WorldWideScience

Sample records for submerged fermentation electronic

  1. Effects of submerged and anaerobic fermentations on cassava flour ...

    African Journals Online (AJOL)

    Cassava tubers for processing into cassava flour, Lafun a Nigerian locally fermented product was subjected to two different types of fermentations: submerged and anaerobic fermentation for 72 h. Physicochemical changes that occurred during fermentation and their influence on the functional, rheological and sensory ...

  2. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    Science.gov (United States)

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  3. Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Helen H. Raplong

    2014-09-01

    Full Text Available Microorganisms have the ability to secrete enzymes when they are grown in the presence of certain substrates. Amylases are among the most important industrial enzymes and are of great significance in biotechnological studies. Bacteria belonging to the genus Bacillus were isolated using mannitol egg yolk polymyxin B (MYP agar a highly selective media for Bacillus cereus isolation. The isolates were tested for α-amylase production on nutrient agar supplemented with starch and in submerged fermentation. The bacteria isolated and identified (using the Microgen Bacillus identification kit were all Bacillus cereus and SB2 had the largest zone of hydrolysis of 12mm on nutrient agar supplemented with starch as well as the highest enzyme activity of 1.62U/ml. Amylase activity of 2.56U/ml was obtained after 24 hours incubation in submerged fermentation. When amylase enzyme production parameters where optimized, maximum amylase activity was obtained at a pH of 6.5, temperature of 350C, incubation time of 24 hours and 4% inoculums concentration. Bacillus cereus SB2 is a potential isolate for alpha-amylase production with soluble starch as the sole carbon source in submerged fermentation.

  4. Enhanced Sorbitol Production under Submerged Fermentation using Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Khan Nadiya Jan

    2017-04-01

    Full Text Available Background and Objective: Sorbitol is a non-toxic and slightly hygroscopic compound with different applications. Zymomonas mobiles produces sorbitol from sucrose or mixtures of glucose and fructose (formation is coupled with the dehydrogenation of glucose to glucono-δ- lactone. Recombinant Zymomonas mobilis may produce sorbitol and gluconic acid from glucose and fructose using different divalent metal ions with reduced the ethanol yield andsignificantly increased yield of sorbitol. Current study envisaged to alter the media components, physical process parameters and supplementation of amino acids for enhanced sorbitol production.Material and Methods: Several process variables were evaluated on sorbitol production including carbon sources (glucose, fructose, maltose, sucrose, carbon concentrations (5, 10, 20 and 25 g l-1, nitrogen sources (peptone, tryptone, yeast extract, beef extract and organic nitrogen mix, temperatures (25, 29, 33, 37, 41°C, pH (6, 6.5, 7 , 7.5 ,8, agitation rate (50, 100, 150, 200 rpm and amino acids (cysteine, cystine, tryptophanin batch cultivation ofLactobacillus plantarum NCIM 2912. Shake flask cultivation performed under optimum conditions like temperature 37°C, pH 7.0 and agitation rate of 150 rpm, resulted in enhanced sorbitol production. Comparative study of sorbitol production in solid state fermentation and submerged fermentation was also evaluated.Results and Conclusion: Batch cultivation under submerged conditions further performed in 7.5-l lab scale bioreactor (working volume 3.0-l under optimized conditions resulted in maximum cell biomass of 8.95±0.03 g g-1 and a sorbitol content of 9.78±0.04 g l-1 after 42.0 h of fermentation. Scale up study on bioreactor resulted in maximum sorbitol yield (Yp/x and productivity of 1.11 g g-1 and 0.50 g l-1 h under submerged fermentation, respectively.Conflict of interest: The authors declare no conflict of interest.

  5. Vinegar rice (Oryza sativa L.) produced by a submerged fermentation process from alcoholic fermented rice

    OpenAIRE

    Spinosa,Wilma Aparecida; Santos Júnior,Vitório dos; Galvan,Diego; Fiorio,Jhonatan Luiz; Gomez,Raul Jorge Hernan Castro

    2015-01-01

    Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L.)) for vinegar production. An alcoholic solution with 6.28% (w/v) ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany) for the production of vineg...

  6. Microbial production of four biodegradable siderophores under submerged fermentation.

    Science.gov (United States)

    Fazary, Ahmed E; Al-Shihri, Ayed S; Alfaifi, Mohammad Y; Saleh, Kamel A; Alshehri, Mohammed A; Elbehairi, Serag Eldin I; Ju, Yi-Hsu

    2016-07-01

    Four siderophore analogues were isolated and purified from Escherichia coli, Bacillus spp. ST13, and Streptomyces pilosus microorganisms under some specific submerged fermentation conditions. In order to evaluate the highest production of this siderophore analogues through the growth, a rapid spectrophotometric screening semi-quantitative method was used, in which interestingly the analogues were isolated in its own form not its iron chelate. After chromatographic separation, the chemical structures of the isolated and purified siderophores were illustrated using detailed spectroscopic techniques. The biodegradation studies were done on that four novel isolated and purified siderophores following OECD protocols. In addition, the bioactivities of these siderophores and their iron complexes were examined and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. PHYSIOLOGICAL REGULATION OF PROTEASE AND ANTIBIOTICS IN PENICILLIUM SP. USING SUBMERGED AND SOLID STATE FERMENTATION TECHNIQUES

    OpenAIRE

    HAIDER M. HAMZAH; ANWAR H.L. Ali; HAMID G. HASSAN

    2009-01-01

    A fungal strain belonging to the genus Penicillium was isolated from soil sample and has been diagnosed as Penicillium sp. according to its morphological characteristics of the colonies on solid media and also microscopical examination of the fungal parts. Antibiotics, protease activity and pH values were determined after cultivation of the fungus using submerged fermentation (SF) and solid state fermentation (SSF). The two different patterns of fermentation processes seem to influence the ph...

  8. Vinegar rice (Oryza sativa L. produced by a submerged fermentation process from alcoholic fermented rice

    Directory of Open Access Journals (Sweden)

    Wilma Aparecida Spinosa

    2015-03-01

    Full Text Available Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L. for vinegar production. An alcoholic solution with 6.28% (w/v ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany for the production of vinegar and was followed through 10 cycles. The vinegar had a total acidity of 6.85% (w/v, 0.17% alcohol (w/v, 1.26% (w/v minerals and 1.78% (w/v dry extract. The composition of organic acids present in rice vinegar was: cis-aconitic acid (6 mg/L, maleic acid (3 mg/L, trans-aconitic acid (3 mg/L, shikimic + succinic acid (4 mg/L, lactic acid (300 mg/L, formic acid (180 mg/L, oxalic acid (3 mg/L, fumaric acid (3 mg/L and itaconic acid (1 mg/L.

  9. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    OpenAIRE

    Lin,Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxyl...

  10. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation.

    Science.gov (United States)

    Chang, Bea-Ven; Chang, Yi-Ming

    2016-04-01

    The toxic chemicals bisphenol A (BPA), bisphenol F (BPF), nonylphenol (NP), and tetrabromobisphenol A (TBBPA) are endocrine-disrupting chemicals that have consequently drawn much concern regarding their effect on the environment. The objectives of this study were to investigate the degradation of BPA, BPF, NP, and TBBPA by enzymes from Pleurotus eryngii in submerged fermentation (SmF) and solid-state fermentation (SSF), and also to assess the removal of toxic chemicals in spent mushroom compost (SMC). BPA and BPF were analyzed by high-performance liquid chromatography; NP and TBBPA were analyzed by gas chromatography. NP degradation was enhanced by adding CuSO4 (1 mM), MnSO4 (0.5 mM), gallic acid (1 mM), tartaric acid (20 mM), citric acid (20 mM), guaiacol (1 mM), or 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid; 1 mM), with the last yielding a higher NP degradation rate than the other additives from SmF. The optimal conditions for enzyme activity from SSF were a sawdust/wheat bran ratio of 1:4 and a moisture content of 5 mL/g. The enzyme activities were higher with sawdust/wheat bran than with sawdust/rice bran. The optimal conditions for the extraction of enzyme from SMC required using sodium acetate buffer (pH 5.0, solid/solution ratio 1:5), and extraction over 3 hours. The removal rates of toxic chemicals by P. eryngii, in descending order of magnitude, were SSF > SmF > SMC. The removal rates were BPF > BPA > NP > TBBPA. Copyright © 2014. Published by Elsevier B.V.

  11. Solid-State Fermentation vs Submerged Fermentation for the Production of l-Asparaginase.

    Science.gov (United States)

    Doriya, K; Jose, N; Gowda, M; Kumar, D S

    l-Asparaginase, an enzyme that catalyzes l-asparagine into aspartic acid and ammonia, has relevant applications in the pharmaceutical and food industry. So, this enzyme is used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. This enzyme is also able to reduce the amount of acrylamide found in carbohydrate-rich fried and baked foods which is carcinogenic to humans. The concentration of acrylamide in food can be reduced by deamination of asparagine using l-Asparaginase. l-Asparaginase is present in plants, animals, and microbes. Various microorganisms such as bacteria, yeast, and fungi are generally used for the production of l-Asparaginase as it is difficult to obtain the same from plants and animals. l-Asparaginase from bacteria causes anaphylaxis and other abnormal sensitive reactions. To overcome this, eukaryotic organisms such as fungi can be used for the production of l-Asparaginase. l-Asparaginase can be produced either by solid-state fermentation (SSF) or by submerged fermentation (SmF). SSF is preferred over SmF as it is cost effective, eco-friendly and it delivers high yield of enzyme. SSF process utilizes agricultural and industrial wastes as solid substrate. The contamination level is substantially reduced in SSF through low moisture content. Current chapter will discuss in detail the chemistry and applications of l-Asparaginase enzyme and various methods available for the production of the enzyme, especially focusing on the advantages and limitations of SSF and SmF processes. © 2016 Elsevier Inc. All rights reserved.

  12. Effects of submerged and anaerobic fermentations on cassava flour ...

    African Journals Online (AJOL)

    Oke Oluwatoyin Victoria

    2015-03-18

    Mar 18, 2015 ... developed countries to transform and preserve food crops because of its low ... the tissues are softened and disintegration of the tissues by microorganisms ... characteristics of the products developed from the two fermentation ...

  13. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.

    Science.gov (United States)

    Zhou, Zhongxin; Yin, Zheng; Hu, Xiaoqing

    2014-01-01

    Monascus pigment has traditionally been produced by the fermentation of Monascus using rice powder or glucose as a culture substrate. Submerged fermentation can produce stable Monascus pigment yield and control the accumulation of the by-product, citrinin, which can then be more easily removed. To reduce the cost of Monascus submerged fermentation, the feasibility of corncob hydrolysate as an alternative substrate was investigated. Results showed that, when compared with a conventional glucose medium, the corncob hydrolysate medium produced an equivalent pigment yield without stimulating citrinin accumulation. Furthermore, the corncob hydrolysate medium and cultivation conditions were optimized to enhance pigment production and decrease citrinin synthesis. When Monascus sp. was cultured under dark conditions in the presence of caprylic acid, pigment production was increased to 25.8 ± 0.8 UA500 /mL, which was higher than that achieved in a glucose medium (24.0 ± 0.9 UA500 /mL), and those obtained in previously reported Monascus submerged fermentations using the same yield unit; on the other hand, citrinin accumulation was decreased to 26.2 ± 1.9 µg/L, which was significantly lower than that generated in the glucose control (44.3 ± 2.2 µg/L) and in those previously reported fermentations. Thus, corncob hydrolysate was proved to be an efficient alternative substrate for Monascus pigment production through submerged fermentation, which showed significant advantages over a conventional glucose substrate. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  14. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods

    Directory of Open Access Journals (Sweden)

    Camila Florencio

    2016-09-01

    Full Text Available The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc., glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in “Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis” C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016 [1]. Keywords: Tricoderma reesei, Aspergillus Niger, Enzyme Production, Secretome

  15. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA production

    Directory of Open Access Journals (Sweden)

    Qian Lin

    2013-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 µM of pyridoxal phosphate (PLP, produced 187 mM of GABA.

  16. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    Science.gov (United States)

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  17. Statistical Optimization of Tannase Production by Penicillium sp. EZ-ZH390 in Submerged Fermentation

    OpenAIRE

    Zohreh Hamidi-Esfahani; Mohammad Ali Sahari; Mohammad Hossein Azizi

    2015-01-01

    Tannase has several important applications in food, feed, chemical and pharmaceutical industries. In the present study, production of tannase by mutant strain, Penicillium sp. EZ-ZH390, was optimized in submerged fermentation utilizing two statistical approaches. At first step, a one factor at a time design was employed to screen the preferable nutriments (carbon and nitrogen sources of the medium) to produce tannase. Screening of the carbon source resulted in the production of 10.74 U/mL of ...

  18. COMPARATIVE EVALUTION OF CEPHALOSPORIN-C PRODUCTION IN SOLID STATE FERMENTATION AND SUBMERGED LIQUID CULTURE

    Directory of Open Access Journals (Sweden)

    Mahdi Rezazarandi

    2012-08-01

    Full Text Available The advantages of solid state fermentation (SSF utilization in producing enzymes & secondary metabolites have been shown, whereas, submerged liquid fermentation (SLF condition has the major usage in industrial production of antibiotics. As an antibiotic of B-lactams group, cephalosporin-C (CPC is indicated due to its wide effect and broad convention in treatment of infectious diseases. Regarding industrial production of CPC regularly done in SLF condition, we compared CPC production sum in SLF and SSF conditions. In this analysis, A. chrysogenum was employed, which was inoculated to SLF and SSF, while internal fermenter conditions were totally under control. After extraction of CPC, productions in two states of SLF and SSF were compared using the cylinder plate method. According to Antibiotic assay and production amount comparison, results expressed a ratio of development of production in SSF conditions to SLF conditions. Regarding previous studies on a solid state fermenter and its advantages, in this study, convenience of SSF conditions compared to SLF conditions was experimented. Also mentioning that maintaining the condition of solid state fermenter is more comfortable and practical than liquid state fermenter, using a solid based fermenter to produce antibiotics, especially CPC, can be appropriate. Considering appropriate control conditions of SSF to produce secondary metabolites, decrease in expenses, and increase of production, taking advantage of it in order to increase production parallel to modern methods, such as genetically manipulating CPC producing microorganisms are recommended to pharmacological industries. Also, to make this method applicable, further studies in industrial criterion seem necessary.

  19. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation

    Science.gov (United States)

    Colla, Luciane Maria; Ficanha, Aline M. M.; Rizzardi, Juliana; Bertolin, Telma Elita; Reinehr, Christian Oliveira; Costa, Jorge Alberto Vieira

    2015-01-01

    Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37°C and pH 7.2 and those obtained through solid-state fermentation at 35°C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90°C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH. PMID:26180809

  20. Aspergillus oryzae in solid-state and submerged fermentations: Progress report on a multi-disciplinary project

    NARCIS (Netherlands)

    Biesebeke, R. te; Ruijter, G.; Rahardjo, Y.S.P.; Hoogschagen, M.J.; Heerikhuisen, M.; Levin, A.; Driel, K.G.A. van; Schutyser, M.A.I.; Dijksterhuis, J.; Zhu, Y.; Weber, F.J.; Vos, W.M. de; Hondel, K.A.M.J.J. van den; Rinzema, A.; Punt, P.J.

    2002-01-01

    We report the progress of a multi-disciplinary research project on solid-state fermentation (SSF) of the filamentous fungus Aspergillus oryzae. The molecular and physiological aspects of the fungus in submerged fermentation (SmF) and SSF are compared and we observe a number of differences correlated

  1. Aspergillus oryzae in solid-state and submerged fermentations. Progress report on a multi-disciplinary project

    NARCIS (Netherlands)

    te Biesebeke, Rob; Ruijter, George; Rahardjo, Yovita S P; Hoogschagen, Marisca J; Heerikhuisen, Margreet; Levin, Ana; van Driel, Kenneth G A; Schutyser, Maarten A I; Dijksterhuis, Jan; Zhu, Yang; Weber, Frans J; de Vos, Willem M; van den Hondel, Kees A M J J; Rinzema, Arjen; Punt, Peter J

    We report the progress of a multi-disciplinary research project on solid-state fermentation (SSF) of the filamentous fungus Aspergillus oryzae. The molecular and physiological aspects of the fungus in submerged fermentation (SmF) and SSF are compared and we observe a number of differences correlated

  2. Aspergillus oryzae in solid-state and submerged fermentations. Progress report on a multi-disciplinary project

    NARCIS (Netherlands)

    Biesebeke, te R.; Ruijter, G.; Rahardjo, Y.S.P.; Hoogschagen, M.J.; Heerikhuisen, M.; Levin, A.; Driel, van K.G.A.; Schutyser, M.A.I.; Dijksterhuis, J.; Yang Zhu, Yang; Weber, F.J.; Vos, de W.M.; Hondel, van den K.A.; Rinzema, A.; Punt, P.J.

    2002-01-01

    We report the progress of a multi-disciplinary research project on solid-state fermentation (SSF) of the filamentous fungus Aspergillus oryzae. The molecular and physiological aspects of the fungus in submerged fermentation (SmF) and SSF are compared and we observe a number of differences correlated

  3. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Luciane Maria Colla

    2015-01-01

    Full Text Available Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37°C and pH 7.2 and those obtained through solid-state fermentation at 35°C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90°C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH.

  4. Statistical optimization of lovastatin production by Omphalotus olearius (DC.) singer in submerged fermentation.

    Science.gov (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemhen, Omoanghe S

    2016-01-01

    In this study, culture conditions were optimized to improve lovastatin production by Omphalotus olearius, isolate OBCC 2002, using statistical experimental designs. The Plackett-Burman design was used to select important variables affecting lovastatin production. Accordingly, glucose, peptone, and agitation speed were determined as the variables that have influence on lovastatin production. In a further experiment, these variables were optimized with a Box-Behnken design and applied in a submerged process; this resulted in 12.51 mg/L lovastatin production on a medium containing glucose (10 g/L), peptone (5 g/L), thiamine (1 mg/L), and NaCl (0.4 g/L) under static conditions. This level of lovastatin production is eight times higher than that produced under unoptimized media and growth conditions by Omphalotus olearius. To the best of our knowledge, this is the first attempt to optimize submerged fermentation process for lovastatin production by Omphalotus olearius.

  5. Streptomyces sp. TEM 33 possesses high lipolytic activity in solid-state fermentation in comparison with submerged fermentation.

    Science.gov (United States)

    Cadirci, Bilge Hilal; Yasa, Ihsan; Kocyigit, Ali

    2016-01-01

    Solid-state fermentation (SSF) is a bioprocess that doesn't need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium.

  6. Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus.

    Science.gov (United States)

    Zhang, Liang; Li, Zhiqiang; Dai, Bing; Zhang, Wenxue; Yuan, Yongjun

    2013-09-01

    Monascus pigments, which are produced by various species of Monascus, often have been used as a natural colourant and as traditional natural food additives, especially in Southern China, Japan and Southeastern Asia. The limitation of wide using Monascus pigment is attributed to one of its secondary metabolites named citrinin. The aim of this study was to investigate the influence of pigment and citrinin production via submerged fermentation (SmF) and solid-state fermentation (SF) from rice (Oryza sativa L.) by Monascus purpureus AS3.531. The optimal fermentation temperature and pH were significantly different for pigment production through different fermentation mode (35 °C, pH 5.0 for SF and 32 °C, pH 5.5 for SmF, respectively). Adding 2% (w/v) of glycerol in the medium could enhance the pigment production. On the optimized condition, although the concentration of citrinin produced by SmF (19.02 ug/g) increased more than 100 times than that by SF (0.018 ug/g), the pigment yield by SmF (7.93 U/g/g) could be comparable to that by SF (6.63 U/g/g). Those indicate us that fermentation mode seems to be the primary factor which influence the citrinin yield and secondary factor for pigment production.

  7. UV mutagenesis of aspergillus niger for enzyme production in submerged fermentation

    International Nuclear Information System (INIS)

    Irfan, M.; Syed, Q.; Javed, J.

    2011-01-01

    The present study was conducted to improve the enzyme production from Aspergillus niger using UV mutation. Submerged fermentation was carried out in 250 ml Erlenmeyer flask using Vogel's media at 30 deg. C for six days. Results of this study revealed that UV-mutation enhanced CM Case activity up to two times while FPase activity up to three times as compared to the parental strain. For avicelase, xylanase and fungal biomass production, UV radiation has slight effect as compared to parental strain. (author)

  8. Bioconversion and enzymatic activities of neurospora sitophila grown under solid state and submerged fermentation on Sago Hamps

    International Nuclear Information System (INIS)

    Shojaosadati, S. A.; Vikineswary, S.; Looi, C. C.

    2000-01-01

    N.Sitophila was grown under controlled conditions of solid state and submerged fermentation on Sago Hampas. The optimum conditions of protein enrichment previously established for sugar beet pulp was used for this study. Under this condition the protein content of Sago Hampas under solid state increased from 1.4 to 14.45% (W/W) whereas for Sago Hampas and Sago starch, the protein content under submerged condition increased from 1.4% (W/W) and 0.7% (W/W) to 18.56% (W/W) and 43/16% (W/W) based on dry weight of product respectively. The cellulase, a-amylase and glucoamylase activities of N.Sitophila under solid state condition on Sago Hampas were, 9.0, 0.6 and 11.8 U/g of wet fermented solid respectively. the enzymatic activities were also measured under submerged fermentation using both Sago Hampas and Sago starch as substrate

  9. Biomass production of pleurotus sajor-caju by submerged culture fermentation

    International Nuclear Information System (INIS)

    Kausar, T.; Nasreen, Z.; Nadeem, M.; Baig, S.

    2006-01-01

    The effect of different carbon sources, namely, sawdust and powder of agro wastes (as such, or water soluble extracts), and inorganic/natural nitrogen sources on the biomass production of Pleurotus sajor-caju by submerged culture fermentation was studied. Supplementation of the fermentation medium with 2% molasses, 2% wheat spike powder, extract of 2% wheat spike powder, and com gluten meal resulted in 12.85, 10.85, 12.35 and 13.92 g/sub l/ biomass production of P. sajor-caju, respectively. The fungal hyphae biomass contained 8.28% moisture, 21.18% crude protein, 1.55% fat, 3.59% ash, 2.32% crude fibre, and 63.48% nitrogen-free extract. (author)

  10. Involvement of Physical Parameters in Medium Improvement for Tannase Production by Aspergillus niger FETL FT3 in Submerged Fermentation

    OpenAIRE

    Darah, I.; Sumathi, G.; Jain, K.; Hong, Lim Sheh

    2011-01-01

    Aspergillus niger FETL FT3, a local extracellular tannase producer strain that was isolated from one of dumping sites of tannin-rich barks of Rhizophora apiculata in Perak, Malaysia. This fungus was cultivated in 250 mL Erlenmeyer flask under submerged fermentation system. Various physical parameters were studied in order to maximize the tannase production. Maximal yield of tannase production, that is, 2.81 U per mL was obtained on the fourth day of cultivation when the submerged fermentation...

  11. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    Science.gov (United States)

    Kim, Hyang Yeon; Heo, Do Yeon; Park, Hye Min; Singh, Digar; Lee, Choong Hwan

    2016-01-01

    Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

  12. Xylanase production by a thermo-tolerant Bacillus species under solid-state and submerged fermentation

    Directory of Open Access Journals (Sweden)

    Uma Gupta

    2009-12-01

    Full Text Available Effects of xylose on xylanase production by a thermophilic Bacillus sp showed diverse patterns on corn cob (CC and wheat bran (WB as sole carbon sources in solid- state fermentation (SSF and submerged fermentation (SmF. Supplementation of these media with either mineral salt solution (MSS or yeast extract peptone (YEP also exerted variable effects. While under SSF, xylose stimulated xylanase synthesis by 44.01%, on wheat bran supplemented with MSS, it decreased the enzyme activity by 12.89% with YEP supplementation. In SmF, however the enzyme synthesis was stimulated by xylose on supplementation with both MSS and YEP by 41.38% and 27.47%, respectively. On corn cob under SSF, xylose repression was significant both with MSS (26.92% and YEP (23.90% supplementation. Repression by xylose also took place on corn cob and YEP (19.69% under SmF, while significant stimulation (28.55% was observed by MSS supplementation. The possible role of media composition and fermentation conditions in the regulation of xylanase synthesis by xylose is discussed.

  13. Modelling and Optimization Studies on a Novel Lipase Production by Staphylococcus arlettae through Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Mamta Chauhan

    2013-01-01

    Full Text Available Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable industrial enzymes. The present paper encompasses the modeling and optimization approach for production of halophilic, solvent, tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic algorithm. Response surface model based on central composite design has been developed by considering the individual and interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space of response surface model (with R2 value of 96.6% has been utilized for optimization through genetic algorithm. An optimum lipase yield of 6.5 U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8°C. This outcome could contribute to introducing this extremophilic lipase (halophilic, solvent, and tolerant to industrial biotechnology sector and will be a probable choice for different food, detergent, chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration with computational tools for optimization of fermentation conditions for maximum lipase production.

  14. Strategies to increase cellulase production with submerged fermentation using fungi isolated from the Brazilian biome

    Directory of Open Access Journals (Sweden)

    Genilton da Silva Faheina Junior

    2015-03-01

    Full Text Available Studies on new microbial sources of cellulase and accurate assessment of the steps that increase cellulase production are essential strategies to reduce costs of various processes using such enzymes. This study aimed at the selection of cellulase-producing filamentous fungi, and at the research of parameters involving cellulase production by submerged fermentation. The first test consisted of selecting the best cellulase-producing microorganisms (FPase in Erlenmeyer flasks containing 200 mL of specific growth medium. The next test was designed to further investigate the enzyme production in fermentation with four types of soluble sugars: glucose, lactose, sucrose and xylose. In bioreactor tests, three different inoculation strategies were analyzed. The best FPase activity was presented by the strain Trichoderma sp. CMIAT 041 (49.9 FPU L-1 and CMCase by the fungus Lasiodiplodia theobromae CMIAT 096 (350.0 U L-1. Sucrose proved to be the best option among the soluble sugars tested, with higher rates of FPase activity (49.9 FPU L-1 and CMCase (119.7 U L-1. The best inoculation strategy for the bioreactor was a spore suspension obtained from a semi-solid state fermentation of wheat bran for 72h.

  15. Purification of an Exopolygalacturonase from Penicillium viridicatum RFC3 Produced in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Eleni Gomes

    2009-01-01

    Full Text Available An exo-PG obtained from Penicillium viridicatum in submerged fermentation was purified to homogeneity. The apparent molecular weight of the enzyme was 92 kDa, optimum pH and temperature for activity were pH 5 and 50–55∘C. The exo-PG showed a profile of an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of pectin with a high degree of esterification (D.E.. Ions Ca2+ enhanced the stability of enzyme and its activity by 30%. The Km was 1.30 in absence of Ca2+ and 1.16 mg mL−1 in presence of this ion. In relation to the Vmax the presence of this ion increased from 1.76 to 2.07 μmol min−1mg−1.

  16. Purification of an Exopolygalacturonase from Penicillium viridicatum RFC3 Produced in Submerged Fermentation

    Science.gov (United States)

    Gomes, Eleni; Leite, Rodrigo Simões Ribeiro; da Silva, Roberto; Silva, Dênis

    2009-01-01

    An exo-PG obtained from Penicillium viridicatum in submerged fermentation was purified to homogeneity. The apparent molecular weight of the enzyme was 92 kDa, optimum pH and temperature for activity were pH 5 and 50–55°C. The exo-PG showed a profile of an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of pectin with a high degree of esterification (D.E.). Ions Ca2+ enhanced the stability of enzyme and its activity by 30%. The K m was 1.30 in absence of Ca2+ and 1.16 mg mL−1 in presence of this ion. In relation to the V max the presence of this ion increased from 1.76 to 2.07 μmol min−1mg−1. PMID:20148174

  17. Production of surfactin from rice mill polishing residue by submerged fermentation using Bacillus subtilis MTCC 2423.

    Science.gov (United States)

    Gurjar, Jigar; Sengupta, Bina

    2015-08-01

    Rice mill polishing residue (RMPR), an abundant and cheap agro residue, was used as substrate for microbial growth of Bacillus subtilis MTCC 2423 by submerged fermentation process to produce surfactin. Nutrients present in the residue were sufficient to sustain the growth of the microorganism. Multi stage foam fractionation followed by acid precipitation was used to concentrate and recover the product. Recoverable yield of surfactin was 4.17 g/kg residue. Product recovered in the foamate accounted for 69% of the total yield. The residual broth containing ∼ 30% surfactin exhibited biological oxygen demand and chemical oxygen demand values of 23 and 69 mg/L respectively. The microbial growth data was correlated using three parameter sigmoid models. Surfactin synthesized had a predominance of molecular weight 1076 Da. Foam separation of copper using surfactin resulted in a maximum removal of 72.5%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Coconut oil induced production of a surfactant-compatible lipase from Aspergillus tamarii under submerged fermentation.

    Science.gov (United States)

    Das, Arijit; Bhattacharya, Sourav; Shivakumar, Srividya; Shakya, Sujina; Sogane, Swathi Shankar

    2017-02-01

    Filamentous fungi are efficient producers of lipases. The present study focuses on identification of a potent lipolytic fungus and enhancement of lipase production through optimization of nutritional and cultural conditions under submerged fermentation. Molecular characterization of the fungus by 18S rDNA sequencing revealed its identity as Aspergillus tamarii with 98% homology. Maximum lipase production was noted in mineral salts medium supplemented with coconut oil (2.5%, v/v). A combination of ammonium chloride (2%, w/v) and tryptone (2%, w/v) facilitated maximum lipase production at pH 5 of the production medium. A carbon: nitrogen ratio of 1:4 led to significant (p oil stain removal activity of a commercially available detergent by 2.2-fold. The current findings suggest the potentiality of this fungal lipase to be used in detergent formulation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation.

    Science.gov (United States)

    Yang, Jian; Chen, Qi; Wang, Weiping; Hu, Jiajun; Hu, Chuan

    2015-05-01

    The influence of oxygen supply on Monascus pigments and citrinin production by Monascus ruber HS.4000 in submerged fermentation was studied. For Monascus cultivation with high pigments and low citrinin production, the initial growth phase, mid-stage phase, and later-stage production phase were separated by shifting oxygen supply. The optimal condition for the fermentation process in shake-flask fermentation was a three-stage rotating rate controlled strategy (0-48 h at 150 rpm, 48-108 h at 250 rpm, 108-120 h at 200 rpm) with medium volume of 100 mL added to 250 mL Erlenmeyer flasks at 30°C for 120 h cultivation. Compared to constant one-stage cultivation (medium volume of 100 mL, rotating rate of 250 rpm), the pigments were reduced by 40.4%, but citrinin was reduced by 64.2%. The most appropriate condition for the fermentation process in a 10 L fermentor is also a three-stage aeration process (0-48 h at 300 L/h, 48-96 h at 500 L/h, 96-120 h at 200 L/h) with agitation of 300 rpm at 30°C for 120 h cultivation, and 237.3 ± 5.7 U/mL pigments were produced in 120 h with 6.05 ± 0.19 mg/L citrinin in a 10 L fermentor. Compared to aeration-constant (500 L/h) cultivation, pigment production was increased by 29.6% and citrinin concentration was reduced by 79.5%. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Production of ethanol from mesquite [Prosopis juliflora (SW) D.C.] pods mash by Zymomonas mobilis in submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Celiane Gomes Maia da [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Ciencias Domesticas; Andrade, Samara Alvachian Cardoso; Schuler, Alexandre Ricardo Pereira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica; Souza, Evandro Leite de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Nutricao; Stamford, Tania Lucia Montenegro [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Nutricao], E-mail: tlmstamford@yahoo.com.br

    2011-01-15

    Mesquite [Prosopis juliflora (SW) D.C.], a perennial tropical plant commonly found in Brazilian semi-arid region, is a viable raw material for fermentative processes because of its low cost and production of pods with high content of hydrolyzable sugars which generate many compounds, including ethanol. This study aimed to evaluate the use of mesquite pods as substrate for ethanol production by Z. mobilis UFPEDA- 205 in a submerged fermentation. The fermentation was assessed for rate of substrate yield to ethanol, rate of ethanol production and efficiency of fermentation. The very close theoretical (170 g L{sup -1}) and experimental (165 g L{sup -1}) maximum ethanol yields were achieved at 36 h of fermentation. The highest counts of Z. mobilis UFEPEDA-205 (both close to 6 Log cfu mL{sup -1}) were also noted at 36 h. Highest rates of substrate yield to ethanol (0.44 g ethanol g glucose{sup -1}), of ethanol production (4.69 g L{sup -1} h{sup -1}) and of efficiency of fermentation (86.81%) were found after 30 h. These findings suggest mesquite pods as an interesting substrate for ethanol production using submerged fermentation by Z. mobilis. (author)

  1. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation.

    Science.gov (United States)

    Li, Yanjun; Peng, Xiaowei; Chen, Hongzhang

    2013-10-01

    Although submerged fermentation (SmF) accounts for most of current enzyme industries, it has been reported that solid-state fermentation (SSF) can produce higher enzyme yields in laboratory scale. In order to understand the reasons contributing to high enzyme production in SSF, this study compared the cellulase activities and secretomes of Neurospora sitophila cultured in SSF and SmF using steam exploded wheat straw as carbon source and enzyme inducer. The total amounts of protein and biomass (glucosamine content) in SSF were respectively 30 and 2.8 times of those in SmF. The CMCase, FPA and β-glucoside activities in SSF were 53-181 times of those in SmF. Both in SSF and SmF, N. sitophila secreted the most critical cellulases and hemicellulases known for Trichoderma reesei, although a β-xylosidase was exclusively identified in SSF. Six endoglucanases were identified in N. sitophila secretion with the high CMCase activity. The non-enzyme proteins in SSF were involved in fungal mycelia growth and conidiation; while those in SmF were more related to glycometabolism and stress tolerance. This revealed that SSF more likely serves as a natural habitat for filamentous fungi to facilitate the enzyme secretion. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Enhanced production of pigments by addition of surfactants in submerged fermentation of Monascus purpureus H1102.

    Science.gov (United States)

    Wang, Yonghui; Zhang, Bobo; Lu, Liping; Huang, Yan; Xu, Ganrong

    2013-10-01

    The production of pigments by Monascus spp. has attracted increasing attention. Modification of the cell membrane structure by addition of surfactants has proved to be effective for the secretion of intracellular metabolites. Hence in this study the effects and underlying mechanism of surfactants on the production of pigments in submerged fermentation of Monascus purpureus H1102 were systematically investigated. Various surfactants exerted significant but different impacts on the biomass and production of pigments. The maximum production of pigment (304.3 U mL(-1) ) and highest extracellular/intracellular pigment ratio (1.46) were achieved when 15 g L(-1) Triton X-100 was added at 24 h of fermentation, corresponding to significant increases of 88.4 and 240% respectively compared with the control. Meanwhile, the concentration of citrinin (0.94 mg L(-1) ) was 20.6% lower than that of the control. A further study on the fatty acid composition of M. purpureus H1102 showed that the unsaturated/saturated fatty acid ratio and the index of unsaturated fatty acid increased significantly with the addition of Triton X-100. The addition of surfactant Triton X-100 could greatly enhance the production of pigment. It was suggested that Triton X-100 facilitated the secretion of intracellular pigment and therefore enhanced pigment production accordingly. © 2013 Society of Chemical Industry.

  3. A novel stirrer design and its application in submerged fermentation of the edible fungus Pleurotus ostreatus.

    Science.gov (United States)

    Zhu, Hu; Sun, Jiao; Tian, Baozhen; Wang, Honglin

    2015-03-01

    In this study, a straight diagonal-pitched blade stirrer was designed, built and characterized in a 5-L fermenter. Compared with the six straight blade Rushton turbine, the power consumption of the new stirrer is lower at a given speed under conditions of no ventilation. The oxygen transference is poorer at the same agitation speed in the cultivation conditions and scales investigated, which confirms that the shear stress of the new stirrer is lower and the gas dispersion is weaker. The new stirrer was installed in a 5-L bioreactor and evaluated in submerged fermentation of the edible fungus Pleurotus ostreatus. The results showed that the maximum dry weight of mycelium is increased by 47 % and reached 7.47 g/L, and the maximum laccase activity is increased by 15 % up to 2,277 U/L. Glucose consumption was also found to be relatively faster. The power consumption is 2.8 % lower than that of the Rushton turbine.

  4. Statistical Optimization of Tannase Production by Penicillium sp. EZ-ZH390 in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Zohreh Hamidi-Esfahani

    2015-06-01

    Full Text Available Tannase has several important applications in food, feed, chemical and pharmaceutical industries. In the present study, production of tannase by mutant strain, Penicillium sp. EZ-ZH390, was optimized in submerged fermentation utilizing two statistical approaches. At first step, a one factor at a time design was employed to screen the preferable nutriments (carbon and nitrogen sources of the medium to produce tannase. Screening of the carbon source resulted in the production of 10.74 U/mL of tannase in 72 h in the presence of 14% raspberry leaves powder. A 1.99-fold increase in tannase production was achieved upon further screening of the nitrogen source (in the presence of 1.2% ammonium nitrate. Then the culture condition variables were studied by the response surface methodology using a central composite design. The results showed that temperature of 30°C rotation rate of 85 rpm and fermentation time 24h led to increased tannase production. At these conditions, tannase activity reached to 21.77 U/mL, and tannase productivity was at least 3.55 times (0.26 U/mL.h in compare to those reported in the literature. The present study showed that, at the optimum conditions, Penicillium sp. EZ-ZH390 is an excellent strain for use in the efficient production of tannase.

  5. Statistical optimization of process parameters for the production of tannase by Aspergillus flavus under submerged fermentation.

    Science.gov (United States)

    Mohan, S K; Viruthagiri, T; Arunkumar, C

    2014-04-01

    Production of tannase by Aspergillus flavus (MTCC 3783) using tamarind seed powder as substrate was studied in submerged fermentation. Plackett-Burman design was applied for the screening of 12 medium nutrients. From the results, the significant nutrients were identified as tannic acid, magnesium sulfate, ferrous sulfate and ammonium sulfate. Further the optimization of process parameters was carried out using response surface methodology (RSM). RSM has been applied for designing of experiments to evaluate the interactive effects through a full 31 factorial design. The optimum conditions were tannic acid concentration, 3.22 %; fermentation period, 96 h; temperature, 35.1 °C; and pH 5.4. Higher value of the regression coefficient (R 2  = 0.9638) indicates excellent evaluation of experimental data by second-order polynomial regression model. The RSM revealed that a maximum tannase production of 139.3 U/ml was obtained at the optimum conditions.

  6. Statistical optimization for tannase production from Aspergillus niger under submerged fermentation.

    Science.gov (United States)

    Sharma, S; Agarwal, L; Saxena, R K

    2007-06-01

    Statistically based experimental design was employed for the optimization of fermentation conditions for maximum production of enzyme tannase from Aspergillus niger. Central composite rotatable design (CCRD) falling under response surface methodology (RSM) was used. Based on the results of 'one-at-a-time' approach in submerged fermentation, the most influencing factors for tannase production from A. niger were concentrations of tannic acid and sodium nitrate, agitation rate and incubation period. Hence, to achieve the maximum yield of tannase, interaction of these factors was studied at optimum production pH of 5.0 by RSM. The optimum values of parameters obtained through RSM were 5% tannic acid, 0.8% sodium nitrate, 5.0 pH, 5 × 10(7) spores/50mL inoculum density, 150 rpm agitation and incubation period of 48 h which resulted in production of 19.7 UmL(-1) of the enzyme. This activity was almost double as compared to the amount obtained by 'one-at-a-time' approach (9.8 UmL(-1)).

  7. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.

    Science.gov (United States)

    Nunes, Luiza Varela; de Barros Correa, Fabiane Fernanda; de Oliva Neto, Pedro; Mayer, Cassia Roberta Malacrida; Escaramboni, Bruna; Campioni, Tania Sila; de Barros, Natan Roberto; Herculano, Rondinelli Donizetti; Fernández Núñez, Eutimio Gustavo

    2017-04-01

    The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L -1 ) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L -1 ) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L -1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.

  8. PHYSIOLOGICAL REGULATION OF PROTEASE AND ANTIBIOTICS IN PENICILLIUM SP. USING SUBMERGED AND SOLID STATE FERMENTATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    HAIDER M. HAMZAH

    2009-03-01

    Full Text Available A fungal strain belonging to the genus Penicillium was isolated from soil sample and has been diagnosed as Penicillium sp. according to its morphological characteristics of the colonies on solid media and also microscopical examination of the fungal parts. Antibiotics, protease activity and pH values were determined after cultivation of the fungus using submerged fermentation (SF and solid state fermentation (SSF. The two different patterns of fermentation processes seem to influence the physiological behavior of the fungus differently. Experiments were made using nutrient broth medium (N.B for SF and wheat bran in SSF. The pH values were adjacent to 5.5. Wheat bran was enriched with fish scales and egg shale in a ratio of (1:2:0.005 w/w and the mixture was moistened by adding (30 ml whey solution. After 7 days of incubation, the pH value of SF was increased to 8.0 at 30ºC. The SF was appeared efficient for antibiotics production. Using well diffusion technique the extracted antibiotics solution was active against some pathogenic bacteria such as Staphylococcus aureus, E. coli, Proteus sp., Salmonella sp., Pseudomonas aeruginosa and Streptococcus sp. In SSF relative proteases concentrations were found to be highly reactive than SF. This was proved by the appearance of the zone (20 mm and 32 mm due to the hydrolysis of milk and blood proteins respectively using pH 5.5 at 30ºC for 24 hrs. The activity of proteases was (10.4 U/ml.

  9. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation

    Science.gov (United States)

    Ferreira, Viviani; da Silva, Roberto; Silva, Dênis; Gomes, Eleni

    2010-01-01

    Pectate lyase (PL) was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w), or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w), and in a submerged liquid culture with orange bagasse and wheat bran (3%) as the carbon source. PL production was highest (1,500 U  mL−1 or 300 Ug−1 of substrate) in solid-state fermentation (SSF) on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF) was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL  I′, II′, III′, IV′, and VII′. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35°C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45°C. Crude enzyme from SmF and PL III′ showed thermophilic profiles of activity, with maximum activity at 60 and 55°C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0–10.0 and PL III was most stable in the pH range 4.0–7.0. Crude enzyme from SmF retained 70%–80% of its maximum activity in the acid-neutral pH range (4.0–7.0), but PIII showed high stability at alkaline pH (7.5–9.5). PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55°C. The differing

  10. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Viviani Ferreira

    2010-01-01

    Full Text Available Pectate lyase (PL was produced by the filamentous fungus Penicillium viridicatum RFC3 in solid-state cultures of a mixture of orange bagasse and wheat bran (1 : 1 w/w, or orange bagasse, wheat bran and sugarcane bagasse (1 : 1 : 0.5 w/w, and in a submerged liquid culture with orange bagasse and wheat bran (3% as the carbon source. PL production was highest (1,500 U  mL−1 or 300 Ug−1 of substrate in solid-state fermentation (SSF on wheat bran and orange bagasse at 96 hours. PL production in submerged fermentation (SmF was influenced by the initial pH of the medium. With the initial pH adjusted to 4.5, 5.0, and 5.5, the peak activity was observed after 72, 48, and 24 hours of fermentation, respectively, when the pH of the medium reached the value 5.0. PL from SSF and SmF were loaded on Sephadex-G75 columns and six activity peaks were obtained from crude enzyme from SSF and designated PL I, II, III, IV, V, and VI, while five peaks were obtained from crude enzyme from SmF and labeled PL  I′, II′, III′, IV′, and VII′. Crude enzyme and fraction III from each fermentative process were tested further. The optimum pH for crude PL from either process was 5.5, while that for PL III was 8.0. The maximum activity of enzymes from SSF was observed at 35∘C, but crude enzyme was more thermotolerant than PL III, maintaining its maximum activity up to 45∘C. Crude enzyme from SmF and PL   III′ showed thermophilic profiles of activity, with maximum activity at 60 and 55∘C, respectively. In the absence of substrate, the crude enzyme from SSF was stable over the pH range 3.0–10.0 and PL III was most stable in the pH range 4.0–7.0. Crude enzyme from SmF retained 70%–80% of its maximum activity in the acid-neutral pH range (4.0–7.0, but PIII showed high stability at alkaline pH (7.5–9.5. PL from SSF was more thermolabile than that from SmF. The latter maintained 60% of its initial activity after 1 h at 55

  11. Modeling and investigation of submerged fermentation process to produce extracellular polysaccharide using Lactobacillus confusus.

    Science.gov (United States)

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-12-19

    The main objective of the present study is to investigate and optimize the Submerged fermentation (SMF) process parameters such as addition of coconut water, NaCl dose, incubation time and temperature on the production of extracellular polysaccharide (EPS) and biomass production using Lactobacillus confuses. Response surface methodology (RSM) coupled with four factors three level Box-Behnken design (BBD) was employed to model the SMF process. RSM analysis indicated good correspondence between experimental and predicted values. Three dimentional (3D) response surface plots were used to study the interactive effects of process variables on SMF process. The optimum process conditions for the maximum production of EPS and biomass were found to be as follows; addition of coconut water of 40%, NaCl dose of 15%, incubation time of 24h and temperature of 35°C. Under these conditions, 10.57 g/L of EPS and 3.9 g/L of biomass were produced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 'Synthetic lipase' production from a newly isolated Sporidiobolus pararoseus strain by submerged fermentation

    Directory of Open Access Journals (Sweden)

    Alessandra Smaniotto

    2012-12-01

    Full Text Available The lipase produced by a newly isolate Sporidiobolus pararoseus strain has potential catalysis ability for esterification reactions. In order to improve its synthetic activity, this work aimed at optimizing 'synthetic lipase' production by submerged fermentation of a conventional media based on peptone, yeast extract, NaCl and olive oil using experimental design technique. According to the results obtained in the first experimental design (2(4-1, yeast extract and NaCl concentrations were tested to further optimization by response surface methodology. The maximum 'synthetic lipase' activity obtained was 26.9 U/mL in the optimized media (5.0, 6.8, 7.0 and 1.0% (wt/v of peptone, yeast extract, NaCl and olive oil, respectively, representing a 6.36-fold increase compared to the initial medium. The time course of 'synthetic lipase' production in the optimized condition was evaluated in terms of synthetic activity, protease activity, biomass and total carbon and the maximum synthetic activity was observed during the stationary phase of growth.

  13. Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations.

    Science.gov (United States)

    Renovato, Jaqueline; Gutiérrez-Sánchez, Gerardo; Rodríguez-Durán, Luis V; Bergman, Carl; Rodríguez, Raúl; Aguilar, Cristóbal Noe

    2011-09-01

    Significant differences on structure, stability, and catalytic properties of tannase were found when this enzyme was produced under solid-state and submerged fermentations (SSF and SmF) by Aspergillus niger. The specific activity was 5.5 times higher on SSF than in SmF. Significant differences in isoelectric points of tannases were found. The pH optima for both types of enzyme was found at 6 and the pH stability of SSF and SmF tannase were at 6 and 5-8, respectively. The optimal temperature range was from 50 to 60 °C for SmF tannase and 60 °C for SSF tannase, and both enzyme types showed tolerance to high temperatures (60-70 °C). The SSF tannase showed a major specificity for methyl gallate substrate while SmF tannase for tannic acid. All metal ions tested, had an activity inhibition from 30-46% on SSF tannase. SDS-PAGE analysis as well as gel localization studies of both SSF and SmF purified tannases showed a single band with a molecular weight of 102 and 105 kDa, respectively. Different levels of glycosylation were found among SSF and SmF purified tannases. This is the first report about structural differences among tannase produced under SSF and SmF and this study provides basis for explanation of the stability and catalytic differences observed previously for this two tannase types.

  14. Mutation breeding and submerged fermentation of a Pleurotus polysaccharide high-yield strain with low-energy heavy ions implantation

    International Nuclear Information System (INIS)

    Chen Henglei; Wan Honggui; Lv Changwu; Zeng Xianxian

    2010-01-01

    Pleurotus polysaccharide high-yield strains were selected through a method of auxotrophic primary screening and Shake-flask fermentation re-screening after low-energy heavy ions (the fluence of 1.2 x 10 16 N + /cm 2 at the energy of 15 keV) stepwise implantation. Two Pleurotus polysaccharide high-yield strains, PFPH-1 and PFPH-2, were selected with stable mycelium polysaccharide yield. The mycelium polysaccharide yield of PFPH-1 and PFPH-2 increased by 46.55% and 75.14%, respectively, compared to the original strain. The accumulation of mycelium biomass and intracellular polysaccharides were monitored in the submerged fermentation of Pleurotus ferulae by supplementation of various carbon and nitrogen sources as well as inorganic salts and pH alteration. The optima1 submerged fermentation medium favoring the accumulation of mycelium biomass and intracellular polysaccharides of PFPH-2 consisted of 1.0% wheat flour, 2.0% sucrose, 2.0% soybean flour, 1.5% bran extract, 0.2% K 2 HPO 4 , and 0.15% MgSO 4 ·7H 2 O, with a fittest pH value of 5.64. The orthogonal combination of the optimal carbon and nitrogen sources with inorganic salts indicates a synergistic effect on the accumulation of mycelium biomass and intracellular polysaccharides in the submerged fermentation of PFPH-2. The yield of mycelium polysaccharides of PFPH-2 increased to 903.73 ± 1.23 mg·L -1 by the end of fermentation. (authors)

  15. Phytase Production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through Submerged and Solid-State Fermentation

    Science.gov (United States)

    Shivanna, Gunashree B.; Venkateswaran, Govindarajulu

    2014-01-01

    Fermentation is one of the industrially important processes for the development of microbial metabolites that has immense applications in various fields. This has prompted to employ fermentation as a major technique in the production of phytase from microbial source. In this study, a comparison was made between submerged (SmF) and solid-state fermentations (SSF) for the production of phytase from Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01. It was found that both the fungi were capable of producing maximum phytase on 5th day of incubation in both submerged and solid-state fermentation media. Aspergillus niger CFR 335 and A. ficuum produced a maximum of 60.6 U/gds and 38 U/gds of the enzyme, respectively, in wheat bran solid substrate medium. Enhancement in the enzyme level (76 and 50.7 U/gds) was found when grown in a combined solid substrate medium comprising wheat bran, rice bran, and groundnut cake in the ratio of 2 : 1 : 1. A maximum of 9.6 and 8.2 U/mL of enzyme activity was observed in SmF by A. niger CFR 335 and A.ficuum, respectively, when grown in potato dextrose broth. PMID:24688383

  16. Production and partial characterization of serine and metallo peptidases secreted by Aspergillus fumigatus Fresenius in submerged and solid state fermentation.

    Science.gov (United States)

    da Silva, Ronivaldo Rodrigues; de Freitas Cabral, Tatiana Pereira; Rodrigues, André; Cabral, Hamilton

    2013-01-01

    Enzyme production varies in different fermentation systems. Enzyme expression in different fermentation systems yields important information for improving our understanding of enzymatic production induction. Comparative studies between solid-state fermentation (SSF) using agro-industrial waste wheat bran and submerged fermentation (SmF) using synthetic media were carried out to determinate the best parameters for peptidase production by the fungus Aspergillus fumigatus Fresen. Variables tested include: the concentration of carbon and protein nitrogen sources, the size of the inoculum, the pH of the media, temperature, and the length of the fermentation process. The best peptidase production during SSF was obtained after 96 hours using wheat bran at 30 °C with an inoculum of 1 × 10(6) spores and yielded 1500 active units (U/mL). The best peptidase production using SmF was obtained after periods of 72 and 96 hours of fermentation in media containing 0.5% and 0.25% of casein, respectively, at a pH of 6.0 and at 30 °C and yielded 40 U/mL. We also found examples of catabolite repression of peptidase production under SmF conditions. Biochemical characterization of the peptidases produced by both fermentative processes showed optimum activity at pH 8.0 and 50 °C, and also showed that their proteolytic activity is modulated by surfactants. The enzymatic inhibition profile using phenylmethylsulfonyl fluoride (PMSF) in SmF and SSF indicated that both fermentative processes produced a serine peptidase. Additionally, the inhibitory effect of the ethylene-diaminetetraacetic acid (EDTA) chelating agent on the peptidase produced by SmF indicated that this fermentative process also produced a metallopeptidase.

  17. Determination of the effects of initial glucose on the production of ?-amylase from Penicillium sp. under solid-state and submerged fermentation

    OpenAIRE

    Ertan (?nceo?lu), Figen; Balkan, Bilal; Yark?n, Zehra

    2014-01-01

    The effects of catabolite repression of initial glucose on the synthesis of ?-amylase from Penicillium chrysogenum and Penicillium griseofulvum were investigated under solid-state fermentation (SSF) and submerged fermentation (SmF) systems. The results obtained from either fermentation were compared with each other. In the SmF system, initial glucose concentration above 10?mg/mL completely repressed the production of ?-amylase from P. chrysogenum and P. griseofulvum. However, the repression i...

  18. Efficient mosquitocidal toxin production by Bacillus sphaericus using cheese whey permeate under both submerged and solid state fermentations.

    Science.gov (United States)

    El-Bendary, Magda A; Moharam, Maysa E; Foda, M S

    2008-05-01

    Whey permeate (WP) was used efficiently for production of mosquitocidal toxin by Bacillus sphaericus 2362 (B. sphaericus 2362) and the Egyptian isolate, B. sphaericus 14N1 (B. sphaericus 14N1) under both submerged and solid state fermentation conditions. Under submerged fermentation, high mosquitocidal activity was produced by B. sphaericus 2362 and B. sphaericus 14N1 at 50-100% and 25-70% WP, respectively. Initial pH of WP was a critical factor for toxin production by both tested organisms. The highest toxicity was obtained at initial pH 7. Egyptian isolate, B. sphaericus 14N1 was tested for growth and toxin production under solid state fermentation conditions (SSF) by using WP as moistening agent instead of distilled water. The optimum conditions for production of B. sphaericus 14N1 on wheat bran-WP medium were 10 g wheat bran/250 ml flask moistened with 10-70% WP at 50% moisture content, inoculum size ranged between 17.2x10(7) and 34.4x10(7) and 6 days incubation under static conditions at 30 degrees C. Preliminary pilot-scale production of B. sphaericus 14N1 under SSF conditions in trays proved that wheat bran-WP medium was efficient and economic for industrial production of mosquitocidal toxin by B. sphaericus.

  19. Comparative studies on the fermentation performance of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor during solid-state or submerged fermentation.

    Science.gov (United States)

    Kong, Y; Wu, Q; Xu, Y

    2017-04-01

    To explore the metabolic characteristic of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor fermentation. Inter-delta amplification analysis was used to differentiate the S. cerevisiae strains at strain level. Twelve biotypes (I-XII) were identified among the 72 S. cerevisiae strains preselected. A comparison was conducted between solid-state fermentation (SSF) and submerged fermentation (SmF) with S. cerevisiae strains had different genotype, with a focus on the production of ethanol and the volatile compounds. The degree of ethanol ranged from 28·0 to 45·2 g l -1 in SmF and from 14·8 to 25·6 g kg -1 in SSF, and SSF was found to be more suitable for the production of ethanol with higher yield coefficient of all the S. cerevisiae strains. The metabolite profiles of each yeast strain showed obvious distinction in the two fermentations. The highest amounts of ethyl acetate in SmF and SSF were found in genotype VII (328·2 μg l -1 ) and genotype V (672 μg kg -1 ), respectively. In addition, the generation of some volatile compounds could be strictly related to the strain used. Compound β-damascenone was only detected in genotypes I, II, X and XII in the two fermentation processes. Furthermore, laboratory scale fermentations were clearly divided into SSF and SmF in hierarchical cluster analysis regardless of the inoculated yeast strains, indicating that the mode of fermentation was more important than the yeast strains inoculated. The autochthonous S. cerevisiae strains in Chinese light-fragrant liquor vary considerably in terms of their volatiles profiles during SSF and SmF. This work facilitates a better understanding of the fermentative mechanism in the SSF process for light-fragrant liquor production. © 2016 The Society for Applied Microbiology.

  20. Comprehensive Secondary Metabolite Profiling Toward Delineating the Solid and Submerged-State Fermentation of Aspergillus oryzae KCCM 12698

    Directory of Open Access Journals (Sweden)

    Su Y. Son

    2018-05-01

    Full Text Available Aspergillus oryzae has been commonly used to make koji, meju, and soy sauce in traditional food fermentation industries. However, the metabolic behaviors of A. oryzae during fermentation in various culture environments are largely uncharacterized. Thus, we performed time resolved (0, 4, 8, 12, 16 day secondary metabolite profiling for A. oryzae KCCM 12698 cultivated on malt extract agar and broth (MEA and MEB under solid-state fermentation (SSF and submerged fermentation (SmF conditions using the ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS followed by multivariate analyses. We observed the relatively higher proportions of coumarins and oxylipins in SSF, whereas the terpenoids were abundant in SmF. Moreover, we investigated the antimicrobial efficacy of metabolites that were extracted from SSF and SmF. The SSF extracts showed higher antimicrobial activities as compared to SmF, with higher production rates of bioactive secondary metabolites viz., ketone-citreoisocoumarin, pentahydroxy-anthraquinone, hexylitaconic acid, oxylipins, and saturated fatty acids. The current study provides the underpinnings of a metabolomic framework regarding the growth and bioactive compound production for A. oryzae under the primarily employed industrial cultivation states. Furthermore, the study holds the potentials for rapid screening and MS-characterization of metabolites helpful in determining the consumer safety implications of fermented foods involving Koji mold.

  1. The use of a-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    Directory of Open Access Journals (Sweden)

    Moreira Fabiana G.

    2001-01-01

    Full Text Available The use of a methyl-D-glucoside (alphaMG, a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob medium with alphaMG increased up to 3 times the production of amylases. In both submerged and solid state fermentations, alphaMG was more effective inducer of amylases than maltose and starch.

  2. The use of alpha-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    Directory of Open Access Journals (Sweden)

    Fabiana G. Moreira

    2001-03-01

    Full Text Available The use of a methyl-D-glucoside (alphaMG, a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob medium with alphaMG increased up to 3 times the production of amylases. In both submerged and solid state fermentations, alphaMG was more effective inducer of amylases than maltose and starch.

  3. Mutagenic strain improvement of aspergillus niger (MBL-1511) and optimization of cultural conditions for boosted lipolytic potential through submerged fermentation

    International Nuclear Information System (INIS)

    Sidra, A.; Aftikhar, T.

    2016-01-01

    In present study an isolated hyper producer of Aspergillus niger (MBL-1511) was treated for sodium azide mutagenesis. Results showed 147.27 % enhanced extracellular lipase activity after 150 minutes of sodium azide treatment. Wild and mutant hyper lipase producer strains were exploited to submerged fermentation (SmF). Brassica meal as an additive agro waste product to the basal medium was optimized. Experimental conditions optima were 10% inoculum size, 30 degree C temperature, 96 h rate of fermentation and pH 6 for maximum lipases production. Molasses and Ammonium nitrate were optimized as the best carbon and nitrogen sources (0.6% and 0.4%) w/v respectively and sunflower oil 1% (v/v) as better inducer. Finally, an effective mutant (MBL-1511SA-4(150 min)) having of 176.10% enhanced extracellular lipases production over wild (MBL-1511) strain was acquired. (author)

  4. Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation

    Directory of Open Access Journals (Sweden)

    P. Chellapandi

    2008-03-01

    Full Text Available Cellulase is a complex enzyme system, commercially produced by filamentous fungi under solid-state and submerged cultivation. It has wide applicability in textile, food and beverage industry for effective saccharification process. In this study, cellulolytic enzyme activity, particularly endoglucanase of 26 Streptomyces strains isolated from garden soil was examined, including two isolates selected on the basis of potential cellulolytic activity on Bennett's agar medium. To enhance the endoglucanase formation in broth culture, different conditions including carbon and nitrogen sources, and growth conditions were tested. The maximum endoglucanase activity (11.25-11.90 U/mL was achieved within 72-88 h in fermentation medium containing Tween-80, followed by phosphate sources. Both cellulolytic Streptomyces isolates gave almost equal quantity of enzyme in all trials. However the effect of medium ingredients on endoglucanase induction diverged with strains in some extent.A celulase é um sistema enzimático complexo, produzido comercialmente a partir de fungos filamentosos através de cultivo em estádio sólido e submerso. Tem uma grande aplicação na indústria têxtil e de alimentos e bebidas no processo de sacarificação. Nesse estudo, examinou-se a atividade celulolítica, especialmente de englucanase, de 26 cepas de Streptomyces isoladas de solo, incluindo duas cepas selecionadas por sua atividade celulolítica no ágar Bennett. Para estimular a produção de englucanase em meio de cultura, diferentes condições de cultivo, incluindo fonte de carbono e nitrogênio e condições de crescimento, foram avaliadas. A atividade máxima de glucanase (11,25 a 11,90 U/mL foi obtida em 72-88h em meio de cultura contendo Tween-80, seguido por fontes de fosfato. Ambas as cepas celulolíticas de Streptomyces produziram quase a mesma quantidade de enzima em todos os experimentos. Entretanto, o efeito dos ingredientes do meio na indução da glucanase

  5. The use of alpha-methyl-D-glucoside, a synthetic analogue of maltose, as inducer of amylase by Aspergillus sp in solid-state and submerged fermentations

    OpenAIRE

    Moreira, Fabiana G.; Lenartovicz, Veridiana; Souza, Cristina G.M. de; Ramos, Edivan P.; Peralta, Rosane M.

    2001-01-01

    The use of a methyl-D-glucoside (alphaMG), a synthetic analogue of maltose, as carbon source and inducer of amylase synthesis to several species of Aspergillus was studied in submerged and solid-state fermentations. Among a group of ten species, A. tamarii, A. fumigatus and A. flavus were able to produce biomass and high specific amylolytic activity in submerged cultures containing alphaMG as the only carbon source. In solid state fermentation, the enrichment of basal wheat bran or corn cob m...

  6. Involvement of Physical Parameters in Medium Improvement for Tannase Production by Aspergillus niger FETL FT3 in Submerged Fermentation.

    Science.gov (United States)

    Darah, I; Sumathi, G; Jain, K; Hong, Lim Sheh

    2011-01-01

    Aspergillus niger FETL FT3, a local extracellular tannase producer strain that was isolated from one of dumping sites of tannin-rich barks of Rhizophora apiculata in Perak, Malaysia. This fungus was cultivated in 250 mL Erlenmeyer flask under submerged fermentation system. Various physical parameters were studied in order to maximize the tannase production. Maximal yield of tannase production, that is, 2.81 U per mL was obtained on the fourth day of cultivation when the submerged fermentation was carried out using liquid Czapek-Dox medium containing (percent; weight per volume) 0.25% NaNO(3), 0.1% KH(2)PO(4), 0.05% MgSO(4) ·7H(2)O, 0.05% KCl, and 1.0% tannic acid. The physical parameters used initial medium pH of 6.0, incubation temperature of 30°C, agitation speed of 200 rpm and inoculums size of 6 × 10(6) spores/ ml. This research has showed that physical parameters were influenced the tannase production by the fungus with 156.4 percent increment.

  7. Comparative evaluation of extracellular β-D-fructofuranosidase in submerged and solid-state fermentation produced by newly identified Bacillus subtilis strain.

    Science.gov (United States)

    Lincoln, Lynette; More, Sunil S

    2018-04-17

    To screen and identify a potential extracellular β-D-fructofuranosidase or invertase producing bacterium from soil, and comparatively evaluate the enzyme biosynthesis under submerged and solid-state fermentation. Extracellular invertase producing bacteria were screened from soil. Identification of the potent bacterium was performed based on microscopic examinations and 16S rDNA molecular sequencing. Bacillus subtilis LYN12 invertase secretion was surplus with wheat bran humidified with molasses medium (70%), with elevated activity at 48 h and 37 °C under solid-state fermentation, whereas under submerged conditions increased activity was observed at 24 h and 45 °C in the molasses medium. The study revealed a simple fermentative medium for elevated production of extracellular invertase from a fast growing Bacillus strain. Bacterial invertases are scarce and limited reports are available. By far, this is the first report on the comparative analysis of optimization of extracellular invertase synthesis from Bacillus subtilis strain by submerged and solid-state fermentation. The use of agricultural residues increased yields resulting in development of a cost-effective and stable approach. Bacillus subtilis LYN12 invertase possesses excellent fermenting capability to utilize agro-industrial residues under submerged and solid-state conditions. This could be a beneficial candidate in food and beverage processing industries. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach.

    Science.gov (United States)

    Kumar, Mukesh; Singh, Amrinder; Beniwal, Vikas; Salar, Raj Kumar

    2016-12-01

    Tannase (tannin acyl hydrolase E.C 3.1.1.20) is an inducible, largely extracellular enzyme that causes the hydrolysis of ester and depside bonds present in various substrates. Large scale industrial application of this enzyme is very limited owing to its high production costs. In the present study, cost effective production of tannase by Klebsiella pneumoniae KP715242 was studied under submerged fermentation using different tannin rich agro-residues like Indian gooseberry leaves (Phyllanthus emblica), Black plum leaves (Syzygium cumini), Eucalyptus leaves (Eucalyptus glogus) and Babul leaves (Acacia nilotica). Among all agro-residues, Indian gooseberry leaves were found to be the best substrate for tannase production under submerged fermentation. Sequential optimization approach using Taguchi orthogonal array screening and response surface methodology was adopted to optimize the fermentation variables in order to enhance the enzyme production. Eleven medium components were screened primarily by Taguchi orthogonal array design to identify the most contributing factors towards the enzyme production. The four most significant contributing variables affecting tannase production were found to be pH (23.62 %), tannin extract (20.70 %), temperature (20.33 %) and incubation time (14.99 %). These factors were further optimized with central composite design using response surface methodology. Maximum tannase production was observed at 5.52 pH, 39.72 °C temperature, 91.82 h of incubation time and 2.17 % tannin content. The enzyme activity was enhanced by 1.26 fold under these optimized conditions. The present study emphasizes the use of agro-residues as a potential substrate with an aim to lower down the input costs for tannase production so that the enzyme could be used proficiently for commercial purposes.

  9. Direct bio-utilization of untreated rapeseed meal for effective iturin A production by Bacillus subtilis in submerged fermentation.

    Directory of Open Access Journals (Sweden)

    Hu Jin

    Full Text Available The feasibility of using untreated rapeseed meal as a nitrogen source for iturin A production by Bacillus subtilis 3-10 in submerged fermentation was first evaluated by comparison with two different commercial nitrogen sources of peptone and ammonium nitrate. A significant promoting effect of rapeseed meal on iturin A production was observed and the maximum iturin A concentration of 0.60 g/L was reached at 70 h, which was 20% and 8.0 fold higher than that produced from peptone and ammonium nitrate media, respectively. It was shown that rapeseed meal had a positive induction effect on protease secretion, contributing to the release of soluble protein from low water solubility solid rapeseed meal for an effective supply of available nitrogen during fermentation. Moreover, compared to raw rapeseed meal, the remaining residue following fermentation could be used as a more suitable supplementary protein source for animal feed because of the great decrease of major anti-nutritional components including sinapine, glucosinolate and its degradation products of isothiocyanate and oxazolidine thione. The results obtained from this study demonstrate the potential of direct utilization of low cost rapeseed meal as a nitrogen source for commercial production of iturin A and other secondary metabolites by Bacillus subtilis.

  10. Determination of the effects of initial glucose on the production of α-amylase from Penicillium sp. under solid-state and submerged fermentation.

    Science.gov (United States)

    Ertan İnceoğlu, Figen; Balkan, Bilal; Yarkın, Zehra

    2014-01-02

    The effects of catabolite repression of initial glucose on the synthesis of α-amylase from Penicillium chrysogenum and Penicillium griseofulvum were investigated under solid-state fermentation (SSF) and submerged fermentation (SmF) systems. The results obtained from either fermentation were compared with each other. In the SmF system, initial glucose concentration above 10 mg/mL completely repressed the production of α-amylase from P. chrysogenum and P . griseofulvum . However, the repression in the SSF system was not complete, even when the glucose level was raised to 160 mg/g.

  11. Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6.

    Science.gov (United States)

    Das Mohapatra, Pradeep K; Mondal, Keshab C; Pati, Bikas R

    2006-01-01

    Tannins are water-soluble polyphenolic compounds found in plants as secondary metabolites. The presence of these substances in the barks of eight different plants was initially examined and their crude extracts were used separately as a substrate for production of tannase through submerged fermentation by Bacillus licheniformis KBR6. Tannase production as well as biodegradation of the substrate reached a maximum within 15 to 18 h against crude tannin extract obtained from Anacardium occidentale. Among different concentrations of the crude tannin tested, 0.5% (w/v) induced maximum synthesis of enzyme. Tannase production was higher by almost two-fold in the presence of crude tannin compared to pure tannic acid used as a substrate. It seems that industrial production of tannase, using bark extract of A. occidentale can be a very simple and suitable alternative to presently used procedures.

  12. Expression of manganese peroxidase by Lentinula edodes and Lentinula boryana in solid state and submerged system fermentation

    Directory of Open Access Journals (Sweden)

    KATIA L. HERMANN

    2013-09-01

    Full Text Available The production of ethanol from lignocellulosic biomass is referred as a second generation biofuel, whose processing is one of the most promising technologies under development. There are few available studies on the use of enzymes produced by fungi as active for the biodegradation of lignocellulosic biomass. However, the manganese peroxidase (MnP enzyme presents high potential to degrade lignin and the basidiomycetes are the major producers of this oxidase. Thus, this study aimed at evaluating the ability of fungi Lentinula edodes and Lentinula boryana to produce this enzyme when cultivated in submerged fermentation system (SS and also in solid-state fermentation system (SSF containing Eucalyptus benthamii sawdust with or without corn cob meal. In the SS the greatest MnP expression occurred on the 25th day, being of 70 UI.L–1 for L. boryana and of 20 UI.L–1 for L. edodes. In the SSF, the best results were obtained on the 10th day for L. edodes, while for L. boryana it happened between the 20th and the 25th days, despite both species presented values close to 110 UI.L–1. Therefore, the results indicated that the studied fungi express the enzyme of interest and that its production is enhanced when cultivated in solid system.

  13. Heterologous expression of VHb can improve the yield and quality of biocontrol fungus Paecilomyces lilacinus, during submerged fermentation.

    Science.gov (United States)

    Zhang, Shumeng; Wang, Jieping; Wei, Yale; Tang, Qing; Ali, Maria Kanwal; He, Jin

    2014-10-10

    Paecilomyces lilacinus is an egg-parasitic fungus which is effective against plant-parasitic nematodes and it has been successfully commercialized for the control of many plant-parasitic nematodes. However, during the large-scale industrial fermentation process of the filamentous fungus, the dissolved oxygen supply is a limiting factor, which influences yield, product quality and production cost. To solve this problem, we intended to heterologously express VHb in P. lilacinus ACSS. After optimizing the vgb gene, we fused it with a selection marker gene nptII, a promoter PgpdA and a terminator TtrpC. The complete expression cassette PgpdA-nptII-vgb-TtrpC was transferred into P. lilacinus ACSS by Agrobacterium tumefaciens-mediated transformation. Consequently, we successfully screened an applicable fungus strain PNVT8 which efficiently expressed VHb. The submerged fermentation experiments demonstrated that the expression of VHb not only increased the production traits of P. lilacinus such as biomass and spore production, but also improved the beneficial product quality and application value, due to the secretion of more protease and chitinase. It can be speculated that the recombinant strain harboring vgb gene will have a growth advantage over the original strain under anaerobic conditions in soil and therefore will possess higher biocontrol efficiency against plant-parasitic nematodes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study.

    Science.gov (United States)

    Zhang, Bo-Bo; Lu, Li-Ping; Xu, Gan-Rong

    2015-07-20

    The underlying mechanisms by which solid-state fermentation (SSF) was more advantageous over submerged fermentation (SmF) for converting high concentration of glycerol into Monacolin K by Monascus purpureus were investigated innovatively. First, the established kinetic models and kinetic parameters showed that the cell growth, Monacolin K formation and glycerol consumption in SSF were more rapid than those in SmF. Secondly, the comparison of fatty acid composition of mycelial cells indicated a better fluidity and permeability of the cell membrane in SSF than that of SmF, which was also consistent with the difference in the ratio of extracellular/intracellular Monacolin K between the two systems. Thirdly, the phenomenon of glycerol concentration gradient was verified in SSF, which could well explain the resistance effect to high concentration of glycerol in SSF. These new findings provide some important insights to the elucidation of the advantages of SSF for the synthesis of fungal secondary metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Exploring the Degradation of Gallotannins Catalyzed by Tannase Produced by Aspergillus niger GH1 for Ellagic Acid Production in Submerged and Solid-State Fermentation.

    Science.gov (United States)

    Chávez-González, Mónica L; Guyot, Sylvain; Rodríguez-Herrera, Raul; Prado-Barragán, Arely; Aguilar, Cristóbal N

    2018-06-01

    Due to great interest on producing bioactive compounds for functional foods and biopharmaceuticals, it is important to explore the microbial degradation of potential sources of target biomolecules. Gallotannins are polyphenols present in nature, an example of them is tannic acid which is susceptible to enzymatic hydrolysis. This hydrolysis is performed by tannase or tannin acyl hydrolase, releasing in this way, biomolecules with high-added value. In the present study, chemical profiles obtained after fungal degradation of tannic acid under two bioprocesses (submerged fermentation (SmF) and solid state fermentation (SSF)) were determined. In both fermentation systems (SmF and SSF), Aspergillus niger GH1 strain and tannic acid as a sole carbon source and inducer were used (the presence of tannic acid promotes production of enzyme tannase). In case of SSF, polyurethane foam (PUF) was used like as support of fermentation; culture medium only was used in case of submerged fermentation. Fermentation processes were monitored during 72 h; samples were taken kinetically every 8 h; and all extracts obtained were partially purified to obtain polyphenolic fraction and then were analyzed by liquid chromatography-mass spectrometry (LC-MS). Molecules like gallic acid and n-galloyl glucose were identified as intermediates in degradation of tannic acid; during SSF was identified ellagic acid production. The results obtained in this study will contribute to biotechnological production of ellagic acid.

  16. ALPHA-AMYLASE PRODUCTION FROM Aspergillus oryzae M BY SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    Suleimenova

    2016-08-01

    Full Text Available The main goal of present study was implementation of the Aspergillus oryzae M strain improved technology using earlier developed method of microorganism selection. 8 pure strains of Aspergillus fungi were screened for the production of extra cellular alpha-amylase using agar medium with starch as a substrate and incubated for 72h at 30 ºС. Zone of clearance was observed for screening of the amylolytic fungi (in mm. Aspergillus oryzae M has demonstrated the highest zone of clearance. Aspergillus oryzae M was cultivated for 42 days in submerged conditions of growth using new method of fungal cultivation. This method based on immobilizing enzymes producers on solid career in submerged conditions of growth gives the way to improve quality of filtrates, which remain clear, does not require additional filtering and easily separated from the mycelium. Moreover, it allows to prolong the process of fungal cultivation and to maintain high enzymatic activity for a long period of time. Presented method allowed increasing alpha-amylase production from 321 U/ml (before immobilization to 502 U/ml (after immobilization.

  17. Production of rennin-like acid protease by Mucor pusillus through submerged fermentation

    International Nuclear Information System (INIS)

    Daudi, S.; Mukhtar, H.; Rehman, A.U.; Haq, I.U.

    2015-01-01

    The present study is concerned with the isolation and screening of Mucor species for the production of acid protease in shake flasks. Out of eight mould cultures evaluated, five were isolated from soil and three were provided from the Institute of Industrial Biotechnology, Government College University, Lahore. Of all the isolates tested, Mucor pusillus IHS6 was found to be the best producer of rennin-like acid protease producing 75 U/ml of the enzyme. Different agricultural byproducts were evaluated as fermentation substrates and maximum enzyme synthesis (61 U/ml) was obtained when rapeseed meal was used as a substrate. Optimum pH and fermentation period for the production of protease were 5.5 (56U/ml) and 72 hrs (55U/ml), respectively. The production of protease by Mucor pusillus IHS6 was also studied by adding different carbon and nitrogen sources to the fermentation medium. Fructose at a concentration of 1.5% (66 U/ml) and yeast extract at a concentration of 2% (68.2 U/ml) and ammonium chloride at a concentration of 0.1% (67U/ml) were found to be the best carbon and nitrogen (organic and inorganic) sources respectively. Spore inoculum at a concentration of 1% (68.4 U/ml) was found to be the best for protease production by Mucor pusillus. The fermentation broth was found to have strong milk clotting activity with 200 RU. (author)

  18. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    Science.gov (United States)

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  19. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation.

    Science.gov (United States)

    Shi, Kan; Song, Da; Chen, Gong; Pistolozzi, Marco; Wu, Zhenqiang; Quan, Lei

    2015-08-01

    Submerged fermentations of Monascus anka were performed with different nitrogen sources at different pH in 3 L bioreactors. The results revealed that the Monascus pigments dominated by different color components (yellow pigments, orange pigments or red pigments) could be selectively produced through pH control and nitrogen source selection. A large amount of intracellular pigments dominated by orange pigments and a small amount of water-soluble extracellular yellow pigments were produced at low pH (pH 2.5 and 4.0), independently of the nitrogen source employed. At higher pH (pH 6.5), the role of the nitrogen source became more significant. In particular, when ammonium sulfate was used as nitrogen source, the intracellular pigments were dominated by red pigments with a small amount of yellow pigments. Conversely, when peptone was used, intracellular pigments were dominated by yellow pigments with a few red pigments derivatives. Neither the presence of peptone nor ammonium sulfate promoted the production of intracellular orange pigments while extracellular pigments with an orangish red color were observed in both cases, with a higher yield when peptone was used. Two-stage pH control fermentation was then performed to improve desirable pigments yield and further investigate the effect of pH and nitrogen sources on pigments composition. These results provide a useful strategy to produce Monascus pigments with different composition and different color characteristics. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. A Review of the Effective Factors for Lovastatin Production by Aspergillus Terreus Atcc 20542 in Liquid Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    F Jaberi Ansari

    2016-12-01

    Full Text Available BACKGROUND AND OBJECTIVE: Deposition of cholesterol in the arteries is the one of the main causes of cardiovascular disease. Lovastatin is a blood cholesterol-lowering drug that inhibits 3-Hydroxy 3-methyl glutaryl-CoA reductase (HMG-CoA reductase enzyme. The aim of this study was to evaluate the effective factors for lovastatin production by Aspergillus terreus ATCC 20542. METHODS: This study is a literature review, In order to gather information, articles containing one of the words in their text, including: Cardiovascular disease, Lovastatin, HMG-CoA reductase, Liquid submerged fermentation, Aspergillus terreus were searched between 1960 and 2016 in PUBMED, NATURE, SCIENCE DIRECT and WHO databases. FINDINGS: A total of 180 papers found that of these, 70 were diagnosed article suitable for this study. According to the results, lactose as the best carbon source, soya been and yeast extract as the nitrogen source, C/N ratio of 41.3, the 107 spores/ml, the pH equal to 6.5, Fe, Zn, Mn as mineral elements and inducer such as linoleic acid at a optimum concentration causes the highest amount of lovastatin. CONCLUSION: The study shows, the source of carbon and nitrogen, the C/N, the amount and type of inoculation, pH, minerals and inducer are the most important factors affecting the morphology and oxygen uptake by the, Aspergillus terreus and hence also affect the production of lovastatin

  1. An evaluation of the proteolytic and lipolytic potential of Penicillium spp. isolated from traditional Greek sausages in submerged fermentation.

    Science.gov (United States)

    Papagianni, Maria

    2014-01-01

    A number of novel Penicillium strains belonging to Penicillium nalgiovense, Penicillium solitum, Penicillium commune, Penicillium olsonii, and Penicillium oxalicum species, isolated from the surface of traditional Greek sausages, were evaluated for their proteolytic and lipolytic potential in a solid substrate first and next in submerged fermentations, using complex media. Extracellular proteolytic activity was assessed at acid, neutral, and alkaline pH, while the lipolytic activity was assessed using olive oil, the short-chain triacylglycerol tributyrin, and the long-chain triolein, as substrates. The study revealed that although closely related, the tested strains produce enzymes of distinct specificities. P. nalgiovense PNA9 produced the highest alkaline proteolytic activity (13.2 unit (U)/ml) and the highest lipolytic activity with tributyrin (92 U/ml). Comparisons with known sources show that proteases and/or lipases can be secreted effectively by some Penicillia (P. nalgiovense PNA4, PNA7, and PNA9 and P. solitum PSO1), and further investigations on their properties and characteristics would be promising.

  2. Extracellular Phytase Production by the Wine Yeast S. cerevisiae (Finarome Strain) during Submerged Fermentation.

    Science.gov (United States)

    Kłosowski, Grzegorz; Mikulski, Dawid; Jankowiak, Oliwia

    2018-04-08

    One of the key steps in the production of phytases of microbial origin is selection of culture parameters, followed by isolation of the enzyme and evaluation of its catalytic activity. It was found that conditions for S. cerevisiae yeast culture, strain Finarome, giving the reduction in phytic acid concentration of more than 98% within 24 h of incubation were as follows: pH 5.5, 32 °C, continuous stirring at 80 rpm, the use of mannose as a carbon source and aspartic acid as a source of nitrogen. The highest catalytic activity of the isolated phytase was observed at 37 °C, pH 4.0 and using phytate as substrate at concentration of 5.0 mM. The presence of ethanol in the medium at a concentration of 12% v / v reduces the catalytic activity to above 60%. Properties of phytase derived from S. cerevisiae yeast culture, strain Finarome, indicate the possibility of its application in the form of a cell's free crude protein isolate for the hydrolysis of phytic acid to improve the efficiency of alcoholic fermentation processes. Our results also suggest a possibility to use the strain under study to obtain a fusant derived with specialized distillery strains, capable of carrying out a highly efficient fermentation process combined with the utilization of phytates.

  3. Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production.

    Science.gov (United States)

    Garcia-Kirchner, O; Muñoz-Aguilar, M; Pérez-Villalva, R; Huitrón-Vargas, C

    2002-01-01

    The efficient saccharification of lignocellulosic materials requires the cooperative actions of different cellulase enzyme activities: exoglucanase, endoglucanase, beta-glucosidase, and xylanase. Previous studies with the fungi strains Aureobasidium sp. CHTE-18, Penicillium sp. CH-TE-001, and Aspergillus terreus CH-TE-013, selected mainly because of their different cellulolytic and xylanolytic activities, have demonstrated the capacity of culture filtrates of cross-synergistic action in the saccharification of native sugarcane bagasse pith. In an attempt to improve the enzymatic hydrolysis of different cellulosic materials, we investigated a coculture fermentation with two of these strains to enhance the production of cellulases and xylanases. The 48-h batch experimental results showed that the mixed culture of Penicillium sp. CH-TE-001 and A. terreus CH-TE-013 produced culture filtrates with high protein content, cellulase (mainly beta-glucosidase), and xylanase activities compared with the individual culture of each strain. The same culture conditions were used in a simple medium with mineral salts, corn syrup liquor, and sugarcane bagasse pith as the sole carbon source with moderate shaking at 29 degrees C. Finally, we compared the effect of the cell-free culture filtrates obtained from the mixed and single fermentations on the saccharification of different kinds of cellulosic materials.

  4. Effects of Various Process Parameters on the Production of γ-Linolenic Acid in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Syed U. Ahmed

    2006-01-01

    Full Text Available Studies were carried out on the fermentative production of γ-linolenic acid (GLA using seven strains belonging to Mucorales. An oleaginous fungal strain, isolated from the Western Ghats of Kerala produced GLA at a level of 8 % (by mass, when grown in a complex medium containing glucose as the sole carbon source. Effects of different culture conditions were investigated in shake flasks. Maximum dry biomass and total GLA obtained were 48.4 g/L and 636 mg/L, respectively, in the culture cultivated at 30 °C and 200 rpm for 7 days. Among the organic nitrogen sources investigated, yeast extract, and combination of corn steep liquor and baker’s yeast in 1:1 ratio were useful for enhancing the GLA production and the effects were comparable.

  5. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

    Science.gov (United States)

    Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions. PMID:24294129

  6. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Hamid Mukhtar

    2013-01-01

    Full Text Available The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.

  7. Gallic acid production under anaerobic submerged fermentation by two bacilli strains.

    Science.gov (United States)

    Aguilar-Zárate, Pedro; Cruz, Mario A; Montañez, Julio; Rodríguez-Herrera, Raúl; Wong-Paz, Jorge E; Belmares, Ruth E; Aguilar, Cristóbal N

    2015-12-30

    Tannase is an enzyme that catalyses the breakdown of ester bonds in gallotannins such as tannic acid. In recent years, the interest on bacterial tannases has increased because of its wide applications. The lactic acid bacteria (LAB) plays an important role in food tannin biotransformation, it has the ability of hydrolyse tannins in ruminants intestine. The finding of tannin hydrolysis by LAB has sparked their use as tannase producer. The bacterial strains used in the present work were identified as Bacillus subtilis AM1 and Lactobacillus plantarum CIR1. The maximal tannase production levels were 1400 and 1239 U/L after 32 and 36 h of fermentation respectively, for B. subtilis AM1 and L. plantarum CIR1. Maximum gallic acid release was 24.16 g/L for B. subtilis AM1 and 23.73 g/L for L. plantarum CIR1. HPLC analysis showed the formation of another peaks in the retention time range of 9-14 min, which could be attributed to the formation of di or tri-galloyl glucose. According to database, the strains were identified as Bacillus subtilis AM1 and Lactobacillus plantarum CIR1. In conclusion, both strains had the capability to produce good titres of extracellular tannase and release gallic acid.

  8. Isolation of Bacillus sp Producing Polyhydroxyalkanoate (PHA from Isfahan Refinery Wastewater and Qualification of Production in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Mahsa Keshavarz Azam

    2015-12-01

    Full Text Available Introduction: The aim of present study was isolation of polyhydroxybutyrate producing Bacillus species from oil refinery waste water, Isfahan, Iran and primarily optimization of production condition. Petroleum wastes are rich of carbon sources and have low amounts of nitrogen and phosphorus sources. AS the most important factor in production of intracellular inclusions is increasing the C/N ratio, it seemed that polyhydroxybutyrate producing microorganisms will be found in these wastes. Materials and methods: Bacillus species were isolated and purified from oil refinery wastewater. The polymer was verified using different staining procedures. Polymer was extracted by digestion method and the optimum production conditions were investigated in minimal salt medium with the organic carbon source by submerged fermentation. Production of polyhydroxybutyrate was studied using dry weight and optical density measurement. Results: Between various isolated Bacillus strains, two of them (B1 and B2 were polyhydroxybutyrate producers. Maximum PHA production based on dry weight and concentration were obtained for strain B1 after 72 hours incubation, at 31°C, in the presence of glucose as carbon source and yeast extract as nitrogen source, pH=7, and aeration in 120 rpm; and for strain B2 in the same condition, except optimal temperature which was 32°C. The most production amounts were 367 mg.ml-1 for B1 and 473 mg.ml-1 for B2 isolates. Also the most polymer percentage was 52/16 and 58.43 for B1 and B2 isolates respectively. Discussion and conclusion: The results showed that the production of polyhydroxybutyrate was increased by optimization of the conditions in both isolates. Using petroleum wastes as well as production of biodegradable plastics, leads to decontamination of theses wastes.

  9. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity.

    Science.gov (United States)

    Wang, Yuwan; Zhang, Mingyue; Zhang, Zhengzhu; Lu, Hengqian; Gao, Xueling; Yue, Pengxiang

    2017-12-01

    Theabrownins (TB) are bioactive components that are usually extracted from Chinese dark tea, in which they are present at low concentrations. The present study aimed to produce an instant dark tea high in theabrownins via submerged fermentation by the fungus Aspergillus niger. Three fermentation parameters that affect theabrownins content (i.e. inoculum size, liquid-solid ratio and rotation speed) were optimized using response surface methodology. Optimum fermentation conditions were modeled to be an inoculum of 5.40% (v/v), a liquid-solid ratio of 27.45 mL g -1 and a rotation speed of 184 rpm and were predicted to yield 292.99 g kg -1 TB. Under these experimentally conditions, the TB content of the instant dark tea was 291.93 g kg -1 . The antioxidant capacity and α-glucosidase and pancreatic lipase inhibitory activities of the high-TB instant black tea were higher than four other typical instant dark tea products. The results of the present study show that careful management of culture conditions can produce a dark tea high in theabrownins. Furthermore, high-theabrownins instant dark tea could serve as a source of bioactive products and be used in functional foods as an ingredient imparting antioxidant properties and the ability to inhibit pancreatic lipase and α-glucosidase. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation.

    Science.gov (United States)

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; Lima, Deise Juliana da Silva; Pradella, José Geraldo da Cruz

    2013-03-01

    This work investigates the glycosyl hydrolase (GH) profile of a new Trichoderma harzianum strain cultivated under controlled bioreactor submerged fermentation. The influence of different medium components (delignified steam-exploded sugarcane bagasse, sucrose, and soybean flour) on GH biosynthesis was assessed using experimental mixture design (EMD). Additionally, the effect of increased component concentrations in culture media selected from the EMD was studied. It was found that that a mixed culture medium could significantly maximize GH biosynthesis rate, especially for xylanase enzymes which achieved a 2-fold increment. Overall, it was demonstrated that T. harzianumP49P11 enzymes have a great potential to be used in the deconstruction of biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Monitoring of beer fermentation based on hybrid electronic tongue.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Enhanced acetic acid production from manalagi apple (Malus sylvestris mill) by mixed cultures of Saccharomyces cerevisiae and Acetobacter aceti in submerged fermentation

    Science.gov (United States)

    Rosada, K. K.

    2018-05-01

    The production of acetic acid from Manalagi apple was studied using a mixed culture of S. cerevisiae and A. aceti by submerged fermentation technique. Determination of the best conditions for producing acetic acid was performed by stratified optimization with variations that were made on the concentration of the initial sugar addition to the medium (0%, 10%, 20% w/v), the ratio of the number of inocula S. cerevisiae and A. aceti (7:3, 1:1, 3:7), and agitation rate (80 and 160 rpm). All experiments were done by using the initial pH medium of 4.5 and incubated at room temperature (28±2oC) for 14 days. The concentration of reducing sugar, alcohol, acetic acid, and the pH were measured every 48 hours. The efficiency of sugar conversion to acetic acid with the addition of initial sugar 0%, 10%, and20%were 233%, 46.6%, and 6.4% respectively after ten days of incubation. Overall, the result showed that the highest acetic acid was produced from Manalagi apple juice when no sugar was added, using seven parts of S. cerevisiae to three parts of A. aceti and agitation rate of 160 rpm on the tenth day of fermentation. Under these conditions, glucose conversion efficiency to acetic acid increased to 362%.

  13. USE OF BUTTER MILK AND POULTRY-TRANSFORMING WASTES FOR ENHANCED PRODUCTION OF Bacillus subtilis SPB1 BIOSURFACTANT IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    Raida Zouari

    2015-04-01

    Full Text Available Biosurfactants are valuable microbial amphiphilic molecules with effective surface-active and biological properties applicable to several industries and processes. Microorganisms synthesize them, especially during growth on water-immiscible substrates, providing an alternative to chemically prepared conventional surfactants. Microbial surfactants are not yet a sustainable alternative to chemically synthesized surfactants seeing their potentially high production charges. This study highlights the use of low-cost agro-industrial raw material for fermentative production of biosurfactants. The Box–Behnken Design and response surface methodology were employed to optimize the concentrations of the ratio butter milk /distilled water, poultry-transforming wastes and inoculum size for lipopeptide biosurfactant production by B.subtilis SPB1 in submerged fermentation.The best production yield was about 12.61 ± 0.7 g/L of crude lipopeptide biosurfactant. It can be obtained when using a ratio butter milk /distilled water of 1.5, poultry-transforming wastes of 23g/L and an inoculum size of 0.12. In comparison to the highest biosurfactant production yield reported for Bacillus subtilis SPB1, three fold increases were obtained.

  14. Polygalacturonase production by AR2 pectinolytic bacteria through submerged fermentation of raja nangka banana peel (Musa paradisiaca var. formatypica) with variation of carbon source and pectin

    Science.gov (United States)

    Utami, R.; Widowati, E.; Ivenaria, A.; Mahajoeno, E.

    2017-04-01

    Polygalacturonase (EC 3.1.2.15) catalyzes the hydrolysis of α-1,4-glycosidic bonds on galacturonic acid. Polygalacturonase can be produced from AR2 pectinolytic bacteria isolated from orange peel and vegetable waste. Commonly cost production of enzymes were high. However, with the advancement of technology, enzymes can now be manufactured at a low cost. Production of enzymes in low cost media with agro-industrial waste is interesting. Raja nangka banana peel is agro-industrial waste that is uneconomic. Therefore, this material can be used as a pectin source in polygalacturonase production. Polygalacturonase was produced by AR2 pectinolytic bacteria with the addition of various carbon sources (1% glucose, 1% galactose, 1% lactose) and variation of pectin concentrations (5%; 7.5%; 10%). This study used submerged fermentation with a cultivation temperature of 55°C and an agitation speed of 144 rpm for a 48-h incubation time. The results showed that variation of carbon sources and pectin concentrations affected the production of polygalacturonase. After 48 h fermentation, the results showed that the number of cells of samples ranged from 8.3 to 9.445 log cells/mL; the used pectin of samples ranged from 87.170-93.745%; and the polygalacturonase activity of samples ranged from 0.030 to 0.151 U/mL. The highest polygalacturonase activity was obtained by production of polygalacturonase on 1% glucose and 10% pectin medium.

  15. Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid.

    Science.gov (United States)

    Aguilar, C N; Augur, C; Favela-Torres, E; Viniegra-González, G

    2001-05-01

    Tannase production by Aspergillus niger Aa-20 was studied in submerged (SmF) and solid-state (SSF) fermentation systems with different tannic acid and glucose concentrations. Tannase activity and productivity were at least 2.5 times higher in SSF than in SmF. Addition of high tannic acid concentrations increased total tannase activity in SSF, while in SmF it was decreased. In SmF, total tannase activity increased from 0.57 to 1.03 IU/mL, when the initial glucose concentration increased from 6.25 to 25 g/L, but a strong catabolite repression of tannase synthesis was observed in SmF when an initial glucose concentration of 50 g/L was used. In SSF, maximal values of total tannase activity decreased from 7.79 to 2.51 IU when the initial glucose concentration was increased from 6.25 to 200 g/L. Kinetic results on tannase production indicate that low tannase activity titers in SmF could be associated to an enzyme degradation process which is not present in SSF. Tannase titers produced by A. niger Aa-20 are fermentation system-dependent, favoring SSF over SmF.

  16. Optimization of hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus in submerged fermentation using response surface methodology

    NARCIS (Netherlands)

    Chen, H.; Xu, X.; Zhu, Y.

    2010-01-01

    The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus by response surface methodology (RSM). A two-level fractional factorial design was used to evaluate the effect of different

  17. Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation

    NARCIS (Netherlands)

    Biesebeke, R. te; Biezen, N. van; Vos, W.M. de; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2005-01-01

    Solid-state fermentation (SSF) with Aspergillus oryzae results in high levels of secreted protein. However, control mechanisms of gene expression in SSF have been only poorly studied. In this study we show that both glucoamylase (glaB) and protease (alpA, nptB) genes are highly expressed during

  18. Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Grajek, W

    1987-05-01

    Six thermophilic fungi were examined for their ability to produce cellulolytic enzymes in liquid (LF) and solid-state fermentation (SSF). The best cellulase activities were achieved by Thermoascus aurantiacus and Sporotrichum thermophile. Taking into consideration that solid-state medium obtained from 100 g of dry sugar-beet pulp occupies about 1 l of fermentor volume equivalent to 1 l of LF, it was confirmed that enzyme productivity per unit volume from both fungi was greater in SSF than in LF. The cellulase system obtained by SSF with T. aurantiacus contained 1.322 IU/l of exo-..beta..-D-glucanase, 53.269 IU/l of endo-..beta..-D-glucanase and 8.974 IU/l of ..beta..-D-glucosidase. The thermal and pH characteristics of cellulases from solid-state fermentation of T. aurantiacus and S. thermophile are described.

  19. Modeling and verification of process parameters for the production of tannase by Aspergillus oryzae under submerged fermentation using agro-wastes.

    Science.gov (United States)

    Varadharajan, Venkatramanan; Vadivel, Sudhan Shanmuga; Ramaswamy, Arulvel; Sundharamurthy, Venkatesaprabhu; Chandrasekar, Priyadharshini

    2017-01-01

    Tannase production by Aspergillus oryzae using various agro-wastes as substrates by submerged fermentation was studied in this research. The microbe was isolated from degrading corn kernel obtained from the corn fields at Tiruchengode, India. The microbial identification was done using 18S rRNA gene analysis. The agro-wastes chosen for the study were pomegranate rind, Cassia auriculata flower, black gram husk, and tea dust. The process parameters chosen for optimization study were substrate concentration, pH, temperature, and incubation period. During one variable at a time optimization, the pomegranate rind extract produced maximum tannase activity of 138.12 IU/mL and it was chosen as the best substrate for further experiments. The quadratic model was found to be the effective model for prediction of tannase production by A. oryzae. The optimized conditions predicted by response surface methodology (RSM) with genetic algorithm (GA) were 1.996% substrate concentration, pH of 4.89, temperature of 34.91 °C, and an incubation time of 70.65 H with maximum tannase activity of 138.363 IU/mL. The confirmatory experiment under optimized conditions showed tannase activity of 139.22 IU/mL. Hence, RSM-GA pair was successfully used in this study to optimize the process parameters required for the production of tannase using pomegranate rind. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  20. Parthenium sp. as a plant biomass for the production of alkalitolerant xylanase from mutant Penicillium oxalicum SAUE-3.510 in submerged fermentation

    International Nuclear Information System (INIS)

    Dwivedi, Pallavi; Vivekanand, V.; Ganguly, Ruma; Singh, Rajesh P.

    2009-01-01

    The use of congress grass (Parthenium sp.) and water hyacinth (Eichhornia crassipes) as low cost raw materials for xylanase production from mutant Penicillium oxalicum SAU E -3.510 in submerged fermentation was investigated. For development of mutant from wild type P. oxalicum SA-8 ITCC 6024, a strategy of mixed mutagenesis was followed using UV-irradiation and ethidium bromide, which had resulted into 1.87 fold increases in the activity of the enzyme. For enzyme production, the fungus was cultivated in mineral medium containing congress grass as carbon source. Considerably higher levels of production (475.2 ± 6.0 IU ml -1 ) were achieved in media containing congress grass, although it was slightly less than that was obtained (488.5 ± 6.5 IU ml -1 ) in presence of commercial oat spelt xylan. This fact confirms the feasibility of using this low cost non-food resource as an alternative carbon source to save costs of the enzyme production process. Maximum xylanase activity was reported at 55 deg. C with its stability at 80 deg. C for 2 h. The highest activity of xylanase at pH 9.0 and its stability at similar pH for 24 h denote the alkalitolerant nature of enzyme

  1. Parthenium sp. as a plant biomass for the production of alkalitolerant xylanase from mutant Penicillium oxalicum SAU{sub E}-3.510 in submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Pallavi; Vivekanand, V.; Ganguly, Ruma; Singh, Rajesh P. [Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2009-04-15

    The use of congress grass (Parthenium sp.) and water hyacinth (Eichhornia crassipes) as low cost raw materials for xylanase production from mutant Penicillium oxalicum SAU{sub E}-3.510 in submerged fermentation was investigated. For development of mutant from wild type P. oxalicum SA-8 ITCC 6024, a strategy of mixed mutagenesis was followed using UV-irradiation and ethidium bromide, which had resulted into 1.87 fold increases in the activity of the enzyme. For enzyme production, the fungus was cultivated in mineral medium containing congress grass as carbon source. Considerably higher levels of production (475.2 {+-} 6.0 IU ml{sup -1}) were achieved in media containing congress grass, although it was slightly less than that was obtained (488.5 {+-} 6.5 IU ml{sup -1}) in presence of commercial oat spelt xylan. This fact confirms the feasibility of using this low cost non-food resource as an alternative carbon source to save costs of the enzyme production process. Maximum xylanase activity was reported at 55 C with its stability at 80 C for 2 h. The highest activity of xylanase at pH 9.0 and its stability at similar pH for 24 h denote the alkalitolerant nature of enzyme. (author)

  2. Improving the Fermentation Production of the Individual Key Triterpene Ganoderic Acid Me by the Medicinal Fungus Ganoderma lucidum in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Gao-Qiang Liu

    2012-10-01

    Full Text Available Enhanced ganoderic acid Me (GA-Me, an important anti-tumor triterpene yield was attained with the medicinal fungus Ganoderma lucidum using response surface methodology (RSM. Interactions were studied with three variables, viz. glucose, peptone and culture time using a Central Composite Design (CCD. The CCD contains a total of 20 experiments with the first 14 experiments organized in a fractional factorial design, with the experimental trails from 15 to 20 involving the replications of the central points. A polynomial model, describing the relationships between the yield of GA-Me and the three factors in a second-order equation, was developed. The model predicted the maximum GA-Me yield of 11.9 mg·L−1 for glucose, peptone, culture time values of 44.4 g·L−1, 5.0 g·L−1, 437.1 h, respectively, and a maximum GA-Me yield of 12.4 mg·L−1 was obtained in the validation experiment, which represented a 129.6% increase in titre compared to that of the non-optimized conditions. In addition, 11.4 mg·L−1 of GA-Me was obtained in a 30-L agitated fermenter under the optimized conditions, suggesting the submerged culture conditions optimized in the present study were also suitable for GA-Me production on a large scale.

  3. Effects of dietary polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. on fat deposition in broilers.

    Science.gov (United States)

    Shang, Hong Mei; Song, Hui; Shen, Si Jie; Yao, Xu; Wu, Bo; Wang, Li Na; Jiang, Yun Yao; Ding, Guo Dong

    2015-01-01

    The present study was conducted to investigate the lipid-lowering effect of polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. (HFCP) in broilers. A total of 480 female Arbor Acres broilers were randomly divided into four dietary treatments, each consisting of six pens as replicates, and fed diets containing 0 (control), 1, 3 or 5 g kg(-1) HFCP. The results revealed that the average daily gain of broilers increased (linear (L), P < 0.01; quadratic (Q), P < 0.01) when the HFCP levels increased. The serum cholesterol, triglyceride and low-density lipoprotein cholesterol levels decreased (Q, P < 0.05) while the high-density lipoprotein cholesterol level increased (Q, P < 0.05) when the HFCP levels increased. The caecum Escherichia coli count and pH decreased (Q, P < 0.01) while the lactobacilli count and bifidobacteria count increased (L, P < 0.05; Q, P < 0.05) when the HFCP levels increased. The propionic acid and butyric acid concentrations increased (L, P < 0.001; Q, P < 0.001) while the abdominal fat rate and liver fat content decreased (L, P < 0.01; Q, P < 0.05) when the HFCP levels increased. Dietary supplementation with HFCP may lead to the development of low abdominal fat of broilers as demanded by health-conscious consumers. © 2014 Society of Chemical Industry.

  4. Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations.

    Science.gov (United States)

    Khoramnia, Anahita; Ebrahimpour, Afshin; Beh, Boon Kee; Lai, Oi Ming

    2011-01-01

    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.

  5. Characterizations of the submerged fermentation of Aspergillus oryzae using a Fullzone impeller in a stirred tank bioreactor.

    Science.gov (United States)

    Ghobadi, Narges; Ogino, Chiaki; Yamabe, Kaoru; Ohmura, Naoto

    2017-01-01

    A Fullzone (FZ) impeller was used in the first study of the characteristics involved in the fermentation of Aspergillus oryzae. Both the experimental and simulation results of this study revealed novel findings into the positive relationship between the global-axial mixing patterns of a FZ impeller and fermentation efficiency. The mixing results when using the FZ impeller compared with a double Rushton turbine (DRT) impeller indicated that the culture mixed by the FZ resulted in a more homogeneous medium with higher values for oxygen mass transfer, cell growth rate, and alpha amylase activity. The simulation of fluid flow was done in a laminar regime using a two-fluid model. According to the simulation results, the maximum shear stress when using the DRT was higher than that with the FZ at the same power input (P in ). A high degree of local shear stress and the shear rate near the turbine blade of the DRT resulted in cell damage and a reduction in the enzyme activity, biomass, pellet diameter, and dissolved oxygen concentration. Calculations using the Brown equation showed that the maximum and average shear rates during mixing with the FZ impeller were lower than that when using the DRT. Therefore, the use of an FZ impeller, particularly at low P in , enhanced the cultivation of A. oryzae. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Bioactivity of a Novel Glycolipid Produced by a Halophilic Buttiauxella sp. and Improving Submerged Fermentation Using a Response Surface Method

    Directory of Open Access Journals (Sweden)

    Abdolrazagh Marzban

    2016-09-01

    Full Text Available An antimicrobial glycolipid biosurfactant (GBS, extracted and identified from a marine bacterium, was studied to inhibit pathogenic microorganisms. Production of the GBS was optimized using a statistical method, a response surface method (RSM with a central composite design (CCD for obtaining maximum yields on a cost-effective substrate, molasses. The GBS-producing bacterium was identified as Buttiauxella Species in terms of biochemical and molecular characteristics. This compound showed a desirable antimicrobial activity against some pathogens such as E. coli, Bacillus subtilis, Bacillus cereus, Candida albicans, Aspergilus niger, Salmonella enterica. The rheological studies described the stability of the GBS at high values in a range of pH (7–8, temperature (20–60 and salinity (0%–3%. The statistical optimization of GBS fermentation was found to be pH 7, temperature 33 °C, Peptone 1%, NaCl 1% and molasses 1%. The potency of the GBS as an effective antimicrobial agent provides evidence for its use against food and human pathogens. Moreover, favorable production of the GBS in the presence of molasses as a cheap substrate and the feasibility of pilot scale fermentation using an RSM method could expand its uses in food, pharmaceutical products and oil industries.

  7. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review

    Energy Technology Data Exchange (ETDEWEB)

    Peris, Miguel, E-mail: mperist@qim.upv.es [Departamento de Química, Universidad Politécnica de Valencia, 46071 Valencia (Spain); Escuder-Gilabert, Laura [Departamento de Química Analítica, Universitat de Valencia, C/ Vicente Andrés Estellés s/n, E-46100 Burjasot, Valencia (Spain)

    2013-12-04

    Graphical abstract: -- Highlights: •This review paper deals with the applications of electronic noses and electronic tongues to the monitoring of fermentation processes. •Positive and negative aspects of the different approaches reviewed are analyzed. •Current and future endeavors in this field are also commented. -- Abstract: Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article.

  8. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review

    International Nuclear Information System (INIS)

    Peris, Miguel; Escuder-Gilabert, Laura

    2013-01-01

    Graphical abstract: -- Highlights: •This review paper deals with the applications of electronic noses and electronic tongues to the monitoring of fermentation processes. •Positive and negative aspects of the different approaches reviewed are analyzed. •Current and future endeavors in this field are also commented. -- Abstract: Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article

  9. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    International Nuclear Information System (INIS)

    Buratti, S.; Ballabio, D.; Giovanelli, G.; Dominguez, C.M. Zuluanga; Moles, A.; Benedetti, S.; Sinelli, N.

    2011-01-01

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: → We monitored time-related changes in red wine fermentation process. → NIR and MIR spectroscopies, electronic nose and tongue were applied. → Data were kinetically modelled to identify critical points during fermentation. → NIR, MIR electronic nose and tongue were able to follow the fermentation process. → The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that

  10. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, S., E-mail: susanna.buratti@unimi.it [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Ballabio, D. [Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Giovanelli, G. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Dominguez, C.M. Zuluanga [Instituto de Ciencia y Tecnologia de Alimentos, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia); Moles, A.; Benedetti, S.; Sinelli, N. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2011-07-04

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: > We monitored time-related changes in red wine fermentation process. > NIR and MIR spectroscopies, electronic nose and tongue were applied. > Data were kinetically modelled to identify critical points during fermentation. > NIR, MIR electronic nose and tongue were able to follow the fermentation process. > The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that NIR and MIR

  11. fermentation

    African Journals Online (AJOL)

    user

    2012-05-17

    May 17, 2012 ... genes in glycolysis pathway, trehalose and steroid biosynthesis and heat shock proteins (HSP) in .... com) and prepared for microarray construction and analysis. .... a single time point of the late stage of VHG fermentation.

  12. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    International Nuclear Information System (INIS)

    Lim, D.G.; Seol, K.H.; Jeon, H.J.; Jo, C.; Lee, M.

    2008-01-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage

  13. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    Science.gov (United States)

    Lim, D. G.; Seol, K. H.; Jeon, H. J.; Jo, C.; Lee, M.

    2008-06-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage.

  14. Recent advances in electronic nose techniques for monitoring of fermentation process.

    Science.gov (United States)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  15. Effect of exogenous electron shuttles on growth and fermentative metabolism in Clostridium sp. BC1

    Energy Technology Data Exchange (ETDEWEB)

    Yarlagadda V. N.; Francis A.; Gupta, A.; Dodge, C. J.

    2012-03-01

    In this study, the influence exogenous electron shuttles on the growth and glucose fermentative metabolism of Clostridium sp. BC1 was investigated. Bicarbonate addition to mineral salts (MS) medium accelerated growth and glucose fermentation which shifted acidogenesis (acetic- and butyric-acids) towards solventogenesis (ethanol and butanol). Addition of ferrihydrite, anthraquinone disulfonate, and nicotinamide adenine dinucleotide in bicarbonate to growing culture showed no significant influence on fermentative metabolism. In contrast, methyl viologen (MV) enhanced ethanol- and butanol-production by 28- and 12-fold, respectively with concomitant decrease in hydrogen, acetic- and butyric-acids compared to MS medium. The results show that MV addition affects hydrogenase activity with a significant reduction in hydrogen production and a shift in the direction of electron flow towards enhanced production of ethanol and butanol.

  16. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Fungal milk-clotting enzymes have gained value as bovine Chymosin substitutes in the cheese industry. In this work, the effects of culture conditions on the production of extracellular milk clotting enzymes from Mucor mucedo DSM 809 in submerged fermentation were studied. The maximum activity was observed after 48 h ...

  17. US State Submerged Lands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submerged Lands Act (43 U.S.C. Section 1301 et seq.) grants coastal states title to natural resources located within their coastal submerged lands and navigable...

  18. Effect of electron-ion treatment on fermentative activity of food yeasts

    International Nuclear Information System (INIS)

    Sergeev, I.N.; Ostapenkov, A.M.

    1988-01-01

    Investigation into effect of electron-ion treatment (EIT) on fermentative activity (FA) of Sacch cerevisial type yeasts of 12 breed was conducted. It is shown that even within the limits of one and the same type different treatment regimes are meded. This is obviously connected with physiologic peculiarities of different yeast breeds. Therefore an individual optimal treatment regime should be determined in each particular case during EIT of different breeds

  19. Chemical models of chains electron transfer in hydroxylating ferment systems

    International Nuclear Information System (INIS)

    Akhrem, A.A.; Kiselev, P.A.; Metelitsa, D.I.

    1977-01-01

    The rate constants are measured of consumption of nicotineamidedinucleotide (NAD-N) during its oxidation by molecular oxygen with the participation of Ti 4+ , Sn 4+ , Cu 2+ , Fe 3+ , VO 2+ , and Ce 4+ ions in mixtures of acetonitrile with water and of dioxane with water taken in a volume ratio of 1:1 (46 deg C). The kinetics of oxidation of NAD-N with the participation of Ti 4+ at 37 deg C in a water-acetonitrile medium is studied in detail. The hydroxylating capacity of the system NAD-N - Ti 4+ - O 2 with respect to naphthalene is proved. The reaction mechanism and its relationship with the microsomal chains of electron transport are discussed

  20. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce[Gamma irradiation; Fermented anchovy; Color; Flavor compounds; Electronic nose; Sensory evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo E-mail: mwbyun@kaeri.re.kr

    2004-02-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy (P<0.05), while the alcohols and furan groups were increased by irradiation. Different odor patterns were observed among samples using electronic nose system analysis. Gamma-irradiated samples showed better sensory score and the quality was sustained during storage. In conclusion, gamma irradiation of salted and fermented anchovy sauce could improve its sensory quality by reducing typical fishy smell.

  1. Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Jin Seop Bak

    2014-12-01

    Full Text Available In order to overcome the limitation of commercial electron beam irradiation (EBI, lignocellulosic rice straw (RS was pretreated using water soaking-based electron beam irradiation (WEBI. This environment-friendly pretreatment, without the formation (or release of inhibitory compounds (especially hydroxymethylfurfural and furfural, significantly increased the enzymatic hydrolysis and fermentation yields of RS. Specifically, when water-soaked RS (solid:liquid ratio of 100% was treated with WEBI doses of 1 MeV at 80 kGy, 0.12 mA, the glucose yield after 120 h of hydrolysis was 70.4% of the theoretical maximum. This value was predominantly higher than the 29.5% and 52.1% measured from untreated and EBI-treated RS, respectively. Furthermore, after simultaneous saccharification and fermentation for 48 h, the ethanol concentration, production yield, and productivity were 9.3 g/L, 57.0% of the theoretical maximum, and 0.19 g/L h, respectively. Finally, scanning electron microscopy images revealed that WEBI induced significant ultrastructural changes to the surface of lignocellulosic fibers.

  2. Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate

    Directory of Open Access Journals (Sweden)

    Timothy eHackmann

    2015-06-01

    Full Text Available From a genomic analysis of rumen butyrivibrios (Butyrivibrio and Pseudobutyrivibrio spp., we have re-evaluated the contribution of electron transport phosphorylation to ATP formation in this group. This group is unique in that most (76% genomes were predicted to possess genes for both Ech and Rnf transmembrane ion pumps. These pumps act in concert with the NifJ and Bcd-Etf to form a electrochemical potential (ΔμH+ and ΔμNa+, which drives ATP synthesis by electron transport phosphorylation. Of the 62 total butyrivibrio genomes currently available from the Hungate 1000 project, all 62 were predicted to possess NifJ, which reduces oxidized ferredoxin (Fdox during pyruvate conversion to acetyl-CoA. All 62 possessed all subunits of Bcd-Etf, which reduces Fdox and oxidizes reduced NAD (NADred during crotonyl-CoA reduction. Additionally, 61 genomes possessed all subunits of the Rnf, which generates ΔμH+ or ΔμNa+ from oxidation of reduced Fd and reduction of oxidized NAD (NADox. Further, 47 genomes possessed all 6 subunits of the Ech, which generates ΔμH+ from oxidation of reduced Fd (Fdred. For glucose fermentation to butyrate and H2, the electrochemical potential established should drive synthesis of ~1.5 ATP by the F0F1-ATP synthase (possessed by all 62 genomes. The total yield is ~4.5 ATP/glucose after accounting for 3 ATP formed by classic substrate-level phosphorylation, and it is one the highest yields for any glucose fermentation. The yield was the same when unsaturated fatty acid bonds, not H+, served as the electron acceptor (as during biohydrogenation. Possession of both Ech and Rnf had been previously documented in only a few sulfate-reducers, was rare in other rumen prokaryotic genomes in our analysis, and may confer an energetic advantage to rumen butyrivibrios. This unique energy conservation system might enhance the butyrivibrios’ ability to overcome growth inhibition by unsaturated fatty acids, as postulated herein.

  3. Optimization of submerged vane parameters

    Indian Academy of Sciences (India)

    H Sharma

    the height or length of the submerged vane, no effective change in bed profile .... easily and again vanes will be ineffective, which is what. Odgaard and .... [3] Odgaard A J and Wang Y 1991a Sediment management with submerged vanes.

  4. Production of ethanol from mesquite [Prosopis juliflora (SW D.C.] pods mash by Zymomonas mobilis in submerged fermentation Produção de etanol a partir do mosto de vagens de algaroba [Prosopis juliflora (SW D.C.] por Zymomonas mobilis em fermentação submersa

    Directory of Open Access Journals (Sweden)

    Celiane Gomes Maia da Silva

    2011-02-01

    Full Text Available Mesquite [Prosopis juliflora (SW D.C.], a perennial tropical plant commonly found in Brazilian semi-arid region, is a viable raw material for fermentative processes because of its low cost and production of pods with high content of hydrolysable sugars which generate many compounds, including ethanol. This study aimed to evaluate the use of mesquite pods as substrate for ethanol production by Z. mobilis UFPEDA205 in a submerged fermentation. The fermentation was assessed for rate of substrate yield to ethanol, rate of ethanol production and efficiency of fermentation. The very close theoretical (170 g L-1 and experimental (165 g L-1 maximum ethanol yields were achieved at 36 h of fermentation. The highest counts of Z. mobilis UFEPEDA-205 (both close to 6 Log cfu mL-1 were also noted at 36 h. Highest rates of substrate yield to ethanol (0.44 g ethanol g glucose-1, of ethanol production (4.69 g L-1 h-1 and of efficiency of fermentation (86.81% were found after 30 h. These findings suggest mesquite pods as an interesting substrate for ethanol production using submerged fermentation by Z. mobilis.A algaroba [Prosopis juliflora (SW D.C.] é uma planta tropical perene comumente encontrada no semi-árido brasileiro e apresenta-se como matéria-prima viável para o processo fermentativo por possuir baixo custo e para produzir vagens que contém um elevado teor de açúcares hidrolisáveis, os quais podem gerar diversos compostos, incluindo etanol. Avaliou-se o uso de vagens de algaroba como substrato para produção de etanol por Z. mobilis UFPEDA-205 por meio de fermentação submersa. O processo fermentativo foi avaliado por meio da mensuração da taxa de conversão de substrato em etanol, taxa de produção de etanol e eficiência de fermentação. Os valores muito próximos encontrados para o fornecimento máximo teórico (170 g L-1 e experimental (165 g L-1 de etanol foram alcançados após 36 h de fermentação. O valor de contagem experimental

  5. Multicomponent analysis of fermentation growth media using the electronic tongue (ET)

    DEFF Research Database (Denmark)

    Legin, A.; Kirsanov, D.; Rudnitskaya, A.

    2004-01-01

    of simultaneous determination of ammonium, citrate and oxalate in complex media with good precision (typical error within 8%). The system preserved high sensitivity to the targeted substances also in the presence of sodium azide, which is commonly used for suppressing microbial activity in real-world fermentation...

  6. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  7. Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems.

    Science.gov (United States)

    Zhang, Zhiqiang; Li, Jiamiao; Hao, Xiaoxuan; Gu, Zaoli; Xia, Siqing

    2018-02-23

    Anaerobic fermentation liquid of waste organic matters (WOMs) is rich in volatile fatty acids (VFAs), which can be treated with bioelectrochemical systems for both electrical energy recovery and organics removal. In this work, four major VFAs in the fermented WOMs supernatant were selected to examine their electron donation characteristics for power output and their complicated interplays in microbial fuel cells (MFCs). Results indicated a priority sequence of acetate, propionate, n-butyrate and i-valerate when served as the sole electron donor for electricity generation. The MFC solely fed with acetate showed the highest coulombic efficiency and power density, and the longest period for electricity production. When two of the VFAs were added with equal proportion, both acids contributed positively to electricity generation, while the selective or competitive use of substrates by diverse microorganisms behaved as an antagonism effect to prolong the degradation time of each VFA. When acetate and propionate, the preferable substrates for electricity generation, were mixed in various proportions, their large concentration difference led to improved electrical performance but decreased organic removal rate.

  8. Solid substrate fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tengerdy, R P

    1985-04-01

    Solid Substrate Fermentation (SSF) describes the microbiological tranformation of biological materials in their natural state, in contrast with liquid or submerged fermentations which are carried out in dilute solutions or slurries. The most important industrial microorganisms used in SSF are filamentous fungi and the critical factors in their growth are the control of the moisture level and the temperature. Traditionally, most SSFs are conducted in shallow trays (so that heat build up is avoided) and stacked in a moist chamber, however, the modern SSF should be able to mix large amounts of substrate for a uniform fermentation, maximum automization scale-up of the process, continuous operation and fermentation control and a promising new design is the Helical screw fermenter. At the present time SSF is used in the production of foods (e.g. mushrooms and oriental foods) in municipal, agricultural and industrial solid waste disposal and in the production of enzymes and speciality chemicals but it does not seem likely that it will replace prevalent liquid fermentation technologies. 29 references.

  9. Submerged AUV Charging Station

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  10. Submerged Grove in Lake Onogawa

    OpenAIRE

    Sato, Yasuhiro; Nakamura, Soken; Ochiai, Masahiro

    1996-01-01

    Abstract : The first record by ultrasonic echo sounding on the distribution of the submerged standing trees on the bottom of Lake Onogawa is presented. Lake Onogawa is a dammed lake formed at the time of the eruption of the volcano Mt.Bandai in 1888. Since then the original vegetation of the dammed valley has remained submerged. Many submerged standing trees are distributed on the bottom within about 600m from the northeast end of the lake. The density of the trees in this area is sufficient ...

  11. Continuous saccharification and fermentation in alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, I Ya; Gracheva, I M; Mikhailova, L E; Babaeva, S A; Ustinnikov, B A

    1968-01-01

    Submerged cultures of Aspergillus niger NRRL 337 and A. batatae 61, or a mixture of submerged A. niger culture with a surface culture of A. oryzae Kc are used for fermentations and compared with the usual barley malt procedure. The latter yields 71% maltose and 24 to 28% glucose, wherease the fungal procedure gives 14 to 21% maltose and 80 to 85% glucose in a continuous mashing-fermentation process with barley. The fungal method gives a higher degree of fermentation for sugars and dextrins and a lower content of total and high-molecular-weight residual dextrins. The amounts of propanol PrOH and iso-BuOH isobutyl alcohol are almost equal, whereas the amount of isoamylalcohol is lower in fungal fermentations.

  12. Modeling growth, lipid accumulation and lipid turnover in submerged batch cultures of Umbelopsis isabellina

    NARCIS (Netherlands)

    Meeuwse, P.; Akbari, P.; Tramper, J.; Rinzema, A.

    2012-01-01

    The production of lipids by oleaginous yeast and fungi becomes more important because these lipids can be used for biodiesel production. To understand the process of lipid production better, we developed a model for growth, lipid production and lipid turnover in submerged batch fermentation. This

  13. Key role of alternative oxidase in lovastatin solid-state fermentation.

    Science.gov (United States)

    Pérez-Sánchez, Ailed; Uribe-Carvajal, Salvador; Cabrera-Orefice, Alfredo; Barrios-González, Javier

    2017-10-01

    Lovastatin is a commercially important secondary metabolite produced by Aspergillus terreus, either by solid-state fermentation or by submerged fermentation. In a previous work, we showed that reactive oxygen species (ROS) accumulation in idiophase positively regulates lovastatin biosynthetic genes. In addition, it has been found that lovastatin-specific production decreases with aeration in solid-state fermentation (SSF). To study this phenomenon, we determined ROS accumulation during lovastatin SSF, under high and low aeration conditions. Paradoxically, high aeration caused lower ROS accumulation, and this was the underlying reason of the aeration effect on lovastatin production. Looking for a mechanism that is lowering ROS production under those conditions, we studied alternative respiration. The alternative oxidase provides an alternative route for electrons passing through the electron transport chain to reduce oxygen. Here, we showed that an alternative oxidase (AOX) is expressed in SSF, and only during idiophase. It was shown that higher aeration induces higher alternative respiration (AOX activity), and this is a mechanism that limits ROS generation and keeps them within healthy limits and adequate signaling limits for lovastatin production. Indeed, the aox gene was induced in idiophase, i.e., at the time of ROS accumulation. Moreover, exogenous ROS (H 2 O 2 ), added to lovastatin solid-state fermentation, induced higher AOX activity. This suggests that high O 2 availability in SSF generates dangerously high ROS, so alternative respiration is induced in SSF, indirectly favoring lovastatin production. Conversely, alternative respiration was not detected in lovastatin-submerged fermentation (SmF), although exogenous ROS also induced relatively low AOX activity in SmF.

  14. Production and partial characterization of lipase from Penicillium verrucosum obtained by submerged fermentation of conventional and industrial media Produção e caracterização parcial de lipase obtida por fermentação submersa de Penicillium verrucosum utilizando meio convencional e industrial

    Directory of Open Access Journals (Sweden)

    Thaís da Luz Fontoura Pinheiro

    2008-06-01

    Full Text Available The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. Current studies on lipase production by submerged fermentation involve the use of agro-industrial residues aiming at increasing economic attractiveness. Based on these aspects, the objective of this work was to investigate lipase production by Penicillium verrucosum in submerged fermentation using a conventional medium based on peptone, yeast extract, NaCl and olive oil, and an industrial medium based on corn steep liquor, Prodex Lac (yeast hydrolysate, NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Kinetics of lipase production was evaluated and the highest enzymatic activities, of 3.15 and 2.22 U.mL-1, were observed when conventional and industrial media were used, respectively. The enzymatic extract showed optimal activity in the range from 30 to 40 °C and at pH 7.0. Although the industrial medium presents economical advantages over the conventional medium, the presence of agro-industrial residues rich in nitrogen and other important nutrients seemed to contribute to a reduction in lipase activity.O grande interesse atual na produção de lipases está relacionado às potenciais aplicações biotecnológicas que estas enzimas apresentam. Estudos relevantes referentes à produção de lipases por fermentação submersa envolvem o uso de resíduos agroindustriais objetivando diminuir o custo de produção do biocatalisador. Com base nestes aspectos, o objetivo deste trabalho foi investigar a produção de lipases por Penicillium verrucosum em fermentação submersa utilizando meio convencional (peptona, extrato de levedura, NaCl e óleo de oliva e industrial (água de maceração de milho, Prodex Lac (hidrolisado de levedura, NaCl e óleo de oliva, bem como caracterizar parcialmente o extrato enzimático bruto obtido. A cinética de produção de lipases foi avaliada e as

  15. Improvement of Xylanase Production by Cochliobolus sativus in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2008-01-01

    Full Text Available The xylanase production by a new Cochliobolus sativus Cs5 strain was improved under submerged fermentation. The xylanase was induced by xylan and repressed by glucose, sucrose, maltose, xylose, starch and cellulose. Highest enzyme production (98.25 IU/mL was recorded when wheat straw (4 % by mass per volume was used as a carbon source after 120 h of incubation. NaNO3 increased xylanase production 5.4-fold as compared to the control. Optimum initial pH was found to be 4.5 to 5. The C. sativus Cs5 strain grown under submerged culture in a simple medium proved to be a promising microorganism for xylanase production.

  16. MEMPELAJARI KARAKTERISTIK SARI BUAH DARI MENGKUDU (Morinda citrifolia Linn. YANG DIHASILKAN MELALUI FERMENTASI [Characteristic of Noni (Morinda citrifolia Linn Fruit Juice Produced by Fermentation

    Directory of Open Access Journals (Sweden)

    Ivonne P Kusuma3

    2003-08-01

    Full Text Available Fermentation is one of the methods to get noni juice. In this research, noni is fermented in hanged system and submerged system for 1, 2, 3, and 4 weeks. The result showed the longer fermentation increased pH, alcohol content, turbidity, viscosity, microbial content, and decrease ascorbic acid and acid content, soluble solid content, color and flavor acceptance. Differennt system fermentation affected percent yield, soluble solid content, turbidity of juice, panels opinion to color significantly. Noni juice of submerged system has higher percent yield, higher soluble solid content, turbidity, but provided lighter color than noni juice of hanged system. Juice of submerged system is better than hanged system. Juice from three weeks fermentation indicated changes of metabolism activity which is shown by some characteristic changes. Fruit juice made by submerged fermentation system had more diverse compounds than fruit juice without fermentation.

  17. Drought and submergence tolerance in plants

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hewei; Zhou, Yufan; Oksenberg, Nir; Ronald, Pamela

    2017-11-14

    The invention provides methods of genetically modified plants to increase tolerance to drought and/or submergence. The invention additionally provides plants having increased drought and/or submergence tolerance engineered using such methods.

  18. Influence of Mode of Fermentation on Production of Polygalacturonase by a Novel Strain of Streptomyces lydicus

    Directory of Open Access Journals (Sweden)

    Nicemol Jacob

    2006-01-01

    Full Text Available Production of different pectinolytic enzymes was attempted using the actinomycete strain Streptomyces lydicus in submerged fermentation. Polygalacturonase and pectin lyase activities were detected in the culture supernatant, but the strain was not able to produce pectin esterase. Polygalacturonase production was studied in submerged, slurry-state and solid-state fermentation systems. All the experiments were carried out under static and shaking conditions. Solid-state fermentation under static condition was found to be promising. Various agroindustrial residues were tried as substrates for solid-state fermentation. Wheat bran was proved to be the best substrate.

  19. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem

    2016-01-01

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  20. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo

    2016-10-27

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  1. Combination of electron beam irradiation and thermal treatment to enhance the shelf-life of traditional Indian fermented food (Idli)

    International Nuclear Information System (INIS)

    Mulmule, Manoj D.; Shimmy, Shankar M.; Bambole, Vaishali; Jamdar, Sahayog N.; Rawat, K.P.; Sarma, K.S.S.

    2017-01-01

    Idli, a steam-cooked breakfast food item consumed in India, is famous as a staple food for its spongy texture and unique fermented taste. Idli preparation is a time consuming process; although instant Idli pre-mixes as powder or batter are available in the market, they do not have the distinctive taste and aroma similar to the Idli prepared at home. Hence ready-to-eat (RTE) form of this food is in demand. Therefore, an attempt was made to prepare RTE Idli bearing similar taste as home-cooked Idli with an extended shelf-life of up to two months at an ambient temperature using Electron Beam Irradiation (EBI) at dosages 2.5 kGy, 5 kGy and 7.5 kGy and combination processing comprised of EBI dosage at 2.5 kGy and thermal treatment (80 °C for 20 min). The treated Idli's were microbiologically and sensorially evaluated at storage periods of zero day, 14 days, 30 days and 60 days. Idli's irradiated at 7.5 kGy and subjected to combination processing at 2.5 kGy and thermal treatment were shelf-stable for 60 days. 2.5 kGy and 5 kGy radiation dosages alone were not sufficient to preserve Idli samples for more than 14 days. Undesirable change in sensory properties of Idli was observed at an EBI dosage of 7.5 kGy. Sensory properties of combination processed Idli's were found to undergo minor change over the storage period. The present work suggests that lowest radiation dosage in combination with thermal treatment could be useful to achieve the extended shelf-life without considerably impairing the organoleptic quality of Ready-to-Eat Idli. - Highlights: • Idli (traditional Indian fermented food) was prepared in ready-to-eat (RTE) form. • Ready-to-eat Idli was then subjected to combination processing comprised of lowest irradiation dosage of 2.5 kGy with mild heat treatment to extend its shelf life. • Increase in hardness and decrease in brightness of combination processed Idli was observed. • Combination processed Idli was microbiologically safe and

  2. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  3. Avaliação da produção de lipases por diferentes cepas de microrganismos isolados em efluentes de laticínios por fermentação submersa Evaluation of lipase production using different strains of microorganisms isolated from dairy effluent through submerged fermentation

    Directory of Open Access Journals (Sweden)

    Mirela Roveda

    2010-03-01

    hydrolysis of the oils and fats present. The aim of this work was to evaluate lipase production by fungi isolated from dairy effluent. We obtained 21 isolates of fungi, of the genus Penicillium, Aspergillus, Trichoderma and Fusarium. In the screening, nine isolates were selected on the basis of their capacity to grow in a medium containing olive oil as substrate. In submerged fermentation, the fungi E9 (Aspergillus, E21 (Aspergillus and E20 (Penicillium were the ones that presented the greatest enzymatic activity, from 1.250 to 2.250 U, using as cultivation medium the effluent collected from the treatment system equalizer.

  4. Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)

    Science.gov (United States)

    Ye, Tiantian; Shi, Haitao; Wang, Yanping; Chan, Zhulong

    2015-01-01

    In this study, we investigated the mechanisms by which bermudagrass withstands the drought and submergence stresses through physiological, proteomic and metabolomic approaches. The results showed that significant physiological changes were observed after drought treatment, while only slight changes after submergence treatment, including compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics results showed that 81 proteins regulated by drought or submergence treatment were identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought stress with 46 increased abundance and 30 decreased abundance. Forty-five showed abundance changes after submergence treatment with 10 increased and 35 decreased. Pathway enrichment analysis revealed that pathways of amino acid metabolism and mitochondrial electron transport/ATP synthesis were only enriched by drought treatment, while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative pentose phosphate, glycolysis and redox were commonly over-represented after both drought and submergence treatments. Metabolomic analysis indicated that most of the metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents exhibited down-regulation or no significant changes when exposed to submergence stress, including sugars and sugar alcohols. These data indicated that drought stress extensively promoted photosynthesis and redox metabolisms while submergence stress caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the quiescence strategy with retarded growth might allow bermudagrass to be adaptive to long-term submerged environment, while activation of photosynthesis and redox, and accumulation of compatible solutes and molecular chaperones increased bermudagrass tolerance to drought stress. PMID:26617615

  5. Combination of electron beam irradiation and thermal treatment to enhance the shelf-life of traditional Indian fermented food (Idli)

    Science.gov (United States)

    Mulmule, Manoj D.; Shimmy, Shankar M.; Bambole, Vaishali; Jamdar, Sahayog N.; Rawat, K. P.; Sarma, K. S. S.

    2017-02-01

    Idli, a steam-cooked breakfast food item consumed in India, is famous as a staple food for its spongy texture and unique fermented taste. Idli preparation is a time consuming process; although instant Idli pre-mixes as powder or batter are available in the market, they do not have the distinctive taste and aroma similar to the Idli prepared at home. Hence ready-to-eat (RTE) form of this food is in demand. Therefore, an attempt was made to prepare RTE Idli bearing similar taste as home-cooked Idli with an extended shelf-life of up to two months at an ambient temperature using Electron Beam Irradiation (EBI) at dosages 2.5 kGy, 5 kGy and 7.5 kGy and combination processing comprised of EBI dosage at 2.5 kGy and thermal treatment (80 °C for 20 min). The treated Idli's were microbiologically and sensorially evaluated at storage periods of zero day, 14 days, 30 days and 60 days. Idli's irradiated at 7.5 kGy and subjected to combination processing at 2.5 kGy and thermal treatment were shelf-stable for 60 days. 2.5 kGy and 5 kGy radiation dosages alone were not sufficient to preserve Idli samples for more than 14 days. Undesirable change in sensory properties of Idli was observed at an EBI dosage of 7.5 kGy. Sensory properties of combination processed Idli's were found to undergo minor change over the storage period. The present work suggests that lowest radiation dosage in combination with thermal treatment could be useful to achieve the extended shelf-life without considerably impairing the organoleptic quality of Ready-to-Eat Idli.

  6. Production of extracellular chitinase Beauveria bassiana under submerged fermentation conditions

    Science.gov (United States)

    Elawati, N. E.; Pujiyanto, S.; Kusdiyantini, E.

    2018-05-01

    Chitinase-producing microbes have attracted attention as one of the potential agents for control of phytopathogenic fungi and insect pests. The fungus that potentially produces chitinase is Beauveria bassiana. This study aims to determine the growth curve and chitinase activities of B. bassiana isolated from Helopeltis antonii insects after application. Method of measuring growth curve was done by dry cell period method, while for measurement of enzyme activity done by measuring absorbance at spectrophotometer. The results showed optimum growth time of B. bassiana with the highest cell count of 0.031 g on day 4 which was log phase, while the highest enzyme activity was 0,585 U / mL on the 4th day for 7 days incubation. Based on these results when correlated growth with enzyme production, chitinase enzyme products are produced in log phase and categorized as primary metabolism.

  7. Protein enrichment of cassava peel by submerged fermentation ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... enzyme and non-enzyme pre-treated cassava peel. ... T. viride in the fermentor revealed that dry biomass increased in crude protein, true protein, crude fat, ... either directly for human food or indirectly by conversion to animal ...

  8. Protein enrichment of cassava peel by submerged fermentation ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... with a mixture of Aspergillus niger and Lactobacillus rhamnosus to increase .... culture might be due to simultaneous hydrolysis of the starch to simple ..... using Aspergillus Oryzae Obtained from cormel flour. Afr. J. Biotechnol.

  9. Protein enrichment of cassava peel by submerged fermentation with ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta Crantz) peel is one of the solid wastes produced as a consequence of cassava processing. It is low in protein but contains a large amount of carbohydrate, causing an environmental problem with disposal. In order to add-value to this major cassava processing waste and also reduce its resultant ...

  10. Process control of solid-state fermentation : simultaneous control of temperature and moisture content

    NARCIS (Netherlands)

    Nagel, F.J.I.

    2002-01-01

    Solid-state fermentation (SSF), i.e. cultivation of micro-organisms on moist solid substrates in the absence of free-flowing water, is an alternative for submerged fermentation (SmF) for the production of biotechnological products. In recent years, research on SSF has led to a

  11. Macroinvertebrates associated with two submerged macrophytes ...

    African Journals Online (AJOL)

    Macroinvertebrates associated with two submerged macrophytes, Lagarosiphon ilicifolius and Vallisneria aethiopica , in the Sanyati Basin, Lake Kariba, Zimbabwe: effect of plant morphological complexity.

  12. Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source Produção de invertases termoestáveis por Aspergillus caespitosus em fermentação submersa e em estado sólido usando resíduos agroindustriais como fonte de carbono

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Paiva Alegre

    2009-09-01

    Full Text Available The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF or solid-state fermentation (SSF, using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30ºC, for 72h, was enhanced using SR salt solution (1:1, w/v to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna medium with the same carbon source. However, the production of enzyme with wheat bran plus oat meal was 2.2-fold higher than wheat bran isolated. The enzymatic production was affected by supplementation with nitrogen and phosphate sources. The addition of glucose in SbmF and SSF promoted the decreasing of extracellular activity, but the intracellular form obtained in SbmF was enhanced 3-5-fold. The invertase produced in SSF exhibited optimum temperature at 50ºC while the extraand intracellular enzymes produced in SbmF exhibited maximal activities at 60ºC. All enzymatic forms exhibited maximal activities at pH 4.0-6.0 and were stable up to 1 hour at 50ºC.O fungo filamentoso Aspergillus caespitosus foi um bom produtor de invertases intracelular e extracelular em fermentação submersa (FSbm ou em estado sólido (FES, usando resíduos agroindustriais como fonte de carbono, sendo que para ambas as condições de cultivo, a maior produtividade foi obtida empregandose farelo de trigo. A produção da forma extracelular em FES mantido a 30ºC, por 72 horas, foi aumentada usandose solução de sais SR (1:1, m/v para umidificar o substrato, sendo aproximadamente 5,5 vezes maior se comparada a FSbm (Meio Khanna com a mesma fonte de carbono. Entretanto, a mistura de farelo de trigo e farinha de aveia em FES levou a um aumento de 2,2 vezes na produção enzimática se comparada ao uso isolado do farelo de trigo. A produção enzimática, em ambas as condições de

  13. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  14. Workshop on ROVs and deep submergence

    Science.gov (United States)

    The deep-submergence community has an opportunity on March 6 to participate in a unique teleconferencing demonstration of a state-of-the-art, remotely operated underwater research vehicle known as the Jason-Medea System. Jason-Medea has been developed over the past decade by scientists, engineers, and technicians at the Deep Submergence Laboratory at Woods Hole Oceanographic Institution. The U.S. Navy, the Office of the Chief of Naval Research, and the National Science Foundation are sponsoring the workshop to explore the roles that modern computational, communications, and robotics technologies can play in deep-sea oceanographic research.Through the cooperation of Electronic Data Systems, Inc., the Jason Foundation, and Turner Broadcasting System, Inc., 2-1/2 hours of air time will be available from 3:00 to 5:30 PM EST on March 6. Twenty-seven satellite downlink sites will link one operating research vessel and the land-based operation with workshop participants in the United States, Canada, the United Kingdom, and Bermuda. The research ship Laney Chouest will be in the midst of a 3-week educational/research program in the Sea of Cortez, between Baja California and mainland Mexico. This effort is focused on active hydrothermal vents driven by heat flow from the volcanically active East Pacific Rise, which underlies the sediment-covered Guaymas Basin. The project combines into a single-operation, newly-developed robotic systems, state-of-the-art mapping and sampling tools, fiber-optic data transmission from the seafloor, instantaneous satellite communication from ship to shore, and a sophisticated array of computational and telecommunications networks. During the workshop, land-based scientists will observe and participate directly with their seagoing colleagues as they conduct seafloor research.

  15. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo

    2014-08-11

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  16. Flow and scour around vertical submerged structures

    Indian Academy of Sciences (India)

    The safety of the foundations of submerged hydraulic structures due to excessive local scour is threatened by the erosive action of the waves and currents passing around these structures. Fish and aquatic habitat is seriously affected due to the modification of the flow field caused by these submerged structures. Hence, the ...

  17. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    Directory of Open Access Journals (Sweden)

    MAJID ALI

    2013-04-01

    Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  18. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)

    2013-04-15

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  19. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na 2 S 2 O 3 ) in water to remove the gaseous iodine (I 2 ) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber

  20. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  1. Influence of Microalgae onto submerged surfaces on Fouling

    Science.gov (United States)

    Kong, M.; Eom, C.; Yoon, B.; Yoon, H.; Kim, B.; Chung, K.

    2012-12-01

    Lots of algae together with organic matter deposited on the submerged surface can be easily observed occurring in the shallower water along the coast. This is mainly because only those organisms with the ability to adapt to the new situations created by man can firmly adhere enough to avoid being washed off. Chemical and microbiological characteristics of the fouling microalgae developed on various surfaces in contact with the seawater were made. The microbial compositions of the microalgae formed on the submerged surfaces were tested for. The quantities of the diverse microalgae in the samples developed on the prohibiting submerged surface were larger when there was no concern about materials for special selection for fouling. To confirm formation of microalgae on adsorbents was done SEM-EDS (Scanning Electron Microscope-Spectrometer) analysis. Microbial identified using optical microscope. In addition to, we quantified attaching microalgae as pass time. Experiment results, ten species which are Nitzshhia sp., Eucampia sp., Coscinodiscus sp., Licmophora sp., Rhizosolenia sp., Cylindrotheca sp., Striateela sp., Thalassionema sp., Guinardia sp., and Helicostomella sp. discovered to reservoir formed biofouling. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater.

  2. Fluid-structure interaction of submerged structures

    International Nuclear Information System (INIS)

    Tang, H.T.; Becker, E.B.; Taylor, L.M.

    1979-01-01

    The purpose of the paper is to investigate fluid-structure interaction (FSI) of submerged structures in a confined fluid-structure system. Our particular interest is the load experienced by a rigid submerged structure subject to a pressure excitation in a fluid domain bounded by a structure which is either flexible or rigid. The objective is to see whether the load experienced by the submerged structure will be influenced by its confinement conditions. This investigation is intended to provide insight into the characteristics of FSI and answer the question as to whether one can obtain FSI independent data by constructing a small scale rigid submerged structure inside a flexible fluid-structure system. (orig.)

  3. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroyuki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth under submerged condition divided by the cutting depth in air at the same standoff distance. The relative cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  4. Impeller Submergence Depth for Stirred Tanks

    Directory of Open Access Journals (Sweden)

    Thiyam T. Devi

    2011-11-01

    Full Text Available Impeller submergence governs the performance of mixing tanks employed in oxygen transfer operation. Present work experimentally investigates the effect of impeller submergence depths on oxygen transfer and corresponding power consumption. It has been found that at higher range of impeller submergence, mixing tanks consume less power and gives higher values of oxygen transfer coefficient. Optimal range of submergence depth is 0.7 to 0.9 times the impeller diameter. Copyright ©2011 BCREC UNDIP. All rights reserved.(Received: 4th March 2011; Revised: 12nd July 2011; Accepted: 14th July 2011[How to Cite: T.T. Devi, A.P. Sinha, M. Thakre, and B. Kumar. (2011. Impeller Submergence Depth for Stirred Tanks. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 123-128. doi:10.9767/bcrec.6.2.826.123-128][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.826.123-128 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/826] | View in 

  5. Differential Response of Floating and Submerged Leaves of Longleaf Pondweed to Silver Ions

    Directory of Open Access Journals (Sweden)

    Nisha Shabnam

    2017-06-01

    Full Text Available In this study, we have investigated variations in the potential of floating and submerged leaves of longleaf pondweed (Potamogeton nodosus to withstand silver ion (Ag+-toxicity. Both floating and submerged leaves changed clear colorless AgNO3 solutions to colloidal brown in the presence of light. Transmission electron microscopy revealed the presence of distinct crystalline Ag-nanoparticles (Ag-NPs in these brown solutions. Powder X-ray diffraction pattern showed that Ag-NPs were composed of Ag0 and Ag2O. Photosystem (PS II efficiency of leaves declined upon exposure to Ag+ with a significantly higher decline in the submerged leaves than in the floating leaves. Similarly, Ag+ treatment caused a significant reduction in the carboxylase activity of the ribulose bisphosphate carboxylase/oxygenase in leaves. The reduction in this carboxylase activity was significantly higher in the submerged than in the floating leaves. Ag+ treatment also resulted in a significant decline in the levels of non-enzymatic and enzymatic antioxidants; the decline was significantly lower in the floating than in submerged leaves. X-ray photoelectron spectroscopy revealed the presence of Ag2O in these leaves. Inductively coupled plasma mass spectrometry analysis revealed a three-fold higher Ag content in the submerged than in floating leaves. Our study demonstrates that floating leaves of longleaf pondweed have a superior potential to counter Ag+-toxicity compared with submerged leaves, which could be due to superior potential of floating leaves to reduce Ag+ to less/non-toxic Ag0/Ag2O-nanoparticles/nanocomplexes. We suggest that modulating the genotype of longleaf pondweed to bear higher proportion of floating leaves would help in cleaning fresh water bodies contaminated with ionic forms of heavy metals.

  6. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  7. Fermentation Industry.

    Science.gov (United States)

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  8. Challenges for mass production of nematodes in submerged culture.

    Science.gov (United States)

    de la Torre, Mayra

    2003-08-01

    Nematodes of Steinernema and Heterorhabditis genera are used as agents in insect biocontrol programs. They are associated with specific bacteria which are also involved in the mechanism of pathogenicity and which are consumed by nematodes as living food. S. feltiae has various developmental stages in its life cycle, including four juvenile stages, adults and the free living form. During mating, males coil themselves around the female, which is around 1 cm long. Successful commercialization of nematode-bacteria biocontrol products depends on the ability to produce sufficient quantities of these products at competitive prices for a full pest control program. This could be feasible if high cell density submerged cultures are designed and implemented; however, major problems related to nematodes mass production in a bioreactor remain unsolved due to the lack of knowledge about the physiological aspects of the nematode, bacteria and nematode-bacteria association, interaction between the three phases present in the bioreactor (liquid, gas, nematodes-bacteria), possibility of mating under hydrodynamic stress conditions, etc. We have found that the two most important engineering aspects to take into account the mass propagation of nematodes are oxygen transfer rate and hydrodynamics to allow mating and to avoid mechanical damage of juveniles in stage 2. This article focuses on several aspects related to the fermentation system such as kinetics of growth, shear stress, hydrodynamics fields in the bioreactor and oxygen demand. Also, results published by other groups, together with those of our own, will be discussed in relation to the main challenges found during the fermentation process.

  9. Topology optimization for submerged buoyant structures

    NARCIS (Netherlands)

    Picelli, R.; van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; van Keulen, A.

    2017-01-01

    This paper presents an evolutionary structural topology optimization method for the design of completely submerged buoyant modules with design-dependent fluid pressure loading. This type of structure is used to support offshore rig installation and pipeline transportation at all water depths. The

  10. Benthic bacterial diversity in submerged sinkhole ecosystems.

    Science.gov (United States)

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  11. Waterlogging and submergence: surviving poor aeration

    NARCIS (Netherlands)

    Atwell, B.J.; Ismail, A.M.; Pedersen, O.; Shabala, S.; Sorrell, B.; Voesenek, Laurentius|info:eu-repo/dai/nl/074850849

    2014-01-01

    Flooding, resulting in soil waterlogging and in many situations even complete submergence of plants, is an important abiotic stress in many regions worldwide. The number of floods has increased in recent decades (Figure 18.1), and the severity of floods is expected to increase further in many

  12. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation.

    Science.gov (United States)

    Phengnuam, Thanyarat; Suntornsuk, Worapot

    2013-02-01

    Jatropha curcas seed cake is a by-product generated from oil extraction of J. curcas seed. Although it contains a high amount of protein, it has phorbol esters and anti-nutritional factors such as phytate, trypsin inhibitor, lectin and saponin. It cannot be applied directly in the food or animal feed industries. This investigation was aimed at detoxifying the toxic and anti-nutritional compounds in J. curcas seed cake by fermentation with Bacillus spp. Two GRAS (generally recognized as safe) Bacillus strains used in the study were Bacillus subtilis and Bacillus licheniformis with solid-state and submerged fermentations. Solid-state fermentation was done on 10 g of seed cake with a moisture content of 70% for 7 days, while submerged fermentation was carried out on 10 g of seed cake in 100 ml distilled water for 5 days. The fermentations were incubated at the optimum condition of each strain. After fermentation, bacterial growth, pH, toxic and anti-nutritional compounds were determined. Results showed that B. licheniformis with submerged fermentation were the most effective method to degrade toxic and anti-nutritional compounds in the seed cake. After fermentation, phorbol esters, phytate and trypsin inhibitor were reduced by 62%, 42% and 75%, respectively, while lectin could not be eliminated. The reduction of phorbol esters, phytate and trypsin inhibitor was related to esterase, phytase and protease activities, respectively. J. curcas seed cake could be mainly detoxified by bacterial fermentation and the high-protein fermented seed cake could be potentially applied to animal feed. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    Science.gov (United States)

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Towards high-siderophore-content foods: optimisation of coprogen production in submerged cultures of Penicillium nalgiovense.

    Science.gov (United States)

    Emri, Tamás; Tóth, Viktória; Nagy, Csilla Terézia; Nagy, Gábor; Pócsi, Imre; Gyémánt, Gyöngyi; Antal, Károly; Balla, József; Balla, György; Román, Gyula; Kovács, István; Pócsi, István

    2013-07-01

    Fungal siderophores are likely to possess atheroprotective effects in humans, and therefore studies are needed to develop siderophore-rich food additives or functional foods to increase the siderophore uptake in people prone to cardiovascular diseases. In this study the siderophore contents of mould-ripened cheeses and meat products were analysed and the coprogen production by Penicillium nalgiovense was characterised. High concentrations of hexadentate fungal siderophores were detected in penicillia-ripened Camembert- and Roquefort-type cheeses and also in some sausages. In one sausage fermented by P. nalgiovense, the siderophore content was comparable to those found in cheeses. Penicillium nalgiovense produced high concentrations of coprogen in submerged cultures, which were affected predominantly by the available carbon and nitrogen sources under iron starvation. Considerable coprogen yields were still detectable in the presence of iron when the fermentation medium was supplemented with the iron chelator Na₂-EDTA or when P. nalgiovense was co-cultivated with Saccharomyces cerevisiae. These data may be exploitable in the future development of high-siderophore-content foods and/or food additives. Nevertheless, the use of P. nalgiovense fermentation broths for these purposes may be limited by the instability of coprogen in fermentation media and by the β-lactam production by the fungus. © 2012 Society of Chemical Industry.

  15. Oxygen dynamics in submerged rice (Oryza sativa L.)

    DEFF Research Database (Denmark)

    Colmer, Timothy D.; Pedersen, Ole

    2008-01-01

    Complete submergence of plants prevents direct O2 and CO2 exchange with air. Underwater photosynthesis can result in marked diurnal changes in O2 supply to submerged plants. Dynamics in pO2 had not been measured directly for submerged rice (Oryza sativa), but in an earlier study, radial O2 loss...... from roots showed an initial peak following shoot illumination.  O2 dynamics in shoots and roots of submerged rice were monitored during light and dark periods, using O2 microelectrodes. Tissue sugar concentrations were also measured.  On illumination of shoots of submerged rice, pO2 increased rapidly...... of magnitude higher than in darkness, enhancing also pO2 in roots.The initial peak in pO2 following illumination of submerged rice was likely to result from high initial rates of net photosynthesis, fuelled by CO2 accumulated during the dark period. Nevertheless, since sugars decline with time in submerged...

  16. Analyzing the flavor compounds in Chinese traditional fermented shrimp pastes by HS-SPME-GC/MS and electronic nose

    Science.gov (United States)

    Fan, Yan; Yin, Li'ang; Xue, Yong; Li, Zhaojie; Hou, Hu; Xue, Changhu

    2017-04-01

    Shrimp paste is a type of condiments with high nutritional value. However, the flavors of shrimp paste, particularly the non-uniformity flavors, have limited its application in food processing. In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes, five kinds of typical commercial products were evaluated in this study. The differences in the volatile composition of the five products were investigated. Solid phase micro-extraction method was employed to extract the volatile compounds. GC-MS and electronic nose were applied to identify the compounds, and the data were analyzed using principal component analysis (PCA). A total of 62 volatile compounds were identified, including 8 alcohols, 7 aldehydes, 3 ketones, 7 ethers, 7 acids, 3 esters, 6 hydrocarbons, 12 pyrazines, 2 phenols, and 7 other compounds. The typical volatile compounds contributing to the flavor of shrimp paste were found as follows: dimethyl disulfide, dimethyl tetrasulfide, dimethyl trisulfide, 2, 3, 5-trimethyl-6-ethyl pyrazine, ethyl-2, 5-dimethyl-pyrazine, phenol and indole. Propanoic acid, butanoic acid, furans, and 2-hydroxy-3-pentanone caused unpleasant odors, such as pungent and rancid odors. Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for sensory research and product development.

  17. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  18. Experimental motion behavior of submerged fuel racks

    International Nuclear Information System (INIS)

    Ellingson, F.J.; Wachter, W.; Moscardini, R.L.

    1989-01-01

    The design of submerged nuclear storage racks for light water reactor nuclear fuel has undergone a change from fixed position to a free-standing arrangement. Seismic analysis of the motion of the free-standing racks requires three-dimensional computer modeling that uses past studies of hydrodynamic mass and hydraulic coupling for rigid flat plates. This paper describes the results of experiments that show a reduced value for hydrodynamic mass and coupling forces when flexible elements are involved. To support this work, experiments were run with two full-scale welded box sections submerged in a water tank. The preliminary results indicate reduction in hydrodynamic mass due to box wall flexibility, a lack of impacting of box wall to box wall over the entire frequency range, and large hydrodynamic coupling forces under all test conditions. It is hypothesized that the coupling forces are sufficiently strong to prevent rotational motion of one rack when surrounded by adjacent racks

  19. Effect of clone size on submergence tolerance and post-submergence growth recovery in Carex brevicuspis (Cyperaceae

    Directory of Open Access Journals (Sweden)

    Zhengmiao Deng

    2016-12-01

    Full Text Available Clonal plants are prevalent in wetlands and play important roles in maintaining the functions of the ecosystem. In the present study, we determined the effect of clone sizes (R1, R2, and R3 comprising 1, 3, and 5clumping ramets on the tolerance of Carex brevicuspis growing under 30-cm-deep water to three different periods (one, two, and three months of submergence and its growth recovery one month after de-submergence. Our results showed that the relative growth rate (RGR of C. brevicuspis significantly declined with increasing submergence time, and was higher in R3 and R5 than in R1 plants under both submergence and post-submergence conditions. The concentration of water-soluble carbohydrates (WSCs was highest in R3, intermediate in R5, and the lowest in R1 plants during the first two months of submergence, indicating an optimal trade-off between energy investment and vegetative growth (i.e., buds and ramets production in C. brevicuspis. WSCs were significantly reduced with increasing submergence time, while the starch content was significantly reduced only during the third month of submergence, implying that WSCs were a direct energy source for C. brevicuspis during submergence. The number of buds was higher in R5 than in R3 and R1 plants after two and three months of submergence, which directly resulted in a significantly higher post-submergence ramet production in R5 plants. These results indicated that plants with relatively larger clone sizes display better tolerance to submergence stress and post-submergence growth recovery. Therefore, we speculate that the large clone size in C brevicuspis might be an effective adaptive mechanism to survive under submergence stress in floodplain wetlands.

  20. Alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Colin, P

    1961-01-04

    The addition of C/sub 6-10/ alcohols to the fermenting sugar solutions, increased the yield of alcohol by 1.5 to 5%. The best additives were (additive, % additive in sugar solution, % increased in yield of alcohol): hexanol, 0.03, 2.5; heptanol, 0.05, 3; nonanol, 0.01, 3; 2-ethylbutanol, 0.05, 4; 2-ethylhexanol, 0.05, 5; a mixture of C/sub 7-9/ alcohols from the Oxo synthesis, 0.05, 4.5, and a mixture of C/sub 10/ alcohols 0.05, 3.

  1. Radiocarbon measurements on submerged forest floating chronologies

    International Nuclear Information System (INIS)

    Campbell, J.A.; Baxter, M.S.

    1979-01-01

    It is stated that the submerged forests along the west coast of England and Wales provide a unique source of wood for radiocarbon/ dendrochronological studies. 14 C age determinations are reported on sequential growth increments from three 'gloating' chronologies. A sampling frequency of approximately 10 samples per century was used. Fluctuations in atmospheric 14 C levels of 2 to 3% over several decades can occur, these variations being superimposed on a smoothly changing trend. (author)

  2. Experimental investigation of submerged single jet impingement using Cu–water nanofluid

    International Nuclear Information System (INIS)

    Li Qiang; Xuan Yimin; Yu Feng

    2012-01-01

    Jet impingement cooling is a vital technique for thermal management of electronic devices of high-heat-flux by impinging fluid on a heater surface due to its high local heat transfer rates. In this paper, two types of Cu–water nanofluids (Cu particles with 25 nm diameter or 100 nm) are introduced into submerged single jet impingement cooling system as the working fluid. The heat transfer features of the nanofluids were experimentally investigated. The effects of the nanoparticle concentration, Reynolds number, nozzle-to-plate distance, fluid temperature, and nanoparticle diameter on the heat transfer performances of the jet impingement of nanofluids are discussed. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid. The convective heat transfer coefficient of Cu–water nanofluid with the volume fraction of 3.0% has 52% higher than the pure water. The experiments also revealed that the suspended nanoparticles brought almost no extra addition of pressure drop in both submerged single jet impingement. In addition, by considering the effects of the suspended nanoparticles as well as the condition of impinging jet, a new heat transfer correlation of nanofluids for the submerged single jet impingement has been proposed. - Highlights: ► Cu–water nanofluids are introduced into submerged single jet impingement. ► The affecting parameters on the heat transfer performances of nanofluids are discussed. ► New heat transfer correlation of nanofluid for single jet impingement is proposed.

  3. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    OpenAIRE

    MAJID ALI; YAN CHANGQI; SUN ZHONGNING; GU HAIFENG; WANG JUNLONG; KHURRAM MEHBOOB

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na2S2O3) in water to remove the gaseous iodine (I2) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine...

  4. Design of extended length submerged traveling screen and submerged bar screen fish guidance equipment

    International Nuclear Information System (INIS)

    Bardy, D.; Lindstrom, M.; Fechner, D.

    1991-01-01

    The hydropower projects on the Snake and lower Columbia Rivers in the Pacific Northwest are unique because these rivers are also the spawning grounds for migratory salmon. The salmon swim upstream from the ocean, lay their eggs, and die. The newly hatched fingerlings must then make their way past the hydroelectric dams to the ocean. Two separate bypass systems are needed, one to pass the adult fish going upstream, and one to pass the fingerlings going downstream. This paper addresses the design considerations for two of the components of the downstream migrant fish passage facilities, the extended Submerged Traveling Screen and Submerged Bar Screen

  5. Applications of image analysis in the characterization of Streptomyces olindensis in submerged culture

    Directory of Open Access Journals (Sweden)

    Pamboukian Celso R. Denser

    2002-01-01

    Full Text Available The morphology of Streptomyces olindensis (producer of retamycin, an antitumor antibiotic grown in submerged culture was assessed by image analysis. The morphology was differentiated into four classes: pellets, clumps (or entangled filaments, branched and unbranched free filaments. Four morphological parameters were initially considered (area, convex area, perimeter, and convex perimeter but only two parameters (perimeter and convex perimeter were chosen to automatically classify the cells into the four morphological classes, using histogram analysis. Each morphological class was evaluated during growth carried out in liquid media in fermenter or shaker. It was found that pellets and clumps dominated in early growth stages in fermenter (due to the inoculum coming from a shaker cultivation and that during cultivation, the breakage of pellets and clumps caused an increase in the percentage of free filaments. The criteria of morphological classification by image analysis proposed were useful to quantify the percentage of each morphological class during fermentations and may help to establish correlations between antibiotic production and microorganism morphology.

  6. Calibration of submerged multi-sluice gates

    Directory of Open Access Journals (Sweden)

    Mohamed F. Sauida

    2014-09-01

    The main objective of this work is to study experimentally and verify empirically the different parameters affecting the discharge through submerged multiple sluice gates (i.e., the expansion ratios, gates operational management, etc.. Using multiple regression analysis of the experimental results, a general equation for discharge coefficient is developed. The results show, that the increase in the expansion ratio and the asymmetric operation of gates, give higher values for the discharge coefficient. The obtained predictions of the discharge coefficient using the developed equations are compared to the experimental data. The present developed equations showed good consistency and high accuracy.

  7. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Characterization of biosurfactant produced from submerged ...

    African Journals Online (AJOL)

    user

    interfacial tension. This work was designed to produce biosurfactants from the fermentation of .... The cashew apples were collected from. Ubogidi cashew ... and manually crushed to remove the juice using a pestle and mortar. The bagasse was ..... degradation by yeast species Trichosporon asahii isolated from petroleum ...

  9. Impacts of climate change on submerged and emergent wetland plants

    Science.gov (United States)

    Frederick T. Short; Sarian Kosten; Pamela A. Morgan; Sparkle L Malone; Gregg E. Moore

    2016-01-01

    Submerged and emergent wetland plant communities are evaluated for their response to global climate change (GCC), focusing on seagrasses, submerged freshwater plants, tidal marsh plants, freshwater marsh plants and mangroves. Similarities and differences are assessed in plant community responses to temperature increase, CO2increase, greater UV-B exposure, sea...

  10. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China).

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Shi, Qiao; Hao, Beibei; Liu, Han; Wang, Zhixiu; Liu, Guihua

    2015-05-13

    Stoichiometric homeostasis of element composition is one of the central concepts of ecological stoichiometry. We analyzed concentrations of macroelements (C, N, P, Ca, K, Mg, S), microelements (Cu, Fe, Mn, Mo, Ni, Zn) and beneficial elements (Na, Se, Si) in submerged macrophytes, water and sediments across 20 Yunnan plateau lakes. We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements. Canonical discriminant analyses successfully discriminated among trophic level groups and taxa groups. Of all the elements, C, N, P and S most effectively discriminated among trophic level groups across 20 lakes, revealing lake trophic level mostly affect tissue macroelement composition in submerged macrophytes; while Ca, K and Se most effectively discriminated among submerged macrophytes taxa groups, suggesting taxonomy mostly affect compositions of macroelements and beneficial elements in submerged macrophytes. In addition, the stoichiometric homeostatic coefficient of 1/HCa:C for all five taxa of submerged macrophytes were less than zero, suggesting submerged macrophytes in Yunnan plateau lakes have strong Ca stoichiometric homeostasis. Our findings, not only broaden the knowledge of multielement stoichiometric homeostasis, but also help to choose most appropriate lake management strategy.

  11. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Science.gov (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol

    Directory of Open Access Journals (Sweden)

    Carla Eliana Todero Ritter

    2013-01-01

    Full Text Available The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v soy bran; 0.1% (w/v wheat bran; and a solution of salts. The highest filter paper activity (FPA ( IU·mL−1 was obtained on the seventh day in the medium containing 0.5% (w/v sorbitol and 0.5% (w/v cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day ( IU·mL−1 in the medium containing 0.75% (w/v sorbitol and 0.75% (w/v cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v sorbitol and 0.25% (w/v cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.

  13. Association of Candidate Genes With Submergence Response in Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Xicheng Wang

    2017-05-01

    Full Text Available Perennial ryegrass is a popular cool-season grass species due to its high quality for forage and turf. The objective of this study was to identify associations of candidate genes with growth and physiological traits to submergence stress and recovery after de-submergence in a global collection of 94 perennial ryegrass accessions. Accessions varied largely in leaf color, plant height (HT, leaf fresh weight (LFW, leaf dry weight (LDW, and chlorophyll fluorescence (Fv/Fm at 7 days of submergence and in HT, LFW and LDW at 7 days of recovery in two experiments. Among 26 candidate genes tested by various models, single nucleotide polymorphisms (SNPs in 10 genes showed significant associations with traits including 16 associations for control, 10 for submergence, and 8 for recovery. Under submergence, Lp1-SST encoding sucrose:sucrose 1-fructosyltransferase and LpGA20ox encoding gibberellin 20-oxidase were associated with LFW and LDW, and LpACO1 encoding 1-aminocyclopropane-1-carboxylic acid oxidase was associated with LFW. Associations between Lp1-SST and HT, Lp6G-FFT encoding fructan:fructan 6G-fructosyltransferase and Fv/Fm, LpCAT encoding catalase and HT were also detected under submergence stress. Upon de-submergence, Lp1-SST, Lp6G-FFT, and LpPIP1 encoding plasma membrane intrinsic protein type 1 were associated with LFW or LDW, while LpCBF1b encoding C-repeat binding factor were associated with HT. Nine significant SNPs in Lp1-SST, Lp6G-FFT, LpCAT, and LpACO1 resulted in amino acid changes with five substitutions found in Lp1-SST under submergence or recovery. The results indicated that allelic diversity in genes involved in carbohydrate and antioxidant metabolism, ethylene and gibberellin biosynthesis, and transcript factor could contribute to growth variations in perennial ryegrass under submergence stress and recovery after de-submergence.

  14. Improved, Low-Stress Economical Submerged Pipeline

    Science.gov (United States)

    Jones, Jack A.; Chao, Yi

    2011-01-01

    A preliminary study has shown that the use of a high-strength composite fiber cloth material may greatly reduce fabrication and deployment costs of a subsea offshore pipeline. The problem is to develop an inexpensive submerged pipeline that can safely and economically transport large quantities of fresh water, oil, and natural gas underwater for long distances. Above-water pipelines are often not feasible due to safety, cost, and environmental problems, and present, fixed-wall, submerged pipelines are often very expensive. The solution is to have a submerged, compliant-walled tube that when filled, is lighter than the surrounding medium. Some examples include compliant tubes for transporting fresh water under the ocean, for transporting crude oil underneath salt or fresh water, and for transporting high-pressure natural gas from offshore to onshore. In each case, the fluid transported is lighter than its surrounding fluid, and thus the flexible tube will tend to float. The tube should be ballasted to the ocean floor so as to limit the motion of the tube in the horizontal and vertical directions. The tube should be placed below 100-m depth to minimize biofouling and turbulence from surface storms. The tube may also have periodic pumps to maintain flow without over-pressurizing, or it can have a single pump at the beginning. The tube may have periodic valves that allow sections of the tube to be repaired or maintained. Some examples of tube materials that may be particularly suited for these applications are non-porous composite tubes made of high-performance fibers such as Kevlar, Spectra, PBO, Aramid, carbon fibers, or high-strength glass. Above-ground pipes for transporting water, oil, and natural gas have typically been fabricated from fiber-reinforced plastic or from more costly high-strength steel. Also, previous suggested subsea pipeline designs have only included heavy fixed-wall pipes that can be very expensive initially, and can be difficult and expensive

  15. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  16. Probiotic fermented dairy products

    OpenAIRE

    Adnan Tamime; Rajka Božanić; Irena Rogelj

    2003-01-01

    Fermented dairy products are the most popular vehicle used in theindustry for the implantation of the probiotic microflora in humans. Therefore this paper provides an overview of new knowledge on probiotic fermented dairy products. It involves historical developments, commercial probiotic microorganisms and products, and their therapeutic properties, possibilities of quality improvement of different types of newly developed fermented dairy products together with fermented goat’s milk products.

  17. GUT FERMENTATION SYNDROME

    African Journals Online (AJOL)

    boaz

    individuals who became intoxicated after consuming carbohydrates, which became fermented in the gastrointestinal tract. These claims of intoxication without drinking alcohol, and the findings on endogenous alcohol fermentation are now called Gut. Fermentation Syndrome. This review will concentrate on understanding ...

  18. Alcoholic fermentation of whey

    Energy Technology Data Exchange (ETDEWEB)

    Beach, A S; Holland, J W

    1958-09-10

    The lactose of whey and other milk products is rapidly fermented to ethanol by means of Candida pseudotropicalis strain XI. The fermentation is complete in about 12 hours and yields about 45% ethanol based on the weight of lactose. Conditions favoring the fermentation and inhibiting lactic acid production include pH 4.5, 30/sup 0/, and continuous aeration.

  19. Innovation Incubator: LiquidCool Solutions Technical Evaluation. Laboratory Study and Demonstration Results of a Directed-Flow, Liquid Submerged Server for High-Efficiency Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric J [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-12

    LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.

  20. [Algal control ability of allelopathically active submerged macrophytes: a review].

    Science.gov (United States)

    Xiao, Xi; Lou, Li-ping; Li, Hua; Chen, Ying-xu

    2009-03-01

    The inhibitory effect of allelochemicals released by submerged macrophytes on phytoplankton is considered as one of the mechanisms that contribute to the stabilization of clear-water status in shallow lakes. This paper reviewed the research progress in the allelopathy of submerged macrophytes on algae from the aspects of the occurrence frequency and coverage of allelopathically active submerged macrophytes in lakes, and the kinds and allelopathical effects of the allelochemicals released from the macrophytes. The previous researches indicated that allelopathically active submerged macrophyte species such as Myriophyllum, Ceratophyllum, and Elodea were efficient to control phytoplankton, especially when their biomass was high enough, and the dominant algae were sensitive species. The allelochemicals such as hydroxybenzene released by the submerged macrophytes could inhibit the growth of algae. Different phytoplankton species exhibited different sensitivity against allelochemicals, e.g., cyanobacteria and diatom were more sensitive than green algae, while epiphytic species were less sensitive than phytoplankton. Environmental factors such as light, temperature, and nutrients could significantly affect the allelopathical effect of submerged macrophytes. The research of the allelopathy of submerged macrophytes is still at its beginning, and further researches are needed on the effects of environmental factors on the allelopathy, extraction and identification of allelochemicals, selective algal control mechanisms, and metabolism of the allelochmicals.

  1. Vibrational analysis of submerged cylindrical shells based on elastic foundations

    International Nuclear Information System (INIS)

    Shah, A.G.; Naeem, M.N.

    2014-01-01

    In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)

  2. Optimization of Fermentation Conditions for the Production of Bacteriocin Fermentate

    Science.gov (United States)

    2015-03-30

    FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ” by Anthony Sikes Wayne Muller and Claire Lee March 2015...From - To) October 2010 – November 2013 4. TITLE AND SUBTITLE OPTIMIZATION OF FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ...nisin and pediocin. Whey + yeast extract was the best performing whey fermentation media. The nisin producer strain Lactococcus. lactis ssp. lactis was

  3. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    Science.gov (United States)

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  4. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    Science.gov (United States)

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  5. RELATIONSHIP BETWEEN MORPHOLOGY, RHEOLOGY AND GLUCOAMYLASE PRODUCTION BY Aspergillus awamori IN SUBMERGED CULTURES

    Directory of Open Access Journals (Sweden)

    C.R.D. Pamboukian

    1998-09-01

    Full Text Available The influence of inoculum preparation on Aspergillus awamori morphology, broth rheology and glucoamylase synthesis in submerged cultures was investigated. A series of runs were performed in fermenters, using initial total reducing sugar concentrations of 20 g/L and 80 g/L. The inocula were prepared in a rotary shaker, at 35oC and 200 rev/min, using a spore concentration of 9.2 x 105 spores/mL and varying both cultivation time and medium pH during the spore germination step. Three types of inocula were used: inoculum cultivated for 24 hours at an initial pH of 5.0, and inocula cultivated for 7 hours at both a pH of 2.5 and a pH of 5.5. Regarding glucoamylase production, the inoculum which provided the best results was shaker cultivated for 7 hours at a pH of 2.5. This inoculum produced glucoamylase of about 1,221 U/L in the fermenter, which was between 20% and 30% higher than those obtained using other inocula.

  6. Improved Production and Antitumor Properties of Triterpene Acids from Submerged Culture of Ganoderma lingzhi.

    Science.gov (United States)

    Wang, Xiao-Ling; Ding, Zhong-Yang; Liu, Gao-Qiang; Yang, Hailong; Zhou, Guo-Ying

    2016-10-20

    Triterpene acids (TAs) are the major bioactive constituents in the medicinal fungus Ganoderma lingzhi . However, fermentative production of TAs has not been optimized for commercial use, and whether the TAs isolated from G. lingzhi submerged culture mycelia possess antitumor activity needs to be further proven. In this study, enhanced TA yield and productivity were attained with G. lingzhi using response surface methodology. The interactions of three variables were studied using a Box-Benhnken design, namely initial pH, dissolved oxygen (DO) and fermentation temperature. The optimum conditions were an initial pH of 5.9, 20.0% DO and 28.6 °C. These conditions resulted in a TA yield of 308.1 mg/L in a 5-L stirred bioreactor. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and maximum TA production and productivity of 295.3 mg/L and 49.2 mg/L/day were achieved, which represented 80.9% and 111.5% increases, respectively, compared with the non-optimized conditions. Additionally, the triterpene acid extract (TAE) from G. lingzhi mycelia was found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro, and the TAE exhibited dose-dependent antitumor activity against the solid tumor sarcoma 180 in vivo. Chemical analysis revealed that the key active triterpene compounds, ganoderic acid T and ganoderic acid Me, predominated in the extract.

  7. Efficient conversion of pretreated brewer's spent grain and wheat bran by submerged cultivation of Hericium erinaceus.

    Science.gov (United States)

    Wolters, Niklas; Schabronath, Christoph; Schembecker, Gerhard; Merz, Juliane

    2016-12-01

    Brewer's spent grain (BSG) and wheat bran (WB) are industrial byproducts that accumulate in millions of tons per year and are typically applied as animal feed. Since both byproducts show a great potential as substrates for fermentation, the approach developed in this study consists of utilizing these lignocellulosic byproducts for biomass production of the medicinal fungus Hericium erinaceus through submerged cultivation. To increase the biological efficiency of the bioconversion, acidic pretreatment was applied yielding a bioconversion of 38.6% for pretreated BSG and 34.8% for pretreated WB. This study shows that the complete degradation of (hemi)cellulose into monosaccharides was not required for an efficient bioconversion. The produced fungal biomass was applied in a second fermentation step to induce the secondary metabolite erinacine C production. Thus, biomass was produced as a functional food ingredient with erinacine C contents of 174.8mg/g for BSG and 99.3mg/g for WB based bioconversions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development of starter culture for improved processing of Lafun, an African fermented cassava food product

    DEFF Research Database (Denmark)

    Padonou, S.W.; Nielsen, Dennis Sandris; Akissoe, N.H.

    2010-01-01

    AIMS: To select appropriate micro-organisms to be used as starter culture for reliable and reproducible fermentation of Lafun. METHODS AND RESULTS: A total of 22 cultures consisting of yeast, lactic acid bacteria (LAB) and Bacillus cereus strains predominant in traditionally fermented cassava...... during Lafun processing were tested as potential starter cultures. In an initial screening, Saccharomyces cerevisiae 2Y48P22, Lactobacillus fermentum 2L48P21, Lactobacillus plantarum 1L48P35 and B. cereus 2B24P31 were found to be the most promising of the cultures and were subsequently tested...... in different combinations as mixed starter cultures to ferment submerged cassava roots. Saccharomyces cerevisiae, inoculated singly or combined with B. cereus, gave the softest cassava root after 48 h of fermentation according to determination of compression profile and stress at fracture. Overall, sensory...

  9. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  10. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  11. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  12. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    International Nuclear Information System (INIS)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-01-01

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report. The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments

  13. Marine algal flora of submerged Angria Bank (Arabian Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Reddy, C.R.K.; Ambiye, V.

    Submerged Angria Bank was surveyed for the deep water marine algal flora. About 57 species were reported from this bank for the first time. Rhodophyta dominated (30 species) followed by Chlorophyta (18 species) and Phaeophyta (9 species). A few...

  14. Submergence tolerance in Hordeum marinum

    DEFF Research Database (Denmark)

    Pedersen, Ole; Malik, Al I.; Colmer, Timothy D.

    2010-01-01

    Floodwaters differ markedly in dissolved CO(2), yet the effects of CO(2) on submergence responses of terrestrial plants have rarely been examined. The influence of dissolved CO(2) on underwater photosynthesis and growth was evaluated for three accessions of the wetland plant Hordeum marinum Huds....... All three accessions tolerated complete submergence, but only when in CO(2) enriched floodwater. Plants submerged for 7 days in water at air equilibrium (18 mM CO(2)) suffered loss of biomass, whereas those with 200 mM CO(2) continued to grow. Higher underwater net photosynthesis at 200 mM CO(2......) increased by 2.7- to 3.2-fold sugar concentrations in roots of submerged plants, compared with at air equilibrium CO(2). Leaf gas films enhancing gas exchange with floodwater, lack of a shoot elongation response conserving tissue sugars and high tissue porosity (24-31% in roots) facilitating internal O(2...

  15. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    Science.gov (United States)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  16. Durability performance of submerged concrete structures - phase 2.

    Science.gov (United States)

    2015-09-01

    This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...

  17. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    Energy Technology Data Exchange (ETDEWEB)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  18. Controlling alchohol fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Leedham, P A; Tubb, R S

    1983-09-21

    In the initial stages of a fermentation of carbohydrate to EtOH, the growth of the yeast is controlled by monitoring the pH of a fermenting liquid or wort and controlling the supply of O/sub 2/ in accordance with the pH. The temperature of the fermenting liquid is also controlled in dependence upon the pH. The control of the fermentation process is carried out automatically by an apparatus including a fermentation vessel, a pH sensor arranged to provide an output signal representative of the pH of the liquid in the vessel, memory means to store information on the required pH with regard to the fermentation time, means to inject O/sub 2/ into the fermenting liquid and control means to compare the output signal of the pH sensor at a particular time with that of the required pH at that time, and in the event of the pH of the fermenting liquid lagging behind that required, actuate the means to inject O/sub 2/ into the fermenting liquid to increase the O/sub 2/ content of the fermenting liquid.

  19. Effect of fermentation system on the production and properties of tannase of Aspergillus niger van Tieghem MTCC 2425.

    Science.gov (United States)

    Rana, Nisha K; Bhat, Tej K

    2005-08-01

    The tannase-producing efficiency of liquid-surface fermentation (LSF) and solid-state fermentation (SSF) vis-à-vis submerged fermentation (SmF) was investigated in a strain of Aspergillus niger, besides finding out if there was a change in the activity pattern of tannase in these fermentation processes. The studies on the physicochemical properties were confined to intracellular tannase as only this form of enzyme was produced by A. niger in all three fermentation processes. In LSF and SmF, the maximum production of tannase was observed by 120 h, whereas in SSF its activity peaked at 96 h of growth. SSF had the maximum efficiency of enzyme production. Tannase produced by the SmF, LSF and SSF processes had similar properties except that the one produced during SSF had a broader pH stability of 4.5-6.5 and thermostability of 20 degrees-60 degrees C.

  20. Breaking the spores of Ganoderma lucidum by fermentation with ...

    African Journals Online (AJOL)

    In this paper, fermentation of G. lucidum with Lactobacillus plantarum was applied to break down the sporoderm. Scanning electron microscope (SEM) was used to characterize the spores. The broken spores were found on the 3rd day and complete breaking on the 5th day of fermentation. Lactic acid, acetic acid and ...

  1. Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress

    Directory of Open Access Journals (Sweden)

    Malay Kumar ADAK

    2011-06-01

    Full Text Available The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation. It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield. The detrimental effects of the complete submergence were recorded in generation of sucrose, starch, sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e. non-submerged condition. The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity. Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity. However, under normal or control condition, there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity. Still, photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield. Finally, plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues. It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles, in this case as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.

  2. Application of submerged induction hardening; Ekichu koshuha yakiire no jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nishimori, Y; Nagai, Y; Amii, Y [Mazda Motor Corp., Hiroshima (Japan); Tanaka, Y [Netsuren Co. Ltd., Tokyo (Japan); Mizuma, T [Toyo Advanced Technologies Co. Ltd., Hiroshima (Japan)

    1997-10-01

    As a cost-cutting measure, the linerless diesel engine was adopted by applying submerged induction hardening process which can harden partial inner surface of cylinder block bore. In applying this process, (1) development of induction coil which can form any shape of quenched pattern and (2) the development of machining technology which can hone precisely the distorted bore after quenching, were important. With these improvements, submerged Induction hardening was made practical. 1 ref., 11 figs.

  3. Surfactin – A Review on Biosynthesis, Fermentation, Purification and Applications

    Directory of Open Access Journals (Sweden)

    Nikhil S. Shaligram

    2010-01-01

    Full Text Available Surfactin, a bacterial cyclic lipopeptide, is produced by various strains of Bacillus subtilis and is primarily recognized as one of the most effective biosurfactants. It has the ability to reduce surface tension of water from 72 to 27 mN/m at a concentration as low as 0.005 %. The structure of surfactin consists of seven amino acids bonded to the carboxyl and hydroxyl groups of a 14-carbon fatty acid. Surfactin possesses a number of biological activities such as the ability to lyse erythrocytes, inhibit clot formation, lyse bacterial spheroplasts and protoplasts, and inhibit cyclic 3',5-monophosphate diesterase. The high cost of production and low yields have limited its use in various commercial applications. Both submerged and solid-state fermentation have been investigated with the mutational approach to improve the productivity. In this review, current state of knowledge on biosynthesis of surfactin, its fermentative production, purification, analytical methods and biomedical applications is presented.

  4. Effective mass and damping of submerged structures

    International Nuclear Information System (INIS)

    Dong, R.G.

    1979-01-01

    A number of structures important for safety in nuclear power plants are submerged in water. These include spent fuel storage racks, main pressure relief valve lines, and internal structures in the reactor vessel. Dynamic analyses of such structures must include the force and damping effects of water. A wide variety of modeling assumptions are being used in design analyses, and currently there are no uniform positions by which to judge the adequacy of the assumptions . A study was caried out to establish a technical basis for evaluating the assymptions and to recommend suitable methods to describe the effects of the water. The results of the study were based on information published in the literature or conveyed by industrial firms. A survey of 32 firms and 49 technical references was carried out. Heavy emphasis was placed on validating the results with available experimental data. The information collected apply generally to idealized structures such as single isolated members, arrays of members and coaxial cylinders. The results of the study are categorized with respect to such idealized structures, and the applicability to actual reactor structures was discussed through observations and recommendations. (orig.)

  5. Effective mass and damping of submerged structures

    International Nuclear Information System (INIS)

    Dong, R.G.

    1978-01-01

    Various structures important for safety in nuclear power plants must remain functioning in the event of an earthquake or other dynamic phenomenon. Some of these important structures, such as spent-fuel storage racks, main pressure-relief valve lines, and internal structures in the reactor vessel, are submerged in water. Dynamic analysis must include the force and damping effects of water. This report provides a technical basis for evaluating the wide variety of modeling assumptions currently used in design analysis. Current design analysis techniques and information in the literature form the basis of our conclusions and recommendations. We surveyed 32 industrial firms and reviewed 49 technical references. We compare various theories with published experimental results wherever possible. Our findings generally pertain to idealized structures, such as single isolated members, arrays of members, and coaxial cylinders. We relate these findings to the actual reactor structures through observations and recommendations. Whenever possible we recommend a definite way to evaluate the effect of hydrodynamic forces on these structures

  6. Heat transfer model for quenching by submerging

    International Nuclear Information System (INIS)

    Passarella, D N; Varas, F; MartIn, E B

    2011-01-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  7. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  8. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    Science.gov (United States)

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases. Copyright © 2014 The British Mycological Society. All rights reserved.

  9. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review).

    Science.gov (United States)

    Elisashvili, Vladimir

    2012-01-01

    Medicinal mushrooms belonging to higher Basidiomycetes are an immensely rich yet largely untapped resource of useful, easily accessible, natural compounds with various biological activities that may promote human well-being. The medicinal properties are found in various cellular components and secondary metabolites (polysaccharides, proteins and their complexes, phenolic compounds, polyketides, triterpenoids, steroids, alkaloids, nucleotides, etc.), which have been isolated and identified from the fruiting bodies, culture mycelium, and culture broth of mushrooms. Some of these compounds have cholesterol-lowering, anti-diabetic, antioxidant, antitumor, immunomodulating, antimicrobial, and antiviral activities ready for industrial trials and further commercialization, while others are in various stages of development. Recently, the submerged cultivation of medicinal mushrooms has received a great deal of attention as a promising and reproducible alternative for the efficient production of mushroom mycelium and metabolites. Submerged cultivation of mushrooms has significant industrial potential, but its success on a commercial scale depends on increasing product yields and development of novel production systems that address the problems associated with this technique of mushroom cultivation. In spite of many researchers' efforts for the production of bioactive metabolites by mushrooms, the physiological and engineering aspects of submerged cultures are still far from being thoroughly studied. The vast majority of studies have focused on polysaccharide and ganoderic acid production in submerged cultivation of medicinal mushrooms, and very little has been written so far on the antioxidant and hemagglutinating activity of submerged mushroom cultures. The purpose of this review is to provide an update of the present state of the art and future prospects of submerged cultivation of medicinal mushrooms to produce mycelium and bioactive metabolites, and to make a

  10. Anti-Growth Factors Associated with Pleurotus ostreatus in a Submerged Liquid Fermentation

    Directory of Open Access Journals (Sweden)

    Juliet B. Akinyele

    2012-09-01

    Full Text Available Aims: Previous studies had revealed that cultivation of Pleurotus ostreatus is often met with a lot of challenges ranging from environmental to biological factors which adversely affect the successful cultivation of the mushroom. Hence, a need to determine factors against mycelia colonization of substrate during mushroom’s cultivation.Methodology and Result: Conventional streak method was employed to establish the percentage inhibition as well as intercolony distance between the test organisms obtained from the infected substrate and mycelia of the mushroom during substrate colonization. The test organisms are: a fungus, Kutilakesopsis macalpineae and a bacterium,Pseudomonas tolaasii. The effect of pH and temperature on the mycelia growth of P. ostreatus was also investigated. There was a gradual increase in the percentage inhibition from 33.3 % at 24 h to 75.0 % at 168 h for K. macalpineae and 37.5 % at 24 h to 70.0 at 168 h for P. tolaasii. The inter-colony distance between the antagonists and the mushroom mycelium gradually decreased. Optical density of the mycelium growth was at its optimum at pH 4.5 and temperature of25 °C respectively. In vitro study also showed a significant increase in the optical density from 0.855±0.03 at 24 h to 1.316±0.02 at 168 h in the absence of test antagonist as against 0.812±0.06 and 0.79±0.02 at 24 h to 1.103±0.03 and 0.902±0.03 at 168 h when K. macalpineae and P.tolaasii were used as test antagonistic respectively.Conclusion, significance and impact of study: Sterilization of substrate is essential to avoid contamination during mycelia colonization. Also, slightly acidic medium and temperature control is necessary for high yield of fruit bodies.

  11. Optimization of Cellulase and Xylanase Production by Micrococcus Species under Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Ziyanda Mmango-Kaseke

    2016-11-01

    Full Text Available This paper reports on the optimization of culture conditions for cellulase and xylanase production by bacterial isolate from lignocellulosic biomass. The bacterial isolate was screened for cellulase and xylanase production on carboxyl methyl cellulose (CMC and birch wood xylan as substrates, respectively. One bacterial isolate showing the highest halo zone diameter (isolate PLY1 was selected for detailed studies. The analysis of the 16S ribosomal ribonucleic acid (rRNA gene nucleotide sequence of PLY1 revealed it to have 98% similarity to Micrococcus luteus strain Fse9 and the sequence was deposited in the GenBank as Micrococcus luteus strain SAMRC-UFH3 with accession number KU171371. Cellulase production was achieved in the presence of CMC (1% w/v under an incubation temperature of 25 °C (198 U/mL, pH 5 (173 U/mL, agitation speed 50 rpm (173 U/mL and incubation period of 96 h (102 U/mL. Xylanase was produced maximally when birch wood xylan (1% w/v was used as the substrate at 25 °C (1007 U/mL, pH 10 (2487 U/mL, 200 rpm (1814 U/mL, and under an incubation period of 84 h (1296 U/mL. Our findings showed that Micrococcus sp. SAMRC-UFH3 appears to be a potentially important candidate for lignocellulosic waste degradation and other relevant industrial applications.

  12. Kinetic of orange pigment production from Monascus ruber on submerged fermentation.

    Science.gov (United States)

    Vendruscolo, Francielo; Schmidell, Willibaldo; de Oliveira, Débora; Ninow, Jorge Luiz

    2017-01-01

    Pigments produced by species of Monascus have been used to coloring rice, meat, sauces, wines and beers in East Asian countries. Monascus can produce orange (precursor), yellow and red pigments. Orange pigments have low solubility in culture media and when react with amino groups they become red and largely soluble. The orange pigments are an alternative to industrial pigment production because the low solubility facilitates the downstream operations. The aim of this work was to study the kinetic on the production of orange pigments by Monascus ruber CCT 3802. The shaking frequency of 300 rpm was favorable to production, whereas higher shaking frequencies showed negative effect. Pigment production was partially associated with cell growth, the critical dissolved oxygen concentration was between 0.894 and 1.388 mgO 2  L -1 at 30 °C, and limiting conditions of dissolved oxygen decreased the production of orange pigments. The maintenance coefficient (mo) and the conversion factor of oxygen in biomass (Yo) were 18.603 mgO 2  g x -1  h -1 and 3.133 g x  gO 2 -1 and the consideration of these parameters in the oxygen balance to estimate the biomass concentration provided good fits to the experimental data.

  13. Influence of Light Intensity on Growth and Pigment Production by Monascus ruber in Submerged Fermentation.

    Science.gov (United States)

    Bühler, Rose Marie Meinicke; Müller, Bruna Luíse; Moritz, Denise Esteves; Vendruscolo, Francielo; de Oliveira, Debora; Ninow, Jorge Luiz

    2015-07-01

    To reduce environmental problems caused by glycerine accumulation and to make the production of biodiesel more profitable, crude glycerin without treatment was used as substrate for obtaining higher value-added bioproducts. Monascus ruber is a filamentous fungus that produces pigments, particularly red ones, which are used for coloring foods (rice wine and meat products). The interest in developing pigments from natural sources is increasing due to the restriction of using synthetic dyes. The effects of temperature, pH, microorganism morphology, aeration, nitrogen source, and substrates have been studied in the cultivation of M. ruber. In this work, it was observed that light intensity is also an important factor that should be considered for understanding the metabolism of the fungus. In M. ruber cultivation, inhibition of growth and pigment production was observed in Petri dishes and blaffed flasks exposed to direct illumination. Growth and pigment production were higher in Petri dishes and flasks exposed to red light and in the absence of light. Radial growth rate of M. ruber in plates in darkness was 1.50 mm day(-1) and in plates exposed to direct illumination was 0.59 mm day(-1). Maximum production of red pigments (8.32 UA) and biomass (8.82 g L(-1)) were obtained in baffled flasks covered with red film and 7.17 UA of red pigments, and 7.40 g L(-1) of biomass was obtained in flasks incubated in darkness. Under conditions of 1248 lux of luminance, the maximum pigment production was 4.48 UA, with production of 6.94 g L(-1) of biomass, indicating that the fungus has photoreceptors which influence the physiological responses.

  14. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation.

    Science.gov (United States)

    Srivastava, S K; Tripathi, Abhishek Dutt

    2013-10-01

    Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l -1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l -1 PHA was produced with a PHB yield (Y P/X ) and productivity of 75.89 % and 0.14 g l -1  h, respectively.

  15. Microbial Protein Production from Candida tropicalis ATCC13803 in a Submerged Batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sahar Golaghaiee

    2017-01-01

    Full Text Available Background and Objective: Microbial protein production can resolve one of the major world challenges, i.e. lack of protein sources. Candida tropicalis growth was investigated to specify a medium to reach the highest cell proliferation and protein production.Material and Methods: Fractional factorial design and the index of signal to noise ratio were applied for optimization of microbial protein production. Optimization process was conducted based on the experimental results of Taguchi approach designs. Fermentationwas performed at 25oC and the agitation speed of 300 rpm for 70 h. Ammonium sulfate, iron sulfate, glycine and glucose concentrations were considered as process variables. Optimization of the culture medium composition was conducted in order to obtain the highest cell biomass concentration and protein content. Experiment design was performed based on the Taguchi approach and L-16 orthogonal arrays using Qualitek-4 software.Results and Conclusion: Maximum biomass of 8.72 log (CFU ml-1 was obtained using the optimized medium with 0.3, 0.15, 2 and 80 g l-1 of ammonium sulfate, iron sulfate, glycine and glucose, respectively. Iron sulfate and ammonium sulfate with 41.76% (w w-1 and 35.27% (w w-1 contributions, respectively, were recognized as the main components for cell growth. Glucose and glycine with 17.12% and 5.86% (w w-1 contributions,respectively, also affected cell production. The highest interaction severity index of +54.16% was observed between glycine and glucose while the least one of +0.43% was recorded for ammonium sulfate and glycine. A deviation of 7% between the highestpredicted cell numbers and the experimented count confirms the suitability of the applied statistical method. High protein content of 52.16% (w w-1 as well as low fat and nucleic acids content suggest that Candida tropicalis is a suitable case for commercial processes.Conflict of interest: The authors declare that there is no conflict of interest.

  16. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process.

    Science.gov (United States)

    Mohapatra, S; Sarkar, B; Samantaray, D P; Daware, A; Maity, S; Pattnaik, S; Bhattacharjee, S

    2017-12-01

    Currently, one of the major problem affecting the world is solid waste management, predominantly petroleum-based plastic and fish solid waste (FSW). However, it is very difficult to reduce the consumption of plastic as well as fish products, but it is promising to convert FSW to biopolymer to reduce eco-pollution. On account of that, the bioconversion of FSW extract to polyhydroxybutyrate (PHB) was undertaken by using Bacillus subtilis (KP172548). Under optimized conditions, 1.62 g/L of PHB has been produced by the bacterium. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the biopolymer was found to be PHB, the most common homopolymer of polyhydroxyalkanoates (PHAs). This is the first report demonstrating the efficacy of B. subtilis to utilize FSW extract to produce biopolymer. The biocompatibility of the PHB against murine macrophage cell line RAW264.7 demonstrated that, it was comparatively less toxic, favourable for surface attachment and proliferation in comparison with poly-lactic acid (PLA) and commercially available PHB. Thus, further exploration is highly indispensable to use FSW extract as a substrate for production of PHB at pilot scale.

  17. Studies on continuous fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K

    1958-01-01

    Continuous fermentation of molasses with a combined system of agitated vessel and flow pipe is studied. A new apparatus was designed. The rate of the fermentation was faster with this apparatus than with the former apparatus which was composed of two vessels.

  18. Food Technologies: Fermentation

    NARCIS (Netherlands)

    Nout, M.J.R.

    2014-01-01

    Fermentation refers to the use of microorganisms to achieve desirable food properties in the fermented food or beverage. Although the word ‘fermentation’ indicates ‘anaerobic metabolism,’ it is also used in a broader sense to indicate all anaerobic and aerobic microbiological and biochemical

  19. Research in fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A K

    1966-01-01

    The following aspects of the biochemistry of fermentation were discussed: carbohydrate, amino acid, S, and phosphate metabolisms in the yeast cell; pantothenic acid and biotin as the essential growth factors in yeast metabolisms; effects of different aeration conditions on yeast growth, mitochondria development, and lipid contents. Gas chromatographic studies of fermentation products are also discussed.

  20. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  1. Asian fungal fermented food

    NARCIS (Netherlands)

    Nout, M.J.R.; Aidoo, K.E.

    2010-01-01

    In Asian countries, there is a long history of fermentation of foods and beverages. Diverse micro-organisms, including bacteria, yeasts and moulds, are used as starters, and a wide range of ingredients can be made into fermented foods. The main raw materials include cereals, leguminous seeds,

  2. Fermented milk for hypertension

    DEFF Research Database (Denmark)

    Usinger, Lotte; Reimer, Christina; Ibsen, Hans

    2012-01-01

    Fermented milk has been suggested to have a blood pressure lowering effect through increased content of proteins and peptides produced during the bacterial fermentation. Hypertension is one of the major risk factors for cardiovascular disease world wide and new blood pressure reducing lifestyle...

  3. Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong

    2011-10-01

    Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be

  4. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  5. Demonstration and Field Evaluation of Streambank Stabilization with Submerged Vanes

    Science.gov (United States)

    Whitman, H.; Hoopes, J.; Poggi, D.; Fitzpatrick, F.; Walz, K.; ,

    2001-01-01

    The effectiveness of submerged vanes for reducing bank erosion and improving aquatic habitat is being evaluated at a site on North Fish Creek, a Lake Superior tributary. Increased runoff from agricultural areas with clayey soils has increased flood magnitudes and the erosion potential/transport capacity of the stream. Most of the creek's sediment load originates from the erosion of 17 large bluffs. This creek contains important recreational fisheries that are potentially limited by the loss of aquatic habitat from deposition of sediment on spawning beds. Submerged vanes are a cost effective and environmentally less intrusive alternative to traditional structural stabilization measures. Submerged vanes protrude from a channel bed, are oriented at an angle to the local velocity, and are distributed along a portion of channel. They induce a transverse force and torque on the flow along with longitudinal vortexes that alter the cross sectional shape and alignment of the channel. Submerged vanes were installed at a bluff/bend site in summer and fall 2000. The number, size, and layout of the vanes were based upon the channel morphology under estimated bankfull conditions. The effectiveness of the vanes will be evaluated by comparing surveys of the bluff face, streamflow, and channel conditions for several years after installation of the submerged vanes with surveys before and immediately after their installation.

  6. Redox reactions in food fermentations

    DEFF Research Database (Denmark)

    Hansen, Egon Bech

    2018-01-01

    involves oxidative steps in the early part of the pathways whereas a multitude of different reactions are used as compensating reductions. Much of the diversity seen between food fermentations arise from the different routes and the different electron acceptors used by microorganisms to counterbalance...... and this contributes to the diversity in flavor, color, texture, and shelf life. The review concludes that these reactions are still only incompletely understood and that they represent an interesting area for fundamental research and also represent a fertile field for product development through a more conscious use...... of the redox properties of strains used to compose food cultures....

  7. Enzymatic formation of gold nanoparticles by submerged culture of the basidiomycete Lentinus edodes.

    Science.gov (United States)

    Vetchinkina, Elena P; Loshchinina, Ekaterina A; Burov, Andrey M; Dykman, Lev A; Nikitina, Valentina E

    2014-07-20

    We report for the first time that the medicinal basidiomycete Lentinus edodes can reduce Au(III) from chloroauric acid (HAuCl4) to elemental Au [Au(0)], forming nanoparticles. Several methods, including transmission electron microscopy, electron energy loss spectroscopy, X-ray fluorescence, and dynamic light scattering, were used to show that when the fungus was grown submerged, colloidal gold accumulated on the surface of and inside the mycelial hyphae as electron-dense particles mostly spherical in shape, with sizes ranging from 5 to 50nm. Homogeneous proteins (the fungal enzymes laccase, tyrosinase, and Mn-peroxidase) were found for the first time to be involved in the reduction of Au(III) to Au(0) from HAuCl4. A possible mechanism forming Au nanoparticles is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Production of Extracellular Lipase from Aspergillus niger by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Janny Coca Armas

    2006-01-01

    Full Text Available Lipase production in Aspergillus niger J-1 was tested using both submerged fermentation (SmF and solid-state fermentation (SSF on a mineral culture medium and wheat bran, respectively. The optimization of the culture medium was carried out for both SmF and SSF. The maximum lipase activity, 1.46 IU/mL, was obtained during the submerged fermentation in a medium containing glucose at 2 % and olive oil at 2 % under conditions of 1 vvm and 450 m–1. However, 9.14 IU/g of dry solid substrate equivalent to 4.8 IU/mL of lipase activity was reached using solid-state fermentation process with a medium containing 0.75 % of ammonium sulphate and 0.34 % of urea. The optimum pH and temperature for enzymatic activity were pH=6 and 40 °C, respectively. The enzyme also exhibited 80 % of its initial activity in neutral and mildly acid media and at temperatures between 20 and 30 °C for a period of 24 hours.

  9. Characterisation of thermotolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kiransree, N.; Sridhar, M.; Venkateswar Rao, L. [Department of Microbiology, Osmania University, Hyderabad (India)

    2000-03-01

    Of the four thermotolerant, osmotolerant, flocculating yeasts (VS{sub 1}, VS{sub 2}, VS{sub 3} and VS{sub 4}) isolated from the soil samples collected within the hot regions of Kothagudem Thermal Power Plant, located in Khammam Dt., Andhra Pradesh, India, VS{sub 1} and VS{sub 3} were observed as better performers. They were identified as Saccharomyces cerevisiae. VS{sub 1} and VS{sub 3} were tested for their growth characteristics and fermentation abilities on various carbon sources including molasses at 30 C and 40 C respectively. More biomass and fermentation was observed in sucrose, fructose and glucose. Maximum amount of ethanol produced by VS{sub 3} containing 150 (g/l) of these substrates were 74, 73, and 72 (g/l) at 30 C and 64, 61 and 63 (g/l) at 40 C respectively. With molasses containing 14% sugar, the amount of ethanol produced by VS{sub 3} was 53.2 and 45 (g/l) at 30 C and 40 C respectively. VS{sub 3} strain showed 12% W/V ethanol tolerance. VS{sub 3} strain was also characterised for its ethanol producing ability using various starchy substrates in solid state and submerged fermentation. More ethanol was produced in submerged than solid state fermentation. (orig.)

  10. Species of Genus Ganoderma (Agaricomycetes) Fermentation Broth: A Novel Antioxidant and Antimicrobial Agent.

    Science.gov (United States)

    Cilerdzic, Jasmina; Kosanic, Marijana; Stajić, Mirjana; Vukojevic, Jelena; Ranković, Branislav

    2016-01-01

    The bioactivity of Ganoderma lucidum basidiocarps has been well documented, but there are no data on the medicinal properties of its submerged cultivation broth nor on the other species of the genus Ganoderma. Thus the aim of this study was to test the potential antimicrobial and antioxidant activity of fermentation broth obtained after submerged cultivation of G. applanatum, G. carnosum, and G. lucidum. DPPH· scavenging ability, total phenols, and flavonoid contents were measured to determine the antioxidative potential of Ganoderma spp. fermentation filtrates, whereas their antimicrobial potential was studied using the microdilution method. DPPH· scavenging activity of G. lucidum fermentation filtrates was significantly higher than that of G. applanatum and G. carnosum, with the maximum (39.67%) obtained from strain BEOFB 432. This filtrate also contained the highest concentrations of phenols (134.89 μg gallic acid equivalents/mL) and flavonoids (42.20 μg quercetin equivalent/mL). High correlations between the activity and phenol content in the extracts showed that these compounds were active components of the antioxidative activity. G. lucidum strain BEOFB 432 was the most effective antibacterial agent, whereas strain BEOFB 434 has proven to be the most effective antifungal agent. The study showed that Ganoderma spp. fermentation filtrates are novel potent antioxidative and antimicrobial agents that could be obtained more quickly and cheaper than basidiocarps.

  11. Protein modification by fermentation

    DEFF Research Database (Denmark)

    Barkholt, Helle Vibeke; Jørgensen, P.B.; Sørensen, Anne Dorthe

    1998-01-01

    The effect of fermentation on components of potential significance for the allergenicity of pea was analyzed. Pea flour was fermented with three lactic acid bacteria, Pediococcus pentosaceus, Lactococcus raffinolactis, and Lactobacillus plantarum, and two fungi, Rhizopus microsporus, var....... oligosporus and Geotrichum candidum. Residual antigenicity against antipea antibodies was reduced to 10% by the three lactic acid bacteria and R. microsporus. Reactions to anti-pea profilin and anti-Bet v I were still detectable after fermentation. The contents of lectin and pea protease inhibitor were...

  12. Fermentative alcohol production

    Science.gov (United States)

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  13. Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii

    NARCIS (Netherlands)

    Vanderstukken, M.; Declerck, S.A.J.; Decaestecker, E.; Muylaert, K.

    2014-01-01

    Keywords: allelochemicals; chemical ecology; competition; nutrient limitation; shallow lakes Summary 1.It is well known that submerged macrophytes can suppress phytoplankton blooms in lakes and thus promote water quality and biodiversity. One of the possible mechanisms through which submerged

  14. Through-flow of water in leaves of a submerged plant is influenced by the apical opening

    DEFF Research Database (Denmark)

    Pedersen, Ole; Jørgensen, Lise Bolt; Sand-Jensen, Kaj

    1997-01-01

    Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity......Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity...

  15. Ferment first, then compost

    Energy Technology Data Exchange (ETDEWEB)

    Dany, Christian

    2012-11-01

    If communal organic waste is simply dumped, it is harmful to the environment. But if it is used to produce biogas, it can become a significant source of energy. Currently, there are two dry fermentation processes available. (orig.)

  16. Methanic fermentation of manure

    Energy Technology Data Exchange (ETDEWEB)

    Donadeo, M

    1954-06-01

    A comparison between the chemical composition of manure ripened in conventional ditches and that of manure anaerobically fermented in tanks led to the conclusion that the latter was not satisfactory; the resulting manure was less valuable.

  17. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: The relationship between fermentation conditions and mycelial morphology.

    Science.gov (United States)

    Lv, Jun; Zhang, Bo-Bo; Liu, Xiao-Dong; Zhang, Chan; Chen, Lei; Xu, Gan-Rong; Cheung, Peter Chi Keung

    2017-10-01

    Natural yellow pigments produced by submerged fermentation of Monascus purpureus have potential economic value and application in the food industry. In the present study, the relationships among fermentation conditions (in terms of pH and shaking/agitation speed), mycelial morphology and the production of Monascus yellow pigments were investigated in both shake-flask and scale-up bioreactor experiments. In the shake-flask fermentation, the highest yield of the Monascus yellow pigments was obtained at pH 5.0 and a shaking speed of 180 rpm. Microscopic images revealed that these results were associated with the formation of freely dispersed small mycelial pellets with shorter, thicker and multi-branched hyphae. Further investigation indicated that the hyphal diameter was highly correlated with the biosynthesis of the Monascus yellow pigments. In a scaled-up fermentation experiment, the yield of yellow pigments (401 U) was obtained in a 200-L bioreactor, which is the highest yield to the best of our knowledge. The present findings can advance our knowledge on the conditions used for enhancing the production of Monascus yellow pigments in submerged fermentation and facilitate large-scale production of these natural pigments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods

    DEFF Research Database (Denmark)

    Herzog, Max; Konnerup, Dennis; Pedersen, Ole

    2018-01-01

    Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged...

  19. Microcystin production in epiphytic cyanobacteria on submerged macrophytes.

    Science.gov (United States)

    Mohamed, Zakaria A; Al Shehri, Abdulrahman M

    2010-06-15

    Cyanotoxins have been largely studied in planktonic and benthic cyanobacteria, but microcystin (MCYST) production in epiphytic cyanobacteria has not been reported yet. The present study reports for the first time the MCYST production in epiphytic cyanobacteria on submerged macrophytes. During this study, four common submerged macrophytes in eutrophic pond in Saudi Arabia were surveyed for the presence of toxic epiphytic cyanobacteria. The results showed that chlorophyll-a and total biovolume of epiphytic cyanobacteria differed significantly among submerged plants with highest values obtained in Stratiotes aloides and lowest in Elodea canadensis. Epiphytic materials collected from Ceratophyllum demersum and S. aloides had higher species diversities than materials collected from E. canadensis and Myriophyllum verticillatum. The cyanobacteria, Merismopedia tenuissima and Leptolyngbya boryana were recorded with a high abundance in epiphytic materials collected from all submerged macrohpytes. Based on Enzyme-linked immunosorbent assay (ELISA), these two species were found to produce MCYSTs (MCYSTs) with concentrations of 1438 and 630 microg g(-1) dry weight, respectively. HPLC analysis of the methanolic extracts of the two species showed that M. tenuissima extract contained MCYST-RR and -LR/demethyl LR plus 3 minor unidentified MCYSTs, while L. boryana extract contained MCYST-YR, -LR/demethyl LR, and 2 minor unidentified MCYSTs. This study suggests that epiphytic species should be considered during monitoring of toxic cyanobacteria in water sources. 2010 Elsevier Ltd. All rights reserved.

  20. Gas exchange under water. Acclimation of terrestrial plants to submergence

    NARCIS (Netherlands)

    Mommer, L.

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little

  1. Tidal Power Potential in the Submerged Channels of Dar es

    African Journals Online (AJOL)

    on the tidal plateau, shallow water area on the sand banks and in the submerged channels, using self—recording .... in a Cartesian frame where iz is directed towards the vertical, ix points ..... Bongoyo, there is a 15 m deep channel that passes.

  2. Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †

    Science.gov (United States)

    Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643

  3. Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current

    DEFF Research Database (Denmark)

    Chen, H. B.; Larsen, Torben

    1995-01-01

    This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically and...

  4. Identification of a novel submergence response gene regulated by ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-12-07

    Dec 7, 2016 ... ... stress. Hormone ABA treatment induces, whereas GA treatment decreases, RS1 ... Key word: Rice (Oryza sativa L.), submergence, RNA-seq, Sub1A, abiotic stress. ... genes may interact with Sub1A-1 that are necessary for.

  5. Effects of submerged vegetation on water clarity across climates

    NARCIS (Netherlands)

    Kosten, S.; Lacerot, G.; Jeppesen, E.; Motta Marques, D.M.L.; Nes, van E.H.; Mazzeo, N.; Scheffer, M.

    2009-01-01

    A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate

  6. Assessment of Monacolin in the Fermented Products Using Monascus purpureus FTC5391

    Directory of Open Access Journals (Sweden)

    Zahra Ajdari

    2011-01-01

    Full Text Available Monacolins, as natural statins, form a class of fungal secondary metabolites and act as the specific inhibitors of HMG-CoA reductase. The interest in using the fermented products as the natural source of monacolins, instead of statin drugs, is increasing enormously with its increasing demand. In this study, the fermented products were produced by Monascus purpureus FTC5391 using submerged and solid state fermentations. Two commercial Monascus-fermented products were also evaluated for comparison. Improved methods of monacolins extraction and identification were developed for the assessment of monacolins in the fermented products. Methanol and ethanol were found to be the most favorable solvents for monacolins extraction due to their ability to extract higher amount of monacolin K and higher numbers of monacolin derivatives. Problem related to false-positive results during monacolins identification was solved by adding monacolin lactonization step in the assessment method. Using this improved method, monacolin derivatives were not detected in all Monascus-fermented products tested in this study, suggesting that their hypocholesterolemic effects may be due to other compounds other than monacolins.

  7. Rice SUB1A constrains remodeling of the transcriptome and metabolome during submergence and post-submergence recovery”.

    Science.gov (United States)

    The rice (Oryza sativa L.) ethylene-responsive transcription factor SUB1A confers tolerance to prolonged, complete submergence by limiting underwater elongation growth. Rice encoding SUB1A-1 also recovers photosynthetic function and re-commences development towards flowering more rapidly after desu...

  8. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yek Peter Nai Yuh

    2018-01-01

    Full Text Available Submerged glow-discharge plasma (SGDP is relatively new among the various methods available for nanomaterials synthesis (NMs techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M and characterized by Scanning Electron Microscopy (SEM and Energy Dispersive Spectroscopy (EDS. As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  9. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    Science.gov (United States)

    Yek, Peter Nai Yuh; Rafiq Mirza Julaihi, Muhammad; Shahril Osman, Mohammad; Tiong, Tung Chuan; Lee, Wak Ha; Leing Lee, Chern

    2018-03-01

    Submerged glow-discharge plasma (SGDP) is relatively new among the various methods available for nanomaterials synthesis (NMs) techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M) and characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  10. Fermentation of African kale (Brassica carinata) using L. plantarum BFE 5092 and L. fermentum BFE 6620 starter strains.

    Science.gov (United States)

    Oguntoyinbo, Folarin A; Cho, Gyu-Sung; Trierweiler, Bernhard; Kabisch, Jan; Rösch, Niels; Neve, Horst; Bockelmann, Wilhelm; Frommherz, Lara; Nielsen, Dennis S; Krych, Lukasz; Franz, Charles M A P

    2016-12-05

    Vegetables produced in Africa are sources of much needed micronutrients and fermentation is one way to enhance the shelf life of these perishable products. To prevent post-harvest losses and preserve African leafy vegetables, Lactobacillus plantarum BFE 5092 and Lactobacillus fermentum BFE 6620 starter strains were investigated for their application in fermentation of African kale (Brassica carinata) leaves. They were inoculated at 1×10 7 cfu/ml and grew to a maximum level of 10 8 cfu/ml during 24h submerged fermentation. The strains utilized simple sugars (i.e., glucose, fructose, and sucrose) in the kale to quickly reduce the pH from pH6.0 to pH3.6 within 24h. The strains continued to produce both d and l lactic acid up to 144h, reaching a maximum concentration of 4.0g/l. Fermentations with pathogens inoculated at 10 4 cfu/ml showed that the quick growth of the starters inhibited the growth of Listeria monocytogenes and Salmonella Enteritidis, as well as other enterobacteria. Denaturing gradient gel electrophoresis and 16S rRNA gene (V3-V4-region) amplicon sequencing showed that in the spontaneous fermentations a microbial succession took place, though with marked differences in biodiversity from fermentation to fermentation. The fermentations inoculated with starters however were clearly dominated by both the inoculated strains throughout the fermentations. RAPD-PCR fingerprinting showed that the strains established themselves at approx. equal proportions. Although vitamins C, B 1 and B 2 decreased during the fermentation, the final level of vitamin C in the product was an appreciable concentration of 35mg/100g. In conclusion, controlled fermentation of kale offers a promising avenue to prevent spoilage and improve the shelf life and safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Commercial Biomass Syngas Fermentation

    Directory of Open Access Journals (Sweden)

    James Daniell

    2012-12-01

    Full Text Available The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO and hydrogen (H2-rich synthesis gas (syngas via gasification, and subsequently fermented to hydrocarbons by acetogenic bacteria. Several studies have been performed over the last few years to optimise both biomass gasification and syngas fermentation with significant progress being reported in both areas. While challenges associated with the scale-up and operation of this novel process remain, this strategy offers numerous advantages compared with established fermentation and purely thermochemical approaches to biofuel production in terms of feedstock flexibility and production cost. In recent times, metabolic engineering and synthetic biology techniques have been applied to gas fermenting organisms, paving the way for gases to be used as the feedstock for the commercial production of increasingly energy dense fuels and more valuable chemicals.

  12. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  13. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments

    NARCIS (Netherlands)

    Boedeltje, G; ter Heerdt, GNJ; Bakker, JP

    Seed bank studies focused on submerged aquatic plants are generally performed under submerged conditions, using the seedling-emergence method. However, if a study targets at both submerged species and helophytes, submerged conditions are generally not suitable. We tested the emergence of seedlings

  14. Production of Mushroom Mycelium as a Protein and Fat Source in Submerged Culture in Medium of Vinasse

    Science.gov (United States)

    Falanghe, H.

    1962-01-01

    Of ten mushroom cultures investigated, only Agaricus campestris, Boletus indecisus, and Tricholoma nudum were capable of growing in submerged culture in medium of vinasse with added salts. Higher fermentative efficiencies were found under these conditions than in medium containing molasses or waste sulfite liquor. A. campestris showed a better capacity to produce protein but, since B. indecisus is capable of developing greater mycelium weight, its fermentative efficiencies are comparable. Both microorganisms could be grown in medium of vinasse with greatly varied amounts, producing higher mycelial weight in media with greater vinasse. The capacity of B. indecisus and A. campestris to utilize the noncarbohydrate fraction in total solids, instead of the total carbohydrates when they are in smaller amount, was observed in medium containing vinasse. B. indecisus and A. campestris were easily separated by filtration from the medium, although T. nudum was difficult to separate by this procedure. In experiments with A. campestris, the adaptative capacity of the organism to vinasse was demonstrated. PMID:13962715

  15. The grain boundary segregation of phosphorus in thermally aged and irradiated C-Mn submerged-are weld metal

    International Nuclear Information System (INIS)

    Mendes, C.M.

    1999-01-01

    The segregation of free phosphorus atoms to grain boundaries in C-Mn steels has been identified as an embrittlement mechanism. A change in the brittle fracture mechanism from transgranular to intergranular has been observed for materials with higher phosphorus grain boundary coverage. The grain boundary segregation of phosphorus in various steels used in the nuclear power industry has been thermodynamically and kinetically modelled mostly with the Langmuir-McLean model. Recent publications have also suggested that neutron irradiation can affect segregation and various attempts at modelling this are currently under way. The present paper describes a data base assembled on phosphorus grain boundary coverage measured by Auger electron spectroscopy on thermally aged and irradiated C-Mn submerged-arc weld specimens. Software tools were developed to evaluate the changes in phosphorus grain boundary coverage associated with instantaneous temperature changes and temperature gradients. The phosphorus free energy change associated with grain boundary segregation was modelled from the thermally aged data and used with the software to determine the phosphorus segregation in submerged-arc weld metals following the post weld stress relief heat treatments received prior to plant operation. The phosphorus grain boundary coverage changes arising from the thermal history of submerged-arc weld materials during irradiation were also modelled and found to compare well with data obtained on irradiated materials. It was concluded that under the irradiation conditions sampled, phosphorus grain boundary segregation in submerged-arc weld materials can be modelled successfully using only the thermal term without appealing to an irradiation induced segregation process. (author)

  16. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  17. [Antimicrobial activity of Laetiporus sulphureus strains grown in submerged culture].

    Science.gov (United States)

    Ershova, E Iu; Tikhonova, O V; Lur'e, L M; Efremenkova, O V; Kamzolkina, O V; Dudnik, Iu V

    2003-01-01

    Cultural conditions for growth and fruit body formation were elaborated to four strains of Laetiporus sulphureus isolated from nature. All strains demonstrated antimicrobial activity against a wide spectrum of gram-positive and gram-negative bacteria during agar and submerged cultivation including methicillin-resistant strain of Staphylococcus aureus (MRSA) and glycopeptide-resistant strain of Leuconostoc mesenteroides. Antifungal activity was not found. The level of antimicrobial activity during submerged cultivation reached maximum after seven days of growth on specific medium with soybean meal and corn liquid; the next four weeks its increasing was not so manifested. Antimicrobial activity correlated with orange pigment secretion and cultural liquid acidification to pH 2.0-2.8 that indicates on acid nature of synthesized products.

  18. Koji for alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Ogihara, H

    1956-06-25

    The pressed cake of fermented alcohol mash was used for preparing koji. The cake included considerable amounts of sugar, N-containing materials, enzymes, and vitamins, and gave a high-quality koji for alcohol fermentation. For example, the cake can be mixed with wheat bran and rice husks in the proportion 6:5:0 or 6:2:3 to make koji in the usual way. The saccharification power of the new koji was about 1.1 to 1.2 times as strong as that of usual koji prepared from wheat bran and rice husks.

  19. Mineralization of Surfactants by the Microbiota of Submerged Plant Detritus

    OpenAIRE

    Federle, Thomas W.; Ventullo, Roy M.

    1990-01-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 μg...

  20. Submerged beachrock preservation in the context of wave ravinement

    Science.gov (United States)

    Pretorius, Lauren; Green, Andrew N.; Andrew Cooper, J.

    2018-02-01

    This study examines a Holocene-aged submerged shoreline, Limestone Reef, located in the shallow subtidal zone of South Africa's east coast. It comprises an elongate, coast-oblique, slab-like outcrop of beachrock situated above the contemporary fair-weather wave base. It is currently undergoing mechanical disintegration. Its unique and rare preservation in a high-energy setting affords an opportunity to examine the mechanical processes occurring during wave ravinement associated with rising sea level. The submerged shoreline and the adjacent shoreface were examined using high-resolution seismic reflection, side-scan sonar and shallow-water multibeam echosounding techniques. Limestone Reef rests on top of unconsolidated Holocene deposits. The structure's surface is characterised by reef-perpendicular gullies with rubble derived from the slab fringing its seaward edge. Limestone Reef slopes gently seawards and has a steep landward-facing edge where gullies are most prominently developed. Teardrop-shaped rippled scour depressions, marked by high backscatter, are located seawards of the submerged shoreline. These elongate in a seaward direction and are filled with bioclastic gravels and residual rubble from Limestone Reef. The gullies in the upstanding structure are indicative of wave plucking and abrasion of the shoreline. The material exposed by the rippled scour depressions is identical to that comprising the postglacial ravinement surface identified in the offshore stratigraphy. These deposits are considered to represent the contemporary, actively forming wave ravinement surface. The results suggest that wave ravinement of submerged shorelines is a discontinuous process dominated by the seaward entrainment of material from its landward edge controlled by high-energy drawback during storm surges. The ravinement process appears to operate at the seasonal scale and averages out over the long-term millennial scale for the continuous surface.

  1. Measurement of Submerged Oil/Gas Leaks using ROV Video

    Science.gov (United States)

    Shaffer, Franklin; de Vera, Giorgio; Lee, Kenneth; Savas, Ömer

    2013-11-01

    Drilling for oil or gas in the Gulf of Mexico is increasing rapidly at depths up to three miles. The National Commission on the Deepwater Horizon Oil Leak concluded that inaccurate estimates of the leak rate from the Deepwater Horizon caused an inadequate response and attempts to cap the leak to fail. The first response to a submerged oil/gas leak will be to send a Remotely Operated Vehicle (ROV) down to view the leak. During the response to the Deepwater Horizon crisis, the authors Savas and Shaffer were members of the Flow Rate Technical Group's Plume Team who used ROV video to develop the FRTG's first official estimates of the oil leak rate. Savas and Shaffer developed an approach using the larger, faster jet features (e.g., turbulent eddies, vortices, entrained particles) in the near-field developing zone to measure discharge rates. The authors have since used the Berkeley Tow Tank to test this approach on submerged dye-colored water jets and compressed air jets. Image Correlation Velocimetry has been applied to measure the velocity of visible features. Results from tests in the Berkeley Tow Tank and submerged oil jets in the OHMSETT facility will be presented.

  2. The effect of submergence on structural response in confined pools

    International Nuclear Information System (INIS)

    Sturm, A.J. Jr.; Song, C.C.S.

    1980-01-01

    In this paper the response of single and multi degree of submerged systems is investigated. The complete equations of motions including fluid coupling terms are developed for submerged bodies where the surrounding fluid is both moving in phase and out of phase with the support motion. The analysis considers both structural and fluid damping. Also included is an analysis of two degrees of freedom fluid coupling for submerged bodies completely enclosed within another body. In this case limiting conditions of the inner body hydrodynamic mass are examined, along the frequency response characteristics of these systems. The paper developes a simplified forcing function approach for in phase fluid support motion systems. This method is applicable for both modal-spectral and time history dynamic analyses of any linear structure. The results of the analysis are expanded for s structures with non-linear support configuration, i.e. (sliding or rocking bases) to again define a simplified analytical approach accounting for in phase fluid support motion. (orig.)

  3. Vibration analysis of partially cracked plate submerged in fluid

    Science.gov (United States)

    Soni, Shashank; Jain, N. K.; Joshi, P. V.

    2018-01-01

    The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.

  4. On the submerging of a spherical intruder into granular beds

    Directory of Open Access Journals (Sweden)

    Wu Chuan-Yu

    2017-01-01

    Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.

  5. Detecting submerged features in water: modeling, sensors, and measurements

    Science.gov (United States)

    Bostater, Charles R., Jr.; Bassetti, Luce

    2004-11-01

    It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.

  6. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  7. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Sun

    Full Text Available At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  8. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  9. Ethyl alcohol by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    1952-02-13

    Ethanol is made from solutions poor in sugar and free of yeast carriers, e.g. from whey, by fermentation under sterile conditions. The CO/sub 2/ formed in the decomposition of sugar is used as an agitating medium to ensure good contact between the yeast and the sugar.

  10. Fermentative Alcohol Production

    DEFF Research Database (Denmark)

    Martín, Mariano; Sánchez, Antonio; Woodley, John M.

    2018-01-01

    In this chapter we present some of key principles of bioreactor design for the production of alcohols by fermentation of sugar and syngas . Due to the different feedstocks, a detailed analysis of the hydrodynamics inside the units , bubble columns or stirred tank reactors , the gas-liquid mass...

  11. Fermentative production of isobutene.

    Science.gov (United States)

    van Leeuwen, Bianca N M; van der Wulp, Albertus M; Duijnstee, Isabelle; van Maris, Antonius J A; Straathof, Adrie J J

    2012-02-01

    Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO(2) + 2H(2)O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO(2). The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 Euro kg(-1), which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.

  12. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121 Using Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Dibyangana Raul

    2014-01-01

    Full Text Available Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF for α-amylase production has been used in lieu of submerged fermentation (SmF due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30–70% (NH42SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques.

  13. GigaUnit Transplant System: A New Mechanical Tool for Transplanting Submerged Aquatic Vegetation

    National Research Council Canada - National Science Library

    Shafer, Deborah J

    2008-01-01

    Submerged aquatic vegetation (SAV) performs many important ecosystem functions, including wave attenuation and sediment stabilization, water quality improvement, primary production, food web support for secondary consumers...

  14. Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications.

    Science.gov (United States)

    Schievano, Andrea; Pepé Sciarria, Tommy; Vanbroekhoven, Karolien; De Wever, Heleen; Puig, Sebastià; Andersen, Stephen J; Rabaey, Korneel; Pant, Deepak

    2016-11-01

    Electro-fermentation (EF) merges traditional industrial fermentation with electrochemistry. An imposed electrical field influences the fermentation environment and microbial metabolism in either a reductive or oxidative manner. The benefit of this approach is to produce target biochemicals with improved selectivity, increase carbon efficiency, limit the use of additives for redox balance or pH control, enhance microbial growth, or in some cases enhance product recovery. We discuss the principles of electrically driven fermentations and how EF can be used to steer both pure culture and microbiota-based fermentations. An overview is given on which advantages EF may bring to both existing and innovative industrial fermentation processes, and which doors might be opened in waste biomass utilization towards added-value biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Continuous alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Smidrkal, M; Nejedly, A

    1956-01-01

    Results are given of investigations on the continuous production of ethanol on a laboratory and on a semi-commercial scale. The suggested devices are particularly described. Under constant conditions the production cycle required 12 to 17 days, the acidity being 4.0 to 415 ml. 0.1 N NaOH/100 ml and the concentration of fermented wort 10.5 to 11%. The maximum production from 1 h of fermentation space during 24 h was 8.67 l of absolute alcohol when the efflux was divided into several basins; when the efflux of sweet wort was collected into one basin only, the maximum production was 7.20 l of absolute alcohol. The amount of alcohol produced was 62.20 l/100 kg sugar.

  16. Butanol by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, M

    1960-07-19

    BuOH is produced by inoculating a carbohydrate mash with Clostridium saccharoperbutylacetonicum (ATCC 13564), fermenting the inoculated mash, and recovering the BuOH by fractional distillation. Thus, a medium containing sugar 4, (NH/sub 4/)/sub 2/SO/sub 4/ 0.2, Ca superphosphate 0.1, and CoCO/sub 3/ 0.3% is inoculated with a C. saccharoperbutylacetonicum culture and cultivated at 30/sup 0/ until the acidity begins to decrease. Then the culture is transferred to a second medium of similar composition. This transfer is repeated a third time, and then the culture is transferred to the main mash (same composition) and fermented for 60 hours at 30/sup 0/. The yield of BuOH is 11.5 g/1 or 25.5% of the sugar supplied.

  17. Influence of fungal morphology on the performance of industrial fermentation processes for enzyme production

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra

    Production of industrial enzymes is usually carried out as submerged aerobic fermentations. Filamentous microorganisms are widely used as hosts in these processes due to multiple advantages. Nevertheless, they also present major drawbacks, due to the unavoidable oxygen transfer limitations...... in this work, along with its correlation to viscosity and other process variables. Considerable research work has been conducted through the years to study fungal morphology and its relation to productivity. However, the work reported in the literature lacks relevant industrial data. In this work, a platform...... was developed which was able to produce high enzyme titers in comparison with what has been reported thus far in fed-batch fermentation using a soluble inducer (lactose). Different nitrogen sources were compared, and it was found that soy meal allowed for higher enzyme titers compared to what has been reported...

  18. In process acoustic emission in multirun submerged arc welding

    International Nuclear Information System (INIS)

    Asty, M.; Birac, C.

    1980-01-01

    In order to avoid the formation of deep grooves when repairing defects in welded joints in heavy plates, an investigation was made aiming to detect and locate the defects by in-process acoustic emission in multirun submerged arc welding. Twelve defects (lack of penetration, cracks, inclusions, lack of fusion together with inclusions, blowholes) were intentionally introduced when the first plate was welded. A space-time method for processing the acoustic activity during welding allowed the detection and the location of the intentional defects as well as of the most important accidental defects evidenced by ultrasonic testing [fr

  19. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....

  20. Influence of nanoparticles on filterability of fruit-juice industry wastewater using submerged membrane bioreactor.

    Science.gov (United States)

    Demirkol, Guler Turkoglu; Dizge, Nadir; Acar, Turkan Ormanci; Salmanli, Oyku Mutlu; Tufekci, Nese

    2017-07-01

    In this study, polyethersulfone (PES) ultrafiltration membrane surface was modified with nano-sized zinc oxide (nZnO) and silver (nAg) to improve the membrane filterability of the mixed liquor and used to treat fruit-juice industry wastewater in a submerged membrane bioreactor (MBR). The nAg was synthesized using three different methods. In the first method, named as nAg-M1, PES membrane was placed on the membrane module and nAg solution was passed through the membrane for 24 h at 25 ± 1 °C. In the second method, named as nAg-M2, PES membrane was placed in a glass container and it was shaken for 24 h at 150 rpm at 25 ± 1 °C. In the third method, named as nAg-M3, Ag nanoparticles were loaded onto PES membrane in L-ascorbic acid solution (0.1 mol/L) at pH 2 for 24 h at 150 rpm at 25 ± 1 °C. For the preparation of nZnO coated membrane, nZnO nanoparticles solution was passed through the membrane for 24 h at 25 ± 1 °C. Anti-fouling performance of pristine and coated membranes was examined using the submerged MBR. The results showed that nZnO and nAg-M3 membranes showed lower flux decline compared with pristine membrane. Moreover, pristine and coated PES membranes were characterized using a permeation test, contact angle goniometer, and scanning electron microscopy.

  1. Patterned self-assembled monolayers of alkanethiols on copper nanomembranes by submerged laser ablation

    Science.gov (United States)

    Rhinow, Daniel; Hampp, Norbert A.

    2012-06-01

    Self-assembled monolayers (SAMs) of alkanethiols are major building blocks for nanotechnology. SAMs provide a functional interface between electrodes and biomolecules, which makes them attractive for biochip fabrication. Although gold has emerged as a standard, copper has several advantages, such as compatibility with semiconductors. However, as copper is easily oxidized in air, patterning SAMs on copper is a challenging task. In this work we demonstrate that submerged laser ablation (SLAB) is well-suited for this purpose, as thiols are exchanged in-situ, avoiding air exposition. Using different types of ω-substituted alkanethiols we show that alkanethiol SAMs on copper surfaces can be patterned using SLAB. The resulting patterns were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both methods indicate that the intense laser beam promotes the exchange of thiols at the copper surface. Furthermore, we present a procedure for the production of free-standing copper nanomembranes, oxidation-protected by alkanethiol SAMs. Incubation of copper-coated mica in alkanethiol solutions leads to SAM formation on both surfaces of the copper film due to intercalation of the organic molecules. Corrosion-protected copper nanomembranes were floated onto water, transferred to electron microscopy grids, and subsequently analyzed by electron energy loss spectroscopy (EELS).

  2. Continuous alcoholic fermentation of molasses

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierz, J

    1962-01-01

    The first Polish plant for ontinuous alcohol fermentation of molasses is described. Continuous fermentation permits a better use of the installation, automatic control, and shorter fermentation time. It yields more CO/sub 2/ for dry ice manufacture and decreases corrosion of apparatus. From 22 to 24% mash is used, giving a yield of 61.1 of 100-proof alc./kg. sucrose and an average of 37 kg. of dry yeast/1000 l. alcohol

  3. Effect of fermentation conditions on lipase production by Candida utilis

    Directory of Open Access Journals (Sweden)

    SANJA Z. GRBAVCIC

    2007-08-01

    Full Text Available A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3 in submerged culture in a universal yeast medium containing 2 % malt extract. Stu­dies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as indu­cers, but higher concentrations of the former (> 0.5 % had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80®. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium.

  4. Bacillus thuringiensis: fermentation process and risk assessment: a short review

    Directory of Open Access Journals (Sweden)

    Deise M. F Capalbo

    1995-02-01

    Full Text Available Several factors make the local production of Bacillus thuringiensis (Bt highly appropriate for pest control in developing nations. Bt can be cheaply produced on a wide variety of low cost, organic substrates. Local production results in considerable savings in hard currency which otherwise would be spent on importation of chemical and biological insecticides. The use of Bt in Brazil has been limited in comparison with chemical insecticides. Although Bt is imported, some Brazilian researchers have been working on its development and production. Fermentation processes (submerged and semi-solid were applied, using by-products from agro-industries. As the semi-solid fermentation process demonstrated to be interesting for Bt endotoxins production, it could be adopted for small scale local production. Although promising results had been achieved, national products have not been registered due to the absence of a specific legislation for biological products. Effective actions are being developed in order to solve this gap. Regardless of the biocontrol agents being considered atoxic and harmless to the environment, information related to direct and indirect effects of microbials are still insufficient in many cases. The risk analysis of the use of microbial control agents is of upmost importance nowadays, and is also discussed.

  5. Fermentation of sugar-beet molasses

    Energy Technology Data Exchange (ETDEWEB)

    Malchenko, A L; Krishtul, F B

    1956-08-25

    Sugar-beet molasses is fermented with yeast separated from the mash, sterilized, and reactivated. To reduce sugar losses and hasten fermentation, the yeast is removed from the mash as the cells fall to the bottom during the fermentation process.

  6. A New Detection Method for Submerged Implants: Oral Tattoo.

    Science.gov (United States)

    Soylu, Emrah; Gönen, Zeynep Burçin; Alkan, Alper

    2018-04-01

    To evaluate the marking potential of tattoo ink in determining the definitive locations of submerged implants at the time of surgical exposure of the implants. In total, 104 implants in 32 patients were included in this study. After placement of the implants, cover screws were inserted. Overlying mucosa was marked with tattoo ink using a 20 g needle through the center of the cover screw. At the time of surgical exposure the tattoo marks were evaluated relative to visibility. At the time of the surgical exposures, tattoo ink was clearly visible at 91 implants, slightly visible at 8 implants, and not visible at 5 implants. After detection and classification of tattoo ink, the overlying mucosa was gently removed by tissue punch under local anesthesia. The results of this study seemed to indicate that marking the location of implants with tattoos at the time of implant placement can be an inexpensive, easy, healthy, and practical way to identify the location of marked submerged dental implants. © 2016 by the American College of Prosthodontists.

  7. Bistatic scattering from submerged unexploded ordnance lying on a sediment.

    Science.gov (United States)

    Bucaro, J A; Simpson, H; Kraus, L; Dragonette, L R; Yoder, T; Houston, B H

    2009-11-01

    The broadband bistatic target strengths (TSs) of two submerged unexploded ordnance (UXO) targets have been measured in the NRL sediment pool facility. The targets-a 5 in. rocket and a 155 mm projectile-were among the targets whose monostatic TSs were measured and reported previously by the authors. Bistatic TS measurements were made for 0 degrees (target front) and 90 degrees (target side) incident source directions, and include both backscattered and forward scattered echo angles over a complete 360 degrees with the targets placed proud of the sediment surface. For the two source angles used, each target exhibits two strong highlights: a backscattered specular-like echo and a forward scattered response. The TS levels of the former are shown to agree reasonably well with predictions, based on scattering from rigid disks and cylinders, while the levels of the latter with predictions from radar cross section models, based on simple geometric optics appropriately modified. The bistatic TS levels observed for the proud case provide comparable or higher levels of broadband TS relative to free-field monostatic measurements. It is concluded that access to bistatic echo information in operations aimed at detecting submerged UXO targets could provide an important capability.

  8. Cathodic disbonding of organic coatings on submerged steel

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Ole oeystein

    1998-12-31

    In offshore oil production, submerged steel structures are commonly protected by an organic coating in combination with cathodic protection. The main advantage is that the coating decreases the current demand for cathodic protection. But the coating degrades with time. This thesis studies one of the most important mechanisms for coating degradation in seawater, cathodic disbonding. Seven commercial coatings and two model coatings with various pigmentations have been studied. Parameter studies, microscopy and studies of free films were used in the mechanism investigations. Exposure to simulated North Sea conditions was used in the performance studies. The effect of aluminium and glass barrier pigments on cathodic disbonding was investigated. The mechanism for the effect of the aluminium pigments on cathodic disbonding was also investigated. The transport of charge and oxygen to the steel/coating interface during cathodic disbonding was studied for two epoxy coatings. Cathodic disbonding, blistering and current demand for cathodic protection was measured for nine commercial coatings for submerged steel structures, using the ASTM-G8 standard test and a long term test under simulated North Sea conditions. The relevance of the ASTM-G8 test as a prequalification test was evaluated. 171 refs., 40 figs., 6 tabs.

  9. THE INFLUENCE OF SUBMERGED MACROPHYTES ON SEDIMENTARY DIATOM ASSEMBLAGES(1).

    Science.gov (United States)

    Vermaire, Jesse C; Prairie, Yves T; Gregory-Eaves, Irene

    2011-12-01

    Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long-term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole-lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P macrophyte, nutrient-limited lakes (BiomEpiV ≥525 μg · L(-1) ; total phosphorus [TP] macrophyte, nutrient-limited lakes (BiomEpiV macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance. © 2011 Phycological Society of America.

  10. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  11. The USGS role in mapping the nation's submerged lands

    Science.gov (United States)

    Schwab, Bill; Haines, John

    2004-01-01

    The seabed provides habitat for a diverse marine life having commercial, recreational, and intrinsic value. The habitat value of the seabed is largely a function of the geological structure and related geological, biological, oceanologic, and geochemical processes. Of equal importance, the nation's submerged lands contain energy and mineral resources and are utilized for the siting of offshore infrastructure and waste disposal. Seabed character and processes influence the safety and viability of offshore operations. Seabed and subseabed characterization is a prerequisite for the assessment, protection, and utilization of both living and non-living marine resources. A comprehensive program to characterize and understand the nation's submerged lands requires scientific expertise in the fields of geology, biology, hydrography, and oceanography. The U.S. Geological Survey (USGS) has long experience as the Federal agency charged with conducting geologic research and mapping in both coastal and offshore regions. The USGS Coastal and Marine Geology Program (CMGP) leads the nation in expertise related to characterization of seabed and subseabed geology, geological processes, seabed dynamics, and (in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and international partners) habitat geoscience. Numerous USGS studies show that sea-floor geology and processes determine the character and distribution of biological habitats, control coastal evolution, influence the coastal response to storm events and human alterations, and determine the occurrence and concentration of natural resources.

  12. A functional comparison of acclimation to shade and submergence in two terrestrial plant species

    NARCIS (Netherlands)

    Mommer, L.; Kroon, de H.; Pierik, R.; bögemann, G.M.; Visser, E.J.W.

    2005-01-01

    Terrestrial plants experience multiple stresses when they are submerged, caused both by oxygen deficiency due to reduced gas diffusion in water, and by shade due to high turbidity of the floodwater. It has been suggested that responses to submergence are de facto responses to low light intensity. •

  13. A simple and cost-saving approach to optimize the production of subtilisin NAT by submerged cultivation of Bacillus subtilis natto.

    Science.gov (United States)

    Ku, Ting-Wei; Tsai, Ruei-Lan; Pan, Tzu-Ming

    2009-01-14

    Subtilisin NAT, formerly designated nattokinase or subtilisin BSP, is a potent cardiovascular drug because of its strong fibrinolytic activity and safety. In this study, one Bacillus subtilis natto strain with high fibrinolytic activity was isolated. We further studied the optimal conditions for subtilisin NAT production by submerged cultivation and three variables/three levels of response surface methodology (RSM) using various inoculum densities, glucose concentrations, and defatted soybean concentrations as the three variables. According to the RSM analysis, while culturing by 2.93% defatted soybean, 1.75% glucose, and 4.00% inoculum density, we obtained an activity of 13.78 SU/mL. Processing the batch fermentation with this optimal condition, the activity reached 13.69 SU/mL, which is equal to 99.3% of the predicted value.

  14. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  15. Heat transfer study of a submerged reactor channel under boil-off condition

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Deb [Bhabha Atomic Research Centre, Mumbai (India). Reactor Safety Div.; Sahoo, P.K. [Indian Institute of Technology, Roorkee (India). Dept. of Mechanical and Industrial Engineering; Ghosh, A.K. [Bhabha Atomic Research Centre, Mumbai (India). Health, Safety and Environment Group

    2012-12-15

    Experiments have been carried out to study the heatup behavior of a single segmented reactor channel for Pressurized Heavy Water Reactor under submerged, partially submerged and exposed conditions. This situation may arise from a severe accident scenario of Pressurised Heavy Water Reactors where full or segmented reactor channels are likely to be disassembled and form a submerged debris bed. An assembly of electrical heater rod, simulating fuel bundle and channel components like Pressure Tube and Calandria Tube constitutes the segmented reactor channel. Heatup of this assembly is observed with respect to different water levels ranging from full submergence to totally exposed and power levels of 6-8 kW, typical to decay power level. It has been observed from the set of experiment that fuel bundle local dry out followed by heatup does not happen till the bundle is partially submerged. Temperature excursion of the bundle is evident when the bundle is exposed to steam-air environment. (orig.)

  16. [Effects of light on submerged macrophytes in eutrophic water: research progress].

    Science.gov (United States)

    Li-Sha, Zou; Ze-Yu, Nie; Xiao-Yan, Yao; Ji-Yan, Shi

    2013-07-01

    The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while light is the main limiting factor. This paper summarized the factors affecting the light extinction in water and the mechanisms of light intensity affecting the physiology of submerged macrophytes, with the focuses on the metabolic mechanisms of carbon, nitrogen, and phosphorus, the responses of antioxidant enzyme system, and the feedbacks of pigment composition and concentration in the common submerged macrophytes under low light stress. Several engineering techniques applied in the ecological restoration of submerged macrophytes were presented, and the framework of the restoration of submerged macrophytes in eutrophic water was proposed. Some problems in current research and several suggestions on future research were addressed, which could help the related research and engineering practices.

  17. THE STUDY ON THE DURABILITY OF SUBMERGED STRUCTURE DISPLACEMENT DUE TO CONCRETE FAILURE

    Directory of Open Access Journals (Sweden)

    M. Mohd

    2016-09-01

    Full Text Available Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  18. Evaluation of metal ions and surfactants effect on cell growth and exopolysaccharide production in two-stage submerged culture of Cordyceps militaris.

    Science.gov (United States)

    Cui, Jian-Dong; Zhang, Ya-Nan

    2012-11-01

    During the two-stage submerged fermentation of medicinal mushroom Cordyceps militaris, it was found that K(+), Ca(2+), Mg(2+), and Mn(2+) were favorable to the mycelial growth. The EPS production reached the highest levels in the media containing Mg(2+) and Mn(2+). However, Ca(2+) and K(+) almost failed to increase significantly exopolysaccharides (EPS) production. Sodium dodecyl sulfate (SDS) significantly enhanced EPS production compared with that of without adding SDS when SDS was added on static culture stage of two-stage cultivation process. The presence of Tween 80 in the medium not only simulated mycelial growth but also increased EPS production. By response surface methods (RSM), EPS production reached its peak value of 3.28 g/L under optimal combination of 27.6 mM Mg(2+), 11.1 mM Mn(2+), and 0.05 mM SDS, which was 3.76-fold compared with that of without metal ion and surfactant. The results obtained were useful in better understanding the regulation for efficient production of EPS of C. militaris in the two-stage submerged culture.

  19. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies.

    Science.gov (United States)

    Behera, Sudhanshu S; Ray, Ramesh C

    2016-05-01

    Lignocellulose is the most plentiful non-food biomass and one of the most inexhaustible renewable resources on the planet, which is an alternative sustainable energy source for the production of second generation biofuels. Lignocelluloses are composed of cellulose, hemicellulose and lignin, in which the sugar polymers account for a large portion of the biomass. Cellulases belong to the glycoside hydrolase family and catalyze the hydrolysis of glyosidic linkages depolymerizing cellulose to fermentable sugars. They are multi-enzymatic complex proteins and require the synergistic action of three key enzymes: endoglucanase (E.C. 3.2.1.4), exoglucanase (E.C. 3.2.1.176) (E.C. 3.2.1.91) and β-glucosidase (E.C. 3.2.1.21) for the depolymerization of cellulose to glucose. Solid state fermentation, which holds growth of microorganisms on moist solid substrates in the absence of free flowing water, has gained considerable attention of late due its several advantages over submerged fermentation. The review summarizes the critical analysis of recent literature covering production of cellulase in solid state fermentation using advance technologies such as consolidated bioprocessing, metabolic engineering and strain improvement, and circumscribes the strategies to improve the enzyme yield. Copyright © 2016. Published by Elsevier B.V.

  20. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    Science.gov (United States)

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  1. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  2. TRADITIONAL FERMENTED FOODS OF LESOTHO

    Directory of Open Access Journals (Sweden)

    Tendekayi H. Gadaga

    2013-06-01

    Full Text Available This paper describes the traditional methods of preparing fermented foods and beverages of Lesotho. Information on the preparation methods was obtained through a combination of literature review and face to face interviews with respondents from Roma in Lesotho. An unstructured questionnaire was used to capture information on the processes, raw materials and utensils used. Four products; motoho (a fermented porridge, Sesotho (a sorghum based alcoholic beverage, hopose (sorghum fermented beer with added hops and mafi (spontaneously fermented milk, were found to be the main fermented foods prepared and consumed at household level in Lesotho. Motoho is a thin gruel, popular as refreshing beverage as well as a weaning food. Sesotho is sorghum based alcoholic beverage prepared for household consumption as well as for sale. It is consumed in the actively fermenting state. Mafi is the name given to spontaneously fermented milk with a thick consistency. Little research has been done on the technological aspects, including the microbiological and biochemical characteristics of fermented foods in Lesotho. Some of the traditional aspects of the preparation methods, such as use of earthenware pots, are being replaced, and modern equipment including plastic utensils are being used. There is need for further systematic studies on the microbiological and biochemical characteristics of these these products.

  3. Metallurgical and mechanical characterization of a submerged arc welded joint in a 316 type stainless steel

    International Nuclear Information System (INIS)

    Piatti, G.; Vedani, M.

    1990-01-01

    The tensile (deformation and fracture) behaviour of a multipass submerged arc welded joint Type 316 stainless steel is investigated by tests at room temperature and at 400 0 C on all-weld metal and transverse to weld (composite) specimens as well as by microstructural and compositional analyses (optical, scanning electron and transmission electron microscopy). The as-deposited metal is characterised by a systematic variation in the tensile properties across the thickness with the higher strength and the lower ductility in the weld centre. These variations are related to material variability (mainly in dislocation density) because of local dissimilarities in thermal and mechanical histories occurring during the welding process. However, the material variability in the fusion zone, although important is not so large in the present weld and it does not influence the tensile properties of the weld as a whole. Moreover, the tensile behaviour concerning the transverse to weld specimens is characterized by a supporting effect from the higher yield strength material zone (fusion zone) to the lower yield strength material zone (parent metal) justified by the different contribution of the parent metal and of the weld-deposit metal to the integral plastic strain of the specimens. (author)

  4. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219

    International Nuclear Information System (INIS)

    Feng, Xiuli; Liu, Huijie; Lippold, John C.

    2013-01-01

    Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium θ precipitates from the base metal θ′ precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (∼ 1 μm) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable θ′ in the base metal transforms to equilibrium θ in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening

  5. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiuli, E-mail: feng.97@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, Huijie, E-mail: liuhj@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Lippold, John C., E-mail: lippold.1@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States)

    2013-08-15

    Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium θ precipitates from the base metal θ′ precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (∼ 1 μm) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable θ′ in the base metal transforms to equilibrium θ in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening.

  6. Mixing Characteristics during Fuel Coolant Interaction under Reactor Submerged Conditions

    International Nuclear Information System (INIS)

    Hong, S. W.; Na, Y. S.; Hong, S. H.; Song, J. H.

    2014-01-01

    A molten material is injected into an interaction chamber by free gravitation fall. This type of fuel coolant interaction could happen to operating plants. However, the flooding of a reactor cavity is considered as SAM measures for new PWRs such as APR-1400 and AP1000 to assure the IVR of a core melt. In this case, a molten corium in a reactor is directly injected into water surrounding the reactor vessel without a free fall. KAERI has carried out fuel coolant interaction tests without a free fall using ZrO 2 and corium to simulate the reactor submerged conditions. There are four phases in a steam explosion. The first phase is a premixing phase. The premixing is described in the literature as follows: during penetration of melt into water, hydrodynamic instabilities, generated by the velocities and density differences as well as vapor production, induce fragmentation of the melt into particles; the particles fragment in turn into smaller particles until they reach a critical size such that the cohesive forces (surface tension) balance exactly the disruptive forces (inertial); and the molten core material temperature (>2500 K) is such that the mixing always occurs in the film boiling regime of the water: It is very important to qualify and quantify this phase because it gives the initial conditions for a steam explosion This paper mainly focuses on the observation of the premixing phase between a case with 1 m free fall and a case without a free fall to simulate submerged reactor condition. The premixing behavior between a 1m free fall case and reactor case submerged without a free fall is observed experimentally. The average velocity of the melt front passing through 1m water pool; - Case without a free fall: The average velocity of corium, 2.7m/s, is faster than ZrO 2 , 2.3m/s, in water. - Cases of with a 1 m free fall and without a free fall : The case without a free fall is about two times faster than a case with a 1 m free fall. Bubble characteristics; - Case

  7. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  8. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    for NADPH over NADH. In this study, the influence of aeration and the response to the addition of electron acceptors on xylose fermentation by F. oxysporum were also studied. The batch cultivation of F. oxysporum on xylose was performed under aerobic, anaerobic and oxygen-limited conditions in stirred tank...... conditions (0.3 vvm). When the artificial electron acceptor acetoin was added to an anaerobic batch fermentation of xylose by F. oxysporum, the ethanol yield increased while xylitol excretion was also decreased....

  9. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei.

    Science.gov (United States)

    Nagavalli, M; Ponamgi, S P D; Girijashankar, V; Venkateswar Rao, L

    2015-01-01

    Production of Rifamycin SV from cheaper agro-industrial by-products using mutant strain of Amycolatopsis mediterranei OVA5-E7 in solid state fermentation (SSF) was optimized. Among the agro-based substrates used, ragi bran was found suitable for maximizing the yield of Rifamycin SV (1310 mg 100 g(-1) ds). The yield can be further enhanced to 19·7 g Kg(-1) of dry substrate by supplementing the substrate with deoiled cotton cake (10% w/w) using optimized fermentation parameters such as maintaining 80% moisture, pH 7·0, 30°C incubation temperature, inoculum 25% v/w and carrying the solid state fermenting for 9 days. Manipulating these seven specifications, the end product yield achieved in our experimentation was 20 g of Rifamycin SV Kg(-1) ds. Eventually, an overall 5-fold improvement in Rifamycin SV production was achieved. Antibiotics such as rifamycin are broad-spectrum antimicrobial drugs used in large-scale worldwide as human medicine towards controlling diseases. Amycolatopsis mediterranei strain which produces this antibiotic was earlier used in submerged fermentation yielded lower amounts of rifamycin. By employing cheaper agro-industrial by-products, we produced upto 20 g rifamycin SV per Kg dry substrate used under optimized solid state fermentation conditions. Keeping in view, the role of rifamycin in meeting the medical demands of world's increasing population; we successfully used an improved strain on cheaper substrates with optimized fermentation parameters and achieved a 5-fold improvement in rifamycin SV production. © 2014 The Society for Applied Microbiology.

  10. Carbon source for fermentation

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-25

    Molasses is hydrolyzed and treated with Ca/sup 2 +/ to produce fructose and a good C-source for glutamic acid and lysine fermentation. Thus, sugarcane molasses was diluted with H/sub 2/O, adjusted to pH 1.5, and kept at 60/sup 0/ for 4 hr. Three liters of this solution was cooled to 0/sup 0/ and 262 g Ca(OH)/sub 2/ in a 30% solution was added, along with seed crystals of Ca-fructose additional product. Crystal addition product was recovered and dissolved; the solution contained 6.4g glucose and 168 g fructose, a 50% yield of fructose. The mother liquor was neutralized with H/sub 2/SO/sub 4/ to precipitate the Ca. The supernatant contained 284 g glucose and 159 g fructose and was used as the C source in a fermentation medium in which Coryne-bacterium lilum produced glutamic acid. Yield was 49.0 g/L compared to 48.3 g/L when molasses was used as the C source.

  11. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Submerged cutting of steel by abrasive water jets

    International Nuclear Information System (INIS)

    Haferkamp, H.; Louis, H.; Meier, G.

    1990-01-01

    A special cutting head for underwater use was designed and built. Tests were carried out to find out useful parameters for submerged cutting. With regard to the production of secondary waste the abrasive flow rate had to be minimized. This was achieved by using a small water jet nozzle (up to 0.4 mm diameter) and a high pressure (up to 4000 bar) with an optimal abrasive flow rate of about 5 g/s. In the case of a higher ambient pressure a decrease of the cutting performance was measured. But this decrease is not important regarding decommissioning because the ambient pressure is less than 2 bar. An air mantle nozzle was adapted to the cutting head to improve the working distance under water. The air mantle surrounding the abrasive jet lowers the friction between jet and surrounding water and increases the cutting efficiency in the case of greater working distances. (author)

  13. Use of the submerged demineralizer system at Three Mile Island

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Hitz, C.G.

    1983-01-01

    The Submerged Demineralizer System (SDS) has been used at Three Mile Island-Unit 2 (TMI-2) to process more than 1.5 million gallons of water contaminated as a result of the March, 1979 accident. The SDS has processed approximately 315,000 gallons of water accumulated in tanks in the Auxiliary Building, approximately 650,000 gallons of water that existed in the Reactor Containment Building basement, approximately 90,000 gallons of primary reactor coolant (processed in a bleed and feed mode) and approximately 169,000 gallons of water used in the large scale decontamination of the Reactor Building. During its operation, the SDS has immobilized approximately 340,000 curies of the principal fission products 137 Cs, 134 Cs and 90 Sr on inorganic media (zeolite). Processing summaries and performance evaluations are presented. 12 references, 1 figure, 6 tables

  14. Endodontic Treatment in Submerged Roots: A Case Report

    Directory of Open Access Journals (Sweden)

    Hemalatha Pameshwar Hiremath

    2010-06-01

    Full Text Available Alveolar ridge resorption has long been considered an unavoidable consequence of tooth extraction. While the extent and pattern of resorption is variable among individuals, there is a progressive loss of ridge contour as a result of physiologic bone remodeling. Even today, with best modalities of tooth preservation, there is a group of elderly individuals who do not benefit from modern preventive practices and who now present a dilemma in terms of maintaining the masticatory apparatus necessary for nutrition. Even with excellent dental care, such patients experience abrasion of the natural tooth crowns with age, and embedded roots are left within the alveolar bone. According to old concepts of dental care, extraction of these roots would have been recommended, but today’s goal of excellence in endodontics dictates otherwise. We report a case in which vital and non-vital root submergence was carried out to prevent alveolar ridge reduction.

  15. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    Science.gov (United States)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  16. Comparison of submerged and unsubmerged printing of ovarian cancer cells.

    Science.gov (United States)

    Davidoff, Sherry N; Au, David; Smith, Samuel; Brooks, Amanda E; Brooks, Benjamin D

    2015-01-01

    A high-throughput cell based assay would greatly aid in the development and screening of ovarian cancer drug candidates. Previously, a three-dimensional microfluidic printer that is not only capable of controlling the location of cell deposition, but also of maintaining a liquid, nutrient rich environment to preserve cellular phenotype has been developed (Wasatch Microfluidics). In this study, we investigated the impact (i.e., viability, density, and phenotype) of depositing cells on a surface submerged in cell culture media. It was determined that submersion of the microfluidic print head in cell media did not alter the cell density, viability, or phenotype.. This article describes an in depth study detailing the impact of one of the fundamental components of a 3D microfluidic cell printer designed to mimic the in vivo cell environment. Development of such a tool holds promise as a high-throughput drug-screening platform for new cancer therapeutics.

  17. Growth Control of Cyanobacteria by Three Submerged Macrophytes

    Science.gov (United States)

    Wang, Haiou; Zhong, Guangrong; Yan, Hai; Liu, Hu; Wang, Yao; Zhang, Chun

    2012-01-01

    Abstract To illustrate the control of harmful cyanobacterial growth and the removal of nutritients from fresh water, three submerged macrophytes were grown in the raw water of Guishui Lake. Lindernia rotundifolia, Hygrophila stricta, and Cryptocoryne crispatula were grown together in situ to assess their effectiveness in nutrient removal in microcosms. Results revealed the inhibitory effects of these species on cyanobacterial growth. In addition, water quality in the planted microcosms showed improvement when compared to the water quality of the unplanted microcosm. At all treatments studied, the chemical oxygen demand in the planted microcosms was lower than that in the unplanted microcosms, and the removal rate of all the nitrogen and phosphate in the planted microcosms was better than that of the microcosm without plants. Our study offers a useful algal control method for the lakes or reservoirs that suffer from harmful cyanobacterial blooms. PMID:22693412

  18. Submerged-arc wire electrodes with nickel-plated surfaces

    International Nuclear Information System (INIS)

    Hagen, H. vom.

    1976-01-01

    The article reports on the development of SANWELD welding rods at GARHYTTAN's which is a wire free of impurities, copper, and hydrogen with a nickel surface. It is producted according to the SANBOND process. The wire has an optimum of mechanical quality grades depending on the powder used for welding, especially an improvement of notch impact strength. The elongation, especially the long-time values, are improved, hydrogen cracks are excluded depending on the correct powder or protective gas, and the low-temparature values are improved. An attendant phenomenon, which is not unimportant, is that the wires are practically corrosion-resistant in the non-welded state. The wire is suitable for submerged-arc welding in steam boilers and pressure vessels. (IHoe) [de

  19. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.

  20. Safe shutdown analysis for submerged equipment inside containment

    International Nuclear Information System (INIS)

    Song, Dong Soo; Lee, Seung Chan; Yoon, Duk Joo; Ha, Sang Jun

    2017-01-01

    The purpose of the paper is to analyze internal flooding effects on the submerged safety-related components inside containment building. Safe shutdown analysis has been performed based on the criteria, assumptions and guideline provided in ANSI/ANS-56.11-1988 and ANSI/ANS-58.11-1988. Flooding can be postulated from a failure of several systems located inside the containment. Loss of coolant accident (LOCA), Feed water line break (FWLB), and other pipe breaks/cracks are assumed. The worst case flooding scenario is a large break LOCA. The maximum flood level for a large break LOCA is calculated based on the combined inventory of the reactor coolant system, the three accumulators, the boron injection tank (BIT), the chemical additive tank (CAT), and the refueling water storage tank (RWST) flooding the containment. The maximum flood level that could occur from all of the water which is available in containment is 2.3 m from the base elevation. A detailed flooding analysis for the components has been performed to demonstrate that internal flooding resulting from a postulated initiating event does not cause the loss of equipment required to achieve and maintain safe shutdown of the plant, emergency core cooling capability, or equipment whose failure could result in unacceptable offsite radiological consequences. The flood height can be calculated as h = (dh/dt) x (t-t 0 ) + h 0 , where h = time dependent flood height and subscript 0 means the initial value and height slope dh/dt. In summary, the submerged components inside containment are acceptable because they complete the mission of safety injection (SI) prior to submeregency or have no safe shutdown function including containment isolation during an accident. (author)

  1. Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S; Wetzel, R G

    1981-01-01

    Scirpus subterminalis Torr., a submerged angiosperm abundant in many hardwater lakes of the Great Lakes region, was investigated for various photosynthetic carbon fixation properties in relation to available inorganic carbon and levels of carbon fixing enzymes. Photosynthetic experiments were CO/sub 2/ and HCO/sub 3//sup -/ were supplied at various concentrations showed that Scirpus was able to utilize HCO/sub 3//sup -/ at those concentrations close to natural conditions. However, when CO/sub 2/ concentrations were increased above ambient, photosynthetic rates increased markedly. It was concluded that the photosynthetic potential of this plant in many natural situations may be limited by inorganic carbon uptake in the light. Phosphoenolpyruvate carboxylase (PEPcase)/ribulose-1,5-bisphosphate carboxylase (ruBPcase) ratios of the leaves varied between 0.5 and 0.9 depending on substrate concentration during assay. The significance of PEP-mediated carbon fixation of Scirpus (basically a C/sub 3/ plant) in the dark was investigated. Malate accumulated in the leaves during the dark period of a 24-h cycle and malate levels decreased significantly during the following light period. The accumulation was not due to transport of malate from the roots. Carbon uptake rates in the dark by the leaves of Scirpus were lower than malate accumulation rates. Therefore, part of the malate was likely derived from respired CO/sub 2/. Carbon uptake rates in the light were much higher than malate turnover rates. It was estimated that carbon fixation via malate could contribute up to 12% to net photosynthetic rates. The ecological significance of this type of metabolism in submerged aquatics is discussed.

  2. Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion

    Directory of Open Access Journals (Sweden)

    Olorunnisola Kola Saheed

    2016-04-01

    Full Text Available The present generation of nutrient rich waste streams within the food and hospitality industry is inevitable and remained a matter of concern to stakeholders. Three white rot fungal strains were cultivated under submerged state bioconversion (SmB. Fermentable sugar conversion efficiency, biomass production and substrate utilization constant were indicators used to measure the success of the process. The substrates – banana peel (Bp, pineapple peel (PAp and papaya peel (Pp were prepared in wet and dried forms as substrates. Phanerochaete chrysosporium (P. chrysosporium, Panus tigrinus M609RQY, and RO209RQY were cultivated on sole fruit wastes and their composites. All fungal strains produced profound biomass on dry sole wet substrates, but wet composite substrates gave improved results. P. tigrinus RO209RQY was the most efficient in sugar conversion (99.6% on sole substrates while P. tigrinus M609RQY was efficient on composite substrates. Elevated substrate utilization constant (Ku and biomass production heralded wet composite substrates. P. chrysosporium was the most performing fungal strain for biomass production, while PApBp was the best composite substrate.

  3. Secretome Analysis of Metarhizium anisopliae Under Submerged Conditions Using Bombyx mori Chrysalis to Induce Expression of Virulence-Related Proteins.

    Science.gov (United States)

    Rustiguel, Cynthia Barbosa; Rosa, José Cesar; Jorge, João Atílio; de Oliveira, Arthur Henrique Cavalcanti; Guimarães, Luis Henrique Souza

    2016-02-01

    The entomopathogenic fungus Metarhizium anisopliae is used to control insect pests. This species is specialized for the secretion of an enzymatic complex consisting of proteases, lipases, and chitinases related to pathogenicity and virulence. In this context, the secretomes of strains IBCB 167 and IBCB 384 of M. anisopliae var. anisopliae, grown under submerged fermentation in the presence of chrysalis as an inducer, were analyzed. Analysis of two-dimensional gels showed qualitative and quantitative differences between secreted proteins in both isolates. Around 102 protein spots were analyzed, and 76 % of the corresponding proteins identified by mass spectrometry were grouped into different classes (hydrolases, oxidases, reductases, isomerases, kinases, WSC domains, and hypothetical proteins). Thirty-three per cent of all the proteins analyzed were found to be common in both strains. Several virulence-related proteins were identified as proteases and mannosidases. Endo-N-acetyl-β-D-glucosaminidase expression was observed to be 10.14-fold higher for strain IBCB 384 than for strain IBCB 167, which may be an important contributor to the high virulence of IBCB 384 in Diatraea ssaccharalis. These results are important for elucidation of the host-pathogen relationship and the differences in virulence observed between the two strains.

  4. Development of New Submergence Tolerant Rice Variety for Bangladesh Using Marker-Assisted Backcrossing

    Directory of Open Access Journals (Sweden)

    Khandakar Md Iftekharuddaula

    2015-01-01

    Full Text Available Submergence tolerant high yielding rice variety was developed using BR11 as a recipient parent applying foreground, phenotypic and background selection approaches. Recombinant selection was found essential to minimize linkage drag by BC2F2 generation. Without recombinant selection, the introgression size in the backcross recombinant lines (BRLs was approximately 15 Mb on the carrier chromosome. The BRLs were found submergence tolerance compared to the check varieties under complete submergence for two weeks at Bangladesh Rice Research Institute, and produced higher yield compared to the isogenic Sub1-line under controlled submerged condition. The BRL IR85260-66-654-Gaz2 was released as BRRI dhan52 in 2010, which was the first high yielding submergence tolerant variety in Bangladesh. BRRI dhan52 produced grain yield ranging from 4.2 to 5.2 t/hm2 under different flash flood prone areas of Bangladesh in three consecutive seasons. The study demonstrated the efficiency of recombinant selection and better adaptability of the newly released submergence tolerant high yielding variety in flash flood prone different areas of the country with respect to submergence tolerance and yield potential.

  5. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  6. The Performance and Fouling Control of Submerged Hollow Fiber (HF Systems: A Review

    Directory of Open Access Journals (Sweden)

    Ebrahim Akhondi

    2017-07-01

    Full Text Available The submerged membrane filtration concept is well-established for low-pressure microfiltration (MF and ultrafiltration (UF applications in the water industry, and has become a mainstream technology for surface-water treatment, pretreatment prior to reverse osmosis (RO, and membrane bioreactors (MBRs. Compared to submerged flat sheet (FS membranes, submerged hollow fiber (HF membranes are more common due to their advantages of higher packing density, the ability to induce movement by mechanisms such as bubbling, and the feasibility of backwashing. In view of the importance of submerged HF processes, this review aims to provide a comprehensive landscape of the current state-of-the-art systems, to serve as a guide for further improvements in submerged HF membranes and their applications. The topics covered include recent developments in submerged hollow fiber membrane systems, the challenges and developments in fouling-control methods, and treatment protocols for membrane permeability recovery. The highlighted research opportunities include optimizing the various means to manipulate the hydrodynamics for fouling mitigation, developing online monitoring devices, and extending the submerged HF concept beyond filtration.

  7. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  8. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2006-01-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 μg bacterial biomass ml -1 ). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H 2 h -1 . For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H 2 h -1 were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  9. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Asthana, R.K.; Singh, A.P. [Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, (India)

    2006-07-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 {mu}g bacterial biomass ml{sup -1}). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H{sub 2} h{sup -1}. For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H{sub 2} h{sup -1} were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  10. Effect of cultural conditions on antrodin C production by basidiomycete Antrodia camphorata in solid-state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Wang, Yuanlong; Zhang, Bobo; Xu, Ganrong; Ai, Lianzhong

    2014-01-01

    Antrodia camphorata is a medicinal fungus and antrodin C is one of the main bioactive components of A. camphorata in the submerged fermentation (SmF). To optimize the culture conditions, the factors influencing the production of antrodin C by A. camphorata under solid-state fermentation (SSF) were investigated in this study. Different solid substrates and external nitrogen sources were tested for their efficiency in producing antrodin C. The response surface methodology was applied to evaluate the influence of several variables, namely, the concentrations of soybean meal, initial moisture content, and inoculum density on antrodin C production in solid-state fermentation. The experimental results show that the optimum fermentation medium for antrodin C production by A. camphorata was composed of 0.578 g soybean meal, 0.05 g Na2 HPO4 , 0.05 g MgSO4 for 100 g rice, with 51.83% initial moisture content, 22 day culture time, 28 °C culture temperature, and 35.54% inoculum density. At optimized conditions, 6,617.36 ± 92.71 mg kg(-1) yield of antrodin C was achieved. Solid-state fermentation is one good cultural method to improve the production of antrodin C by A. camphorata. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  11. Energy consumption in fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Bach, P

    1984-01-01

    The purpose of the present publication is to limit energy used to aerate the anaerobic fermentation processes. In yeast production the aeration process consumes the greatest part of the total energy required. A mathematical model, based on literature data, is presented for a yeast fermenter. the effect of various aeration and raw product strategies can be calculated. Simulation of yeast fermentation proves it to be independent of oxygen transport. However interaction between flow conditions and biological kinetics (glucose effect) is a limiting factor. With many feeding point the use of enegy for aeration (mixing) can be reduced to 1/3 of the present one.

  12. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    OpenAIRE

    Chin-Feng Chan; Ching-Cheng Huang; Ming-Yuan Lee; Yung-Sheng Lin

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  14. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    Directory of Open Access Journals (Sweden)

    Chin-Feng Chan

    2014-08-01

    Full Text Available Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  15. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  16. Effects of submergence on growth and survival of saplings of three wetland trees differing in adaptive mechanisms for flood tolerance

    Directory of Open Access Journals (Sweden)

    Fumiko Iwanaga

    2015-04-01

    Full Text Available Aim of study: Withstanding total submergence and reaeration following submergence is essential for the survival and establishment of wetland species. We focused on “LOES–low oxygen escape syndrome” and “LOQS–low oxygen quiescence syndrome” and compared tolerances to total submergence among wetland woody species differing in morphological adaptation to soil flooding. Area of study, materials and methods: This study examined the survival of 2-year-old saplings of Taxodium distichum and Metasequioia glyptostroboides (LOQS species, and Alnus japonica (LOES species, during and after total submergence. Saplings were completely submerged, then de-submerged to determine trends in survival and growth Main results: The M. glyptostroboides and A. japonica saplings could not survive prolonged submergence for more than 8 weeks, whereas saplings of T. distichum survived for over 2 years. Submerged saplings of all species showed no significant growth or modifications in morphology and anatomy under water, such as shoot elongation, adventitious root formation, and/or aerenchyma development. All T. distichum saplings that were de-submerged in the second year had the same pattern of shoot growth regardless of differences in timing and seasonality of de-submergence. Wood formation in T. distichum saplings ceased during submergence and resumed after de-submergence in spring and summer, but not in autumn. Research highlights: T. distichum saplings, which survived longer submergence periods than A. japonica and M. glyptostroboides, had physiological characteristics, such as suspension of growth and metabolism, which allowed survival of protracted total submergence (at least 2 years when saplings were immersed during the dormant stage before leaf flushing.

  17. Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry

    Directory of Open Access Journals (Sweden)

    Pushpinder Sharma

    2017-12-01

    Full Text Available Lipase production bacterial isolate was isolated from soil of service station and identified as Bacillus methylotrophicus PS3 by 16SrRNA with accession number |LN999829.1|. Lipase enzyme was purified by sequential methods of ammonium sulfate precipitation and Sephadex G-100 gel column chromatography. The molecular weight of purified enzyme was 31.40 kDa on SDS-PAGE. This purification procedure resulted in 2.90-fold purification of lipase with a 24.10% final yield. The purified lipase presented maximal hydrolytic activity at a temperature of 55 °C, and pH of 7.0. Lipase activity was stimulated by Triton X-100 and SDS with Mg2+ and Ca2+ metals employ a positive effect and outlast its stable in organic solvent i.e. methanol and ethanol.

  18. PRODUCTION AND CHARACTERIZATION OF THERMOPHILIC CARBOXYMETHYL CELLULASE SYNTHESIZED BY Bacillus sp. GROWING ON SUGARCANE BAGASSE IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    I. Q. M. Padilha

    2015-03-01

    Full Text Available Abstract The production and characterization of cellulase from thermophilic strain Bacillus sp. C1AC5507 was studied. For enzyme production, sugarcane bagasse was used as carbon source. The produced carboxymethyl cellulase (CMCase had a molecular weight around 55 kDa and its activity varied between 0.14 and 0.37 IU mL-1 in conditions predicted by Response Surface Methodology. The optimum temperature and pH for the CMCase production were 70 °C and 7.0, respectively. The enzyme activity was inhibited mostly by Cu+2 and activated mostly by Co+2, Mn2+, Ca+2 and Fe+3. Our findings provide a contribution to the use of natural wastes such as sugarcane bagasse as substrate for growth and production of thermophilic CMCase. Further optimization to increase the production of cellulase enables the use in industrial applications.

  19. Influence of agitation speed on tannase production and morphology of Aspergillus niger FETL FT3 in submerged fermentation.

    Science.gov (United States)

    Darah, I; Sumathi, G; Jain, K; Lim, S H

    2011-12-01

    Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.

  20. Alteration of white-rot basidiomycetes cellulase and xylanase activities in the submerged co-cultivation and optimization of enzyme production by Irpex lacteus and Schizophyllum commune.

    Science.gov (United States)

    Metreveli, Eka; Kachlishvili, Eva; Singer, Steven W; Elisashvili, Vladimir

    2017-10-01

    Mono and dual cultures of four white-rot basidiomycete species were evaluated for cellulase and xylanase activity under submerged fermentation conditions. Co-cultivation of Pycnoporus coccineus or Trametes hirsuta with Schizophyllum commune displayed antagonistic interactions resulting in the decrease of endoglucanase and total cellulase activities. In contrast, increases in cellulase and xylanase activity were revealed through the compatible interactions of Irpex lacteus with S. commune. Co-cultivation conditions were optimized for maximum enzyme production by I. lacteus and S. commune, the best producers of cellulase/xylanase and β-glucosidase, respectively. An optimized medium for the target enzyme production by the mixed culture was established in a laboratory fermenter yielding 7U/mL total cellulase, 142U/mL endoglucanase, 104U/mL xylanase, and 5.2U/mL β-glucosidase. The dual culture approach resulted in an enzymatic mixture with 11% improved lignocellulose saccharification potential compared to enzymes from a monoculture of I. lacteus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of Different Pretreatment of Sugar Cane Bagasse on Cellulase and Xylanases Production by the Mutant Penicillium echinulatum 9A02S1 Grown in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Marli Camassola

    2014-01-01

    Full Text Available The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities than cultures grown with cellulose or untreated sugar cane bagasse. Higher filter paper activity (1.253 ± 0.147 U·mL−1 was detected in the medium on the sixth day of cultivation when bagasse samples were pretreated with sodium hydroxide, hydrogen peroxide, and anthraquinone. Endoglucanase enzyme production was also enhanced by pretreatment of the bagasse. Nine cultures grown with bagasse possessed higher β-glucosidase activities on the sixth day than the culture grown with cellulose. The highest xylanase activity was observed in cultures with cellulose and with untreated sugar cane bagasse. These results indicate that pretreated sugar cane bagasse may be able to serve as a partial or total replacement for cellulose in submerged fermentation for cellulase production using P. echinulatum, which could potentially reduce future production costs of enzymatic complexes capable of hydrolyzing lignocellulosic residues to form fermented syrups.

  2. Studies towards the stabilisation of a mushroom phytase produced by submerged cultivation.

    Science.gov (United States)

    Spier, Michele Rigon; Behsnilian, Diana; Zielinski, Acácio; Konietzny, Ursula; Greiner, Ralf

    2015-10-01

    A novel phytase from Ganoderma australe G24 was produced by submerged cultivation and recovery. Liquid and solid forms of phytase were developed; both types of product were formulated using different additives. Ganoderma australe G24 phytase was very stable in liquid form with NaCl and sodium acetate buffer. Solid form products were obtained by spray-drying using different polymers to encapsulate the phytase and the capsules obtained were analyzed by electron microscopy. Micrographs confirmed micro and nanoparticles formed with maltodextrin (300 nm to 7-8 µm) without the presence of agglomerates. The use of maltodextrin for solid formulation of G. australe G24 phytase is recommended, and resulted in good stability after the drying process and during storage (shelf life). Kinetic models of phytase inactivation in the microencapsulated powders over time were proposed for the different stabilizing additives. Inactivation rate constants, half-lives and D values (decimal reduction time) were obtained. Phytase encapsulated with maltodextrin remained stable after 90 days, with k 0.0019 day(-1) and a half-life (t1/2) of 367.91 days(-1).

  3. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor

    KAUST Repository

    Fortunato, Luca

    2016-10-07

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. © 2016 Elsevier Ltd

  4. Effect of Media Components on the Mycelial Film Formation in Submerged Culture of Lentinus edodes (Shiitake

    Directory of Open Access Journals (Sweden)

    Olga M. Tsivileva

    2005-01-01

    Full Text Available A relationship between the chemical composition of nutrient medium, the activity of extracellular lectins of Lentinus edodes (Berk. Sing Lentinula edodes (Berk. Pegler (shiitake, and the formation of pigmented mycelial film in liquid culture has been found. A possibility to regulate the lectin activity of shiitake using the synthetic components has been shown. The formulation of medium, on which the brown mycelial film appears in several days of submerged cultivation, has been proposed. Among the natural amino acids studied as nitrogen sources, and nine divalent metal cations as inorganic additives, L-asparagine and Ca2+ (Mn2+ in the simultaneous presence exhibited the explicit positive effect in respect to the above without regard to the age of the culture. Quantum chemical methods and QSAR were applied to test our supposition that a differential character of interaction between the studied amino acids and Ca2+ (Mn2+ cations should be related not to the distinct electron structures of zwitter ions, but most likely to their differing hydrophobicities. The results obtained seem to make some contribution to the present notion of biochemicalprocesses that give rise to the occurrence of the aforesaid morphological structure of shiitake.

  5. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    Science.gov (United States)

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. OXYGEN MANAGEMENT DURING ALCOHOLIC FERMENTATION

    OpenAIRE

    MOENNE VARGAS, MARÍA ISABE

    2013-01-01

    Oxygen additions are a common practice in winemaking, as oxygen has a positive effect in fermentative kinetics, biomass synthesis and improvement of color, structure and :flavor in treated wines. However, most oxygen additions are carried out heuristically through pump-over operations solely on a know-how basis, which is difficult to manage in terms of the exact quantity of oxygen transferred to the fermenting must. It is important to estímate the amount of oxygen added because...

  7. Mystery behind Chinese liquor fermentation

    OpenAIRE

    Jin, Guangyuan; Zhu, Yang; Xu, Yan

    2017-01-01

    Background Chinese liquor, a very popular fermented alcoholic beverage with thousands of years’ history in China, though its flavour formation and microbial process have only been partly explored, is facing the industrial challenge of modernisation and standardisation for food quality and safety as well as sustainability. Meanwhile, the hidden knowledge behind the complicated and somehow empirical solid-state fermentation process of Chinese liquor can enrich the food sector to improve our qua...

  8. Aspects microbiologiques de la production par fermentation solide des endo-beta-1,4-xylanases de moisissures : le cas de Penicillium canescens

    Directory of Open Access Journals (Sweden)

    Assamoi AA.

    2009-01-01

    Full Text Available Microbial aspects of endo-β-1,4-xylanase production in solid-state fermentation by Penicillia: the case of Penicillium canescens. Production of xylanases by Penicillium canescens 10-10c is the research object in Walloon Center of Industrial Biology. Previous works used submerged or liquid fermentation. The actual works are oriented more and more towards solid fermentation from agricultural or agro-alimentary residues. In addition to the valorization of these residues, solid-state fermentation reaches an increasingly significant interest in various other fields like the biological breakdown of the solid residues, the bioremediation of the organic pollutants in the grounds and the reduction of the air pollution by the biofiltration. Xylanase is an industrial enzyme used in general in extraction and clarification processes. P. canescens can produce an activity of it, particularly in its balanced forms of xylanases, beta-xylosidase and arabinosidase, and not contaminated by cellulolytic and amylolytic activities. It is a hyper producing strain of xylanase. The production rate is one of the highest in literature (535 U.ml-1 and 9,632 U.g-1 in Erlenmeyer flasks, in submerged and solid state fermentation, respectively. The biobleaching activity of the cellulose pulp by the purified enzyme is higher than a commercial preparation of xylanases from Trichoderma longibrachiatum used industrially. It has a complete hydrolysis degree of 40% (on glucuronoxylan and 35% (on arabinoxylan at 55°C and at pH of 5.9. These characteristics lead to many industrial applications of this enzyme. That is why the optimization of its production by the solid-state fermentation at the laboratory scale in order to define a policy for the industrial transposition later is carried out. This article presents a summary of the scientific literature on this subject.

  9. EAARL-B Submerged Topography - Saint Croix and Saint Thomas, U.S. Virgin Islands, 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data for part of the submerged environs of Saint Croix and Saint Thomas, U.S. Virgin Islands, were produced from remotely sensed, geographically...

  10. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants...... of this terrestrial plant species to submergence for gas exchange capacity is also shown. Shoot acclimation to submergence involved a reduction of the diffusion resistance to gases, which was not only functional by increasing diffusion of oxygen into the plant, but also by increasing influx of CO2, which enhances...... maintain relatively high internal oxygen pressures under water, and even may release oxygen via the roots into the sediment, also in dark. Based on these results, we challenge the dogma that oxygen pressures in submerged terrestrial plants immediately drop to levels at which aerobic respiration is impaired...

  11. Design procedure for sizing a submerged-bed scrubber for airborne particulate removal

    International Nuclear Information System (INIS)

    Ruecker, C.M.; Scott, P.A.

    1987-04-01

    Performance correlations to design and operate the submerged bed scrubber were developed for various applications. Structural design procedure outlined in this report focuses on off-gas scrubbing for HLW vitrification applications; however, the method is appropriate for other applications

  12. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    Science.gov (United States)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  13. Satellite remote sensing of submerged aquatic vegetation distribution and status in the Currituck Sound, NC.

    Science.gov (United States)

    2012-11-01

    Submerged Aquatic Vegetation (SAV) is an important component in any estuarine ecosystem. As such, it is regulated by federal and state agencies as a jurisdictional resource, where impacts to SAV are compensated through mitigation. Historically, tradi...

  14. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    Science.gov (United States)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  15. Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale.

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Hao, Beibei; Liu, Guihua

    2013-10-01

    Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.

  16. Root transcript profiling of two Rorippa (brassicaceae) species reveals gene clusters associated with extreme submergence tolerance.

    NARCIS (Netherlands)

    Sasidharan, R.; Mustroph, A.; Boonman, A.; Akman, M.; Ammerlaan, A.M.H.; Breit, T.M.; Schranz, M.E.; Voesenek, L.A.C.J.; Tienderen, van P.H.

    2013-01-01

    Complete submergence represses photosynthesis and aerobic respiration, causing rapid mortality in most terrestrial plants. However, some plants have evolved traits allowing them to survive prolonged flooding, such as species of the genus Rorippa, close relatives of Arabidopsis (Arabidopsis

  17. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Bergstrom, Peter

    2008-01-01

    In 2003, the U.S. Army Engineer Research and Development Center (ERDC) and the National Oceanic and Atmospheric Administration Chesapeake Bay Office began a comprehensive research effort to restore submerged aquatic vegetation (SAV...

  18. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation

    DEFF Research Database (Denmark)

    Mcintyre, Mhairi; Breum, J.; Arnau, J.

    2002-01-01

    Mucor circinelloides is being investigated as a possible host for the production of heterologous proteins. Thus, the environmental conditions defining the physiology and morphology of this dimorphic fungus have been investigated in submerged batch cultivation. The optimal conditions for growth...

  19. Vertical Gradient Freezing Using Submerged Heater Growth With Rotation and With Weak Magnetic and Electric Fields

    National Research Council Canada - National Science Library

    Bliss, D. F; Holmes, A. M; Wang, X; Ma, N; Iseler, G. W

    2005-01-01

    ...) method utilizing a submerged heater. Electromagnetic stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a weak radial electric current in the melt together with a weak axial magnetic field...

  20. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    Science.gov (United States)

    Shrestha, Prachand

    no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.

  1. Submerged reef systems on the central western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Almeida, F.

    -262 255 Elsevier Science Publishers B.V., Amsterdam -- Printed in the Netherlands Letter Section Submerged Reef Systems on the Central Western Continental Shelf of India K.H. VORA and F. ALMEIDA National Institute of Oceanography, Dona Paula, Goa 403... 004 (India) (Revision accepted October 26, 1989) Abstract Vora, K.H. and Almeida, F., 1990. Submerged reef systems on the central western continental shelf of India. Mar. Geol., 91: 255-262. Echosounding and sidescan sonar data from the western...

  2. Agenesis of premolar associated with submerged primary molar and a supernumerary premolar: An unusual case report

    Directory of Open Access Journals (Sweden)

    S. V. S. G. Nirmala

    2012-01-01

    Full Text Available The combination of submerged primary molar, agenesis of permanent successor with a supernumerary in the same place is very rare. The purpose of this article is to report a case of submerged mandibular left second primary molar with supernumerary tooth in the same region along with agenesis of second premolar in an 11-year-old girl, its possible etiological factors, and a brief discussion on treatment options.

  3. Analysis of submerged implant towards mastication load using 3D finite element method (FEM)

    OpenAIRE

    Widia Hafsyah Sumarlina Ritonga; Janti Rusjanti; Nunung Rusminah; Aldilla Miranda; Tatacipta Dirgantara

    2016-01-01

    Introduction: The surgical procedure for implantation of a surgical implant comprising a stage for the implant design nonsubmerged and two stages for submerged. Submerged implant design often used in Faculty of Dentistry Universitas Padjadjaran because it is safer in achieving osseointegration. This study was conducted to evaluate the failure of dental implant based on location and the value of internal tensiones as well as supporting tissues when given mastication load by using the 3D Finite...

  4. Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    2017-10-01

    Full Text Available Submergence stress is a limiting factor for rice growing in rainfed lowland areas of the world. It is known that the phytohormone gibberellin (GA has negative effects on submergence tolerance in rice, while its inhibitor paclobutrazol (PB does the opposite. However, the physiological and molecular basis underlying the GA- and PB-regulated submergence response remains largely unknown. In this study, we reveal that PB could significantly enhance rice seedling survival by retaining a higher level of chlorophyll content and alcohol dehydrogenase activity, and decelerating the consumption of non-structure carbohydrate when compared with the control and GA-treated samples. Further transcriptomic analysis identified 3936 differentially expressed genes (DEGs among the GA- and PB-treated samples and control, which are extensively involved in the submergence and other abiotic stress responses, phytohormone biosynthesis and signaling, photosynthesis, and nutrient metabolism. The results suggested that PB enhances rice survival under submergence through maintaining the photosynthesis capacity and reducing nutrient metabolism. Taken together, the current study provided new insight into the mechanism of phytohormone-regulated submergence response in rice.

  5. [Influence of submerged macrophytes on phosphorus transference between sediment and overlying water in the growth period].

    Science.gov (United States)

    Wang, Li-Zhi; Wang, Guo-Xiang; Yu, Zhen-Fei; Zhou, Bei-Bei; Chen, Qiu-Min; Li, Zhen-Guo

    2012-02-01

    In order to study the process of phosphorus transfer between sediment and overlying water, Hydrilla verticillata and Vallisneria natans were cultured in spring, Potamogeton crispus was cultured in winter. Changes of environmental factors and phosphorus concentrations in water and sediment were investigated. The results indicated that: submerged macrophytes could reduce all phosphorus fractions in the overlying water. Phosphorus concentrations in overlying water maintained in a relative low level in the growth period of submerged macrophytes. The concentrations of total phosphorus (TP) in overlying water of H. verticillata, V. natans and P. crispus were 0.03-0.05, 0.04-0.12, 0.02-0.11 mg x L(-1), respectively. All phosphorus fractions in sediment were reduced. The maximum value between submerged macrophyte and control of H. verticillata, V. natans and P. crispus were 35.34, 60.67 and 25.92 mg x kg(-1), respectively. Dissolved oxygen (DO), redox potential (Eh) and pH in overlying water increased (DO 10.0-14.0 mg x L(-1), Eh 185-240 mV, pH 8.0-11.0) in the submerged macrophytes groups. Submerged macrophytes increased Eh( -140 - -23 mV) and maintained pH(7.2-8.0) in neutral range. The results indicated that submerged macrophytes affected phosphorus transferring between sediment and overlying water through increasing DO, Eh and pH in overlying water, and Eh in sediment.

  6. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  7. Mineralization of surfactants by the microbiota of submerged plant detritus.

    Science.gov (United States)

    Federle, T W; Ventullo, R M

    1990-02-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 mug of C-labeled linear alkylbenzene sulfonate (LAS), linear alcohol ethoxylate, stearyltrimethyl ammonium chloride, distearyldimethyl ammonium chloride, benzoic acid, or mixed amino acids per liter. Sorption of the test compounds to the detritus and evolution of CO(2) were followed with time. All of the compounds sorbed to the detritus to various degrees, with LAS and stearyltrimethyl ammonium chloride the most sorptive and benzoic acid the least. All compounds were mineralized without a lag. With leaves from the laundromat wastewater pond, half-lives were 12.6 days for LAS, 8.4 days for linear alcohol ethoxylate, 14.2 days for stearyltrimethyl ammonium chloride, 1.0 days for benzoic acid, and 2.7 days for mixed amino acids. Mineralization of LAS and linear alcohol ethoxylate by control pond leaves was slower and exhibited an S-shaped rather than a typical first-order pattern. This study shows that detritus represents a significant site of surfactant removal in detritus-rich systems.

  8. Mineralization of surfactants by the microbiota of submerged plant detritus

    International Nuclear Information System (INIS)

    Federle, T.W.; Ventullo, R.M.

    1990-01-01

    In wetlands and canopied bodies of water, plant detritus is an important source of carbon and energy. Detrital materials possess a large surface area for sorption of dissolved organics and are colonized by a large and diverse microbiota. To examine the biodegradation of surfactants by these microorganisms, submerged oak leaves were obtained from a laundromat wastewater pond, its overflow, and a pristine control pond. Leaves were cut into disks and incubated in sterile water amended with 50 μg of 14 C-labeled linear alkylbenzene sulfonate (LAS), linear alcohol ethoxylate, stearyltrimethyl ammonium chloride, distearyldimethyl ammonium chloride, benzoic acid, or mixed amino acids per liter. Sorption of the test compounds to the detritus and evolution of 14 CO 2 were followed with time. All of the compounds sorbed to the detritus to various degrees, with LAS and stearyltrimethyl ammonium chloride the most sorptive and benzoic acid the least. All compounds were mineralized without a lag. With leaves from the laundromat wastewater pond, half-lives were 12.6 days for LAS, 8.4 days for linear alcohol ethoxylate, 14.2 days for stearyltrimethyl ammonium chloride, 1.0 days for benzoic acid, and 2.7 days for mixed amino acids. Mineralization of LAS and linear alcohol ethoxylate by control pond leaves was slower and exhibited an S-shaped rather than a typical first-order pattern. This study shows that detritus represents a significant site of surfactant removal in detritus-rich systems

  9. The modelling of irradiation embrittlement in submerged-arc welds

    International Nuclear Information System (INIS)

    Bolton, C.J.; Buswell, J.T.; Jones, R.B.; Moskovic, R.; Priest, R.H.

    1996-01-01

    Until very recently, the irradiation embrittlement behavior of submerged-arc welds has been interpreted in terms of two mechanisms, namely a matrix damage component and an additional component due to the irradiation-enhanced production of copper-rich precipitates. However, some of the weld specimens from a recent accelerated re-irradiation experiment have shown high Charpy shifts which exceeded the values expected from the measured shift in yield stress. Microstructural examination has revealed the occurrence of intergranular fracture (IGF) in these specimens, accompanied by grain boundary segregation of phosphorus. Theoretical models were developed to predict the parametric dependence of irradiation-enhanced phosphorus segregation on experimental variables. Using these parametric forms, along with the concept of a critical level of segregation for the onset of IGF instead of cleavage, a three mechanism trend curve has been developed. The form of this trend curve, taking into account IGF as well as matrix and copper embrittlement, is thus mechanistically based. The constants in the equation, however, are obtained by a statistical fit to the actual Charpy shift database

  10. Production of tannase by Aspergillus tamarii in submerged cultures

    Directory of Open Access Journals (Sweden)

    Andréa M. Costa

    2008-04-01

    Full Text Available The production of tannase by Aspergillus tamarii was studied in submerged cultures. The fungus produced an extracellular tannase after two days of growth in mineral medium containing tannic acid, gallic acid and methyl gallate as carbon source. The best result was obtained using gallic acid as inducer (20.6 U/ml. The production of enzyme was strongly repressed by the presence of glucose. Crude enzyme was optimally active at pH 5.0 and 30º C. The enzyme was stable in a large range of pH and up to the temperature of 45º C.A produção de tanase por um novo potencial produtor, o fungo filamentoso Aspergillus tamarii, foi parcialmente caracterizada neste estudo. O fungo produziu uma tanase extracelular em culturas submersas após 2 dias de crescimento em meio mineral contendo ácido tânico, ácido gálico ou metil galato como fonts de carbono. Os melhores resultados foram obtidos em culturas com ácido gálico (20,6 U/ml. A produção da enzima foi fortemente inibida por glicose. A enzima bruta foi otimamente ativa em pH 5,0 e a 30º C e estável em ampla faixa de pH e em temperaturas inferiores a 45ºC.

  11. Stainless steel submerged arc weld fusion line toughness

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M.

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations

  12. Modeling Refuge Effect of Submerged Macrophytes in Lake System.

    Science.gov (United States)

    Lv, Dongyu; Fan, Meng; Kang, Yun; Blanco, Krystal

    2016-04-01

    This paper considers a significant problem in biological control of algae issue in ecological environment. A four-dimensional dynamic model is carefully formulated to characterize the interactions among phytoplankton, submerged macrophyte, zooplankton, and general fish class in a lake ecosystem. The predation relationship is modeled by Beddington-DeAngelis functional responses derived from the classical Holling time budget arguments. Qualitative analyses of the global dynamics show that the system can generate very rich dynamics with potentially 10 different equilibria and several bistable scenarios. We perform analysis on the existence and local stability of equilibria and explore the refuge effect of macrophyte on the zooplankton with numerical simulations on aquatic ecosystems. We also discuss effective methods of biological control used to restrain the increase of phytoplankton. Our study shows the proposed model could have rich and complex dynamics including but not limited to bistable and chaotic phenomenon. Numerical simulation results demonstrate that both the refuge constant and the density of the macrophytes are two key factors where refuge effects take place. In addition, the intraspecific competition between the macrophyte and the phytoplankton can also affect the macrophyte's refuge effect. Our analytical and simulation results suggest that macrophytes provide structure and shelter against predation for zooplankton such that it could restore the zooplankton population, and that planting macrophyte properly might achieve the purpose of controlling algae growth.

  13. Wave forces on cylinder submerged horizontally in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, H; Sasaki, K; Kobayashi, T; Nomura, N; Kawabe, H; Sugimoto, H

    1976-12-01

    To estimate the wave forces on offshore and/or coastal structures, the ideal method is undoubtedly to obtain the more accurate solution of hydrodynamic equations under suitable boundary conditions. However, in practice, it is difficult to introduce precise solutions under present technical levels because some important problems still remain. Among them is the unsteady boundary layers with separation around the objects. Consequently, every effort is being made in this field to approximate these conditions. Among these approximations, the Diffraction Wave Theory and the Morrison's Method are the most famous means in practice, although both still have some problems. Some problems with the traditional Finite Amplitude Wave Theories such as Stokes and Cnoidal Wave Theories are examined, and by applying additional computed results to the Morrison's formula, the estimated formula for wave forces on a cylinder submerged horizontally in shallow water is introduced. Subsequently, the applicability of the formula and also the specific characteristics of wave forces on a horizontally settled cylinder are investigated in detail, attaching first importance to the distinctions from the vertically settled cylinder, based on the comparison of computed results with experimental results. The experiments were carried out on two different diameters of cylinder, 70 mm and 140 mm, and bottom slopes of the experimental tanks, /sup 1///sub 100/ and /sup 1///sub 30/, under various conditions varying water depth, wave period, wave height and also setting position of cylinder.

  14. Spatiotemporal dynamics of submerged macrophytes in a Mediterranean coastal lagoon

    Science.gov (United States)

    Obrador, Biel; Pretus, Joan Lluís

    2010-03-01

    The seasonal and interannual dynamics of the biomass and spatial distribution of a macrophyte meadow were explored in a Mediterranean coastal lagoon (Albufera des Grau, Balearic Islands) from 2002 to 2007. The dynamics in the main physicochemical variables were also analysed to assess the factors involved in the spatiotemporal variability of the submerged macrophytes. The meadows were dominated by Ruppia cirrhosa, which showed a marked seasonal cycle with winter quiescence and complete annual regrowth. The annual production of R. cirrhosa had high interannual variability and was amongst the highest described for this species in the literature, ranging 327-919 gDW m -2. The spatial distribution of macrophytes was determined by light availability and wave exposure, with the highest abundances found in shallow and gently sloped areas sheltered from the strong northerly winds. The interannual variations in macrophyte descriptors (area of occurrence, average depth of the meadows, and maximum biomass) were mainly related to water turbidity and salinity, but the effect of these variables was constrained to the spring and summer months, respectively. A significant negative correlation between the extent of coverage of R. cirrhosa and the water level at the end of the previous annual cycle was observed, suggesting a positive effect of desiccation on the extent of coverage of the macrophytes. After six years of apparent stability, the macrophytes abruptly disappeared from the lagoon. Although the mechanisms are not clear, this shift was likely attributable to a combination of several factors.

  15. Potential Application of Ganoderma lucidum in Solid State Fermentation of Primary Sludge and Wheat Straw

    Directory of Open Access Journals (Sweden)

    João Paulo Furlan de Jesus

    2015-04-01

    Full Text Available This study was conducted to investigate the production of lignocellulolytic enzymes and sugars by the fungus Ganoderma lucidum during solid state fermentation (SSF using primary sludge (PS and wheat straw (WS as substrates at different concentration ratios. For fungal growth on SSF, 20 g of each blended substrate was added to Erlenmeyer flasks, which were autoclaved and maintained at room temperature prior to inoculation, whereas for submerged fermentation (SF, flasks containing 25 mL of potato dextrose broth (PDB were used as standard to check the differences between both methods of growth, and then all flasks were incubated at 25 °C in the dark, during 8 and 16 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis from the protein extract obtained from solid state fermentation strongly suggested that G. lucidum could produce lignocellulolytic enzymes to degrade primary sludge and wheat straw. Among the sugars, the production of xylose and mannose was disturbed by adding primary sludge. With the addition of primary sludge, high glucuronic acid content was observed. The results suggest that the combination of primary sludge and wheat straw, at concentration ratios of 1:1 to 1:3, respectively, can be used as a raw material in the production of lignocellulolytic enzymes and the bioconversion of other types of biomass by G. lucidum.

  16. Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria

    Directory of Open Access Journals (Sweden)

    Eveline M. van den Berg

    2017-09-01

    Full Text Available Denitrification and dissimilatory reduction to ammonium (DNRA are competing nitrate-reduction processes that entail important biogeochemical consequences for nitrogen retention/removal in natural and man-made ecosystems. The nature of the available carbon source and electron donor have been suggested to play an important role on the outcome of this microbial competition. In this study, the influence of lactate as fermentable carbon source on the competition for nitrate was investigated for varying ratios of lactate and nitrate in the influent (Lac/N ratio. The study was conducted in an open chemostat culture, enriched from activated sludge, under strict anoxia. The mechanistic explanation of the conversions observed was based on integration of results from specific batch tests with biomass from the chemostat, molecular analysis of the biomass enriched, and a computational model. At high Lac/N ratio (2.97 mol/mol both fermentative and respiratory nitrate reduction to ammonium occurred, coupled to partial oxidation of lactate to acetate, and to acetate oxidation respectively. Remaining lactate was fermented to propionate and acetate. At a decreased Lac/N ratio (1.15 mol/mol, the molar percentage of nitrate reduced to ammonium decreased to 58%, even though lactate was supplied in adequate amounts for full ammonification and nitrate remained the growth limiting compound. Data evaluation at this Lac/N ratio suggested conversions were comparable to the higher Lac/N ratio, except for lactate oxidation to acetate that was coupled to denitrification instead of ammonification. Respiratory DNRA on acetate was likely catalyzed by two Geobacter species related to G. luticola and G. lovleyi. Two Clostridiales members were likely responsible for lactate fermentation and partial lactate fermentation to acetate coupled to fermentative DNRA. An organism related to Propionivibrio militaris was identified as the organism likely responsible for denitrification. The

  17. Fermentation of irradiated sugarcane must

    International Nuclear Information System (INIS)

    Alcarde, Andre Ricardo; Horii, Jorge; Walder, Julio Marcos Melges

    2003-01-01

    Bacillus and Lactobacillus are bacteria that usually contaminate the ethanolic fermentation by yeasts and my influence yeast viability. As microorganisms can be killed by ionizing radiation, the efficacy of gamma radiation in reducing the population of certain contaminating bacteria from sugarcane must was examined and, as a consequence, the beneficial effect of lethal doses of radiation on some parameters of yeast-based ethanolic fermentation was verified. Must from sugarcane juice was inoculated with bacteria of the general Bacillus and Lactobacillus. The contaminated must was irradiated with 2.0, 4.0, 6.0, 8.0 and 10.0 kGy of gamma radiation. After ethanolic fermentation by the yeast (Saccharomyces cerevisiae) the total and volatile acidity produced during the process were evaluated: yeast viability and ethanol yield were also recorded. Treatments of gamma radiation reduced the population of the contaminating bacteria in the sugarcane must. The acidity produced during the fermentation decreased as the dose rate of radiation increased. Conversely, the yeast viability increased as the dose rate of radiation increased. Gamma irradiation was an efficient treatment to decontaminate the must and improved its parameters related to ethanolic fermentation, including ethanol yield, which increased 1.9%. (author)

  18. Fermentation reactions of Erysipelothrix rhusiopathiae.

    Science.gov (United States)

    WHITE, T G; SHUMAN, R D

    1961-10-01

    White, Thomas G. (U. S. Department of Agriculture, Ames, Iowa), and Richard D. Shuman. Fermentation reactions of Erysipelothrix rhusiopathiae. J. Bacteriol. 82:595-599. 1961.-A study was made to determine the effect of four different basal media, to which fermentable carbon compounds had been added, upon 22 selected strains of Erysipelothrix rhusiopathiae (insidiosa). Acid production was measured by (i) chemical indicator, (ii) change in pH, and (iii) production of titrable acidity. At least two determinations, usually four, were made for each test on each strain. The fermentation pattern varied according to the medium, the indicator, and the method of measuring acid production. Andrade's base plus serum was the most dependable medium because it permitted the least variation in the total number of different patterns. Of the three methods used to measure acid production, the chemical indicator gave the most valid and reproducible results. The within-strain variation was not extreme and most strains persisted in a given fermentation pattern under like conditions of growth and acid production. Results of the study indicated that, regardless of the medium and indicator routinely used, one should be familiar with the fermentation pattern of known strains of the erysipelas organism.

  19. Experiments with Fungi Part 2: Fermentation.

    Science.gov (United States)

    Dale, Michele; Hetherington, Shane

    1996-01-01

    Gives details of three experiments with alcoholic fermentation by yeasts which yield carbon dioxide and ethanol. Lists procedures for making cider, vinegar, and fermentation gases. Provides some historical background and detailed equipment requirements. (DDR)

  20. Treatment of biomass to obtain fermentable sugars

    Science.gov (United States)

    Dunson, Jr., James B.; Tucker, Melvin [Lakewood, CO; Elander, Richard [Evergreen, CO; Hennessey, Susan M [Avondale, PA

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  1. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  2. Alcoholic fermentation of starchy and sugary materials

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, S P

    1958-06-25

    To promote complete fermentation of the sugar and to reduce the formation of glycerol and other by-products, the ester-aldehyde fraction is introduced to the fermentation mixture at the beginning of the process.

  3. Fatigue assessment of a double submerged arc welded gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo; Otegui, Jose Luis [Universidad Nacional Mar del Plata, Mar del Plata (Argentina). Instituto de Ciencia y Tecnologia de Materiales (INTEMA); Teutonico, Mauricio; Manfredi, Carlos [GIE S.A., Mar del Plata (Argentina)

    2005-07-01

    An uncommon blowout in a 24'' diameter, 7 mm thick API 5L X52 gas pipeline was due to fracture at the longitudinal double submerged arc weld. Oddly enough for gas pipelines, it was found that fatigue cracks had propagated from a large embedded weld defect of lack of fusion resulting from severe geometrical mismatch between inner and outer weld passes. What makes this failure particularly interesting is that: previous in line inspections failed to detect any defect, no evidence of third party damage was found, and very few large pressure cycles had been recorded during the last 5 years of service, which were believed to be representative of the entire service life of the pipeline. Fatigue tests were carried out to characterize propagation of fatigue cracks in weld metal, it was found that a large Paris exponent made the few large amplitude cycles most contributing to crack propagation. Crack growth path and striation patterns were studied. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. Crack growth path and striation patterns were studied. It was found that microstructure discontinuities govern propagation at low {delta}K, but one striation per cycle was produced at large {delta}K, due to a mostly ductile propagation mode. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. It was found that in the early life of the line many more large pressure cycles than expected had occurred. Good correspondence between predicted and actual fatigue lives was in this way obtained (author)

  4. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  5. Fatigue assessment of a double submerged arc welded gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo; Otegui, Jose Luis [Universidad Nacional Mar del Plata, Mar del Plata (Argentina). Instituto de Ciencia y Tecnologia de Materiales (INTEMA); Teutonico, Mauricio; Manfredi, Carlos [GIE S.A., Mar del Plata (Argentina)

    2005-07-01

    An uncommon blowout in a 24'' diameter, 7 mm thick API 5L X52 gas pipeline was due to fracture at the longitudinal double submerged arc weld. Oddly enough for gas pipelines, it was found that fatigue cracks had propagated from a large embedded weld defect of lack of fusion resulting from severe geometrical mismatch between inner and outer weld passes. What makes this failure particularly interesting is that: previous in line inspections failed to detect any defect, no evidence of third party damage was found, and very few large pressure cycles had been recorded during the last 5 years of service, which were believed to be representative of the entire service life of the pipeline. Fatigue tests were carried out to characterize propagation of fatigue cracks in weld metal, it was found that a large Paris exponent made the few large amplitude cycles most contributing to crack propagation. Crack growth path and striation patterns were studied. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. Crack growth path and striation patterns were studied. It was found that microstructure discontinuities govern propagation at low {delta}K, but one striation per cycle was produced at large {delta}K, due to a mostly ductile propagation mode. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. It was found that in the early life of the line many more large pressure cycles than expected had occurred. Good correspondence between predicted and actual fatigue lives was in this way obtained (author)

  6. Nonlinear interaction and wave breaking with a submerged porous structure

    Science.gov (United States)

    Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.

    2016-12-01

    Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.

  7. Citric acid production from whey by fermentation using Aspergillus spp.

    Directory of Open Access Journals (Sweden)

    Óscar Julián Sánchez Toro

    2004-01-01

    Full Text Available Whey has become the main dairy-industry waste product, despite continuous efforts aimed at finding a way to use it. The aim of this research was to investigate citric acid production by submerged fermentation using Aspergillus genus fungi, using whey as substrate to take economical advantage of it and to reduce the environmental impact caused by discharging this by-product into nearby streams. The following three strains were used: A. carbonarius NRRL 368, A. carbonarius NRRL 67 and A. niger NRRL 3. The best adaptation medium for inoculum propagation was selected. Proposed experimental design for evaluating citric acid biosynthesis from whey modified through different treatments showed that the two A. carbonarius strains did not present significant differences in acid production whereas A. niger NRRL 3 reached higher concentration when evaporated, deproteinised and p-galactosidase lactose-hydrolysed whey was used. However, A. carbonarius gave higher average citric acid titres than those found for A. niger. This suggests the need for carrying out further research on it as a potential producing strain. Cell growth, substrate consumption and acid production kinetics in a 3-L stirred-tank bioreactor with aeration were developed in the case of A. niger; kinetics were simulated through non-structured mathematical models. Key words: Aspergilluscarbonarius, Aspergillus niger, bioreactor, simulation, p-galactosidase.

  8. Fermentation of African kale (Brassica carinata) using L. plantarum BFE 5092 and L. fermentum BFE 6620 starter strains

    DEFF Research Database (Denmark)

    Oguntoyinbo, Folarin A; Cho, Gyu-Sung; Trierweiler, Bernhard

    2016-01-01

    Vegetables produced in Africa are sources of much needed micronutrients and fermentation is one way to enhance the shelf life of these perishable products. To prevent post-harvest losses and preserve African leafy vegetables, Lactobacillus plantarum BFE 5092 and Lactobacillus fermentum BFE 6620...... starter strains were investigated for their application in fermentation of African kale (Brassica carinata) leaves. They were inoculated at 1×10(7)cfu/ml and grew to a maximum level of 10(8)cfu/ml during 24h submerged fermentation. The strains utilized simple sugars (i.e., glucose, fructose, and sucrose......) in the kale to quickly reduce the pH from pH6.0 to pH3.6 within 24h. The strains continued to produce both d and l lactic acid up to 144h, reaching a maximum concentration of 4.0g/l. Fermentations with pathogens inoculated at 10(4)cfu/ml showed that the quick growth of the starters inhibited the growth...

  9. Enhanced substrate conversion effiency of fermentation processes

    OpenAIRE

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2008-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate and the second fermentation product is in a more oxidised state than the substrate yet in a less oxidised state than the final oxidation product CO2, such that the concurrent synthesis of the firs...

  10. Alcoholic fermentation of stored sweet potatoes

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, Y; One, H

    1958-01-01

    Sweet potatoes were ground and stored in a ground hold. The stored sweet potatoes gave about 90% fermentation efficiency by the koji process. A lower fermentation efficiency by the amylo process was improved by adding 20 to 30 mg/100 ml of organic N. Inorganic N has no effect in improving the fermentation efficiency of the stored sweet potatoes by the amylo process.

  11. Drying characteristics and engineering properties of fermented ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-06

    Mar 6, 2009 ... fermented ground cassava. J. T. Nwabanne ... The drying characteristics of fermented ground local variety of ... effect of variety on the drying and engineering properties of fermented .... Figure 2 shows that the bulk density of each cultivar ... very close thermal conductivities as depicted in the shape of Figure ...

  12. Enhanced substrate conversion efficiency of fermentation processes

    NARCIS (Netherlands)

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2006-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate

  13. Enhanced substrate conversion effiency of fermentation processes

    NARCIS (Netherlands)

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2008-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate

  14. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  15. Traditional fermented foods and beverages of Namibia

    Directory of Open Access Journals (Sweden)

    Jane Misihairabgwi

    2017-09-01

    Conclusion: Fermented foods and beverages play a major role in the diet, socioeconomic, and cultural activities of the Namibian population. Most are spontaneously fermented. Research is scarce and should be conducted on the microbiology, biochemistry, nutritional value, and safety of the fermented foods and beverages to ensure the health of the population.

  16. PAT tools for fermentation processes

    DEFF Research Database (Denmark)

    Gernaey, Krist

    The publication of the Process Analytical Technology (PAT) guidance has been one of the most important milestones for pharmaceutical production during the past ten years. The ideas outlined in the PAT guidance are also applied in other industries, for example the fermentation industry. Process...... knowledge is central in PAT projects. This presentation therefore gives a brief overview of a number of PAT tools for collecting process knowledge on fermentation processes: - On-line sensors, where for example spectroscopic measurements are increasingly applied - Mechanistic models, which can be used...

  17. PAT tools for fermentation processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Bolic, Andrijana; Svanholm, Bent

    2012-01-01

    The publication of the Process Analytical Technology (PAT) guidance has been one of the most important milestones for pharmaceutical production during the past ten years. The ideas outlined in the PAT guidance are also applied in other industries, for example the fermentation industry. Process...... knowledge is central in PAT projects. This manuscript therefore gives a brief overview of a number of PAT tools for collecting process knowledge on fermentation processes: on-line sensors, mechanistic models and small-scale equipment for high-throughput experimentation. The manuscript ends with a short...

  18. Thua nao: Thai fermented soybean

    Directory of Open Access Journals (Sweden)

    Ekachai Chukeatirote

    2015-09-01

    Full Text Available Thua nao is a traditionally fermented food in Thailand. It is manufactured by fermenting cooked soybeans with naturally occurring microbes. There are also similar products including natto in Japan, kinema in India, and chongkukjang in Korea. In Thailand, thua nao is widely consumed, especially by people in the northern part. The product is generally regarded as a protein supplement and widely used as a condiment. Two major types of thua nao can be distinguished; fresh and dried forms. To date, scientific information on thua nao is scarce and thus this article aims to document the updated knowledge of Thai thua nao.

  19. Screening of endophytic sources of exopolysaccharides: Preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time

    Directory of Open Access Journals (Sweden)

    Ravely Casarotti Orlandelli

    2016-06-01

    Full Text Available Endophytic fungi have been described as producers of important bioactive compounds; however, they remain under-exploited as exopolysaccharides (EPS sources. Therefore, this work reports on EPS production by submerged cultures of eight endophytes isolated from Piper hispidum Sw., belonging to genera Diaporthe, Marasmius, Phlebia, Phoma, Phyllosticta and Schizophyllum. After fermentation for 96 h, four endophytes secreted EPS: Diaporthe sp. JF767000, Diaporthe sp. JF766998, Diaporthe sp. JF767007 and Phoma herbarum JF766995. The EPS from Diaporthe sp. JF766998 differed statistically from the others, with a higher percentage of carbohydrate (91% and lower amount of protein (8%. Subsequently, this fungus was grown under submerged culture for 72, 96 and 168 h (these EPS were designated EPSD1-72, EPSD1-96 and EPSD1-168 and the differences in production, monosaccharide composition and apparent molecular were compared. The EPS yields in mg/100 mL of culture medium were: 3.0 ± 0.4 (EPSD1-72, 15.4 ± 2.2 (EPSD1-96 and 14.8 ± 1.8 (EPSD1-168. The EPSD1-72 had high protein content (28.5% and only 71% of carbohydrate; while EPSD1-96 and EPSD1-168 were composed mainly of carbohydrate (≈95 and 100%, respectively, with low protein content (≈5% detected at 96 h. Galactose was the main monosaccharide component (30% of EPSD1-168. Differently, EPSD1-96 was rich in glucose (51%, with molecular weight of 46.6 kDa. It is an important feature for future investigations, because glucan-rich EPS are reported as effective antitumor agents.

  20. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production

    International Nuclear Information System (INIS)

    Shen, Yanwen; Brown, Robert C.; Wen, Zhiyou

    2017-01-01

    Highlights: • A novel a horizontal rotating packed bed (h-RPB) reactor for syngas fermentation was reported. • The h-RPB reactor enhanced ethanol productivity by 3.3-folds compared to continuous stirred tank reactor (CSTR). • The h-RPB reactor has a unique feature of transfer gas from both bulk liquid phase and headspace phase. • The mass transfer in the headspace of h-PRB played an important role for enhanced ethanol production. - Abstract: Gasification of lignocellulosic biomass followed by syngas fermentation is a promising process for producing fuels and chemicals. Syngas fermentation, however, is commonly limited by low mass transfer rates. In this work, a horizontally oriented rotating packed bed (h-RPB) reactor was developed to improve mass transfer and enhance ethanol production. In the h-RPB reactor, cell attachment materials were packed in the reactor and half submerged in the liquid and half exposed to the headspace. With continuous rotation of the packing materials, the cells in biofilm were alternately in contact with liquid and headspace; thus, transport of syngas to the cells occurred in both the liquid phase and headspace. The volumetric mass transfer coefficient (k_La) of the h-RPB reactor was lower than that in a traditional continuous stirred tank reactor (CSTR), indicating the mass transfer in the liquid phase of h-PRB was lower than CSTR, and the mass transfer in the headspace phase played an important role in syngas fermentation. The syngas fermentation of Clostridium carboxidivorans P7 in h-RPB resulted in a 7.0 g/L titer and 6.7 g/L/day productivity of ethanol, respectively, 3.3 times higher than those obtained in a CSTR under the same operational conditions. The results demonstrate that the h-RPB reactor is an efficient system for syngas fermentation, making cellulosic ethanol biorefinery one step closer to technical and economic feasibility.

  1. Fermentation performance optimization in an ectopic fermentation system.

    Science.gov (United States)

    Yang, Xiaotong; Geng, Bing; Zhu, Changxiong; Li, Hongna; He, Buwei; Guo, Hui

    2018-07-01

    Ectopic fermentation systems (EFSs) were developed for wastewater treatment. Previous studies have investigated the ability of thermophilic bacteria to improve fermentation performance in EFS. Continuing this research, we evaluated EFS performance using principle component analysis and investigated the addition of different proportions of cow dung. Viable bacteria communities were clustered and identified using BOX-AIR-based repetitive extragenic palindromic-PCR and 16S rDNA analysis. The results revealed optimal conditions for the padding were maize straw inoculated with thermophilic bacteria. Adding 20% cow dung yielded the best pH values (6.94-8.56), higher temperatures, increased wastewater absorption, improved litter quality, and greater microbial quantities. The viable bacteria groups were enriched by the addition of thermophilic consortium, and exogenous strains G21, G14, G4-1, and CR-15 were detected in fermentation process. The proportion of Bacillus species in treatment groups reached 70.37% after fermentation, demonstrating that thermophilic bacteria, especially Bacillus, have an important role in EFS, supporting previous predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Submergible barge retrievable storage and permanent disposal system for radioactive waste

    Science.gov (United States)

    Goldsberry, Fred L.; Cawley, William E.

    1981-01-01

    A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

  3. Submerged karst landforms observed by multibeam bathymetric survey in Nagura Bay, Ishigaki Island, southwestern Japan

    Science.gov (United States)

    Kan, Hironobu; Urata, Kensaku; Nagao, Masayuki; Hori, Nobuyuki; Fujita, Kazuhiko; Yokoyama, Yusuke; Nakashima, Yosuke; Ohashi, Tomoya; Goto, Kazuhisa; Suzuki, Atsushi

    2015-01-01

    Submerged tropical karst features were discovered in Nagura Bay on Ishigaki Island in the southern Ryukyu Islands, Japan. The coastal seafloor at depths shallower than ~ 130 m has been subjected to repeated and alternating subaerial erosion and sedimentation during periods of Quaternary sea-level lowstands. We conducted a broadband multibeam survey in the central area of Nagura Bay (1.85 × 2.7 km) and visualized the high-resolution bathymetric results over a depth range of 1.6-58.5 m. Various types of humid tropical karst landforms were found to coexist within the bay, including fluviokarst, doline karst, cockpit karst, polygonal karst, uvalas, and mega-dolines. Although these submerged karst landforms are covered by thick postglacial reef and reef sediments, their shapes and sizes are distinct from those associated with coral reef geomorphology. The submerged landscape of Nagura Bay likely formed during multiple glacial and interglacial periods. According to our bathymetric results and the aerial photographs of the coastal area, this submerged karst landscape appears to have developed throughout Nagura Bay (i.e., over an area of approximately 6 × 5 km) and represents the largest submerged karst in Japan.

  4. Modified Application of Nitrogen Fertilizer for Increasing Rice Variety Tolerance toward Submergence Stress

    Directory of Open Access Journals (Sweden)

    Gribaldi Gribaldi

    2017-01-01

    Full Text Available This research was conducted from July to October 2015, using Randomized Block Design with two treatment factors and three replications for each treatment. The first factor was rice varieties (V: V1 = IR 64; V2 = Inpara 5. The second factor was fertilizer (N: N0: without submergence, all N fertilizer was given during planting; N1: all N fertilizer dose was given during planting; and N2: 1/2 dose of N fertilizer was given during planting; the rest was given at 42 days after planting. The submergence was during 7–14 days after planting; N3 = the entire dose of N fertilizer that was given during planting, N4 = 1/2 the dose of N fertilizer that was given during planting, and the rest was given at 42 days after planting. The submergence was during 7–14 and 28–35 days after planting. The results showed that the management of nitrogen fertilizer application had effect on rice growth and production which experienced dirty water submergence stress; the application of 1/2 dose of N fertilizer given during planting had the best effect on rice growth and production; the longer the submergence period for rice variety, the higher the effect on rice growth and production.

  5. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  6. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Directory of Open Access Journals (Sweden)

    Hong-Li Li

    Full Text Available Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot and two levels of water depth (30 cm and 70 cm. Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  7. Suspension of Egg Hatching Caused by High Humidity and Submergence in Spider Mites.

    Science.gov (United States)

    Ubara, Masashi; Osakabe, Masahiro

    2015-08-01

    We tested the effects of high humidity and submergence on egg hatching of spider mites. In both the high humidity and submergence treatments, many Tetranychus and Panonychus eggs did not hatch until after the hatching peak of the lower humidity or unsubmerged controls. However, after humidity decreased or water was drained, many eggs hatched within 1-3 h. This was observed regardless of when high humidity or submergence treatments were implemented: either immediately after oviposition or immediately before hatching was due. Normal eyespot formation was observed in most eggs in the high humidity and submergence treatments, which indicates that spider mite embryos develop even when eggs are underwater. Therefore, delays in hatching are not caused by delayed embryonic development. A delay in hatching was always observed in Panonychus citri (McGregor) but was more variable in Tetranychus urticae Koch and Tetranychus kanzawai Kishida. The high humidity and submergence treatments affected but did not suppress larval development in these species. In contrast, many Oligonychus eggs died following the high humidity treatments. In Tetranychus and Panonychus spider mites, suspension of egg hatching may mitigate the adverse effects of rainfall. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi

    2016-10-01

    Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3-64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7-25.4%), Firmicutes (3.0-20.1%), Acidobacteria (2.7-15.7%), Actinobacteria (2.2-8.7%), Bacteroidetes (0.5-9.7%), and Verrucomicrobia (2.4-5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen.

  9. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  10. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting...... yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production...

  11. Korean traditional fermented soybean products: Jang

    Directory of Open Access Journals (Sweden)

    Donghwa Shin

    2015-03-01

    Fermented products are going beyond the boundaries of their use as mere side dishes, and are seeing significant increases in their use as a functional food. Kanjang (fermented soy sauce, Doenjang (fermented soybean paste, and Gochujang (fermented red pepper paste are the most well-known fermented products in Korea. These products occupy an important place in people's daily lives as seasonings and are used in many side dishes. It has been proven through clinical studies that these products have many health benefits, such as their ability to fight cancer and diabetes, and to prevent obesity and constipation.

  12. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  13. Screening of liquid media and fermentation of an endophytic Beauveria bassiana strain in a bioreactor

    Science.gov (United States)

    2014-01-01

    A novel approach for biological control of insect pests could be the use of the endophytic entomopathogenic Beauveria bassiana isolate ATP-02. For the utilization of the endophyte as a commercial biocontrol agent, the fungus has to be mass-produced. B. bassiana was raised in shake flask cultures to produce high concentrations of total spores (TS), which include blastospores (BS) and submerged conidiospores (SCS). The highest concentration of 1.33×109 TS/mL and the highest yield of 5.32×1010 TS/g sucrose was obtained in the TKI broth with 5% sugar beet molasses which consists of 50% sucrose as a carbon source. In spite of the lower sugar concentration (2.5%) the amount of TS could be increased up to 11-times in contrast to the cultivation with 5% sucrose. The scale-up to a 2 L stirred tank reactor was carried out at 25°C, 200–600 rpm and 1 vvm at pH 5.5. A TS yield of 5.2×1010 TS/g sucrose corresponding to a SCS yield of 0.2×1010 SCS/g sucrose was obtained after 216 h. With regards to the culture medium the cost of 1012 TS amounts to 0.24 €. Plutella xylostella larvae, which were fed with oilseed rape leaves treated with spores from fermentation resulted in 77 ± 5% mortality. Moreover, spores from submerged cultivation were able to colonize oilseed rape leaves via leaf application. This is the first report of fermentation of an endophytic B. bassiana strain in a low-cost culture medium to very high yields of TS. PMID:24949278

  14. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  15. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  16. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.

    2008-01-01

    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid

  17. Mystery behind Chinese liquor fermentation

    NARCIS (Netherlands)

    Jin, Guangyuan; Zhu, Yang; Xu, Yan

    2017-01-01

    Background Chinese liquor, a very popular fermented alcoholic beverage with thousands of years’ history in China, though its flavour formation and microbial process have only been partly explored, is facing the industrial challenge of modernisation and standardisation for food quality and safety as

  18. Aroma characteristics of Moutai-flavour liquor produced with Bacillus licheniformis by solid-state fermentation.

    Science.gov (United States)

    Zhang, R; Wu, Q; Xu, Y

    2013-07-01

    The potential of Bacillus licheniformis as a starter culture for aroma concentration improvement in the fermentation of Chinese Moutai-flavour liquor was elucidated. The volatile compounds produced by B. licheniformis were identified by GC-MS, in which C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds were the main ingredients. The strains B. licheniformis (MT-6 and MT-15) produced more volatile compound concentrations, mainly C4 compounds, than the type strain of B. licheniformis (ATCC 14580) at the fermentation temperature of 55°C. Meanwhile, more volatile compound concentrations were produced by B. licheniformis in solid-state fermentation than in submerged state fermentation. Thus, the strains MT-6 and MT-15 were used as the Bacillus starter culture for investigating Moutai-flavour liquor production. The distilled liquor inoculated with Bacillus starter culture was significantly different from the liquor without inoculum. This was particularly evident in the fore-run part of the distilled sample which was inoculated with Bacillus starter culture, where volatile compounds greatly increased compared to the control. Furthermore, the distilled liquor with Bacillus starter culture showed improved results in sensory appraisals. These results indicated that B. licheniformis was one of the main species influencing the aroma characteristics of Moutai-flavour liquor. This is the first report of an investigation into the effect of Bacillus starter cultures on the flavour features of Moutai-flavour liquor, which verified that Bacillus licheniformis can enhance aroma concentration in Moutai-flavour liquor. Bacillus starter culture brought C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds to the liquor, which gave a better result in sensory appraisals. © 2013 The Society for Applied Microbiology.

  19. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  20. Tolerance of combined submergence and salinity in the halophytic stem-succulent Tecticornia pergranulata

    DEFF Research Database (Denmark)

    Colmer, T D; Vos, H; Pedersen, Ole

    2009-01-01

    pergranulata subsp. pergranulata (syn. Halosarcia pergranulata subsp. pergranulata). Growth and total sugars in succulent stems were assessed as a function of time after submergence. Underwater net photosynthesis, dark respiration, total sugars, glycinebetaine, Na(+), Cl(-) and K(+), in succulent stems, were...... assessed in a NaCl dose-response experiment. KEY RESULTS: Submerged plants ceased to grow, and tissue sugars declined. Photosynthesis by succulent stems was reduced markedly when underwater, as compared with in air. Capacity for underwater net photosynthesis (P(N)) was not affected by 10-400 mM Na......Cl, but it was reduced by 30 % at 800 mM. Dark respiration, underwater, increased in succulent stems at 200-800 mM NaCl, as compared with those at 10 mM NaCl. On an ethanol-insoluble dry mass basis, K(+) concentration in succulent stems of submerged plants was equal to that in drained controls, across all Na...

  1. Molecular characterization of the submergence response of Arabidopsis thaliana ecotype Columbia

    DEFF Research Database (Denmark)

    Lee, S.C.; Mustroph, A.; Sasidaharan, R.

    2011-01-01

    partial pressure of the petiole and root had stabilized at c. 6 and 0.1 kPa, respectively. As controls, plants were untreated or exposed to darkness. Following quantitative profiling of cellular mRNAs with the Affymetrix ATH1 platform, changes in the transcriptome in response to submergence, early...... darkness, and O2-deprivation were evaluated by fuzzy k-means clustering. This identified genes co-regulated at the conditional, developmental or organ-specific level. Mutants for 10 differentially expressed HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes were screened for altered submergence tolerance....... • The analysis identified 34 genes that were ubiquitously co-regulated by submergence and O2 deprivation. The biological functions of these include signaling, transcription, and anaerobic energy metabolism. HUPs comprised 40% of the co-regulated transcripts and mutants of seven of these genes were significantly...

  2. The Brewing Process: Optimizing the Fermentation

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-11-01

    Full Text Available Beer is a carbonated alcoholic beverage obtained by alcoholic fermentation of malt wort boiled with hops. Brown beer obtained at Beer Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca was the result of a recipe based on blond, caramel and black malt in different proportions, water, hops and yeast. This study aimed to monitorize the evolution of wort in primary and secondary alcoholic fermentation in order to optimize the process. Two wort batches were assambled in order to increase the brewing yeast fermentation performance. The primary fermentation was 14 days, followed by another 14 days of secondary fermentation (maturation. The must fermentation monitoring was done by the automatic FermentoStar analyzer. The whole fermentation process was monitorized (temperature, pH, alcohol concentration, apparent and total wort extract.

  3. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  4. MASS TRANSFER IN FERMENTATION PROCESSES

    Directory of Open Access Journals (Sweden)

    A. Shevchenko

    2018-04-01

    Full Text Available The peculiarities of anaerobic fermentation processes with the accumulation of dissolved ethyl alcohol and carbon dioxide in the culture media are considered in the article.The solubility of CO2 is limited by the state of saturation in accordance with Henry’s law. This, with all else being equal, limits the mass transfer on the interface surface of yeast cells and the liquid phase of the medium. A phenomenological model of the media restoration technologies based on the unsaturation index on СО2 is developed. It is shown that this restoration in the existing technologies of fermentation of sugar-rich media occurs, to a limited extent, in self-organized flow circuits, with variable values of temperatures and hydrostatic pressures, due to the creation of unsaturated local zones.It is shown that increasing the height of the media in isovolumetric apparatuses leads to an increase in the levels of flow circuits organization and to the improvement of the desaturation and saturation modes of the liquid phase and intensification of mass transfer processes. Among the deterministic principles of restoring the saturation possibilities of the media, there are forced variables of pressures with time pauses on their lower and upper levels. In such cases, the possibilities of short-term intensive desaturations in full media volumes, the restoration of their saturation perception of CO2, and the activation of fermentation processes are achieved. This direction is technically feasible for active industrial equipment.The cumulative effect of the action of variable pressures and temperatures corresponds to the superposition principle, but at the final stages of fermentation, the pressure and temperature values are leveled, so the restoration of the unsaturation state slows down to the level of the bacteriostatic effect. The possibility of eliminating the disadvantages of the final stage of fermentation by means of programmable variable pressures is shown

  5. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  6. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    Science.gov (United States)

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  7. Wave energy absorption by a submerged air bag connected to a rigid float

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Chaplin, J. R.; Hann, M. R.

    2017-01-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are gene......A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements...

  8. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study

    NARCIS (Netherlands)

    Vanderstukken, M.; Mazzeo, N.; Colen, W.; Declerck, S.A.J.; Muylaert, K.

    2011-01-01

    1. In temperate regions, submerged macrophytes can hamper phytoplankton blooms. Such an effect could arise directly, for instance via allelopathy, or indirectly, via competition for nutrients or the positive interaction between submerged macrophytes and zooplankton grazing. However, there is some

  9. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: Roles of light, sediment nutrient levels, and propagule density

    NARCIS (Netherlands)

    Verhofstad, M.J.J.M.; Alirangues Núñez, M. M.; Reichman, E. P.; van Donk, E.; Lamers, L. P.M.; Bakker, E. S.

    2017-01-01

    After restoration, eutrophicated shallow freshwaters may show mass development of only one or two submerged macrophyte species, lowering biodiversity and hampering recreation. It is unclear which environmental factors govern this high percentage of the volume inhabited (PVI2) by submerged

  10. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water

    DEFF Research Database (Denmark)

    Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole

    2014-01-01

    A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week...... at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast......, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas...

  11. Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation.

    Science.gov (United States)

    Sahoo, R K; Subudhi, E; Kumar, M

    2014-06-01

    Proliferation of the inoculated Pseudomonas sp. S1 is quantitatively evaluated using ERIC-PCR during the production of lipase in nonsterile solid state fermentation an approach to reduce the cost of enzyme production. Under nonsterile solid state fermentation with olive oil cake, Pseudomonas sp. S1 produced 57·9 IU g(-1) of lipase. DNA fingerprints of unknown bacterial isolates obtained on Bushnell Haas agar (BHA) + tributyrin exactly matched with that of Pseudomonas sp. S1. Using PCR-based enumeration, population of Pseudomonas sp. S1 was proliferated from 7·6 × 10(4) CFU g(-1) after 24 h to 4·6 × 10(8) CFU g(-1) after 96 h, which tallied with the maximum lipase activity as compared to control. Under submerged fermentation (SmF), Pseudomonas sp. S1 produced maximum lipase (49 IU ml(-1) ) using olive oil as substrate, while lipase production was 9·754 IU ml(-1) when Pseudomonas sp. S1 was grown on tributyrin. Optimum pH and temperature of the crude lipase was 7·0 and 50°C. Crude enzyme activity was 71·2% stable at 50°C for 360 min. Pseudomonas sp. S1 lipase was also stable in methanol showing 91·6% activity in the presence of 15% methanol, whereas 75·5 and 51·1% of activity were retained in the presence of 20 and 30% methanol, respectively. Thus, lipase produced by Pseudomonas sp. S1 is suitable for the production of biodiesel as well as treatment of oily waste water. This study presents the first report on the production of thermophilic organic solvent tolerant lipase using agro-industry waste in nonsterile solid state fermentation. Positive correlation between survival of Pseudomonas sp. S1 and lipase production under nonsterile solid state fermentation was established, which may emphasize the need to combine molecular tools and solid state fermentation in future studies. Our study brings new insights into the lipase production in cost-effective manner, which is an industrially relevant approach. © 2014 The Society for Applied Microbiology.

  12. Ozone pretreatment and fermentative hydrolysis of wheat straw

    Science.gov (United States)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  13. 27 CFR 24.197 - Production by fermentation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same manner...

  14. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Lee, Sang Il; Lee, Keon Jin; Chun, Ho Hyun; Ha, Sanghyun; Gwak, Hyun Jung; Kim, Ho Myeong; Lee, Jong-Hee; Choi, Hak-Jong; Kim, Hyeong Hwan; Shin, Teak Soo; Park, Hae Woong; Kim, Jin-Cheol

    2018-03-01

    Oxalic acid has potent nematicidal activity against the root-knot nematode Meloidogyne incognita. In this study, fermentation parameters for oxalic acid production in submerged culture of Aspergillus niger F22 at 23, 25, and 30 °C were optimized in 5-L jar fermenters. The viscosity of the culture broth increased with increasing temperature. There was a negative correlation between oxalic acid production and the apparent viscosity; high volumetric productivity of oxalic acid was obtained at low apparent viscosity (less than 1000 cP), with a productivity of more than 100 mg/L h. When the apparent viscosity was over 2500 cP, the volumetric productivity decreased below 50 mg/L h. In addition, the volumetric mass transfer coefficient, K L a, positively correlated with volumetric productivity. When the K L a value increased from 0.0 to 0.017 /s, the volumetric productivity proportionally increased up to 176 mg/L h. When the temperature decreased, K L a increased due to the decrease in viscosity, leading to increased volumetric productivity. The highest productivity of 7453.3 mg/L was obtained at the lowest temperature, i.e., 23 °C. The nematicidal activity of culture filtrate was proportional to the content of oxalic acid. Based on a constant impeller tip speed, oxalic acid production was successfully scaled up to a 500-L pilot vessel, producing a final concentration comparable to that in the 5-L jar.

  15. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    Science.gov (United States)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  16. Microprocessors control of fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Fawzy, A S; Hinton, O R

    1980-01-01

    This paper presents three schemes for the solution of the optimal control of fermentation process. It also shows the advantages of using microprocessors in controlling and monitoring this process. A linear model of the system is considered. An optimal feedback controller is determined which maintains the states (substrate and organisms concentration) at desired values when the system is subjected to disturbances in the influent substrate and organisms concentration. Simulation results are presented for the three cases.

  17. Manioc alcohol by continuous fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Del Bianco, V; de Queiroz Araujo, N; Miceli, A; Souza e Silva, P C; da Silva Burle, J A

    1976-01-01

    EtOH was produced from dry cassava meal by first obtaining a glucose syrup by enzymic action, then fermenting the syrup with yeast. Bacillus subtilis amylase and Aspergillus awamori amyloglucosidase were prepared by growing the organisms on cassava meal. Both enzymes were used to saccharify the cassava starch to syrup. Saccharomyces cervisiae ATCC 1133 was then used in a continuous process to produce EtOH.

  18. Probiotics in Dairy Fermented Products

    OpenAIRE

    Araújo, Emiliane Andrade; Pires, Ana Clarissa dos Santos; Pinto, Maximiliano Soares; Jan, Gwénaël; Carvalho, Antônio Fernandes de

    2012-01-01

    Interest in the role of probiotics for human health began as early as 1908 when Metchnikoff associated the intake of fermented milk with prolonged life (Lourens-Hattingh and Vilijoen, 2001b). However, the relationship between intestinal microbiota and good health and nutrition has only recently been investigated. Therefore, it was not until the 1960’s that health benefit claims began appearing on foods labels. In recent years,there has been an increasing interest in probiotic foods, which...

  19. Identification of the submergence tolerance QTL Come Quick Drowning1 (CGD1) in Arabidopsis thaliana

    NARCIS (Netherlands)

    Akman, Melis; Kleine, Rogier; Tienderen, van Peter H.; Schranz, Eric M.

    2017-01-01

    Global climate change is predicted to increase water precipitation fluctuations and lead to localized prolonged floods in agricultural fields and natural plant communities. Thus, understanding the genetic basis of submergence tolerance is crucial in order to improve plant survival under these

  20. Conidiation of Neurospora crassa induced by treatment with natrium fluoride in submerged culture

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W E; Turian, G

    1975-01-01

    A transient treatment of pregerminated conidia of Neurospora crassa with NaF induced young, submerged cultures to prematurely differentiate conidia. The inductive treatment decreased the rate of respiration (with lower RQ), reduced the relative concentration of nucleoside triphosphates, and inhibited leucine incorporation into protein and adenosine incorporation into RNA.

  1. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants

  2. Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study

    NARCIS (Netherlands)

    Mommer, L.; Pons, T.L.; Visser, E.J.W.

    2006-01-01

    Survival and growth of terrestrial plants is negatively affected by complete submergence. This is mainly the result of hampered gas exchange between plants and their environment, since gas diffusion is severely reduced in water compared with air, resulting in O2 deficits which limit aerobic

  3. The mechanism of improved aeration due to gas films on leaves of submerged rice.

    Science.gov (United States)

    Verboven, Pieter; Pedersen, Ole; Ho, Quang Tri; Nicolai, Bart M; Colmer, Timothy D

    2014-10-01

    Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a three-dimensional leaf anatomy model. The anatomy and dark respiration of leaves of rice (Oryza sativa L.) were measured and used to compute O2 fluxes and partial pressure of O2 (pO2 ) in the DBL, gas film and leaf when submerged. The effects of floodwater pO2 , DBL thickness, cuticle permeability, presence of gas film and stomatal opening were explored. Under O2 -limiting conditions of the bulk water (pO2  gas film significantly increases the O2 flux into submerged leaves regardless of whether stomata are fully or partly open. With a gas film, tissue pO2 substantially increases, even for the slightest stomatal opening, but not when stomata are completely closed. The effect of gas films increases with decreasing cuticle permeability. O2 flux and tissue pO2 decrease with increasing DBL thickness. The present modelling analysis provides a mechanistic understanding of how leaf gas films facilitate O2 entry into submerged plants. © 2014 John Wiley & Sons Ltd.

  4. The structuring role of submerged macrophytes in a large subtropical shallow lake

    NARCIS (Netherlands)

    Finkler Ferreira, Tiago; Crossetti, Luciane O.; Motta Marques, David M.L.; Cardoso, Luciana; Fragoso, Carlos Ruberto; Nes, van Egbert H.

    2018-01-01

    It is well known that submerged macrophytes exert positive feedback effects that enhance the water transparency, stabilizing the clear-water state in shallow temperate lakes. However, the structuring effect of macrophytes on the food web of subtropical and tropical ecosystems is still poorly

  5. Diminishing peat oxidation of agricultural peat soils by infiltration via submerged drains

    NARCIS (Netherlands)

    Akker, van den J.J.H.; Hendriks, R.F.A.

    2017-01-01

    Oxidation of peat soils used in dairy farming in the western peat area of The Netherlands causes subsidence rates up to 13 mm.y and emissions of CO2 to about 27 t.ha.y. In 2003 experiments started with subsurface irrigation by submerged drains to raise groundwater levels to reduce oxidation and so

  6. Factors affecting palatability of four submerged macrophytes for grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Sun, Jian; Wang, Long; Ma, Lin; Min, Fenli; Huang, Tao; Zhang, Yi; Wu, Zhenbin; He, Feng

    2017-12-01

    Grass carp can weaken the growth and reproductive capacity of submerged macrophytes by consuming valuable tissues, but factors affecting palatability of submerged macrophytes for grass carp rarely are considered. In this study, relative consumption rate of grass carp with regard to submerged macrophytes was in the following order: Hydrilla verticillata > Vallisneria natans > Ceratophyllum demersum > Myriophyllum spicatum. Firmness of macrophytes was in the following order: M. spicatum > C. demersum > H. verticillata = V. natans, whereas shear force was M. spicatum > C. demersum > H. verticillata > V. natans. After crude extracts of M. spicatum were combined with H. verticillata, grass carp fed on fewer macrophyte pellets that contained more plant secondary metabolites (PSMs). This indicated that structure and PSMs affected palatability of macrophytes.PSMs do not contribute to reduction in palatability through inhibition of intestinal proteinases activity, but they can cause a decrease in the abundance of Exiguobacterium, Acinetobacter-yielding proteases, lipases, and cellulose activity, which in turn can weaken the metabolic capacity of grass carp and adversely affect their growth. Thus, the disadvantages to the growth and development of grass carp caused by PSMs may drive grass carp to feed on palatable submerged macrophytes with lower PSMs.

  7. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China.

    Science.gov (United States)

    Wang, Zhixiu; Yao, Lu; Liu, Guihua; Liu, Wenzhi

    2014-09-01

    Through retaining runoff and pollutants such as heavy metals from surrounding landscapes, ponds around a lake play an important role in mitigating the impacts of human activities on lake ecosystems. In order to determine the potential for heavy metal accumulation of submerged macrophytes, we investigated the concentrations of 10 heavy metals (i.e., As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in water, sediments, and submerged macrophytes collected from 37 ponds around the Dianchi Lake in China. Our results showed that both water and sediments of these ponds were polluted by Pb. Water and sediments heavy metal concentrations in ponds received urban and agricultural runoff were not significantly higher than those in ponds received forest runoff. This result indicates that a large portion of heavy metals in these ponds may originate from atmospheric deposition and weathering of background soils. Positive relationships were found among heavy metal concentrations in submerged macrophytes, probably due to the coaccumulation of heavy metals. For most heavy metals, no significant relationships were found between submerged macrophytes and their water and sediment environments. The maximum concentrations of Cr, Fe and Ni in Ceratophyllum demersum were 4242, 16,429 and 2662mgkg(-1), respectively. The result suggests that C. demersum is a good candidate species for removing heavy metals from polluted aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. PERFORMANCE OF NEWLY CONFIGURED SUBMERGED MEMBRANE BIOREACTOR FOR AEROBIC INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gede Wenten

    2012-02-01

    Full Text Available The application of membrane to replace secondary clarifier of conventional activated sludge, known as membrane bioreactor, has led to a small footprint size of treatment with excellent effluent quality. The use of MBR eliminates almost all disadvantages encountered in conventional wastewater treatment plant such as low biomass concentration and washout of fine suspended solids. However, fouling remains as a main drawback. To minimize membrane fouling, a new configuration of submerged membrane bioreactor for aerobic industrial wastewater treatment has been developed. For the new configuration, a bed of porous particle is applied to cover the submerged ends-free mounted ultrafiltration membrane. Membrane performance was assessed based on flux productivity and selectivity. By using tapioca wastewater containing high organic matter as feed solution, reasonably high and stable fluxes around 11 l/m2.h were achieved with COD removal efficiency of more than 99%. The fouling analysis also shows that the newly configured ends-free membrane bioreactor exhibits lower irreversible resistance compared with the submerged one. In addition, the performance of pilot scale system, using a membrane module  with 10 m2 effective area and reactor tank with 120 L volume, was also assessed. The flux achieved from the pilot scale system around 8 l/m2.h with COD removal of more than 99%. Hence, this study has demonstrated the feasibility of the newly configured submerged ends-free MBR at larger scale.

  9. Continental shelf drowned landscapes: Submerged geomorphological and sedimentary record of the youngest cycles

    NARCIS (Netherlands)

    Cohen, K.M.; Lobo, F.J.

    2013-01-01

    Continental shelves today find themselves largely submerged as a consequence of the sea-level rise in the last 20,000 years, the time since the Last Glacial Maximum (LGM), the period of maximum ice mass and minimum ocean volume within the Last Glacial Cycle. Their geomorphology, however, is far from

  10. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth

    DEFF Research Database (Denmark)

    Lübbehüsen, Tina Louise; Nielsen, Jens; Mcintyre, Mhairi

    2004-01-01

    The dimorphic organism Mucor circinelloides is currently being investigated as a potential host for heterologous protein production. The production of ethanol on pentose and hexose sugars was studied in submerged batch cultivations to further the general knowledge of Mucor physiology, with a view...

  11. Deep water marine algal flora of the submerged banks off west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ambiye, V.; Untawale, A.G.

    A survey of submerged banks off India viz Cora Divh, Sessostris and Bassas de-Pedro resulted in obtaining information on the rich and diverse marine algal flora from various depths ranging from 18-70 m. A programme of onboard dredging was undertaken...

  12. Corrosion monitoring for underground and submerged concrete structures - examples and interpretation issues

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Leegwater, G.

    2008-01-01

    Since about 1980 Corrosion Monitoring Systems have been used in many concrete structures in aggressive environmentworldwide. While these systemswork properly in aboveground environment, some questions have arisen for submerged conditions, e.g. the outer sides of tunnels, piers in seawater or

  13. Development of spent solvent treatment process by a submerged combustion technique

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide; Chida, Mitsuhisa

    1994-01-01

    An experimental study using a bench-scale equipment of 1 kg-simulated spent solvents per hour has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of tri-n-butyl phosphate and/or n-dodecane, and on the distribution behaviors of combustion products such as phosphoric acid, Ru, I, Zr and lanthanides as TRU simulants in the submerged combustion process. Also the experimental results of TRU separation from phosphoric acid solution by co-precipitation using bismuth phosphate are reported. It was shown that the submerged combustion technique was applicable to the treatment of spent solvents including the distillation residues of the solvent. Based on the experimental data, a new treatment process of spent solvent was proposed which consisted of submerged combustion, co-precipitation using bismuth phosphate, ceramic membrane filtration, cementation of TRU lean phosphate, and vitrification of TRU rich waste. (author)

  14. Over-expression of Sub1 A, a submergence tolerance gene from ...

    African Journals Online (AJOL)

    Sub1A, an ethylene-response-factor-like (ERE-like) gene, mediates the extinguished submergence tolerance of rice. To gain further insight into the function of Sub1A in other species, we transformed tobacco plants with the gene under the control of the ubiquitin promoter. Compared to the wild-type plants, transgenic plants ...

  15. Competition between free-floating and submerged macrophytes in a future of climate change

    NARCIS (Netherlands)

    Netten, J.J.C.

    2011-01-01


    This research was about the asymmetric competition between free-floating and submerged macrophytes in shallow freshwater ecosystems. I studied the effect of climate change on the dominance of free-floating macrophytes in temperate regions. The research approach was a combination of outdoor

  16. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  17. Challenges in industrial fermentation technology research

    DEFF Research Database (Denmark)

    Formenti, Luca Riccardo; Nørregaard, Anders; Bolic, Andrijana

    2014-01-01

    Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same...... engineering challenges: scaling up and scaling down fermentation processes, the influence of morphology on broth rheology and mass transfer, and establishing novel sensors to measure and control insightful process parameters. The greatest emphasis is on the challenges posed by filamentous fungi, because...

  18. Clinical significance of fermentation and lactose malabsorption

    OpenAIRE

    Olesen, Merete; Gudmand-Høyer, Eivind

    2001-01-01

    Fermentation, the bacterial process of gaining energy from the breakdown of carbohydrates, takes place in the human large intestine as well as that of the animals. This process is important for the health of the colon. Due to changing dietary habits, the available substrates for fermentation in the human colon are scarce, and this fact may contribute to the increased number of colonic diseases in the Western world. Lactose in lactose-maldigesters increase the amounts of fermentable substrate,...

  19. Production and purification of anti-bacterial biometabolite from wild-type Lactobacillus, isolated from fermented bamboo shoot: future suggestions and a proposed system for secondary metabolite onsite recovery during continuous fermentation.

    Science.gov (United States)

    Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C

    2015-02-01

    Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.

  20. Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in a eutrophic lake.

    Science.gov (United States)

    Yao, Lu; Chen, Chengrong; Liu, Guihua; Liu, Wenzhi

    2018-03-01

    Decline of submerged vegetation is one of the most serious ecological problems in eutrophic lakes worldwide. Although restoration of submerged vegetation is widely assumed to enhance ecological functions (e.g., nitrogen removal) and aquatic biodiversity, the evidence for this assumption is very limited. Here, we investigated the spatio-temporal patterns of sediment potential nitrification, unamended denitrification and N 2 O production rates along a vegetation gradient in the Lake Honghu, where submerged vegetation was largely restored by prohibiting net-pen aquaculture. We also used five functional genes as markers to quantify the abundance of sediment nitrifying and denitrifying microorganisms. Results showed that unvegetated sediments supported greater nitrification rates than rhizosphere sediments of perennial or seasonal vegetation. However, the absence of submerged vegetation had no significant effect on denitrification and N 2 O production rates. Additionally, the abundance of functional microorganisms in sediments was not significantly different among vegetation types. Season had a strong effect on both nitrogen cycling processes and microbial abundances. The highest nitrification rates were observed in September, while the highest denitrification rates occurred in December. The temporal variation of sediment nitrification, denitrification and N 2 O production rates could be due to changes in water quality and sediment properties rather than submerged vegetation and microbial abundances. Our findings highlight that vegetation restoration in eutrophic lakes improves water quality but does not enhance sediment nitrogen removal rates and microbial abundances. Therefore, for reducing the N level in eutrophic lakes, major efforts should be made to control nutrients export from terrestrial ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Invasive crayfish threaten the development of submerged macrophytes in lake restoration.

    Science.gov (United States)

    van der Wal, Jessica E M; Dorenbosch, Martijn; Immers, Anne K; Vidal Forteza, Constanza; Geurts, Jeroen J M; Peeters, Edwin T H M; Koese, Bram; Bakker, Elisabeth S

    2013-01-01

    Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.

  2. Beach impacts of shore-parallel breakwaters backing offshore submerged ridges, Western Mediterranean Coast of Egypt.

    Science.gov (United States)

    Iskander, Moheb M; Frihy, Omran E; El Ansary, Ahmed E; El Mooty, Mohamed M Abd; Nagy, Hossam M

    2007-12-01

    Seven breakwaters were constructed behind offshore submerged ridges to create a safe area for swimming and recreational activities west of Alexandria on the Mediterranean coast of Egypt. Morphodynamic evaluation was based on the modified Perlin and Dean numerical model (ImSedTran-2D) combined with successive shoreline and beach profile surveys conducted periodically between April 2001 and May 2005. Results reveal insignificant morphologic changes behind the detached breakwaters with slight coastline changes at the down and up-drift beaches of the examined breakwaters (+/-10 m). These changes are associated with salient accretion (20-7 0m) in the low-energy leeside of such structures. Concurrent with this sand accretion is the accumulation of a large amount of benthic algae (Sargassum) in the coastal water of the shadow area of these structures, which in turn have adverse effects on swimmers. Practical measures proposed in this study have successfully helped in mitigating such accumulation of algae in the recreation leeside of the breakwaters. The accumulation of Sargassum, together with the virtual insignificant changes in the up-drift and down-drifts of these structures, is a direct response to both coastal processes and the submerged carbonate ridges. Coastal processes encompass reversal of the directions of long-shore sand transport versus shoreline orientation, the small littoral drift rate and sand deficiency of the littoral zone. The beach response to the breakwaters together with the submerged ridges has also been confirmed by applying the ImSedTran-2D model. Results indicate that submerged ridges play a principal role in the evolution of beach morphology along the west coast of Alexandria. Although the study area is exposed to more than 70% wave exposures, the morphodynamic behavior of the beaches indicates that the submerged ridges act in a similar way as an additional natural barrier together with the artificial detached structures.

  3. Crestal bone loss around submerged and nonsubmerged dental implants: A systematic review.

    Science.gov (United States)

    Al Amri, Mohammad D

    2016-05-01

    To my knowledge, there is no systematic review of crestal bone loss (CBL) around submerged and nonsubmerged dental implants. The purpose of this review was to systematically assess CBL around submerged and nonsubmerged dental implants. The addressed focused question was, "Does crestal and subcrestal placement of dental implants influence crestal bone levels?" Databases were searched from 1986 through October 2015 using different combinations of the following keywords: crestal, sub-crestal, bone loss, dental implant, submerged, and nonsubmerged. Reference lists of potentially relevant original and review articles were hand-searched to identify any further studies. Letters to the editor, case reports, commentaries, studies on platform-switched implants, and studies published in languages other than English were excluded. In total, 13 studies (6 human and 7 animal), which were performed at universities, were included. In the human studies, the number of participants ranged from 8 to 84 individuals. The follow-up period ranged from 1 to 5 years. CBL at the test sites ranged from 0.17 mm to 0.9 mm and at control sites from 0.02 mm to 1.4 mm. Five human studies reported no significant difference in CBL around implants placed at the test and control sites. All animal studies were performed in dogs with a mean age ranging from 1 to approximately 2 years. The follow-up period ranged from 2 to 6 months. Four animal studies reported no significant difference in CBL around submerged and nonsubmerged implants. No significant difference in CBL was found around submerged and nonsubmerged dental implants. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    Science.gov (United States)

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production.

  5. Innovators, deep fermentation and antibiotics: promoting applied science before and after the Second World War.

    Science.gov (United States)

    Bud, Robert

    2011-01-01

    The historiography of penicillin has tended to overlook the importance of developing and disseminating know-how in fermentation technology. A focus on this directs attention to work before the war of a network in the US and Europe concerned with the production of organic acids, particularly gluconic and citric acids. At the heart of this network was the German-Czech Konrad Bernhauer. Other members of the network were a group of chemists at the US Department of Agriculture who first recognized the production possibilities of penicillin. The Pfizer Corporation, which had recruited a leading Department of Agriculture scientist at the end of the First World War, was also an important centre of development as well as of production. However, in wartime Bernhauer was an active member of the SS and his work was not commemorated after his death in 1975. After the war new processes of fermentation were disseminated by penicillin pioneers such as Jackson Foster and Ernst Chain. Because of its commercial context his work was not well known. The conclusion of this paper is that the commercial context, on the one hand, and the Nazi associations of Bernhauer, on the other, have submerged the significance of know-how development in the history of penicillin.

  6. Secretomic Insight into Glucose Metabolism of Aspergillus brasiliensis in Solid-State Fermentation.

    Science.gov (United States)

    Volke-Sepulveda, Tania; Salgado-Bautista, Daniel; Bergmann, Carl; Wells, Lance; Gutierrez-Sanchez, Gerardo; Favela-Torres, Ernesto

    2016-10-07

    The genus Aspergillus is ubiquitous in nature and includes various species extensively exploited industrially due to their ability to produce and secrete a variety of enzymes and metabolites. Most processes are performed in submerged fermentation (SmF); however, solid-state fermentation (SSF) offers several advantages, including lower catabolite repression and substrate inhibition and higher productivity and stability of the enzymes produced. This study aimed to explain the improved metabolic behavior of A. brasiliensis ATCC9642 in SSF at high glucose concentrations through a proteomic approach. Online respirometric analysis provided reproducible samples for secretomic studies when the maximum CO 2 production rate occurred, ensuring consistent physiological states. Extracellular extracts from SSF cultures were treated by SDS-PAGE, digested with trypsin, and analyzed by LC-MS/MS. Of 531 sequences identified, 207 proteins were analyzed. Twenty-five were identified as the most abundant unregulated proteins; 87 were found to be up-regulated and 95 were down-regulated with increasing glucose concentration. Of the regulated proteins, 120 were enzymes, most involved in the metabolism of carbohydrates (51), amino acids (23), and nucleotides (9). This study shows the high protein secretory activity of A. brasiliensis under SSF conditions. High glucose concentration favors catabolic activities, while some stress-related proteins and those involved in proteolysis are down-regulated.

  7. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  8. Nutritional and amino acid analysis of raw, partially fermented and ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... The nutritional and amino acid analysis of raw and fermented seeds of Parkia ... between 4.27 and 8.33 % for the fully fermented and the partially fermented seeds, respectively.

  9. PERVAPORATION MEMBRANE SYSTEMS FOR VOLATILE FERMENTATION PRODUCT RECOVERY AND DEHYDRATION

    Science.gov (United States)

    The economics of fermentative production of fuels and commodity chemicals can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol, concentrati...

  10. Process for the fermentative production of acetone, butanol and ethanol

    Science.gov (United States)

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  11. Microbial fermented tea - a potential source of natural food preservatives

    NARCIS (Netherlands)

    Mo, H.Z.; Yang Zhu, Yang; Chen, Z.M.

    2008-01-01

    Antimicrobial activities of microbial fermented tea are much less known than its health beneficial properties. These antimicrobial activities are generated in natural microbial fermentation process with tea leaves as substrates. The antimicrobial components produced during the fermentation process

  12. Improvement of Photosynthesis by Sub1 QTL in Rice Under Submergence: Probed by Chlorophyll Fluorescence OJIP Transients

    Directory of Open Access Journals (Sweden)

    Panda Debabrata

    2011-09-01

    Full Text Available The influence of submergence on the photosynthetic activity in rice plants either possessing or not possessing Sub1 QTL i.e. Swarna and Swarna Sub1 cultivars (cv. were evaluated under simulated complete submergence. The leaf photosynthetic rate and stomatal conductance decreased in both the cv. during the progression of submergence as compared to control plant but significant varietal differences was observed after 1 day (d of submergence. Submergence also alters the photo-system (PS II activity, as reflected in a decrease in the values of Fo, Fm and the Fv/Fm ratio and degradation of chlorophyll, more in Swarna than that of Swarna Sub1. Under complete submergence the shape of the OJIP transient also changed in rice leaves with decrease in maximal fluorescence (P=Fm intensity, resulted lowering of variable fluorescence levels. The decrease was more pronounced in Swarna compared to the Swarna Sub1 cv. Thus, Swarna Sub1 improves photosynthetic activity showing more photosynthetic rate compared to Swarna under submergence because, of less degradation of chlorophyll, higher stomatal conductance, and efficient PS II activity.

  13. STUDY OF THE INFLUENCE OF THE HEAT INPUT ON MECHANICAL PROPERTIES OF C-Mn STEEL WELD METALS OBTAINED BY SUBMERGED ARC PROCESS

    Directory of Open Access Journals (Sweden)

    Erick de Sousa Marouço

    2013-06-01

    Full Text Available The present work is part of a research program that aims to evaluate the technical feasibility of increasing productivity in the manufacturing of tubular components for offshore oil industry, which are fully welded by automatic submerged arc welding process, with high heat input, but with no impairment on the impact toughness of the weld metal. Multipass welds were produced by the submerged arc welding process, with a combination of F7A4-EM12K (wire/flux, by using a 3.2 mm-diameter wire, preheating at 80°C, with direct current, in flat position, with heat input varying from 3.5 kJ/mm to 12 kJ/mm. After welding, tensile tests and Charpy-V impact tests at –60°C, –40°C, –20°C, 0°C and 20°C were carried out, as well as metallographic examination by both optical (OM and scanning electron microscopy (SEM, of specimens obtained entirely from the weld metal, allowing the discussion over the toughness X microstructure relationship. The weld metals have shown higher toughness levels in relation to the minimum required for use with low-alloy C-Mn steels welding with requirements of impact toughness of 27 J at 0°C for heat input up to 12 kJ/mm allowing an increase in productivity of 58% on the effective manufacturing time.

  14. Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba.

    Science.gov (United States)

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-02-15

    We examined the gibberellin (GA) and ethylene regulation of submergence-induced elongation in seedlings of the submergence-tolerant lowland rice (Oryza sativa L.) cvs Senia and Bomba. Elongation was enhanced after germination to facilitate water escape and reach air. We found that submergence-induced elongation depends on GA because it was counteracted by paclobutrazol (an inhibitor of GA biosynthesis), an effect that was negated by GA(3). Moreover, in the cv Senia, submergence increased the content of active GA(1) and its immediate precursors (GA(53), GA(19) and GA(20)) by enhancing expression of several GA biosynthesis genes (OsGA20ox1 and -2, and OsGA3ox2), but not by decreasing expression of several OsGA2ox (GA inactivating genes). Senia seedlings, in contrast to Bomba seedlings, did not elongate in response to ethylene or 1-aminocyclopropane-1-carboxylic-acid (ACC; an ethylene precursor) application, and submergence-induced elongation was not reduced in the presence of 1-methylcyclopropene (1-MCP; an ethylene perception inhibitor). Ethylene emanation was similar in Senia seedlings grown in air and in submerged-grown seedlings following de-submergence, while it increased in Bomba. The expression of ethylene biosynthesis genes (OsACS1, -2 and -3, and OsACO1) was not affected in Senia, but expression of OsACS5 was rapidly enhanced in Bomba upon submergence. Our results support the conclusion that submergence elongation enhancement of lowland rice is due to alteration of GA metabolism leading to an increase in active GA (GA(1)) content. Interestingly, in the cv Senia, in contrast to cv Bomba, this was triggered through an ethylene-independent mechanism. Copyright © 2010 Elsevier GmbH. All rights reserved.

  15. Eddy Seeding in the Labrador Sea: a Submerged Autonomous Launching Platform (SALP) Application

    Science.gov (United States)

    Furey, Heather H.; Femke de Jong, M.; Bower, Amy S.

    2013-04-01

    A simplified Submerged Autonomous Launch Platform (SALP) was used to release profiling floats into warm-core Irminger Rings (IRs) in order to investigate their vertical structure and evolution in the Labrador Sea from September 2007 - September 2009. IRs are thought to play an important role in restratification after convection in the Labrador Sea. The SALP is designed to release surface drifters or subsurface floats serially from a traditional ocean mooring, using real-time ocean measurements as criteria for launch. The original prototype instrument used properties measured at multiple depths, with information relayed to the SALP controller via acoustic modems. In our application, two SALP carousels were attached at 500 meters onto a heavily-instrumented deep water mooring, in the path of recently-shed IRs off the west Greenland shelf. A release algorithm was designed to use temperature and pressure measured at the SALP depth only to release one or two APEX profiling drifters each time an IR passed the mooring, using limited historical observations to set release thresholds. Mechanically and electronically, the SALP worked well: out of eleven releases, there was only one malfunction when a float was caught in the cage after the burn-wire had triggered. However, getting floats trapped in eddies met with limited success due to problems with the release algorithm and float ballasting. Out of seven floats launched from the platform using oceanographic criteria, four were released during warm water events that were not related to passing IRs. Also, after float release, it took on average about 2.6 days for the APEX to adjust from its initial ballast depth, about 600 meters, to its park point of 300 meters, leaving the float below the trapped core of water in the IRs. The other mooring instruments (at depths of 100 to 3000 m), revealed that 12 IRs passed by the mooring in the 2-year monitoring period. With this independent information, we were able to assess and improve

  16. [Isolation, Purification and Identification of Antialgal Activity Substances of Ethyl Acetate Extracts from the Submerged Macrophytes Potamogeton crispus].

    Science.gov (United States)

    Sun, Ying-ying; Su, Zhen-xia; Pu, Yin-fang; Xiao, Hui; Wang, Chang-hai

    2015-10-01

    Previous studies showed that ethyl acetate extracts from the submerged macrophytes Potamogeton crispus can significantly inhibit the growth of Karenia mikimitoi. Further, two antialgal activity compounds (1-2) were successfully isolated from this submerged macrophytes through a combination of silica gel column chromagraphy and repeated preparative thin-layer chromatography in this paper. These two antialgal activity compounds exhibited antialgal active against Karenia mikimitoi. Furthermore, their structure were identified on the basis of spectroscopic data: one flavonid named Trichodermatides B, and one alkaloid named 2-methylheptylisonicotinate. These two compounds were for the first time isolated from both Potamogeton crispus and submerged macrophytes.

  17. Kinetics model development of cocoa bean fermentation

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny

    2015-12-01

    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  18. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  19. Electro-Fermentation in Aid of Bioenergy and Biopolymers

    Directory of Open Access Journals (Sweden)

    Prasun Kumar

    2018-02-01

    Full Text Available The soaring levels of industrialization and rapid progress towards urbanization across the world have elevated the demand for energy besides generating a massive amount of waste. The latter is responsible for poisoning the ecosystem in an exponential manner, owing to the hazardous and toxic chemicals released by them. In the past few decades, there has been a paradigm shift from “waste to wealth”, keeping the value of high organic content available in the wastes of biological origin. The most practiced processes are that of anaerobic digestion, leading to the production of methane. However; such bioconversion has limited net energy yields. Industrial fermentation targeting value-added bioproducts such as—H2, butanediols; polyhydroxyalkanoates, citric acid, vitamins, enzymes, etc. from biowastes/lignocellulosic substrates have been planned to flourish in a multi-step process or as a “Biorefinery”. Electro-fermentation (EF is one such technology that has attracted much interest due to its ability to boost the microbial metabolism through extracellular electron transfer during fermentation. It has been studied on various acetogens and methanogens, where the enhancement in the biogas yield reached up to 2-fold. EF holds the potential to be used with complex organic materials, leading to the biosynthesis of value-added products at an industrial scale.

  20. Protein concentrations of sweet soysauces from Rhizopus oryzae and R. oligosporus fermentation without moromi fermentation

    Directory of Open Access Journals (Sweden)

    NOOR SOESANTI HANDAJANI

    2007-07-01

    Full Text Available Soy sauce was produce from soybean that fermented with koji/tempeh fungi and thenfermented under salt solution or moromi fermentation. The objectives of this experiment was to compare of protein (total and soluble content of sweet soy sauce that produced from soybean fermented with Rhizopus oryzae and R. oligosporus without moromi fermentation to the sweet soysauce with moromi fermentation one. The total and soluble proteins of sweet soy sauces that produce from soybean without moromi fermentation were higher that sweet soy sauces that produce with moromi fermentation. Soluble protein of sweet soy sauce that produced from soybean fermented with R. oligosporus without moromi fermentation was 8.2% and meet to the highest quality of sweet soy sweet sauce based on Indonesia Industrial Standard. Soluble protein of sweet soy sauce that produced from soybean fermented with R. oryzae without moromi fermentation was 4.1% and meet to the medium quality of sweet soy sweet sauce based on Indonesia Industrial Standard.