which leads to droplet entrainment in case of wavy liquid pool surface conditions into the containment atmosphere by means of convection. For many accident sequences, in which gas is injected into a pool or liquid area elsewhere, predominantly when saturation temperatures can be reached, the release of low volatile species from liquid surfaces due to bubble burst is identified as a decisive release mechanism also. Together with the liquid, the particles which are located at the pool surface or suspended in the pool, are released into the atmosphere. Consequently, the code RESUS.MOD1 (RESUSpension) is presently extended to include the calculation of the release of droplets and suspended radio-nuclide particles due to bubble burst induced liquid jet formation and disintegration above liquid surfaces. Experimental investigations indicate the influence of bubble volume and shape at the pool surface as well as bubble stabilization or destabilization, and furthermore the system pressure and temperatures as well as fluid properties, on droplet

  2. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, 41285, Arslanbey Campus, Kocaeli (Turkey)

    2016-02-15

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750–3050 Reynolds number, with an inclination angle of 20°−40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy. (paper)

  3. A study of the condensation of a high-velocity vapor jet on a coflowing turbulent liquid jet

    Science.gov (United States)

    Ovsiannikov, V. A.; Levin, A. A.

    A method for the experimental determination of the local value of the heat transfer coefficient under conditions of jet condensation is proposed which employs a heat balance expression in differential form. The method is used in an experimental study of the heat transfer characteristics of the condensation of a high-velocity coaxial jet of a slightly superheated (3 percent) steam on a coflowing cylindrical turbulent water jet. In the experiment, the relative velocities reach hundreds of m/s; the temperature nonequilibrium of the phases is high, as is the steam flow mass density during the initial contact; heat transfer between the phases is significant. The results can be used as the basis for determining experimental criterial dependences for jet condensation.

  4. Computational and experimental characterization of a liquid jet plunging into a quiescent pool at shallow inclination

    International Nuclear Information System (INIS)

    Deshpande, Suraj S.; Trujillo, Mario F.; Wu Xiongjun; Chahine, Georges

    2012-01-01

    Highlights: ► Jet impingement at shallow angles results in periodic cavity formation. ► Velocity profile affected both by buoyancy and splashing in the near field. ► Momentum diffusion leads to a velocity maximum at the gas–liquid interface for the far field. - Abstract: A circular water jet (Re = 1.6 × 10 5 ; We = 8.8 × 10 3 ) plunging at shallow angles (θ ≈ 12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/D j ≈ 14), with a subsequent shift towards the free surface further downstream of this point (X/D j ≈ 30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/D j ≳ 40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.

  5. Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Kouji; Terashima, Osamu [Nagoya University, Department of Mechanical Science and Engineering, Nagoya (Japan); Kubo, Takashi [Meijo University, Faculty of Science and Technology, Nagoya (Japan)

    2012-11-15

    This paper presents a new experimental approach for simultaneous measurements of velocity and concentration in a turbulent liquid flow with a chemical reaction. For the simultaneous measurements, we developed a combined probe consisting of an I-type hot-film probe and an optical fiber probe based on the light absorption spectrometric method. In a turbulent planar liquid jet with a second-order chemical reaction (A+B{yields}R), streamwise velocity and concentrations of all reactive species are measured by the combined probe. The turbulent mass fluxes of the reactive species are estimated from the simultaneous measurements. The results show that the influence of the chemical reaction on the turbulent mass flux of the reactant species near the jet exit is different from its influence in other regions, and the turbulent mass flux of the product species has a negative value near the jet exit and a positive value in other regions. (orig.)

  6. Numerical simulations of transverse liquid jet to a supersonic crossflow using a pure two-fluid model

    Directory of Open Access Journals (Sweden)

    Haixu Liu

    2016-01-01

    Full Text Available A pure two-fluid model was used for investigating transverse liquid jet to a supersonic crossflow. The well-posedness problem of the droplet phase governing equations was solved by applying an equation of state in the kinetic theory. A k-ε-kp turbulence model was used to simulate the turbulent compressible multiphase flow. Separation of boundary layer in front of the liquid jet was predicted with a separation shock induced. A bow shock was found to interact with the separation shock in the simulation result, and the adjustment of shock structure caused by the interaction described the whipping phenomena. The predicted penetration height showed good agreement with the empirical correlations. In addition, the turbulent kinetic energies of both the gas and droplet phases were presented for comparison, and effects of the jet-to-air momentum flux ratio and droplet diameter on the penetration height were also examined in this work.

  7. Assessment of three turbulence model performances in predicting water jet flow plunging into a liquid pool

    Directory of Open Access Journals (Sweden)

    Zidouni Kendil Faiza

    2010-01-01

    Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.

  8. Deposition of micron liquid droplets on wall in impinging turbulent air jet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianshu; Nink, Jacob; Merati, Parviz [Western Michigan University, Department of Mechanical and Aeronautical Engineering, Kalamazoo, MI (United States); Tian, Tian; Li, Yong [Massachusetts Institute of Technology, Sloan Automotive Laboratory, Cambridge, MA (United States); Shieh, Tom [Toyota Technical Center, Toyota Motor Engineering and Manufacturing North America, Inc, Ann Arbor, MI (United States)

    2010-06-15

    The fluid mechanics of the deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by using luminescent oil visualization technique, and the statistical data of deposited droplets are obtained through microscopic imagery. Two distinct rings of droplets deposited on a wall are found, and the mechanisms of the formation of the inner and outer rings are investigated based on global diagnostics of velocity and skin friction fields. In particular, the intriguing effects of turbulence, including large-scale coherent vortices and small-scale random turbulence, on micron droplet deposition on a wall and coalescence in the air are explored. (orig.)

  9. Numerical Study of Impingement Location of Liquid Jet Poured from a Tilting Ladle with Lip Spout

    Science.gov (United States)

    Castilla, R.; Gamez-Montero, P. J.; Raush, G.; Khamashta, M.; Codina, E.

    2017-04-01

    A new approach for simulating liquid poured from a tilting lip spout is presented, using neither a dynamic mesh nor the moving solid solution method. In this case only the tilting ladle is moving, so we propose to rotate the gravitational acceleration at an angular velocity prescribed by a geometrical and dynamical calculation to keep the poured flow rate constant. This angular velocity is applied to modify the orientation of the gravity vector in computational fluid dynamics (CFD) simulations using the OpenFOAM® toolbox. Also, fictitious forces are considered. The modified solver is used to calculate the impingement location for six spout geometries and compare the jet dispersion there. This method could offer an inexpensive tool to calculate optimal spout geometries to reduce sprue size in the metal casting industry.

  10. The instability of nonlinear surface waves in an electrified liquid jet

    International Nuclear Information System (INIS)

    Moatimid, Galal M

    2009-01-01

    We investigate the weakly nonlinear stability of surface waves of a liquid jet. In this work, the liquids are uniformly streaming through two porous media and the gravitational effects are neglected. The system is acted upon by a uniform tangential electric field, that is parallel to the jet axis. The equations of motion are linearly treated and solved in the light of nonlinear boundary conditions. Therefore, the boundary-value problem leads to a nonlinear characteristic second-order differential equation. This characterized equation has a complex nature. The nonlinearity is kept up to the third degree. It is used to judge the behavior of the surface evolution. According to the linear stability theory, we derive the dispersion relation that accounts for the growth waves. The stability criterion is discussed analytically and a stability picture is identified for a chosen sample system. Several special cases are recovered upon appropriate data choices. In order to derive the Ginsburg-Landau equation for the general case, in the nonlinear approach, we used the method of multiple timescales with the aid of the Taylor expansion. This equation describes the competition between nonlinearity and the linear dispersion relation. As a special case for non-porous media where there is no streaming, we obtained the well-known nonlinear Schroedinger equation as it has been derived by others. The stability criteria are expressed theoretically in terms of various parameters of the problem. Stability diagrams are obtained for a set of physical parameters. We found new instability regions in the parameter space. These regions are due to the nonlinear effects.

  11. Measurement of free-surface of liquid metal lithium jet for IFMIF target

    International Nuclear Information System (INIS)

    Hiroo Kondo; Nobuo Yamaoka; Takuji Kanemura; Seiji Miyamoto; Hiroshi Horiike; Mizuho Ida; Hiroo Nakamura; Izuru Matsushita; Takeo Muroga

    2006-01-01

    This reports an experimental study on flow characteristics of a lithium target flow of International Fusion Materials Irradiation Facility (IFMIF). Surface shapes of the target were tried to measure by pattern projection method that is a three dimensional image measurement method. Irregularity of the surface shape caused by surface wakes was successfully measured by the method. IFMIF liquid lithium target is formed a flat plane jet of 25 mm in depth and 260 mm in width, and flows in a flow velocity range of 10 to 20 m/s. Aim of this study is to develop measurement techniques for monitoring of the target when IFMIF is in operation. The lithium target flow is high speed jet and the temperature high is more than 500 K. Also, light is not transmitted into liquid metal lithium. Therefore, almost of all flow measurement techniques developed for water are not used for lithium flow. In this study, pattern projection method was employed to measure the surface irregularity of the target. In the method, stripe patterns are projected onto the flow surface. The projected patterns are deformed according the surface shape. Three-dimensional surface shape is measured by analyzing the deformed patterns recorded using a CCD camera. The method uses the property that lithium dose not transmit visible lights. The experiments were carried out using a lithium loop at Osaka University. In this facility, lithium plane jet of 10 mm in depth and 70 mm width is obtained in the velocity range of less than 15 m/s using a two contractions nozzle. The pattern projection method was used to measure the amplitude of surface irregularity caused by surface wakes. The surface wakes were generated from small damaged at the nozzle edge caused by erosion, and those were successfully measured by the method. The measurement results showed the amplitude of the surface wakes were approximately equal to a size of damage of a nozzle. The amplitude was decreasing with distance to down stream and with decreasing

  12. High-power liquid-lithium jet target for neutron production

    Science.gov (United States)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  13. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Satya P. [Battelle Memorial Inst., Columbus, OH (United States); Garbark, Daniel B. [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Peterson, Rick [Battelle Memorial Inst., Columbus, OH (United States)

    2017-09-30

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including: (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet

  14. Scientific opportunities at SARAF with a liquid lithium jet target neutron source

    Science.gov (United States)

    Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.

  15. Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Faye, C.B.; Amodeo, T.; Fréjafon, E. [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France); Delepine-Gilon, N. [Institut des Sciences Analytiques, 5 rue de la Doua, 69100 Villeurbanne (France); Dutouquet, C., E-mail: christophe.dutouquet@ineris.fr [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France)

    2014-01-01

    Pollution of water is a matter of concern all over the earth. Particles are known to play an important role in the transportation of pollutants in this medium. In addition, the emergence of new materials such as NOAA (Nano-Objects, their Aggregates and their Agglomerates) emphasizes the need to develop adapted instruments for their detection. Surveillance of pollutants in particulate form in waste waters in industries involved in nanoparticle manufacturing and processing is a telling example of possible applications of such instrumental development. The LIBS (laser-induced breakdown spectroscopy) technique coupled with the liquid jet as sampling mode for suspensions was deemed as a potential candidate for on-line and real time monitoring. With the final aim in view to obtain the best detection limits, the interaction of nanosecond laser pulses with the liquid jet was examined. The evolution of the volume sampled by laser pulses was estimated as a function of the laser energy applying conditional analysis when analyzing a suspension of micrometric-sized particles of borosilicate glass. An estimation of the sampled depth was made. Along with the estimation of the sampled volume, the evolution of the SNR (signal to noise ratio) as a function of the laser energy was investigated as well. Eventually, the laser energy and the corresponding fluence optimizing both the sampling volume and the SNR were determined. The obtained results highlight intrinsic limitations of the liquid jet sampling mode when using 532 nm nanosecond laser pulses with suspensions. - Highlights: • Micrometric-sized particles in suspensions are analyzed using LIBS and a liquid jet. • The evolution of the sampling volume is estimated as a function of laser energy. • The sampling volume happens to saturate beyond a certain laser fluence. • Its value was found much lower than the beam diameter times the jet thickness. • Particles proved not to be entirely vaporized.

  16. Turbulent heat mixing of a heavy liquid metal flow in the MEGAPIE target geometry-The heated jet experiment

    International Nuclear Information System (INIS)

    Stieglitz, Robert; Daubner, Markus; Batta, A.; Lefhalm, C.-H.

    2007-01-01

    The MEGAPIE target installed at the Paul-Scherrer Institute is an example of a spallation target using eutectic liquid lead-bismuth (Pb 45 Bi 55 ) both as coolant and neutron source. An adequate cooling of the target requires a conditioning of the flow, which is realized by a main flow transported in an annular gap downwards, u-turned at a hemispherical shell into a cylindrical riser tube. In order to avoid a stagnation point close to the lowest part of the shell a jet flow is superimposed to the main flow, which is directed towards to the stagnation point and flows tangentially along the shell. The heated jet experiment conducted in the THEADES loop of the KALLA laboratory is nearly 1:1 representation of the lower part of the MEGAPIE target. It is aimed to study the cooling capability of this specific geometry in dependence on the flow rate ratio (Q main /Q jet ) of the main flow (Q main ) to the jet flow (Q jet ). Here, a heated jet is injected into a cold main flow at MEGAPIE relevant flow rate ratios. The liquid metal experiment is accompanied by a water experiment in almost the same geometry to study the momentum field as well as a three-dimensional turbulent numerical fluid dynamic simulation (CFD). Besides a detailed study of the envisaged nominal operation of the MEGAPIE target with Q main /Q jet = 15 deviations from this mode are investigated in the range from 7.5 ≤ Q main /Q jet ≤ 20 in order to give an estimate on the safe operational threshold of the target. The experiment shows that, the flow pattern establishing in this specific design and the turbulence intensity distribution essentially depends on the flow rate ratio (Q main /Q jet ). All Q main /Q jet -ratios investigated exhibit an unstable time dependent behavior. The MEGAPIE design is highly sensitive against changes of this ratio. Mainly three completely different flow patterns were identified. A sufficient cooling of the lower target shell, however, is only ensured if Q main /Q jet ≤ 12

  17. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    Science.gov (United States)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.

    2017-08-01

    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  18. Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Schäfer, J.; Fricke, K.; Mika, Filip; Pokorná, Zuzana; Zajíčková, L.; Foest, R.

    2017-01-01

    Roč. 630, MAY 30 (2017), s. 71-78 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : plasma jet * liquid assisted plasma enhanced chemical * vapour deposition * silicon oxide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Coating and films Impact factor: 1.879, year: 2016

  19. Pulsed liquid jet dissector using holmium: YAG laser - a novel neurosurgical device for brain incision without imparing vessels

    International Nuclear Information System (INIS)

    Hirano, T.; Nakagawa, A.; Jokura, H.; Shirane, R.; Uenohara, H.; Ohyama, H.; Takayama, K.

    2003-01-01

    Neurosurgery has long required a method for dissecting brain tissue without damaging principal vessels and adjacent tissue, so as to prevent neurological complications after operation. In this study we constructed a prototype of such a device and used it in an attempt to resect beagle brain cortex. The prototype device consisted of an optical fiber, a Y adapter, and a nozzle whose internal exit diameter was 100 μm. Cold physiological saline (4 o C) was supplied to it at a rate of 40 ml/h. Pulsed liquid jets were ejected from the nozzle by a pulsed Holmium:YAG) (Ho:YAG) laser at an irradiation energy of 300 mJ/pulse. The profile of the liquid jet was observed with a high-speed camera while changing the distance between the optical fiber end and nozzle exit (equivalent to the Standoff distance). With this device (3 Hz operation), brain dissection of anesthetized beagles was attempted while measuring the local temperature of the target. A histological study of the incised parts was also performed. When the Standoff distance was 24 mm, the liquid jet was emitted straight from the nozzle at a maximum initial velocity of 50 m/s. The brain parenchyma was cut with this device while preserving vessels larger than 200 μm in diameter and keeping the operative field clear. The local temperature rose to no more than 41 o C, below the functional heat damage threshold of brain tissue. Histological findings showed no signs of thermal tissue damage around the dissected margin. The Ho:YAG laser-induced liquid jet dissector can be applied to neurosurgery after incorporating some minor improvements. (author)

  20. Assessment of disintegration of rapidly disintegrating tablets by a visiometric liquid jet-mediated disintegration apparatus.

    Science.gov (United States)

    Desai, Parind M; Liew, Celine V; Heng, Paul W S

    2013-02-14

    The aim of this study was to develop a responsive disintegration test apparatus that is particularly suitable for rapidly disintegrating tablets (RDTs). The designed RDT disintegration apparatus consisted of disintegration compartment, stereomicroscope and high speed video camera. Computational fluid dynamics (CFD) was used to simulate 3 different designs of the compartment and to predict velocity and pressure patterns inside the compartment. The CFD preprocessor established the compartment models and the CFD solver determined the numerical solutions of the governing equations that described disintegration medium flow. Simulation was validated by good agreement between CFD and experimental results. Based on the results, the most suitable disintegration compartment was selected. Six types of commercial RDTs were used and disintegration times of these tablets were determined using the designed RDT disintegration apparatus and the USP disintegration apparatus. The results obtained using the designed apparatus correlated well to those obtained by the USP apparatus. Thus, the applied CFD approach had the potential to predict the fluid hydrodynamics for the design of optimal disintegration apparatus. The designed visiometric liquid jet-mediated disintegration apparatus for RDT provided efficient and precise determination of very short disintegration times of rapidly disintegrating dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  2. Production of jet fuel range paraffins by low temperature polymerization of gaseous light olefins using ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Peiwen; Wu, Xiaoping; Zhu, Lijuan; Jin, Feng; Liu, Junxu; Xia, Tongyan; Wang, Tiejun; Li, Quanxin

    2016-01-01

    Graphical abstract: A novel catalytic transformation of light olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. - Highlights: • A novel transformation of light olefins to jet fuel range paraffins was demonstrated. • The synthetic fuels can be produced by atmospheric olefin polymerizations. • C 8 –C 15 iso-paraffins from light olefins was achieved with a selectivity of 80.6%. - Abstract: This work demonstrated a novel catalytic transformation of gaseous olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. The production of the desired C 8 –C 15 iso-paraffins with the selectivity of 80.6 C mol% was achieved by the room-temperature polymerizations of gaseous light olefins using the [BMIM] Al 2 Cl 7 ionic liquid. The influences of the reaction conditions on the olefinic polymerizations were investigated in detail. The properties of hydrocarbons in the synthetic fuels were determined by the GC–MS analyses combined with 1 H NMR, and 13 C NMR analyses. The formation of C 8 –C 15 hydrocarbons from gaseous light olefins was illustrated by the identified products and the functional groups. This transformation potentially provides a useful avenue for the production of the most important components of iso-paraffins required in jet fuels.

  3. Characterization of extreme ultraviolet light-emitting plasmas from a laser-excited fluorine containing liquid polymer jet target

    International Nuclear Information System (INIS)

    Abel, B.; Assmann, J.; Faubel, M.; Gaebel, K.; Kranzusch, S.; Lugovoj, E.; Mann, K.; Missalla, T.; Peth, Ch.

    2004-01-01

    The operation of a liquid polymer jet laser-plasma target and the characterization of the absolute x-ray emission in the extreme ultraviolet wavelength window from 9-19 nm is reported. The target is a liquid polymer (perfluoro-polyether) that is exposed to pulsed and focused laser light at 532 nm in the form of a thin, liquid microjet (d=40 to 160 μm) in vacuum. The spectral brightness of the source in the 13 nm range is relatively high because a large fraction of radiative energy is emitted in one single line only, which is assigned to be the 2p-3d F VII doublet at 12.8 nm, with a laser energy conversion efficiency of 0.45% (2π sr, 2% bandwidth) in our initial experiment. A further increase of the relative emission has been found in the wavelength range between 7 and 17 nm when the jet diameter was increased from 40 to 160 μm. The two-dimensional spatial profile of the source plasma (d=40 to 50 μm) has been analyzed with a pinhole camera

  4. Stability and contraction of a rectangular liquid metal jet in a vacuum environment

    International Nuclear Information System (INIS)

    Konkachbaev, A.I.; Morley, N.B.; Gulec, K.; Sketchley, T.

    2000-01-01

    Hydrodynamic similarity criteria and experimental data are reported here from experiments underway at UCLA that simulate the slab jets of the HYLIFE-II inertial fusion reactor. The current experimental setup produces a 2x20 mm slab jet, and reaches a maximum Reynolds number 5x10 4 , corresponding to a jet velocity of 12 m/s. A high-speed camera is used to obtain and analyze data. Two major phenomena are observed, the inversion (axis-switching) of the slab jet owing to surface tension and corner vortices; and surface waves due to turbulent velocity profile relaxation. The main purpose of this series of experiments is the study of the rapid inversion (almost 50% of the jet over the length of interest) seen in previous experiments. It is shown here that this was due to secondary flows caused by features of orifice nozzle design. Current experiments show an inversion length considerably in excess of analytic correlations based on 2-D inviscid theory. For parameters approaching HYLIFE-II jets, inversion length is shown to be more than several hundred non-dimensional lengths

  5. Simultaneous PLIF and PIV measurement of a near field turbulent immiscible buoyant oil jet fragmentation in water using liquid-liquid refractive index matching

    Science.gov (United States)

    Xue, Xinzhi; Katz, Joseph

    2017-11-01

    Very little experimental data exits on the flow structure in the near field of a crude oil jet fragmenting in water because of inability to probe dense droplet cloud. Refractive index-matching is applied to overcome this challenge by using silicone oil and sugar water as a surrogate liquid pair. Their density ratio, viscosity ratio, and interfacial tension are closely matched with those of crude oil and seawater. Simultaneous PLIF and PIV measurements are conducted by fluorescently tagging the oil and seeding both phases with particles. With increasing jet Reynolds and Weber numbers, the oil plume breakup occurs closer to the nozzle, the spreading angle of the jet increases, and the droplet sizes decrease. The varying spread rate is attributed to differences in droplet size distributions. The location of primary oil breakup is consistent with the region of high strain rate fluctuations. What one may perceive as oil droplets in opaque fluids actually consists of multi-layers containing water droplets, which sometimes encapsulate smaller oil droplets, creating a ``Russian Doll'' like phenomenon. This system forms as ligaments of oil and water wrap around each other during entrainment. Results include profiles of mean velocity and turbulence parameters along with energy spectra. Gulf of Mexico Research Inititave.

  6. A PLIF and PIV study of liquid mixing enhanced by a lateral synthetic jet pair

    International Nuclear Information System (INIS)

    Xia Qingfeng; Zhong Shan

    2012-01-01

    Highlights: ► Enhancement of mixing between two water streams in a planar channel by means of a lateral synthetic jet pair is studied using PLIF and PIV. ► The excellent mixing observed is largely caused by a strong interaction between the opposing vortex pairs produced by the lateral synthetic jets. ► The synthetic jet operating conditions, at which a nearly homogenous mixing is achieved, are also identified and they are expressed in terms of a functional relationship. - Abstract: In this paper, enhancement of mixing between two water streams of the same flow rate in a planar channel by means of a lateral synthetic jet pair is studied at a net flow Reynolds number of 83 using PLIF and PIV. The synthetic jet pair is operated 180° out-of-phase at a range of actuation frequencies and displacements, with the latter being characterized by the dimensionless stroke length. The extent of mixing is evaluated using PLIF data at a location further downstream in the mixing channel. It is found that at a fixed actuation frequency a higher dimensionless stroke length produces a better mixing, and as the actuation frequency increases a lower dimensionless stroke length is required to achieve a given mixing degree. At a sufficiently high frequency or dimensionless stroke length, a nearly homogenous mixing with a mixing degree greater than 0.9 can be obtained. A functional relationship between actuation frequency and dimensionless stroke length is also obtained by best fitting the experimental data, which can be used for selecting the synthetic jet operating conditions to ensure a good mixing. Furthermore, both PLIF and PIV results show that each synthetic jet actuation cycle produce two opposing vortex pairs, which play an important role in prompting mixing between the two fluid streams. The excellent mixing obtained at a high frequency or a high dimensionless stroke length is found to be largely caused by a strong interaction between these opposing vortex pairs.

  7. Optimization of submerged vane parameters

    Indian Academy of Sciences (India)

    H Sharma

    the height or length of the submerged vane, no effective change in bed profile .... easily and again vanes will be ineffective, which is what. Odgaard and .... [3] Odgaard A J and Wang Y 1991a Sediment management with submerged vanes.

  8. Generation of capillary instabilities by external disturbances in a liquid jet. Ph.D. Thesis - State Univ. of N.Y.

    Science.gov (United States)

    Leib, S. J.

    1985-01-01

    The receptivity problem in a circular liquid jet is considered. A time harmonic axial pressure gradient is imposed on the steady, parallel flow of a jet of liquid emerging from a circular duct. Using a technique developed in plasma physics a casual solution to the forced problem is obtained over certain ranges of Weber number for a number of mean velocity profiles. This solution contains a term which grows exponentially in the downstream direction and can be identified with a capillary instability wave. Hence, it is found that the externally imposed disturbances can indeed trigger instability waves in a liquid jet. The amplitude of the instability wave generated relative to the amplitude of the forcing is computed numerically for a number of cases.

  9. Oscillations of the fluid flow and the free surface in a cavity with a submerged bifurcated nozzle

    International Nuclear Information System (INIS)

    Kalter, R.; Tummers, M.J.; Kenjereš, S.; Righolt, B.W.; Kleijn, C.R.

    2013-01-01

    Highlights: • Self-sustained oscillations in a thin cavity with submerged nozzle were observed. • Three flow regimes are detected depending on nozzle depth and inlet velocity. • The three flow regimes have been summarized in a flow regime map. • PIV measurements are performed to link free surface behavior to the bulk-flow. • We report a close correlation between jet-behavior and free surface dynamics. -- Abstract: The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur. For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity

  10. Temperature distribution in the reactive jet of water vapor and liquid sodium - contribution to wastage modelling

    International Nuclear Information System (INIS)

    Roger, F.; Park, K.Y.; Carreau, J.L.; Gbahoue, L.; Hobbes, P.

    1984-08-01

    The possibility of water vapor leaks across the wall of one or more of the heat exchanger tubes in the steam generator constitutes one of the important problems of safety of the Fast Breeder Reactors cooled by sodium. The jet thus formed can, in fact, destroy the neighbouring tubes. The hydrodynamic, chemical and thermal factors play an important role in this phenomenon and only the last-mentionned will be studied here. The use of the integral method of analysis, complemented by an experimental study, shows that the temperature profiles are Gaussian; if the maximum temperature is less than that of the boiling point of sodium, i.e. 1155 K, and for steam flow rates less than 0,5g/s, the temperature profiles can be represented by the error function, and an approximate equation gives the difference in temperature between the jet axis and the radical far-field

  11. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration

    Science.gov (United States)

    Xia, Qingfeng; Zhong, Shan

    2013-04-01

    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.

  12. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration

    Energy Technology Data Exchange (ETDEWEB)

    Xia Qingfeng; Zhong Shan, E-mail: shan.zhong@manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-04-15

    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180 Degree-Sign , using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180 Degree-Sign out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect. (paper)

  13. Modified Design of Hydroturbine Wicket Gates to Include Liquid Control Jets

    Science.gov (United States)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2013-11-01

    With the ever-increasing penetration of alternative electricity generation, it is becoming more common to operate hydroturbines under off-design conditions in order to maintain stability in the electric power grid. Improving the off-design performance of these turbines is therefore of significant importance. As the runner blades of a Francis hydroturbine pass though the wakes created by the upstream guide vanes (wicket gates and stay vanes), they experience significant changes in the instantaneous values of absolute velocity, flow angle, and pressure. The concept of adding water jets to the trailing edge of the guide vanes is proposed as a method for reducing the dynamic load on the hydroturbine runner blades, as well as modifying the flow angle of the water entering the runner to improve turbine efficiency during off-design operation. In order to add water jets that are capable of turning the flow, a modified beveled trailing edge design is presented. Computational experiments show that a +/-5° change in swirl angle is achievable with the new design, as well as up to 4% improvement in turbine efficiency during off-design operation. This correlates to an overall improvement in machine efficiency of up to 2%, when the losses through the jet channels are taken into account. Funding for this work was provided by the DOD, through the National Defense Science and Engineering Graduate (NDSEG) Fellowship, and the DOE, through the Penn State Hydropower Research Grant.

  14. Study on the effect of distance between the two nozzle holes on interaction of high pressure combustion-gas jets with liquid

    International Nuclear Information System (INIS)

    Xue, Xiaochun; Yu, Yonggang; Zhang, Qi

    2014-01-01

    Highlights: • We design a five-stage cylindrical stepped-wall chamber to study twin combustion-gas jets. • We observe mixing processes of twin combustion-gases and liquid by high speed photographic system. • We discuss the influence of multiple parameters on expansion shape of the Taylor cavities. • The three-dimensional mathematics model is established to simulate the energy release process. • We obtain distribution characteristics of parameters under different nozzle distances. - Abstract: The combustion-gas generator and cylindrical stepped-wall observation chambers with five stages are designed to study the expansion characteristic of twin combustion-gas jets in liquid working medium under high temperature and high pressure. The expansion processes of Taylor cavities formed by combustion-gas jets and the mixing characteristics of gas–liquid are studied by means of high-speed digital camera system. The effects of the distance between the two nozzle holes, injection pressure and nozzle diameter on jet expansion processes are discussed. The experimental results indicate that, the velocity differences exist on the gas–liquid interface during expansion processes of twin combustion-gas jets, and the effect of Taylor–Helmholtz instability is intense, so interfaces between gas and liquid show turbulent folds and randomness. The strong turbulent mixing of gas and liquid leads to release of combustion-gas energy with the temperature decreasing. Moreover, the mixing effectiveness is obviously enhanced on the corners of each step of the cylindrical stepped-wall structure, forming radial expansion phenomenon. The reasonable matching of multi-parameter can restrain the jet instability and make the combustion-gas energy orderly release. Based on the experiments, the three-dimensional unsteady mathematical model of interaction of twin combustion-gas jets and liquid working medium is established to obtain the density, pressure, velocity and temperature

  15. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers.

    Science.gov (United States)

    Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce

    2018-03-19

    To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.

  16. Experimental application of pulsed Ho:YAG laser-induced liquid jet as a novel rigid neuroendoscopic dissection device.

    Science.gov (United States)

    Ohki, Tomohiro; Nakagawa, Atsuhiro; Hirano, Takayuki; Hashimoto, Tokitada; Menezes, Viren; Jokura, Hidefumi; Uenohara, Hiroshi; Sato, Yasuhiko; Saito, Tsutomu; Shirane, Reizo; Tominaga, Teiji; Takayama, Kazuyoshi

    2004-01-01

    Although water jet technology has been considered as a feasible neuroendoscopic dissection methodology because of its ability to perform selective tissue dissection without thermal damage, problems associated with continuous use of water and the ensuing fountain-effect-with catapulting of the tissue-could make water jets unsuitable for endoscopic use, in terms of safety and ease of handling. Therefore, the authors experimented with minimization of water usage during the application of a pulsed holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced liquid jet (LILJ), while assuring the dissection quality and the controllability of a conventional water jet dissection device. We have developed the LILJ generator for use as a rigid neuroendoscope, discerned its mechanical behavior, and evaluated its dissection ability using the cadaveric rabbit ventricular wall. The LILJ generator is incorporated into the tip of a stainless steel tube (length: 22 cm; internal diameter: 1.0 mm; external diameter: 1.4 mm), so that the device can be inserted into a commercial, rigid neuroendoscope. Briefly, the LILJ is generated by irradiating an internally supplied water column within the stainless steel tube using the pulsed Ho:YAG laser (wave length: 2.1 microm, pulse duration time: 350 microseconds) and is then ejected through the metal nozzle (internal diameter: 100 microm). The Ho:YAG laser pulse energy is conveyed through optical quartz fiber (core diameter: 400 microm), while cold water (5 degrees C) is internally supplied at a rate of 40 ml/hour. The relationship between laser energy (range: 40-433 mJ/pulse), standoff distance (defined as the distance between the tip of the optical fiber and the nozzle end; range: 10-30 mm), and the velocity, shape, pressure, and average volume of the ejected jet were analyzed by means of high-speed camera, PVDF needle hydrophone, and digital scale. The quality of the dissection plane, the preservation of blood vessels, and the penetration depth

  17. Measurement of Submerged Oil/Gas Leaks using ROV Video

    Science.gov (United States)

    Shaffer, Franklin; de Vera, Giorgio; Lee, Kenneth; Savas, Ömer

    2013-11-01

    Drilling for oil or gas in the Gulf of Mexico is increasing rapidly at depths up to three miles. The National Commission on the Deepwater Horizon Oil Leak concluded that inaccurate estimates of the leak rate from the Deepwater Horizon caused an inadequate response and attempts to cap the leak to fail. The first response to a submerged oil/gas leak will be to send a Remotely Operated Vehicle (ROV) down to view the leak. During the response to the Deepwater Horizon crisis, the authors Savas and Shaffer were members of the Flow Rate Technical Group's Plume Team who used ROV video to develop the FRTG's first official estimates of the oil leak rate. Savas and Shaffer developed an approach using the larger, faster jet features (e.g., turbulent eddies, vortices, entrained particles) in the near-field developing zone to measure discharge rates. The authors have since used the Berkeley Tow Tank to test this approach on submerged dye-colored water jets and compressed air jets. Image Correlation Velocimetry has been applied to measure the velocity of visible features. Results from tests in the Berkeley Tow Tank and submerged oil jets in the OHMSETT facility will be presented.

  18. Destabilization and dry-spot nucleation in thin liquid films on partially wetting substrates using a low-pressure air-jet

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2011-01-01

    The rupture of a thin liquid film on a partially wetting substrate can be initiated by external forces. In this manuscript we present experiments and numerical simulations of the effects of a laminar axisymmetric air-jet impinging on triethylene glycol films. We numerically calculate stagnation

  19. Correlation of 0.67um scatter with local stress in Ge impacted with the modified Cambridge liquid jet device

    Science.gov (United States)

    Wilson, Michael; Price, D.; Strohecker, Steve

    1994-09-01

    Germanium witness samples were impacted with the NAWCADWAR modified Cambridge liquid jet device introducing varying levels of damage about the center of each sample. Surface damage statistics were collected, scatter measurements were made at 0.67 micrometers and the samples were failed in tension using a bi-axial flexure test setup. The level and character of the damage was correlated with the reflected scatter measurements as a function of local stress and flaw size distribution. Bi-axial flexure data was analyzed to predict fracture stress and the probability of failure of the germanium samples. The mechanical data were then correlated with the scatter data in order to correlate the BRDF with the material failure. The BRDF measurements were taken in several different orientations in order to study the differences in scatter character for the in-plane and out-of-plane conditions.

  20. High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoyi, E-mail: lixy2@utrc.utc.com; Soteriou, Marios C. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-08-15

    Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quo by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream

  1. The research of breaking rock with liquid-solid two-phase jet flow

    Science.gov (United States)

    Cheng, X. Z.; Ren, F. S.; Fang, T. C.

    2018-03-01

    Abstracts. Particle impact drilling is an efficient way of breaking rock, which is mainly used in deep drilling and ultra-deep drilling. The differential equation was established based on the theory of Hertz and Newton’s second law, through the analysis of particle impact rock, the depth of particles into the rock was obtained. The mathematical model was established based on the effect of water impact crack. The research results show when water jet speed is more than 40 m/s, rock stability coefficient is more than 1.0, the rock fracture appear. Through the experimental research of particle impact drilling facilities, analysis of cuttings and the crack size which was analyzed through Scanning electron microscope consistent with the theoretical calculation, the validity of the model was verified.

  2. Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet.

    Directory of Open Access Journals (Sweden)

    Toshihiro Takamatsu

    Full Text Available Various gas atmospheric nonthermal plasmas were generated using a multigas plasma jet to treat microbial suspensions. Results indicated that carbon dioxide and nitrogen plasma had high sterilization effects. Carbon dioxide plasma, which generated the greatest amount of singlet oxygen than other gas plasmas, killed general bacteria and some fungi. On the other hand, nitrogen plasma, which generated the largest amount of OH radical, killed ≥ 6 log of 11 species of microorganisms, including general bacteria, fungi, acid-fast bacteria, spores, and viruses in 1-15 min. To identify reactive species responsible for bacterial inactivation, antioxidants were added to bacterial suspensions, which revealed that singlet oxygen and OH radicals had greatest inactivation effects.

  3. Mean droplet size and local velocity in horizontal isothermal free jets of air and water, respectively, viscous liquid in quiescent ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Al Rabadi, S.; Friedel, L. [Fluid Mechanics Institute, Technical University of Hamburg-Harburg (Germany); Al Salaymeh, A. [Mechanical Engineering Department, University of Jordan (Jordan)

    2007-01-15

    Measurements using two-dimensional Phase Doppler Anemometry as well as high speed cinematography in free jets at several nozzle exit pressures and mass flow rates, show that the Sauter mean droplet diameter decreases with increasing air and liquid-phase mass flow ratio due to the increase of the air stream impact on the liquid phase. This leads to substantial liquid fragmentation, respectively primary droplet breakup, and hence, satellite droplet formation with small sizes. This trend is also significant in the case of a liquid viscosity higher than that of water. The increased liquid viscosity stabilizes the droplet formation and breakup by reducing the rate of surface perturbations and consequently droplet distortions, ultimately also leading, in total, to the formation of smaller droplets. The droplet velocity decreases with the nozzle downstream distance, basically due to the continual air entrainment and due to the collisions between the droplets. The droplet collisions may induce further liquid fragmentation and, hence, formation of a number of relatively smaller droplets respectively secondary breakup, or may induce agglomeration to comparatively larger liquid fragments that may rain out of the free jet. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. Application of Molecular Simulations: Insight into Liquid Bridging and Jetting Phenomena.

    Czech Academy of Sciences Publication Activity Database

    Nezbeda, Ivo; Jirsák, J.; Moučka, F.; Smith, W.R.

    2015-01-01

    Roč. 18, č. 1 (2015), s. 13602 ISSN 1607-324X Institutional support: RVO:67985858 Keywords : aqueous solution surfaces * floating liquid bridge * aqueous solution surfaces Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.621, year: 2015

  5. Jet diffusion in stagnant ambient fluid

    NARCIS (Netherlands)

    Abraham, G.

    1963-01-01

    Submarine outfall disposal of domestic and industrial sewage is a method of disposal of steadily growing importance. The flow from an ocean outfall is essentially that of a submerged horizontal or vertical jet. Thus a study of the hydrodynamics of such jets is needed to evaluate the dilution of the

  6. Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations.

    Science.gov (United States)

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-04-11

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future.

  7. Numerical study of impingement location of liquid jet poured from a tilting ladle with lip spout

    OpenAIRE

    Castilla López, Roberto; Gámez Montero, Pedro Javier; Raush Alviach, Gustavo Adolfo; Khamashta Shahin, Munir Andrawes; Codina Macià, Esteban

    2017-01-01

    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) A new approach for simulating liquid poured from a tilting lip spout is presented, using neither a dynamic mesh nor the moving solid solution method. In this case only the tilting ladle is moving, so we propose to rotate the gravitational acceleration at an angular velocity prescribed by a geometrical and dynamical calculation to keep the p...

  8. Submerged AUV Charging Station

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  9. Medium scale fire tests of propane tanks to study the boiling liquid expanding vapour explosion (BLEVE) and transient two-phase jet release

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhifei

    1994-07-01

    A series of medium scale fire tests were conducted to study boiling liquid expanding vapour explosions (BLEVE) and transient jet releases resulting from thermally induced propane tank ruptures. The tests were conducted using commercial propane contained in automotive propane tanks with a capacity of ca 400 liters. The tanks were brought to failure using a combination of torch and pool fire impingement. Instrumentation was included to measure internal pressure, liquid, vapour and wall temperature distribution, tank and lading mass, external blast overpressure, and fireball thermal radiation. Video and still cameras were used to record the fireball and jet fire shapes and dimensions. Two different kinds of BLEVE failure were observed. For very weak tanks the BLEVE was a single step process where the rupture propagated rapidly along the length of the tank. The duration of these events was measured in milliseconds and it is suggested that the process is driven by the vapour space energy. The other type of BLEVE was a two step process where a crack would start in a weakened area, arrest in a stronger part of the tank, and then start again to end in catastrophic failure. Initial failure and jet type release results in violent boiling and pressure recovery in the tank, leading to restart of the crack and catastrophic failure. Time duration is measured in seconds, and is driven by energy stored in the liquid. A computer model was developed to simulate the transient jet release resulting from finite tank failures, and can predict transient mass flow, tank pressure decay, visible flame length and jet fire thermal radiation. 253 refs., 132 figs., 29 tabs.

  10. Submerged Grove in Lake Onogawa

    OpenAIRE

    Sato, Yasuhiro; Nakamura, Soken; Ochiai, Masahiro

    1996-01-01

    Abstract : The first record by ultrasonic echo sounding on the distribution of the submerged standing trees on the bottom of Lake Onogawa is presented. Lake Onogawa is a dammed lake formed at the time of the eruption of the volcano Mt.Bandai in 1888. Since then the original vegetation of the dammed valley has remained submerged. Many submerged standing trees are distributed on the bottom within about 600m from the northeast end of the lake. The density of the trees in this area is sufficient ...

  11. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors

    Science.gov (United States)

    Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2017-12-01

    We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.

  12. Multiphysics control of a two-fluid coaxial atomizer supported by electric-charge on the liquid jet

    Science.gov (United States)

    Machicoane, Nathanael; Osuna, Rodrigo; Aliseda, Alberto

    2017-11-01

    We present an experimental setup to investigate multiphysics control strategies on atomization of a laminar fluid stream by a coaxial turbulent jet. Spray control (i.e. driving the droplet size distribution and the spatio-temporal location of the droplets towards a desired objective) has many potential engineering applications, but requires a mechanistic understanding of the processes that control droplet formation and transport (primary and secondary instabilities, turbulent transport, hydrodynamic and electric forces on the droplets, ...). We characterize experimentally the break-up dynamics in a canonical coaxial atomizer, and the spray structure (droplet size, location, and velocity as a function of time) in a series of open loop conditions with harmonic forcing of the gas swirl ratio, liquid injection rate, the electric field strength at the nozzle and along the spray development region. The effect of these actuators are characterized for different gas Reynolds numbers ranging from 104-106. This open-loop characterization of the injector will be used to develop reduced order models for feedback control, as well as to validate assumptions underlying an adjoint-based computational control strategy. This work is part of a large-scale project funded by an ONR MURI to provide fundamental understanding of the mechanisms for feedback control of sprays.

  13. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  14. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  15. First application of liquid-metal-jet sources for small-animal imaging: High-resolution CT and phase-contrast tumor demarcation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna; Hertz, Hans M. [Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 10691 Stockholm (Sweden); Westermark, Ulrica K.; Arsenian Henriksson, Marie [Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm (Sweden)

    2013-02-15

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  16. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

    Science.gov (United States)

    Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

    2018-01-01

    In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

  17. Environmental Life Cycle Assessment of Coal-Biomass to Liquid Jet Fuel Compared to Petroleum-Derived JP-8 Jet Fuel

    Science.gov (United States)

    2010-03-01

    is a Metal Deactivator Additive (MDA) to prevent fuel oxidation with trace metals such as copper or zinc that may be in the jet fuel (MIL- HDBK-510-1...react in the FT synthesis process). The gasifier is of the slagging type and a direct contact water quench spray system is used to cool the syngas...exiting the gasifier. The quench also removes particulate matter and contaminants not removed in the slag . However, because the ash from biomass is

  18. Effects of irradiation distance on supply of reactive oxygen species to the bottom of a Petri dish filled with liquid by an atmospheric O{sub 2}/He plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Toshiyuki, E-mail: kawasaki@nbu.ac.jp; Kusumegi, Shota; Kudo, Akihiro; Sakanoshita, Tomohiro; Tsurumaru, Takuya; Sato, Akihiro [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Uchida, Giichiro [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Koga, Kazunori; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2016-05-07

    The impact of irradiation distances on plasma jet-induced specific effects on the supply of reactive oxygen species (ROS) to the bottom of a Petri dish filled with liquid was investigated using a KI-starch gel reagent that can be employed as a ROS indicator even in water. O{sub 3} exposure experiments without plasma irradiation were also performed to elucidate the specific effects of the plasma jet. Relative concentrations of ROS transported to the bottom were evaluated using absorbance measurements. The results indicated that ROS supply to the bottom is markedly enhanced by the plasma jet irradiation at shorter irradiation distances, whereas similar results could not be obtained for the O{sub 3} exposure. In these cases, the liquid mixing in the depth direction was also enhanced by the plasma jet irradiation only, and the supply of reactive atomic oxygen to the liquid surface was markedly increased as well.

  19. Calculations of slurry pump jet impingement loads

    International Nuclear Information System (INIS)

    Wu, T.T.

    1996-01-01

    This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented

  20. SUBMERGED PERFUSION BIOREACTOR

    DEFF Research Database (Denmark)

    2010-01-01

    NOVELTY - A biological device comprises a body (1) delimited by a rim (7) comprising recessed portion(s) that is a cavity in the rim of the body, and a first wall delimiting the recessed portion along the cavity. The recessed portion(s) comprise a first outlet orifice allowing the liquid medium t...

  1. Deformations of free jets

    Science.gov (United States)

    Paruchuri, Srinivas

    This thesis studies three different problems. First we demonstrate that a flowing liquid jet can be controllably split into two separate subfilaments through the applications of a sufficiently strong tangential stress to the surface of the jet. In contrast, normal stresses can never split a liquid jet. We apply these results to observations of uncontrolled splitting of jets in electric fields. The experimental realization of controllable jet splitting would provide an entirely novel route for producing small polymeric fibers. In the second chapter we present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids, 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending. In chapter 4 we address the discrepancy between hydrodynamic theory of liquid jets, and the snap-off of narrow liquid jets observed in molecular dynamics (MD) simulations [23]. This has been previously attributed to the significant role of thermal fluctuations in nanofluidic systems. We argue that hydrodynamic description of such systems should include corrections to the Laplace pressure which result from the failure of the sharp interface assumption when the jet diameter becomes small enough. We show that this effect can in principle give rise to jet shapes similar to those observed in MD simulations, even when thermal fluctuations are completely neglected. Finally we summarize an algorithm developed to simulate droplet impact on a smooth surface.

  2. Flow pattern and cleaning performance of a stationary liquid jet operating at conditions relevant for industrial tank cleaning

    DEFF Research Database (Denmark)

    Feldung Damkjær, N.; Adler-Nissen, Jens; Jensen, B. B. B.

    2017-01-01

    jet was studied using a 19m3 tank and settings applicable to industrial operations; nozzle internal diameters, dN, of 2–5.5mm, cleaning distances, L, of 80–2490mm, and flow rates, Q, of 0.05–3.0m3h−1. Experimental data and model predictions of the behaviour of the jet when striking an unsoiled surface...

  3. Drought and submergence tolerance in plants

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hewei; Zhou, Yufan; Oksenberg, Nir; Ronald, Pamela

    2017-11-14

    The invention provides methods of genetically modified plants to increase tolerance to drought and/or submergence. The invention additionally provides plants having increased drought and/or submergence tolerance engineered using such methods.

  4. Fueling by liquid jets

    International Nuclear Information System (INIS)

    Bruno, C.

    1978-01-01

    Maintenance of steady-state burn in tokamak fusion reactors will require a reliable method for fueling them during operation. The injection of high-velocity dense-phase DT is one solution under investigation. The eventual requirements are not known precisely but the next series of experiments in tokamak devices (e.g., Doublet III, PDX) could use millimeter size particles with velocities of the order of 2000 m/s. This paper presents results on the feasibility of a high-pressure injection system to meet these objectives

  5. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem

    2016-01-01

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  6. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo

    2016-10-27

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  7. [Antimicrobial activity of Laetiporus sulphureus strains grown in submerged culture].

    Science.gov (United States)

    Ershova, E Iu; Tikhonova, O V; Lur'e, L M; Efremenkova, O V; Kamzolkina, O V; Dudnik, Iu V

    2003-01-01

    Cultural conditions for growth and fruit body formation were elaborated to four strains of Laetiporus sulphureus isolated from nature. All strains demonstrated antimicrobial activity against a wide spectrum of gram-positive and gram-negative bacteria during agar and submerged cultivation including methicillin-resistant strain of Staphylococcus aureus (MRSA) and glycopeptide-resistant strain of Leuconostoc mesenteroides. Antifungal activity was not found. The level of antimicrobial activity during submerged cultivation reached maximum after seven days of growth on specific medium with soybean meal and corn liquid; the next four weeks its increasing was not so manifested. Antimicrobial activity correlated with orange pigment secretion and cultural liquid acidification to pH 2.0-2.8 that indicates on acid nature of synthesized products.

  8. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    International Nuclear Information System (INIS)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-01-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice. (paper)

  9. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    Science.gov (United States)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-12-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.

  10. Vapor condensation on the surface of a liquid blanket jet in an inertial-confinement fusion reactor

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Inoue, Akira; Fujinuma, Hajime; Tsukui, Jun.

    1991-01-01

    As the fundamental study on lithium jet cooling of an inertial-confinement fusion reactor, the experiment was performed to investigate for the steady condensation of saturated steam on a vertical downward water jet. The experimental parameters were the nozzle diameter of 3 and 5 mm, the jet length of 60∼316 mm, the outlet velocity of 2∼12 m/s, the outlet temperature of 30∼70degC, and the pressure of 0.03∼0.44 MPa, which corresponds to the Reynolds number of 1.35 x 10 4 ∼2.71 x 10 5 and the Prandtl number of 1.0∼5.2. As the Reynolds number or the jet length is increased, the Stanton number decreases and then increases again. As the steam pressure is increased, it increases monotonously. These characteristics of condensation heat transfer have been classical into four regions based on the criteria for jet break-up and surface disturbance, or entrainment. The empirical correlations for the Stanton number have been obtained for these regions, and the validity was confirmed by comparing them with the previous correlations. (author)

  11. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    Science.gov (United States)

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Electromagnetic flow control of a bifurcated jet in a rectangular cavity

    International Nuclear Information System (INIS)

    Kalter, R.; Tummers, M.J.; Kenjereš, S.; Righolt, B.W.; Kleijn, C.R.

    2014-01-01

    Highlights: • Self-sustained oscillations in a thin cavity with submerged nozzle were observed. • The self-sustained oscillations were influenced by applying a Lorentz force. • A POD was applied to study the distribution of kinetic energy. • The large scale fluctuations can be enhanced or suppressed by the Lorentz force. • The turbulence fluctuations are not affected by the Lorentz force. - Abstract: The effect of Lorentz forcing on self-sustained oscillations of turbulent jets (Re = 3.1 × 10 3 ) issuing from a submerged bifurcated nozzle into a thin rectangular liquid filled cavity was investigated using free surface visualization and time-resolved particle image velocimetry (PIV). A Lorentz force is produced by applying an electrical current across the width of the cavity in conjunction with a magnetic field. As a working fluid a saline solution is used. The Lorentz force can be directed downward (F L L >0), to weaken or strengthen the self-sustained jet oscillations. The low frequency self-sustained jet oscillations induce a free surface oscillation. When F L L >0 the free surface oscillation amplitude is enhanced by a factor of 1.5. A large fraction of the turbulence kinetic energy k=1/2 u i ′ u i ′‾ is due to the self-sustained jet oscillations. A triple decomposition of the instantaneous velocity was used to divide the turbulence kinetic energy into a part originating from the self-sustained jet oscillation k osc and a part originating from the higher frequency turbulent fluctuations k turb . It follows that the Lorentz force does not influence k turb in the measurement plane, but the distribution of k osc can be altered significantly. The amount of energy contained in the self-sustained oscillation is three times lower when F L L >0

  13. Control of Supercavitating Vehicles using Transverse Jets

    Science.gov (United States)

    2016-03-15

    Supercavitating Vehicles using Transverse Jets Sb. GRANT NUMBER N00014-13-1-0747 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Ayers, Bradley...ANSI Std. Z39.18 CONTROL OF SUPERCAVITATING VEHICLES USING TRANSVERSE JETS Final Technical Report for Office of Naval Research contract N00014-13-1...fully-submerged, supercavitating vehicle model using the thrust of the zero-net-mass-flux device. The experiments were conducted in NUWC Newport’ s

  14. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, H.; Hammer, M. U.; Reuter, S. [Center for Innovation Competence plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  15. On the submerging of a spherical intruder into granular beds

    Directory of Open Access Journals (Sweden)

    Wu Chuan-Yu

    2017-01-01

    Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.

  16. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion

    Science.gov (United States)

    Tsventoukh, M. M.

    2018-05-01

    A model has been developed for the explosive electron emission cell pulse of a vacuum discharge cathode spot that describes the ignition and extinction of the explosive pulse. The pulse is initiated due to hydrodynamic tearing of a liquid-metal jet which propagates from the preceding cell crater boundary and draws the ion current from the plasma produced by the preceding explosion. Once the jet neck has been resistively heated to a critical temperature (˜1 eV), the plasma starts expanding and decreasing in density, which corresponds to the extinction phase. Numerical and analytical solutions have been obtained that describe both the time behavior of the pulse plasma parameters and their average values. For the cell plasma, the momentum per transferred charge has been estimated to be some tens of g cm/(s C), which is consistent with the known measurements of ion velocity, ion erosion rate, and specific recoil force. This supports the model of the pressure-gradient-driven plasma acceleration mechanism for the explosive cathode spot cells. The ohmic electric field within the explosive current-carrying plasma has been estimated to be some tens of kV/cm, which is consistent with the known experimental data on cathode potential fall and explosive cell plasma size. This supports the model that assumes the ohmic nature of the cathode potential fall in a vacuum discharge.

  17. Macroinvertebrates associated with two submerged macrophytes ...

    African Journals Online (AJOL)

    Macroinvertebrates associated with two submerged macrophytes, Lagarosiphon ilicifolius and Vallisneria aethiopica , in the Sanyati Basin, Lake Kariba, Zimbabwe: effect of plant morphological complexity.

  18. Scintillating liquid xenon calorimeter for precise electron/photon/jet physics at high energy high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Chen, M.; Luckey, D.; Pelly, D.; Shotkin, S.; Sumorok, K.; Wadsworth, B.; Yan, X.J.; You, C.; Zhang, X.; Chen, E.G.; Gaudreau, M.P.J.; Montgomery, D.B.; Sullivan, J.D.; Bolozdynya, A.; Chernyshev, V.; Goritchev, P.; Khovansky, V.; Kouchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.A.; Epstein, V.; Zeldovich, S.; Krasnokutsky, R.; Shuvalov, R.; Aprile, E.; Mukherjee, R.; Suzuki, M.; Moulsen, M.; Sugimoto, S.; Okada, K.; Fujino, T.; Matsuda, T.; Miyajima, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Nagasawa, Y.; Ichinose, H.; Ishida, N.; Nakasugi, T.; Ito, T.; Masuda, K.; Shibamura, E.; Wallraff, W.; Vivargent, M.; Mutterer, M.; Chen, H.S.; Tang, H.W.; Tung, K.L.; Ding, H.L.; Takahashi, T.

    1990-01-01

    The authors use αs well as e, π, p, d and heavy ion beams to test prototype scintillating liquid xenon detectors, with large UV photodiodes and fast amplifiers submersed directly in liquid xenon. The data show very large photoelectron yields (10 7 /GeV) and high energy resolution (σ(E)/E 1.6 GeV). The α spectra are stable over long term and can be used to calibrate the detectors. Full size liquid xenon detectors have been constructed, to study cosmic μ's and heavy ions. The authors report the progress on the design and construction of the 5 x 5 and 11 x 11 cell liquid xenon detectors which will be tested in high energy beams to determine the e/π ratio. The authors describe the design and the unique properties of the proposed scintillating LXe calorimeter for the SSC

  19. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  20. Analysis of a Free Surface Film from a Controlled Liquid Impinging Jet over a Rotating Disk Including Conjugate Effects, with and without Evaporation

    Science.gov (United States)

    Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.

    2005-01-01

    A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.

  1. Flow and scour around vertical submerged structures

    Indian Academy of Sciences (India)

    The safety of the foundations of submerged hydraulic structures due to excessive local scour is threatened by the erosive action of the waves and currents passing around these structures. Fish and aquatic habitat is seriously affected due to the modification of the flow field caused by these submerged structures. Hence, the ...

  2. Jet pump assisted artery

    Science.gov (United States)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  3. Heat transfer model for quenching by submerging

    International Nuclear Information System (INIS)

    Passarella, D N; Varas, F; MartIn, E B

    2011-01-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  4. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  5. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  6. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  7. Research on the HYLIFE liquid-first-wall concept for future laser-fusion reactors: liquid jet impact experiments. Final report No. 8

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1982-08-01

    The goal of this initial scoping study was to evaluate the transient and steady state drag of a single bar and of some selected arrays of bars and to determine the momentum removed from impacting liquid slugs. In order to achieve this aim, use has been made of both the published literature and experimental data obtained from a small-scale experimental apparatus. The implications of two possible scaling laws for use in designing the small-scale experiment are discussed. The use of near-universal curves to evaluate the momentum removed during the initial transient period is described. The small-scale apparatus used to obtain steady-state drag data is described. Finally, these results are applied to the HYLIFE fusion reactor

  8. Investigations of needle-free jet injections.

    Science.gov (United States)

    Schramm-Baxter, J R; Mitragotri, S

    2004-01-01

    Jet injection is a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers drugs. Although a number of jet injectors are commercially available, especially for insulin delivery, they have a low market share compared to needles possibly due to occasional pain associated with jet injection. Jets employed by the traditional jet injectors penetrate deep into the dermal and sub-dermal regions where the nerve endings are abundantly located. To eliminate the pain associated with jet injections, we propose to utilize microjets that penetrate only into the superficial region of the skin. However, the choice of appropriate jet parameters for this purpose is challenging owing to the multiplicity of factors that determine the penetration depth. Here, we describe the dependence of jet injections into human skin on the power of the jet. Dermal delivery of liquid jets was quantified using two measurements, penetration of a radiolabeled solute, mannitol, into skin and the shape of jet dispersion in the skin which was visualized using sulforhodamine B. The dependence of the amount of liquid delivered in the skin and the geometric measurements of jet dispersion on nozzle diameter and jet velocity was captured by a single parameter, jet power.

  9. Fluid-structure interaction of submerged structures

    International Nuclear Information System (INIS)

    Tang, H.T.; Becker, E.B.; Taylor, L.M.

    1979-01-01

    The purpose of the paper is to investigate fluid-structure interaction (FSI) of submerged structures in a confined fluid-structure system. Our particular interest is the load experienced by a rigid submerged structure subject to a pressure excitation in a fluid domain bounded by a structure which is either flexible or rigid. The objective is to see whether the load experienced by the submerged structure will be influenced by its confinement conditions. This investigation is intended to provide insight into the characteristics of FSI and answer the question as to whether one can obtain FSI independent data by constructing a small scale rigid submerged structure inside a flexible fluid-structure system. (orig.)

  10. Jet fragmentation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  11. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Thamina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-03

    This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, major efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt% biomass and

  12. Behavior of conducting solid or liquid jet moving in magnetic field: (1) paraxial; (2) transverse; (3) oblique

    International Nuclear Information System (INIS)

    Weggel, R.J.

    1998-06-01

    When a conductor moves through a nonuniform magnetic field, eddy currents flow that interact with the field to decelerate the conductor and perhaps change its trajectory, orientation and, if a liquid, shape. A rod of radius a 1 cm and the density and electrical conductivity of melted gallium (γ 6.1 g/cm 3 , ρ = 26 microΩ cm) will decelerate 6.3 m/s in a 0.5 m ramp of paraxial field with a constant gradient g of 40 T/m (ΔB = 20 T). The deceleration is proportional to a 2 gΔB/γρ, independent of the velocity. The bar decelerates about twice as much in a 20 T, 0.5 m ramp of transverse field. A bar traveling at a shallow angle to such a field decelerates about 6.3 m/s. If the bar is 0.25 m long and moves at 20 m/s, it aligns with the field in ∼10 ms, during which time it advances ∼0.2 m

  13. [Dynamics of genome changes in Rauwolfia serpentina callus tissue upon the switch to conditions of submerged cultivation].

    Science.gov (United States)

    Spiridonova, E V; Adnof, D M; Andreev, I O; Kunakh, V A

    2008-01-01

    Genome of Rauwolfia serpentina callus cells was found to fail undergo the noticeable changes for several early passages upon the switch from surface to submerged cultivation in the liquid medium of special composition. After subsequent 4-6 passages in submerged culture RAPD spectra polymorphism was revealed which may reflect the changes in DNA sequence as well as in the structure of cell population that forms the strain. Introduction of the intermediary passage on the agar-solidified medium of more simple composition prior to transfer into liquid medium appeared not to affect essentially the level and the pattern of genome changes.

  14. Impeller Submergence Depth for Stirred Tanks

    Directory of Open Access Journals (Sweden)

    Thiyam T. Devi

    2011-11-01

    Full Text Available Impeller submergence governs the performance of mixing tanks employed in oxygen transfer operation. Present work experimentally investigates the effect of impeller submergence depths on oxygen transfer and corresponding power consumption. It has been found that at higher range of impeller submergence, mixing tanks consume less power and gives higher values of oxygen transfer coefficient. Optimal range of submergence depth is 0.7 to 0.9 times the impeller diameter. Copyright ©2011 BCREC UNDIP. All rights reserved.(Received: 4th March 2011; Revised: 12nd July 2011; Accepted: 14th July 2011[How to Cite: T.T. Devi, A.P. Sinha, M. Thakre, and B. Kumar. (2011. Impeller Submergence Depth for Stirred Tanks. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 123-128. doi:10.9767/bcrec.6.2.826.123-128][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.826.123-128 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/826] | View in 

  15. Application of a gradient diffusion and dissipation time scale ratio model for prediction of mean and fluctuating temperature fields in liquid sodium downstream of a multi-bore jet block

    International Nuclear Information System (INIS)

    Bremhorst, K.; Listijono, J.B.H.; Krebs, L.; Mueller, U.

    1989-01-01

    A previously developed diffusivity based based model, for the prediction of mean and fluctuating temperatures in water flow downstream of a multi-bore jet block in which one jet is heated, is applied to a flow of sodium in apparatus of similar geometry. Some measurements not readily possible in sodium or water flows for this geometry are made using air in order to verify assumptions used in the model. The earlier derived mathematical model is modified to remove assumptions relating to turbulence. Reynolds number and turbulence Peclet number in the relationship between velocity and temperature microscales. Spalding's model, relating fluctuating velocity and temperature dissipation rates, is tested. A significant effect on this relationship due to the low Prandtl number of liquid sodium is identified. Measurements performed behind a multi-bore jet block with air as the working fluid have verified the non-isotropic nature of the large-scale flow. Results clearly show that measurements performed in water can be transferred to liquid sodium provided that molecular diffusion is included in the mean temperature equation, allowance is made for the Prandtl number effect on the dissipation time scale ratio and the coefficient of gradient diffusion of mean square temperature fluctuations is assumed equal to the eddy diffusivity of heat. (author)

  16. Active Control Strategies to Optimize Supersonic Fuel-Air Mixing for Combustion Associated with Fully Modulated Transverse Jet in Cross Flow

    National Research Council Canada - National Science Library

    Ghenai, C; Philippidis, G. P; Lin, C. X

    2005-01-01

    ... (subsonic- supersonic) combustion studies. A high-speed imaging system was used for the visualization of pure liquid jet, aerated liquid jet and pulsed aerated jet injection into a supersonic cross flow at Mach number 1.5...

  17. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  18. Mixing Characteristics during Fuel Coolant Interaction under Reactor Submerged Conditions

    International Nuclear Information System (INIS)

    Hong, S. W.; Na, Y. S.; Hong, S. H.; Song, J. H.

    2014-01-01

    A molten material is injected into an interaction chamber by free gravitation fall. This type of fuel coolant interaction could happen to operating plants. However, the flooding of a reactor cavity is considered as SAM measures for new PWRs such as APR-1400 and AP1000 to assure the IVR of a core melt. In this case, a molten corium in a reactor is directly injected into water surrounding the reactor vessel without a free fall. KAERI has carried out fuel coolant interaction tests without a free fall using ZrO 2 and corium to simulate the reactor submerged conditions. There are four phases in a steam explosion. The first phase is a premixing phase. The premixing is described in the literature as follows: during penetration of melt into water, hydrodynamic instabilities, generated by the velocities and density differences as well as vapor production, induce fragmentation of the melt into particles; the particles fragment in turn into smaller particles until they reach a critical size such that the cohesive forces (surface tension) balance exactly the disruptive forces (inertial); and the molten core material temperature (>2500 K) is such that the mixing always occurs in the film boiling regime of the water: It is very important to qualify and quantify this phase because it gives the initial conditions for a steam explosion This paper mainly focuses on the observation of the premixing phase between a case with 1 m free fall and a case without a free fall to simulate submerged reactor condition. The premixing behavior between a 1m free fall case and reactor case submerged without a free fall is observed experimentally. The average velocity of the melt front passing through 1m water pool; - Case without a free fall: The average velocity of corium, 2.7m/s, is faster than ZrO 2 , 2.3m/s, in water. - Cases of with a 1 m free fall and without a free fall : The case without a free fall is about two times faster than a case with a 1 m free fall. Bubble characteristics; - Case

  19. Turbulent Boyant Jets and Plumes in Flowing Ambient Environments

    DEFF Research Database (Denmark)

    Chen, Hai-Bo

    and the stage of plume. The stability criteria for the upstream wedge created by the submerged turbulent buoyant jet were established by applying the Bernoulli equations for a two-dimensional problem and by considering the front velocity driven by the buoyancy force for a three-dimensional problem....... The integral model was developed on the basis of the volume control method ( for jets with two-dimensional trajectories ) and the differential method ( for jets with three-dimensional trajectories ). The turbulence model adopted here was the k - ε model based on Launder and Spalding. The mathematical models...

  20. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    Science.gov (United States)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  1. Comparison of submerged and unsubmerged printing of ovarian cancer cells.

    Science.gov (United States)

    Davidoff, Sherry N; Au, David; Smith, Samuel; Brooks, Amanda E; Brooks, Benjamin D

    2015-01-01

    A high-throughput cell based assay would greatly aid in the development and screening of ovarian cancer drug candidates. Previously, a three-dimensional microfluidic printer that is not only capable of controlling the location of cell deposition, but also of maintaining a liquid, nutrient rich environment to preserve cellular phenotype has been developed (Wasatch Microfluidics). In this study, we investigated the impact (i.e., viability, density, and phenotype) of depositing cells on a surface submerged in cell culture media. It was determined that submersion of the microfluidic print head in cell media did not alter the cell density, viability, or phenotype.. This article describes an in depth study detailing the impact of one of the fundamental components of a 3D microfluidic cell printer designed to mimic the in vivo cell environment. Development of such a tool holds promise as a high-throughput drug-screening platform for new cancer therapeutics.

  2. Liquid evaporation process and evaporator

    International Nuclear Information System (INIS)

    Bergey, Claude; Ravenel, Jacques.

    1975-01-01

    The process described enables a liquid to be evaporated rapidly without any projection. A jet of hot gas is applied to the liquid, the power and angle of the jet being chosen so as to spin the liquid. It is particularly used in the case of radioactive products [fr

  3. Topology optimization for submerged buoyant structures

    NARCIS (Netherlands)

    Picelli, R.; van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; van Keulen, A.

    2017-01-01

    This paper presents an evolutionary structural topology optimization method for the design of completely submerged buoyant modules with design-dependent fluid pressure loading. This type of structure is used to support offshore rig installation and pipeline transportation at all water depths. The

  4. Benthic bacterial diversity in submerged sinkhole ecosystems.

    Science.gov (United States)

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  5. Waterlogging and submergence: surviving poor aeration

    NARCIS (Netherlands)

    Atwell, B.J.; Ismail, A.M.; Pedersen, O.; Shabala, S.; Sorrell, B.; Voesenek, Laurentius|info:eu-repo/dai/nl/074850849

    2014-01-01

    Flooding, resulting in soil waterlogging and in many situations even complete submergence of plants, is an important abiotic stress in many regions worldwide. The number of floods has increased in recent decades (Figure 18.1), and the severity of floods is expected to increase further in many

  6. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Fungal milk-clotting enzymes have gained value as bovine Chymosin substitutes in the cheese industry. In this work, the effects of culture conditions on the production of extracellular milk clotting enzymes from Mucor mucedo DSM 809 in submerged fermentation were studied. The maximum activity was observed after 48 h ...

  7. Numerical simulation of sand jet in water

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

  8. Unsteady jet-slug dynamics

    International Nuclear Information System (INIS)

    Kang, S.W.

    1977-01-01

    The present analysis treats the transient load characteristics at the wet-well bottom during the vent-clearing event under loss-of-coolant accident conditions. A conceptual model is introduced wherein the liquid-jet inertia and the net momentum-efflux are the two dominant physical factors. The derived load-history equations were found to be functions of the vent-clearing characteristics and of the jet-decay mode in the liquid pool. The theoretical results obtained by a physical modelling of these phenomena appear to agree reasonably well with the available data from UCLA and from LLL 1 / 5 -scale experiments

  9. Oxygen dynamics in submerged rice (Oryza sativa L.)

    DEFF Research Database (Denmark)

    Colmer, Timothy D.; Pedersen, Ole

    2008-01-01

    Complete submergence of plants prevents direct O2 and CO2 exchange with air. Underwater photosynthesis can result in marked diurnal changes in O2 supply to submerged plants. Dynamics in pO2 had not been measured directly for submerged rice (Oryza sativa), but in an earlier study, radial O2 loss...... from roots showed an initial peak following shoot illumination.  O2 dynamics in shoots and roots of submerged rice were monitored during light and dark periods, using O2 microelectrodes. Tissue sugar concentrations were also measured.  On illumination of shoots of submerged rice, pO2 increased rapidly...... of magnitude higher than in darkness, enhancing also pO2 in roots.The initial peak in pO2 following illumination of submerged rice was likely to result from high initial rates of net photosynthesis, fuelled by CO2 accumulated during the dark period. Nevertheless, since sugars decline with time in submerged...

  10. Boosted jets

    International Nuclear Information System (INIS)

    Juknevich, J.

    2014-01-01

    We present a study of the substructure of jets high transverse momentum at hadron colliders. A template method is introduced to distinguish heavy jets by comparing their energy distributions to the distributions of a set of templates which describe the kinematical information from signal or background. As an application, a search for a boosted Higgs boson decaying into bottom quarks in association with a leptonically decaying W boson is presented as well. (author)

  11. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  12. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  13. Emerging jets

    International Nuclear Information System (INIS)

    Schwaller, Pedro; Stolarski, Daniel

    2015-02-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  14. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  15. Experimental motion behavior of submerged fuel racks

    International Nuclear Information System (INIS)

    Ellingson, F.J.; Wachter, W.; Moscardini, R.L.

    1989-01-01

    The design of submerged nuclear storage racks for light water reactor nuclear fuel has undergone a change from fixed position to a free-standing arrangement. Seismic analysis of the motion of the free-standing racks requires three-dimensional computer modeling that uses past studies of hydrodynamic mass and hydraulic coupling for rigid flat plates. This paper describes the results of experiments that show a reduced value for hydrodynamic mass and coupling forces when flexible elements are involved. To support this work, experiments were run with two full-scale welded box sections submerged in a water tank. The preliminary results indicate reduction in hydrodynamic mass due to box wall flexibility, a lack of impacting of box wall to box wall over the entire frequency range, and large hydrodynamic coupling forces under all test conditions. It is hypothesized that the coupling forces are sufficiently strong to prevent rotational motion of one rack when surrounded by adjacent racks

  16. Effect of clone size on submergence tolerance and post-submergence growth recovery in Carex brevicuspis (Cyperaceae

    Directory of Open Access Journals (Sweden)

    Zhengmiao Deng

    2016-12-01

    Full Text Available Clonal plants are prevalent in wetlands and play important roles in maintaining the functions of the ecosystem. In the present study, we determined the effect of clone sizes (R1, R2, and R3 comprising 1, 3, and 5clumping ramets on the tolerance of Carex brevicuspis growing under 30-cm-deep water to three different periods (one, two, and three months of submergence and its growth recovery one month after de-submergence. Our results showed that the relative growth rate (RGR of C. brevicuspis significantly declined with increasing submergence time, and was higher in R3 and R5 than in R1 plants under both submergence and post-submergence conditions. The concentration of water-soluble carbohydrates (WSCs was highest in R3, intermediate in R5, and the lowest in R1 plants during the first two months of submergence, indicating an optimal trade-off between energy investment and vegetative growth (i.e., buds and ramets production in C. brevicuspis. WSCs were significantly reduced with increasing submergence time, while the starch content was significantly reduced only during the third month of submergence, implying that WSCs were a direct energy source for C. brevicuspis during submergence. The number of buds was higher in R5 than in R3 and R1 plants after two and three months of submergence, which directly resulted in a significantly higher post-submergence ramet production in R5 plants. These results indicated that plants with relatively larger clone sizes display better tolerance to submergence stress and post-submergence growth recovery. Therefore, we speculate that the large clone size in C brevicuspis might be an effective adaptive mechanism to survive under submergence stress in floodplain wetlands.

  17. Jet operated heat pump

    International Nuclear Information System (INIS)

    Collard, T.H.

    1982-01-01

    A jet pump system is shown that utilizes waste heat to provide heating and/or cooling. Waste heat diverted through a boiler causes a refrigerant to evaporate and expand for supersonic discharge through a nozzle thereby creating a vacuum in an evaporator coil. The vacuum draws the refrigerant in a gaseous state into a condensing section of a jet pump along with refrigerant from a reservoir in a subcooled liquid form. This causes condensation of the gas in a condensation section of the jet pump, while moving at constant velocity. The change in momentum of the fluid overcomes the system high side pressure. Some of the condensate is cooled by a subcooler. Refrigerant in a subcooled liquid state from the subcooler is fed back into the evaporator and the condensing section with an adequate supply being insured by the reservoir. The motive portion of the condensate is returned to the boiler sans subcooling. By proper valving start-up is insured, as well as the ability to switch from heating to cooling

  18. Radiocarbon measurements on submerged forest floating chronologies

    International Nuclear Information System (INIS)

    Campbell, J.A.; Baxter, M.S.

    1979-01-01

    It is stated that the submerged forests along the west coast of England and Wales provide a unique source of wood for radiocarbon/ dendrochronological studies. 14 C age determinations are reported on sequential growth increments from three 'gloating' chronologies. A sampling frequency of approximately 10 samples per century was used. Fluctuations in atmospheric 14 C levels of 2 to 3% over several decades can occur, these variations being superimposed on a smoothly changing trend. (author)

  19. Experimental Investigation on the Influence of a Double-Walled Confined Width on the Velocity Field of a Submerged Waterjet

    Directory of Open Access Journals (Sweden)

    Xiaolong Ding

    2017-12-01

    Full Text Available The current research on confined submerged waterjets mainly focuses on the flow field of the impinging jet and wall jet. The double-sided wall vertically confined waterjet, which is widely used in many fields such as mining, cleaning and surface strengthening, has rarely been studied so far. In order to explore the influence of a double-sided wall confined width on the velocity field of submerged waterjet, an experiment was conducted with the application of 2D particle image velocimetry (PIV technology. The distribution of mean velocity and turbulent velocity in both horizontal and vertical planes was used to characterize the flow field under various confined widths. The results show that the vertical confinement has an obvious effect on the decay rate of the mean centerline velocity. When the confined width changes from 15 to 5, the velocity is reduced by 20%. In addition, with the decrease of the confined width, the jet has a tendency to spread horizontally. The vertically confined region induces a space hysteresis effect which changes the location of the transition region moving downstream. There are local negative pressure zones separating the fluid and the wall. This study of a double-walled confined jet provides some valuable information with respect to its mechanism and industrial application.

  20. Jets in heavy ion collisions

    International Nuclear Information System (INIS)

    Nattrass, Christine

    2017-01-01

    High energy collisions of heavy nuclei permit the study of nuclear matter at temperatures and energy densities so high that the fundamental theory for strong interactions, QCD, predicts a phase transition to a plasma of quarks and gluons. This matter, called a Quark Gluon Plasma (QGP), has been studied experimentally for the last decade and has been observed to be a strongly interacting liquid with a low viscosity. High energy partons created early in the collision interact with the QGP and provide unique probes of its properties. Hard partons fragment into collimated sprays of particles called jets and have been studied through measurements of single particles, correlations between particles, and measurements of fully reconstructed jets. These measurements demonstrate partonic energy loss in the QGP and constrain the QGP’s properties. Measurements of the jet structure give insight into the mechanism of this energy loss. The information we have learned from studies of jets and challenges for the field will be reviewed. (paper)

  1. Characteristics and limitations of GPS L1 observations from submerged antennas - Theoretical investigation in snow, ice, and freshwater and practical observations within a freshwater layer

    Science.gov (United States)

    Steiner, Ladina; Meindl, Michael; Geiger, Alain

    2018-05-01

    Observations from a submerged GNSS antenna underneath a snowpack need to be analyzed to investigate its potential for snowpack characterization. The magnitude of the main interaction processes involved in the GPS L1 signal propagation through different layers of snow, ice, or freshwater is examined theoretically in the present paper. For this purpose, the GPS signal penetration depth, attenuation, reflection, refraction as well as the excess path length are theoretically investigated. Liquid water exerts the largest influence on GPS signal propagation through a snowpack. An experiment is thus set up with a submerged geodetic GPS antenna to investigate the influence of liquid water on the GPS observations. The experimental results correspond well with theory and show that the GPS signal penetrates the liquid water up to three centimeters. The error in the height component due to the signal propagation delay in water can be corrected with a newly derived model. The water level above the submerged antenna could also be estimated.

  2. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  3. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    OpenAIRE

    MAJID ALI; YAN CHANGQI; SUN ZHONGNING; GU HAIFENG; WANG JUNLONG; KHURRAM MEHBOOB

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na2S2O3) in water to remove the gaseous iodine (I2) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine...

  4. Design of extended length submerged traveling screen and submerged bar screen fish guidance equipment

    International Nuclear Information System (INIS)

    Bardy, D.; Lindstrom, M.; Fechner, D.

    1991-01-01

    The hydropower projects on the Snake and lower Columbia Rivers in the Pacific Northwest are unique because these rivers are also the spawning grounds for migratory salmon. The salmon swim upstream from the ocean, lay their eggs, and die. The newly hatched fingerlings must then make their way past the hydroelectric dams to the ocean. Two separate bypass systems are needed, one to pass the adult fish going upstream, and one to pass the fingerlings going downstream. This paper addresses the design considerations for two of the components of the downstream migrant fish passage facilities, the extended Submerged Traveling Screen and Submerged Bar Screen

  5. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    OpenAIRE

    Xunmin Ou; Xiaoyu Yan; Xu Zhang; Xiliang Zhang

    2013-01-01

    A life-cycle analysis (LCA) of greenhouse gas (GHG) emissions and energy use was performed to study bio-jet fuel (BJF) production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM). Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP) from the residual biomass after oil extraction, including fugitive methane (CH 4 ) emissions during the production of biogas and nitrous oxide (N 2 O) ...

  6. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Kim, H. S.; Kim, W. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  7. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    International Nuclear Information System (INIS)

    Lee, J. W.; Kim, H. S.; Kim, W. S.

    2016-01-01

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  8. Introduction to the modified TROI test facility for fuel coolant interaction under a submerged reactor vessel

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seong-Wan; Song, Jin Ho; Hong, Seong-Ho

    2014-01-01

    The molten Fuel-Coolant Interaction (FCI) can threaten the integrity of the reactor cavity under a severe accident. A steam explosion can be occurred by the rapid energy transfer in the high-temperature corium melt jet penetrating into water, which makes the dynamic load applying to the surrounding structure. Before a steam explosion, the corium melt jet breaks into small-sized particles, and the steam is generated continuously by the film boiling on the hot surface of the melt contacting with water. The premixing phase consisting of the corium melt, water, and steam can determine the intensity of the steam explosion. Unfortunately, the previous experimental studies on the FCI phenomena have carried out under a free fall of the corium melt jet in a gas phase before interacting with water. The previous TROI (Test for Real cOrium Interaction with water) test facility, that is a well-known test facility for the FCI phenomena in the world, has observed a steam explosion under a free fall of a corium melt jet in a gas phase before contacting a coolant since 2000, which is changing to simulate the FCI phenomena under a submerged reactor vessel. This study introduces the modified TROI test facility as shown in Fig. 1 and the considerations for the experiment with success. The previous TROI test facility, that has observed the molten Fuel-Coolant Interaction (FCI) with a free fall of the prototypic corium melt in a gas phase before contacting a coolant, was modified to simulate the FCI phenomena under a submerged reactor vessel for the assessment of the In-Vessel Retention (IVR) concept, i.e., without a free-fall distance of the corium melt before contacting water. The superheated prototypic corium melt created by the cold crucible melting method moves on a releasing valve newly installed just above the water level in the interaction vessel. The corium melt will stay on a releasing valve in less than 0.2 seconds to reduce heat loss for preventing the solidification, and

  9. Calibration of submerged multi-sluice gates

    Directory of Open Access Journals (Sweden)

    Mohamed F. Sauida

    2014-09-01

    The main objective of this work is to study experimentally and verify empirically the different parameters affecting the discharge through submerged multiple sluice gates (i.e., the expansion ratios, gates operational management, etc.. Using multiple regression analysis of the experimental results, a general equation for discharge coefficient is developed. The results show, that the increase in the expansion ratio and the asymmetric operation of gates, give higher values for the discharge coefficient. The obtained predictions of the discharge coefficient using the developed equations are compared to the experimental data. The present developed equations showed good consistency and high accuracy.

  10. Turbulência induzida por jatos bifásicos do tipo gás-líquido em tanques de aeração Turbulence induced by two-phase gas-liquid jets in aeration tanks

    Directory of Open Access Journals (Sweden)

    Iran Eduardo Lima Neto

    2010-03-01

    Full Text Available Jatos bifásicos do tipo gás-líquido são bastante usados nas engenharias sanitária e ambiental para fins de aeração artificial e mistura turbulenta. O presente trabalho investiga a turbulência gerada por meio desses jatos em um tanque de água, utilizando velocimetria por imagem de partículas. As condições experimentais incluíram jatos bifásicos com frações volumétricas de ar de até 70% e números de Reynolds variando entre 10.600 e 17.700. Os resultados dos ensaios indicaram que a fração volumétrica de ar afeta consideravelmente as propriedades turbulentas da fase líquida, enquanto o número de Reynolds apresenta efeito secundário. Correlações adimensionais foram então obtidas para expressar a energia cinética turbulenta e a taxa de dissipação de energia em função desses dois parâmetros. Finalmente, são apresentadas possíveis aplicações dos resultados deste trabalho.Two-phase gas-liquid jets are widely used in the sanitary and environmental engineering field for artificial aeration and turbulent mixing. The present work investigates the turbulence generated by these jets in a water tank, using particle image velocimetry. The experimental conditions included two-phase jets with gas volume fractions of up to 70% and Reynolds numbers ranging from 10,600 to 17,700. The results indicated that the gas volume fraction affects significantly the turbulent properties of the liquid phase, while the Reynolds number presents a secondary effect. Dimensionless correlations were then obtained to express the turbulent kinetic energy and dissipation rate as a function of these two parameters. Finally, possible applications of the results obtained in this work are presented.

  11. Development of a ROV Deployed Video Analysis Tool for Rapid Measurement of Submerged Oil/Gas Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Savas, Omer [Univ. of California, Berkeley, CA (United States)

    2017-04-03

    Expanded deep sea drilling around the globe makes it necessary to have readily available tools to quickly and accurately measure discharge rates from accidental submerged oil/gas leak jets for the first responders to deploy adequate resources for containment. We have developed and tested a field deployable video analysis software package which is able to provide in the field sufficiently accurate flow rate estimates for initial responders in accidental oil discharges in submarine operations. The essence of our approach is based on tracking coherent features at the interface in the near field of immiscible turbulent jets. The software package, UCB_Plume, is ready to be used by the first responders for field implementation. We have tested the tool on submerged water and oil jets which are made visible using fluorescent dyes. We have been able to estimate the discharge rate within 20% accuracy. A high end WINDOWS laptop computer is suggested as the operating platform and a USB connected high speed, high resolution monochrome camera as the imaging device are sufficient for acquiring flow images under continuous unidirectional illumination and running the software in the field. Results are obtained over a matter of minutes.

  12. Air entrainment by plunging water jets

    NARCIS (Netherlands)

    Van de Sande, E.

    1974-01-01

    Gas entrainment caused by the impact of liquid jets upon liquid pool surfaces is a subject which has received too little attention. This well-known phenomenon,which occurs In nature and in numerous industrial operations, has only recently received interest from scientific workers. The influence on

  13. Impacts of climate change on submerged and emergent wetland plants

    Science.gov (United States)

    Frederick T. Short; Sarian Kosten; Pamela A. Morgan; Sparkle L Malone; Gregg E. Moore

    2016-01-01

    Submerged and emergent wetland plant communities are evaluated for their response to global climate change (GCC), focusing on seagrasses, submerged freshwater plants, tidal marsh plants, freshwater marsh plants and mangroves. Similarities and differences are assessed in plant community responses to temperature increase, CO2increase, greater UV-B exposure, sea...

  14. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China).

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Shi, Qiao; Hao, Beibei; Liu, Han; Wang, Zhixiu; Liu, Guihua

    2015-05-13

    Stoichiometric homeostasis of element composition is one of the central concepts of ecological stoichiometry. We analyzed concentrations of macroelements (C, N, P, Ca, K, Mg, S), microelements (Cu, Fe, Mn, Mo, Ni, Zn) and beneficial elements (Na, Se, Si) in submerged macrophytes, water and sediments across 20 Yunnan plateau lakes. We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements. Canonical discriminant analyses successfully discriminated among trophic level groups and taxa groups. Of all the elements, C, N, P and S most effectively discriminated among trophic level groups across 20 lakes, revealing lake trophic level mostly affect tissue macroelement composition in submerged macrophytes; while Ca, K and Se most effectively discriminated among submerged macrophytes taxa groups, suggesting taxonomy mostly affect compositions of macroelements and beneficial elements in submerged macrophytes. In addition, the stoichiometric homeostatic coefficient of 1/HCa:C for all five taxa of submerged macrophytes were less than zero, suggesting submerged macrophytes in Yunnan plateau lakes have strong Ca stoichiometric homeostasis. Our findings, not only broaden the knowledge of multielement stoichiometric homeostasis, but also help to choose most appropriate lake management strategy.

  15. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions.

    Science.gov (United States)

    Oda, Ken; Kakizono, Dararat; Yamada, Osamu; Iefuji, Haruyuki; Akita, Osamu; Iwashita, Kazuhiro

    2006-05-01

    Filamentous fungi are widely used for the production of homologous and heterologous proteins. Recently, there has been increasing interest in Aspergillus oryzae because of its ability to produce heterologous proteins in solid-state culture. To provide an overview of protein secretion by A. oryzae in solid-state culture, we carried out a comparative proteome analysis of extracellular proteins in solid-state and submerged (liquid) cultures. Extracellular proteins prepared from both cultures sequentially from 0 to 40 h were subjected to two-dimensional electrophoresis, and protein spots at 40 h were identified by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. We also attempted to identify cell wall-bound proteins of the submerged culture. We analyzed 85 spots from the solid-state culture and 110 spots from the submerged culture. We identified a total of 29 proteins, which were classified into 4 groups. Group 1 consisted of extracellular proteins specifically produced in the solid-state growth condition, such as glucoamylase B and alanyl dipeptidyl peptidase. Group 2 consisted of extracellular proteins specifically produced in the submerged condition, such as glucoamylase A (GlaA) and xylanase G2 (XynG2). Group 3 consisted of proteins produced in both conditions, such as xylanase G1. Group 4 consisted of proteins that were secreted to the medium in the solid-state growth condition but trapped in the cell wall in the submerged condition, such as alpha-amylase (TAA) and beta-glucosidase (Bgl). A Northern analysis of seven genes from the four groups suggested that the secretion of TAA and Bgl was regulated by trapping these proteins in the cell wall in submerged culture and that secretion of GlaA and XynG2 was regulated at the posttranscriptional level in the solid-state culture.

  16. Sorghum bagasse as substrate for cellulase production by submerged and solid-state cultures of Trichoderma

    Directory of Open Access Journals (Sweden)

    Teodor Vintilă

    2014-05-01

    Full Text Available Sweet sorghum bagasse was used as cellulosic substrate in submerged and solid-state cultures of Trichoderma for cellulase production. Submerged liquid cultures (SLC were obtained by inoculation of Mandels media containing 1% cellulose with spores suspension of Trichoderma. Solid-state cultures (SSC were carried out in Erlenmayer flasks, where the substrate was distributed 1 cm layers. Comparing the yields of cellulases produced by Trichoderma strains in the systems applied in this study, using as substrate sorghum bagasse, we found the solid-state cultures as the system to produce the highest cellulase yields. The local strain of T. viride CMIT3.5. express high productivity in SSC system in laboratory conditions. The cellulolytic enzymes have maximum activity at 50oC, pH 4,8. The results recommend solid-state cultures of Trichoderma on sorghum bagasse as systems for producing cellulolytic products with higher activity than submerged cultures of Trichoderma on the same substrate.

  17. Mathematical investigation of tsunami-like long waves interaction with submerge dike of different thickness

    Science.gov (United States)

    Zhiltsov, Konstantin; Kostyushin, Kirill; Kagenov, Anuar; Tyryshkin, Ilya

    2017-11-01

    This paper presents a mathematical investigation of the interaction of a long tsunami-type wave with a submerge dike. The calculations were performed by using the freeware package OpenFOAM. Unsteady two-dimensional Navier-Stokes equations were used for mathematical modeling of incompressible two-phase medium. The Volume of Fluid (VOF) method is used to capture the free surface of a liquid. The effects caused by long wave of defined amplitude motion through a submerged dike of varying thickness were discussed in detail. Numerical results show that after wave passing through the barrier, multiple vortex structures were formed behind. Intensity of vortex depended on the size of the barrier. The effectiveness of the submerge barrier was estimated by evaluating the wave reflection and transmission coefficients using the energy integral method. Then, the curves of the dependences of the reflection and transmission coefficients were obtained for the interaction of waves with the dike. Finally, it was confirmed that the energy of the wave could be reduced by more than 50% when it passed through the barrier.

  18. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  19. Experimental study of elliptical jet from sub to supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations were carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.

  20. Association of Candidate Genes With Submergence Response in Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Xicheng Wang

    2017-05-01

    Full Text Available Perennial ryegrass is a popular cool-season grass species due to its high quality for forage and turf. The objective of this study was to identify associations of candidate genes with growth and physiological traits to submergence stress and recovery after de-submergence in a global collection of 94 perennial ryegrass accessions. Accessions varied largely in leaf color, plant height (HT, leaf fresh weight (LFW, leaf dry weight (LDW, and chlorophyll fluorescence (Fv/Fm at 7 days of submergence and in HT, LFW and LDW at 7 days of recovery in two experiments. Among 26 candidate genes tested by various models, single nucleotide polymorphisms (SNPs in 10 genes showed significant associations with traits including 16 associations for control, 10 for submergence, and 8 for recovery. Under submergence, Lp1-SST encoding sucrose:sucrose 1-fructosyltransferase and LpGA20ox encoding gibberellin 20-oxidase were associated with LFW and LDW, and LpACO1 encoding 1-aminocyclopropane-1-carboxylic acid oxidase was associated with LFW. Associations between Lp1-SST and HT, Lp6G-FFT encoding fructan:fructan 6G-fructosyltransferase and Fv/Fm, LpCAT encoding catalase and HT were also detected under submergence stress. Upon de-submergence, Lp1-SST, Lp6G-FFT, and LpPIP1 encoding plasma membrane intrinsic protein type 1 were associated with LFW or LDW, while LpCBF1b encoding C-repeat binding factor were associated with HT. Nine significant SNPs in Lp1-SST, Lp6G-FFT, LpCAT, and LpACO1 resulted in amino acid changes with five substitutions found in Lp1-SST under submergence or recovery. The results indicated that allelic diversity in genes involved in carbohydrate and antioxidant metabolism, ethylene and gibberellin biosynthesis, and transcript factor could contribute to growth variations in perennial ryegrass under submergence stress and recovery after de-submergence.

  1. Marangoni flows induced by atmospheric-pressure plasma jets

    International Nuclear Information System (INIS)

    Berendsen, C W J; Van Veldhuizen, E M; Kroesen, G M W; Darhuber, A A

    2015-01-01

    We studied the interaction of atmospheric-pressure plasma jets of Ar or air with liquid films of an aliphatic hydrocarbon on moving solid substrates. The hydrodynamic jet-liquid interaction induces a track of lower film thickness. The chemical plasma-surface interaction oxidizes the liquid, leading to a local increase of the surface tension and a self-organized redistribution of the liquid film. We developed a numerical model that qualitatively reproduces the formation, instability and coarsening of the flow patterns observed in the experiments. Monitoring the liquid flow has potential as an in-situ, spatially and temporally resolved, diagnostic tool for the plasma-liquid surface interaction. (paper)

  2. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate

    International Nuclear Information System (INIS)

    Lin Chang; Ho, T.-C.; Chang, S.-C.; Hsieh, S.-C.; Chang, K.-A.

    2005-01-01

    Experimental study was conducted on the vortex shedding process induced by the interaction between a solitary wave and a submerged vertical plate. Particle image velocimetry (PIV) was used for quantitative velocity measurement while a particle tracing technique was used for qualitative flow visualization. Vortices are generated at the tip of each side of the plate. The largest vortices at each side of the plate eventually grow to the size of the water depth. Although the fluid motion under the solitary wave is only translatory, vortices are shed in both the upstream and downstream directions due to the interaction of the generated vortices as well as the vortices with the plate and the bottom. The process can be divided into four phases: the formation of a separated shear layer, the generation and shedding of vortices, the formation of a vertical jet, and the impingement of the jet onto the free surface. Similarity velocity profiles were found both in the separated shear layer and in the vertical jet

  3. Improved, Low-Stress Economical Submerged Pipeline

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi

    2011-01-01

    A preliminary study has shown that the use of a high-strength composite fiber cloth material may greatly reduce fabrication and deployment costs of a subsea offshore pipeline. The problem is to develop an inexpensive submerged pipeline that can safely and economically transport large quantities of fresh water, oil, and natural gas underwater for long distances. Above-water pipelines are often not feasible due to safety, cost, and environmental problems, and present, fixed-wall, submerged pipelines are often very expensive. The solution is to have a submerged, compliant-walled tube that when filled, is lighter than the surrounding medium. Some examples include compliant tubes for transporting fresh water under the ocean, for transporting crude oil underneath salt or fresh water, and for transporting high-pressure natural gas from offshore to onshore. In each case, the fluid transported is lighter than its surrounding fluid, and thus the flexible tube will tend to float. The tube should be ballasted to the ocean floor so as to limit the motion of the tube in the horizontal and vertical directions. The tube should be placed below 100-m depth to minimize biofouling and turbulence from surface storms. The tube may also have periodic pumps to maintain flow without over-pressurizing, or it can have a single pump at the beginning. The tube may have periodic valves that allow sections of the tube to be repaired or maintained. Some examples of tube materials that may be particularly suited for these applications are non-porous composite tubes made of high-performance fibers such as Kevlar, Spectra, PBO, Aramid, carbon fibers, or high-strength glass. Above-ground pipes for transporting water, oil, and natural gas have typically been fabricated from fiber-reinforced plastic or from more costly high-strength steel. Also, previous suggested subsea pipeline designs have only included heavy fixed-wall pipes that can be very expensive initially, and can be difficult and expensive

  4. Study of two-phase underexpanded jets by gas jet

    International Nuclear Information System (INIS)

    Uchida, Mitsunori; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    When a heat exchange in a Fast Breeder Reactor cracks, a sodium-water reaction occurs. When a tube cracks, highly pressurized water or steam escapes into the surrounding liquid sodium and a sodium-water reaction occurs forming the disodium oxide. The disodium oxide caught in the steam jet strikes other tubes in the reactor. The struck disodium oxide can then cause these tubes to crack. The release of steam into the liquid sodium media is a two-phase flow involving underexpansion. In this paper qualitative measurement of the underexpanded gas jet which injected into water was carried our for the purpose of analyzing the behavior of the two-phase flow. (author)

  5. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  6. Workshop on ROVs and deep submergence

    Science.gov (United States)

    The deep-submergence community has an opportunity on March 6 to participate in a unique teleconferencing demonstration of a state-of-the-art, remotely operated underwater research vehicle known as the Jason-Medea System. Jason-Medea has been developed over the past decade by scientists, engineers, and technicians at the Deep Submergence Laboratory at Woods Hole Oceanographic Institution. The U.S. Navy, the Office of the Chief of Naval Research, and the National Science Foundation are sponsoring the workshop to explore the roles that modern computational, communications, and robotics technologies can play in deep-sea oceanographic research.Through the cooperation of Electronic Data Systems, Inc., the Jason Foundation, and Turner Broadcasting System, Inc., 2-1/2 hours of air time will be available from 3:00 to 5:30 PM EST on March 6. Twenty-seven satellite downlink sites will link one operating research vessel and the land-based operation with workshop participants in the United States, Canada, the United Kingdom, and Bermuda. The research ship Laney Chouest will be in the midst of a 3-week educational/research program in the Sea of Cortez, between Baja California and mainland Mexico. This effort is focused on active hydrothermal vents driven by heat flow from the volcanically active East Pacific Rise, which underlies the sediment-covered Guaymas Basin. The project combines into a single-operation, newly-developed robotic systems, state-of-the-art mapping and sampling tools, fiber-optic data transmission from the seafloor, instantaneous satellite communication from ship to shore, and a sophisticated array of computational and telecommunications networks. During the workshop, land-based scientists will observe and participate directly with their seagoing colleagues as they conduct seafloor research.

  7. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo

    2014-08-11

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  8. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  9. [Algal control ability of allelopathically active submerged macrophytes: a review].

    Science.gov (United States)

    Xiao, Xi; Lou, Li-ping; Li, Hua; Chen, Ying-xu

    2009-03-01

    The inhibitory effect of allelochemicals released by submerged macrophytes on phytoplankton is considered as one of the mechanisms that contribute to the stabilization of clear-water status in shallow lakes. This paper reviewed the research progress in the allelopathy of submerged macrophytes on algae from the aspects of the occurrence frequency and coverage of allelopathically active submerged macrophytes in lakes, and the kinds and allelopathical effects of the allelochemicals released from the macrophytes. The previous researches indicated that allelopathically active submerged macrophyte species such as Myriophyllum, Ceratophyllum, and Elodea were efficient to control phytoplankton, especially when their biomass was high enough, and the dominant algae were sensitive species. The allelochemicals such as hydroxybenzene released by the submerged macrophytes could inhibit the growth of algae. Different phytoplankton species exhibited different sensitivity against allelochemicals, e.g., cyanobacteria and diatom were more sensitive than green algae, while epiphytic species were less sensitive than phytoplankton. Environmental factors such as light, temperature, and nutrients could significantly affect the allelopathical effect of submerged macrophytes. The research of the allelopathy of submerged macrophytes is still at its beginning, and further researches are needed on the effects of environmental factors on the allelopathy, extraction and identification of allelochemicals, selective algal control mechanisms, and metabolism of the allelochmicals.

  10. Jet Crackle

    Science.gov (United States)

    2015-06-23

    crackle is correlated to signals with intermittent periods of steepened shock-like waves followed by weaker, longer, rounded rarefaction regions, but to...turbulence is concentrated in a weakly curved (for a typical round jet) shear layer between the high-speed potential core flow and the surrounding co-flow...decreases into the acoustic field. The effect of varying dc between −0.1 and −0.003δm(t)/∆U causes the Nδm/Lx curves to shift downward as fewer waves

  11. Jet stability in the lithium fall reactor

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    A preliminary analysis has been made of the various hydrodynamic aspects involved in the stability of a liquid-lithium jet in a laser-fusion reactor, which comprises a part of LLL's laser fusion power-generation concept. Various physical factors that may affect the jet breakup are delineated, and some approximate calculations are performed to determine their relative influences. Areas of uncertainty are pointed out, along with plans for experimental verification or further theoretical analysis

  12. Pinching Solutions of Slender Cylindrical Jets

    Science.gov (United States)

    1993-06-01

    NASA Langley Research Center, Hampton, VA 23681.2This research was supported in part by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDE...concentrate on inviscid irrotational flows of liquid jets. A review article has been written by Bogy [2]. Of relevance is also the work of Chandrasekhar...equations become elliptic and allow the possibility of admissible pinching solutions described in this article . It is interesting to find that for jets

  13. Vibrational analysis of submerged cylindrical shells based on elastic foundations

    International Nuclear Information System (INIS)

    Shah, A.G.; Naeem, M.N.

    2014-01-01

    In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)

  14. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    Directory of Open Access Journals (Sweden)

    Xiliang Zhang

    2013-09-01

    Full Text Available A life-cycle analysis (LCA of greenhouse gas (GHG emissions and energy use was performed to study bio-jet fuel (BJF production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM. Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP from the residual biomass after oil extraction, including fugitive methane (CH4 emissions during the production of biogas and nitrous oxide (N2O emissions during the use of digestate (solid residue from anaerobic digestion as agricultural fertilizer. Analyses were performed based on examination of process parameters, mass balance conditions, material requirement, energy consumptions and the realities of energy supply and transport in China (i.e., electricity generation and heat supply primarily based on coal, multiple transport modes. Our LCA result of the BJF pathway showed that, compared with the traditional petrochemical pathway, this new pathway will increase the overall fossil energy use and carbon emission by 39% and 70%, respectively, while decrease petroleum consumption by about 84%, based on the same units of energy service. Moreover, the energy conservation and emission reduction benefit of this new pathway may be accomplished by two sets of approaches: wider adoption of low-carbon process fuels and optimization of algae cultivation and harvest, and oil extraction processes.

  15. Study on the Impact Characteristics of Coherent Supersonic Jet and Conventional Supersonic Jet in EAF Steelmaking Process

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Cheng, Ting; Dong, Kai; Yang, Lingzhi; Wu, Xuetao

    2018-02-01

    Supersonic oxygen-supplying technologies, including the coherent supersonic jet and the conventional supersonic jet, are now widely applied in electric arc furnace steelmaking processes to increase the bath stirring, reaction rates, and energy efficiency. However, there has been limited research on the impact characteristics of the two supersonic jets. In the present study, by integrating theoretical modeling and numerical simulations, a hybrid model was developed and modified to calculate the penetration depth and impact zone volume of the coherent and conventional supersonic jets. The computational fluid dynamics results were validated against water model experiments. The results show that the lance height has significant influence on the jet penetration depth and jet impact zone volume. The penetration depth decreases with increasing lance height, whereas the jet impact zone volume initially increases and then decreases with increasing lance height. In addition, the penetration depth and impact zone volume of the coherent supersonic jet are larger than those of the conventional supersonic jet at the same lance height, which illustrates the advantages of the coherent supersonic jet in delivering great amounts of oxygen to liquid melt with a better stirring effect compared to the conventional supersonic jet. A newly defined parameter, the k value, reflects the velocity attenuation and the potential core length of the main supersonic jet. Finally, a hybrid model and its modifications can well predict the penetration depth and impact zone volume of the coherent and conventional supersonic jets.

  16. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  17. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  18. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  19. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    International Nuclear Information System (INIS)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-01-01

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report. The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments

  20. Marine algal flora of submerged Angria Bank (Arabian Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Reddy, C.R.K.; Ambiye, V.

    Submerged Angria Bank was surveyed for the deep water marine algal flora. About 57 species were reported from this bank for the first time. Rhodophyta dominated (30 species) followed by Chlorophyta (18 species) and Phaeophyta (9 species). A few...

  1. Submergence tolerance in Hordeum marinum

    DEFF Research Database (Denmark)

    Pedersen, Ole; Malik, Al I.; Colmer, Timothy D.

    2010-01-01

    Floodwaters differ markedly in dissolved CO(2), yet the effects of CO(2) on submergence responses of terrestrial plants have rarely been examined. The influence of dissolved CO(2) on underwater photosynthesis and growth was evaluated for three accessions of the wetland plant Hordeum marinum Huds....... All three accessions tolerated complete submergence, but only when in CO(2) enriched floodwater. Plants submerged for 7 days in water at air equilibrium (18 mM CO(2)) suffered loss of biomass, whereas those with 200 mM CO(2) continued to grow. Higher underwater net photosynthesis at 200 mM CO(2......) increased by 2.7- to 3.2-fold sugar concentrations in roots of submerged plants, compared with at air equilibrium CO(2). Leaf gas films enhancing gas exchange with floodwater, lack of a shoot elongation response conserving tissue sugars and high tissue porosity (24-31% in roots) facilitating internal O(2...

  2. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    Science.gov (United States)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  3. Durability performance of submerged concrete structures - phase 2.

    Science.gov (United States)

    2015-09-01

    This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...

  4. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    Energy Technology Data Exchange (ETDEWEB)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  5. Unusual energy properties of leaky backward Lamb waves in a submerged plate.

    Science.gov (United States)

    Nedospasov, I A; Mozhaev, V G; Kuznetsova, I E

    2017-05-01

    It is found that leaky backward Lamb waves, i.e. waves with negative energy-flux velocity, propagating in a plate submerged in a liquid possess extraordinary energy properties distinguishing them from any other type of waves in isotropic media. Namely, the total time-averaged energy flux along the waveguide axis is equal to zero for these waves due to opposite directions of the longitudinal energy fluxes in the adjacent media. This property gives rise to the fundamental question of how to define and calculate correctly the energy velocity in such an unusual case. The procedure of calculation based on incomplete integration of the energy flux density over the plate thickness alone is applied. The derivative of the angular frequency with respect to the wave vector, usually referred to as the group velocity, happens to be close to the energy velocity defined by this mean in that part of the frequency range where the backward mode exists in the free plate. The existence region of the backward mode is formally increased for the submerged plate in comparison to the free plate as a result of the liquid-induced hybridization of propagating and nonpropagating (evanescent) Lamb modes. It is shown that the Rayleigh's principle (i.e. equipartition of total time-averaged kinetic and potential energies for time-harmonic acoustic fields) is violated due to the leakage of Lamb waves, in spite of considering nondissipative media. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress

    Directory of Open Access Journals (Sweden)

    Malay Kumar ADAK

    2011-06-01

    Full Text Available The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation. It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield. The detrimental effects of the complete submergence were recorded in generation of sucrose, starch, sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e. non-submerged condition. The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity. Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity. However, under normal or control condition, there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity. Still, photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield. Finally, plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues. It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles, in this case as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.

  7. Application of submerged induction hardening; Ekichu koshuha yakiire no jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nishimori, Y; Nagai, Y; Amii, Y [Mazda Motor Corp., Hiroshima (Japan); Tanaka, Y [Netsuren Co. Ltd., Tokyo (Japan); Mizuma, T [Toyo Advanced Technologies Co. Ltd., Hiroshima (Japan)

    1997-10-01

    As a cost-cutting measure, the linerless diesel engine was adopted by applying submerged induction hardening process which can harden partial inner surface of cylinder block bore. In applying this process, (1) development of induction coil which can form any shape of quenched pattern and (2) the development of machining technology which can hone precisely the distorted bore after quenching, were important. With these improvements, submerged Induction hardening was made practical. 1 ref., 11 figs.

  8. Effective mass and damping of submerged structures

    International Nuclear Information System (INIS)

    Dong, R.G.

    1979-01-01

    A number of structures important for safety in nuclear power plants are submerged in water. These include spent fuel storage racks, main pressure relief valve lines, and internal structures in the reactor vessel. Dynamic analyses of such structures must include the force and damping effects of water. A wide variety of modeling assumptions are being used in design analyses, and currently there are no uniform positions by which to judge the adequacy of the assumptions . A study was caried out to establish a technical basis for evaluating the assymptions and to recommend suitable methods to describe the effects of the water. The results of the study were based on information published in the literature or conveyed by industrial firms. A survey of 32 firms and 49 technical references was carried out. Heavy emphasis was placed on validating the results with available experimental data. The information collected apply generally to idealized structures such as single isolated members, arrays of members and coaxial cylinders. The results of the study are categorized with respect to such idealized structures, and the applicability to actual reactor structures was discussed through observations and recommendations. (orig.)

  9. Effective mass and damping of submerged structures

    International Nuclear Information System (INIS)

    Dong, R.G.

    1978-01-01

    Various structures important for safety in nuclear power plants must remain functioning in the event of an earthquake or other dynamic phenomenon. Some of these important structures, such as spent-fuel storage racks, main pressure-relief valve lines, and internal structures in the reactor vessel, are submerged in water. Dynamic analysis must include the force and damping effects of water. This report provides a technical basis for evaluating the wide variety of modeling assumptions currently used in design analysis. Current design analysis techniques and information in the literature form the basis of our conclusions and recommendations. We surveyed 32 industrial firms and reviewed 49 technical references. We compare various theories with published experimental results wherever possible. Our findings generally pertain to idealized structures, such as single isolated members, arrays of members, and coaxial cylinders. We relate these findings to the actual reactor structures through observations and recommendations. Whenever possible we recommend a definite way to evaluate the effect of hydrodynamic forces on these structures

  10. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  11. Challenges for mass production of nematodes in submerged culture.

    Science.gov (United States)

    de la Torre, Mayra

    2003-08-01

    Nematodes of Steinernema and Heterorhabditis genera are used as agents in insect biocontrol programs. They are associated with specific bacteria which are also involved in the mechanism of pathogenicity and which are consumed by nematodes as living food. S. feltiae has various developmental stages in its life cycle, including four juvenile stages, adults and the free living form. During mating, males coil themselves around the female, which is around 1 cm long. Successful commercialization of nematode-bacteria biocontrol products depends on the ability to produce sufficient quantities of these products at competitive prices for a full pest control program. This could be feasible if high cell density submerged cultures are designed and implemented; however, major problems related to nematodes mass production in a bioreactor remain unsolved due to the lack of knowledge about the physiological aspects of the nematode, bacteria and nematode-bacteria association, interaction between the three phases present in the bioreactor (liquid, gas, nematodes-bacteria), possibility of mating under hydrodynamic stress conditions, etc. We have found that the two most important engineering aspects to take into account the mass propagation of nematodes are oxygen transfer rate and hydrodynamics to allow mating and to avoid mechanical damage of juveniles in stage 2. This article focuses on several aspects related to the fermentation system such as kinetics of growth, shear stress, hydrodynamics fields in the bioreactor and oxygen demand. Also, results published by other groups, together with those of our own, will be discussed in relation to the main challenges found during the fermentation process.

  12. Jet Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; O'Hara, G.W.; Pollard, I.E.

    1988-07-01

    The paper presents the Jet Joint Undertaking annual report 1987. A description is given of the JET and Euratom and International Fusion Programmes. The technical status of JET is outlined, including the development and improvements made to the system in 1987. The results of JET Operation in 1987 are described within the areas of: density effects, temperature improvements, energy confinement studies and other material effects. The contents also contain a summary of the future programme of JET. (U.K.)

  13. Jet energy scale determination in the D0 experiment

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2014-01-01

    Roč. 763, Nov (2014), s. 442-475 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LG12006 Institutional support: RVO:68378271 Keywords : Batavia TEVATRON Coll * liquid argon * uranium * jet * flavor * dijet * gluon * jet * DZERO * anti-p p * interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.216, year: 2014

  14. A Study of CO2 Absorption Using Jet Bubble Column

    Directory of Open Access Journals (Sweden)

    Setiadi Setiadi

    2010-10-01

    Full Text Available The phenomenon of plunging jet gas-liquid contact occurs quite often in nature, it's momentum carries small air bubbles with it into the reactor medium. The momentum of the liquid stream can be sufficient to carry small bubbles completely to the bottom of the vessel. A stream of liquid falling toward a level surface of that liquid will pull the surrounding air along with it. It will indent the surface of the liquid to form a trumpet-like shape. If the velocity of the stream is high enough, air bubbles will be pulled down, i.e. entrained into the liquid. This happens for two main reasons: air that is trapped between the edge of the falling stream and the trumpet-shaped surface profile and is carried below the surface. This study investigates the potential of a vertical liquid plunging jet for a pollutant contained gas absorption technique. The absorber consists of liquid jet and gas bubble dispersed phase. The effects of operating variables such as liquid flowrate, nozzle diameter, separator pressure, etc. on gas entrainment and holdup were investigated. The mass transfer of the system is governed by the hydrodynamics of the system. Therefore a clear and precise understanding of the above is necessary : to characterize liquid and gas flow within the system, 2. Variation in velocity of the jet with the use of different nozzle diameters and flow rates, 3. Relationship between the liquid and entrained airflow rate, 4. Gas entrainment rate and gas void fraction.

  15. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review).

    Science.gov (United States)

    Elisashvili, Vladimir

    2012-01-01

    Medicinal mushrooms belonging to higher Basidiomycetes are an immensely rich yet largely untapped resource of useful, easily accessible, natural compounds with various biological activities that may promote human well-being. The medicinal properties are found in various cellular components and secondary metabolites (polysaccharides, proteins and their complexes, phenolic compounds, polyketides, triterpenoids, steroids, alkaloids, nucleotides, etc.), which have been isolated and identified from the fruiting bodies, culture mycelium, and culture broth of mushrooms. Some of these compounds have cholesterol-lowering, anti-diabetic, antioxidant, antitumor, immunomodulating, antimicrobial, and antiviral activities ready for industrial trials and further commercialization, while others are in various stages of development. Recently, the submerged cultivation of medicinal mushrooms has received a great deal of attention as a promising and reproducible alternative for the efficient production of mushroom mycelium and metabolites. Submerged cultivation of mushrooms has significant industrial potential, but its success on a commercial scale depends on increasing product yields and development of novel production systems that address the problems associated with this technique of mushroom cultivation. In spite of many researchers' efforts for the production of bioactive metabolites by mushrooms, the physiological and engineering aspects of submerged cultures are still far from being thoroughly studied. The vast majority of studies have focused on polysaccharide and ganoderic acid production in submerged cultivation of medicinal mushrooms, and very little has been written so far on the antioxidant and hemagglutinating activity of submerged mushroom cultures. The purpose of this review is to provide an update of the present state of the art and future prospects of submerged cultivation of medicinal mushrooms to produce mycelium and bioactive metabolites, and to make a

  16. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    Science.gov (United States)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  17. Vector boson tagged jets and jet substructure

    Directory of Open Access Journals (Sweden)

    Vitev Ivan

    2018-01-01

    Full Text Available In these proceedings, we report on recent results related to vector boson-tagged jet production in heavy ion collisions and the related modification of jet substructure, such as jet shapes and jet momentum sharing distributions. Z0-tagging and γ-tagging of jets provides new opportunities to study parton shower formation and propagation in the quark-gluon plasma and has been argued to provide tight constrains on the energy loss of reconstructed jets. We present theoretical predictions for isolated photon-tagged and electroweak boson-tagged jet production in Pb+Pb collisions at √sNN = 5.02 TeV at the LHC, addressing the modification of their transverse momentum and transverse momentum imbalance distributions. Comparison to recent ATLAS and CMS experimental measurements is performed that can shed light on the medium-induced radiative corrections and energy dissipation due to collisional processes of predominantly quark-initiated jets. The modification of parton splitting functions in the QGP further implies that the substructure of jets in heavy ion collisions may differ significantly from the corresponding substructure in proton-proton collisions. Two such observables and the implication of tagging on their evaluation is also discussed.

  18. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  19. Demonstration and Field Evaluation of Streambank Stabilization with Submerged Vanes

    Science.gov (United States)

    Whitman, H.; Hoopes, J.; Poggi, D.; Fitzpatrick, F.; Walz, K.; ,

    2001-01-01

    The effectiveness of submerged vanes for reducing bank erosion and improving aquatic habitat is being evaluated at a site on North Fish Creek, a Lake Superior tributary. Increased runoff from agricultural areas with clayey soils has increased flood magnitudes and the erosion potential/transport capacity of the stream. Most of the creek's sediment load originates from the erosion of 17 large bluffs. This creek contains important recreational fisheries that are potentially limited by the loss of aquatic habitat from deposition of sediment on spawning beds. Submerged vanes are a cost effective and environmentally less intrusive alternative to traditional structural stabilization measures. Submerged vanes protrude from a channel bed, are oriented at an angle to the local velocity, and are distributed along a portion of channel. They induce a transverse force and torque on the flow along with longitudinal vortexes that alter the cross sectional shape and alignment of the channel. Submerged vanes were installed at a bluff/bend site in summer and fall 2000. The number, size, and layout of the vanes were based upon the channel morphology under estimated bankfull conditions. The effectiveness of the vanes will be evaluated by comparing surveys of the bluff face, streamflow, and channel conditions for several years after installation of the submerged vanes with surveys before and immediately after their installation.

  20. Interaction of Acoustic Waves with a Cryogenic Nitrogen Jet at Sub- and Supercritical Pressures

    National Research Council Canada - National Science Library

    Chehroudi, B

    2001-01-01

    To better understand the nature of the interaction between acoustic waves and liquid fuel jets in rocket engines, cryogenic liquid nitrogen is injected into a room temperature high-pressure chamber...

  1. Understanding jet noise.

    Science.gov (United States)

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  2. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    CERN Document Server

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  3. A new flow focusing technique to produce very thin jets

    International Nuclear Information System (INIS)

    Acero, A J; Rebollo-Muñoz, N; Montanero, J M; Gañán-Calvo, A M; Vega, E J

    2013-01-01

    A new technique is proposed in this paper to produce jets, droplets, and emulsions with sizes ranging from tens of microns down to the submicrometer scale. Liquid is injected at a constant flow rate through a hypodermic needle to form a film over the needle's outer surface. This film flows toward the needle tip until a liquid ligament is steadily ejected. Both the film motion and the liquid ejection are driven by the viscous and pressure forces exerted by a coflowing fluid stream. If this stream is a high-speed gas current, the outcome is a capillary jet which breaks up into droplets due to the Rayleigh instability. Micrometer emulsions are also produced by this instability mechanism when the injected liquid is focused by a viscous liquid stream. The minimum flow rates reached with the proposed technique are two orders of magnitude lower than those of the standard flow focusing configuration. This sharp reduction of the minimum flow rate allows one to form steady jets with radii down to the submicrometer scale. The stability of this new configuration is analyzed experimentally for both gas–liquid and liquid–liquid systems. In most of the cases, the loss of stability must be attributed to the liquid source because the critical Weber (capillary) number for the gas–liquid (liquid–liquid) case was significantly greater than the value corresponding to the convective/absolute instability transition in the jet. (paper)

  4. Detritiation studies for JET decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N.; Bell, A.C.; Williams, J.; Brennan, P.D. [EURATOM/UKAEA Fussion Association, Culham Science Centre, Abingdon (United Kingdom)

    2007-07-01

    JET is the world largest tokamak and has the capacity of operating with a tritium plasma. Three experimental campaigns, the Preliminary Tritium Experiment (0.1g T{sub 2}) in 1991, the Trace Tritium Experiment (5g T{sub 2}) in 2005, and the large experiment, the Deuterium-Tritium Experiment (DTE1) (100g T{sub 2}) in 1997, were carried out at JET with tritium plasmas. In DTE1 about 35 grams of tritium were fed directly into the vacuum vessel, with about 30% of this tritium being retained inside the vessel. In several years time JET will cease experimental operations and enter a decommissioning phase. In preparation for this the United Kingdom Atomic Energy Authority, the JET Operator, has been carrying out studies of various detritiation techniques. The materials which have been the subject of these studies include solid materials, such as various metals (Inconel 600 and 625, stainless steel 316L, beryllium, 'oxygen-free' copper, aluminium bronze), carbon fibre composite tiles, 'carbon' flakes and dust present in the vacuum vessel and also soft housekeeping materials. Liquid materials include organic liquids, such as vacuum oils and scintillation cocktails, and water. Detritiation of gas streams was also investigated. The purpose of the studies was to select and experimentally prove primary and auxiliary technologies for in-situ detritiation of in-vessel components and ex-situ detritiation of components removed from the vessel. The targets of ex-vessel detritiation were a reduction of the tritium inventory in and the rate of tritium out-gassing from the materials, and conversion, if possible, of intermediate level waste to low level waste and a reduction in volume of waste for disposal. The results of experimental trials and their potential application are presented. (orig.)

  5. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer

    International Nuclear Information System (INIS)

    Han, Chang-Liang; Ren, Jing-Jie; Wang, Yan-Qing; Dong, Wen-Ping; Bi, Ming-Shu

    2017-01-01

    Highlights: • Thermal performance analysis of submerged combustion vaporizer (SCV) was performed experimentally. • Visualization study of shell-side flow field for SCV was carried out. • The effects of various operational parameters on the overall system performance were discussed. • Two new non-dimensional Nusselt correlations were proposed to predict the heat transfer performance of SCV. - Abstract: Submerged combustion vaporizer (SCV) occupies a decisive position in liquefied natural gas (LNG) industrial chain. In this paper, a visual experimental apparatus was established to have a comprehensive knowledge about fluid flow and heat transfer performance of SCV. Trans-critical liquid nitrogen (LN_2) was selected as alternative fluid to substitute LNG because of safety reason. Some unique experimental phenomena inside the SCV (local water bath freezes on the external surface of tube bundle) were revealed. Meanwhile the influences of static water height, superficial flue gas velocity, heat load, tube-side inlet pressure and tube-side mass flux on the system performance were systematically discussed. Finally, based on the obtained experimental results, two new empirical Nusselt number correlations were regressed to predict the shell-side and tube-side heat transfer characteristics of SCV. The maximum errors between predicted results and experimental data were respectively ±25% and ±20%. The outcomes of this paper were critical to the optimum design and economical operation of SCV.

  6. Solving underwater crimes: development of latent prints made on submerged objects.

    Science.gov (United States)

    Castelló, Ana; Francés, Francesc; Verdú, Fernando

    2013-09-01

    Underwater crime scenes always present a challenge for forensic researchers, as the destructive effect of water considerably complicates the chances of recovering material of evidential value. The aim of this study is to tackle the problem of developing marks that have been left on submerged objects. Fingermark deposition was randomly made on two surfaces - glass and plastic whilst the material was submerged under tap water and then left for one to fifteen days before drying and development. For their later development, various reagents - Black Powder, Silver Metallic Powder, Fluorescent Powder, Sudan Black (powder and solution) and Small Particle Reagent - were used and the effectiveness of each of them on this particular type of evidence was then evaluated. The results show the possibility of obtaining good quality developed marks, even under such adverse circumstances. Further and wider research should, therefore, be undertaken in which other variables are introduced such as different substrates, other types of liquids, and environmental or time factors. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Jet Vertex Charge Reconstruction

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.

  8. Formation of free round jets with long laminar regions at large Reynolds numbers

    Science.gov (United States)

    Zayko, Julia; Teplovodskii, Sergey; Chicherina, Anastasia; Vedeneev, Vasily; Reshmin, Alexander

    2018-04-01

    The paper describes a new, simple method for the formation of free round jets with long laminar regions by a jet-forming device of ˜1.5 jet diameters in size. Submerged jets of 0.12 m diameter at Reynolds numbers of 2000-12 560 are experimentally studied. It is shown that for the optimal regime, the laminar region length reaches 5.5 diameters for Reynolds number ˜10 000 which is not achievable for other methods of laminar jet formation. To explain the existence of the optimal regime, a steady flow calculation in the forming unit and a stability analysis of outcoming jet velocity profiles are conducted. The shortening of the laminar regions, compared with the optimal regime, is explained by the higher incoming turbulence level for lower velocities and by the increase of perturbation growth rates for larger velocities. The initial laminar regions of free jets can be used for organising air curtains for the protection of objects in medicine and technologies by creating the air field with desired properties not mixed with ambient air. Free jets with long laminar regions can also be used for detailed studies of perturbation growth and transition to turbulence in round jets.

  9. Effect of pulsation on the near flow field of a submerged water jet

    Indian Academy of Sciences (India)

    HAREKRISHNA YADAV

    2018-03-22

    Mar 22, 2018 ... Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai ... combustion engines, industrial type burners, drying of food, ... visualized the fluid flow characteristic using a smoke-wire.

  10. Experimental study of flat plate cooling using draft induced by a submerged radial jet

    Directory of Open Access Journals (Sweden)

    Argemiro Palencia-Diaz

    2017-01-01

    Full Text Available Una investigación experimental se ha llevado a cabo para evaluar la transferencia de calor en una configuración modificada de un chorro radial sumergido, por medio del cual se puede extraer el fluido directamente debajo de la boquilla, en busca de una mejora en la velocidad de transferencia de calor. Los experimentos se llevaron a cabo para las siguientes gamas de parámetros que rigen el fenómeno: boquilla de 16 mm de diámetro, distancia entre boquilla y placa entre 10 mm a 20 mm, número de Reynolds que oscila entre 10.000 y 20.000, y calor de 10,2 – 13,6 kW/m2. La transferencia de calor se estima a través de la distribución de temperatura obtenida por medio de un dispositivo de adquisición de datos y un apropiado post-procesamiento, lo que hace posible determinar el coeficiente de transferencia de calor y el número de Nusselt para las diferentes condiciones en estudio. El uso de la extracción de fluido a través de tiro inducido genera un aumento significativo en la transferencia de calor en el área debajo de la boquilla, obteniendo valores desde 290 hasta 1500 W/m2.°C.

  11. Calculation of fluid circulation patterns in the vicinity of submerged jets using ORSMAC

    International Nuclear Information System (INIS)

    Park, J.E.; Cross, K.E.

    1983-12-01

    As the world demand for electricity is met by large coal- or nuclear-fueled central generating stations, the effluent streams from these plants will have an increasingly important impact on the local environment. The Nuclear Regulatory Commission has a responsibility to assess the impact of proposed and operating Nuclear power plants. To support this NRC mission, a numerical algorithm and associated computer program have been developed to predict the temperatures occurring in the immediate vicinity (the near field) of a hot water discharge from a power plant. The algorithm is a natural extension of the classic Marker-and-Cell (MAC) technique developed by F. H. Harlow at the Los Alamos Scientific Laboratory. ORSMAC (Oak Ridge Simplified Marker and Cell), adds the logic for simple turbulence modeling, energy conservation and buoyancy effects to the MAC model. Modern numerical techniques have been used wherever practical. In this report, the MAC and SMAC (Simplified MAC) algorithms are reviewed, and the ORSMAC algorithm is described. The finite difference analogs are given and discussed. Solutions for several sample problems are presented which illustrate the features of the ORSMAC algorithm. A complete FORTRAN listing is included with input and sample output. ReCommendations for further testing are included

  12. Delving into QCD jets

    International Nuclear Information System (INIS)

    Konishi, K.

    1980-01-01

    The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)

  13. Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii

    NARCIS (Netherlands)

    Vanderstukken, M.; Declerck, S.A.J.; Decaestecker, E.; Muylaert, K.

    2014-01-01

    Keywords: allelochemicals; chemical ecology; competition; nutrient limitation; shallow lakes Summary 1.It is well known that submerged macrophytes can suppress phytoplankton blooms in lakes and thus promote water quality and biodiversity. One of the possible mechanisms through which submerged

  14. CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM

    International Nuclear Information System (INIS)

    GALLARDO, J.; KAHN, S.; PALMER, R.B.; THIEBERGER, P.; WEGGEL, R.J.; MCDONALD, K.

    2001-01-01

    A mercury jet is being considered as the production target for a muon storage ring facility to produce an intense neutrino beam. A 20 T solenoid magnet that captures pions for muon production surrounds the mercury target. As the liquid metal jet enters or exits the field eddy currents are induced. We calculate the effects that a liquid metal jet experiences in entering and exiting the magnetic field for the magnetic configuration considered in the Neutrino Factory Feasibility Study II

  15. Through-flow of water in leaves of a submerged plant is influenced by the apical opening

    DEFF Research Database (Denmark)

    Pedersen, Ole; Jørgensen, Lise Bolt; Sand-Jensen, Kaj

    1997-01-01

    Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity......Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity...

  16. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  17. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods

    DEFF Research Database (Denmark)

    Herzog, Max; Konnerup, Dennis; Pedersen, Ole

    2018-01-01

    Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged...

  18. Study of the transfer efficiency of alloyed elements in fluxes during submerged arc welding process

    International Nuclear Information System (INIS)

    Quintana, R.; Cruz, A.; Perdomo, L.; Castellanos, G.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    It is assessed the transfer of chromium, manganese and carbon of different agglomerate fluxes constituted by 18.75% of alloyed load and 81.25% of matrix during the SAW process (submerge Arc Welding). A vitreous basic matrix corresponding to the system SiO 2 -Al 2 O 3 -(CaO+MgO) was obtained from minerals by fusion in the electric arc furnace. The current proportions of the alloyed load components (FeCr, FeMn and graphite) were carried out using a McLean Anderson experiment design. The corresponding fluxes to each experimental point were obtained by granulation with liquid glass;afterwards, their transfer coefficient for a given regimen of welding was determined. The transfer coefficients were calculated by means of a formula based on the laws of mass conservation and of distribution. (Author) 17 refs

  19. Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool

    International Nuclear Information System (INIS)

    Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.

    1995-01-01

    The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity

  20. Review of parameters influencing the structural response of a submerged body under cavitation conditions

    International Nuclear Information System (INIS)

    Escaler, X; De La Torre, O; Farhat, M

    2015-01-01

    Submerged structures that operate under extreme flows are prone to suffer large scale cavitation attached to their surfaces. Under such conditions the added mass effects differ from the expected ones in pure liquids. Moreover, the existence of small gaps between the structure and surrounding bodies filled with fluid also influence the dynamic response. A series of experiments and numerical simulations have been carried out with a truncated NACA0009 hydrofoil mounted as a cantilever beam at the LMH-EPFL cavitation tunnel. The three first modes of vibration have been determined and analysed under various hydrodynamic conditions ranging from air and still water to partial cavitation and supercavitation. A remote nonintrusive excitation system with piezoelectric patches has been used for the experiments. The effects of the cavity properties and the lateral gap size on the natural frequencies and mode shapes have been determined. As a result, the significance of several parameters in the design of such structures is discussed. (paper)

  1. Review of parameters influencing the structural response of a submerged body under cavitation conditions

    Science.gov (United States)

    Escaler, X.; De La Torre, O.; Farhat, M.

    2015-12-01

    Submerged structures that operate under extreme flows are prone to suffer large scale cavitation attached to their surfaces. Under such conditions the added mass effects differ from the expected ones in pure liquids. Moreover, the existence of small gaps between the structure and surrounding bodies filled with fluid also influence the dynamic response. A series of experiments and numerical simulations have been carried out with a truncated NACA0009 hydrofoil mounted as a cantilever beam at the LMH-EPFL cavitation tunnel. The three first modes of vibration have been determined and analysed under various hydrodynamic conditions ranging from air and still water to partial cavitation and supercavitation. A remote nonintrusive excitation system with piezoelectric patches has been used for the experiments. The effects of the cavity properties and the lateral gap size on the natural frequencies and mode shapes have been determined. As a result, the significance of several parameters in the design of such structures is discussed.

  2. Unsteady behavior of a confined jet in a cavity at moderate Reynolds numbers

    International Nuclear Information System (INIS)

    Bouchet, G; Climent, E

    2012-01-01

    Self-sustained oscillations in the sinuous mode are observed when a jet impinges on a rigid surface. Confined jet instability is experimentally and numerically investigated here at moderate Reynolds numbers. When the Reynolds number is varied, the dynamic response of the jet is unusual in comparison with that of similar configurations (hole-tone, jet edge, etc). Modal transitions are clearly detected when the Reynolds number is varied. However, these transitions result in a reduction of the frequency, which means that the wavelength grows with Reynolds number. Moreover, the instability that sets in at low Reynolds number, as a subcritical Hopf bifurcation, disappears only 25% above the threshold. Then, the flow becomes steady again and symmetric. This atypical behavior is compared with our previous study on a submerged fountain (Bouchet et al 2002 Europhys. Lett. 59 826). (paper)

  3. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Lallia, P.; O'Hara, G.W.; Pollard, I.E.

    1987-06-01

    The paper presents the annual report of the Joint European Torus (JET) Joint Undertaking, 1986. The report is divided into two parts: a part on the scientific and technical programme of the project, and a part setting out the administration and organisation of the Project. The first part includes: a summary of the main features of the JET apparatus, the JET experimental programme, the position of the Project in the overall Euratom programme, and how JET relates to other large fusion devices throughout the world. In addition, the technical status of JET is described, as well as the results of the JET operations in 1986. The final section of the first part outlines the proposed future programme of JET. (U.K.)

  4. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  5. Microcystin production in epiphytic cyanobacteria on submerged macrophytes.

    Science.gov (United States)

    Mohamed, Zakaria A; Al Shehri, Abdulrahman M

    2010-06-15

    Cyanotoxins have been largely studied in planktonic and benthic cyanobacteria, but microcystin (MCYST) production in epiphytic cyanobacteria has not been reported yet. The present study reports for the first time the MCYST production in epiphytic cyanobacteria on submerged macrophytes. During this study, four common submerged macrophytes in eutrophic pond in Saudi Arabia were surveyed for the presence of toxic epiphytic cyanobacteria. The results showed that chlorophyll-a and total biovolume of epiphytic cyanobacteria differed significantly among submerged plants with highest values obtained in Stratiotes aloides and lowest in Elodea canadensis. Epiphytic materials collected from Ceratophyllum demersum and S. aloides had higher species diversities than materials collected from E. canadensis and Myriophyllum verticillatum. The cyanobacteria, Merismopedia tenuissima and Leptolyngbya boryana were recorded with a high abundance in epiphytic materials collected from all submerged macrohpytes. Based on Enzyme-linked immunosorbent assay (ELISA), these two species were found to produce MCYSTs (MCYSTs) with concentrations of 1438 and 630 microg g(-1) dry weight, respectively. HPLC analysis of the methanolic extracts of the two species showed that M. tenuissima extract contained MCYST-RR and -LR/demethyl LR plus 3 minor unidentified MCYSTs, while L. boryana extract contained MCYST-YR, -LR/demethyl LR, and 2 minor unidentified MCYSTs. This study suggests that epiphytic species should be considered during monitoring of toxic cyanobacteria in water sources. 2010 Elsevier Ltd. All rights reserved.

  6. Gas exchange under water. Acclimation of terrestrial plants to submergence

    NARCIS (Netherlands)

    Mommer, L.

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little

  7. Tidal Power Potential in the Submerged Channels of Dar es

    African Journals Online (AJOL)

    on the tidal plateau, shallow water area on the sand banks and in the submerged channels, using self—recording .... in a Cartesian frame where iz is directed towards the vertical, ix points ..... Bongoyo, there is a 15 m deep channel that passes.

  8. Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †

    Science.gov (United States)

    Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643

  9. Effects of submerged and anaerobic fermentations on cassava flour ...

    African Journals Online (AJOL)

    Cassava tubers for processing into cassava flour, Lafun a Nigerian locally fermented product was subjected to two different types of fermentations: submerged and anaerobic fermentation for 72 h. Physicochemical changes that occurred during fermentation and their influence on the functional, rheological and sensory ...

  10. Identification of a novel submergence response gene regulated by ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-12-07

    Dec 7, 2016 ... ... stress. Hormone ABA treatment induces, whereas GA treatment decreases, RS1 ... Key word: Rice (Oryza sativa L.), submergence, RNA-seq, Sub1A, abiotic stress. ... genes may interact with Sub1A-1 that are necessary for.

  11. Effects of submerged vegetation on water clarity across climates

    NARCIS (Netherlands)

    Kosten, S.; Lacerot, G.; Jeppesen, E.; Motta Marques, D.M.L.; Nes, van E.H.; Mazzeo, N.; Scheffer, M.

    2009-01-01

    A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate

  12. Fluid jet electric discharge source

    Science.gov (United States)

    Bender, Howard A [Ripon, CA

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  13. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    International Nuclear Information System (INIS)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank's structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was ∼4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel

  14. Rice SUB1A constrains remodeling of the transcriptome and metabolome during submergence and post-submergence recovery”.

    Science.gov (United States)

    The rice (Oryza sativa L.) ethylene-responsive transcription factor SUB1A confers tolerance to prolonged, complete submergence by limiting underwater elongation growth. Rice encoding SUB1A-1 also recovers photosynthetic function and re-commences development towards flowering more rapidly after desu...

  15. On jet substructure methods for signal jets

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester,Oxford Road, Manchester M13 9PL (United Kingdom); Powling, Alexander [School of Physics & Astronomy, University of Manchester,Oxford Road, Manchester M13 9PL (United Kingdom); Siodmok, Andrzej [Institute of Nuclear Physics, Polish Academy of Sciences,ul. Radzikowskiego 152, 31-342 Kraków (Poland); CERN, PH-TH,CH-1211 Geneva 23 (Switzerland)

    2015-08-17

    We carry out simple analytical calculations and Monte Carlo studies to better understand the impact of QCD radiation on some well-known jet substructure methods for jets arising from the decay of boosted Higgs bosons. Understanding differences between taggers for these signal jets assumes particular significance in situations where they perform similarly on QCD background jets. As an explicit example of this we compare the Y-splitter method to the more recently proposed Y-pruning technique. We demonstrate how the insight we gain can be used to significantly improve the performance of Y-splitter by combining it with trimming and show that this combination outperforms the other taggers studied here, at high p{sub T}. We also make analytical estimates for optimal parameter values, for a range of methods and compare to results from Monte Carlo studies.

  16. Toward jet injection by continuous-wave laser cavitation

    Science.gov (United States)

    Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben

    2017-10-01

    This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ˜1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general.

  17. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows

    Science.gov (United States)

    Mansouri, Amir

    The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in

  18. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  19. Jet quenching at ALICE

    International Nuclear Information System (INIS)

    Bianchi, Nicola

    2007-01-01

    RHIC results on leading hadron suppression indicate that the jets produced in hard processes are strongly quenched by the dense medium created in heavy ion collisions. Most of the energy lost by the leading parton remains within the jet cone, but several questions on the medium modification of the jet structure have not been addressed. These include the longitudinal and transverse structures of the quenched jet, the associated radiation observables, and the dependence on the parton flavor. These topics will be studied by ALICE thanks to both the robustness of its tracking and the charged particle identification system. Large medium effects are expected in both the low pt and in the high pt regions. To make ALICE better suited for jet physics, the performances on high p t particles and jets can be significantly improved by completing the present set-up with a large Electromagnetic Calorimeter (EmCal). This will significantly improve the resolution on the jet energy and on the particle composition (with the detection of both charged and neutral particles). It will also allow to calibrate the jet energy by measuring the high energy photon emitted in the opposite direction. EmCal will be used to trigger on the jet energy itself, thus allowing a significant improvement of the statistics achievable for jets of high energy. Finally, due too both the γ/π 0 and the electron/hadron discrimination, EmCal will enhance the ALICE capabilities at high p t for direct photons and heavy quarks measurements

  20. Jets in Planetary Atmospheres

    Science.gov (United States)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  1. Phenomenology of jets

    International Nuclear Information System (INIS)

    Walsh, T.F.

    1980-05-01

    The basic idea of these lectures is very simple. Quarks and gluons - the elementary quanta of quantum chromodynamics or QCD - are produced with perturbarively calculable rates in short distance processes. This is because of asymptotic freedom. These quanta produced at short distances are, in a sense, 'visible' as jets of hadrons. (The jets do not contain the colored QCD quanta if - as we will assume - color is confined. The jets contain only colorless hadrons.) The distribution of these jets is the distribution of the original quanta, apart from fluctuations generated in the (long distance) jet formation process. The distribution of the jets can thus thest QCD in a particularly clear way at the parton level, at distance of order 5 x 10 -16 cm (PETRA/PEP energies). (orig.)

  2. A turbulent radio jet

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1983-01-01

    A relativistic plasma flow can explain many of the observations on the one-sided jets, which are associated with radio sources that show superluminal motions in their cores. The pressure from the ambient medium will communicate across the jet in a relatively short distance, typically 30 kpc. The friction between the jet and the external medium then makes the flow go turbulent. As a result the jet dissipates energy and will be brought to rest within a few hundred kpc, if it does not strike an obstacle before. The mean flow in the jet is strongly sheared and stretches the lines of force of any magnetic field frozen into the plasma. The dominant field direction, as seen from the rest frame of the plasma, is therefore parallel to the length of the jet. Polarization measurements have shown that this is in fact the case. (author)

  3. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments

    NARCIS (Netherlands)

    Boedeltje, G; ter Heerdt, GNJ; Bakker, JP

    Seed bank studies focused on submerged aquatic plants are generally performed under submerged conditions, using the seedling-emergence method. However, if a study targets at both submerged species and helophytes, submerged conditions are generally not suitable. We tested the emergence of seedlings

  4. Formation of soap bubbles by gas jet

    Science.gov (United States)

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  5. Hadronic jets an introduction

    CERN Document Server

    Banfi, Andrea

    2016-01-01

    Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.

  6. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1988-03-01

    The paper is a JET progress report 1987, and covers the fourth full year of JET's operation. The report contains an overview summary of the scientific and technical advances during the year, and is supplemented by appendices of detailed contributions of the more important JET articles published during 1987. The document is aimed at specialists and experts engaged in nuclear fusion and plasma physics, as well as the general scientific community. (U.K.)

  7. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  8. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1987-01-01

    The properties of gluon jets are reviewed, and the measured characteristics are compared to the theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, in general the agreement between experiment and theory is remarkable. There are some intriguing differences. Since the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed

  9. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1988-01-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on understanding of QCD. The future prospects are discussed

  10. Are jets really there

    International Nuclear Information System (INIS)

    Lillethun, E.

    1976-09-01

    Based on the results of high energy proton-proton collisions obtained at the CERN ISR in 1972-73, the production of 'jets' is discussed. Jets in e + e - collisions are also discussed and the parameters 'sphericity' and 'rapidity' are used in analysis of the data. The jets studied have been defined as having at least one particle of high transverse momentum. It is not clear whether the jets represent new physics or are another way of stating that resonances (rho,K*, Δ, N* etc.) are produced with high p(sub T), and that in such production the high transverse momentum must be balanced essentially locally in the collision. (JIW)

  11. Steam-water jet analysis. Final report

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Harlow, F.H.; Demuth, R.B.; Ruppel, H.M.

    1984-05-01

    This report presents the results of a theoretical study on the effects of the steam-water jet emitted from a hypothetical rupture in the high-pressure piping pf a nuclear power plant. A set of calculations is presented, incorporating increasingly complex formulations for mass and momentum exchange between the liquid and vapor flow fields. Comparisons between theory and detailed experimental data are given. The study begins with a thorough evaluation of the specification of equilibrium mass and momentum exchange (homogeneous equilibrium) throughout the flow region, a model that generally overpredicts the rate of jet momentum divergence. The study finds that a near-equilibrium momentum exchange rate and a strongly nonequilibrium momentum exchange rate are needed in the region of large vapor-volume fraction to explain the impingement data for fully developed two-phase jets. This leads to the viewpoint that the large-scale jet is characterized by a flow of large liquid entities that travel relatively unaffected by the strongly diverging vapor flow field. The study also finds circumstances in which a persistent core of metastable superheated water can cause much larger impingement pressures than would otherwise be possible. Existing engineering methods are evaluated for jet-loading predictions in plant design. The existing methods appear to be conservative in most possible rupture circumstances with one exception: when the impingement target is about one pipe-diameter away, large enough to capture the full jet, and the rupture flow area is equal to the full pipe flow area, the existing method can produce loadings that are slightly lower than observed for subcooled, flashing discharge. Recommendations have been made to improve the prediction of existing methods under these conditions

  12. Experimental study of hydrogen jet ignition and jet extinguishment

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1979-04-01

    Two phases are described of an experimental study that investigated: (1) the ignition characteristics of hydrogen--sodium jets, (2) the formation of hydrogen in sodium--humid air atmospheres, and (3) the extinguishment characteristics of burning hydrogen--sodium jets. Test conditions were similar to those postulated for highly-improbable breeder reactor core melt-through accidents and included: jet temperature, jet velocity, jet hydrogen concentration, jet sodium concentration, atmospheric oxygen concentration, and atmospheric water vapor concentration

  13. Contact Angle Influence on Geysering Jets in Microgravity Investigated

    Science.gov (United States)

    Chato, David J.

    2004-01-01

    Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquid-free vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, surface tension forces must be used to contain jets. To model this phenomenon, a numerical method that tracks the fluid motion and the surface tension forces is required. Jacqmin has developed a phase model that converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly away. Previous attempts at this formulation were criticized for smearing the interface. This can be overcome by sharpening the phase function, double gridding the fluid function, and using a higher-order solution for the fluid function. The solution of this equation can be rewritten as two coupled Poisson equations that also include the velocity.

  14. Review of steam jet condensation in a water pool

    International Nuclear Information System (INIS)

    Kim, Y. S.; Song, C. H.; Park, C. K.; Kang, H. S.; Jeon, H. G.; Yoon, Y. J.

    2002-01-01

    In the advanced nuclear power plants including APR1400, the SDVS is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW, the POSRV located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow

  15. Improvement of Xylanase Production by Cochliobolus sativus in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2008-01-01

    Full Text Available The xylanase production by a new Cochliobolus sativus Cs5 strain was improved under submerged fermentation. The xylanase was induced by xylan and repressed by glucose, sucrose, maltose, xylose, starch and cellulose. Highest enzyme production (98.25 IU/mL was recorded when wheat straw (4 % by mass per volume was used as a carbon source after 120 h of incubation. NaNO3 increased xylanase production 5.4-fold as compared to the control. Optimum initial pH was found to be 4.5 to 5. The C. sativus Cs5 strain grown under submerged culture in a simple medium proved to be a promising microorganism for xylanase production.

  16. Jet mass spectra in Higgs+one jet at NNLL

    International Nuclear Information System (INIS)

    Jouttenus, Teppo T.; Stewart, Iain W.; Waalewijn, Wouter J.

    2013-02-01

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m 2 jet /p jet T scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  17. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  18. Mineralization of Surfactants by the Microbiota of Submerged Plant Detritus

    OpenAIRE

    Federle, Thomas W.; Ventullo, Roy M.

    1990-01-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 μg...

  19. Submerged beachrock preservation in the context of wave ravinement

    Science.gov (United States)

    Pretorius, Lauren; Green, Andrew N.; Andrew Cooper, J.

    2018-02-01

    This study examines a Holocene-aged submerged shoreline, Limestone Reef, located in the shallow subtidal zone of South Africa's east coast. It comprises an elongate, coast-oblique, slab-like outcrop of beachrock situated above the contemporary fair-weather wave base. It is currently undergoing mechanical disintegration. Its unique and rare preservation in a high-energy setting affords an opportunity to examine the mechanical processes occurring during wave ravinement associated with rising sea level. The submerged shoreline and the adjacent shoreface were examined using high-resolution seismic reflection, side-scan sonar and shallow-water multibeam echosounding techniques. Limestone Reef rests on top of unconsolidated Holocene deposits. The structure's surface is characterised by reef-perpendicular gullies with rubble derived from the slab fringing its seaward edge. Limestone Reef slopes gently seawards and has a steep landward-facing edge where gullies are most prominently developed. Teardrop-shaped rippled scour depressions, marked by high backscatter, are located seawards of the submerged shoreline. These elongate in a seaward direction and are filled with bioclastic gravels and residual rubble from Limestone Reef. The gullies in the upstanding structure are indicative of wave plucking and abrasion of the shoreline. The material exposed by the rippled scour depressions is identical to that comprising the postglacial ravinement surface identified in the offshore stratigraphy. These deposits are considered to represent the contemporary, actively forming wave ravinement surface. The results suggest that wave ravinement of submerged shorelines is a discontinuous process dominated by the seaward entrainment of material from its landward edge controlled by high-energy drawback during storm surges. The ravinement process appears to operate at the seasonal scale and averages out over the long-term millennial scale for the continuous surface.

  20. Jet physics in ALICE

    International Nuclear Information System (INIS)

    Loizides, C.A.

    2005-01-01

    The ALICE experiment is one of the experiments currently prepared for the Large Hadron Collider (LHC) at CERN, Geneva, starting operation end of 2007. ALICE is dedicated to the research on nucleus-nucleus collisions at ultra-relativistic energies, which addresses the properties of strongly interacting matter under varying conditions of high density and temperature. The conditions provided at the LHC allow significant qualitative improvement with respect to previous studies. In particular, energetic probes, light quarks and gluons, will be abundantly produced. These probes might be identified by their fragmentation into correlated particles, so called jets, of high enough energy to allow full reconstruction of jet properties; even in the underlying heavy-ion environment. Understanding the dependence of high-energy jet production and fragmentation influenced by the dense medium created in the collision region is an open field of active research. Generally, one expects energy loss of the probes due to medium-induced gluon radiation. It is suggested that hadronization products of these, rather soft gluons may be contained within the jet emission cone, resulting in a modification of the characteristic jet fragmentation, as observed via longitudinal and transverse momentum distributions with respect to the direction of the initial parton, as well as of the multiplicity distributions arising from the jet fragmentation. Particle momenta parallel to the jet axis are softened (jet quenching), while transverse to it increased (transverse heating). The present thesis studies the capabilities of the ALICE detectors to measure these jets and quantifies obtainable rates and the quality of jet reconstruction, in both proton-proton and lead-lead collisions at the LHC. In particular, it is addressed whether modification of the jet fragmentation can be detected within the high-particle-multiplicity environment of central lead-lead collisions. (orig.)

  1. Jetting from impact of a spherical drop with a deep layer

    Science.gov (United States)

    Zhang, Li; Toole, Jameson; Fazzaa, Kamel; Deegan, Robert; Deegan Group Team; X-Ray Science Division, Advanced Photon Source Collaboration

    2011-11-01

    We performed an experimental study of jets during the impact of a spherical drop with a deep layer of same liquid. Using high speed optical and X-ray imaging, we observe two types of jets: the so-called ejecta sheet which emerges almost immediately after impact and the lamella which emerges later. For high Reynolds number the two jets are distinct, while for low Reynolds number the two jets combine into a single continuous jet. We also measured the emergence time, speed, and position of the ejecta sheet and found simple scaling relations for these quantities.

  2. The effect of submergence on structural response in confined pools

    International Nuclear Information System (INIS)

    Sturm, A.J. Jr.; Song, C.C.S.

    1980-01-01

    In this paper the response of single and multi degree of submerged systems is investigated. The complete equations of motions including fluid coupling terms are developed for submerged bodies where the surrounding fluid is both moving in phase and out of phase with the support motion. The analysis considers both structural and fluid damping. Also included is an analysis of two degrees of freedom fluid coupling for submerged bodies completely enclosed within another body. In this case limiting conditions of the inner body hydrodynamic mass are examined, along the frequency response characteristics of these systems. The paper developes a simplified forcing function approach for in phase fluid support motion systems. This method is applicable for both modal-spectral and time history dynamic analyses of any linear structure. The results of the analysis are expanded for s structures with non-linear support configuration, i.e. (sliding or rocking bases) to again define a simplified analytical approach accounting for in phase fluid support motion. (orig.)

  3. Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Helen H. Raplong

    2014-09-01

    Full Text Available Microorganisms have the ability to secrete enzymes when they are grown in the presence of certain substrates. Amylases are among the most important industrial enzymes and are of great significance in biotechnological studies. Bacteria belonging to the genus Bacillus were isolated using mannitol egg yolk polymyxin B (MYP agar a highly selective media for Bacillus cereus isolation. The isolates were tested for α-amylase production on nutrient agar supplemented with starch and in submerged fermentation. The bacteria isolated and identified (using the Microgen Bacillus identification kit were all Bacillus cereus and SB2 had the largest zone of hydrolysis of 12mm on nutrient agar supplemented with starch as well as the highest enzyme activity of 1.62U/ml. Amylase activity of 2.56U/ml was obtained after 24 hours incubation in submerged fermentation. When amylase enzyme production parameters where optimized, maximum amylase activity was obtained at a pH of 6.5, temperature of 350C, incubation time of 24 hours and 4% inoculums concentration. Bacillus cereus SB2 is a potential isolate for alpha-amylase production with soluble starch as the sole carbon source in submerged fermentation.

  4. Vibration analysis of partially cracked plate submerged in fluid

    Science.gov (United States)

    Soni, Shashank; Jain, N. K.; Joshi, P. V.

    2018-01-01

    The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.

  5. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  6. Detecting submerged features in water: modeling, sensors, and measurements

    Science.gov (United States)

    Bostater, Charles R., Jr.; Bassetti, Luce

    2004-11-01

    It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.

  7. Influence of Microalgae onto submerged surfaces on Fouling

    Science.gov (United States)

    Kong, M.; Eom, C.; Yoon, B.; Yoon, H.; Kim, B.; Chung, K.

    2012-12-01

    Lots of algae together with organic matter deposited on the submerged surface can be easily observed occurring in the shallower water along the coast. This is mainly because only those organisms with the ability to adapt to the new situations created by man can firmly adhere enough to avoid being washed off. Chemical and microbiological characteristics of the fouling microalgae developed on various surfaces in contact with the seawater were made. The microbial compositions of the microalgae formed on the submerged surfaces were tested for. The quantities of the diverse microalgae in the samples developed on the prohibiting submerged surface were larger when there was no concern about materials for special selection for fouling. To confirm formation of microalgae on adsorbents was done SEM-EDS (Scanning Electron Microscope-Spectrometer) analysis. Microbial identified using optical microscope. In addition to, we quantified attaching microalgae as pass time. Experiment results, ten species which are Nitzshhia sp., Eucampia sp., Coscinodiscus sp., Licmophora sp., Rhizosolenia sp., Cylindrotheca sp., Striateela sp., Thalassionema sp., Guinardia sp., and Helicostomella sp. discovered to reservoir formed biofouling. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater.

  8. Transient CFD studies on multiple jets issuing from injection tube

    International Nuclear Information System (INIS)

    Kumawat, Ganesh Lal; Kansal, Anuj Kumar; Maheshwari, Naresh Kumar; Rama Rao, A.

    2016-01-01

    Shut down system 2 of Advanced Heavy Water reactor incorporates the injection of liquid poison into moderator through injection tubes. The injection tubes consist of several holes distributed axially and circumferentially. Investigation of the poison jet progression and spreading from the holes of injection tube is important aspect of determining negative reactivity injection rate. This paper presents the CFD simulation to investigate poison jet progression and its spreading from the holes of injection tube. (author)

  9. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Olga Besharova

    2016-10-01

    Full Text Available Many bacteria primarily exist in nature as structured multicellular communities, so called biofilms. Biofilm formation is a highly regulated process that includes the transition from the motile planktonic to sessile biofilm lifestyle. Cellular differentiation within a biofilm is a commonly accepted concept but it remains largely unclear when, where and how exactly such differentiation arises. Here we used fluorescent transcriptional reporters to quantitatively analyze spatio-temporal expression patterns of several groups of genes during the formation of submerged Escherichia coli biofilms in an open static system. We first confirm that formation of such submerged biofilms as well as pellicles at the liquid-air interface requires the major matrix component, curli, and flagella-mediated motility. We further demonstrate that in this system, diversification of gene expression leads to emergence of at least three distinct subpopulations of E. coli, which differ in their levels of curli and flagella expression, and in the activity of the stationary phase sigma factor σS. Our study reveals mutually exclusive expression of curli fibers and flagella at the single cell level, with high curli levels being confined to dense cell aggregates/microcolonies and flagella expression showing an opposite expression pattern. Interestingly, despite the known σS-dependence of curli induction, there was only a partial correlation between the σS activity and curli expression, with subpopulations of cells having high σS activity but low curli expression and vice versa. Finally, consistent with different physiology of the observed subpopulations, we show striking differences between the growth rates of cells within and outside of aggregates.

  10. Landslide-Generated Waves in a Dam Reservoir: The Effects of Landslide Rheology and Initial Submergence

    Science.gov (United States)

    Yavari Ramsheh, S.; Ataie-Ashtiani, B.

    2017-12-01

    Recent studies revealed that landslide-generated waves (LGWs) impose the largest tsunami hazard to our shorelines although earthquake-generated waves (EGWs) occur more often. Also, EGWs are commonly followed by a large number of landslide hazards. Dam reservoirs are more vulnerable to landslide events due to being located in mountainous areas. Accurate estimation of such hazards and their destructive consequences help authorities to reduce their risks by constructive measures. In this regard, a two-layer two-phase Coulomb mixture flow (2LCMFlow) model is applied to investigate the effects of landslide characteristics on LGWs for a real-sized simplification of the Maku dam reservoir, located in the North of Iran. A sensitivity analysis is performed on the role of landslide rheological and constitutive parameters and its initial submergence in LGW characteristics and formation patterns. The numerical results show that for a subaerial (SAL), a semi-submerged (SSL), and a submarine landslide (SML) with the same initial geometry, the SSLs can create the largest wave crest, up to 60% larger than SALs, for dense material. However, SMLs generally create the largest wave troughs and SALs travel the maximum runout distances beneath the water. Regarding the two-phase (solid-liquid) nature of the landslide, when interestial water is isolated from the water layer along the water/landslide interface, a LGW with up to 30% higher wave crest can be created. In this condition, increasing the pore water pressure within the granular layer results in up to 35% higher wave trough and 40% lower wave crest at the same time. These results signify the importance of appropriate description of two-phase nature and rheological behavior of landslides in accurate estimation of LGWs which demands further numerical, physical, and field studies about such phenomena.

  11. Quark jets, gluon jets and the three-gluon vertex

    International Nuclear Information System (INIS)

    Fodor, Z.

    1989-11-01

    Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)

  12. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1987-03-01

    The paper presents the progress report of the Joint European Torus (JET) Joint Undertaking, 1986. The report contains a survey of the scientific and technical achievements on JET during 1986; the more important articles referred to in this survey are reproduced as appendices to this Report. The last section discusses developments which might improve the overall performance of the machine. (U.K.)

  13. Jet physics at CDF

    International Nuclear Information System (INIS)

    Melese, P.

    1997-05-01

    We present high E T jet measurements from CDF at the Fermilab Tevatron Collider. The incfilusive jet cross section at √s = 1800 GeV with ∼ 5 times more data is compared to the published CDF results, preliminary D0 results, and next-to-leading order QCD predictions. The summation E T cross section is also compared to QCD predictions and the dijet angular distribution is used to place a limit on quark compositeness. The inclusive jet cross section at √s = 630 GeV is compared with that at 1800 GeV to test the QCD predictions for the scaling of jet cross sections with √s. Finally, we present momentum distributions of charged particles in jets and compare them to Modified Leading Log Approximation predictions

  14. Jet physics in ATLAS

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Measurements of hadronic jets provide tests of strong interactions which are interesting both in their own right and as backgrounds to many New Physics searches. It is also through tests of Quantum Chromodynamics that new physics may be discovered. The extensive dataset recorded with the ATLAS detector throughout the 7 TeV centre-of-mass LHC operation period allows QCD to be probed at distances never reached before. We present a review of selected ATLAS jet performance and physics measurements, together with results from new physics searches using the 2011 dataset. They include studies of the underlying event and fragmentation models, measurements of the inclusive jet, dijet and multijet cross sections, parton density functions, heavy flavours, jet shape, mass and substructure. Searches for new physics in monojet, dijet and photon-jet final states are also presented.

  15. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  16. Studies towards the stabilisation of a mushroom phytase produced by submerged cultivation.

    Science.gov (United States)

    Spier, Michele Rigon; Behsnilian, Diana; Zielinski, Acácio; Konietzny, Ursula; Greiner, Ralf

    2015-10-01

    A novel phytase from Ganoderma australe G24 was produced by submerged cultivation and recovery. Liquid and solid forms of phytase were developed; both types of product were formulated using different additives. Ganoderma australe G24 phytase was very stable in liquid form with NaCl and sodium acetate buffer. Solid form products were obtained by spray-drying using different polymers to encapsulate the phytase and the capsules obtained were analyzed by electron microscopy. Micrographs confirmed micro and nanoparticles formed with maltodextrin (300 nm to 7-8 µm) without the presence of agglomerates. The use of maltodextrin for solid formulation of G. australe G24 phytase is recommended, and resulted in good stability after the drying process and during storage (shelf life). Kinetic models of phytase inactivation in the microencapsulated powders over time were proposed for the different stabilizing additives. Inactivation rate constants, half-lives and D values (decimal reduction time) were obtained. Phytase encapsulated with maltodextrin remained stable after 90 days, with k 0.0019 day(-1) and a half-life (t1/2) of 367.91 days(-1).

  17. Influence of attapulgite addition on the biological performance and microbial communities of submerged dynamic membrane bioreactor

    Directory of Open Access Journals (Sweden)

    Wensong Duan

    2017-12-01

    Full Text Available A submerged dynamic membrane bioreactor (sDMBR was developed to test the influence of attapulgite (AT addition on the treatment performances and the microbial community structure and function. The batch experimental results displayed the highest UV254 and dissolved organic carbon (DOC removal efficiencies with 5% AT/mixed liquid suspended solids addition dosage. The continuous sDMBR results showed that the removal efficiencies of chemical oxygen demand, NH4+-N, total nitrogen and total phosphorus significantly increased in the AT added sDMBR. Excitation emission matrix analysis demonstrated that the protein-like peaks and fulvic acid-like peaks were significantly decreased in both in the mixed liquid and the effluent of the AT added reactor. The obligate anaerobes were observed in the sDMBR with AT addition, such as Bacteroidetes and Gamma proteobacterium in the dynamic membrane, which played an important role in the process of sludge granulation. Bacterial community richness significantly increased after AT addition with predominated phyla of Proteobacteria and Bacteroidetes. Similarly, species abundance significantly increased in the AT added sDMBR. Further investigations with cluster proved that AT was a favorite biological carrier for the microbial ecology, which enriched microbial abundance and community diversity of the sDMBR.

  18. Jets from pulsed-ultrasound-induced cavitation bubbles near a rigid boundary

    Science.gov (United States)

    Brujan, Emil-Alexandru

    2017-06-01

    The dynamics of cavitation bubbles, generated from short (microsecond) pulses of ultrasound and situated near a rigid boundary, are investigated numerically. The temporal development of the bubble shape, bubble migration, formation of the liquid jet during bubble collapse, and the kinetic energy of the jet are investigated as a function of the distance between bubble and boundary. During collapse, the bubble migrates towards the boundary and the liquid jet reaches a maximum velocity between 80 m s-1 and 120 m s-1, depending on the distance between bubble and boundary. The conversion of bubble energy to kinetic energy of the jet ranges from 16% to 23%. When the bubble is situated in close proximity to the boundary, the liquid jet impacts the boundary with its maximum velocity, resulting in an impact pressure of the order of tens of MPa. The rapid expansion of the bubble, the impact of the liquid jet onto the nearby boundary material, and the high pressure developed inside the bubble at its minimum volume can all contribute to the boundary material damage. The high pressure developed during the impact of the liquid jet onto the biological material and the shearing forces acting on the material surface as a consequence of the radial flow of the jet outward from the impact site are the main damage mechanisms of rigid biological materials. The results are discussed with respect to cavitation damage of rigid biological materials, such as disintegration of renal stones and calcified tissue and collateral effects in pulsed ultrasound surgery.

  19. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1987-01-01

    This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals and gas bubble nucleation in molten metals are relevant problems which are addressed in this work. Models are developed for jet expansion, primary breakup of the jet and secondary fragmentation of melt droplets resulting from violent effervescence of dissolved gas. The jet expansion model is based on a general relation for bubble growth which includes both inertia-controlled and diffusion-controlled growth phases. The jet expansion model is able to predict the jet void fraction, jet radius as a function of axial distance from the pressure vessel, bubble size and bubble pressure. The number density of gas bubbles in the melt, which is a basic parameter in the model, was determined experimentally and is about 10 8 per m 3 of liquid. The primary breakup of the jet produces a spray of droplets, about 2-3 mm in diameter. Parametric calculations for a TMLB' reactor accident sequence show that the corium jet is disrupted within a few initial jet diameters from the reactor vessel and that the radius of corium spray at the level of the reactor cavity floor is in the range of 0.8 to 2.6 m. (orig./HP)

  20. Computational Fluid Dynamics (CFD) Investigation of Submerged Combustion Behavior in a Tuyere Blown Slag-fuming Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, G. A.; Reuter, M. A.; Matusewicz, R. W.

    2012-10-01

    A thin-slice computational fluid dynamics (CFD) model of a conventional tuyere blown slag-fuming furnace has been developed in Eulerian multiphase flow approach by employing a three-dimensional (3-D) hybrid unstructured orthographic grid system. The model considers a thin slice of the conventional tuyere blown slag-fuming furnace to investigate details of fluid flow, submerged coal combustion dynamics, coal use behavior, jet penetration behavior, bath interaction conditions, and generation of turbulence in the bath. The model was developed by coupling the CFD with the kinetics equations developed by Richards et al. for a zinc-fuming furnace. The model integrates submerged coal combustion at the tuyere tip and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with several user-defined subroutines in FORTRAN programming language were used to develop the model. The model predicted the velocity, temperature field of the molten slag bath, generated turbulence and vortex, and coal use behavior from the slag bath. The tuyere jet penetration length ( l P) was compared with the equation provided by Hoefele and Brimacombe from isothermal experimental work ( {{l_{{P}} }/{d_{o }} = 10.7( {N^' }_{Fr} } )^{0.46} ( {ρ_{{g}} /ρl } )^{0.35} } ) and found 2.26 times higher, which can be attributed to coal combustion and gas expansion at a high temperature. The jet expansion angle measured for the slag system studied is 85 deg for the specific inlet conditions during the simulation time studied. The highest coal penetration distance was found to be l/L = 0.2, where l is the distance from the tuyere tip along the center line and L is the total length (2.44 m) of the modeled furnace. The model also predicted that 10 pct of the injected coal bypasses the tuyere gas stream uncombusted and carried to the free surface by the tuyere gas stream, which

  1. Jets and QCD

    International Nuclear Information System (INIS)

    Ali, A.; Kramer, G.

    2010-12-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  2. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  3. Jet angularity measurements for single inclusive jet production

    Science.gov (United States)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  4. GigaUnit Transplant System: A New Mechanical Tool for Transplanting Submerged Aquatic Vegetation

    National Research Council Canada - National Science Library

    Shafer, Deborah J

    2008-01-01

    Submerged aquatic vegetation (SAV) performs many important ecosystem functions, including wave attenuation and sediment stabilization, water quality improvement, primary production, food web support for secondary consumers...

  5. Intermediate PT jet spectrometers

    International Nuclear Information System (INIS)

    Gutay, L.J.; Koltick, D.; Hauptman, J.; Stork, D.; Theodosiou, G.

    1988-01-01

    A design is presented for a limited solid angle, high resolution double arm spectrometer at 90 degree to the begin, with a vertex detector and particle identification in both arms. The jet arm is designed to accept a complete jet, and identify its substructure of sub-jets, hadrons, and leptons. The particle arm would measure e,π,K,p ratios for P T 0 to the beam for the purpose of tagging Higgs production by boson fusion, 1 gauge boson (WW, ZZ, and WZ) scattering 2 L, and other processes involving the interactions of virtual gauge bosons

  6. Latest results from JET

    International Nuclear Information System (INIS)

    Bickerton, R.J.

    1989-01-01

    The Joint European Torus (JET) is a large tokamak designed with the essential objective of obtaining and studying plasmas with parameters close to those envisaged for an eventual power-generating, nuclear-fusion reactor. JET is situated on a site near Abingdon, Oxon, UK. JET is the largest single project of the nuclear fusion research programme of the European Atomic Energy Community (EURATOM). The tokamak started operation in mid 1983 after a five year construction period. The scientific and technical results achieved so far are summarised in this article. (orig.)

  7. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  8. Lithium fall reactor concept: the question of jet stability, with recommendations for further experiments

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    The stability of a liquid-lithium jet flow is of importance in a laser fusion reactor design. In this report we analyze and discuss jet stability with respect to fluid dynamics, delineating physical factors that may affect the jet breakup and performing some simple calculations to determine quantitatively the relative influences of various parameters. We define areas of uncertainty and recommend possible experimental verification, theoretical analysis, or both

  9. Enhanced Sorbitol Production under Submerged Fermentation using Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Khan Nadiya Jan

    2017-04-01

    Full Text Available Background and Objective: Sorbitol is a non-toxic and slightly hygroscopic compound with different applications. Zymomonas mobiles produces sorbitol from sucrose or mixtures of glucose and fructose (formation is coupled with the dehydrogenation of glucose to glucono-δ- lactone. Recombinant Zymomonas mobilis may produce sorbitol and gluconic acid from glucose and fructose using different divalent metal ions with reduced the ethanol yield andsignificantly increased yield of sorbitol. Current study envisaged to alter the media components, physical process parameters and supplementation of amino acids for enhanced sorbitol production.Material and Methods: Several process variables were evaluated on sorbitol production including carbon sources (glucose, fructose, maltose, sucrose, carbon concentrations (5, 10, 20 and 25 g l-1, nitrogen sources (peptone, tryptone, yeast extract, beef extract and organic nitrogen mix, temperatures (25, 29, 33, 37, 41°C, pH (6, 6.5, 7 , 7.5 ,8, agitation rate (50, 100, 150, 200 rpm and amino acids (cysteine, cystine, tryptophanin batch cultivation ofLactobacillus plantarum NCIM 2912. Shake flask cultivation performed under optimum conditions like temperature 37°C, pH 7.0 and agitation rate of 150 rpm, resulted in enhanced sorbitol production. Comparative study of sorbitol production in solid state fermentation and submerged fermentation was also evaluated.Results and Conclusion: Batch cultivation under submerged conditions further performed in 7.5-l lab scale bioreactor (working volume 3.0-l under optimized conditions resulted in maximum cell biomass of 8.95±0.03 g g-1 and a sorbitol content of 9.78±0.04 g l-1 after 42.0 h of fermentation. Scale up study on bioreactor resulted in maximum sorbitol yield (Yp/x and productivity of 1.11 g g-1 and 0.50 g l-1 h under submerged fermentation, respectively.Conflict of interest: The authors declare no conflict of interest.

  10. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    Science.gov (United States)

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  11. In process acoustic emission in multirun submerged arc welding

    International Nuclear Information System (INIS)

    Asty, M.; Birac, C.

    1980-01-01

    In order to avoid the formation of deep grooves when repairing defects in welded joints in heavy plates, an investigation was made aiming to detect and locate the defects by in-process acoustic emission in multirun submerged arc welding. Twelve defects (lack of penetration, cracks, inclusions, lack of fusion together with inclusions, blowholes) were intentionally introduced when the first plate was welded. A space-time method for processing the acoustic activity during welding allowed the detection and the location of the intentional defects as well as of the most important accidental defects evidenced by ultrasonic testing [fr

  12. Measurements of Jets in ALICE

    CERN Document Server

    Nattrass, Christine

    2016-01-01

    The ALICE detector can be used for measurements of jets in pp , p Pb, and Pb–Pb collisions. Measurements of jets in pp collisions are consis- tent with expectations from perturbative calculations and jets in p Pb scale with the number of nucleon–nucleon collisions, indicating that cold nuclear matter effects are not observed for jets. Measurements in Pb–Pb collisions demonstrate suppression of jets relative to expectations from binary scaling to the equivalent number of nucleon–nucleon collisions

  13. Jet lag prevention

    Science.gov (United States)

    ... lose time. Symptoms of jet lag include: Trouble falling asleep or waking up Tiredness during the day ... at your destination. For longer trips, before you leave, try to adapt to the time schedule of ...

  14. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    , respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...

  15. The JET divertor coil

    International Nuclear Information System (INIS)

    Last, J.R.; Froger, C.; Sborchia, C.

    1989-01-01

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  16. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  17. Ink jet technology for large area organic light-emitting diode and organic photovoltaic applications

    NARCIS (Netherlands)

    Ren, M.; Gorter, H.; Michels, J.; Andriessen, R.

    2011-01-01

    Due to its flexibility and ease of patterning, ink jet printing has become a popular technique for the noncontact deposition of liquids, solutions, and melts on a variety of substrates at lateral resolutions down to 10 μm. This article presents a study of ink jet printing of homogeneous layers of

  18. A numerical study of a supercritical fluid jet

    International Nuclear Information System (INIS)

    Sierra-Pallares, J.; Garcia-Serna, J.; Cocero, M.J.; Parra-Santos, M.T.; Castro-Ruiz, F.

    2009-01-01

    This study affords the numerical solution of the mixing of a submerged turbulent jet under supercritical conditions and near-critical conditions. Turbulence plays a very important role in the behaviour of chemical engineering equipment. An accurate prediction of the turbulence at supercritical conditions with low computational cost is crucial in designing new processes such as reactions in supercritical media, high pressure separation processes, nanomaterials processing and heterogeneous catalysis. At high-pressure, the flow cannot be modelled accurately using the ideal-gas assumption. Therefore, the real gas models must be used in order to solve accurately the fluid flow and heat transfer problems where the working fluid behaviour deviate seriously from the ideal-gas assumption. The jet structure has three parts clearly distinguished: the injection, the transition and the fully developed jet. Once the flow is dominated by the turbulent eddies of the shear layer, the flow is fully developed and the radial profiles match a similarity profile. This work reports the state of the project that is not completed and is being processed now. This work is devoted to establish the distance downstream from the injector where the jet become self-preserving and the shape of the similarity profiles. This system is of interest in the design of supercritical reactor inlets, where two streams should be mixed in the shortest length, or mixing conditions strongly affect the behaviour of the processes. The numerical results have been validated with experimental measurements made in the jet mixing region. The radial profiles for average velocity, density and temperature are analyzed. The parameters of the profile that match better the numerical results are summarized in Table 1. The density requires a lower value of n than these for velocity and temperature, which reflect smoother profiles. These conclusions are in good agreement with the results from Oschwald and Schik. (author)

  19. Protostellar Jets in Context

    CERN Document Server

    Tsinganos, Kanaris; Stute, Matthias

    2009-01-01

    This volume contains the proceedings of the Conference Protostellar Jets in Context held by the JETSET Marie Curie Research Training Network in July 2008. This meeting not only served to showcase some of the network's achievements but was also a platform to hear from, discuss and debate the recent findings of world-class astrophysicists in the field of protostellar jet research. Jets from young stars are of course not an isolated astrophysical phenomenon. It is known that objects as diverse as young brown dwarfs, planetary nebulae, symbiotic stars, micro-quasars, AGN, and gamma-ray bursters produce jets. Thus in a series of talks, protostellar jets were put in context by comparing them with their often much larger brethren and also by considering the ubiquitous accretion disks that seem to be necessary for their formation. With this spectrum of contributions on observations and the theory of astrophysical jets and accretion disks, this book serves as a comprehensive reference work for researchers and students...

  20. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  1. Jet supercooling and molecular jet spectroscopy

    International Nuclear Information System (INIS)

    Wharton, L.; Levy, D.

    1979-01-01

    The marriage of the laser and the seeded supersonic jet has generated a family of new optical spectroscopic results. We shall discuss the essential features of the technique and some results. The results will include structural and dynamical views of NO 2 , NaAr, and I 2 -noble gas complexes. The extension of the method to heavier systems is illustrated with free base phthalocyanine

  2. Involvement of Physical Parameters in Medium Improvement for Tannase Production by Aspergillus niger FETL FT3 in Submerged Fermentation.

    Science.gov (United States)

    Darah, I; Sumathi, G; Jain, K; Hong, Lim Sheh

    2011-01-01

    Aspergillus niger FETL FT3, a local extracellular tannase producer strain that was isolated from one of dumping sites of tannin-rich barks of Rhizophora apiculata in Perak, Malaysia. This fungus was cultivated in 250 mL Erlenmeyer flask under submerged fermentation system. Various physical parameters were studied in order to maximize the tannase production. Maximal yield of tannase production, that is, 2.81 U per mL was obtained on the fourth day of cultivation when the submerged fermentation was carried out using liquid Czapek-Dox medium containing (percent; weight per volume) 0.25% NaNO(3), 0.1% KH(2)PO(4), 0.05% MgSO(4) ·7H(2)O, 0.05% KCl, and 1.0% tannic acid. The physical parameters used initial medium pH of 6.0, incubation temperature of 30°C, agitation speed of 200 rpm and inoculums size of 6 × 10(6) spores/ ml. This research has showed that physical parameters were influenced the tannase production by the fungus with 156.4 percent increment.

  3. Direct numerical simulation of axisymmetric laminar low-density jets

    Science.gov (United States)

    Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro

    2017-11-01

    The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.

  4. A New Detection Method for Submerged Implants: Oral Tattoo.

    Science.gov (United States)

    Soylu, Emrah; Gönen, Zeynep Burçin; Alkan, Alper

    2018-04-01

    To evaluate the marking potential of tattoo ink in determining the definitive locations of submerged implants at the time of surgical exposure of the implants. In total, 104 implants in 32 patients were included in this study. After placement of the implants, cover screws were inserted. Overlying mucosa was marked with tattoo ink using a 20 g needle through the center of the cover screw. At the time of surgical exposure the tattoo marks were evaluated relative to visibility. At the time of the surgical exposures, tattoo ink was clearly visible at 91 implants, slightly visible at 8 implants, and not visible at 5 implants. After detection and classification of tattoo ink, the overlying mucosa was gently removed by tissue punch under local anesthesia. The results of this study seemed to indicate that marking the location of implants with tattoos at the time of implant placement can be an inexpensive, easy, healthy, and practical way to identify the location of marked submerged dental implants. © 2016 by the American College of Prosthodontists.

  5. Bistatic scattering from submerged unexploded ordnance lying on a sediment.

    Science.gov (United States)

    Bucaro, J A; Simpson, H; Kraus, L; Dragonette, L R; Yoder, T; Houston, B H

    2009-11-01

    The broadband bistatic target strengths (TSs) of two submerged unexploded ordnance (UXO) targets have been measured in the NRL sediment pool facility. The targets-a 5 in. rocket and a 155 mm projectile-were among the targets whose monostatic TSs were measured and reported previously by the authors. Bistatic TS measurements were made for 0 degrees (target front) and 90 degrees (target side) incident source directions, and include both backscattered and forward scattered echo angles over a complete 360 degrees with the targets placed proud of the sediment surface. For the two source angles used, each target exhibits two strong highlights: a backscattered specular-like echo and a forward scattered response. The TS levels of the former are shown to agree reasonably well with predictions, based on scattering from rigid disks and cylinders, while the levels of the latter with predictions from radar cross section models, based on simple geometric optics appropriately modified. The bistatic TS levels observed for the proud case provide comparable or higher levels of broadband TS relative to free-field monostatic measurements. It is concluded that access to bistatic echo information in operations aimed at detecting submerged UXO targets could provide an important capability.

  6. Cathodic disbonding of organic coatings on submerged steel

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Ole oeystein

    1998-12-31

    In offshore oil production, submerged steel structures are commonly protected by an organic coating in combination with cathodic protection. The main advantage is that the coating decreases the current demand for cathodic protection. But the coating degrades with time. This thesis studies one of the most important mechanisms for coating degradation in seawater, cathodic disbonding. Seven commercial coatings and two model coatings with various pigmentations have been studied. Parameter studies, microscopy and studies of free films were used in the mechanism investigations. Exposure to simulated North Sea conditions was used in the performance studies. The effect of aluminium and glass barrier pigments on cathodic disbonding was investigated. The mechanism for the effect of the aluminium pigments on cathodic disbonding was also investigated. The transport of charge and oxygen to the steel/coating interface during cathodic disbonding was studied for two epoxy coatings. Cathodic disbonding, blistering and current demand for cathodic protection was measured for nine commercial coatings for submerged steel structures, using the ASTM-G8 standard test and a long term test under simulated North Sea conditions. The relevance of the ASTM-G8 test as a prequalification test was evaluated. 171 refs., 40 figs., 6 tabs.

  7. THE INFLUENCE OF SUBMERGED MACROPHYTES ON SEDIMENTARY DIATOM ASSEMBLAGES(1).

    Science.gov (United States)

    Vermaire, Jesse C; Prairie, Yves T; Gregory-Eaves, Irene

    2011-12-01

    Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long-term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole-lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P macrophyte, nutrient-limited lakes (BiomEpiV ≥525 μg · L(-1) ; total phosphorus [TP] macrophyte, nutrient-limited lakes (BiomEpiV macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance. © 2011 Phycological Society of America.

  8. The USGS role in mapping the nation's submerged lands

    Science.gov (United States)

    Schwab, Bill; Haines, John

    2004-01-01

    The seabed provides habitat for a diverse marine life having commercial, recreational, and intrinsic value. The habitat value of the seabed is largely a function of the geological structure and related geological, biological, oceanologic, and geochemical processes. Of equal importance, the nation's submerged lands contain energy and mineral resources and are utilized for the siting of offshore infrastructure and waste disposal. Seabed character and processes influence the safety and viability of offshore operations. Seabed and subseabed characterization is a prerequisite for the assessment, protection, and utilization of both living and non-living marine resources. A comprehensive program to characterize and understand the nation's submerged lands requires scientific expertise in the fields of geology, biology, hydrography, and oceanography. The U.S. Geological Survey (USGS) has long experience as the Federal agency charged with conducting geologic research and mapping in both coastal and offshore regions. The USGS Coastal and Marine Geology Program (CMGP) leads the nation in expertise related to characterization of seabed and subseabed geology, geological processes, seabed dynamics, and (in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and international partners) habitat geoscience. Numerous USGS studies show that sea-floor geology and processes determine the character and distribution of biological habitats, control coastal evolution, influence the coastal response to storm events and human alterations, and determine the occurrence and concentration of natural resources.

  9. A functional comparison of acclimation to shade and submergence in two terrestrial plant species

    NARCIS (Netherlands)

    Mommer, L.; Kroon, de H.; Pierik, R.; bögemann, G.M.; Visser, E.J.W.

    2005-01-01

    Terrestrial plants experience multiple stresses when they are submerged, caused both by oxygen deficiency due to reduced gas diffusion in water, and by shade due to high turbidity of the floodwater. It has been suggested that responses to submergence are de facto responses to low light intensity. •

  10. Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)

    Science.gov (United States)

    Ye, Tiantian; Shi, Haitao; Wang, Yanping; Chan, Zhulong

    2015-01-01

    In this study, we investigated the mechanisms by which bermudagrass withstands the drought and submergence stresses through physiological, proteomic and metabolomic approaches. The results showed that significant physiological changes were observed after drought treatment, while only slight changes after submergence treatment, including compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics results showed that 81 proteins regulated by drought or submergence treatment were identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought stress with 46 increased abundance and 30 decreased abundance. Forty-five showed abundance changes after submergence treatment with 10 increased and 35 decreased. Pathway enrichment analysis revealed that pathways of amino acid metabolism and mitochondrial electron transport/ATP synthesis were only enriched by drought treatment, while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative pentose phosphate, glycolysis and redox were commonly over-represented after both drought and submergence treatments. Metabolomic analysis indicated that most of the metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents exhibited down-regulation or no significant changes when exposed to submergence stress, including sugars and sugar alcohols. These data indicated that drought stress extensively promoted photosynthesis and redox metabolisms while submergence stress caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the quiescence strategy with retarded growth might allow bermudagrass to be adaptive to long-term submerged environment, while activation of photosynthesis and redox, and accumulation of compatible solutes and molecular chaperones increased bermudagrass tolerance to drought stress. PMID:26617615

  11. The break-up of a viscous liquid drop in a high Reynolds number shear flow

    Science.gov (United States)

    Ng, Chin Hei; Aliseda, Alberto

    2015-11-01

    The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.

  12. Heat transfer study of a submerged reactor channel under boil-off condition

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Deb [Bhabha Atomic Research Centre, Mumbai (India). Reactor Safety Div.; Sahoo, P.K. [Indian Institute of Technology, Roorkee (India). Dept. of Mechanical and Industrial Engineering; Ghosh, A.K. [Bhabha Atomic Research Centre, Mumbai (India). Health, Safety and Environment Group

    2012-12-15

    Experiments have been carried out to study the heatup behavior of a single segmented reactor channel for Pressurized Heavy Water Reactor under submerged, partially submerged and exposed conditions. This situation may arise from a severe accident scenario of Pressurised Heavy Water Reactors where full or segmented reactor channels are likely to be disassembled and form a submerged debris bed. An assembly of electrical heater rod, simulating fuel bundle and channel components like Pressure Tube and Calandria Tube constitutes the segmented reactor channel. Heatup of this assembly is observed with respect to different water levels ranging from full submergence to totally exposed and power levels of 6-8 kW, typical to decay power level. It has been observed from the set of experiment that fuel bundle local dry out followed by heatup does not happen till the bundle is partially submerged. Temperature excursion of the bundle is evident when the bundle is exposed to steam-air environment. (orig.)

  13. [Effects of light on submerged macrophytes in eutrophic water: research progress].

    Science.gov (United States)

    Li-Sha, Zou; Ze-Yu, Nie; Xiao-Yan, Yao; Ji-Yan, Shi

    2013-07-01

    The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while light is the main limiting factor. This paper summarized the factors affecting the light extinction in water and the mechanisms of light intensity affecting the physiology of submerged macrophytes, with the focuses on the metabolic mechanisms of carbon, nitrogen, and phosphorus, the responses of antioxidant enzyme system, and the feedbacks of pigment composition and concentration in the common submerged macrophytes under low light stress. Several engineering techniques applied in the ecological restoration of submerged macrophytes were presented, and the framework of the restoration of submerged macrophytes in eutrophic water was proposed. Some problems in current research and several suggestions on future research were addressed, which could help the related research and engineering practices.

  14. THE STUDY ON THE DURABILITY OF SUBMERGED STRUCTURE DISPLACEMENT DUE TO CONCRETE FAILURE

    Directory of Open Access Journals (Sweden)

    M. Mohd

    2016-09-01

    Full Text Available Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  15. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    Science.gov (United States)

    Kim, Hyang Yeon; Heo, Do Yeon; Park, Hye Min; Singh, Digar; Lee, Choong Hwan

    2016-01-01

    Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

  16. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor

    KAUST Repository

    Fortunato, Luca

    2016-10-07

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. © 2016 Elsevier Ltd

  17. Effect of Media Components on the Mycelial Film Formation in Submerged Culture of Lentinus edodes (Shiitake

    Directory of Open Access Journals (Sweden)

    Olga M. Tsivileva

    2005-01-01

    Full Text Available A relationship between the chemical composition of nutrient medium, the activity of extracellular lectins of Lentinus edodes (Berk. Sing Lentinula edodes (Berk. Pegler (shiitake, and the formation of pigmented mycelial film in liquid culture has been found. A possibility to regulate the lectin activity of shiitake using the synthetic components has been shown. The formulation of medium, on which the brown mycelial film appears in several days of submerged cultivation, has been proposed. Among the natural amino acids studied as nitrogen sources, and nine divalent metal cations as inorganic additives, L-asparagine and Ca2+ (Mn2+ in the simultaneous presence exhibited the explicit positive effect in respect to the above without regard to the age of the culture. Quantum chemical methods and QSAR were applied to test our supposition that a differential character of interaction between the studied amino acids and Ca2+ (Mn2+ cations should be related not to the distinct electron structures of zwitter ions, but most likely to their differing hydrophobicities. The results obtained seem to make some contribution to the present notion of biochemicalprocesses that give rise to the occurrence of the aforesaid morphological structure of shiitake.

  18. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    Science.gov (United States)

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Applications of image analysis in the characterization of Streptomyces olindensis in submerged culture

    Directory of Open Access Journals (Sweden)

    Pamboukian Celso R. Denser

    2002-01-01

    Full Text Available The morphology of Streptomyces olindensis (producer of retamycin, an antitumor antibiotic grown in submerged culture was assessed by image analysis. The morphology was differentiated into four classes: pellets, clumps (or entangled filaments, branched and unbranched free filaments. Four morphological parameters were initially considered (area, convex area, perimeter, and convex perimeter but only two parameters (perimeter and convex perimeter were chosen to automatically classify the cells into the four morphological classes, using histogram analysis. Each morphological class was evaluated during growth carried out in liquid media in fermenter or shaker. It was found that pellets and clumps dominated in early growth stages in fermenter (due to the inoculum coming from a shaker cultivation and that during cultivation, the breakage of pellets and clumps caused an increase in the percentage of free filaments. The criteria of morphological classification by image analysis proposed were useful to quantify the percentage of each morphological class during fermentations and may help to establish correlations between antibiotic production and microorganism morphology.

  20. Holography of radiation and jet quenching

    International Nuclear Information System (INIS)

    Sin, S.-J.; Zahed, I.

    2004-07-01

    We study the on-linear propagation of radiation in N=4 SYM at zero and finite temperature using the refined radius/scale duality in AdS/CFT. We find that at finite temperature, the radiation stalls at a distance of 1/πT with a natural geometric and holographic interpretation. Indeed, the stalling is the holographic analogue of the gravitational in-fall of light towards the black hole in the bulk. We show that in the strongly interacting finite temperature medium, radiation can reach much farther than the static force. We suggest that these results are relevant for jet quenching by a strongly coupled quark-gluon liquid as currently probed in heavy ion colliders at RHIC. In particular, colored jets cannot make it beyond 1/3 fin at RHIC whatever their energy. (author)

  1. Cryogenically assisted abrasive jet micromachining of polymers

    International Nuclear Information System (INIS)

    Getu, H; Papini, M; Spelt, J K

    2008-01-01

    The abrasive jet micromachining (AJM) of elastomers and polymers such as polydimethylsiloxane (PDMS), acrylonitrile butadiene styrene (ABS) and polytetrafluoroethylene (PTFE) for use in micro-fluidic devices was found to be very slow or impossible at room temperature. To enhance the material removal rate in such materials, a stream of liquid nitrogen (LN 2 ) was injected into the abrasive jet, cooling the target to cryogenic temperatures. Erosion rate measurements on the three polymeric materials (PDMS, ABS and PTFE) with and without the use of LN 2 were compared along with the profiles of micromachined channels and holes. It was found that the use of LN 2 cooling caused brittle erosion in PDMS, allowing it to be micromachined successfully. An erosion rate increase was also observed in PTFE and ABS at high and intermediate impact angles. The use of LN 2 also was found to reduce particle embedding

  2. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Kupschus, P.

    1984-09-01

    The report is in sections, as follows. (1) Introduction and summary. (2) A brief description of the origins of the JET Project within the EURATOM fusion programme and the objectives and aims of the device. The basic JET design and the overall philosophy of operation are explained and the first six months of operation of the machine are summarised. The Project Team Structure adopted for the Operation Phase is set out. Finally, in order to set JET's progress in context, other large tokamaks throughout the world and their achievements are briefly described. (3) The activities and progress within the Operation and Development Department are set out; particularly relating to its responsibilities for the operation and maintenance of the tokamak and for developing the necessary engineering equipment to enhance the machine to full performance. (4) The activities and progress within the Scientific Department are described; particularly relating to the specification, procurement and operation of diagnostic equipment; definition and execution of the programme; and the interpretation of experimental results. (5) JET's programme plans for the immediate future and a broad outline of the JET Development Plan to 1990 are given. (author)

  3. Drop formation from axi-symmetric fluid jets

    NARCIS (Netherlands)

    Driessen, T.W.

    2013-01-01

    In DoD inkjet printing, an ink jet is ejected from a nozzle, which forms a liquid filament after breaking up from the nozzle. The stability of this filament must be controlled for optimal print quality. This stability is the focus of the research comprised in this thesis. We start the investigation

  4. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production.

    Science.gov (United States)

    Umaiyakunjaram, R; Shanmugam, P

    2016-09-01

    This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2014-01-01

    Full Text Available Using a facile deposition method, the ultrafine silver particles are successfully deposited on the Si surface that is not submerged in precursor solutions. The ultrafine silver particles have many advantages, such as quasiround shape, uniformity in size, monodisperse distribution, and reduction of agglomeration. The internal physical procedure in the deposition is also investigated. The results show that there are more particles on the rough Si surface due to the wetting effect of solid-liquid interface. The higher concentration of ethanol solvent can induce the increase of quantity and size of particles on Si surface not in solutions. The ultrafine particles can be used to prepare porous Si antireflective layer in solar cell applications.

  6. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  7. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1986-03-01

    This is an overview summary of the scientific and technical advances at JET during the year 1985, supplemented by appendices of detailed contributions (in preprint form) of eight of the more important JET articles produced during that year. It is aimed not only at specialists and experts but also at a more general scientific community. Thus there is a brief summary of the background to the project, a description of the basic objectives of JET and the principle design features of the machine. The new structure of the Project Team is also explained. Developments and future plans are included. Improvements considered are those which are designed to overcome certain limitations encountered generally on Tokamaks, particularly those concerned with density limits, with plasma MHD behaviour, with impurities and with plasma transport. There is also a complete list of articles, reports and conference papers published in 1985 - there are 167 such items listed. (UK)

  8. Critical condition for the transformation from Taylor cone to cone-jet

    International Nuclear Information System (INIS)

    Wei Cheng; Zhao Yang; Gang Tie-Qiang; Chen Li-Jie

    2014-01-01

    An energy method is proposed to investigate the critical transformation condition from a Taylor cone to a cone-jet. Based on the kinetic theorem, the system power allocation and the electrohydrodynamics stability are discussed. The numerical results indicate that the energy of the liquid cone tip experiences a maximum value during the transformation. With the proposed jetting energy, we give the critical transformation condition under which the derivative of jetting energy with respect to the surface area is greater than or equal to the energy required to form a unit of new liquid surface

  9. In-liquid plasma devices and methods of use thereof

    KAUST Repository

    Cha, Min Suk

    2017-08-10

    Devices and methods for generating a plasma in a liquid are provided. A low- dielectric material can be placed in contact with the liquid to form an interface a distance from an anode. A voltage can be applied across the anode and a cathode submerged in the liquid to produce the plasma. A variety of devices are provided, including for continuous operation. The devices and methods can be used to generate a plasma in a variety of liquids, for example for water treatment, hydrocarbon reformation, or synthesis of nanomaterial.

  10. Jet shapes in hadron and electron colliders

    International Nuclear Information System (INIS)

    Wainer, N.

    1993-05-01

    High energy jets are observed both in hadronic machines like the Tevatron and electron machines like LEP. These jets have an extended structure in phase space which can be measured. This distribution is usually called the jet shape. There is an intrinsic relation between jet variables, like energy and direction, the jet algorithm used, and the jet shape. Jet shape differences can be used to separate quark and gluon jets

  11. Galaxies with jet streams

    International Nuclear Information System (INIS)

    Breuer, R.

    1981-01-01

    Describes recent research work on supersonic gas flow. Notable examples have been observed in cosmic radio sources, where jet streams of galactic dimensions sometimes occur, apparently as the result of interaction between neighbouring galaxies. The current theory of jet behaviour has been convincingly demonstrated using computer simulation. The surprisingly long-term stability is related to the supersonic velocity, and is analagous to the way in which an Appollo spacecraft re-entering the atmosphere supersonically is protected by the gas from the burning shield. (G.F.F.)

  12. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  13. Microbial production of four biodegradable siderophores under submerged fermentation.

    Science.gov (United States)

    Fazary, Ahmed E; Al-Shihri, Ayed S; Alfaifi, Mohammad Y; Saleh, Kamel A; Alshehri, Mohammed A; Elbehairi, Serag Eldin I; Ju, Yi-Hsu

    2016-07-01

    Four siderophore analogues were isolated and purified from Escherichia coli, Bacillus spp. ST13, and Streptomyces pilosus microorganisms under some specific submerged fermentation conditions. In order to evaluate the highest production of this siderophore analogues through the growth, a rapid spectrophotometric screening semi-quantitative method was used, in which interestingly the analogues were isolated in its own form not its iron chelate. After chromatographic separation, the chemical structures of the isolated and purified siderophores were illustrated using detailed spectroscopic techniques. The biodegradation studies were done on that four novel isolated and purified siderophores following OECD protocols. In addition, the bioactivities of these siderophores and their iron complexes were examined and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Use of the submerged demineralizer system at Three Mile Island

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Hitz, C.G.

    1983-01-01

    The Submerged Demineralizer System (SDS) has been used at Three Mile Island-Unit 2 (TMI-2) to process more than 1.5 million gallons of water contaminated as a result of the March, 1979 accident. The SDS has processed approximately 315,000 gallons of water accumulated in tanks in the Auxiliary Building, approximately 650,000 gallons of water that existed in the Reactor Containment Building basement, approximately 90,000 gallons of primary reactor coolant (processed in a bleed and feed mode) and approximately 169,000 gallons of water used in the large scale decontamination of the Reactor Building. During its operation, the SDS has immobilized approximately 340,000 curies of the principal fission products 137 Cs, 134 Cs and 90 Sr on inorganic media (zeolite). Processing summaries and performance evaluations are presented. 12 references, 1 figure, 6 tables

  15. Endodontic Treatment in Submerged Roots: A Case Report

    Directory of Open Access Journals (Sweden)

    Hemalatha Pameshwar Hiremath

    2010-06-01

    Full Text Available Alveolar ridge resorption has long been considered an unavoidable consequence of tooth extraction. While the extent and pattern of resorption is variable among individuals, there is a progressive loss of ridge contour as a result of physiologic bone remodeling. Even today, with best modalities of tooth preservation, there is a group of elderly individuals who do not benefit from modern preventive practices and who now present a dilemma in terms of maintaining the masticatory apparatus necessary for nutrition. Even with excellent dental care, such patients experience abrasion of the natural tooth crowns with age, and embedded roots are left within the alveolar bone. According to old concepts of dental care, extraction of these roots would have been recommended, but today’s goal of excellence in endodontics dictates otherwise. We report a case in which vital and non-vital root submergence was carried out to prevent alveolar ridge reduction.

  16. Growth Control of Cyanobacteria by Three Submerged Macrophytes

    Science.gov (United States)

    Wang, Haiou; Zhong, Guangrong; Yan, Hai; Liu, Hu; Wang, Yao; Zhang, Chun

    2012-01-01

    Abstract To illustrate the control of harmful cyanobacterial growth and the removal of nutritients from fresh water, three submerged macrophytes were grown in the raw water of Guishui Lake. Lindernia rotundifolia, Hygrophila stricta, and Cryptocoryne crispatula were grown together in situ to assess their effectiveness in nutrient removal in microcosms. Results revealed the inhibitory effects of these species on cyanobacterial growth. In addition, water quality in the planted microcosms showed improvement when compared to the water quality of the unplanted microcosm. At all treatments studied, the chemical oxygen demand in the planted microcosms was lower than that in the unplanted microcosms, and the removal rate of all the nitrogen and phosphate in the planted microcosms was better than that of the microcosm without plants. Our study offers a useful algal control method for the lakes or reservoirs that suffer from harmful cyanobacterial blooms. PMID:22693412

  17. Submerged-arc wire electrodes with nickel-plated surfaces

    International Nuclear Information System (INIS)

    Hagen, H. vom.

    1976-01-01

    The article reports on the development of SANWELD welding rods at GARHYTTAN's which is a wire free of impurities, copper, and hydrogen with a nickel surface. It is producted according to the SANBOND process. The wire has an optimum of mechanical quality grades depending on the powder used for welding, especially an improvement of notch impact strength. The elongation, especially the long-time values, are improved, hydrogen cracks are excluded depending on the correct powder or protective gas, and the low-temparature values are improved. An attendant phenomenon, which is not unimportant, is that the wires are practically corrosion-resistant in the non-welded state. The wire is suitable for submerged-arc welding in steam boilers and pressure vessels. (IHoe) [de

  18. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.

  19. Flow structure of conical distributed multiple gas jets injected into a water chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiajun; Yu, Yonggang [Nanjing University of Science and Technology, Nanjing (China)

    2017-04-15

    Based on an underwater gun firing project, a mock bullet with several holes on the head was designed and experimented to observe the combustion gas injected into a cylindrical water chamber through this mock bullet. The combustion gas jets contain one vertical central jet and 4 to 8 slant lateral jets. A high speed camera system was used to record the expansion of gas jets in the experimental study. In numerical simulations, the Euler two-fluid model and volume of fluid method were adopted to describe the gas-liquid flow. The results show the backflow zone in lateral jet is the main factor influencing the gas-liquid turbulent mixing in downstream. On cross sections, the gas volume fraction increased with time but the growth rate decreased. With a change of nozzle structure, the gas fraction was more affected than the shock structure.

  20. Safe shutdown analysis for submerged equipment inside containment

    International Nuclear Information System (INIS)

    Song, Dong Soo; Lee, Seung Chan; Yoon, Duk Joo; Ha, Sang Jun

    2017-01-01

    The purpose of the paper is to analyze internal flooding effects on the submerged safety-related components inside containment building. Safe shutdown analysis has been performed based on the criteria, assumptions and guideline provided in ANSI/ANS-56.11-1988 and ANSI/ANS-58.11-1988. Flooding can be postulated from a failure of several systems located inside the containment. Loss of coolant accident (LOCA), Feed water line break (FWLB), and other pipe breaks/cracks are assumed. The worst case flooding scenario is a large break LOCA. The maximum flood level for a large break LOCA is calculated based on the combined inventory of the reactor coolant system, the three accumulators, the boron injection tank (BIT), the chemical additive tank (CAT), and the refueling water storage tank (RWST) flooding the containment. The maximum flood level that could occur from all of the water which is available in containment is 2.3 m from the base elevation. A detailed flooding analysis for the components has been performed to demonstrate that internal flooding resulting from a postulated initiating event does not cause the loss of equipment required to achieve and maintain safe shutdown of the plant, emergency core cooling capability, or equipment whose failure could result in unacceptable offsite radiological consequences. The flood height can be calculated as h = (dh/dt) x (t-t 0 ) + h 0 , where h = time dependent flood height and subscript 0 means the initial value and height slope dh/dt. In summary, the submerged components inside containment are acceptable because they complete the mission of safety injection (SI) prior to submeregency or have no safe shutdown function including containment isolation during an accident. (author)

  1. Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S; Wetzel, R G

    1981-01-01

    Scirpus subterminalis Torr., a submerged angiosperm abundant in many hardwater lakes of the Great Lakes region, was investigated for various photosynthetic carbon fixation properties in relation to available inorganic carbon and levels of carbon fixing enzymes. Photosynthetic experiments were CO/sub 2/ and HCO/sub 3//sup -/ were supplied at various concentrations showed that Scirpus was able to utilize HCO/sub 3//sup -/ at those concentrations close to natural conditions. However, when CO/sub 2/ concentrations were increased above ambient, photosynthetic rates increased markedly. It was concluded that the photosynthetic potential of this plant in many natural situations may be limited by inorganic carbon uptake in the light. Phosphoenolpyruvate carboxylase (PEPcase)/ribulose-1,5-bisphosphate carboxylase (ruBPcase) ratios of the leaves varied between 0.5 and 0.9 depending on substrate concentration during assay. The significance of PEP-mediated carbon fixation of Scirpus (basically a C/sub 3/ plant) in the dark was investigated. Malate accumulated in the leaves during the dark period of a 24-h cycle and malate levels decreased significantly during the following light period. The accumulation was not due to transport of malate from the roots. Carbon uptake rates in the dark by the leaves of Scirpus were lower than malate accumulation rates. Therefore, part of the malate was likely derived from respired CO/sub 2/. Carbon uptake rates in the light were much higher than malate turnover rates. It was estimated that carbon fixation via malate could contribute up to 12% to net photosynthetic rates. The ecological significance of this type of metabolism in submerged aquatics is discussed.

  2. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  3. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-01-01

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed

  4. Water experiment of high-speed, free-surface, plane jet along concave wall

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Ida, Mizuho; Kato, Yoshio; Maekawa, Hiroshi; Itoh, Kazuhiro; Kukita, Yutaka

    1997-01-01

    In the International Fusion Materials Irradiation Facility (IFMIF), an intense 14 MeV neutron beam will be generated in the high-speed liquid lithium (Li) plane jet target flowing along concave wall in vacuum. As part of the conceptual design activity (CDA) of the IFMIF, the stability of the plane liquid jet flow was studied experimentally with water in a well-defined channel geometry for non-heating condition. A two-dimensional double-reducer nozzle being newly proposed for the IFMIF target successfully provided a high-speed (≤ 17 m/s) stable water jet with uniform velocity distribution at the nozzle exit without flow separation in the nozzle. The free surface of the jet was covered by two-dimensional and/or three-dimensional waves, the size of which did not change much over the tested jet length of ∼130 mm. The jet velocity profile changed around the nozzle exit from uniform to that of free-vortex flow where the product of the radius of stream line and local velocity is constant in the jet thickness. The jet thickness increased immediately after exiting the nozzle because of the velocity profile change. The predicted jet thickness by a modified one-dimensional momentum model agreed with the data well. (author)

  5. Liquid metal cooled fast breeder nuclear reactor

    International Nuclear Information System (INIS)

    Scott, D.

    1979-01-01

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  6. Liquid metal pump for nuclear reactors

    International Nuclear Information System (INIS)

    Allen, H.G.; Maloney, J.R.

    1975-01-01

    A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank

  7. Turbulent jet in confined counterflow

    Indian Academy of Sciences (India)

    The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...

  8. Elucidating Jet Energy Loss Using Jets Prospects from ATLAS

    CERN Document Server

    Grau, N

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet $R_{AA}$, the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  9. Elucidating Jet Energy Loss Using Jets: Prospects from ATLAS

    International Nuclear Information System (INIS)

    Grau, N.

    2009-01-01

    Jets at the LHC are expected to provide the testing ground for studying QCD energy loss. In this contribution, we briefly outline the strategy that will be used to measure jets in ATLAS and how we will go about studying energy loss. We describe the utility of measuring the jet R AA , the fragmentation function, and heavy flavor jets. Utilizing the collision energy provided by the LHC and the nearly hermetic and highly segmented calorimeter, ATLAS is expected to make important contributions to the understanding of parton energy loss using fully reconstructed jets.

  10. Development of New Submergence Tolerant Rice Variety for Bangladesh Using Marker-Assisted Backcrossing

    Directory of Open Access Journals (Sweden)

    Khandakar Md Iftekharuddaula

    2015-01-01

    Full Text Available Submergence tolerant high yielding rice variety was developed using BR11 as a recipient parent applying foreground, phenotypic and background selection approaches. Recombinant selection was found essential to minimize linkage drag by BC2F2 generation. Without recombinant selection, the introgression size in the backcross recombinant lines (BRLs was approximately 15 Mb on the carrier chromosome. The BRLs were found submergence tolerance compared to the check varieties under complete submergence for two weeks at Bangladesh Rice Research Institute, and produced higher yield compared to the isogenic Sub1-line under controlled submerged condition. The BRL IR85260-66-654-Gaz2 was released as BRRI dhan52 in 2010, which was the first high yielding submergence tolerant variety in Bangladesh. BRRI dhan52 produced grain yield ranging from 4.2 to 5.2 t/hm2 under different flash flood prone areas of Bangladesh in three consecutive seasons. The study demonstrated the efficiency of recombinant selection and better adaptability of the newly released submergence tolerant high yielding variety in flash flood prone different areas of the country with respect to submergence tolerance and yield potential.

  11. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  12. The Performance and Fouling Control of Submerged Hollow Fiber (HF Systems: A Review

    Directory of Open Access Journals (Sweden)

    Ebrahim Akhondi

    2017-07-01

    Full Text Available The submerged membrane filtration concept is well-established for low-pressure microfiltration (MF and ultrafiltration (UF applications in the water industry, and has become a mainstream technology for surface-water treatment, pretreatment prior to reverse osmosis (RO, and membrane bioreactors (MBRs. Compared to submerged flat sheet (FS membranes, submerged hollow fiber (HF membranes are more common due to their advantages of higher packing density, the ability to induce movement by mechanisms such as bubbling, and the feasibility of backwashing. In view of the importance of submerged HF processes, this review aims to provide a comprehensive landscape of the current state-of-the-art systems, to serve as a guide for further improvements in submerged HF membranes and their applications. The topics covered include recent developments in submerged hollow fiber membrane systems, the challenges and developments in fouling-control methods, and treatment protocols for membrane permeability recovery. The highlighted research opportunities include optimizing the various means to manipulate the hydrodynamics for fouling mitigation, developing online monitoring devices, and extending the submerged HF concept beyond filtration.

  13. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  14. JET joint undertaking

    International Nuclear Information System (INIS)

    1984-06-01

    JET began operations on 25 June 1983. This annual report contains administrative information and a general review of scientific and technical developments. Among them are vacuum systems, toroidal and poloidal field systems, power supplies, neutral beam heating, radiofrequency heating, remote handling, tritium handling, control and data acquisition systems and diagnostic systems

  15. Triton burnup in JET

    International Nuclear Information System (INIS)

    Chipsham, E.; Jarvis, O.N.; Sadler, G.

    1989-01-01

    Triton burnup measurements have been made at JET using time-integrated copper activation and time-resolved silicon detector techniques. The results confirm the classical nature of both the confinement and the slowing down of the 1 MeV tritons in a plasma. (author) 8 refs., 3 figs

  16. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    which are rapidly rotating neutron stars emitting narrow beams of radiation. Images of ... rized into starburst galaxies and AGN powered by SMBHs. The ..... swer lies in the relativistic motion of the jets which boosts the flux density of .... radio cores, detection of ... to as synchrotron self-Compton or SSC, or those of the cosmic.

  17. LHCb jet reconstruction

    International Nuclear Information System (INIS)

    Francisco, Oscar; Rangel, Murilo; Barter, William; Bursche, Albert; Potterat, Cedric; Coco, Victor

    2012-01-01

    Full text: The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than 4 X 10 32 cm -2 s -1 and the integrated luminosity reached the value of 1,02fb -1 on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test perturbative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space ηX φ and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the colorimeters are used on the LHCb experiment to create objects called particle flow objects that are used as input to anti-kt algorithm. The LHCb is specially interesting for jets studies because its η region is complementary to the others main experiments on LHC. We will present the first results of jet reconstruction using 2011 LHCb data. (author)

  18. LHCb jet reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Oscar; Rangel, Murilo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Barter, William [University of Cambridge, Cambridge (United Kingdom); Bursche, Albert [Universitat Zurich, Zurich (Switzerland); Potterat, Cedric [Universitat de Barcelona, Barcelona (Spain); Coco, Victor [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands)

    2012-07-01

    Full text: The Large Hadron Collider (LHC) is the most powerful particle accelerator in the world. It has been designed to collide proton beams at an energy up to 14 TeV in the center of mass. In 2011, the data taking was done with a center of mass energy of 7 TeV, the instant luminosity has reached values greater than 4 X 10{sup 32} cm{sup -2}s{sup -1} and the integrated luminosity reached the value of 1,02fb{sup -1} on the LHCb. The jet reconstruction is fundamental to observe events that can be used to test perturbative QCD (pQCD). It also provides a way to observe standard model channels and searches for new physics like SUSY. The anti-kt algorithm is a jet reconstruction algorithm that is based on the distance of the particles on the space {eta}X {phi} and on the transverse momentum of particles. To maximize the energy resolution all information about the trackers and the colorimeters are used on the LHCb experiment to create objects called particle flow objects that are used as input to anti-kt algorithm. The LHCb is specially interesting for jets studies because its {eta} region is complementary to the others main experiments on LHC. We will present the first results of jet reconstruction using 2011 LHCb data. (author)

  19. Fastener investigation in JET

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, P., E-mail: patrick.bunting@ccfe.ac.uk; Thompson, V.; Riccardo, V.

    2016-11-15

    Highlights: • Experimental work to identify the cause of a bolt seizure inside the JET vessel. • Taguchi method used to reduce tests to 16 while covering 5 parameters. • Experimental work was unable to reproduce bolt seizure. • Thread contamination had little effect on the bolt performance. - Abstract: JET is an experimental fusion reactor consisting of magnetically confined, high temperature plasma inside a large ultra-high vacuum chamber. The inside of the chamber is protected from the hot plasma with tiles made from beryllium, tungsten, carbon composites and other materials bolted to the vessel wall. The study was carried out in response to a JET fastener seizing inside the vacuum vessel. The following study looks at characterising the magnitude of the individual factors affecting the fastener break away torque. This was carried out using a statistical approach, the Taguchi method: isolating the net effect of individual factors present in a series of tests [1](Grove and Davis, 1992). Given the severe environment within the JET vessel due to the combination of heat, ultra-high vacuum and the high contact pressure in bolt threads, the contributions of localised diffusion bonding is assessed in conjunction with various combinations of bolt and insert material.

  20. Jet Inlet Efficiency

    Science.gov (United States)

    2013-08-08

    AFRL-RW-EG-TR-2014-044 Jet Inlet Efficiency Nigel Plumb Taylor Sykes-Green Keith Williams John Wohleber Munitions Aerodynamics Sciences...CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Nigel Plumb Taylor Sykes-Green Keith Williams John

  1. Abrasive water jet cutting

    International Nuclear Information System (INIS)

    Leist, K.J.; Funnell, G.J.

    1988-01-01

    In the process of selecting a failed equipment cut-up tool for the process facility modifications (PFM) project, a system using an abrasive water jet (AWJ) was developed and tested for remote disassembly of failed equipment. It is presented in this paper

  2. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  3. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  4. The dynamics of coherent flow structures within a submerged permeable bed

    Science.gov (United States)

    Blois, G.; Best, J.; Sambrook Smith, G.; Hardy, R. J.; Lead, J.

    2009-12-01

    The existence of complex 3D coherent vortical structures in turbulent boundary layers has been widely reported from experimental observations (Adrian et al., 2007, Christensen and Adrian, 2001) and investigations of natural open channel flows (e.g. Kostaschuk and Church, 1993; Best, 2005). The interaction between these flow structures and the solid boundary that is responsible for their generation is also receiving increasing attention due to the central role played by turbulence in governing erosion-deposition processes. Yet, for the majority of studies, the bed roughness has been represented using rough impermeable surfaces. While not inherently acknowledged, most research in this area is thus only strictly applicable to those natural river beds composed either of bedrock or clay, or that have armoured, impermeable, surfaces. Recently, many researchers have noted the need to account for the role of bed permeability in order to accurately reproduce the true nature of flow over permeable gravel-bed rivers. For these cases, the near-bed flow is inherently and mutually linked to the interstitial-flow occurring in the porous solid matrix. This interaction is established through turbulence mechanisms occurring across the interface that may be important for influencing the incipient motion of cohesionless sediment. However, the nature of this turbulence and the formation of coherent structures within such permeable beds remain substantially unresolved due to the technical challenges of collecting direct data in this region. In this paper, we detail the existence and dynamic nature of coherent vortical structures within the individual pore spaces of a permeable bed submerged by a free stream flow. Laboratory experiments are reported in which a permeable flume bed was constructed using spheres packed in an offset cubic arrangement. We applied a high resolution E-PIV (Endoscopic Particle Image Velocimetry) approach in order to fully resolve the instantaneous structure of

  5. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multi-jets formation using laser forward transfer

    International Nuclear Information System (INIS)

    Biver, Emeric; Rapp, Ludovic; Alloncle, Anne-Patricia; Delaporte, Philippe

    2014-01-01

    The dynamics of multi-jets formation in liquid films has been investigated using the laser-induced forward transfer (LIFT) technique. This technique allows the deposition of micrometer-sized droplets with a high spatial resolution from a donor substrate to a receiver substrate. The donor was a silver nanoparticles ink-coated substrate. The interaction of the laser pulse with the donor ink layer generates an expanding bubble in the liquid which propels a jet towards the receiver. Silver lines have already been printed by depositing overlapping droplets in a “low speed” process. In order to increase the throughput, it is necessary to decrease the time between the depositions of two droplets. By scanning the beam of a high repetition rate UV picosecond laser (343 nm; 30 ps; 500 kHz) with a galvanometric mirror, successive pulses are focused on the silver nanoparticles ink-coated donor substrate. The shape and dynamics of single jets and adjacent jets have been investigated by means of a time-resolved imaging technique. By varying the distance between the laser spots, different behaviours were observed and compared to the printed droplets. A spacing of 25 μm between laser spots was found to generate both stable jets and well-controlled, reproducible droplets at high speed.

  7. Jet substructure using semi-inclusive jet functions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States)

    2016-11-25

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G{sub i}{sup h}(z=ω{sub J}/ω,z{sub h}=ω{sub h}/ω{sub J},ω{sub J},R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω{sub J}), and the hadron h (ω{sub h}). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G{sub i}{sup h}(z,z{sub h},ω{sub J},R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL{sub R}) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL{sub R} results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  8. Jet substructure using semi-inclusive jet functions in SCET

    International Nuclear Information System (INIS)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2016-01-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G_i"h(z=ω_J/ω,z_h=ω_h/ω_J,ω_J,R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω_J), and the hadron h (ω_h). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G_i"h(z,z_h,ω_J,R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL_R) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL_R results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  9. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  10. Effects of the decomposing liquid of Cladophora oligoclona on Hydrilla verticillata turion germination and seedling growth.

    Science.gov (United States)

    Zhang, Lu; Peng, Xue; Liu, Biyun; Zhang, Yi; Zhou, Qiaohong; Wu, Zhenbin

    2018-08-15

    Excessive proliferation of filamentous green algae (FGA) has been considered an important factor resulting in the poor growth or even decline of submerged macrophytes. However, there is a lack of detailed information regarding the effect of decaying FGA on submerged macrophytes. This study aimed to investigate whether the decomposing liquid from Cladophora oligoclona negatively affects Hydrilla verticillata turion germination and seedling growth. The results showed that the highest concentrations of decomposing liquid treatments inhibited the turion germination rate, which was the lowest than other treatments, at only 84%. The chlorophyll a fluorescence (JIP test) and physiological indicators (chlorophyll a content, soluble sugars, Ca 2+ /Mg 2+ -ATPase and PAL activity) were also measured. The chlorophyll a content in the highest concentration (40% of original decomposing liquid) treatment group decreased by 43.53% than that of the control; however, soluble sugars, Ca 2+ /Mg 2+ -ATPase, and PAL activity increased by 172.46%, 271.19%, and 26.43% respectively. The overall results indicated that FGA decay has a considerable effect on submerged macrophyte turion germination and seedling growth, which could inhibit their expansion and reproduction. This study emphasized the need to focus on effects of FGA decomposition on the early growth stages of submerged macrophytes and offered technological guidance for submerged vegetation restoration in lakes and shallow waters. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Structure of pulsed plasma jets

    International Nuclear Information System (INIS)

    Cavolowsky, J.A.

    1987-01-01

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied

  12. Effects of submergence on growth and survival of saplings of three wetland trees differing in adaptive mechanisms for flood tolerance

    Directory of Open Access Journals (Sweden)

    Fumiko Iwanaga

    2015-04-01

    Full Text Available Aim of study: Withstanding total submergence and reaeration following submergence is essential for the survival and establishment of wetland species. We focused on “LOES–low oxygen escape syndrome” and “LOQS–low oxygen quiescence syndrome” and compared tolerances to total submergence among wetland woody species differing in morphological adaptation to soil flooding. Area of study, materials and methods: This study examined the survival of 2-year-old saplings of Taxodium distichum and Metasequioia glyptostroboides (LOQS species, and Alnus japonica (LOES species, during and after total submergence. Saplings were completely submerged, then de-submerged to determine trends in survival and growth Main results: The M. glyptostroboides and A. japonica saplings could not survive prolonged submergence for more than 8 weeks, whereas saplings of T. distichum survived for over 2 years. Submerged saplings of all species showed no significant growth or modifications in morphology and anatomy under water, such as shoot elongation, adventitious root formation, and/or aerenchyma development. All T. distichum saplings that were de-submerged in the second year had the same pattern of shoot growth regardless of differences in timing and seasonality of de-submergence. Wood formation in T. distichum saplings ceased during submergence and resumed after de-submergence in spring and summer, but not in autumn. Research highlights: T. distichum saplings, which survived longer submergence periods than A. japonica and M. glyptostroboides, had physiological characteristics, such as suspension of growth and metabolism, which allowed survival of protracted total submergence (at least 2 years when saplings were immersed during the dormant stage before leaf flushing.

  13. Enhanced heat sink with geometry induced wall-jet

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M. [Department of Mechanical Engineering Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh (Bangladesh)

    2016-07-12

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  14. Autoxidation of jet fuels: Implications for modeling and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, S.P. [Univ. of Dayton Research Institute, OH (United States); Chin, L.P. [Systems Research Laboratories, Inc., Dayton, OH (United States)

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to model the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.

  15. Study on the wiping gas jet in continuous galvanizing line

    Science.gov (United States)

    Kweon, Yong-Hun; Kim, Heuy-Dong

    2011-09-01

    In the continuous hot-dip galvanizing process, the gas-jet wiping is used to control the coating thickness of moving steel strip. The high speed gas-jet discharged from the nozzle slot impinges on the strip, and at this moment, wipes the liquid coating layer dragged by a moving strip. The coating thickness is generally influenced on the flow characteristics of wiping gas-jet such as the impinging pressure distribution, pressure gradient and shear stress distribution on the surface of strip. The flow characteristics of wiping gas-jet mentioned above depends upon considerably both the process operating conditions such as the nozzle pressure, nozzle-to-strip distance and line speed, and the geometry of gas-jet wiping apparatus such as the height of nozzle slot. In the present study, the effect of the geometry of nozzle on the coating thickness is investigated with the help of a computational fluid dynamics method. The height of nozzle slot is varied in the range of 0.6mm to 1.7mm. A finite volume method (FVM) is employed to solve two-dimensional, steady, compressible Navier-Stokes equations. Based upon the results obtained, the effect of the height of nozzle slot in the gas-jet wiping process is discussed in detail. The computational results show that for a given standoff distance between the nozzle to the strip, the effective height of nozzle slot exists in achieving thinner coating thickness.

  16. Studies of turbulent round jets through experimentation, simulation, and modeling

    Science.gov (United States)

    Keedy, Ryan

    This thesis studies the physics of the turbulent round jet. In particular, it focuses on three different problems that have the turbulent round jet as their base flow. The first part of this thesis examines a compressible turbulent round jet at its sonic condition. We investigate the shearing effect such a jet has when impinging on a solid surface that is perpendicular to the flow direction. We report on experiments to evaluate the jet's ability to remove different types of explosive particles from a glass surface. Theoretical analysis revealed trends and enabled modeling to improve the predictability of particle removal for various jet conditions. The second part of thesis aims at developing a non-intrusive measurement technique for free-shear turbulent flows in nature. Most turbulent jet investigations in the literature, both in the laboratory and in the field, required specialized intrusive instrumentation and/or complex optical setups. There are many situations in naturally-occurring flows where the environment may prove too hostile or remote for existing instrumentation. We have developed a methodology for analyzing video of the exterior of a naturally-occurring flow and calculating the flow velocity. We found that the presence of viscosity gradients affects the velocity analysis. While these effects produce consistent, predictable changes, we became interested in the mechanism by which the viscosity gradients affect the mixing and development of the turbulent round jet. We conducted a stability analysis of the axisymmetric jet when a viscosity gradient is present. Finally, the third problem addressed in this thesis is the growth of liquid droplets by condensation in a turbulent round jet. A vapor-saturated turbulent jet issues into a cold, dry environment. The resulting mixing produces highly inhomogeneous regions of supersaturation, where droplets grow and evaporate. Non-linear interactions between the droplet growth rate and the supersaturation field make

  17. Cryogenic grinding of electrospun poly-epsilon-caprolactone mesh submerged in liquid media

    Czech Academy of Sciences Publication Activity Database

    Knotek, P.; Pouzar, M.; Buzgo, Matej; Křížková, B.; Vlček, Milan; Míčková, Andrea; Plencner, Martin; Návesník, J.; Amler, Evžen; Bělina, P.

    2012-01-01

    Roč. 32, č. 6 (2012), s. 1366-1374 ISSN 0928-4931 Grant - others:GA MŠk(CZ) GA UK 330611; GA MŠk(CZ) GA UK 384311; GA MŠk(CZ) GA UK 99610; GA MŠk(CZ) ME 10145; GA MŠk(CZ) MSM0021627501; GA MŠk(CZ) ERA-NET Carsila ME10145; EU FP7(XE) BIOSCENT ID 214539 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z40500505 Keywords : cryogenic grinding * poly-epsilon-caprolactone * nano/micro-mesh Subject RIV: BO - Biophysics Impact factor: 2.404, year: 2012

  18. Anti-Growth Factors Associated with Pleurotus ostreatus in a Submerged Liquid Fermentation

    Directory of Open Access Journals (Sweden)

    Juliet B. Akinyele

    2012-09-01

    Full Text Available Aims: Previous studies had revealed that cultivation of Pleurotus ostreatus is often met with a lot of challenges ranging from environmental to biological factors which adversely affect the successful cultivation of the mushroom. Hence, a need to determine factors against mycelia colonization of substrate during mushroom’s cultivation.Methodology and Result: Conventional streak method was employed to establish the percentage inhibition as well as intercolony distance between the test organisms obtained from the infected substrate and mycelia of the mushroom during substrate colonization. The test organisms are: a fungus, Kutilakesopsis macalpineae and a bacterium,Pseudomonas tolaasii. The effect of pH and temperature on the mycelia growth of P. ostreatus was also investigated. There was a gradual increase in the percentage inhibition from 33.3 % at 24 h to 75.0 % at 168 h for K. macalpineae and 37.5 % at 24 h to 70.0 at 168 h for P. tolaasii. The inter-colony distance between the antagonists and the mushroom mycelium gradually decreased. Optical density of the mycelium growth was at its optimum at pH 4.5 and temperature of25 °C respectively. In vitro study also showed a significant increase in the optical density from 0.855±0.03 at 24 h to 1.316±0.02 at 168 h in the absence of test antagonist as against 0.812±0.06 and 0.79±0.02 at 24 h to 1.103±0.03 and 0.902±0.03 at 168 h when K. macalpineae and P.tolaasii were used as test antagonistic respectively.Conclusion, significance and impact of study: Sterilization of substrate is essential to avoid contamination during mycelia colonization. Also, slightly acidic medium and temperature control is necessary for high yield of fruit bodies.

  19. Apparatus for the in-situ inspection of tubes while submerged in a liquid

    International Nuclear Information System (INIS)

    Abell, G.E.; Plavsity, L.; Sattler, F.J.

    1981-01-01

    Before inspecting the tubes in a nuclear steam generator it has previously been necessary to drain the tubes of primary coolant. This invention provides an apparatus which makes it possible to inspect steam generator tubes which are partially filled with primary coolant. An eddy current sensor and its cable pass through a conduit into which a drying medium such as compressed air is introduced, removing coolant adhering to the surface of the cable. (LL)

  20. DeepJet: a deep-learned multiclass jet-tagger for slim and fat jets

    CERN Multimedia

    CERN. Geneva; Qu, Huilin; Stoye, Markus; Kieseler, Jan; Verzetti, Mauro

    2018-01-01

    We present a customized neural network architecture for both, slim and fat jet tagging. It is based on the idea to keep the concept of physics objects, like particle flow particles, as a core element of the network architecture. The deep learning algorithm works for most of the common jet classes, i.e. b, c, usd and gluon jets for slim jets and W, Z, H, QCD and top classes for fat jets. The developed architecture promising gains in performance as shown in simulation of the CMS collaboration. Currently the tagger is under test in real data in the CMS experiment.