Wrinkling of Pressurized Elastic Shells
Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki
2011-10-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells.
Wrinkling of Pressurized Elastic Shells
Vella, Dominic
2011-10-01
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.
Existence of equilibrium states of hollow elastic cylinders submerged in a fluid
Directory of Open Access Journals (Sweden)
M. B. M. Elgindi
1992-01-01
Full Text Available This paper is concerned with the existence of equilibrium states of thin-walled elastic, cylindrical shell fully or partially submerged in a fluid. This problem obviously serves as a model for many problems with engineering importance. Previous studies on the deformation of the shell have assumed that the pressure due to the fluid is uniform. This paper takes into consideration the non-uniformity of the pressure by taking into account the effect of gravity. The presence of a pressure gradient brings additional parameters to the problem which in turn lead to the consideration of several boundary value problems.
Structural and Acoustic Responses of a Submerged Stiffened Conical Shell
Directory of Open Access Journals (Sweden)
Meixia Chen
2014-01-01
Full Text Available This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.
Indentation of ellipsoidal and cylindrical elastic shells.
Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki
2012-10-05
Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus et al. [following paper, Phys. Rev. Lett. 109, 144301 (2012)] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells.
Indentation of Ellipsoidal and Cylindrical Elastic Shells
Vella, Dominic
2012-10-01
Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.
A peridynamic theory for linear elastic shells
Chowdhury, Shubhankar Roy; Roy, Debasish; Reddy, J N
2015-01-01
A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one physical dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states beget the necessary force and deformation vectors governing the motion of the shell. Correctness of our proposal on the peridynamic shell theory is numerically assessed against static deformation of spherical and cylindrical shells and flat plates.
Anticavitation and Differential Growth in Elastic Shells
Moulton, Derek E.
2010-07-22
Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on itself. Under the action of mechanical loading alone typical materials do not admit anticavitation. We study the possibility of anticavitation as a consequence of an imposed differential growth. Working in the geometry of a spherical shell, we seek radial growth functions which cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material models do not admit full anticavitation, even when infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise naturally in a cumulative growth process. © 2010 Springer Science+Business Media B.V.
Some Differential Geometric Relations in the Elastic Shell
Directory of Open Access Journals (Sweden)
Xiaoqin Shen
2016-01-01
Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.
Theory of elastic thin shells solid and structural mechanics
Gol'Denveizer, A L; Dryden, H L
1961-01-01
Theory of Elastic Thin Shells discusses the mathematical foundations of shell theory and the approximate methods of solution. The present volume was originally published in Russian in 1953, and remains the only text which formulates as completely as possible the different sets of basic equations and various approximate methods of shell analysis emphasizing asymptotic integration. The book is organized into five parts. Part I presents the general formulation and equations of the theory of shells, which are based on the well-known hypothesis of the preservation of the normal element. Part II is
Modelling apical constriction in epithelia using elastic shell theory.
Jones, Gareth Wyn; Chapman, S Jonathan
2010-06-01
Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epithelial sheet as an elastic shell, which contains a surface representing the continuous mesh formed from the embedded fibres. Allowing this mesh to contract, an enhanced shell theory is developed in which the stiffness and bending tensors of the shell are modified to include the fibres' stiffness, and in which the active effects of the contraction appear as body forces in the shell equilibrium equations. Numerical examples are presented at the end, including the bending of a plate and a cylindrical shell (modelling neurulation) and the invagination of a spherical shell (modelling simple gastrulation).
Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2013-02-06
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.
Directory of Open Access Journals (Sweden)
Seung-Bok Choi
2013-02-01
Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.
Directory of Open Access Journals (Sweden)
ZHANG Kai
2017-08-01
Full Text Available Statistical Energy Analysis(SEAis an effective method for solving high frequency structural vibration and acoustic radiation problems. When we use it to analyze submerged structures, it is necessary to consider the actions of fluid as'heavy fluid' relative to structures, which differs from when it is used in the air. The simple model of a submerged cylindrical shell is used to calculate at a higher frequency using FEM/BEM. The SEA and FEM method are then used to calculate the radiation sound pressure level, verifying the accuracy of the SEA prediction for submerged structures. The classified method of subsystems and the effect of the error of the internal loss factor on the accuracy of the results are explored. The calculated results of SEA and FEM/BEM are very different below 400 Hz, and basically the same above 400 Hz. The error caused by the division of different subsystems is about 5 dB. The error in the calculation results caused by the error of the internal loss factor is 2-3 dB. It is possible to use SEA to calculate the radiated noise of an underwater cylindrical shell when the modal density is high enough.For the cylindrical shell, dividing the subsystems along the circumference is not reliable at a low frequency, as it may lead to inaccurate calculation results. At a high frequency, it is more accurate to divide the subsystems along the circumference than the axle. For subsystems with high energy, the internal loss factor has a greater effect on the simulation results, so a more accurate way should be taken to determine the internal loss factor of subsystems with high energy.
Directory of Open Access Journals (Sweden)
Hanson Huang
1996-01-01
Full Text Available A detailed solution to the transient interaction of plane acoustic waves with a spherical elastic shell was obtained more than a quarter of a century ago based on the classical separation of variables, series expansion, and Laplace transform techniques. An eight-term summation of the time history series was sufficient for the convergence of the shell deflection and strain, and to a lesser degree, the shell velocity. Since then, the results have been used routinely for validation of solution techniques and computer methods for the evaluation of underwater explosion response of submerged structures. By utilizing modern algorithms and exploiting recent advances of computer capacities and floating point mathematics, sufficient terms of the inverse Laplace transform series solution can now be accurately computed. Together with the application of the Cesaro summation using up to 70 terms of the series, two primary deficiencies of the previous solution are now remedied: meaningful time histories of higher time derivative data such as acceleration and pressure are now generated using a sufficient number of terms in the series; and uniform convergence around the discontinuous step wave front is now obtained, completely eradicating spurious oscillations due to the Gibbs' phenomenon. New results of time histories of response items of interest are presented.
Stabilizing effect of elasticity on the inertial instability of submerged viscoelastic liquid jets
Keshavarz, Bavand; McKinley, Gareth
2017-11-01
The stability of submerged Newtonian and viscoelastic liquid jets is studied experimentally using flow visualization. Precise control of the amplitude and frequency of the imposed linear perturbations is achieved through a piezoelectric actuator attached to the nozzle. By illuminating the jet with a strobe light driven at a frequency slightly less than the frequency of the perturbation we slow down the apparent motion by large factors ( 100 , 000) and capture the phenomena with high temporal and spatial resolution. Newtonian liquid jets become unstable at moderate Reynolds numbers (Rej 150) and sinuous or varicose patterns emerge and grow in amplitude. As the jet moves downstream, the varicose waves gradually pile up in the sinuous ones due to the difference in their corresponding wave speeds, leading to a unique chevron-like morphology. Experiments with model viscoelastic polymer solutions show that this inertial instability is fully stabilized sufficiently large levels of elasticity. We compare our experimental results with the theoretical predictions of an elastic Rayleigh equation for an axisymmetric jet and show that the presence of streamline tension is indeed the stabilizing effect for inertioelastic jets.
The elastic theory of shells using geometric algebra.
Gregory, A L; Lasenby, J; Agarwal, A
2017-03-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.
Jammed elastic shells-a 3D experimental soft frictionless granular system
Jose, Jissy; Blab, Gerhard A.; Van Blaaderen, Alfons; Imhof, Arnout
2015-01-01
We present a new experimental system of monodisperse, soft, frictionless, fluorescent labeled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The elastic shells in a jammed packing are deformed in such a way that at each contact
Cell membrane wrapping of a spherical thin elastic shell.
Yi, Xin; Gao, Huajian
2015-02-14
Nanocapsules that can be tailored intelligently and specifically have drawn considerable attention in the fields of drug delivery and bioimaging. Here we conduct a theoretical study on cell uptake of a spherical nanocapsule which is modeled as a linear elastic solid thin shell in three dimensions. It is found that there exist five wrapping phases based on the stability of three wrapping states: no wrapping, partial wrapping and full wrapping. The wrapping phase diagrams are strongly dependent on the capsule size, adhesion energy, cell membrane tension, and bending rigidity ratio between the capsule and membrane. Discussion is made on similarities and differences between the cell uptake of solid nanocapsules and fluid vesicles. The reported results may have important implications for biomedical applications of nanotechnology.
Effects of elastic bed on hydrodynamic forces for a submerged sphere in an ocean of finite depth
Mohapatra, Smrutiranjan
2017-08-01
In this paper, we consider a hydroelastic model to examine the radiation of waves by a submerged sphere for both heave and sway motions in a single-layer fluid flowing over an infinitely extended elastic bottom surface in an ocean of finite depth. The elastic bottom is modeled as a thin elastic plate and is based on the Euler-Bernoulli beam equation. The effect of the presence of surface tension at the free-surface is neglected. In such situation, there exist two modes of time-harmonic waves: the one with a lower wavenumber (surface mode) propagates along the free-surface and the other with higher wavenumber (flexural mode) propagates along the elastic bottom surface. Based on the small amplitude wave theory and by using the multipole expansion method, we find the particular solution for the problem of wave radiation by a submerged sphere of finite depth. Furthermore, this method eliminates the need to use large and cumbersome numerical packages for the solution of such problem and leads to an infinite system of linear algebraic equations which are easily solved numerically by any standard technique. The added-mass and damping coefficients for both heave and sway motions are derived and plotted for different submersion depths of the sphere and flexural rigidity of the elastic bottom surface. It is observed that, whenever the sphere nearer to the elastic bed, the added-mass move toward to a constant value of 1, which is approximately twice of the value of added-mass of a moving sphere in a single-layer fluid flowing over a rigid and flat bottom surface.
The transverse shear deformation behaviour of magneto-electro-elastic shell
Energy Technology Data Exchange (ETDEWEB)
Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)
2016-01-15
Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.
Numerical integration of large deflection elastic--plastic axisymmetric shells of revolution
Energy Technology Data Exchange (ETDEWEB)
Ahmed, H. U.
1976-12-01
The improvement in the method of large deflection elastic-plastic analysis of shells and other structures appears to have continued interest. With the development in this work an improved numerical suppression scheme is now available for the large deflection elastic-plastic analysis of axisymmetric shells of revolution subjected to symmetric loadings. Quazilinearization of Sander's non-linear shell equations is presented for the first time. With these quazilinearized equations the suppression scheme has been developed to solve non-linear boundary-value problems. This suppression scheme has been used in conjunction with a Newton-Raphson method to improve a stable convergence process at the yield surface in elastic-plastic problems. Results presented indicate the accuracy of this numerical scheme. It appears to be possible to extend this method for more complicated situations.
Monodisperse elastic shells: a 3D study of jammed granular matter and microencapsulation
Jose, J.
2014-01-01
This thesis focusses on two, admittedly rather different, applications of spherical elastic shells. First in the field of microencapsulation as a smart container to encapsulate and release functional materials. Second, in jammed matter research as a model system to probe the microstructure and
The indentation of pressurized elastic shells: from polymeric capsules to yeast cells
Vella, D.
2011-08-10
Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker\\'s yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium.
Interplay between elastic interactions in a core-shell model for spin-crossover nanoparticles
Oubouchou, H.; Slimani, A.; Boukheddaden, K.
2013-03-01
A coupled spin deformation model for spin-crossover (SC) materials, consisting of distortable 2D square-shaped lattices, whose sites may be occupied by high-spin (HS) or low-spin (LS) atoms, is studied by Monte Carlo simulations. To be consistent with the experimental studies, we have studied shell-free and core-shell nanoparticles. In the case of shell-free nanoparticles, we constrained the surface of the nanoparticle (one layer) to be in the HS state from the electronic and the elastic point of view because the surface atoms have weaker ligand-field energy than those of the bulk. We then investigated the size effects and found that the thermal hysteresis width ΔT and the transition temperature Teq follow the respective universal laws, ΔT∝(L-L0) and Teq∝ln(L-Lc), where L is the nanoparticle size. These laws hold independently of the sweeping rate of temperature. In a second stage, we studied the effect of a soft shell on the thermal properties of the core shell nanoparticle for which we have investigated the thermodynamic properties at various sizes of the shell. We find that the thermal hysteresis shifts downwards and the corresponding width increases; a result that contrasts with that of shell-free nanoparticles. In addition, we have observed that large shell size widths hinder the domain formation upon the first-order transition, although the transition is still of first order. These behaviors originate from the elastic stress produced by the shell on the bulk of the nanoparticle, and are identified through the spatial distribution of the internal stress upon the thermal transition. Moreover, we studied the effect of the shell size on the relaxation of the photoinduced metastable HS fraction at low temperature. At this end, a preliminary optimization of the structure of the nanoparticle is performed. We then evidenced that increasing the size of the shell results in an acceleration of the relaxation process. This behavior is in excellent agreement with
Geometric method for stability of non-linear elastic thin shells
Ivanova, Jordanka
2002-01-01
PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surfac...
Jammed elastic shells - a 3D experimental soft frictionless granular system.
Jose, Jissy; Blab, Gerhard A; van Blaaderen, Alfons; Imhof, Arnout
2015-03-07
We present a new experimental system of monodisperse, soft, frictionless, fluorescent labeled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The elastic shells in a jammed packing are deformed in such a way that at each contact one of the shells buckles with a dimple and the other remain spherical, closely resembling overlapping spheres. Using confocal microscopy, we obtained 3D stacks of images of shells at different volume fractions which were subsequently processed in ImageJ software to find their coordinates. The determination of 3D coordinates involved three steps: locating the edges of shells in all 2D slices, analyzing their shape and subsequently finding their 2D coordinates, and finally determining their 3D centers by grouping the corresponding 2D coordinates. From this analysis routine we obtained particle coordinates with sub-pixel accuracy. In a contact pair we also identified the shell that underwent buckling forming a dimple by analyzing the intensity profile of a line that connects the centers of particle pairs. The amorphous structure of the packing was analyzed as a function of distance to the jamming threshold by investigating the radial distribution function, bond order parameters, contact numbers and the number of dimples per particle (buckling number), which is a unique property of this system. We find that the power law scaling of the contact number with excess volume fraction deviated from theoretical and computer simulation predictions. In addition, the buckling number also showed a similar scaling as that of the contact number with distance to the jamming transition.
Bi-orthogonality conditions for power flow analysis in fluid-loaded elastic cylindrical shells
DEFF Research Database (Denmark)
Ledet, Lasse; Sorokin, Sergey V.; Larsen, Jan Balle
2015-01-01
The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-loaded cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. Firstly, a modal method for formulation of Green’s matrix is derived by means of modal decomposition. The method...... builds on the recent advances on bi-orthogonality conditions for multi-modal waveguides, which are derived here for an elastic fluid-filled cylindrical shell. Subsequently, modal decomposition is applied to the bi-orthogonality conditions to formulate explicit algebraic equations to express the modal...... vibro-acoustic waveguide is subjected to separate pressure and velocity acoustical excitations. Further, it has been found and justified that the bi-orthogonality conditions can be used as a ’root finder’ to solve the dispersion equation. Finally, it is discussed how to predict the response of a fluid...
Dynamics of Geometrically Nonlinear Elastic Nonthin Anisotropic Shells of Variable Thickness
Marchuk, M. V.; Tuchapskii, R. I.
2017-11-01
A theory of dynamic elastic geometrically nonlinear deformation of nonthin anisotropic shells with variable thickness is constructed. Shells are assumed asymmetric about the reference surface. Functions are expanded into Legendre series. The basic equations are written in a coordinate system aligned with the lines of curvature of the reference surface. The equations of motion and appropriate boundary conditions are obtained using the Hamilton-Ostrogradsky variational principle. The change in metric across the thickness is taken into account. The theory assumes that the refinement process is regular and allows deriving equations including products of terms of Legendre series of unknown functions of arbitrary order. The behavior of a square metallic plate acted upon by a pressure pulse distributed over its face is studied.
Application of Nonlocal Elasticity Shell Model for Axial Buckling of Single-Walled Carbon Nanotubes
Directory of Open Access Journals (Sweden)
Farzad Khademolhosseini
2009-10-01
Full Text Available Recently, nano devices have been developed which use Carbon Nanotubes (CNTs as structural elements. To define the range of applicability of CNTs in such devices, it is important to investigate failure modes such as the axial buckling limit. Classical continuum models are inaccurate as they are unable to account for the size-effects in such devices. In this work, a modified nonlocal continuum shell model for the axial buckling of CNTs is proposed and compared with a nonlocal model for torsional buckling. This is done through modifying classical continuum models by incorporating basic concepts from nonlocal elasticity. Furthermore, molecular dynamics (MD simulations are performed on a range of nanotubes with different diameters. Compared to classical models, the modified nonlocal models provide a much better fit to MD simulation results. Using MD simulation results for axial buckling, values of the nonlocal constant and shell thickness are calculated.
Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze
2017-09-01
Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.
Application of various elastic thin shell theories to blood flow problems
1972-01-01
Some existing theories, on elastic thin shells, are reviewed to ascertain their influence on the computation of phase velocities in fluid filled cylinders representing certain aspects of the behavior of arteries and veins in vivo. For physiologically meaningful parameters, including moderately large in plane prestrain that occurs in mammals, the results suggest that with one exception, the small differences in the formulations exercise little influence on the phase velocities. However, it is demonstrated that inclusion of the forces induced by the rotation of the hydrostatic pressure is essential or significantly erroneous torsional wave speeds result. Also the introduction of moderate implane prestrains that are present in living mammals is shown to lead to nonselfadjoint differential equations of motion, whose biorthogonal eigenvectors differ slightly from each other.
Chen, Qi; Vancso, Gyula J.
2011-01-01
We assess the elastic properties of PS-b-PAA vesicle membranes under different pH values by AFM force measurements. We find that based on the shell deformation theory, the values of the estimated apparent Young's modulus of the vesicle membranes decrease as the pH of the solution increases. The
Transient Response of a Fluid-Filled, Thick-Walled Spherical Shell Embedded in an Elastic Medium
Directory of Open Access Journals (Sweden)
Bahari Ako
2016-01-01
Full Text Available The paper addresses the problem of transient elastodynamics analysis of a thick-walled, fluid-filled spherical shell embedded in an elastic medium with an analytical approach. This configuration is investigated at first step for a full-space case. Different constitutive relations for the elastic medium, shell material and filling fluid can be considered, as well as different excitation sources (including S/P wave or plane/spherical incident wave at different locations. With mapmaking visualisation, the wave propagation phenomena can be described and better understood. The methodology is going to be applied to analysis of the tunnels or other shell like structures under the effect of nearby underground explosion.
Meyer, V.; Maxit, L.; Guyader, J.-L.; Leissing, T.
2016-01-01
The vibroacoustic behavior of axisymmetric stiffened shells immersed in water has been intensively studied in the past. On the contrary, little attention has been paid to the modeling of these shells coupled to non-axisymmetric internal frames. Indeed, breaking the axisymmetry couples the circumferential orders of the Fourier series and considerably increases the computational costs. In order to tackle this issue, we propose a sub-structuring approach called the Condensed Transfer Function (CTF) method that will allow assembling a model of axisymmetric stiffened shell with models of non-axisymmetric internal frames. The CTF method is developed in the general case of mechanical subsystems coupled along curves. A set of orthonormal functions called condensation functions, which depend on the curvilinear abscissa along the coupling line, is considered. This set is then used as a basis for approximating and decomposing the displacements and the applied forces at the line junctions. Thanks to the definition and calculation of condensed transfer functions for each uncoupled subsystem and by using the superposition principle for passive linear systems, the behavior of the coupled subsystems can be deduced. A plane plate is considered as a test case to study the convergence of the method with respect to the type and the number of condensation functions taken into account. The CTF method is then applied to couple a submerged non-periodically stiffened shell described using the Circumferential Admittance Approach (CAA) with internal substructures described by Finite Element Method (FEM). The influence of non-axisymmetric internal substructures can finally be studied and it is shown that it tends to increase the radiation efficiency of the shell and can modify the vibrational and acoustic energy distribution.
Energy Technology Data Exchange (ETDEWEB)
MACKEY TC; ABATT FG; JOHNSON KI
2009-01-16
The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks
Mitri, Farid G
2012-08-01
This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.
Nguyen Dinh, Duc; Nguyen, Pham Dinh
2017-10-18
Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge-Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors.
Tran, Minh Tu; Nguyen, Van Loi; Trinh, Anh Tuan
2017-06-01
In this paper, the analytical solution for static and vibration analysis the cross-ply laminated composite doubly curved shell panels with stiffeners resting on Winkler-Pasternak elastic foundation is presented. Based on the first-order shear deformation theory, using the smeared stiffeners technique, the motion equations are derived by applying the Hamilton's principle. The Navier's solution for shell panel with the simply supported boundary condition at all edges is presented. The accuracy of the present results is compared with those in the existing literature and shows good achievement. The effects of the number of stiffeners, stiffener's height-to-width ratio, and number of layers of cross-ply laminated composite shell panels on the fundamental frequencies and deflections of stiffened shell with and without the elastic foundation are investigated.
Determination of elastic modulus for hollow spherical shells via resonant ultrasound spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200092 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)
2017-04-15
Highlights: • The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method. • The simulated results demonstrate that the natural frequencies of a hollow sphere are more strongly dependent on Young’s modulus than Poisson's ratio. • The Young’s moduli of polymer capsules with an sub-millimeter inner radius are measured accurately with an uncertainty of ∼10%. - Abstract: The elastic property of a capsule is one of the essential parameters both in engineering applications and scientific understanding of material nature in inertial confinement fusion (ICF) experiments. The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method, and a combined resonant ultrasound spectroscopy(RUS), which consists of a piezoelectric-based resonant ultrasound spectroscopy(PZT-RUS) and a laser-based resonant ultrasound spectroscopy(LRUS), is developed for determining the elastic modulus of capsule. To understand the behavior of natural frequencies varying with elastic properties, the dependence of natural frequencies on Young’s modulus and Poisson’s ratio are calculated numerically. Some representative polymer capsules are measured using PZT-RUS and LRUS. Based on the theoretical and experimental results, the Young’s moduli of these capsules are measured accurately with an uncertainty of ∼10%.
Elastic peak of K shell excited HCl molecule: Comparison HCl-DCl-Experiment and theory
Energy Technology Data Exchange (ETDEWEB)
Simon, M. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)], E-mail: marc.simon@ccr.jussieu.fr; Journel, L.; Guillemin, R. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Stolte, W.C. [Department of Chemistry, University of Nevada, Las Vegas, NV (United States); Minkov, I.; Gel' mukhanov, F.; Salek, P.; Agren, H. [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Carniato, S.; Taieb, R. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Hudson, A.C.; Lindle, D.W. [Department of Chemistry, University of Nevada, Las Vegas, NV (United States)
2007-03-15
Femtosecond dynamics has been recently observed by resonant X-ray Raman scattering (RXRS) after excitation along the dissociative Cl 1s{yields}6{sigma}* resonance of gas phase HCl. In this paper, we show a method to take into account and correct for self-absorption of the elastic peak, in order to allow for quantitative comparison with theory. We have performed measurements on the DCl molecule exhibiting ultrafast nuclear motion. A comparison between HCl and DCl is presented.
New Variational Techniques for Acoustic Radiation and Scattering From Elastic Shell Structures
1993-12-20
ELASTIC WHELL STUCTURES PRINCIPAL INVESTIGATOR: JURRY H. GINSBKRG SCHOOL OF MECHAMICAL INGINEZRING GEORGIA INSTITUTE OF TECHNOLOGY DTIC IS ELECTE JAN...cylinder, and a spheroid undergoing rigid body motion in the axial and beamwise direction, as well as a rotational oscillation about the centroid. The...computational view- point. Bessel and sinusoidal basis functions were shown to agree well with the analytical solution derived by Alper and Magrab, as were
The chocolate-egg problem: Fabrication of thin elastic shells through coating
Lee, Anna; Marthelot, Joel; Brun, Pierre-Thomas; Reis, Pedro M.
2015-03-01
We study the fabrication of thin polymeric shells based on the coating of a curved surface by a viscous fluid. Upon polymerization of the resulting thin film, a slender solid structure is delivered after demolding. This technique is extensively used, empirically, in manufacturing, where it is known as rotational molding, as well as in the food industry, e.g. for chocolate-eggs. This problem is analogous to the Landau-Levich-Derjaguin coating of plates and fibers and Bretherton's problem of film deposition in cylindrical channels, albeit now on a double-curved geometry. Here, the balance between gravity, viscosity, surface tension and polymerization rate can yield a constant thickness film. We seek to identify the physical ingredients that govern the final film thickness and its profile. In our experiments using organosilicon, we systematically vary the properties of the fluid, as well as the curvature of the substrate onto which the film is coated, and characterize the final thickness profile of the shells. A reduced model is developed to rationalize the process.
Harper, Catherine
2006-01-01
Susie MacMurray's Shell installation manifests in Pallant House Gallery, Chichester, like some pulsing exotica, a heavily-textured wall-paper, darkly decorative, heavily luxurious, broodingly present, with more than a hint of the uncanny or the gothic. A remarkable undertaking by an artist of significance, this work's life-span will be just one year, and then it will disappear, leaving no physical trace, but undoubtedly contributing in a much less tangible way to an already rich layering of n...
Directory of Open Access Journals (Sweden)
Koffi Enakoutsa
2014-01-01
Full Text Available In this work we propose to replace the GLPD hypo-elasticity law by a more rigorous generalized Hooke's law based on classical material symmetry characterization assumptions. This law introduces in addition to the two well-known Lame's moduli, five constitutive constants. An analytical solution is derived for the problem of a spherical shell subjected to axisymmetric loading conditions to illustrate the potential of the proposed generalized Hooke's law.
Enakoutsa, Koffi
2014-01-01
In this work we propose to replace the GLPD hypo-elasticity law by a more rigorous generalized Hooke's law based on classical material symmetry characterization assumptions. This law introduces in addition to the two well-known Lame's moduli, five constitutive constants. An analytical solution is derived for the problem of a spherical shell subjected to axisymmetric loading conditions to illustrate the potential of the proposed generalized Hooke's law.
Directory of Open Access Journals (Sweden)
Pham Minh Vuong
Full Text Available Abstract The main aim of this paper is to investigate analytically nonlinear buckling and post-buckling of functionally graded stiffened circular cylindrical shells filled inside by Pasternak two-parameter elastic foundations in thermal environments and under axial compression load and external pressure by analytical approach. Shells are reinforced by closely spaced rings and stringers. The material properties of shell and the stiffeners are assumed to be continuously graded in the thickness direction. Using the Reddy third order shear deformation shell theory, stress function method and Lekhnitskii smeared stiffeners technique, the governing equations are derived. The closed form to determine critical axial load and post-buckling load-deflection curves are obtained by Galerkin method. The effects of temperature, stiffener, foundation, material and dimensional parameters on the stability behavior of shells are shown. The accuracy of the presented method is affirmed by comparisons with well-known results in references. The results shown for thick cylindrical shells, the use of TSDT for determining their critical buckling load is necessary and more suitable.
Spherical shells buckling to the sound of music
Lee, Anna; Marthelot, Joel; Reis, Pedro
We study how the critical buckling load of spherical elastic shells can be modified by a fluctuating external pressure field. In our experiments, we employ thin elastomeric shells of nearly uniform thickness fabricated by the coating of a hemispherical mold with a polymer solution, which upon curing yields elastic structures. A shell is submerged in a water bath and loaded quasi-statically until buckling occurs by reducing its inner volume with a syringe pump. Simultaneously, a plunger connected to an electromagnetic shaker is placed above the shell and driven sinusoidally to create a fluctuating external pressure field that can excite dynamic vibration modes of the shell. These dynamic modes induce effective compressive stresses, in addition to those from the inner pressure loading, which can modify the critical conditions for the onset of buckling. We systematically quantify how the frequency and amplitude of the external driving affects the buckling strength of our shells. In specific regions of the parameter space, we find that pressure fluctuations can result in large reductions of the critical buckling pressure. This is analogous to the classic knock-down effect in shells due to intrinsic geometric imperfections, albeit now in a way that can be controlled externally.
National Oceanic and Atmospheric Administration, Department of Commerce — The Submerged Lands Act (43 U.S.C. Section 1301 et seq.) grants coastal states title to natural resources located within their coastal submerged lands and navigable...
DEFF Research Database (Denmark)
Phetcharat, L; Wongsuphasawat, K; Winther, Kaj
2015-01-01
Objective: To evaluate the effects of a rose hip powder (Hyben Vital®) made from seeds and shells on cell senescence, skin wrinkling, and aging. Methods: A total of 34 healthy subjects, aged 35–65 years, with wrinkles on the face (crow’s-feet) were subjected to a randomized and double...... moisture, and elasticity were made by using Visioscan, Corneometer, and Cutometer at the beginning of the study, after 4 weeks, and after 8 weeks. Evaluation of participant satisfaction of both supplements was assessed using questionnaires. In addition, the effect of the rose hip preparation on cell...... longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index) in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P#0.05. Results: In the double-blinded study, the rose hip group showed statistically significant improvements...
Directory of Open Access Journals (Sweden)
Mohammad Zamani Nejad
2014-01-01
Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.
Directory of Open Access Journals (Sweden)
Phetcharat L
2015-11-01
Full Text Available L Phetcharat,1,2 K Wongsuphasawat,1,2 K Winther31School of Antiaging and Regenerative Medicine, Mae Fah University, Bangkok, Thailand; 2Department of Anti-aging and Regenerative Medicine, Mae Fah University, Bangkok, Thailand; 3Institute for Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DenmarkObjective: To evaluate the effects of a rose hip powder (Hyben Vital® made from seeds and shells on cell senescence, skin wrinkling, and aging.Methods: A total of 34 healthy subjects, aged 35–65 years, with wrinkles on the face (crow’s-feet were subjected to a randomized and double-blinded clinical study of the effects of the rose hip powder, as compared to astaxanthin, a well-known remedy against wrinkles. During the 8-week study, half of the participants ingested the standardized rose hip product, while the other half ingested astaxanthin. Objective measurements of facial wrinkles, skin moisture, and elasticity were made by using Visioscan, Corneometer, and Cutometer at the beginning of the study, after 4 weeks, and after 8 weeks. Evaluation of participant satisfaction of both supplements was assessed using questionnaires. In addition, the effect of the rose hip preparation on cell longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P≤0.05.Results: In the double-blinded study, the rose hip group showed statistically significant improvements in crow’s-feet wrinkles (P<0.05, skin moisture (P<0.05, and elasticity (P<0.05 after 8 weeks of treatment. A similar improvement was observed for astaxanthin, with P-values 0.05, 0.001, and 0.05. Likewise, both groups expressed equal satisfaction with the results obtained in their self-assessment. The rose hip powder further resulted in increased cell longevity of erythrocyte cells during storage for 5 weeks in a blood bank
DEFF Research Database (Denmark)
Niordson, Christian F.; Nielsen, S.B.
2006-01-01
The thin elastic plate model (the Kirchhoff model) in one and two space dimensions has proved extremely useful in providing a simple model of transverse deflections of the Earths lithosphere as a function of transverse loads. For example, the foreland basin of a mountain range is explained...... of the transverse deflection is modified by in-plane tectonic forces originating e.g. at plate boundaries. However, geoscience applications of the coupling between transverse deflections and boundary conditions have been restricted to the one-dimensional thin-plate model. In this paper we extend the model...
Directory of Open Access Journals (Sweden)
Yunju Yan
2015-02-01
Full Text Available Aerodynamic force can lead to the strong structural vibration of flying aircraft at a high speed. This harmful vibration can bring damage or failure to the electronic equipment fixed in aircraft. It is necessary to predict the structural dynamic response in the design course. This paper presents a new numerical algorithm and scheme to solve the structural dynamics responses when considering fluid–structure interaction (FSI. Numerical simulation for a free-flying structural model in transonic speed is completed. Results show that the small elastic deformation of the structure can greatly affect the FSI. The FSI vibration tests are carried out in a transonic speed wind-tunnel for checking numerical theory and algorithms, and the wind-tunnel test results well accord with that of the numerical simulation. This indicates that the presented numerical method can be applied to predicting the structural dynamics responses when containing the FSI.
Phetcharat, L; Wongsuphasawat, K; Winther, K
2015-01-01
To evaluate the effects of a rose hip powder (Hyben Vital(®)) made from seeds and shells on cell senescence, skin wrinkling, and aging. A total of 34 healthy subjects, aged 35-65 years, with wrinkles on the face (crow's-feet) were subjected to a randomized and double-blinded clinical study of the effects of the rose hip powder, as compared to astaxanthin, a well-known remedy against wrinkles. During the 8-week study, half of the participants ingested the standardized rose hip product, while the other half ingested astaxanthin. Objective measurements of facial wrinkles, skin moisture, and elasticity were made by using Visioscan, Corneometer, and Cutometer at the beginning of the study, after 4 weeks, and after 8 weeks. Evaluation of participant satisfaction of both supplements was assessed using questionnaires. In addition, the effect of the rose hip preparation on cell longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index) in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P≤0.05. In the double-blinded study, the rose hip group showed statistically significant improvements in crow's-feet wrinkles (P<0.05), skin moisture (P<0.05), and elasticity (P<0.05) after 8 weeks of treatment. A similar improvement was observed for astaxanthin, with P-values 0.05, 0.001, and 0.05. Likewise, both groups expressed equal satisfaction with the results obtained in their self-assessment. The rose hip powder further resulted in increased cell longevity of erythrocyte cells during storage for 5 weeks in a blood bank. Results suggest that intake of the standardized rose hip powder (Hyben Vital(®)) improves aging-induced skin conditions. The apparent stabilizing effects of the rose hip product on cell membranes of stored erythrocyte cells observed in this study may contribute to improve the cell longevity and obstructing skin aging.
Fluctuating shells under pressure
Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.
2012-01-01
Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558
Phetcharat, L; Wongsuphasawat, K; Winther, K
2015-01-01
Objective To evaluate the effects of a rose hip powder (Hyben Vital®) made from seeds and shells on cell senescence, skin wrinkling, and aging. Methods A total of 34 healthy subjects, aged 35–65 years, with wrinkles on the face (crow’s-feet) were subjected to a randomized and double-blinded clinical study of the effects of the rose hip powder, as compared to astaxanthin, a well-known remedy against wrinkles. During the 8-week study, half of the participants ingested the standardized rose hip product, while the other half ingested astaxanthin. Objective measurements of facial wrinkles, skin moisture, and elasticity were made by using Visioscan, Corneometer, and Cutometer at the beginning of the study, after 4 weeks, and after 8 weeks. Evaluation of participant satisfaction of both supplements was assessed using questionnaires. In addition, the effect of the rose hip preparation on cell longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index) in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P≤0.05. Results In the double-blinded study, the rose hip group showed statistically significant improvements in crow’s-feet wrinkles (Pelasticity (P<0.05) after 8 weeks of treatment. A similar improvement was observed for astaxanthin, with P-values 0.05, 0.001, and 0.05. Likewise, both groups expressed equal satisfaction with the results obtained in their self-assessment. The rose hip powder further resulted in increased cell longevity of erythrocyte cells during storage for 5 weeks in a blood bank. Conclusion Results suggest that intake of the standardized rose hip powder (Hyben Vital®) improves aging-induced skin conditions. The apparent stabilizing effects of the rose hip product on cell membranes of stored erythrocyte cells observed in this study may contribute to improve the cell longevity and obstructing skin aging. PMID:26604725
2010-01-01
Crashes in which cars are submerged in deep water or in a ditch are often complicated and serious. Considering their severity and the fact that approximately half the fatalities in this crash type are not due to drowning but to injury, preventive measures are to be preferred above measures that have
Optimization of submerged vane parameters
Indian Academy of Sciences (India)
Submerged vanes are airfoils which are in general placed at certain angle with respect to the flow direction in a channel to induce artificial circulations downstream. By virtue of these artificially generated circulations, submerged vanes were utilized to protect banks of rivers against erosion, to control shifting of rivers, to avoid ...
Optimization of submerged vane parameters
Indian Academy of Sciences (India)
H Sharma
velocities simulated from CFD using standard k-x model were very much in accordance with what it was measured by Wang and Odgaard [4]. Thus, model can be used to study the turbulence characteristics around submerged vanes and to predict various parameters downstream of the submerged vanes. After the model ...
Submerged AUV Charging Station
Jones, Jack A.; Chao, Yi; Curtin, Thomas
2014-01-01
Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder
Introduction to linear elasticity
Gould, Phillip L
2013-01-01
Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also: Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...
Astronomical optics and elasticity theory
Lemaitre, Gerard Rene
2008-01-01
Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.
Form finding in elastic gridshells.
Baek, Changyeob; Sageman-Furnas, Andrew O; Jawed, Mohammad K; Reis, Pedro M
2017-12-18
Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.
Drought and submergence tolerance in plants
Du, Hewei; Zhou, Yufan; Oksenberg, Nir; Ronald, Pamela
2017-11-14
The invention provides methods of genetically modified plants to increase tolerance to drought and/or submergence. The invention additionally provides plants having increased drought and/or submergence tolerance engineered using such methods.
Submerged membrane distillation for desalination of water
Francis, Lijo
2016-10-27
Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.
Directory of Open Access Journals (Sweden)
Solenir Ruffato
2001-04-01
Full Text Available Neste trabalho investigou-se a viabilidade de se obter o módulo de compressão de grãos de milho, utilizando-se dados experimentais de força versus tempo, provenientes de testes de impacto, juntamente com uma análise estrutural elástica do processo. Os módulos de elasticidade foram determinados para grãos, a diferentes teores de umidade, submetidos a impactos de diferentes velocidades, e obtidos por um processo de otimização por meio da técnica de elementos finitos. Dois tipos de módulo foram avaliados: (a um módulo efetivo para todo o grão e (b um módulo para cada uma das três regiões, com diferentes características, segundo as quais o grão foi dividido. O teor de umidade e a velocidade de impacto influenciaram nos valores dos módulos. Módulos para grãos a 13,4% base úmida (b.u. foram maiores do que para aqueles a 20,0% b.u. A análise realizada (elástica mostrou-se ser mais adequada na obtenção de módulos de elasticidade de grãos a 13,4% b.u.; neste teor, os grãos apresentam características elásticas mais pronunciadas que quando a 20,0% b.u. e, nos grãos com altos teores de umidade, as características viscoelásticas tornam-se predominantes.In this study the viability of obtaining the corn compression modulus through an elastic structural analysis was investigated using force versus time data from grain impact tests. The moduli of elasticity of shelled corn at different moisture contents submitted to various impact velocities were determined. The moduli were obtained through an optimization process using the finite element technique. Two kinds of modulus were obtained: (a an effective modulus for the grain and (b a modulus for each one of the three regions, with different characteristics, in which the grain was divided. The moisture content and the impact velocity affected the modulus values. The moduli values for grains at 13.4% wet basis (w.b. were higher than those for grains at 20.0% w.b. The analysis used
European Union Import Demand for In-Shell Peanuts
Boonsaeng, Tullaya; Fletcher, Stanley M.; Carpio, Carlos E.
2008-01-01
This paper analyzes the European Union (EU) import demand for in-shell peanuts from three sources: the United States, China, and the rest of the world. We find that peanuts from different sources are differentiated by EU consumers. The expenditure elasticity is elastic for U.S. in-shell peanuts, which is associated with their higher quality. The conditional own price elasticities are more elastic for U.S. and Chinese in-shell peanuts. These findings have at least two implications. First, U.S....
Statistical mechanics of thin spherical shells
Kosmrlj, Andrej
2016-01-01
We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations, leads to novel phenomena. In spherical shells thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure". Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows non-linearly with increasing outward pressure, with the same universal power law expone...
(Oil Palm Shell) Lightweight Concrete
African Journals Online (AJOL)
The compressive strength as destructive test and, ultrasonic pulse velocity (UPV) and dynamic modulus of elasticity (Ed) as non-destructive tests have been carried out on a new lightweight concrete produced using oil palm shell (OPS) as coarse aggregate, as a way to establish the usefulness of these tests to determine the ...
Flow and scour around vertical submerged structures
Indian Academy of Sciences (India)
Although past investigations establish the effect of various parameters on scour around vertical submerged structures for live and clear water condition, yet further studies are required to analyze the scour around group of submerged structures for various bed sediments, understand the flow physics around the group and ...
Vliet, Jurg; Wel, Steven; Dowd, Dara
2011-01-01
While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots
Recent developments in anisotropic heterogeneous shell theory
Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G
2016-01-01
This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.
Flow of Tunable Elastic Microcapsules through Constrictions
do Nascimento, D?bora F.; Avenda?o, Jorge A.; Mehl, Ana; Moura, Maria J. B.; Carvalho, Marcio S.; Duncanson, Wynter J.
2017-01-01
We design and fabricate elastically tunable monodisperse microcapsules using microfluidics and cross-linkable polydimethylsiloxane (PDMS). The overall stiffness of the microcapsules is governed by both the thickness and cross-link ratio of the polymer shell. Flowing suspensions of microcapsules through constricted spaces leads to transient blockage of fluid flow, thus altering the flow behavior. The ability to tune microcapsule mechanical properties enables the design of elastic microcapsules...
Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber
Energy Technology Data Exchange (ETDEWEB)
Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)
2013-04-15
The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.
IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER
Directory of Open Access Journals (Sweden)
MAJID ALI
2013-04-01
Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....
Elasticity of the Rod-Shaped Gram-Negative Eubacteria
Boulbitch, A.; Quinn, B.; Pink, D.
2000-12-01
We report a theoretical calculation of the elasticity of the peptidoglycan network, the only stress-bearing part of rod-shaped Gram-negative eubacteria. The peptidoglycan network consists of elastic peptides and inextensible glycan strands, and it has been proposed that the latter form zigzag filaments along the circumference of the cylindrical bacterial shell. The zigzag geometry of the glycan strands gives rise to nonlinear elastic behavior. The four elastic moduli of the peptidoglycan network depend on its stressed state. For a bacterium under physiological conditions the elasticity is proportional to the bacterial turgor pressure. Our results are in good agreement with recent measurements.
Elastic buckling strength of corroded steel plates
Indian Academy of Sciences (India)
Elastic buckling assessment of a corroded plate with irregular surfaces is evaluated only on the basis of numerical analysis with FEM. A computer code in Fortran 90 is developed to generate irregular surfaces based on the mean and standard deviation of thickness diminution. By using shell elements with variable thickness ...
DEFF Research Database (Denmark)
Almegaard, Henrik
2004-01-01
A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....
Impeller Submergence Depth for Stirred Tanks
Directory of Open Access Journals (Sweden)
Thiyam T. Devi
2011-11-01
Full Text Available Impeller submergence governs the performance of mixing tanks employed in oxygen transfer operation. Present work experimentally investigates the effect of impeller submergence depths on oxygen transfer and corresponding power consumption. It has been found that at higher range of impeller submergence, mixing tanks consume less power and gives higher values of oxygen transfer coefficient. Optimal range of submergence depth is 0.7 to 0.9 times the impeller diameter. Copyright ©2011 BCREC UNDIP. All rights reserved.(Received: 4th March 2011; Revised: 12nd July 2011; Accepted: 14th July 2011[How to Cite: T.T. Devi, A.P. Sinha, M. Thakre, and B. Kumar. (2011. Impeller Submergence Depth for Stirred Tanks. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 123-128. doi:10.9767/bcrec.6.2.826.123-128][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.826.123-128 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/826] | View in
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Graff, Karl F
1991-01-01
This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter
Laser Beam Submerged Arc Hybrid Welding
Reisgen, Uwe; Olschok, Simon; Jakobs, Stefan; Schleser, Markus; Mokrov, Oleg; Rossiter, Eduardo
The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The high deposition rate of the SA process in combination with the laser beam process offers, providing the appropriate choice of weld preparation, the possibility of welding plates with a thickness larger than 20° mm in a single pass, and also of welding thicker plates with the double-sided single pass technique.
Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China)
National Research Council Canada - National Science Library
Xing, Wei; Wu, Haoping; Shi, Qiao; Hao, Beibei; Liu, Han; Wang, Zhixiu; Liu, Guihua
2015-01-01
.... We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements...
Analysis of radial vibrations of poroelastic circular cylindrical shells ...
African Journals Online (AJOL)
Waves propagating in radial direction of a poroelastic circular cylinder are termed as radial vibrations. Radial vibrations of poroelastic circular cylindrical shell of infinite extent immersed in an inviscid elastic fluid are examined employing Biot's theory. Biot's model consists of an elastic matrix permeated by a network of ...
Structural shell analysis understanding and application
Blaauwendraad, Johan
2014-01-01
The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....
Oxygen dynamics in submerged rice (Oryza sativa L.)
DEFF Research Database (Denmark)
Colmer, Timothy D.; Pedersen, Ole
2008-01-01
Complete submergence of plants prevents direct O2 and CO2 exchange with air. Underwater photosynthesis can result in marked diurnal changes in O2 supply to submerged plants. Dynamics in pO2 had not been measured directly for submerged rice (Oryza sativa), but in an earlier study, radial O2 loss...
Benthic bacterial diversity in submerged sinkhole ecosystems.
Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A
2010-01-01
Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.
Production of extracellular aspartic protease in submerged ...
African Journals Online (AJOL)
Yomi
29(1): 1-6. Fraile ER, Bernardinelli SE, Handel M, Jauregui AM (1978). Selección de cepas de Mucor sp productoras de enzimas coagulantes de leche. Rev. Arg. Microbiol. 10(2): 65-69. Ghareib M, Hamdy HS, Khalil AA (2001). Production of intracellular milk clotting enzyme in submerged cultures of Fusarium subglutinans.
Topology optimization for submerged buoyant structures
Picelli, R.; van Dijk, R.; Vicente, W.M.; Pavanello, R.; Langelaar, M.; van Keulen, A.
2017-01-01
This paper presents an evolutionary structural topology optimization method for the design of completely submerged buoyant modules with design-dependent fluid pressure loading. This type of structure is used to support offshore rig installation and pipeline transportation at all water depths. The
Production of extracellular aspartic protease in submerged ...
African Journals Online (AJOL)
Fungal milk-clotting enzymes have gained value as bovine Chymosin substitutes in the cheese industry. In this work, the effects of culture conditions on the production of extracellular milk clotting enzymes from Mucor mucedo DSM 809 in submerged fermentation were studied. The maximum activity was observed after 48 h ...
Indian Academy of Sciences (India)
equations for the scattering of electromagnetic radiation by particles with spherical or cylindrical symmetry. Aden and Kerker have published complete details of scattering from concentric spherical shells in 1951 [28]. In Mie theory, the harmonically oscillating electromagnetic fields are expressed in terms of a set of spherical ...
A Study of the Nearfield of an Excited Spherical Shell.
1980-03-17
screwed on an aluminum adapter (1/2 inch in diameter, 1/4 inch thick) which was attached to the shell with epoxy resin. Both of the shells were...Spheres in Water," J. Acoust. Soc. Amer. 41, 380-393 (1967). 7. Dragonette, L. R., Vogt, R. H., Flax , L. and Neubauer, W. G., "Acoustic Reflection from...34High Frequency Response of an Elastic Spherical Shell," J. Appl. Mech. 36, 4, 859-864 (December 1969). 9. Flax , L., "High ka Scattering of Elastic
Thickness mapping of submerged portions of a BWR torus using an ROV
Energy Technology Data Exchange (ETDEWEB)
Somers, T. (Marquest Group, Inc., Bourne, MA (United States)); Bagley, J.G. (Ebasco Quality Services, South Kearny, NJ (United States))
1992-01-01
A methodology has been developed for establishing an ultrasonic baseline of the submerged portions of a boiling water reactor torus shell. A remotely operated vehicle (ROV) is equipped to deliver an array of ultrasonic thickness transducers to within a fixed stand-off from the shell. The position of the transducers at each ultrasound reading is measured and recorded using a precision acoustic navigation system. The resulting thickness contour map makes it possible to visualize the condition of the torus shell and provides quantitative documentation of shell thickness at a large number of known locations. The navigation system can be reinstalled in the future so that by comparing future thickness readings acquired at the same location, it is possible to create a map of the rate of change in shell thickness. An ultrasonic thickness survey was conducted recently using a preliminary version of such a system. The experience gained in performing this survey has been incorporated in the design of a full-scale prototype system, which is currently under development. This system will include such features as automatic control of the ROV based on the acoustic navigation data, generation of three-dimensional thickness maps, and remote control of the data acquisition process from outside the radiation area.
Gradient Elasticity Formulations for Micro/Nanoshells
Directory of Open Access Journals (Sweden)
Bohua Sun
2014-01-01
Full Text Available The focus of this paper is on illustrating how to extend the second author’s gradient theory of elasticity to shells. Three formulations are presented based on the implicit gradient elasticity constitutive relation 1 -ld2∇2σij=Cijkl(1-ls2∇2εkl and its two approximations 1+ls2∇2-ld2∇2σij=Cijklεkl and σij=Cijkl(1+ld2∇2-ls2∇2εkl.
Zhao, Xin
2013-05-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.
Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.
2013-02-01
The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications
Dynamic analysis of conical shells conveying fluid
Senthil Kumar, D.; Ganesan, N.
2008-02-01
A formulation, based on the semi-analytical finite element method, is proposed for elastic conical shells conveying fluids. The structural equations are based on the shell element proposed by Ramasamy and Ganesan [Finite element analysis of fluid-filled isotropic cylindrical shells with constrained viscoelastic damping, Computers & Structures 70 (1998) 363-376] while the fluid model is based on velocity potential formulation used by Jayaraj et al. [A semi-analytical coupled finite element formulation for composite shells conveying fluids, Journal of Sound and Vibration 258(2) (2002) 287-307]. Dynamic pressure acting on the walls is derived from Bernoulli's equation. By imposing the requirement that the normal component of velocity of the solid and fluid are equal leads to fluid-structure coupling. The computer code developed has been validated using results available in the literature for cylindrical shells conveying fluid. The study has been carried out for conical shells of different cone angles and for boundary condition like clamped-clamped, simply supported and clamped free. In general, instability occurs at a critical fluid velocity corresponding to the shell circumferential mode with the lowest natural frequency. Critical fluid velocities are lower than that of equivalent cylindrical shells. This result holds good for all boundary conditions.
Pump Coastdown with the Submerged Flywheel
Energy Technology Data Exchange (ETDEWEB)
Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.
Tunable cylindrical shell as an element in acoustic metamaterial
Titovich, Alexey S
2014-01-01
Elastic cylindrical shells are fitted with an internal mechanism which is optimized so that, in the quasi-static regime, the combined system exhibits prescribed effective acoustic properties. The mechanism consists of a central mass supported by an axisymmetric distribution of elastic stiffeners. By appropriate selection of the mass and stiffness of the internal mechanism, the shell's effective acoustic properties (bulk modulus and density) can be tuned as desired. Subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. Effectiveness of the proposed metamaterial is demonstrated by matching the properties of a thin aluminum shell with a polymer insert to those of water. The scattering cross section in water is nearly zero over a broad range of frequencies at the lower end of the spectrum. By arranging the tuned shells in an array the resulting acoustic metamaterial is capable of steering waves. As an example, a cyl...
Coastline Protection by a Submerged Breakwater
Valentine, B. D.; Hayatdavoodi, M.; Ertekin, R. C.
2016-02-01
Coastal communities are in danger of the impact caused by storm surge and waves. Storm surge brings the water level to a higher elevation and farther inland. This rise in water level increases the chance of a higher number and larger set of waves approaching shorelines, and it can potentially devastate the coastal infrastructure. In this study, we evaluate the performance of a submerged, horizontal breakwater located near shore. Unlike other types of breakwaters, such as the ones that extend to the surface, either fixed or floating, a submerged horizontal breakwater does not create any visual distraction or limit most of the recreational and commercial activities in the nearshore areas. The Level I Green-Naghdi (GN) nonlinear water wave equations are utilized here to study the wave transformation over a submerged breakwater that is located in shallow water. The GN theory is based on the theory of directed fluid sheets and assumes an incompressible and inviscid fluid; no assumption on the rotationality of the flow is required. In this approach, the nonlinear boundary conditions and the averaged conservation laws are satisfied exactly. The reflection and transmission coefficients due to nonlinear shallow water waves are determined implementing two approaches which use Goda's (1976) and Grue's (1992) methods. The results are compared with the existing laboratory experiments, and close agreement is observed overall. Preliminary results of the performance of the breakwater on dissipating storm waves during Hurricane Ike (2008), approaching the shore of Galveston, Texas, are presented.
Imperfection sensitivity of pressured buckling of biopolymer spherical shells.
Zhang, Lei; Ru, C Q
2016-06-01
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER
Ali, Majid; CHANGQI, YAN; ZHONGNING, SUN; HAIFENG, GU; JUNLONG, WANG; MEHBOOB, KHURRAM
2013-01-01
The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na2S2O3) in water to remove the gaseous iodine (I2) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine...
Submergence tolerance in Hordeum marinum
DEFF Research Database (Denmark)
Pedersen, Ole; Malik, Al I.; Colmer, Timothy D.
2010-01-01
Floodwaters differ markedly in dissolved CO(2), yet the effects of CO(2) on submergence responses of terrestrial plants have rarely been examined. The influence of dissolved CO(2) on underwater photosynthesis and growth was evaluated for three accessions of the wetland plant Hordeum marinum Huds......) movement, would all contribute to submergence tolerance in H. marinum. The present study demonstrates that dissolved CO(2) levels can determine submergence tolerance of terrestrial plants. So, submergence experiments should be conducted with defined CO(2) concentrations and enrichment might be needed...
DEFF Research Database (Denmark)
Hansen, Mads Fogtmann; Fagertun, Jens; Larsen, Rasmus
2011-01-01
This paper presents a fusion of the active appearance model (AAM) and the Riemannian elasticity framework which yields a non-linear shape model and a linear texture model – the active elastic appearance model (EAM). The non-linear elasticity shape model is more flexible than the usual linear...
Surface phenomena in elasticity
Zak, M.
1981-01-01
Problems of elasticity associated with the behavior of free surfaces of elastic bodies are reviewed with particular reference to the propagation of characteristic waves and the criteria of wrinkling of free surfaces. All transformations are given for the case when a free surface of an elastic body is streamlined by the flow of inviscid fluid. The wrinkling phenomenon is illustrated by example.
Free vibrations of circular cylindrical shells
Armenàkas, Anthony E; Herrmann, George
1969-01-01
Free Vibrations of Circular Cylindrical Shells deals with thin-walled structures that undergo dynamic loads application, thereby resulting in some vibrations. Part I discusses the treatment of problems associated with the propagation of plane harmonic waves in a hollow circular cylinder. In such search for solutions, the text employs the framework of the three-dimensional theory of elasticity. The text explains the use of tables of natural frequencies and graphs of representative mode shapes of harmonic elastic waves bounding in an infinitely long isotropic hollow cylinder. The tables are
Calibration of submerged multi-sluice gates
Directory of Open Access Journals (Sweden)
Mohamed F. Sauida
2014-09-01
The main objective of this work is to study experimentally and verify empirically the different parameters affecting the discharge through submerged multiple sluice gates (i.e., the expansion ratios, gates operational management, etc.. Using multiple regression analysis of the experimental results, a general equation for discharge coefficient is developed. The results show, that the increase in the expansion ratio and the asymmetric operation of gates, give higher values for the discharge coefficient. The obtained predictions of the discharge coefficient using the developed equations are compared to the experimental data. The present developed equations showed good consistency and high accuracy.
Ground state instabilities of protein shells are eliminated by buckling.
Singh, Amit R; Perotti, Luigi E; Bruinsma, Robijn F; Rudnick, Joseph; Klug, William S
2017-11-15
We propose a hybrid discrete-continuum model to study the ground state of protein shells. The model allows for shape transformation of the shell and buckling transitions as well as the competition between states with different symmetries that characterize discrete particle models with radial pair potentials. Our main results are as follows. For large Föppl-von Kármán (FvK) numbers the shells have stable isometric ground states. As the FvK number is reduced, shells undergo a buckling transition resembling that of thin-shell elasticity theory. When the width of the pair potential is reduced below a critical value, then buckling coincides with the onset of structural instability triggered by over-stretched pair potentials. Chiral shells are found to be more prone to structural instability than achiral shells. It is argued that the well-width appropriate for protein shells lies below the structural instability threshold. This means that the self-assembly of protein shells with a well-defined, stable structure is possible only if the bending energy of the shell is sufficiently low so that the FvK number of the assembled shell is above the buckling threshold.
Ocean acidification alters the material properties of Mytilus edulis shells.
Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie
2015-02-06
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Damage detection in submerged plates using ultrasonic guided waves
Indian Academy of Sciences (India)
Suitable ultrasonic guided wave modes with optimum scanning capabilities have been generated and identified in submerged plate system. Finally, the propagation of selected modes through submerged notched plates is investigated. Sensitivity of leaky waves to the notches has been studied. The methodology would help ...
Automating a submerged pump method for operating oil wells
Energy Technology Data Exchange (ETDEWEB)
Popa, I.
1984-01-01
The basic parameters of wells which operate in a mode of submerged operation are presented. The basic systems for measuring and testing the parameters of submerged operation are described. Worldwide experience in solving this particular problem is analyzed. Romanian (SRR) use of systems for automation, remote signaling and remote management is examined.
Impacts of climate change on submerged and emergent wetland plants
Frederick T. Short; Sarian Kosten; Pamela A. Morgan; Sparkle L Malone; Gregg E. Moore
2016-01-01
Submerged and emergent wetland plant communities are evaluated for their response to global climate change (GCC), focusing on seagrasses, submerged freshwater plants, tidal marsh plants, freshwater marsh plants and mangroves. Similarities and differences are assessed in plant community responses to temperature increase, CO2increase, greater UV-B exposure, sea...
Identification of a novel submergence response gene regulated by ...
African Journals Online (AJOL)
Tuoyo Aghomotsegin
2016-12-07
Dec 7, 2016 ... 3Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangzte University,. Jingzhou 434025, P.R. .... intolerance to submergence) and M202(Sub1A) by qRT-. PCR. We identified a novel gene responsive to submergence, called RS1. The expression patterns of.
Identification of a novel submergence response gene regulated by ...
African Journals Online (AJOL)
Our results also show that RS1 is highly expressed under submergence, drought, and NaCl stresses, but not under cold or dehydration stress. Hormone ABA treatment induces, whereas GA treatment decreases, RS1 expression. The RS1 and Sub1A genes are co-regulated under submergence. Overexpression of RS1 in ...
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.
Evolution of bulk strain solitons in cylindrical inhomogeneous shells
Energy Technology Data Exchange (ETDEWEB)
Shvartz, A., E-mail: andrew.shvartz@mail.ioffe.ru; Samsonov, A.; Dreiden, G.; Semenova, I. [Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021 (Russian Federation)
2015-10-28
Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.
Structural Concrete Using Oil Palm Shell (OPS) as Lightweight Aggregate
TEO, D. C. L.; M. A. Mannan; V.J. Kurian
2014-01-01
This paper presents part of the experimental results of an on-going research project to produce structural lightweight concrete using solid waste, oil palm shell (OPS), as a coarse aggregate. Reported in the paper are the compressive strength, bond strength, modulus of elasticity, and flexural behaviour of OPS concrete. It was found that although OPS concrete has a low modulus of elasticity, full-scale beam tests revealed that deflection under the design service loads is acceptable a...
Celestial mechanics of planet shells
Barkin, Yu V.; Vilke, V. G.
2004-06-01
The motion of a planet consisting of an external shell (mantle) and a core (rigid body), which are connected by a visco-elastic layer and mutually gravitationally interact with each other and with an external celestial body (considered as a material point), is studied (Barkin, 1999, 2002a,b; Vilke, 2004). Relative motions of the core and mantle are studied on the assumption that the centres of mass of the planet and external body move on unperturbed Keplerian orbits around the general centre of mass of the system. The core and mantle of the planet have axial symmetry and have different principal moments of inertia. The differential action of the external body on the core and mantle cause the periodic relative displacements of their centres of mass and their relative turns. An approximate solution of the problem was obtained on the basis of the linearization, averaging and small-parameter methods. The obtained analytical results are applied to the study of the possible relative displacements of the core and mantle of the Earth under the gravitational action of the Moon. For the suggested two-body Earth model and in the simple case of a circular (model) lunar orbit the new phenomenon of periodic translatory-rotary oscillations of the core with a fortnightly period the mantle was observed. The more remarkable phenomenon is the cyclic rotation with the same period (13.7 days) of the core relative to the mantle with a ‘large’ amplitude of 152 m (at the core surface).The results obtained confirm the general concept described by Barkin (1999, 2002a,b) that induced relative shell oscillations can control and dictate the cyclic and secular processes of energization of the planets and satellites in definite rhythms and on different time scales.The results obtained mean that giant moments and forces produce energy which causes in particular deformations of the viscoelastic layer between planet shells. This process is realized with different intensities on different time
Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes
Goriely, A.
2013-03-06
Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.
Paro, Alberto
2013-01-01
Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java
Laser-matter Interaction with Submerged Samples
Energy Technology Data Exchange (ETDEWEB)
Mariella, R; Rubenchik, A; Norton, M; Donohue, G; Roberts, K
2010-03-25
With the long-term goal in mind of investigating if one could possibly design a 'universal solid-sample comminution technique' for debris and rubble, we have studied pulsed-laser ablation of solid samples that were contained within a surrounding fluid. Using pulses with fluences between 2 J and 0.3 J, wavelengths of 351 and 527 nm, and samples of rock, concrete, and red brick, each submerged in water, we have observed conditions in which {micro}m-scale particles can be preferentially generated in a controlled manner, during the laser ablation process. Others have studied laser peening of metals, where their attention has been to the substrate. Our study uses non-metallic substrates and analyzes the particles that are ablated from the process. The immediate impact of our investigation is that laser-comminution portion of a new systems concept for chemical analysis has been verified as feasible.
Submerged arc welding of heavy plate
Wilson, R. A.
1972-01-01
The submerged arc process is particularly suitable for heavy plate welding because of its ability to combine very high deposit rates along with excellent quality. It does these things without the smoke and spatter often accompanying other processes. It is available today in several forms that are pointed to the fabricators of heavy sections with long, short or round about welds. Tandem arc full automatic equipment is particularly suitable for those long heavy welds where speed and deposit rate are of the first order. An attachment called long stick-out which makes use of the IR drop on long electrode extensions can be included on this equipment to increase deposition rates 50% or more.
Modeling tabular icebergs submerged in the ocean
Stern, A. A.; Adcroft, A.; Sergienko, O.; Marques, G.
2017-08-01
Large tabular icebergs calved from Antarctic ice shelves have long lifetimes (due to their large size), during which they drift across large distances, altering ambient ocean circulation, bottom-water formation, sea-ice formation, and biological primary productivity in the icebergs' vicinity. However, despite their importance, the current generation of ocean circulation models usually do not represent large tabular icebergs. In this study, we develop a novel framework to model large tabular icebergs submerged in the ocean. In this framework, tabular icebergs are represented by pressure-exerting Lagrangian elements that drift in the ocean. The elements are held together and interact with each other via bonds. A breaking of these bonds allows the model to emulate calving events (i.e., detachment of a tabular iceberg from an ice shelf) and tabular icebergs breaking up into smaller pieces. Idealized simulations of a calving tabular iceberg, its drift, and its breakup demonstrate capabilities of the developed framework.
Crassulacean acid metabolism in submerged aquatic plants
Keeley, Jon E.; Sybesme, C.
1984-01-01
CO2-fixation in the dark is known to occur in various organs of many plants. However, only in species possessing crassulacean acid metabolism (CAM) does dark CO2-fixation contribute substantially to the carbon economy of the plant. Until very recently CAM was known only from terrestrial species, largely drought adapted succulents. The discovery of CAM in the submerged aquatic fern ally Isoetes howellii (Isoetaceae)(Keeley 1981) adds a new dimension to our understanding of crassulacean acid metabolism. In this paper I will summarize 1) the evidence of CAM in Isoetes howellii, 2) the data on the distribution of CAM in aquatic species, and 3) the work to date on the functional significance of CAM in aquatic species.
Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.
1985-01-01
The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.
Workshop on ROVs and deep submergence
The deep-submergence community has an opportunity on March 6 to participate in a unique teleconferencing demonstration of a state-of-the-art, remotely operated underwater research vehicle known as the Jason-Medea System. Jason-Medea has been developed over the past decade by scientists, engineers, and technicians at the Deep Submergence Laboratory at Woods Hole Oceanographic Institution. The U.S. Navy, the Office of the Chief of Naval Research, and the National Science Foundation are sponsoring the workshop to explore the roles that modern computational, communications, and robotics technologies can play in deep-sea oceanographic research.Through the cooperation of Electronic Data Systems, Inc., the Jason Foundation, and Turner Broadcasting System, Inc., 2-1/2 hours of air time will be available from 3:00 to 5:30 PM EST on March 6. Twenty-seven satellite downlink sites will link one operating research vessel and the land-based operation with workshop participants in the United States, Canada, the United Kingdom, and Bermuda. The research ship Laney Chouest will be in the midst of a 3-week educational/research program in the Sea of Cortez, between Baja California and mainland Mexico. This effort is focused on active hydrothermal vents driven by heat flow from the volcanically active East Pacific Rise, which underlies the sediment-covered Guaymas Basin. The project combines into a single-operation, newly-developed robotic systems, state-of-the-art mapping and sampling tools, fiber-optic data transmission from the seafloor, instantaneous satellite communication from ship to shore, and a sophisticated array of computational and telecommunications networks. During the workshop, land-based scientists will observe and participate directly with their seagoing colleagues as they conduct seafloor research.
Submerged membrane distillation for seawater desalination
Francis, Lijo
2014-08-11
A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.
Fleming, W.J.; Ailstock, M.S.; Momot, J.J.; Norman, C.M.; Gorsuch, Joseph W.; Lower, William R.; Wang, Wun-cheng; Lewis, M.A.
1991-01-01
The phytotoxicity of atrazine, paraquat, glyphosate, and alachlor to sago pondweed (Potamogeton pectinatus), a submerged aquatic macrophyte, was tested under three types of laboratory culture conditions. In each case, tests were conducted in static systems, the test period was four weeks, and herbicide exposure was chronic, resulting from a single addition of herbicide to the test vessels at the beginning of the test period. The three sets of test conditions employed were(1) axenic cultures in 125-mL flasks containing a nutrient media and sucrose; (2) a microcosm system employing 18.9-L buckets containing a sand, shell, and peat substrate; and (3) an algae-free system employing O.95-L jars containing reconstituted freshwater and a nutrient agar substrate. The primary variable measured was biomass production. Plants grew well in all three test systems, with biomass of untreated plants increasing by a factor of about 5 to 6.5 during the four-week test period. Biomass production in response to herbicide exposure differed significantly among culture systems, which demonstrates the need for a standardized testing protocol for evaluating the effects of toxics on submerged aquatic plants.
Paro, Alberto
2015-01-01
If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.
Environmentally Adjusted Elasticity Measures
Shaik, Saleem
2005-01-01
Here, using input, output and nitrogen pollution data related to one state, we propose to extend the elasticity concept to include environmental pollution treated as undesirable output to provide the environmentally adjusted elasticity measures for the period, 1936-1997 in a two-step procedure.
Method of initial functions for thick transversely isotropic shells
Energy Technology Data Exchange (ETDEWEB)
Faraji, S. (Lowell Univ., MA (USA). Dept. of Civil Engineering); Archer, R.R. (Massachusetts Univ., Amherst (USA). Dept. of Civil Engineering)
1989-10-10
In the present work for circular cylindrical shells, three-dimensional elasticity equations are solved by assuming Taylor series expansions, in the radial direction, for the stresses and displacements. Depending upon the number of terms retained in the expansion, different order shell theories are derived. Classical theories (referred to as eighth-order), the shear deformation-transverse normal stress theories (referred to as tenth-order), and higher order theories (referred to as twelfth-order) are derived. In each case, by carrying out the symbolic algebra using the digital computer, partial differential equations are derived. The procedure was carried out in detail for the case of a circular cyclindrical shell with no loading on the interior surface and a given pressure distribution on the exterior surface. Then, numerical comparisons are made between the current theories and various shell theories, as well as the exact (three-dimensional) theory. Thus, using this method with its associated computer programs, one can realize a spectrum of approximate shell theories ranging from the classical thin shell, through all current thick shell theories, and approaching the three-dimensional elastic theories. (orig.).
Reversible patterning of spherical shells through constrained buckling
Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.
2017-07-01
Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.
Nonlinear Geometric and Material Behavior of Composite Shells with Large Strains
1995-08-01
B.S., M.S. Captain, USAF Approved: /A4. N. P la tto, Ch r n 7 Profesor , Depart en of Aeronautics & Astronautics P J. Torvik DATE Professor...complexities. For composite shells, some studies use a first-order transverse shear theory with bi-linear elas- tic -plastic material behavior [6, 10, 13, 16...the classical thin shell. Investigations of the limitations of elastic-plas- tic cubic-nonlinear HTSD theory were based on the shallow isotropic shell
Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells
DEFF Research Database (Denmark)
Überall, Herbert; Claude Ahyi, A.; Raju, P. K.
2001-01-01
frequency/elasticity-theory connection, and we obtain comparative dispersion-curve results for water-loaded, evacuated spherical shells of various metals. In particular, the characteristic upturn of the dispersion curves of low-order shell-borne circumferential waves (A or A0 waves) which takes place...... on spherical shells when the frequency tends towards low values, is demonstrated here for all the metals under consideration....
A comparison between different finite elements for elastic and aero-elastic analyses.
Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani
2017-11-01
In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
A comparison between different finite elements for elastic and aero-elastic analyses
Directory of Open Access Journals (Sweden)
Mohamed Mahran
2017-11-01
Full Text Available In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element’s strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
Shell ontogeny in radiolarians
Digital Repository Service at National Institute of Oceanography (India)
Anderson, O.R.; Gupta, S.M.
The ontogeny of the shells in modern and ancient radiolarian species, Acrosphaera cyrtodon were observed by scanning and transmission electron microscopy. The shells of A. cyrtodon were obtained from core samples collected from the Central Indian...
Durability performance of submerged concrete structures - phase 2.
2015-09-01
This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...
Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Geodatabase
National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...
Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Substrate
National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...
Marine algal flora of submerged Angria Bank (Arabian Sea)
Digital Repository Service at National Institute of Oceanography (India)
Untawale, A.G.; Reddy, C.R.K.; Ambiye, V.
Submerged Angria Bank was surveyed for the deep water marine algal flora. About 57 species were reported from this bank for the first time. Rhodophyta dominated (30 species) followed by Chlorophyta (18 species) and Phaeophyta (9 species). A few...
Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Biotic
National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...
Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Geoform
National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...
Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study
Energy Technology Data Exchange (ETDEWEB)
Pajunen, A. J.; Tedeschi, A. R.
2012-09-18
This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.
Stability of Plates and Shells Beyond the Proportional Limit
Ilyushin, A. A.
1947-01-01
In the present paper is examined the method of investigating the stability of plates and shells beyond the elastic limit, that proceeds from the generalization of the Hencky-Mises theory of elastico-plastic deformations given in the works of Smirnov-Alyayev, Schmidt, and in our papers.
Static Analysis of Circular Cylindrical Shell Under Hydrostatic and ...
African Journals Online (AJOL)
Analysis of circular cylindrical shell under the action of hydrostatic and stiffening ring forces is carried out in this work. The differential equation of equilibrium, similar to that of beam on elastic foundation, was obtained from static principles on the assumptions of P. L. Pasternak. The initial value method was used to solve the ...
Lattice mechanical properties of some fcc f-shell metals
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 60; Issue 6 ... phonon dispersion curves (q-space and r-space analysis), mode Gr¨uneisen parameters and dynamical elastic constants of some fcc f-shell metals La, Yb, Ce and Th. ... Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, India ...
Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress
Directory of Open Access Journals (Sweden)
Malay Kumar ADAK
2011-06-01
Full Text Available The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation. It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield. The detrimental effects of the complete submergence were recorded in generation of sucrose, starch, sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e. non-submerged condition. The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity. Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity. However, under normal or control condition, there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity. Still, photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield. Finally, plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues. It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles, in this case as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.
Incipient motion of sediment in presence of submerged flexible vegetation
Wang, Hao; Tang, Hong-Wu; Zhao, Han-Qing; Xuan-yu ZHAO; Lü, Sheng-qi
2015-01-01
The presence of submerged vegetation on river beds can change the water flow structure and alter the state of sediment motion. In this study, the incipient motion of sediment in the presence of submerged flexible vegetation in open channels was investigated in a laboratory experiment. The vegetation was simulated with flexible rubber cylinders arranged in parallel arrays. The effect of the vegetation density, water depth, and sediment grain size on the incipient motion was investigated. The e...
Elastic scattering phenomenology
Energy Technology Data Exchange (ETDEWEB)
Mackintosh, R.S. [The Open University, School of Physical Sciences, Milton Keynes (United Kingdom)
2017-04-15
We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered ''good'', are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions. (orig.)
1966-10-01
This report describes the testing performed with reef shell, clam shell and a combination of reef and clam shell used as coarse aggregate to determine if a low modulus concrete could be developed for use as a base material as an alternate to the pres...
Heat transfer model for quenching by submerging
Energy Technology Data Exchange (ETDEWEB)
Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)
2011-05-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
Statistical mechanics of elasticity
Weiner, JH
2012-01-01
Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.
Jayaram, K.,
2013-01-01
Part 2: Cloud Computing; International audience; For distributed applications to take full advantage of cloud computing systems, we need middleware systems that allow developers to build elasticity management components right into the applications.This paper describes the design and implementation of ElasticRMI, a middleware system that (1) enables application developers to dynamically change the number of (server) objects available to handle remote method invocations with respect to the appl...
Kuc, Rafal
2013-01-01
A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.
Functional buckling behavior of silicone rubber shells for biomedical use.
van der Houwen, E B; Kuiper, L H; Burgerhof, J G M; van der Laan, B F A M; Verkerke, G J
2013-12-01
The use of soft elastic biomaterials in medical devices enables substantial function integration. The consequent increased simplification in design can improve reliability at a lower cost in comparison to traditional (hard) biomaterials. Functional bi-stable buckling is one of the many new mechanisms made possible by soft materials. The buckling behavior of shells, however, is typically described from a structural failure point of view: the collapse of arches or rupture of steam vessels, for example. There is little or no literature about the functional elastic buckling of small-sized silicone rubber shells, and it is unknown whether or not theory can predict their behavior. Is functional buckling possible within the scale, material and pressure normally associated with physiological applications? An automatic speech valve is used as an example application. Silicone rubber spherical shells (diameter 30mm) with hinged and double-hinged boundaries were subjected to air pressure loading. Twelve different geometrical configurations were tested for buckling and reverse buckling pressures. Data were compared with the theory. Buckling pressure increases linearly with shell thickness and shell height. Reverse buckling shows these same relations, with pressures always below normal buckling pressure. Secondary hinges change normal/reverse buckling pressure ratios and promote symmetrical buckling. All tested configurations buckled within or closely around physiological pressures. Functional bi-stable buckling of silicone rubber shells is possible with adjustable properties in the physiological pressure range. Results can be predicted using the proposed relations and equations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Submerged cultivation of medicinal mushrooms: bioprocesses and products (review).
Elisashvili, Vladimir
2012-01-01
Medicinal mushrooms belonging to higher Basidiomycetes are an immensely rich yet largely untapped resource of useful, easily accessible, natural compounds with various biological activities that may promote human well-being. The medicinal properties are found in various cellular components and secondary metabolites (polysaccharides, proteins and their complexes, phenolic compounds, polyketides, triterpenoids, steroids, alkaloids, nucleotides, etc.), which have been isolated and identified from the fruiting bodies, culture mycelium, and culture broth of mushrooms. Some of these compounds have cholesterol-lowering, anti-diabetic, antioxidant, antitumor, immunomodulating, antimicrobial, and antiviral activities ready for industrial trials and further commercialization, while others are in various stages of development. Recently, the submerged cultivation of medicinal mushrooms has received a great deal of attention as a promising and reproducible alternative for the efficient production of mushroom mycelium and metabolites. Submerged cultivation of mushrooms has significant industrial potential, but its success on a commercial scale depends on increasing product yields and development of novel production systems that address the problems associated with this technique of mushroom cultivation. In spite of many researchers' efforts for the production of bioactive metabolites by mushrooms, the physiological and engineering aspects of submerged cultures are still far from being thoroughly studied. The vast majority of studies have focused on polysaccharide and ganoderic acid production in submerged cultivation of medicinal mushrooms, and very little has been written so far on the antioxidant and hemagglutinating activity of submerged mushroom cultures. The purpose of this review is to provide an update of the present state of the art and future prospects of submerged cultivation of medicinal mushrooms to produce mycelium and bioactive metabolites, and to make a
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Waves on fluid-loaded shells and their resonance frequency spectrum
DEFF Research Database (Denmark)
Bao, X.L.; Uberall, H.; Raju, P.K.
2005-01-01
Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves......, or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...
Dispersion of axially symmetric waves in fluid-filled cylindrical shells
DEFF Research Database (Denmark)
Bao, X.L.; Überall, H.; Raju, P. K.
2000-01-01
Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves......, 317 (1972)]. We have extended the work of Kumar to the case of fluid-filled aluminum shells and steel shells imbedded in air. These cases demonstrate the existence of circumferential waves traveling in the filler fluid, exhibiting a certain simplicity of the dispersion curves of these waves....... This is in striking contrast to the results for double (outside and inside) loading by two fluids of comparable density, where circumferential waves in both external and internal fluids were found, their interaction causing segmentation and repulsion phenomena of their dispersion curves. The condition of standing...
Peselnick, L.; Robie, R.A.
1962-01-01
The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.
Elastic membranes in confinement.
Bostwick, J B; Miksis, M J; Davis, S H
2016-07-01
An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. © 2016 The Author(s).
Elastic anisotropy of crystals
Directory of Open Access Journals (Sweden)
Christopher M. Kube
2016-09-01
Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.
Sewell, Thomas D.; Bedrov, Dmitry; Menikoff, Ralph; Smith, Grant D.
2002-07-01
Atomistic molecular dynamics simulations have been used to calculate isothermal elastic properties for beta-, alpha-, and delta-HMX. The complete elastic tensor for each polymorph was determined at room temperature and pressure via analysis of microscopic strain fluctuations using formalism due to Rahman and Parrinello [J. Chem. Phys. 76, 2662 (1982)]. Additionally, the isothermal compression curve was computed for beta-HMX for 0 less-than-or-equal p less-than-or-equal 10.6 GPa; the bulk modulus K and its pressure derivative K'were obtained from two fitting forms employed previously in experimental studies of the beta-HMX equation of state. Overall, the results indicate good agreement between the bulk modulus predicted from the measured and calculated compression curves. The bulk modulus determined directly from the elastic tensor of beta-HMX is in significant disagreement with the compression curve-based results. The explanation for this discrepancy is an area of current research.
On the bi-orthogonality conditions for multi-modal elastic waveguides
DEFF Research Database (Denmark)
Sorokin, Sergey
2013-01-01
The bi-orthogomality conditions in terms of generalised forces and displacements are derived from the reciprocity relations for a hierarchy of elastic waveguides, which support several travelling and evanescent modes (free waves). In the simple cases of waves in a straight beam and axisymmetric...... waves in a thin elastic cylindrical shell, these conditions are formulated as identities in an explicit form via wavenumbers. The forced vibrations of these waveguides under localised excitation are also considered with these identities being employed. The bi-orthogonality conditions in more advanced...... cases, specifically, for non-axisymmetric waves in an elastic cylindrical shell and for waves in an elastic helical spring, are derived, but not presented in an explicit form via wavenumbers. The results obtained for the hierarchy of waveguides are discussed in view of the classical bi...
Locke, Anna M; Barding, Gregory A; Sathnur, Sumukh; Larive, Cynthia K; Bailey-Serres, Julia
2017-11-02
The rice (Oryza sativa L.) ethylene-responsive transcription factor gene SUB1A-1 confers tolerance to prolonged, complete submergence by limiting underwater elongation growth. Upon desubmergence, SUB1A-1 genotypes rapidly recover photosynthetic function and recommence development towards flowering. The underpinnings of the transition from stress amelioration to the return to homeostasis are not well known. Here, transcriptomic and metabolomic analyses were conducted to identify mechanisms by which SUB1A improves physiological function over the 24 hr following a sublethal submergence event. Evaluation of near-isogenic genotypes after submergence and over a day of reaeration demonstrated that SUB1A transiently constrains the remodelling of cellular activities associated with growth. SUB1A influenced the abundance of ca. 1,400 transcripts and had a continued impact on metabolite content, particularly free amino acids, glucose, and sucrose, throughout the recovery period. SUB1A promoted recovery of metabolic homeostasis but had limited influence on mRNAs associated with growth processes and photosynthesis. The involvement of low energy sensing during submergence and recovery was supported by dynamics in trehalose-6-phosphate and mRNAs encoding key enzymes and signalling proteins, which were modulated by SUB1A. This study provides new evidence of convergent signalling pathways critical to the rapidly reversible management of carbon and nitrogen metabolism in submergence resilient rice. © 2017 John Wiley & Sons Ltd.
Altenbach, Holm
2011-01-01
In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Rogozinski, Marek
2014-01-01
This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.
Lai, Yun
2011-06-26
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.
Peculiarities of thermal dissociation of oxides during submerged arc welding
Directory of Open Access Journals (Sweden)
Leonid Zhdanov
2013-12-01
Full Text Available A method of settlement of the process of thermal dissociation of oxides in reaction zone during the submerged arc welding and welding deposition is presented. Combined non-linear equations for definition of gas-vapour mixture composition were developed. They describe the dissociation of MeO, MeO2 and Me2O3 types of oxides. Calculations of the processes of oxide dissociation were performed for the oxides that are commonly included into welding fluxes. Their results and analysis are presented. The method proposed appeared to be adequate and applicable for analysis of processes during submerged arc operation that run in the gas phase.
On the identification of the eggshell elastic properties under quasistatic compression
Directory of Open Access Journals (Sweden)
Jana Simeonovová
2004-01-01
Full Text Available The problem of the identification of the elastic properties of eggshell, i.e. the evaluation of the Young's modulus and Poisson's ratio is solved. The eggshell is considered as a rotational shell. The experiments on the egg compression under quasistatic loading have been conducted. During these experiments a strain on the eggshell surface has been recorded. By the mutual comparison between experimental and theoretical values of strains the influence of the elastic constants has been demonstrated.
EAARL-B Submerged TopographyÂSaint Croix, U.S. Virgin Islands, 2014
U.S. Geological Survey, Department of the Interior — A submerged topography digital elevation model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely...
EAARL-B Submerged Topography--Saint Thomas, U.S. Virgin Islands, 2014
U.S. Geological Survey, Department of the Interior — A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely...
Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii
Vanderstukken, M.; Declerck, S.A.J.; Decaestecker, E.; Muylaert, K.
2014-01-01
Keywords: allelochemicals; chemical ecology; competition; nutrient limitation; shallow lakes Summary 1.It is well known that submerged macrophytes can suppress phytoplankton blooms in lakes and thus promote water quality and biodiversity. One of the possible mechanisms through which submerged
Invasive Crayfish Threaten the Development of Submerged Macrophytes in Lake Restoration
Wal, van der J.E.M.; Dorenbosch, M.; Immers, A.K.; Vidal Forteza, C.; Geurts Van Kessel, J.M.M.; Peeters, E.T.H.M.; Koese, B.; Bakker, E.S.
2013-01-01
Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous
Invasive crayfish threaten the development of submerged macrophytes in lake restoration
Van der Wal, J.E.M.; Dorenbosch, M.; Immers, A.; Vidal Forteza, C.; Geurts, J.J.M.; Peeters, E.T.H.M.; Koese, B.; Bakker, E.S.
2013-01-01
Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous
Vibrations of Elastic Systems With Applications to MEMS and NEMS
Magrab, Edward B
2012-01-01
This work presents a unified approach to the vibrations of elastic systems as applied to MEMS devices, mechanical components, and civil structures. Applications include atomic force microscopes, energy harvesters, and carbon nanotubes and consider such complicating effects as squeeze film damping, viscous fluid loading, in-plane forces, and proof mass interactions with their elastic supports. These effects are analyzed as single degree-of-freedom models and as more realistic elastic structures. The governing equations and boundary conditions for beams, plates, and shells with interior and boundary attachments are derived by applying variational calculus to an expression describing the energy of the system. The advantages of this approach regarding the generation of orthogonal functions and the Rayleigh-Ritz method are demonstrated. A large number of graphs and tables are given to show the impact of various factors on the systems’ natural frequencies, mode shapes, and responses.
Through-flow of water in leaves of a submerged plant is influenced by the apical opening
DEFF Research Database (Denmark)
Pedersen, Ole; Jørgensen, Lise Bolt; Sand-Jensen, Kaj
1997-01-01
Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity......Submerged plant, apical opening, hydathode, Sparganium, hydraulic architecture, leaf specific conductivity...
Lisunova, Milana O; Drachuk, Irina; Shchepelina, Olga A; Anderson, Kyle D; Tsukruk, Vladimir V
2011-09-06
The mechanical properties of hydrogen-bonded layer-by-layer (LbL) microcapsule shells constructed from tannic acid (TA) and poly(vinylpyrrolidone) (PVPON) components have been studied in both the dry and swollen states. In the dry state, the value of the elastic modulus was measured to be within 0.6-0.7 GPa, which is lower than the typical elastic modulus for electrostatically assembled LbL shells. Threefold swelling of the LbL shells in water results in a significant reduction of the elastic modulus to values well below 1 MPa, which is typical value seen for highly compliant gel materials. The increase of the molecular weight of the PVPON component from 55 to 1300 kDa promotes chain entanglements and causes a stiffening of the LbL shells with a more than 2-fold increase in elastic modulus value. Moreover, adding a polyethylenimine prime layer to the LbL shell affects the growth of hydrogen-bonded multilayers which consequently results in dramatically stiffer, thicker, and rougher LbL shells with the elastic modulus increasing by more than an order of magnitude, up to 4.3 MPa. An alternation of the elastic properties of very compliant hydrogen-bonded shells by variation of molecular weight is a characteristic feature of weakly bonded LbL shells. Such an ability to alter the elastic modulus in a wide range is critically important for the design of highly compliant microcapsules with tunable mechanical stability, loading ability, and permeability. © 2011 American Chemical Society
Cheche, Tiberius O.; Chang, Yia-Chung
2013-01-01
A one-band model within the effective mass approximation is adopted to characterize the energy structure and oscillator strength of type-II semiconductor spherical core-shell quantum dots. The heteroepitaxial strain of the core-shell heterostructure is modeled by the elastic continuum approach. The model is applied to ZnTe/ZnSe core-shell, a wide band gap type-II heterostructure. The simulated absorption spectra are in fair agreement with available experimental results.
Hall, Timothy J; Oberait, Assad A; Barbone, Paul E; Sommer, Amy M; Gokhale, Nachiket H; Goenezent, Sevan; Jiang, Jingfeng
2009-01-01
Previous work has demonstrated improved diagnostic performance of highly trained breast radiologists when provided with B-mode plus elastography images over B-mode images alone. In those studies we have observed that elasticity imaging can be difficult to perform if there is substantial motion of tissue out of the image plane. So we are extending our methods to 3D/4D elasticity imaging with 2D arrays. Further, we have also documented the fact that some breast tumors change contrast with increasing deformation and those observations are consistent with in vitro tissue measurements. Hence, we are investigating imaging tissue stress-strain nonlinearity. These studies will require relatively large tissue deformations (e.g., > 20%) which will induce out of plane motion further justifying 3D/4D motion tracking. To further enhance our efforts, we have begun testing the ability to perform modulus reconstructions (absolute elastic parameter) imaging of in vivo breast tissues. The reconstructions are based on high quality 2D displacement estimates from strain imaging. Piecewise linear (secant) modulus reconstructions demonstrate the changes in elasticity image contrast seen in strain images but, unlike the strain images, the contrast in the modulus images approximates the absolute modulus contrast. Nonlinear reconstructions assume a reasonable approximation to the underlying constitutive relations for the tissue and provide images of the (near) zero-strain shear modulus and a nonlinearity parameter that describes the rate of tissue stiffening with increased deformation. Limited data from clinical trials are consistent with in vitro measurements of elastic properties of tissue samples and suggest that the nonlinearity of invasive ductal carcinoma exceeds that of fibroadenoma and might be useful for improving diagnostic specificity. This work is being extended to 3D.
African Journals Online (AJOL)
Valley. Although fossil specimens of this subspecies have been used in palaeoclimatic reconstruction, there have been no previous reports of living examples. Here We describe the local habitat, climate and some aspects of ecology and isotopic variation within the snail shell. If isotope data can be obtained for fossil shells, ...
Newham, Cameron
2005-01-01
This refreshed edition serves as the most valuable guide yet to the bash shell. It's full of practical examples of shell commands and programs guaranteed to make everyday use of Linux that much easier. Includes information on key bindings, command line editing and processing, integrated programming features, signal handling, and much more!
Hydrogen mitigation in submerged arc welding
Klimowicz, Steven
With the role of hydrogen in weld metal well understood in its relation to cold cracking, there has been a push to produce welds with lower and lower diffusible hydrogen contents. The push for lower diffusible hydrogen contents has placed pressure on consumables manufactures to create consumables that can achieve the requirements for lower diffusible hydrogen content. Currently EM12K flux is produced so that it can achieve below 4 ml of diffusible hydrogen for every 100g of weld metal deposited (ml/100g) for submerged arc welding (SAW). The recent trend for industry is to preferentially achieve diffusible hydrogen contents below 3 ml/100g. Making it necessary to find a way to modify the flux to achieve a lower diffusible hydrogen content for the welds it produces. To achieve this goal a two phase plan was developed. The first phase was to characterize the entire welding system for hydrogen. Since the goal of the project is hydrogen mitigation, any amount of hydrogen that could be reduced is helpful and therefore must first be discovered. Sources of hydrogen may be found by analyzing the welding wire and base metal, as well as breaking the flux down into its components and production steps. The wire was analyzed for total hydrogen content as was the base metal. The flux and its components were analyzed using differential thermal analysis-simultaneous thermal analysis (DTA-STA) and later vacuum degassing for moisture content. The analysis of the wire showed that the copper coating on the wire was the largest contributor of hydrogen. There was lubricant present on the wire surface as well, but it did not contribute as much as the copper coating. It was found that a simple low temperature baking of the wire was enough to remove the lubricant and coating moisture. The base metal was found to have a similar total hydrogen content to that of the wire. The breakdown of the flux and production process for moisture content analysis revealed that the production process
Non-linear elastic deformations
Ogden, R W
1997-01-01
Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.
Kwak, Moon K.; Yang, Dong-Ho
2013-09-01
This paper is concerned with the suppression of vibrations and radiated sound of a ring-stiffened circular cylindrical shell in contact with unbounded external fluid by means of piezoelectric sensors and actuators. The dynamic model of a circular cylindrical shell based on the Sanders shell theory was considered together with a ring stiffener model. The mass and stiffness matrices for a ring stiffener were newly derived in this study and added to the mass and stiffness matrices of the cylindrical shell, respectively. The fluid-added mass matrix, which was derived by using the baffled shell theory, was also added to the mass matrix. Finally, the equations representing the piezoelectric sensor measurement and piezoelectric actuation complete the theoretical model for the addressed problem. The natural vibration characteristics of the ring-stiffened cylindrical shell both in air and in water were investigated both theoretically and experimentally. The theoretical predictions were in good agreement with the experimental results. An active vibration controller which can cope with a harmonic disturbance was designed by considering the modified higher harmonic control, which is, in fact, a band rejection filter. An active vibration control experiment on the submerged cylindrical shell was carried out in a water tank and the digital control system was used. The experimental results showed that both vibrations and radiation sound of the submerged cylindrical shell were suppressed by a pair of piezoelectric sensor and actuator.
Proposed gas generation assembly would recover deeply submerged objects
Sprague, C. W.
1968-01-01
Gas generation system, used for recovery of submerged objects, generates hydrogen gas by the reaction of sodium with sea water. The assembly consists of flooded flotation tanks cabled together, equipped with relief valves to equalize pressure as the array ascends and hydrostatic pressure diminishes, and carrying remotely activated welding units.
Implementation of Submerged Arc Welding Training. Final Report.
Bowick, Earl; Todd, John
A unit on submerged arc welding (SAW) was developed and integrated into the welding program at Seattle Central Community College (Washington) during the period December 1983 through May 1984. During this time, 10 major users of SAW in the area were contacted and mailed questionnaires. Follow up consisted of telephone calls and personal contact as…
Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †
Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.
2010-01-01
Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643
Effects of submerged and anaerobic fermentations on cassava flour ...
African Journals Online (AJOL)
Oke Oluwatoyin Victoria
2015-03-18
Mar 18, 2015 ... Cassava tubers for processing into cassava flour, Lafun a Nigerian locally fermented product was subjected to two different types of fermentations: submerged and anaerobic fermentation for 72 h. Physicochemical changes that occurred during fermentation and their influence on the functional, rheological ...
Reactive oxygen species mediate growth and death in submerged plants
Directory of Open Access Journals (Sweden)
Bianka eSteffens
2013-06-01
Full Text Available Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism and nonenzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS.
Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current
DEFF Research Database (Denmark)
Chen, H. B.; Larsen, Torben
1995-01-01
This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically and...
Effects of prolonged elevated water salinity on submerged ...
African Journals Online (AJOL)
environmental change, global warming. * To whom all correspondence should be addressed. e-mail: ian.russell@sanparks.org. Received 9 March 2017; accepted in revised form 10 October 2017. INTRODUCTION. Estuarine submerged macrophyte communities can be highly variable at both spatial and temporal scales, ...
Protein enrichment of cassava peel by submerged fermentation ...
African Journals Online (AJOL)
PRECIOUS
2010-01-11
Jan 11, 2010 ... Key words: Cassava peel, Trichoderma viride, enzyme, submerged fermentation, protein, amino acids. INTRODUCTION. Protein-energy malnutrition remains a major public health problem in many developing countries and there is the need to increase daily intake of protein, especially animal protein, using ...
Relationships between the biomass of waterfowl and submerged ...
African Journals Online (AJOL)
The Wilderness Lakes system, comprising three estuarine lakes (Eilandvlei, Langvlei and Rondevlei), supports a diverse waterbird community, which includes 12 duck species and the abundant Red-knobbed Coot Fulica cristata. Biannual counts of waterfowl (ducks and Red-knobbed Coot) and assessments of submerged ...
Protein enrichment of cassava peel by submerged fermentation with ...
African Journals Online (AJOL)
Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316). OO Ezekiel, OC Aworh, HP Blaschek, TC Ezeji. Abstract. Cassava (Manihot esculenta Crantz) peel is one of the solid wastes produced as a consequence of cassava processing. It is low in protein but contains a large ...
Nitrification in a submerged attached growth bioreactor using Luffa ...
African Journals Online (AJOL)
A laboratory-scale submerged attached growth bioreactor using Luffa cylindrica as support material for the immobilization of nitrifying bacteria was applied for polishing the effluent of an UASB reactor treating domestic wastewater under the tropical conditions of northeast Brazil, in the City of Campina Grande (7o 13' 11” ...
Effects of submerged vegetation on water clarity across climates
Kosten, S.; Lacerot, G.; Jeppesen, E.; Motta Marques, D.M.L.; Nes, van E.H.; Mazzeo, N.; Scheffer, M.
2009-01-01
A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate
Stein, M.
1985-01-01
Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.
Tuning the spin crossover in nano-objects: From hollow to core-shell particles
Félix, Gautier; Mikolasek, Mirko; Molnár, Gábor; Nicolazzi, William; Bousseksou, Azzedine
2014-06-01
Core-shell nanoparticles displaying spin crossover (SCO) effect on the shell and/or on the core are studied using Monte Carlo simulations of an elastic microscopic Ising-like model. In this Letter we demonstrate that the SCO transition temperature can be controlled by adjusting the width of the shell and the width of the core as well as the misfit between the lattice constants. An original coupled system with a SCO active shell and an active core with another SCO material is proposed. Inducing the transition of the core by the spin transition of the shell results in a hysteresis in the thermal spin transition of the shell. This new type of memory effect in SCO compounds is based on the engineering of particle morphology.
Intrinsically polarized elastic metamaterial
Bilal, Osama; Suesstrunk, Roman; Huber, Sebastian; Daraio, Chiara
Mechanical metamaterials, with periodically repeating basic building blocks in space, expand the envelope of possible properties of matter. Metamaterials harness their effective properties through structure rather than chemical composition. Successful implementations of such materials enabled the realization of ultrastiff-utralight materials, negative Poisson ratio materials, and fluid-like solids. In this work, we theoretically analyze and experimentally implement a new design principle for mechanical metamaterials. By combining states of self-stress, topological invariants and additive manufacturing techniques, we realize a new class of three-dimensional mechanical metamaterials with polar elasticity. The fabricated specimens show, at two of its opposing faces along the same axis, an asymmetric elastic response (i.e., soft on one face and harder on the other). We design our lattice to retain angular dependency to a perpendicular load, providing a direct experimental observation of nodal Weyl lines.
de-Shalit, Amos; Massey, H S W
1963-01-01
Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.
Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions
Fuller, C. R.
1988-01-01
The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.
Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures
Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin
2018-01-01
Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.
Determination of the modulus of elasticity of the human cornea.
Elsheikh, Ahmed; Wang, Defu; Pye, David
2007-10-01
To determine the material behavior of the human cornea in the form of simple relationships between the modulus of elasticity and intraocular pressure (IOP) and to establish the effect of age on the material behavior. Human corneal specimens with age between 50 and 95 years were tested under inflation conditions to determine their behavior. The corneas were subjected to two extreme load rates to represent dynamic and static loading conditions. The pressure-deformation results were analyzed using shell theory to derive the relationship between the modulus of elasticity and IOP. The corneas demonstrated a nonlinear hyperelastic behavior pattern with an initial low stiffness stage and a final high stiffness stage. Despite the nonlinearity of the pressure deformation results, the relationship between the modulus of elasticity and the applied pressure was almost linear. A considerable increase was noted in the values of the modulus of elasticity associated with both age and load rate. General equations were derived to calculate the values of the secant and tangent moduli of elasticity in terms of IOP for any age greater than 50 years, and these equations are presented in a simple form suitable for use in numerical simulations. Adequate representation of corneal material behavior is essential for the accurate predictive modeling of corneal biomechanics. The material models developed in this work could be implemented in numerical simulations of refractive surgery procedures, corneal shape changes due to contact lens wear, and other applications.
Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)
Lugovoi, P. Z.; Meish, V. F.
2017-09-01
Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.
Boedeltje, G; ter Heerdt, GNJ; Bakker, JP
Seed bank studies focused on submerged aquatic plants are generally performed under submerged conditions, using the seedling-emergence method. However, if a study targets at both submerged species and helophytes, submerged conditions are generally not suitable. We tested the emergence of seedlings
Forced Vibrations of a Two-Layer Orthotropic Shell with an Incomplete Contact Between Layers
Ghulghazaryan, L. G.; Khachatryan, L. V.
2018-01-01
Forced vibrations of a two-layer orthotropic shell, with incomplete contact conditions between layers, when the upper face of the shell is free and the lower one is subjected to a dynamic action are considered. By an asymptotic method, the solution of the corresponding dynamic equations and correlations of a 3D problem of elasticity theory is obtained. The amplitudes of forced vibrations are determined, and resonance conditions are established.
Thermoelastoplastic deformation of noncircular cylindrical shells
Merzlyakov, V. A.
2008-08-01
A method to determine the nonstationary temperature fields and the thermoelastoplastic stress-strain state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical properties are dependent on temperature. The heat-conduction problem is solved using an explicit difference scheme. The temperature variation throughout the thickness is described by a power polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. The theory of simple processes with deformation history taken into account is used. Its equations are linearized by a modified method of elastic solutions. The governing system of partial differential equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The partial case where the stress-strain state does not change along the generatrix is examined. The systems of ordinary differential equations obtained in all these cases are solved using Godunov's discrete orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The stress-strain state found by numerical integration along the generatrix is compared with that obtained using trigonometric Fourier series. The effect of a Winkler foundation on the stress-strain state is analyzed
Sutley, Jane
2009-01-01
"Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…
The shell vasculature of Trachemys turtles investigated by modern 3D imaging techniques
DEFF Research Database (Denmark)
Hansen, Kasper; Thygesen, Jesper; Nielsen, Tobias Wang
Many freshwater turtles are extremely tolerant to the lack of oxygen and can survive the winter submerged in anoxic mud in ice-covered lakes. The pronounced anoxia-tolerance resides with a considerable depression of cellular metabolism and the ability to use the shell to buffer the acidosis arising...... from anaerobic metabolism (1). Infusion of microspheres has shown that the shell receives almost half of the cardiac output in turtles made anoxic at low temperatures (2). However, the vasculature of the turtle shell remains to be described. To visualise the vasculature within the carapace and plastron...... of the turtle Trachemys scripta, we perfused terminally anaesthetised turtles with different contrast enhancing agents (Microfil [lead n/a]), barium sulphate [250 mg/kg], and iodine [15-250 mg/kg]), and the animals were then scanned by both single source as well as dual energy Computed Tomographic systems...
Mathematical foundations of elasticity
Marsden, Jerrold E
1994-01-01
This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con
Thermally Driven Elastic Micromachines
Hosaka, Yuto; Yasuda, Kento; Sou, Isamu; Okamoto, Ryuichi; Komura, Shigeyuki
2017-11-01
We discuss the directional motion of an elastic three-sphere micromachine in which the spheres are in equilibrium with independent heat baths having different temperatures. Even in the absence of prescribed motion of springs, such a micromachine can gain net motion purely because of thermal fluctuations. A relation connecting the average velocity and the temperatures of the spheres is analytically obtained. This velocity can also be expressed in terms of the average heat flows in the steady state. Our model suggests a new mechanism for the locomotion of micromachines in nonequilibrium biological systems.
Methods for geothermal reservoir detection emphasizing submerged environments
Energy Technology Data Exchange (ETDEWEB)
Case, C.W.; Wilde, P.
1976-05-21
This report has been prepared for the California State Lands Commission to aid them in evaluating exploration programs for geothermal reservoirs, particularly in submerged land environments. Three charts show: (1) a logical progression of specific geologic, geochemical, and geophysical exploration techniques for detecting geothermal reservoirs in various geologic environments with emphasis on submerged lands, (2) various exploration techniques which can be used to develop specific information in geothermal areas, and (3) if various techniques will apply to geothermal exploration according to a detailed geologic classification. A narrative in semi-outline form supplements these charts, providing for each technique; a brief description, advantages, disadvantages, special geologic considerations, and specific references. The specific geologic situation will control the exploration criterion to be used for reservoir detection. General guidelines are established which may be of use in evaluating such a program, but the optimum approach will vary with each situation.
Electrostatics-driven shape transitions in soft shells.
Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica
2014-09-02
Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.
Antitumor activity of submerged biomass of Hericium erinaceus
Avtonomova, A.; Bakanov, A.; Vinokurov, V.; Bukhman, V.; Krasnopolskaya, L.
2011-01-01
Submerged cultivation of Hericium erinaceus in various media has been studied. The yield of biomass was shown to depend mainly on the carbon source, whereas the content of watersoluble polysaccharides depended primarily on the nitrogen source. Using optimal medium composition, the biomass yield of 22-23 g/l in 7 days was achieved. The antitumor activity was studied in vivo with using 2 tumor strains. The inhibition ratio of tumor in these experience reached 86%. An exposure of mice with tumor...
Submerged beachrock preservation in the context of wave ravinement
Pretorius, Lauren; Green, Andrew N.; Andrew Cooper, J.
2018-02-01
This study examines a Holocene-aged submerged shoreline, Limestone Reef, located in the shallow subtidal zone of South Africa's east coast. It comprises an elongate, coast-oblique, slab-like outcrop of beachrock situated above the contemporary fair-weather wave base. It is currently undergoing mechanical disintegration. Its unique and rare preservation in a high-energy setting affords an opportunity to examine the mechanical processes occurring during wave ravinement associated with rising sea level. The submerged shoreline and the adjacent shoreface were examined using high-resolution seismic reflection, side-scan sonar and shallow-water multibeam echosounding techniques. Limestone Reef rests on top of unconsolidated Holocene deposits. The structure's surface is characterised by reef-perpendicular gullies with rubble derived from the slab fringing its seaward edge. Limestone Reef slopes gently seawards and has a steep landward-facing edge where gullies are most prominently developed. Teardrop-shaped rippled scour depressions, marked by high backscatter, are located seawards of the submerged shoreline. These elongate in a seaward direction and are filled with bioclastic gravels and residual rubble from Limestone Reef. The gullies in the upstanding structure are indicative of wave plucking and abrasion of the shoreline. The material exposed by the rippled scour depressions is identical to that comprising the postglacial ravinement surface identified in the offshore stratigraphy. These deposits are considered to represent the contemporary, actively forming wave ravinement surface. The results suggest that wave ravinement of submerged shorelines is a discontinuous process dominated by the seaward entrainment of material from its landward edge controlled by high-energy drawback during storm surges. The ravinement process appears to operate at the seasonal scale and averages out over the long-term millennial scale for the continuous surface.
Submerged Pagodas of Mahabalipuram - Study based on underwater investigations
Digital Repository Service at National Institute of Oceanography (India)
Sundaresh; Gaur, A.S.; Tripati, S.; Vora, K.H.; Rao, K.M.
- gested that this place could have served as an ancient port (Dayalan, 1992). Mahabalipuram was well known to earlier mariners as 'Seven Pagodas' since the 1 7h century AD. it is generally believed that out of 7 temples originally con- structed, all... based on the local traditions and available literature. The local tradition and the people of Mahabalipuram believe that five temples similar to the Shore Temple have been submerged in the sea. On the basis of local traditions Ancient Tamil...
Instrumentation, control, and automation for submerged anaerobic membrane bioreactors
Robles Martínez, Ángel; Durán Pinzón, Freddy; Ruano García, María Victoria; Ribes Bertomeu, José; Rosado Muñoz, Alfredo; SECO TORRECILLAS, AURORA; Ferrer, J.
2015-01-01
A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON® , Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on off and PID algorithms were implemented to control the follo...
On the submerging of a spherical intruder into granular beds
Wu, Chuan-Yu; Zhang, Ling; Chen, Lan
2017-06-01
Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM), we simulate the submerging process of a spherical projectile (an intruder) into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary) and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed), we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.
Research efforts for detection and recovery of submerged oil
Energy Technology Data Exchange (ETDEWEB)
Hansen, K. [United States Coast Guard, Groton, CT (United States). Research and Development Center
2009-07-01
Submerged oil can sink and destroy shellfish and other marine populations in addition to causing closure of water intakes at industrial facilities and power plants. However, current methods to find and recover oil from spills involving submerged oil are inadequate. The underwater environment presents major challenges such as poor visibility, difficulty in tracking oil spill movement, colder temperatures, inadequate containment methods and problems with the equipment's interaction with water. This paper reported on a multi-year project launched by the Research and Development Center of the United States Coast Guard to develop a complete approach for spills of submerged oil. The project involved detection technologies and recovery methods for oil on the bottom of any body of water. Proof of concept (POC) and prototype tests of potential detection technologies were evaluated during tests at the Ohmsett facility in Leonardo, New Jersey. The technologies included sonar, laser fluorometry, real-time mass spectrometry and in-situ fluorometry. This paper described the development of a complete specification for an integrated recovery system along with a plan for future development. 9 refs., 2 tabs., 11 figs.
Measurement of Submerged Oil/Gas Leaks using ROV Video
Shaffer, Franklin; de Vera, Giorgio; Lee, Kenneth; Savas, Ömer
2013-11-01
Drilling for oil or gas in the Gulf of Mexico is increasing rapidly at depths up to three miles. The National Commission on the Deepwater Horizon Oil Leak concluded that inaccurate estimates of the leak rate from the Deepwater Horizon caused an inadequate response and attempts to cap the leak to fail. The first response to a submerged oil/gas leak will be to send a Remotely Operated Vehicle (ROV) down to view the leak. During the response to the Deepwater Horizon crisis, the authors Savas and Shaffer were members of the Flow Rate Technical Group's Plume Team who used ROV video to develop the FRTG's first official estimates of the oil leak rate. Savas and Shaffer developed an approach using the larger, faster jet features (e.g., turbulent eddies, vortices, entrained particles) in the near-field developing zone to measure discharge rates. The authors have since used the Berkeley Tow Tank to test this approach on submerged dye-colored water jets and compressed air jets. Image Correlation Velocimetry has been applied to measure the velocity of visible features. Results from tests in the Berkeley Tow Tank and submerged oil jets in the OHMSETT facility will be presented.
Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation
Directory of Open Access Journals (Sweden)
Helen H. Raplong
2014-09-01
Full Text Available Microorganisms have the ability to secrete enzymes when they are grown in the presence of certain substrates. Amylases are among the most important industrial enzymes and are of great significance in biotechnological studies. Bacteria belonging to the genus Bacillus were isolated using mannitol egg yolk polymyxin B (MYP agar a highly selective media for Bacillus cereus isolation. The isolates were tested for α-amylase production on nutrient agar supplemented with starch and in submerged fermentation. The bacteria isolated and identified (using the Microgen Bacillus identification kit were all Bacillus cereus and SB2 had the largest zone of hydrolysis of 12mm on nutrient agar supplemented with starch as well as the highest enzyme activity of 1.62U/ml. Amylase activity of 2.56U/ml was obtained after 24 hours incubation in submerged fermentation. When amylase enzyme production parameters where optimized, maximum amylase activity was obtained at a pH of 6.5, temperature of 350C, incubation time of 24 hours and 4% inoculums concentration. Bacillus cereus SB2 is a potential isolate for alpha-amylase production with soluble starch as the sole carbon source in submerged fermentation.
On the submerging of a spherical intruder into granular beds
Directory of Open Access Journals (Sweden)
Wu Chuan-Yu
2017-01-01
Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.
Energy Technology Data Exchange (ETDEWEB)
Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.
1988-12-01
Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.
Elasticity of polymeric nanocolloidal particles
National Research Council Canada - National Science Library
Riest, Jonas; Athanasopoulou, Labrini; Egorov, Sergei A; Likos, Christos N; Ziherl, Primož
2015-01-01
.... Elasticity of individual particles directly controls their swelling, wetting, and adsorption behaviour, their aggregation and self-assembly as well as structural and rheological properties of suspensions...
Medical Ultrasonic Elasticity Imaging Techniques
Energy Technology Data Exchange (ETDEWEB)
Jeong, Mok Keun [Department of Electronics and Communications Engineering, Daejin University, Pocheon (Korea, Republic of)
2012-10-15
Breast and prostate tumors or cancers tend to be stiffer than the surrounding normal tissue. However, the difference in echogenicity between cancerous and normal tissues is not clearly distinguishable in ultrasound B-mode imaging. Thus, imaging the stiffness contrast between the two different tissue types helps to diagnose lesions quantitatively, and such a method of imaging the elasticity of human tissue is termed ultrasound elasticity imaging. Recently, elasticity imaging has become an effective complementary diagnostic modality along with ultrasound B-mode imaging. This paper presents various elasticity imaging methods that have been reported up to now and describes their characteristics and principles of operation.
DESIGN OF CONCRETE CHIMNEYS VIA BEAM THEORY AND NONLINEAR SHELL ANALYSIS
Directory of Open Access Journals (Sweden)
Franziska Wehr
2016-12-01
Full Text Available This paper compares the load-bearing capacity of chimneys calculated via beam and shell theory. It becomes apparent that the design via beam theory is on the safe side for the vertical reinforcement of the chosen examples for h/d ratios larger than 30. For non-slender chimneys the design via beam theory overestimates the load distribution around the circumference and yields to wrong results. On the other hand a linear elastic shell calculation underestimates the load-bearing capacity of the chimney. However a realistic distribution of stresses in the cross section of a chimney can still be calculated using shell theory with nonlinear material properties.
From shell logs to shell scripts
Jacobs, Nico; Blockeel, Hendrik
2001-01-01
Analysing the use of a Unix command shell is one of the classic applications in the domain of adaptive user interfaces and user modelling. Instead of trying to predict the next command from a history of commands, we automatically produce scripts that automate frequent tasks. For this we use an ILP association rule learner. We show how to speedup the learning task by dividing it into smaller tasks, and the need for a preprocessing phase to detect frequent subsequences in the data. We illustrat...
Fluid-structure coupled analysis of underwater cylindrical shells
Ai, Shang-Mao; Sun, Li-Ping
2008-06-01
Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.
Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard
2016-11-01
A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.
Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.
1986-01-01
Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.
Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Loewenberg, Michael; Dufresne, Eric R; Osuji, Chinedum O
2015-10-14
Composite microcapsules have been aggressively pursued as designed chemical entities for biomedical and other applications. Common preparations rely on multi-step, time consuming processes. Here, we present a single-step approach to fabricate such microcapsules with shells composed of nanoparticle-polyelectrolyte and protein-polyelectrolyte complexes, and demonstrate control of the mechanical and release properties of these constructs. Interfacial polyelectrolyte-nanoparticle and polyelectrolyte-protein complexation across a water-oil droplet interface results in the formation of capsules with shell thicknesses of a few μm. Silica shell microcapsules exhibited a significant plastic response at small deformations, whereas lysozyme incorporated shells displayed a more elastic response. We exploit the plasticity of nanoparticle incorporated shells to produce microcapsules with high aspect ratio protrusions by micropipette aspiration.
Method for Parametric Shaping Architectural Free Forms Roofed with Transformed Shell Sheeting
Abramczyk, Jacek
2017-10-01
An innovative method for shaping attractive architectural free forms of buildings is proposed. Consistency of shell roofs and plane-walled oblique elevations of the building free forms is preserved due to utilization of specific geometrical tetrahedrons controlling general forms of entire buildings. The method proposed enables shaping roofs as warped shell forms made up of plane steel sheets folded in one direction and connected to each other along their longitudinal edges to obtain a plane strip. Next, the strip is elastically transformed into a shell shape so that a freedom of the width increments of each shell fold would be ensured. Such effective sheet shape transformations make it possible to limit the negative influence of these initial fold’s shape changes on the strength and stability of the designed roof shell. The method also allows to shape oblique plane elevation walls almost freely both individual buildings and their complex structures.
On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell
Directory of Open Access Journals (Sweden)
Rong Xiao
2014-01-01
Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.
Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells
Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.
2017-03-01
Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
Chudzicki, M; Werner, W S M; Shard, A G; Wang, Y-C; Castner, D G; Powell, C J
2015-08-06
The functionality of a new version of the National Institute of Standards and Technology database Simulation of Electron Spectra for Surface Analysis (SESSA) has been extended by implementing a new geometry engine. The engine enables users to simulate Auger-electron spectra and X-ray photoelectron spectra for different predefined morphologies (planar, islands, spheres, multi-layer core-shell particles). We compared shell thicknesses of core-shell nanoparticles derived from core-shell XPS peak intensities using Shard's method, which allows one to estimate shell thicknesses of core-shell nanoparticles, and a series of SESSA simulations for a wide range of nanoparticle dimensions. We obtained very good agreement of the shell thicknesses for cases where elastic scattering within the shell can be neglected, a result that is in accordance with the underlying assumptions of the Shard model. If elastic-scattering effects are important, there can be thickness uncertainties of up to 25 %. Experimental spectra of functionalized gold nanoparticles obtained by Techane et al. were analyzed with SESSA 2.0 both with respect to the relevant peak intensities as well as the spectral shape. Good agreement between experiment and theory was found for both cases. These results show that the single-sphere model for core-shell nanoparticles is valid when just using peak intensities, but more detailed modeling is needed to describe the inelastic background.
Semenova, I. V.; Belashov, A. V.; Garbuzov, F. E.; Samsonov, A. M.; Semenov, A. A.
2017-06-01
We demonstrate an alternative approach to determination of the third order elastic moduli of materials based on registration of nonlinear bulk strain waves in three basic structural waveguides (rod, plate and shell) and further calculation of the Murnaghan moduli from the recorded wave parameters via simple algebra. These elastic moduli are available in literature for a limited number of materials and are measured with considerable errors, that evidences a demand in novel approaches to their determination.
PAGOSA Sample Problem. Elastic Precursor
Energy Technology Data Exchange (ETDEWEB)
Weseloh, Wayne N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clancy, Sean Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-03
A PAGOSA simulation of a flyer plate impact which produces an elastic precursor wave is examined. The simulation is compared to an analytic theory for the Mie-Grüneisen equation of state and an elastic-perfectly-plastic strength model.
Antioxidant Properties of the Edible Basidiomycete Armillaria mellea in Submerged Cultures
Lung, Ming-Yeou; Chang, Yu-Cheng
2011-01-01
Antioxidant components, ascorbic acid, total flavonoids and total phenols are produced effectively by Armillaria mellea submerged cultures. Dried mycelia and mycelia-free broths obtained by A. mellea submerged cultures are extracted with methanol and hot water and investigated for antioxidant properties. Methanolic extracts from dried mycelia (MEM) and mycelia-free broth (MEB) and hot water extracts from dried mycelia (HWEM) by A. mellea submerged cultures show good antioxidant properties as ...
Song, Kun; Cui, Yichong; Zhang, Xijin; Pan, Yingji; Xu, Junli; Xu, Kaiqin; Da, Liangjun
2017-01-01
Abstract Water eutrophication creates unfavorable environmental conditions for submerged macrophytes. In these situations, biotic interactions may be particularly important for explaining and predicting the submerged macrophytes occurrence. Here, we evaluate the roles of biotic interactions in predicting spatial occurrence of submerged macrophytes in 1959 and 2009 for Dianshan Lake in eastern China, which became eutrophic since the 1980s. For the four common species occurred in 1959 and 2009,...
NIF Double Shell outer/inner shell collision experiments
Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.
2017-10-01
Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.
Free vibration of elastically supported thin cylinders including gyroscopic effects
CSIR Research Space (South Africa)
Loveday, PW
1998-10-29
Full Text Available stream_source_info loveday_1998.pdf.txt stream_content_type text/plain stream_size 30419 Content-Encoding ISO-8859-1 stream_name loveday_1998.pdf.txt Content-Type text/plain; charset=ISO-8859-1 D[R[ 747723*JSV 106...# or in_nite "rigid#[ 7 0887 Academic Press 0[ INTRODUCTION The vibration of thin elastic shells has been studied by many researchers[ The results of many of these studies have been summarised by Leissa 0 and Blevins 1 [ The literature contains numerous...
Elasticity of Flowing Soap films
Kim, Ildoo; Mandre, Shreyas
2016-11-01
The robustness of soap films and bubbles manifests their mechanical stability. The single most important factor underlying the mechanical stability of soap films is its elasticity. Non-destructive measurement of the elasticity in these films has been cumbersome, because of its flowing nature. Here we provide a convenient, reproducible, and non-destructive method for measuring the elasticity by generating and inspecting Marangoni waves. Our method is based on generating an oblique shock by inserting a thin cylindrical obstacle in the flowing film, and converting the measured the shock angle to elasticity. Using this method, we find a constant value for the elasticity of 22 dyne/cm in the commonly used range of film widths, thicknesses or flow rates, implying that the surface of the film is chemically saturated with soap molecules.
Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts
Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.
2014-01-01
The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.
Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts
Wu, K. Chauncey; Turpin, Jason D.; Gardner, Nathaniel W.; Stanford, Bret K.; Martin, Robert A.
2015-01-01
The structural performance of two advanced composite tow-steered shells with large cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles of the shells vary continuously around their circumference from +/- 10 degrees on the crown and keel, to +/- 45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the tow drop/add capability of the system to achieve a more uniform wall thickness. These unstiffened shells, both without and with small cutouts, were previously tested in axial compression and buckled elastically. In this study, a single unreinforced cutout, scaled to represent a cargo door on a commercial aircraft, is machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of these shells with large cutouts are also computed using linear finite element structural analyses for preliminary comparisons with test data. During testing, large displacements are observed around the large cutouts, but the shells maintain an average of 91 percent of the axial stiffness, and also carry 85 percent of the buckling loads, when compared to the pristine shells without cutouts. These relatively small reductions indicate that there is great potential for using tow steering to mitigate the adverse effects of large cutouts on the overall structural performance.
GaAs-AlGaAs core-shell nanowire arrays: correlating MOVPE growth and luminescence properties
Prete, Paola; Miccoli, Ilio; Lovergine, Nico
2014-09-01
We report on the effects of changing the surface densities of MOVPE-grown free-standing GaAs-AlGaAs core-shell nanowires on the resulting nanostructure size and their photoluminescence (PL) properties. It is demonstrated that decreasing the local density of GaAs nanowires within the array leads to an increase of the overgrown AlGaAs shell thickness and to a substantial redshift of the nanostructure excitonic emission. Application of a vapor mass-transport limited growth model of the AlGaAs shell allows explaining the dependence of shell growth rate on nanowire density. The observed redshift of the nanowire PL emission is then experimentally correlated with these density-induced changes of the nanostructure size, namely with the nanowire shell-thickness to core-radius ratio hs/Rc. To account for a possible contribution of the nanostructure built-in elastic strain to the energy shift of the peak excitonic emission, the strain field in present core-shell nanowires was calculated as function of the nanostructure relevant geometrical parameters, based on a uniaxial elastic energy equilibrium model, and its effect on valence and conduction band shifts of the GaAs core evaluated by means of the Pikus-Bir Hamiltonian. Good agreement is obtained for hs/Rc1 increasingly larger redshifts (up to ~9 meV in excess of values calculated based on the elastic strain model) are observed, and tentatively ascribed to shell-dependent exciton localization effects.
GigaUnit Transplant System: A New Mechanical Tool for Transplanting Submerged Aquatic Vegetation
National Research Council Canada - National Science Library
Shafer, Deborah J
2008-01-01
Submerged aquatic vegetation (SAV) performs many important ecosystem functions, including wave attenuation and sediment stabilization, water quality improvement, primary production, food web support for secondary consumers...
Rate coefficients of open shell molecules and radicals: R-matrix ...
Indian Academy of Sciences (India)
2017-04-07
Apr 7, 2017 ... study uses the results of ab-initio R-matrix method to low-energy scattering of the open shell molecules in the fixed nuclei approximation to compute rate coeffi- cients. The rate coefficients for elastic and electron- excited processes are studied over a wide electron temperature range. The calculations use ...
Temporal structures in shell models
DEFF Research Database (Denmark)
Okkels, F.
2001-01-01
The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...
ir.ing Ruud Thelosen
2011-01-01
Shell heeft zich in de Tweede Kamer moeten verantwoorden voor haar activiteiten in Nigeria. Daarnaast loopt er ook een rechtzaak tegen Shell aangespannen door Milieudefensie namens een groepje gedupeerde Nigeriaanse boeren en viseers. In de VS heeft Shell al een megaboete moeten betalen.
Temporal Structures in Shell Models
Okkels, Fridolin
2000-01-01
The intermittent dynamics of the turbulent GOY shell-model is characterised by a single type of burst-like structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell-amplitudes revealing a approximative chaotic attractor of the dynamics.
Restoring Ecological Function to a Submerged Salt Marsh
Stagg, C.L.; Mendelssohn, I.A.
2010-01-01
Impacts of global climate change, such as sea level rise and severe drought, have altered the hydrology of coastal salt marshes resulting in submergence and subsequent degradation of ecosystem function. A potential method of rehabilitating these systems is the addition of sediment-slurries to increase marsh surface elevation, thus ameliorating effects of excessive inundation. Although this technique is growing in popularity, the restoration of ecological function after sediment addition has received little attention. To determine if sediment subsidized salt marshes are functionally equivalent to natural marshes, we examined above- and belowground primary production in replicated restored marshes receiving four levels of sediment addition (29-42 cm North American Vertical Datum of 1988 [NAVD 88]) and in degraded and natural ambient marshes (4-22 cm NAVD 88). Moderate intensities of sediment-slurry addition, resulting in elevations at the mid to high intertidal zone (29-36 cm NAVD 88), restored ecological function to degraded salt marshes. Sediment additions significantly decreased flood duration and frequency and increased bulk density, resulting in greater soil drainage and redox potential and significantly lower phytotoxic sulfide concentrations. However, ecological function in the restored salt marsh showed a sediment addition threshold that was characterized by a decline in primary productivity in areas of excessive sediment addition and high elevation (>36 cm NAVD 88). Hence, the addition of intermediate levels of sediment to submerging salt marshes increased marsh surface elevation, ameliorated impacts of prolonged inundation, and increased primary productivity. However, too much sediment resulted in diminished ecological function that was equivalent to the submerged or degraded system. ?? 2010 Society for Ecological Restoration International.
Enhanced Sorbitol Production under Submerged Fermentation using Lactobacillus plantarum
Directory of Open Access Journals (Sweden)
Khan Nadiya Jan
2017-04-01
Full Text Available Background and Objective: Sorbitol is a non-toxic and slightly hygroscopic compound with different applications. Zymomonas mobiles produces sorbitol from sucrose or mixtures of glucose and fructose (formation is coupled with the dehydrogenation of glucose to glucono-δ- lactone. Recombinant Zymomonas mobilis may produce sorbitol and gluconic acid from glucose and fructose using different divalent metal ions with reduced the ethanol yield andsignificantly increased yield of sorbitol. Current study envisaged to alter the media components, physical process parameters and supplementation of amino acids for enhanced sorbitol production.Material and Methods: Several process variables were evaluated on sorbitol production including carbon sources (glucose, fructose, maltose, sucrose, carbon concentrations (5, 10, 20 and 25 g l-1, nitrogen sources (peptone, tryptone, yeast extract, beef extract and organic nitrogen mix, temperatures (25, 29, 33, 37, 41°C, pH (6, 6.5, 7 , 7.5 ,8, agitation rate (50, 100, 150, 200 rpm and amino acids (cysteine, cystine, tryptophanin batch cultivation ofLactobacillus plantarum NCIM 2912. Shake flask cultivation performed under optimum conditions like temperature 37°C, pH 7.0 and agitation rate of 150 rpm, resulted in enhanced sorbitol production. Comparative study of sorbitol production in solid state fermentation and submerged fermentation was also evaluated.Results and Conclusion: Batch cultivation under submerged conditions further performed in 7.5-l lab scale bioreactor (working volume 3.0-l under optimized conditions resulted in maximum cell biomass of 8.95±0.03 g g-1 and a sorbitol content of 9.78±0.04 g l-1 after 42.0 h of fermentation. Scale up study on bioreactor resulted in maximum sorbitol yield (Yp/x and productivity of 1.11 g g-1 and 0.50 g l-1 h under submerged fermentation, respectively.Conflict of interest: The authors declare no conflict of interest.
On Elasticity Measurement in Cloud Computing
Wei Ai; Kenli Li; Shenglin Lan; Fan Zhang; Jing Mei; Keqin Li; Rajkumar Buyya
2016-01-01
Elasticity is the foundation of cloud performance and can be considered as a great advantage and a key benefit of cloud computing. However, there is no clear, concise, and formal definition of elasticity measurement, and thus no effective approach to elasticity quantification has been developed so far. Existing work on elasticity lack of solid and technical way of defining elasticity measurement and definitions of elasticity metrics have not been accurate enough to capture the essence of elas...
Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.
2005-12-01
Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are
[Genetic algorithm for fermentation kinetics of submerged fermentation by Morchella].
Wang, Ying; Piao, Meizi; Sun, Yonghai
2008-08-01
Fermentation kinetics is important for optimizing control and up-scaling fermentation process. We studied submerged fermentation kinetics of Morchella. Applying the genetic Algorithm in the Matlab software platform, we compared suitability of the Monod and Logistic models, both are commonly used in process of fungal growth, to describe Morchella growth kinetics. Meanwhile, we evaluated parameters involved in the models for Morchella growth, EPS production and substrate consumption. The results indicated that Logistic model fit better with the experimental data. The average error of this model was 5.8%. This kinetics model can be useful for optimizing and up-scaling fungal fermentation process.
Liquid Film Diffusion on Reaction Rate in Submerged Biofilters
DEFF Research Database (Denmark)
Christiansen, Pia; Hollesen, Line; Harremoës, Poul
1995-01-01
Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....
Slag Metal Reactions during Submerged Arc Welding of Alloy Steels
Mitra, U.; Eagar, T. W.
1984-01-01
The transfer of Cr, Si, Mn, P, S, C, Ni, and Mo between the slag and the weld pool has been studied for submerged arc welds made with calcium silicate and manganese silicate fluxes. The results show a strong interaction between Cr and Si transfer but no interaction with Mn. The manganese silicate flux produces lower residual sulfur while the calcium silicate fluxes are more effective for removal of phosphorus. The effective oxygen reaction temperature lies between 1700 and 2000 °C for all elements studied. Evidence of Cr and Mn loss by metal vaporization is also presented.
Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell
Guevorkian, Karine; Manzi, John; Pontani, Léa-Lætitia; Brochard-Wyart, Françoise; Sykes, Cécile
2015-01-01
Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics. PMID:26682806
Electrospray fabrication and osmotic response of fluid core-viscoelastic shell microcapsules
Meng, Zhiyong; Osuji, Chinedum
2011-03-01
Microcapsules with fluid-core in viscoelastic shell is interesting partially because of their unusual elasticity/rigidity. Electrospray technique, more flexible and scalable than traditional bulk and microfluidic emulsification, was used to generate spherical microcapsules. In particular, sodium alginate fine droplets generated by electrospray was surface cross-linked by either Ca(II) or chitosan to form polyelectrolyte microcapsules. By adjusting the needle inner diameter, concentration of sodium alginate, and applied voltage, we can control the droplet size to the designated range. Furthermore, we can tune the thickness and thereby rigidity/elasticity of the viscoelastic shell by adjusting the residence time of microcapsules in gelation solution to control the rigidity/elasticity of microcapsules. These polyelectrolyte microcapsules were subject to the osmotic pressure of synthetic water-soluble polymers, such as poly(ethylene glycol), with progressively lower concentration to observe their osmotic swelling behavior.
Palazzi, Paolo
2007-01-01
A stability analysis of the mass spectrum indicates that hadrons, like atoms and nuclei, are shell-structured. The mesonic shells mass series, combined with the results of a mass quantization analysis, reveals striking similarities with the nuclear shells. In addition, the mesonic mass patterns suggest solid-phase partonic bound states on an fcc lattice, compatible with a model by A. O. Barut with stable leptons as constituents, bound by magnetism. Baryonic shells grow with a lower density, and only start at shell 3 with the nucleon.
Parameter identification of material constants in a composite shell structure
Martinez, David R.; Carne, Thomas G.
1988-01-01
One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.
Cathodic disbonding of organic coatings on submerged steel
Energy Technology Data Exchange (ETDEWEB)
Knudsen, Ole oeystein
1998-12-31
In offshore oil production, submerged steel structures are commonly protected by an organic coating in combination with cathodic protection. The main advantage is that the coating decreases the current demand for cathodic protection. But the coating degrades with time. This thesis studies one of the most important mechanisms for coating degradation in seawater, cathodic disbonding. Seven commercial coatings and two model coatings with various pigmentations have been studied. Parameter studies, microscopy and studies of free films were used in the mechanism investigations. Exposure to simulated North Sea conditions was used in the performance studies. The effect of aluminium and glass barrier pigments on cathodic disbonding was investigated. The mechanism for the effect of the aluminium pigments on cathodic disbonding was also investigated. The transport of charge and oxygen to the steel/coating interface during cathodic disbonding was studied for two epoxy coatings. Cathodic disbonding, blistering and current demand for cathodic protection was measured for nine commercial coatings for submerged steel structures, using the ASTM-G8 standard test and a long term test under simulated North Sea conditions. The relevance of the ASTM-G8 test as a prequalification test was evaluated. 171 refs., 40 figs., 6 tabs.
Period Doubling in Bubbling from a Submerged Nozzle
Dennis, Jordan; Grace, Laura; Lehman, Susan
The timing of bubbles rising from a nozzle submerged in a viscous solution was measured to examine the period-doubling route to chaos in this system. A narrow nozzle was submerged in a mixture of water and glycerin, and nitrogen was supplied to the nozzle at a varying flow rate. The bubbles were detected using a laser and photodiode system; when the bubbles rise through the laser beam, they scatter the light so that the signal at the photodiode decreases. The period between bubbles as well as the duration of each bubble (a function of bubble size and bubble velocity) was determined, and examined as the nitrogen flow rate increased, for solutions with five different concentrations of glycerin. Bubbles were also recorded visually using a high-speed camera. Within the flow rates tested, we observed a bifurcation of the period to period-2 behavior for all solutions tested, and a further bifurcation to period-4 for all solutions except pure glycerin. The solution viscosity affected both the onset of the bifurcation and the precise bubble behavior during the bifurcation. Unusually, a short period/long period pair of bubbles recurring at a regular interval was sometimes observed in the low flow regime which is typically period-1, an observation which requires further investigation. Research supported by NSF DMR 1560093.
Magnetic imaging of a submerged Roman harbour, Caesarea Maritima, Israel
Boyce, J. I.; Reinhardt, E. G.; Raban, A.; Pozza, M. R.
2003-04-01
The harbour built by King Herod's engineers at Caesarea represented a major advance in Roman harbour construction that incorporated the use of large (390 m^3), form-filled hydraulic concrete blocks to build an extensive foundation for the harbour moles and breakwater barriers. Marine geophysical surveys were recently conducted across the submerged harbour in an attempt to map the configuration of the buried concrete foundation. A total of 107 line km of high-resolution marine magnetic surveys (nominal 15 m line separations) and bathymetry data were acquired over a 1 km^2 area of the submerged harbour using an Overhauser marine magnetometer, integrated DGPS and single-beam (200 KHz) echosounder. The feasibility of magnetic detection of the concrete was established before the survey by magnetic susceptibility testing of concrete core samples. All concrete samples contained appreciable amounts of fe-oxide-rich volcanic ash ('pozzolana') and showed uniformly high susceptibility values (k > 10^-^4 cgs) when compared to harbour bottom sediments and building stones (k construction of the harbour moles and quays.
THE INFLUENCE OF SUBMERGED MACROPHYTES ON SEDIMENTARY DIATOM ASSEMBLAGES(1).
Vermaire, Jesse C; Prairie, Yves T; Gregory-Eaves, Irene
2011-12-01
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long-term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole-lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P macrophyte, nutrient-limited lakes (BiomEpiV ≥525 μg · L(-1) ; total phosphorus [TP] macrophyte, nutrient-limited lakes (BiomEpiV eutrophic lakes (TP ≥35 μg · L(-1) ; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance. © 2011 Phycological Society of America.
Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio
2016-04-21
We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.
Akman, M.; Bhikharie, A.V.; McLean, E.H.; Boonman, A.; Visser, E.J.W.; Schranz, M.E.; van Tienderen, P.H.
2012-01-01
Background and Aims Differential responses of closely related species to submergence can provide insight into the evolution and mechanisms of submergence tolerance. Several traits of two wetland species from habitats with contrasting flooding regimes, Rorippa amphibia and Rorippa sylvestris, as well
Xing W.; Shi Q.; Liu H.; Liu G.
2016-01-01
Growth rate hypothesis (GRH) and stoichiometric homeostasis of photoautotrophs have always been questioned. However, little is known about GRH and stoichiometric homeostasis of aquatic plants, especially submerged macrophytes. Therefore, we aim to test the GRH and explore stoichiometric homeostasis of four freshwater submerged macrophytes under eutrophication stress. At the single species level and the multi-species level, N:P ratios ...
Celestial mechanics of elastic bodies
Beig, Robert; Schmidt, Bernd G.
2006-01-01
We construct time independent configurations of two gravitating elastic bodies. These configurations either correspond to the two bodies moving in a circular orbit around their center of mass or strictly static configurations.
Uniqueness theorems in linear elasticity
Knops, Robin John
1971-01-01
The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...
HST/ACS observations of shell galaxies: inner shells, shell colours and dust
Sikkema, G.; Carter, D.; Peletier, R. F.; Balcells, M.; Del Burgo, C.; Valentijn, E. A.
2007-06-01
Context: Shells in Elliptical Galaxies are faint, sharp-edged features, believed to provide evidence for a merger event. Accurate photometry at high spatial resolution is needed to learn on presence of inner shells, population properties of shells, and dust in shell galaxies. Aims: Learn more about the origin of shells and dust in early type galaxies. Methods: V-I colours of shells and underlying galaxies are derived, using HST Advanced Camera for Surveys (ACS) data. A galaxy model is made locally in wedges and subtracted to determine shell profiles and colours. We applied Voronoi binning to our data to get smoothed colour maps of the galaxies. Comparison with N-body simulations from the literature gives more insight to the origin of the shell features. Shell positions and dust characteristics are inferred from model galaxy subtracted images. Results: The ACS images reveal shells well within the effective radius in some galaxies (at 0.24 re = 1.7 kpc in the case of NGC 5982). In some cases, strong nuclear dust patches prevent detection of inner shells. Most shells have colours which are similar to the underlying galaxy. Some inner shells are redder than the galaxy. All six shell galaxies show out of dynamical equilibrium dust features, like lanes or patches, in their central regions. Our detection rate for dust in the shell ellipticals is greater than that found from HST archive data for a sample of normal early-type galaxies, at the 95% confidence level. Conclusions: The merger model describes better the shell distributions and morphologies than the interaction model. Red shell colours are most likely due to the presence of dust and/or older stellar populations. The high prevalence and out of dynamical equilibrium morphologies of the central dust features point towards external influences being responsible for visible dust features in early type shell galaxies. Inner shells are able to manifest themselves in relatively old shell systems. Based on observations made
Digital Repository Service at National Institute of Oceanography (India)
Gaur, A.S.; Sundaresh
. It is difficult to assign a particular reason for the submergence of the temple in discussion, however minor sea level rise and seismic activity might have played a vital role in submergence of the temple complex....
Digital Repository Service at National Institute of Oceanography (India)
Rao, K.M.; Murthy, K.S.R.; Reddy, N.P.C.; Subrahmanyam, A.S.; Lakshminarayana, S.; Rao, M.M.M.; Sarma, K.V.L.N.S.; Premkumar, M.K.; Sree, A.; Bapuji, M.
. (e - mail: kmrao@kadali.nio.org) RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 81, NO. 7, 10 OCTOBER 2001 829 mic profiling to locate the submerged roc k outcrops. Though the submerged topographic features were r e por - ted by some...
EAARL-B Submerged TopographyâSaint Croix, U.S. Virgin Islands, 2014
U.S. Geological Survey, Department of the Interior — A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely...
Elastic Properties of Mantle Minerals
Duffy, T. S.; Stan, C. V.
2012-12-01
The most direct information about the interior structure of the Earth comes from seismic wave velocities. Interpretation of seismic data requires an understanding of how sound velocities and elastic properties of minerals vary with pressure, temperature, crystal structure, and composition as well as the role of anelasticity, melts, etc. More generally, elastic moduli are important for understanding many solid-state phenomena including mechanical stability, interatomic interactions, material strength, compressibility, and phase transition mechanisms. The database of mineral elasticity measurements has been growing rapidly in recent years. In this work, we report initial results of an ongoing survey of our current knowledge of mineral elasticity at both ambient conditions and high pressures and temperatures. The analysis is selective, emphasizing single crystal measurements but also incorporating polycrystalline measurements and volume compression data as appropriate. The goal is to synthesize our current understanding of mineral elasticity in terms of structure and composition, and to identify the major remaining needs for experimental and theoretical work. Clinopyroxenes (Cpx) provide an example of our approach. A wide range of clinopyroxene compositions are found geologically and Mg-, Ca-, and Na-rich clinopyroxenes are expected to be important components in the upper mantle. The single-crystal elastic properties of a number of endmember Cpx compositions have been measured and these exhibit a range of ~25% in shear velocity. Those with monovalent cations (spodumene, jadeite) in the M2 site exhibit the highest velocities while Fe-rich (hendenbergit, acmite) compositions have the lowest velocities. The effects on velocity due to a wide range of chemical substitutions can be defined, but there are important discrepancies and omissions in the database. New measurements of omphacites, intermediate diopside-hedenbergite compositions, aegerine/acmite, augite, etc. are
Sivak, David Alexander
DNA bending elasticity on length scales of tens of basepairs is of critical importance in numerous biological contexts. Even the simplest models of DNA bending admit of few simple analytic results, thus there is a need for numerical methods to calculate experimental observables, such as distance distributions, forces, FRET efficiencies, and timescales of particular large-scale motions. We have implemented and helped develop a coarse-grained representation of DNA and various other covalently-linked groups that allows simple calculation of such observables for varied experimental systems. The simple freely-jointed chain (FJC) model and extremely coarse resolution proved useful in understanding DNA threading through nanopores, identifying steric occlusion by other parts of the chain as a prime culprit for slower capture as distance to the pore decreased. Enhanced sampling techniques of a finer resolution discrete wormlike chain (WLC) model permitted calculation of cyclization rates for small chains and identified the ramifications of a thermodynamically-sound treatment of thermal melts. Adding treatment of double-stranded DNA's helical nature and single-stranded DNA provided a model system that helped demonstrate the importance of statistical fluctuations in even highly-stressed DNA mini-loops, and allowed us to verify that even these constructs show no evidence of excitation-induced softening. Additional incorporation of salt-sensitivity to the model allowed us to calculate forces and FRET efficiencies for such mini-loops and their uncircularized precursors, thereby furthering the understanding of the nature of IHF binding and bending of its recognition sequence. Adding large volume-excluding spheres linked to the ends of the dsDNA permits calculation of distance distributions and thus small-angle X-ray scattering, whereby we demonstrated the validity of the WLC in describing bending fluctuations in DNA chains as short as 42 bp. We also make important connections
Integrodifferential relations in linear elasticity
Kostin, Georgy V
2012-01-01
This work treats the elasticity of deformed bodies, including the resulting interior stresses and displacements.It also takes into account that some of constitutive relations can be considered in a weak form. To discuss this problem properly, the method of integrodifferential relations is used, and an advanced numerical technique for stress-strain analysis is presented and evaluated using various discretization techniques. The methods presented in this book are of importance for almost all elasticity problems in materials science and mechanical engineering.
Consumer cohorts and demand elasticities
Geir Wæhler Gustavsen
2015-01-01
A mixed effects model is used to estimate intercepts, price and expenditure elasticities for vegetables, meat and fish in different cohorts. Results from Wald tests reveal that intercepts for fish are higher for older cohorts than for younger cohorts, and expenditure elasticities for meat are higher for older cohorts than for younger cohorts. The implication is that over time, when younger cohorts replace older cohorts, the total expenditure share for fish is likely to decrease contributing t...
THE STUDY ON THE DURABILITY OF SUBMERGED STRUCTURE DISPLACEMENT DUE TO CONCRETE FAILURE
Directory of Open Access Journals (Sweden)
M. Mohd
2016-09-01
Full Text Available Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.
[Effects of light on submerged macrophytes in eutrophic water: research progress].
Li-Sha, Zou; Ze-Yu, Nie; Xiao-Yan, Yao; Ji-Yan, Shi
2013-07-01
The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while light is the main limiting factor. This paper summarized the factors affecting the light extinction in water and the mechanisms of light intensity affecting the physiology of submerged macrophytes, with the focuses on the metabolic mechanisms of carbon, nitrogen, and phosphorus, the responses of antioxidant enzyme system, and the feedbacks of pigment composition and concentration in the common submerged macrophytes under low light stress. Several engineering techniques applied in the ecological restoration of submerged macrophytes were presented, and the framework of the restoration of submerged macrophytes in eutrophic water was proposed. Some problems in current research and several suggestions on future research were addressed, which could help the related research and engineering practices.
Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires
Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel
2017-06-01
We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.
Energy Technology Data Exchange (ETDEWEB)
Rossi Junior, Ernesto Silvio
2001-07-01
Experimental data for elastic and inelastic (2{sub 1}{sup +}) scattering and one or two neutron transfer processes for the systems {sup 18}O + {sup 58,60}Ni at the sub barrier bombarding energies (34,5 MeV {<=} E{sub LAB} ({sup 18}O) {<=} 38,0 MeV) are presented in this work. With an optical model data analysis, the corresponding nuclear potentials were obtained in the surface interaction region. These experimental potentials were compared with those from double folding theoretical calculations, and with the potentials for systems with {sup 16}O as the projectile. The experimental potentials describe the one neutron transfer process for the same systems reasonably well. The {sup 18}O ground state density in the surface region was obtained experimentally for the first time. A comparison with the {sup 16}O nuclear density has made possible the determination of the density of the two extra neutrons in the {sup 18}O nucleus. (author)
Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods
DEFF Research Database (Denmark)
Herzog, Max; Konnerup, Dennis; Pedersen, Ole
2018-01-01
Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerg...
Problems in nonlinear elastic and elastic-plastic solids
Tilakraj, V R
2001-01-01
sub 0. We prove the corresponding sequence of minimisers of the mixed displacement-traction problem converges weakly to a minimiser of the pure displacement problem as the radius epsilon tends to zero. The third problem we consider is the expansion of a spherical cavity in a nonlinearly elastic-perfectly plastic solid under the action of an internal pressure P within the cavity. We calculate (i) the critical pressure required to produce unbounded expansion of the cavity in an infinite medium, and (ii) the critical pressure required to form a cavity from zero initial radius in a finite piece of material and show that both critical pressures are the same. We illustrate these results explicitly for a particular stored energy function. In this thesis we study variational problems in nonlinear elasticity and related problems for elastic-plastic solids. First, we consider a one-dimensional variational problem in nonlinear elasticity. We consider an elastic cylinder of length L subject to axially symmetric deformati...
Multi-Shell Shell Model for Heavy Nuclei
Sun, Yang; Wu, Cheng-Li
2003-01-01
Performing a shell model calculation for heavy nuclei has been a long-standing problem in nuclear physics. Here we propose one possible solution. The central idea of this proposal is to take the advantages of two existing models, the Projected Shell Model (PSM) and the Fermion Dynamical Symmetry Model (FDSM), to construct a multi-shell shell model. The PSM is an efficient method of coupling quasi-particle excitations to the high-spin rotational motion, whereas the FDSM contains a successful t...
Summary compilation of shell element performance versus formulation.
Energy Technology Data Exchange (ETDEWEB)
Heinstein, Martin Wilhelm; Hales, Jason Dean (Idaho National Laboratory, Idaho Falls, ID); Breivik, Nicole L.; Key, Samuel W. (FMA Development, LLC, Great Falls, MT)
2011-07-01
This document compares the finite element shell formulations in the Sierra Solid Mechanics code. These are finite elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be added to them in time. The list of elements are divided into traditional two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements that contain either modifications or additional terms designed to represent the bending stiffness expected to be found in shell formulations. These particular finite elements are formulated for finite deformation and inelastic material response, and, as such, are not based on some of the elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each shell element is subjected to a series of 12 verification and validation test problems. The underlying purpose of the tests here is to identify the quality of both the spatially discrete finite element gradient operator and the spatially discrete finite element divergence operator. If the derivation of the finite element is proper, the discrete divergence operator is the transpose of the discrete gradient operator. An overall summary is provided from which one can rank, at least in an average sense, how well the individual formulations can be expected to perform in applications encountered year in and year out. A letter grade has been assigned albeit sometimes subjectively for each shell element and each test problem result. The number of A's, B's, C's, et cetera assigned have been totaled, and a grade point average (GPA) has been computed, based on a 4.0-system. These grades, combined with a comparison between the test problems and the application problem, can be used to guide an analyst to select the element with the best shell formulation.
Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory
Energy Technology Data Exchange (ETDEWEB)
Ibraeva, E. T., E-mail: ibr@inp.kz [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Zhusupov, M. A. [Al-Farabi Kazakh National University (Kazakhstan); Imambekov, O. [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan)
2012-11-15
The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.
On the shape and orientation control of an orbiting shallow spherical shell structure
Bainum, P. M.; Reddy, A. S. S. R.
1982-01-01
The dynamics of orbiting shallow flexible spherical shell structures under the influence of control actuators was studied. Control laws are developed to provide both attitude and shape control of the structure. The elastic modal frequencies for the fundamental and lower modes are closely grouped due to the effect of the shell curvature. The shell is gravity stabilized by a spring loaded dumbbell type damper attached at its apex. Control laws are developed based on the pole clustering techniques. Savings in fuel consumption can be realized by using the hybrid shell dumbbell system together with point actuators. It is indicated that instability may result by not including the orbital and first order gravity gradient effects in the plant prior to control law design.
On the shape and orientation control of orbiting shallow spherical shell structure
Bainum, P. M.; Reddy, A. S. S. R.
1983-01-01
The dynamics of orbiting shallow flexible spherical shell structures under the influence of control actuators was studied. Control laws are developed to provide both attitude and shape control of the structure. The elastic modal frequencies for the fundamental and lower modes are closely grouped due to the effect of the shell curvature. The shell is gravity stabilized by a spring loaded dumbell type damper attached at its apex. Control laws are developed based on the pole clustering techniques. Savings in fuel consumption can be realized by using the hybrid shell dumbbell system together with point actuators. It is indicated that instability may result by not including the orbital and first order gravity gradient effects in the plant prior to control law design. Previously announced in STAR as N82-17243
Qiu, Q.; Fang, Z. P.; Wan, H. C.; Zheng, L.
2013-07-01
Based on the Donnell assumptions and linear visco-elastic theory, the constitutive equations of the cylindrical shell with multilayer Passive Constrained Layer Damping (PCLD) treatments are described. The motion equations and boundary conditions are derived by Hamilton principle. After trigonometric series expansion and Laplace transform, the state vector is introduced and the dynamic equations in state space are established. The transfer function method is used to solve the state equation. The dynamic performance including the natural frequency, the loss factor and the frequency response of clamped-clamped multi-layer PCLD cylindrical shell is obtained. The results show that multi-layer PCLD cylindrical shell is more effective than the traditional three-layer PCLD cylindrical shell in suppressing vibration and noise if the same amount of material is applied. It demonstrates a potential application of multi-layer PCLD treatments in many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Critical Assessment of Temperature Distribution in Submerged Arc Welding Process
Directory of Open Access Journals (Sweden)
Vineet Negi
2013-01-01
Full Text Available Temperature distribution during any welding process holds the key for understanding and predicting several important welding attributes like heat affected zone, microstructure of the weld, residual stress, and distortion during welding. The accuracy of the analytical approaches for modeling temperature distribution during welding has been constrained by oversimplified assumptions regarding boundary conditions and material properties. In this paper, an attempt has been made to model the temperature distribution during submerged arc welding process using finite element modeling technique implemented in ANSYS v12. In the present analysis, heat source is assumed to be double-ellipsoidal with Gaussian volumetric heat generation. Furthermore, variation of material properties with temperature and both convective and radiant heat loss boundary condition have been considered. The predicted temperature distribution is then validated against the experimental results obtained by thermal imaging of the welded plate, and they are found to be in a good agreement.
Arc characteristics of submerged arc welding with stainless steel wire
Li, Ke; Wu, Zhi-sheng; Liu, Cui-rong; Chen, Feng-hua
2014-08-01
The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carried out under the same preset arc voltage combined with different welding currents. By comparing the probability density distribution (PDD) curves of arc voltage and welding current, the changes were analyzed, the metal transfer mode in SAW was deduced, and the characteristics of a stable arc were summarized. The analysis results show that, with an increase of welding parameters, the short-circuiting peak in the PDD curves of arc voltage decreases gradually until it disappears, and the dominant metal transfer mode changes from flux-wall guided transfer to projected transfer and then to streaming transfer. Moreover, when the PDD curves of arc voltage are both unimodal and generally symmetrical, the greater the peak probability and the smaller the peak span, the more stable the arc becomes.
Numerical study on tsunami hazard mitigation using a submerged breakwater.
Ha, Taemin; Yoo, Jeseon; Han, Sejong; Cho, Yong-Sik
2014-01-01
Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated.
Numerical Study on Tsunami Hazard Mitigation Using a Submerged Breakwater
Directory of Open Access Journals (Sweden)
Taemin Ha
2014-01-01
Full Text Available Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated.
Phytoremediation of arsenic in submerged soil by wetland plants.
Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai
2011-01-01
Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.
Minimizing downstream scour due to submerged hydraulic jump using corrugated
Directory of Open Access Journals (Sweden)
Hossam Mohamed Ali
2014-12-01
Full Text Available Local scour downstream of hydraulic structures due to hydraulic jump is considered one of the tedious and complicated problems facing their stability. Throughout this paper, an experimental study was conducted to study the effect of using different spaced corrugated aprons on the downstream local scour due to submerged jump. Sixty runs were carried out in a horizontal rectangular flume to determine the optimal corrugation wavelength which minimizing the scour. A case of flat apron included to estimate the influence of corrugated aprons on scour holes dimensions. Two types of non-cohesive soil were used. Experiments were performed for a range of Froude numbers between 1.68 and 9.29. The results showed that using spaced triangular corrugated aprons minimize the scour depth and length of fine sand by average percentage of 63.4% and 30.2%, respectively and for coarse sand by 44.2% and 20.6% in comparing with classical jump.
Microbial production of four biodegradable siderophores under submerged fermentation.
Fazary, Ahmed E; Al-Shihri, Ayed S; Alfaifi, Mohammad Y; Saleh, Kamel A; Alshehri, Mohammed A; Elbehairi, Serag Eldin I; Ju, Yi-Hsu
2016-07-01
Four siderophore analogues were isolated and purified from Escherichia coli, Bacillus spp. ST13, and Streptomyces pilosus microorganisms under some specific submerged fermentation conditions. In order to evaluate the highest production of this siderophore analogues through the growth, a rapid spectrophotometric screening semi-quantitative method was used, in which interestingly the analogues were isolated in its own form not its iron chelate. After chromatographic separation, the chemical structures of the isolated and purified siderophores were illustrated using detailed spectroscopic techniques. The biodegradation studies were done on that four novel isolated and purified siderophores following OECD protocols. In addition, the bioactivities of these siderophores and their iron complexes were examined and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of Submerged Entry Nozzles that Resist Clogging
Energy Technology Data Exchange (ETDEWEB)
Dr. Jeffrey D. Smith; Kent D. Peasle
2002-10-14
Accretion formation and the associated clogging of SENs is a major problem for the steel industry leading to decreased strand speed, premature changing of SENs or strand termination and the associated reductions in productivity, consistency, and steel quality. A program to evaluate potentially clog resistance materials was initiated at the University of Missouri-Rolla. The main objective of the research effort was to identify combinations of steelmaking and refractory practices that would yield improved accretion resistance for tundish nozzles and submerged entry nozzles. A number of tasks were identified during the initial kick-off meeting and each was completed with two exceptions, the thermal shock validation and the industrial trials. Not completing these two tasks related to not having access to industrial scale production facilities. Though much of the results and information generated in the project is of proprietary nature.
Slag-metal equilibrium during submerged arc welding
Chai, C. S.; Eagar, T. W.
1981-09-01
A thermodynamic model of the equilibria existing between the slag and the weld metal during submerged arc welding is presented. As formulated, the model applies only to fused neutral fluxes containing less than 20 pct CaF2, however some results indicate that the model may be useful in more general cases as well. The model is shown to be capable of predicting the gain or loss of both Mn and Si over a wide range of baseplate, electrode and flux compositions. At large deviations from the predicted equilibrium, the experimental results indicate considerable variability in the amount of Mn or Si transferred between the slag and metal phases, while closer to the calculated equilibrium, the extent of metal transfer becomes more predictable. The variability in metal transfer rate at large deviations from equilibrium may be explained by variations between the bulk and the surface concentrations of Mn and Si in both metal and slag phases.
Endodontic Treatment in Submerged Roots: A Case Report
Directory of Open Access Journals (Sweden)
Hemalatha Pameshwar Hiremath
2010-06-01
Full Text Available Alveolar ridge resorption has long been considered an unavoidable consequence of tooth extraction. While the extent and pattern of resorption is variable among individuals, there is a progressive loss of ridge contour as a result of physiologic bone remodeling. Even today, with best modalities of tooth preservation, there is a group of elderly individuals who do not benefit from modern preventive practices and who now present a dilemma in terms of maintaining the masticatory apparatus necessary for nutrition. Even with excellent dental care, such patients experience abrasion of the natural tooth crowns with age, and embedded roots are left within the alveolar bone. According to old concepts of dental care, extraction of these roots would have been recommended, but today’s goal of excellence in endodontics dictates otherwise. We report a case in which vital and non-vital root submergence was carried out to prevent alveolar ridge reduction.
Laser Heating of the Core-Shell Nanowires
Astefanoaei, Iordana; Dumitru, Ioan; Stancu, Alexandru
2016-12-01
The induced thermal stress in a heating process is an important parameter to be known and controlled in the magnetization process of core-shell nanowires. This paper analyses the stress produced by a laser heating source placed at one end of a core-shell type structure. The thermal field was computed with the non-Fourier heat transport equation using a finite element method (FEM) implemented in Comsol Multiphysics. The internal stresses are essentially due to thermal gradients and different expansion characteristics of core and shell materials. The stress values were computed using the thermo elastic formalism and are depending on the laser beam parameters (spot size, power etc.) and system characteristics (dimensions, thermal characteristics). Stresses in the GPa range were estimated and consequently we find that the magnetic state of the system can be influenced significantly. A shell material as the glass which is a good thermal insulator induces in the magnetic core, the smaller stresses and consequently the smaller magnetoelastic energy. These results lead to a better understanding of the switching process in the magnetic materials.
Load bearing capacity of an imperfect very shallow shell
Psotny, Martin; Havran, Jozef
2017-07-01
Elastic shallow shell of translation subjected to the external pressure is analysed in the paper numerically by FEM. Critical loads from eigenvalue buckling analysis have been compared with load levels in limit points of nonlinear buckling analysis. Nonlinear equilibrium paths are calculated for different boundary conditions. Special attention is paid to the influence of initial imperfections on the limit load level of fundamental load-displacement path of nonlinear analysis. ANSYS system is used for analysis, arc-length method is chosen to obtain fundamental load-displacement path of solution, the reference arc-length radius is calculated from the load increment.
On the growth of walled cells: From shells to vesicles.
Boudaoud, Arezki
2003-03-01
The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.
Growth of Walled Cells: From Shells to Vesicles
Boudaoud, Arezki
2003-07-01
The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.
Plate shell structures of glass
DEFF Research Database (Denmark)
Bagger, Anne
to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....
Stability Landscape of Shell Buckling
Virot, Emmanuel; Kreilos, Tobias; Schneider, Tobias M.; Rubinstein, Shmuel M.
2017-12-01
We measure the response of cylindrical shells to poking and identify a stability landscape, which fully characterizes the stability of perfect shells and imperfect ones in the case where a single defect dominates. We show that the landscape of stability is independent of the loading protocol and the poker geometry. Our results suggest that the complex stability of shells reduces to a low dimensional description. Tracking ridges and valleys of this landscape defines a natural phase-space coordinates for describing the stability of shells.
Automated shell theory for rotating structures (ASTROS)
Foster, B. J.; Thomas, J. M.
1971-01-01
A computer program for analyzing axisymmetric shells with inertial forces caused by rotation about the shell axis is developed by revising the STARS II shell program. The basic capabilities of the STARS II shell program, such as the treatment of the branched shells, stiffened wall construction, and thermal gradients, are retained.
Directory of Open Access Journals (Sweden)
Khandakar Md Iftekharuddaula
2015-01-01
Full Text Available Submergence tolerant high yielding rice variety was developed using BR11 as a recipient parent applying foreground, phenotypic and background selection approaches. Recombinant selection was found essential to minimize linkage drag by BC2F2 generation. Without recombinant selection, the introgression size in the backcross recombinant lines (BRLs was approximately 15 Mb on the carrier chromosome. The BRLs were found submergence tolerance compared to the check varieties under complete submergence for two weeks at Bangladesh Rice Research Institute, and produced higher yield compared to the isogenic Sub1-line under controlled submerged condition. The BRL IR85260-66-654-Gaz2 was released as BRRI dhan52 in 2010, which was the first high yielding submergence tolerant variety in Bangladesh. BRRI dhan52 produced grain yield ranging from 4.2 to 5.2 t/hm2 under different flash flood prone areas of Bangladesh in three consecutive seasons. The study demonstrated the efficiency of recombinant selection and better adaptability of the newly released submergence tolerant high yielding variety in flash flood prone different areas of the country with respect to submergence tolerance and yield potential.
Tamang, Bishal G; Magliozzi, Joseph O; Maroof, M A Saghai; Fukao, Takeshi
2014-10-01
Complete inundation at the early seedling stage is a common environmental constraint for soybean production throughout the world. As floodwaters subside, submerged seedlings are subsequently exposed to reoxygenation stress in the natural progression of a flood event. Here, we characterized the fundamental acclimation responses to submergence and reoxygenation in soybean at the seedling establishment stage. Approximately 90% of seedlings succumbed during 3 d of inundation under constant darkness, whereas 10 d of submergence were lethal to over 90% of seedlings under 12 h light/12 h dark cycles, indicating the significance of underwater photosynthesis in seedling survival. Submergence rapidly decreased the abundance of carbohydrate reserves and ATP in aerial tissue of seedlings although chlorophyll breakdown was not observed. The carbohydrate and ATP contents were recovered upon de-submergence, but sudden exposure to oxygen also induced lipid peroxidation, confirming that reoxygenation induced oxidative stress. Whole transcriptome analysis recognized genome-scale reconfiguration of gene expression that regulates various signalling and metabolic pathways under submergence and reoxygenation. Comparative analysis of differentially regulated genes in shoots and roots of soybean and other plants defines conserved, organ-specific and species-specific adjustments which enhance adaptability to submergence and reoxygenation through different metabolic pathways. © 2014 John Wiley & Sons Ltd.
Submergence induced changes of molecular species in membrane lipids in Arabidopsis thaliana
Directory of Open Access Journals (Sweden)
Mulan Wang
2016-06-01
Full Text Available The composition of membrane lipids is sensitive to environmental stresses. Submergence is a type of stress often encountered by plants. However, how the molecular species of membrane lipids respond to submergence has not yet been characterised. In this study, we used a lipidomic approach to profile the molecular species of membrane lipids in whole plants of Arabidopsis thaliana that were completely submerged for three days. The plants survived one day of submergence, after which, we found that the total membrane lipids were only subtly decreased, showing significant decreases of monogalactosyldiacylglycerol (MGDG and phosphatidylcholine (PC and an increase of phosphatidic acid (PA; however, the basic lipid composition was retained. In contrast, three days of submergence caused plants to die, and the membranes deteriorated via the rapid loss of 96% of lipid content together with a 229% increase in PA. The turnover of molecular species from PG and MGDG to PA indicated that submergence-induced lipid changes occurred through PA-mediated degradation. In addition, molecular species of extraplastidic PG degraded sooner than plastidic ones, lyso-phospholipids exhibited various patterns of change, and the double-bond index (DBI remained unchanged until membrane deterioration. Our results revealed the unique changes of membrane lipids upon submergence and suggested that the major cause of the massive lipid degradation could be anoxia.
The Performance and Fouling Control of Submerged Hollow Fiber (HF Systems: A Review
Directory of Open Access Journals (Sweden)
Ebrahim Akhondi
2017-07-01
Full Text Available The submerged membrane filtration concept is well-established for low-pressure microfiltration (MF and ultrafiltration (UF applications in the water industry, and has become a mainstream technology for surface-water treatment, pretreatment prior to reverse osmosis (RO, and membrane bioreactors (MBRs. Compared to submerged flat sheet (FS membranes, submerged hollow fiber (HF membranes are more common due to their advantages of higher packing density, the ability to induce movement by mechanisms such as bubbling, and the feasibility of backwashing. In view of the importance of submerged HF processes, this review aims to provide a comprehensive landscape of the current state-of-the-art systems, to serve as a guide for further improvements in submerged HF membranes and their applications. The topics covered include recent developments in submerged hollow fiber membrane systems, the challenges and developments in fouling-control methods, and treatment protocols for membrane permeability recovery. The highlighted research opportunities include optimizing the various means to manipulate the hydrodynamics for fouling mitigation, developing online monitoring devices, and extending the submerged HF concept beyond filtration.
Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M; Cornelissen, Johannes H C
2016-04-10
Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. TakingAlternanthera philoxeroides(Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. The adventitious roots ofA. philoxeroidesformed upon submergence can absorb oxygen from ambient water, thereby alleviating the adverse effects of
Elastic actuation for legged locomotion
Cao, Chongjing; Conn, Andrew
2017-04-01
The inherent elasticity of dielectric elastomer actuators (DEAs) gives this technology great potential in energy efficient locomotion applications. In this work, a modular double cone DEA is developed with reduced manufacturing and maintenance time costs. This actuator can lift 45 g of mass (5 times its own weight) while producing a stroke of 10.4 mm (23.6% its height). The contribution of the elastic energy stored in antagonistic DEA membranes to the mechanical work output is experimentally investigated by adding delay into the DEA driving voltage. Increasing the delay time in actuation voltage and hence reducing the duty cycle is found to increase the amount of elastic energy being recovered but an upper limit is also noticed. The DEA is then applied to a three-segment leg that is able to move up and down by 17.9 mm (9% its initial height), which demonstrates the feasibility of utilizing this DEA design in legged locomotion.
Margerin, Ludovic; Sato, Haruo
2011-12-01
This paper investigates the reconstruction of elastic Green's function from the cross-correlation of waves excited by random noise in the context of scattering theory. Using a general operator equation-the resolvent formula-Green's function reconstruction is established when the noise sources satisfy an equipartition condition. In an inhomogeneous medium, the operator formalism leads to generalized forms of optical theorem involving the off-shell T-matrix of elastic waves, which describes scattering in the near-field. The role of temporal absorption in the formulation of the theorem is discussed. Previously established symmetry and reciprocity relations involving the on-shell T-matrix are recovered in the usual far-field and infinitesimal absorption limits. The theory is applied to a point scattering model for elastic waves. The T-matrix of the point scatterer incorporating all recurrent scattering loops is obtained by a regularization procedure. The physical significance of the point scatterer is discussed. In particular this model satisfies the off-shell version of the generalized optical theorem. The link between equipartition and Green's function reconstruction in a scattering medium is discussed. © 2011 Acoustical Society of America
Interaction of Submerged Breakwater by a Solitary Wave Using WC-SPH Method
Directory of Open Access Journals (Sweden)
Afshin Mansouri
2014-01-01
Full Text Available Interaction of a solitary wave and submerged breakwater is studied in a meshless, Lagrangian approach. For this purpose, a two-dimensional smoothed particle hydrodynamics (SPH code is developed. Furthermore, an extensive set of simulations is conducted. In the first step, the generated solitary wave is validated. Subsequently, the interaction of solitary wave and submerged breakwater is investigated thoroughly. Results of the interaction of solitary wave and a submerged breakwater are also shown to be in good agreement with published experimental studies. Afterwards, the effects of the inclination and length of breakwater as well as distance between two breakwaters are evaluated on damping ratio of breakwater.
Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata
DEFF Research Database (Denmark)
Pedersen, Ole; Vos, Harrie; Colmer, Timothy David
2006-01-01
This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on flood-prone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged...... the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial...
Barrier distributions from elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Rowley, N. [Manchester Univ. (United Kingdom). Dept. of Physics]|[Surrey Univ., Guildford (United Kingdom). Dept. of Physics; Timmers, H.; Leigh, J.R.; Masgupta, M.; Hinde, D.J.; Mein, J.C.; Morton, C.R.; Newton, J.O. [Australian National Univ., Canberra, ACT (Australia). Dept. of Nuclear Physics
1996-01-01
A new representation of the distribution of potential barriers present in heavy ion reactions is defined in terms of the elastic scattering excitation function. Its validity is demonstrated for the systems {sup 16}0 + {sup 144,} {sup 154}Sm, {sup 186}W, {sup 208}Pb, for which precise measurements have been made. Compared with fusion barrier distributions, which show structures characteristic of collective inelastic couplings, the elastic distributions are less detailed. This appears to be due to couplings to weaker direct reaction channels. 20 refs., 3 figs.
Complex variable methods in elasticity
England, A H
2003-01-01
The plane strain and generalized plane stress boundary value problems of linear elasticity are the focus of this graduate-level text, which formulates and solves these problems by employing complex variable theory. The text presents detailed descriptions of the three basic methods that rely on series representation, Cauchy integral representation, and the solution via continuation. Its five-part treatment covers functions of a complex variable, the basic equations of two-dimensional elasticity, plane and half-plane problems, regions with circular boundaries, and regions with curvilinear bounda
bessel functions for axisymmetric elasticity problems of the elastic
African Journals Online (AJOL)
HOD
homogeneous, isotropic, linear elastic half-space could be obtained by integration over the loaded region (area) with the point load solution considered as the Green function [1]. 1.1 Bessel Functions and Axisymmetric Problems. The Bessel's equations are commonly encountered in partial differential equations in bodies ...
Biomechanics of turtle shells: how whole shells fail in compression.
Magwene, Paul M; Socha, John J
2013-02-01
Turtle shells are a form of armor that provides varying degrees of protection against predation. Although this function of the shell as armor is widely appreciated, the mechanical limits of protection and the modes of failure when subjected to breaking stresses have not been well explored. We studied the mechanical properties of whole shells and of isolated bony tissues and sutures in four species of turtles (Trachemys scripta, Malaclemys terrapin, Chrysemys picta, and Terrapene carolina) using a combination of structural and mechanical tests. Structural properties were evaluated by subjecting whole shells to compressive and point loads in order to quantify maximum load, work to failure, and relative shell deformations. The mechanical properties of bone and sutures from the plastral region of the shell were evaluated using three-point bending experiments. Analysis of whole shell structural properties suggests that small shells undergo relatively greater deformations before failure than do large shells and similar amounts of energy are required to induce failure under both point and compressive loads. Location of failures occurred far more often at sulci than at sutures (representing the margins of the epidermal scutes and the underlying bones, respectively), suggesting that the small grooves in the bone created by the sulci introduce zones of weakness in the shell. Values for bending strength, ultimate bending strain, Young's modulus, and energy absorption, calculated from the three-point bending data, indicate that sutures are relatively weaker than the surrounding bone, but are able to absorb similar amounts of energy due to higher ultimate strain values. Copyright © 2012 Wiley Periodicals, Inc.
Including surface ligand effects in continuum elastic models of nanocrystal vibrations
Lee, Elizabeth M. Y.; Mork, A. Jolene; Willard, Adam P.; Tisdale, William A.
2017-07-01
The measured low frequency vibrational energies of some quantum dots (QDs) deviate from the predictions of traditional elastic continuum models. Recent experiments have revealed that these deviations can be tuned by changing the ligands that passivate the QD surface. This observation has led to speculation that these deviations are due to a mass-loading effect of the surface ligands. In this article, we address this speculation by formulating a continuum elastic theory that includes the dynamical loading by elastic surface ligands. We demonstrate that this model is capable of accurately reproducing the l = 0 phonon energy across a variety of different QD samples, including cores with different ligand identities and epitaxially grown CdSe/CdS core/shell heterostructures. We highlight that our model performs well even in the small QD regime, where traditional elastic continuum models are especially prone to failure. Furthermore, we show that our model combined with Raman measurements can be used to infer the elastic properties of surface bound ligands, such as sound velocities and elastic moduli, that are otherwise challenging to measure.
Directory of Open Access Journals (Sweden)
Fumiko Iwanaga
2015-04-01
Full Text Available Aim of study: Withstanding total submergence and reaeration following submergence is essential for the survival and establishment of wetland species. We focused on “LOES–low oxygen escape syndrome” and “LOQS–low oxygen quiescence syndrome” and compared tolerances to total submergence among wetland woody species differing in morphological adaptation to soil flooding. Area of study, materials and methods: This study examined the survival of 2-year-old saplings of Taxodium distichum and Metasequioia glyptostroboides (LOQS species, and Alnus japonica (LOES species, during and after total submergence. Saplings were completely submerged, then de-submerged to determine trends in survival and growth Main results: The M. glyptostroboides and A. japonica saplings could not survive prolonged submergence for more than 8 weeks, whereas saplings of T. distichum survived for over 2 years. Submerged saplings of all species showed no significant growth or modifications in morphology and anatomy under water, such as shoot elongation, adventitious root formation, and/or aerenchyma development. All T. distichum saplings that were de-submerged in the second year had the same pattern of shoot growth regardless of differences in timing and seasonality of de-submergence. Wood formation in T. distichum saplings ceased during submergence and resumed after de-submergence in spring and summer, but not in autumn. Research highlights: T. distichum saplings, which survived longer submergence periods than A. japonica and M. glyptostroboides, had physiological characteristics, such as suspension of growth and metabolism, which allowed survival of protracted total submergence (at least 2 years when saplings were immersed during the dormant stage before leaf flushing.
Gravity balanced compliant shell mechanisms
Radaelli, G.; Herder, J.L.
2017-01-01
The research on compliant shell mechanisms is a new and promising expansion of the well established compliant mechanisms research area. Benefits of compliant shell mechanisms include being spatial and slender, having organic shapes and their high tailorability of the load-displacement response.
Dynamic reponse of a cylindrical shell immersed in a potential fluid
Energy Technology Data Exchange (ETDEWEB)
Cummings, G.E.
1978-04-18
A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a /sup 1///sub 12/ scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved.
Stability and acoustic scattering in a cylindrical thin shell containing compressible mean flow
Brambley, E. J.; Peake, N.
We consider the stability of small perturbations to a uniform inviscid compressible flow within a cylindrical linear-elastic thin shell. The thin shell is modelled using FlBers criterion, and the system is found to be either stable or absolutely unstable, with absolute instability occurring for sufficiently small shell thicknesses. This is significantly different from the stability of a thin shell containing incompressible fluid, even for parameters for which the fluid would otherwise be expected to behave incompressibly (for example, water within a steel thin shell). Asymptotic expressions are derived for the shell thickness separating stable and unstable behaviour.We then consider the scattering of waves by a sudden change in the duct boundary from rigid to thin shell, using the Wienerspringspring-damper model. The scattering results derived here are exact, unique and causal, without the need to apply a Kutta-like condition or to include an instability wave. A movie is available with the online version of the paper.
Wave based analysis of the Green's function for a layered cylindrical shell.
Magliula, Elizabeth A; McDaniel, J Gregory
2012-07-01
Cylindrical shells composed of concentric layers may be designed to affect the way that elastic waves are generated and propagated, particularly when some layers are anisotropic. To aid the design process, the present work develops a wave based analysis of the Green's function for a layered cylindrical shell in which the response is given as a sum of waves propagating in the axial coordinate. The analysis assumes linear Hookean materials for each layer. It uses finite element discretizations in the radial coordinate and Fourier series expansions in the circumferential coordinate, leading to linear equations in the axial wavenumber domain that relate shell displacements and forces. Inversion to the axial domain is accomplished via a state-space formulation that is evaluated using residue integration. The resulting expression for the Green's function for each circumferential harmonic is a summation over the natural waves of the shell. The finite element discretization in the radial direction allows the approach to be used for arbitrarily thick shells. The approach is benchmarked to results from an isotropic shell and numerical examples are given for a shell composed of a fiber-reinforced material. The numerical examples illustrate the effect of fiber orientation on the Green's function.
Directory of Open Access Journals (Sweden)
Gangolu Vijay Kumar
2012-01-01
Full Text Available A four-node composite facet-shell element is developed, accounting for electromechanical coupling of Macrofiber Composite (MFC and conventional PZT patches. Further a warping correction is included in order to capture correctly the induced strain of conformable MFC, surface bonded on a cylindrical shell. The element performance to model the relations between in-plane electric field to normal strains is examined with the help of experiment and ANSYS analysis. In ANSYS, a simple modeling scheme is proposed for MFC using a parallel capacitors concept. The independent modal space control technique has been revisited to address the control of combination resonances through a selective modal space control scheme, where two or more modes can be combined to form the vibrating system or plant in modal domain. The developed control schemes are implemented in a digital processor using DS1104 and the closed-loop vibration control experiments are conducted on a CFRP shell structure. The influence of directionally induced actuation of MFC actuators on elastic couplings of composite shell is studied theoretically and is subsequently demonstrated in experiments. MFC actuators provide the much needed optimization domain for achieving the vibration control of combination resonances of elastically coupled deep-shell structure.
Core-shell nanostructured catalysts.
Zhang, Qiao; Lee, Ilkeun; Joo, Ji Bong; Zaera, Francisco; Yin, Yadong
2013-08-20
Novel nanotechnologies have allowed great improvements in the syn-thesis of catalysts with well-controlled size, shape, and surface properties. Transition metal nanostructures with specific sizes and shapes, for instance, have shown great promise as catalysts with high selectivities and relative ease of recycling. Researchers have already demonstrated new selective catalysis with solution-dispersed or supported-metal nanocatalysts, in some cases applied to new types of reactions. Several challenges remain, however, particularly in improving the structural stability of the catalytic active phase. Core-shell nanostructures are nanoparticles encapsulated and protected by an outer shell that isolates the nanoparticles and prevents their migration and coalescence during the catalytic reactions. The synthesis and characterization of effective core-shell catalysts has been at the center of our research efforts and is the focus of this Account. Efficient core-shell catalysts require porous shells that allow free access of chemical species from the outside to the surface of nanocatalysts. For this purpose, we have developed a surface-protected etching process to prepare mesoporous silica and titania shells with controllable porosity. In certain cases, we can tune catalytic reaction rates by adjusting the porosity of the outer shell. We also designed and successfully applied a silica-protected calcination method to prepare crystalline shells with high surface area, using anatase titania as a model system. We achieved a high degree of control over the crystallinity and porosity of the anatase shells, allowing for the systematic optimization of their photocatalytic activity. Core-shell nanostructures also provide a great opportunity for controlling the interaction among the different components in ways that might boost structural stability or catalytic activity. For example, we fabricated a SiO₂/Au/N-doped TiO₂ core-shell photocatalyst with a sandwich structure that showed
Directory of Open Access Journals (Sweden)
Michael A. Sprague
1999-01-01
Full Text Available The title problem is solved through extension of a method previously formulated for plane step-wave excitation, which employs generalized Fourier series augmented by partial closure of those series at early time. The extension encompasses both plane and spherical incident waves with step-exponential pressure profiles. The effects of incident-wave curvature and profile decay rate on response behavior are examined. A method previously developed for assessing the discrepancy between calculated and measured response histories is employed to evaluate the convergence of the truncated series solutions. Also studied is the performance of doubly-asymptotic approximations. Finally, the efficacy of modified Cesàro summation for improving the convergence of series solutions is examined. The documented computer program that produced the numerical results appearing in this paper, SPHSHK/MODSUM, may be down-loaded from the Web site http://saviac.xservices.com.
Effects of Body Elasticity on Stability of Underwater Locomotion
Jing, Fangxu
2012-01-01
We examine the stability of the "coast" motion of fish, that is to say, the motion of a neutrally buoyant fish at constant speed in a straight line. The forces and moments acting on the fish body are thus perfectly balanced. The fish motion is said to be unstable if a perturbation in the conditions surrounding the fish results in forces and moments that tend to increase the perturbation and it is stable if these emerging forces tend to reduce the perturbation and return the fish to its original state. Stability may be achieved actively or passively. Active stabilization requires neurological control that activates musculo-skeletal components to compensate for the external perturbations acting against stability. Passive stabilization on the other hand requires no energy input by the fish and is dependent upon the fish morphology, i.e. geometry and elastic properties. In this paper, we use a deformable body consisting of an articulated body equipped with torsional springs at its hinge joints and submerged in an...
BESSEL FUNCTIONS FOR AXISYMMETRIC ELASTICITY ...
African Journals Online (AJOL)
The potential functions are then made to satisfy the governing field equations and the associated boundary conditions for the particular problem of a point load at the origin of the semi-infinite linear elastic isotropic soil mass. The unknown parameters of the function are thus determined and used to find the stresses, strains ...
Duration of an Elastic Collision
de Izarra, Charles
2012-01-01
With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…
Kinematic support using elastic elements
Geirsson, Arni; Debra, Daniel B.
1988-01-01
The design of kinematic supports using elastic elements is reviewed. The two standard methods (cone, Vee and flat and three Vees) are presented and a design example involving a machine tool metrology bench is given. Design goals included thousandfold strain attenuation in the bench relative to the base when the base strains due to temperature variations and shifting loads. Space applications are also considered.
Outer Continental Shelf Submerged Lands Act Boundary - Atlantic Region NAD83
Bureau of Ocean Energy Management, Department of the Interior — This data set contains the Submerged Lands Act (SLA) boundary line (also known as State Seaward Boundary (SSB), or Fed State Boundary) in ESRI shapefile formats for...
The Development of a Composite Consumable Insert for Submerged ARC Welding
National Research Council Canada - National Science Library
1980-01-01
.... When the submerged arc process was utilized to weld the butt joint in large flat plate structures, the repositioning of the plate for welding of the reverse side was a costly time consuming procedure...
Meta Modelling of Submerged-Arc Welding Design based on Fuzzy Algorithm
Song, Chang-Yong; Park, Jonghwan; Goh, Dugab; Park, Woo-Chang; Lee, Chang-Ha; Kim, Mun Yong; Kang, Jinseo
2017-12-01
Fuzzy algorithm based meta-model is proposed for approximating submerged-arc weld design factors such as weld speed and weld output. Orthogonal array design based on the submerged-arc weld numerical analysis is applied to the proposed approach. The nonlinear finite element analysis is carried out to simulate the submerged-arc weld numerical analysis using thermo-mechanical and temperature-dependent material properties for general mild steel. The proposed meta-model based on fuzzy algorithm design is generated with triangle membership functions and fuzzy if-then rules using training data obtained from the Taguchi orthogonal array design data. The aim of proposed approach is to develop a fuzzy meta-model to effectively approximate the optimized submerged-arc weld factors. To validate the meta-model, the results obtained from the fuzzy meta-model are compared to the best cases from the Taguchi orthogonal array.
Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006
National Research Council Canada - National Science Library
Shafer, Deborah J; Bergstrom, Peter
2008-01-01
In 2003, the U.S. Army Engineer Research and Development Center (ERDC) and the National Oceanic and Atmospheric Administration Chesapeake Bay Office began a comprehensive research effort to restore submerged aquatic vegetation (SAV...
Flow Velocity and Morphology of a Submerged Patch of the Aquatic Species
Cornacchia, L.; Licci, S.; van de Koppel, J.; van der Wal, D.; Wharton, G.; Puijalon, S.; Bouma, T.J.
2016-01-01
The interaction between macrophytes and hydrodynamic conditions is animportant feature in many aquatic ecosystems. Submerged macrophytes can formmonospecific patches that interact with the flow and alter current velocity; withinthe same vegetation patch, plants are exposed to different levels of
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)
U.S. Geological Survey, Department of the Interior — Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation...
EAARL-B Submerged Topography - Saint Croix, U.S. Virgin Islands, 2014
U.S. Geological Survey, Department of the Interior — ASCII XYZ point cloud data for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced...
EAARL-B Submerged TopographyÂCrocker Reef, Florida, 2014
U.S. Geological Survey, Department of the Interior — ASCII XYZ point cloud data for a portion of the submerged environs of Crocker Reef, Florida, were produced from remotely sensed, geographically referenced elevation...
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)
U.S. Geological Survey, Department of the Interior — Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation...
US Fish and Wildlife Service, Department of the Interior — This Environmental Assessment is an analysis of five alternatives developed to address themanagement of the submerged aquatic plants of Banks Lake on Banks Lake...
2012-11-01
Submerged Aquatic Vegetation (SAV) is an important component in any estuarine ecosystem. As such, it is regulated by federal and state agencies as a jurisdictional resource, where impacts to SAV are compensated through mitigation. Historically, tradi...
Sasidharan, R.; Mustroph, A.; Boonman, A.; Akman, M.; Ammerlaan, A.M.H.; Breit, T.M.; Schranz, M.E.; Voesenek, L.A.C.J.; Tienderen, van P.H.
2013-01-01
Complete submergence represses photosynthesis and aerobic respiration, causing rapid mortality in most terrestrial plants. However, some plants have evolved traits allowing them to survive prolonged flooding, such as species of the genus Rorippa, close relatives of Arabidopsis (Arabidopsis
Sasidharan, R.; Mustroph, A.; Boonman, A.; Akman, M.; Ammerlaan, A.M.H.; Breit, T.M.; Schranz, M.E.; Voesenek, L.A.C.J.; van Tienderen, P.H.
2013-01-01
Complete submergence represses photosynthesis and aerobic respiration, causing rapid mortality in most terrestrial plants. However, some plants have evolved traits allowing them to survive prolonged flooding, such as species of the genus Rorippa, close relatives of Arabidopsis (Arabidopsis
Sandsten, H.; Klaassen, M.R.J.
2008-01-01
Compared to terrestrial environments, grazing intensity on belowground plant parts may be particularly strong in aquatic environments, which may have great effects on plant-community structure. We observed that the submerged macrophyte, Potamogeton pectinatus, which mainly reproduces with tubers,
EAARL-B Submerged TopographyÂSaint Thomas, U.S. Virgin Islands, 2014
U.S. Geological Survey, Department of the Interior — ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced...
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)
U.S. Geological Survey, Department of the Interior — Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation...
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)
U.S. Geological Survey, Department of the Interior — Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation...
Outer Continental Shelf Submerged Lands Act Boundary - Pacific Region - West Coast NAD83
Bureau of Ocean Energy Management, Department of the Interior — This data set contains the Submerged Lands Act (SLA)boundary line (also known as the State Seaward Boundary (SSB) and Fed State Boundary) for the BOEM Pacific Region...
Process Modeling and Optimization of a Submerged Arc Furnace for Phosphorus Production
Scheepers, E.; Yang, Y.; Adema, A.T.; Boom, R.; Reuter, M.A.
2010-01-01
This article presents a process model of a phosphorus-producing, submerged arc furnace. The model successfully incorporates accurate, multifield thermodynamic, kinetic, and industrial data with computational flow dynamic calculations and thus further unifies the sciences of kinetics and equilibrium
EAARL-B Submerged Topography - Saint Croix and Saint Thomas, U.S. Virgin Islands, 2014
National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data for part of the submerged environs of Saint Croix and Saint Thomas, U.S. Virgin Islands, were produced from remotely sensed, geographically...
Outer Continental Shelf Submerged Lands Act Boundary - Alaska Region NAD83
Bureau of Ocean Energy Management, Department of the Interior — This data set contains the Submerged Lands Act (SLA) boundary (also known as State Seaward Boundary (SSB), or Fed State Boundary) in ESRI shapefile format for the...
DEFF Research Database (Denmark)
Colmer, T D; Vos, H; Pedersen, Ole
2009-01-01
in waters of high salinity. A 'quiescence response', i.e. no shoot growth, would conserve carbohydrates, but tissue sugars still declined with time. A low K(+) : Na(+) ratio, typical for tissues of succulent halophytes, was tolerated even during prolonged submergence, as evidenced by maintenance......BACKGROUND AND AIMS: Habitats occupied by many halophytes are not only saline, but are also prone to flooding. Few studies have evaluated submergence tolerance in halophytes. METHODS: Responses to submergence, at a range of salinity levels, were studied for the halophytic stem-succulent Tecticornia...... pergranulata subsp. pergranulata (syn. Halosarcia pergranulata subsp. pergranulata). Growth and total sugars in succulent stems were assessed as a function of time after submergence. Underwater net photosynthesis, dark respiration, total sugars, glycinebetaine, Na(+), Cl(-) and K(+), in succulent stems, were...
Directory of Open Access Journals (Sweden)
Zhiwen Wu
2017-01-01
Full Text Available A simplified analysis model of cable for submerged floating tunnel subjected to parametrically excited vibrations in the ocean environment is proposed in this investigation. The equation of motion of the cable is obtained by a mathematical method utilizing the Euler beam theory and the Galerkin method. The hydrodynamic force induced by earthquake excitations is formulated to simulate real seaquake conditions. The random earthquake excitation in the time domain is formulated by the stochastic phase spectrum method. An analytical model for analyzing the cable for submerged floating tunnel subjected to combined hydrodynamic forces and earthquake excitations is then developed. The sensitivity of key parameters including the hydrodynamic, earthquake, and structural parameters on the dynamic response of the cable is investigated and discussed. The present model enables a preliminary examination of the hydrodynamic and seismic behavior of cable for submerged floating tunnel and can provide valuable recommendations for use in design and operation of anchor systems for submerged floating tunnel.
EAARL-B submerged topography: Barnegat Bay, New Jersey, pre-Hurricane Sandy, 2012
Wright, C. Wayne; Troche, Rodolfo J.; Klipp, Emily S.; Kranenburg, Christine J.; Fredericks, Alexandra M.; Nagle, David B.
2014-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived submerged topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida.
Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale.
Xing, Wei; Wu, Haoping; Hao, Beibei; Liu, Guihua
2013-10-01
Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.
Outer Continental Shelf Submerged Lands Act Boundary - Gulf of Mexico Region NAD27
Bureau of Ocean Energy Management, Department of the Interior — This data set contains the Submerged Lands Act (SLA) boundary line (also known as State Seaward Boundary (SSB), or Fed State Boundary)in ESRI shapefile formats for...
Suitability of seagrasses and submerged aquatic vegetation as indicators of eutrophication
Rooted submerged aquatic vegetation (SAV) encompasses a large diversity of species that range from obligate halophytes such as, seagrasses, to euryhaline species and freshwater obligates. All seagrass and SAV provide key biological functions within the enclosed bays, estuaries, a...
Composite shell spacecraft seat
Barackman, Victor J. (Inventor); Pulley, John K. (Inventor); Simon, Xavier D. (Inventor); McKee, Sandra D. (Inventor)
2008-01-01
A two-part seat (10) providing full body support that is specific for each crew member (30) on an individual basis. The two-part construction for the seat (10) can accommodate many sizes and shapes for crewmembers (30) because it is reconfigurable and therefore reusable for subsequent flights. The first component of the two-part seat construction is a composite shell (12) that surrounds the crewmember's entire body and is generically fitted to their general size in height and weight. The second component of the two-part seat (10) is a cushion (20) that conforms exactly to the specific crewmember's entire body and gives total body support in more complex environment.
EAARL Submerged Topography - U.S. Virgin Islands 2003
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived submerged topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), South Florida-Caribbean Network, Miami, FL; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate bathymetric datasets of a portion of the U.S. Virgin Islands, acquired on April 21, 23, and 30, May 2, and June 14 and 17, 2003. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and
Energy Technology Data Exchange (ETDEWEB)
Kipp, Tobias; Chilla, Gerwin; Menke, Torben; Heitmann, Detlef [Institut fuer Angewandte Physik, Zentrum fuer Mikrostrukturforschung, Universitaet Hamburg (Germany); Nikolic, Marija; Froemsdorf, Andreas; Kornowski, Andreas; Foerster, Stephan; Weller, Horst [Institut fuer Physikalische Chemie, Universitaet Hamburg (Germany)
2008-07-01
We investigate the photoluminescence (PL) of single CdSe/CdS/ZnS core/shell/shell NCs whose ligands were exchanged to poly(ethylen oxide) (PEO) before they were embedded in a PEO matrix. We find NCs exhibiting a strong and durable PL even under high excitation power. By averaging PL spectra of a single NC, a set of peaks with distinct distance to the zero-phonon line (ZPL) of the NC can be observed. These peaks are attribute to phonon replicas. Most interestingly, by modeling the NC as an elastic sphere and calculating its vibrational modes, we can identify three peaks close to the ZPL as confined acoustic phonon modes: the breathing mode and its two radial harmonics. Other peaks can be assigned to LA and LO phonons of the CdSe core and LO phonons of both the CdS and ZnS shells.
Anatomy of floating and submerged leaves of heterophyllous plant of Nymphaea candida L.
E.N. Klimenko
2014-01-01
The data on anatomy of floating and submerged leaves of heterophyllous aquatic plant Nymphaea candida L. are presented. Anatomy of floating leaves is shown to be different from that of submerged leaves: the absence of stomata, asterosclereids, and differentiated parenchyma, as well as by reduce intercellular volume and leaf width. Common patterns of leaf structure plasticity of aquatic heterophyllous plants in dependence on the environment are discussed.
Rich, Sarah Meghan; Ludwig, Martha; Colmer, Timothy David
2012-07-01
A common response of wetland plants to flooding is the formation of aquatic adventitious roots. Observations of aquatic root growth are widespread; however, controlled studies of aquatic roots of terrestrial herbaceous species are scarce. Submergence tolerance and aquatic root growth and physiology were evaluated in two herbaceous, perennial wetland species Cotula coronopifolia and Meionectes brownii. Plants were raised in large pots with 'sediment' roots in nutrient solution and then placed into individual tanks and shoots were left in air or submerged (completely or partially). The effects on growth of aquatic root removal, and of light availability to submerged plant organs, were evaluated. Responses of aquatic root porosity, chlorophyll and underwater photosynthesis, were studied. Both species tolerated 4 weeks of complete or partial submergence. Extensive, photosynthetically active, aquatic adventitious roots grew from submerged stems and contributed up to 90 % of the total root dry mass. When aquatic roots were pruned, completely submerged plants grew less and had lower stem and leaf chlorophyll a, as compared with controls with intact roots. Roots exposed to the lowest PAR (daily mean 4.7 ± 2.4 µmol m(-2) s(-1)) under water contained less chlorophyll, but there was no difference in aquatic root biomass after 4 weeks, regardless of light availability in the water column (high PAR was available to all emergent shoots). Both M. brownii and C. coronopifolia responded to submergence with growth of aquatic adventitious roots, which essentially replaced the existing sediment root system. These aquatic roots contained chlorophyll and were photosynthetically active. Removal of aquatic roots had negative effects on plant growth during partial and complete submergence.
Directory of Open Access Journals (Sweden)
S. V. S. G. Nirmala
2012-01-01
Full Text Available The combination of submerged primary molar, agenesis of permanent successor with a supernumerary in the same place is very rare. The purpose of this article is to report a case of submerged mandibular left second primary molar with supernumerary tooth in the same region along with agenesis of second premolar in an 11-year-old girl, its possible etiological factors, and a brief discussion on treatment options.
Ackleson, S. G.; Klemas, V.
1984-01-01
The spatial, spectral and radiometric characteristics of LANDSAT TM and MSS imagery for detecting submerged aquatic vegetation are assessed. The problem is approached from two perspectives; purely stochastic or nonparametric in a radiative sense and theoretical in which radiative transfer equations are used to predict upwelling radiance at satellite altitude. The spectral and radiometric aspects of the theoretical approach are addressed with which a submerged plant canopy is distinguished from a surrounding bottom of sand or mud.
Collusion and the elasticity of demand
David Collie
2004-01-01
The analysis of collusion in infinitely repeated Cournot oligopoly games has generally assumed that demand is linear, but this note uses constant-elasticity demand functions to investigate how the elasticity of demand affects the sustainability of collusion.
Geometric Nonlinear Computation of Thin Rods and Shells
Grinspun, Eitan
2011-03-01
We develop simple, fast numerical codes for the dynamics of thin elastic rods and shells, by exploiting the connection between physics, geometry, and computation. By building a discrete mechanical picture from the ground up, mimicking the axioms, structures, and symmetries of the smooth setting, we produce numerical codes that not only are consistent in a classical sense, but also reproduce qualitative, characteristic behavior of a physical system----such as exact preservation of conservation laws----even for very coarse discretizations. As two recent examples, we present discrete computational models of elastic rods and shells, with straightforward extensions to the viscous setting. Even at coarse discretizations, the resulting simulations capture characteristic geometric instabilities. The numerical codes we describe are used in experimental mechanics, cinema, and consumer software products. This is joint work with Miklós Bergou, Basile Audoly, Max Wardetzky, and Etienne Vouga. This research is supported in part by the Sloan Foundation, the NSF, Adobe, Autodesk, Intel, the Walt Disney Company, and Weta Digital.
Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout
Nemeth, M. P.; Oterkus, E.; Madenci, E.
2005-01-01
A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.
Directory of Open Access Journals (Sweden)
Xing W.
2016-01-01
Full Text Available Growth rate hypothesis (GRH and stoichiometric homeostasis of photoautotrophs have always been questioned. However, little is known about GRH and stoichiometric homeostasis of aquatic plants, especially submerged macrophytes. Therefore, we aim to test the GRH and explore stoichiometric homeostasis of four freshwater submerged macrophytes under eutrophication stress. At the single species level and the multi-species level, N:P ratios of Potamogeton maackianus, Myriophyllum spicatum, Vallisneria natans and Ceratophyllum demersum had no consistent trends with growth rates. However, protein:RNA ratios of P. maackianus, M. spicatum and V. natans all correlated negatively with growth rates, demonstrating GRH can apply to freshwater submerged macrophytes, even though they are threatening by eutrophication stress. Protein:RNA ratios positively correlated with N:P ratios in culture media and tissues in submerged macrophytes except in P. maackianus (30d, suggesting effects of varying N:P ratios in culture media on protein:RNA ratios are basically in concert with tissue N:P ratios under short-time eutrophication stress. Stoichiometric homeostasis coefficients (HN:P indicated submerged macrophytes have weak homeostasis. Stoichiometric homeostasis of V. natans was stronger than those of P. maackianus, M. spicatum and C. demersum. The differences in GRH and homeostasis of the four submerged macrophytes may be due to species traits.
Modified elastic tissue-Masson trichrome stain.
Garvey, W
1984-07-01
A combined elastic tissue-Masson technique is presented which stains elastic fibers of all sizes, nuclei and connective tissue. The modified elastic tissue stain consists of hematoxylin, ferric chloride and Verhoeff's iodine; nuclei and elastic fibers are stained blue-black in six minutes without differentiation. By contrast, cytoplasmic elements are stained red, (Biebrich scarlet-acid fuchsin) and collagen is stained green (light green) or blue (aniline blue). The entire staining procedure takes approximately one hour.
Elastic least-squares reverse time migration
Feng, Zongcai
2016-09-06
Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.
[Submerged cultivation and chemical composition of Hericium erinaceus mycelium].
Avtonomova, A V; Bakanov, A V; Shuktueva, M I; Vinokurov, V A; Popova, O V; Usov, A I; Krasnopol'skaia, L M
2012-01-01
Submerged cultivation of Hericium erinaceus in various media was studied. The yield of the biomass was shown to depend mainly on the carbon source, whereas the content of water soluble polysaccharides depended mainly on the nitrogen source. The optimal medium composition provided the biomass yield of 21-23 g/l in 7 days. The biomass was characterized by the content of total protein, lipids and carbohydrates. In addition, the amino acid composition of the biomass was determined and shown to meet all the requirements of FAO/WHO concerning the amounts of essential amino acids (with exception of tryptophane). Oleinic and linoleic acids were identified as the main components of the fatty acids. Two water soluble polysaccharide fractions differing in solubility in aqueous ethanol were isolated and shown to contain rhamnose, fucose, xylose, glucose and galactose in different proportions. Vitamins B1, B2, B6, PP and E, ergosterol and coenzyme Q were also detected in the biomass of H. erinaceus.
Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods
Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj
2013-01-01
We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154
Immunomodulatory properties of Grifola frondosa in submerged culture.
Wu, Ming-Jiuan; Cheng, Tso-Lin; Cheng, Su-Yun; Lian, Tzi-Wei; Wang, Lisu; Chiou, Shu-Yuan
2006-04-19
Maitake (Grifola frondosa) is a popular mushroom in Asia for its tasty flavor and immune-stimulating property. The aim of the study is to investigate the innate immunity augmentation effects of different extracts of mycelia and culture filtrate from G. frondosa in submerged cultures. The hot water extract of mycelia showed the strongest cytokine induction effect as a function of its concentration in human whole blood culture. The most potent fractions of hot water extract, Fr. I and II, were mainly composed of polysaccharides with molecular masses of 43-140 and 13-38 kDa, respectively. These fractions (0.025 mg/mL) showed marked activity in enhancing phagocytosis of human polymorphonuclear neutrophils (PMN). In parallel, the expression of CD11b, an early marker of PMN activation, was also up-regulated dose dependently. This result suggested that complement receptor 3 was primed by these fractions. In addition to activation of phagocytes, these bioactive fractions also increased human peripheral blood natural killer cell cytotoxicity. These results imply that the relatively low molecular mass polysaccharides isolated from mycelia of G. frondosa can enhance innate immunity in vitro and therefore may serve as biological response modifiers.
The use of bottle caps as submerged aerated filter medium.
Damasceno de Oliveira, Laurence; Motlagh, Amir Mohaghegh; Goel, Ramesh; de Souza Missagia, Beatriz; Alves de Abreu Filho, Benício; Lautenschlager, Sandro Rogério
2014-01-01
In this study, a submerged aerated filter (SAF) using bottle caps as a support medium was evaluated. The system was fed with effluent from an upflow anaerobic sludge blanket system at ETE 2-South wastewater treatment plant, under different volumetric organic load rates (VOLRs). The population of a particular nitrifying microbial community was assessed by fluorescent in situ hybridization with specific oligonucleotide probes. The system showed an average removal of chemical oxygen demand (COD) equal to 76% for VOLRs between 2.6 and 13.6 kg COD m(-3)_media.day(-1). The process of nitrification in conjunction with the removal of organic matter was observed from applying VOLRs lower than 5.5 kg COD m(-3)_media.day(-1) resulting in 78% conversion of NH4(+)-N. As the applied organic load was reduced, an increase in the nitrifying bacteria population was observed compared with total 4'-6-diamidino-2-phenylindole (DAPI) stained cells. Generally, SAF using bottle caps as a biological aerated filter medium treating wastewater from an anaerobic system showed promising removal of chemical oxygen demand (COD) and conversion of NH4(+)-N.
Stainless steel submerged arc weld fusion line toughness
Energy Technology Data Exchange (ETDEWEB)
Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)
1995-04-01
This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.
Thermodynamic parameters of elasticity and electrical conductivity ...
African Journals Online (AJOL)
The thermodynamic parameters (change in free energy of elasticity, DGe; change in enthalpy of elasticity, DHe; and change in entropy of elasticity, DSe) and the electrical conductivity of natural rubber composites reinforced separately with some agricultural wastes have been determined. Results show that the reinforced ...
Some Measurements of Elasticities of Substitution
J. Tinbergen (Jan)
1946-01-01
textabstractSo far, when measuring elasticities of demand, most econometricians have concentrated upon the plain elasticity of total demand for a given commodity. For many important problems we should, in addition, like to know something of "partial elasticities," as I might provisionally call them.
MicroShell Minimalist Shell for Xilinx Microprocessors
Werne, Thomas A.
2011-01-01
MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is
Interaction of acoustic beam with elastic structures
Zhang, Han
This thesis describes experiments and calculations performed on the interaction of acoustic beams in water and air with planar and cylindrical elastic structures. Ultrasonic reflection measurements have been used to elucidate the phenomena of guided wave generation and reradiation by selecting beam incidence at, or near, phase-matching conditions. Under these circumstances reasonant mode conversion of accoustic wave to guided wave mode energy can occur. This interaction has been studied in rubber-coated steel, aluminum, plexiglas, and graphite-epoxy composite. The acoustic coupling media used in these experiments has been either water or air. Some theoretical modeling has also been undertaken to explain these results. The calculations performed here exploit an efficient analytical tool that simplifies the construction of finite acoustic beams. The method relies on the interesting mathematical fact that displacing a real point source into the couplex plane, converts the source into a quasi Gaussian beam. The free-space Green's function, which satisfies the inhomogeneous Helmholtz equation, is converted to a complex Green's function that describes the interaction of two beams, one from the source and the other at the observation point. The interaction with elastic structures is treated by spectral decomposition of the incident and reflected beams weighted by the plane wave reflection or transmission coefficient. The resulting spectral integral is evaluated either asymptotically along a steepest descent path, keeping track of the reflection/transmission coefficient pole contributions or numerically. In the first problem the interaction of acoustic beams with steel layered cylindrical shells is studied. The difficulty introduced by the high damping in the rubber is resolved and its influence on the signal is analyzed. The bond rigidity between the rubber and steel are accounted for in the model calculation by the so-called spring model. It is found that disbonds in the
Luminosity calibration from elastic scattering
Stenzel, H
2006-01-01
The absolute luminosity of the LHC at the ATLAS interaction point will be calibrated by the measurement of the t-distribution of elastic pp-scattering in the Coulomb-Nuclear interference region. The ALFA detector housed in Roman Pots located 240m away from IP1 is designed to approach the beam at mm distance and to measure elastic pp-scattering at micro-radian scattering angles. This measurement will be performed with dedicated runs using a special beam optics with high beta* and parallel-to-point focusing in order to access the Coulomb regime. In this note the expected performance of this method, evaluated with a simulation of the experimental set-up, is presented.
Elastic sealants for surgical applications.
Annabi, Nasim; Yue, Kan; Tamayol, Ali; Khademhosseini, Ali
2015-09-01
Sealants have emerged as promising candidates for replacing sutures and staples to prevent air and liquid leakages during and after the surgeries. Their physical properties and adhesion strength to seal the wound area without limiting the tissue movement and function are key factors in their successful implementation in clinical practice. In this contribution, the advances in the development of elastic sealants formed from synthetic and natural materials are critically reviewed and their shortcomings are pointed out. In addition, we highlight the applications in which elasticity of the sealant is critical and outline the limitations of the currently available sealants. This review will provide insights for the development of novel bioadhesives with advanced functionality for surgical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Elasticity of Crosslinked Biopolymer Networks
Lubensky, Tom
2007-03-01
Crosslinked networks of biopolymers exhibit an enormous variety of nonlinear elastic behaviors depending on the rigidity of constituent polymers and the geometry and topology of the network. This talk will present a brief review of the general theory of nonlinear elasticity. It will then discuss the phenomenon of strain stiffening in networks of semiflexible polymers and present a theory [1] of this phenomena based on the nonlinear force-extension curve of these polymers and the simplifying assumption of affine response. The nonlinear stress-strain curves predicted by this theory agree remarkably well with experiments on a number of different polymer networks. Limitations and extensions of the simple theory including extensions to nonaffine behavior will also be discussed. [1] Storm, Cornelis, Jennifer J. Pastore, Jennifer J., Fred C. MacKintosh, Fred C., T.C. Lubensky, T.C., and Paul A. Janmey, Paul A., Nature 435, 191-194 (2005).
Elasticity of Relativistic Rigid Bodies?
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Rate coefficients of open shell molecules and radicals: R-matrix ...
Indian Academy of Sciences (India)
We have computed and presented here the rate coefficient of these open shell molecules ( O 2 , S 2 , B 2 ) and radicals (PH, NH,SO) from the results of our previous studies using a well-established a b − i n i t i o formalism: the R -matrix method. The rate coefficients for elastic and electron-excited processes are studied over ...
Elastic sealants for surgical applications
Annabi, Nasim; Yue, Kan; Tamayol, Ali; Khademhosseini, Ali
2015-01-01
Sealants have emerged as promising candidates for replacing sutures and staples to prevent air and liquid leakages during and after the surgeries. Their physical properties and adhesion strength to seal the wound area without limiting the tissue movement and function are key factors in their successful implementation in clinical practice. In this contribution, the advances in the development of elastic sealants formed from synthetic and natural materials are critically reviewed and their shor...
Transient waves in visco-elastic media
Ricker, Norman
1977-01-01
Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave
Capsule shells adulterated with tadalafil.
Venhuis, Bastiaan J; Tan, Jing; Vredenbregt, Marjo J; Ge, Xiaowei; Low, Min-Yong; de Kaste, Dries
2012-01-10
Following a health complaint a food supplement was brought in for analysis on the suspicion of being adulterated with a synthetic drug substance. When the capsule content did not show evidence of adulteration, the capsule shell was investigated. Using HPLC-DAD and HPLC-MS the capsule shell was found to contain 2.85 mg of the erectile dysfunction drug tadalafil. Using microscopy and RAMAN spectroscopy the presence of tadalafil was shown throughout the gelatine matrix as particles and dissolved into the matrix. The adulteration is probably carried out by adding tadalafil powder to a gelatine jelly in the manufacturing of the capsules shells. Because this technique may also be used for other drug substances, capsules shells should be considered a vehicle for hiding drug substances in general. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Menon, Vinith
2013-01-01
Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.
Flemming, Nicholas; Bailey, Geoffrey N.; Sakellariou, Dimitris; Arias, Pablo; Canals, M.; Chiocci, Francesco Latino; Cohen, K.M.; Erlandson, Jon; Faught, Michael K.; Flatman, Joe; Fischer, Anders; Galili, Ehud; Harff, Jan; Lericolais, Gilles; Lűth, Friedrich
2012-01-01
Your articles on human dispersal in the late Pleistocene epoch (Nature 485, 23; 2012) overlook the significance of now-submerged archaeological sites on the continental shelf during this period (126,000–11,000 years ago). It is wrong to assume that these were completely destroyed by the sea and that
Zhang, Hongcai; Yun, Sanyue; Song, Lingling; Zhang, Yiwen; Zhao, Yanyun
2017-03-01
The crustacean shells of crabs and shrimps produces quantities of by-products, leading to seriously environmental pollution and human health problems during industrial processing, yet they turned into high-value useful products, such as chitin and chitosan. To prepare them under large-scale submerged fermentation level, shrimp shell powders (SSPs) was fermented by successive three-step fermentation of Serratia marcescens B742, Lactobacillus plantarum ATCC 8014 and Rhizopus japonicus M193 to extract chitin and chitosan based on previously optimal conditions. Moreover, the key parameters was investigated to monitor the changes of resulted products during fermentation process. The results showed that the yield of prepared chitin and chitosan reached 21.35 and 13.11% with the recovery rate of 74.67 and 63.42%, respectively. The degree of deacetylation (DDA) and molecular mass (MM) of produced chitosan were 81.23% and 512.06kDa, respectively. The obtained chitin and chitosan was characterized using Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD) analysis. The established microbial fermentation method can be applied for the industrial large-scale production of chitin and chitosan, while the use of chemical reagents was significantly reduced. Copyright © 2016 Elsevier B.V. All rights reserved.
P. Mokrý; P. Psota; K. Steiger; J. Václavík; R. Doleček; V. Lédl; M. Šulc
2015-01-01
The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC) actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction wit...
Superior flexibility of a wrinkled carbon shell under electrochemical cycling
Li, Qianqian
2014-01-01
Nanocarbon composites have been extensively employed in engineering alloy-type anodes in order to improve the poor cyclability caused by the enormous volume changes during lithium (Li+) insertion/extraction. The chemical vapor deposited wrinkled carbon shell (WCS) shows high electrical conductivity, excellent thermal stability and remarkable mechanical robustness, which help in retaining the structural integrity around the tin (Sn) anode core despite ∼250% variation in volume during repetitive lithiation and delithiation. In situ transmission electron microscopy reveals no embrittlement in the lithiated WCS, which fully recovers its original shape after severe mechanical deformation with no obvious structural change. Further analysis indicates that the capacity to accommodate large strains is closely related to the construction of the carbon shell, that is, the stacking of wrinkled few-layer graphenes. Both the pre-existing wrinkles and the few-layer thickness render the carbon shell superior flexibility and good elasticity under bending or expansion of the interior volume. Moreover, the WCS possesses fast lithium ion diffusion channels, which have lower activation barriers (∼0.1 eV) than that on a smooth graphene (∼0.3 eV). The results provide an insight into the improvement in cycle performance that can be achieved through carbon coating of anodes of lithium ion batteries. © 2014 The Royal Society of Chemistry.
STABILITY OF TRUNCATED CIRCULAR CONICAL SHELL EXPOSED TO AXIAL COMPRESSION
Directory of Open Access Journals (Sweden)
Litvinov Vladimir Vital'evich
2012-10-01
Full Text Available The problem of stability of a freely supported truncated circular conical shell, compressed by the upper base of a uniformly distributed load per unit length t, referred to the median shell surface and directed along the generatrix of the cone, was solved by the Ritz-Timoshenko energy method. The orthogonal system of curvilinear coordinates of the points of the middle surface of the shell was adopted to solve the problem. Possible displacements were selected in the form of double series approximation functions. The physical principle of inextensible generatrix of the cone exposed to buckling at the moment of instability was employed. In addition, the fundamental principle of continuum mechanics, or the principle of minimal total potential energy of the system, was taken as the basis. According to the linear elasticity theory, energy methods make it possible to replace the solution of complex differential equations by the solution of simple linear algebraic equations. As a result, the problem is reduced to the problem of identifying the eigenvalues in the algebraic theory of matrices. The numerical value of the critical load was derived through the employment of the software.
Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells
Directory of Open Access Journals (Sweden)
Humberto Breves Coda
2009-01-01
Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.
Stellar populations of shell galaxies
Carlsten, S. G.; Hau, G. K. T.; Zenteno, A.
2017-12-01
We present a study of the inner (out to ∼1 Reff) stellar populations of nine shell galaxies. We derive stellar population parameters from long-slit spectra by both analysing the Lick indices of the galaxies and by fitting single stellar population model spectra to the full galaxy spectra. The results from the two methods agree reasonably well. A few of the shell galaxies appear to have lower central Mg2 index values than the general population of galaxies of the same central velocity dispersion, which is possibly due to a past interaction event. Our sample shows a relation between central metallicity and velocity dispersion that is consistent with previous samples of non-shell galaxies. Analysing the metallicity gradients in our sample, we find an average gradient of -0.16 ± 0.10 dex decade-1 in radius. We compare this with formation models to constrain the merging history of shell galaxies. We argue that our galaxies likely have undergone major mergers but it is unclear whether the shells formed from these events or from separate minor mergers. Additionally, we find evidence for young stellar populations ranging in age from 500 Myr to 4-5 Gyr in four of the galaxies, allowing us to speculate on the age of the shells. For NGC 5670, we use a simple dynamical model to find the time required to produce the observed distribution of shells to be roughly consistent with the age of the young subpopulation, suggesting that the shells and subpopulation possibly formed from the same event.
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-02-15
Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.
Modelling the elastic properties of cellulose nanopaper
DEFF Research Database (Denmark)
Mao, Rui; Goutianos, Stergios; Tu, Wei
2017-01-01
The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...... revealed both tensile and compressive stresses during elastic deformation of the model. The length, diameter, waviness and elastic modulus of the cellulose nanofibres were varied in the model and their effect on the elastic modulus of fibrous networks was studied. It was found that high values of elastic...... moduli of cellulose networks could be obtained for long, thin and straight nanofibres of high stiffness. The effect of inter-fibre bonding and network density was also investigated. Increasing fibre-fibre interactions facilitated stress transfer in cellulose networks and led to a higher elastic modulus...
Measurements and analysis of acoustic backscattering by elastic cubes and irregular polyhedra
DEFF Research Database (Denmark)
Thorne, P D; Sun, S; Zhang, J
1997-01-01
Underwater acoustic studies of backscattering by submerged targets have generally focused on bodies with spherical and cylindrical symmetry. However, there are interests in scattering by objects which may be characterized by more angular features, with surfaces that tend to be composed of facets...... and edges. To investigate the scattering properties of such bodies, the backscattering by a number of elastic cubes, and irregularly shaped polyhedra, have been studied. Data were collected by measuring the band limited impulse response of the scatterers, using a broadband transducer, which operated...... as a transceiver, both transmitting and receiving signals. To present the scattering measurements nondimensionally a form function definition has been employed to normalize the backscattered signals. The normalized frequency has been expressed as ka, where k is the acoustic wave number, and a is a characteristic...
Differential Response of Floating and Submerged Leaves of Longleaf Pondweed to Silver Ions
Directory of Open Access Journals (Sweden)
Nisha Shabnam
2017-06-01
Full Text Available In this study, we have investigated variations in the potential of floating and submerged leaves of longleaf pondweed (Potamogeton nodosus to withstand silver ion (Ag+-toxicity. Both floating and submerged leaves changed clear colorless AgNO3 solutions to colloidal brown in the presence of light. Transmission electron microscopy revealed the presence of distinct crystalline Ag-nanoparticles (Ag-NPs in these brown solutions. Powder X-ray diffraction pattern showed that Ag-NPs were composed of Ag0 and Ag2O. Photosystem (PS II efficiency of leaves declined upon exposure to Ag+ with a significantly higher decline in the submerged leaves than in the floating leaves. Similarly, Ag+ treatment caused a significant reduction in the carboxylase activity of the ribulose bisphosphate carboxylase/oxygenase in leaves. The reduction in this carboxylase activity was significantly higher in the submerged than in the floating leaves. Ag+ treatment also resulted in a significant decline in the levels of non-enzymatic and enzymatic antioxidants; the decline was significantly lower in the floating than in submerged leaves. X-ray photoelectron spectroscopy revealed the presence of Ag2O in these leaves. Inductively coupled plasma mass spectrometry analysis revealed a three-fold higher Ag content in the submerged than in floating leaves. Our study demonstrates that floating leaves of longleaf pondweed have a superior potential to counter Ag+-toxicity compared with submerged leaves, which could be due to superior potential of floating leaves to reduce Ag+ to less/non-toxic Ag0/Ag2O-nanoparticles/nanocomplexes. We suggest that modulating the genotype of longleaf pondweed to bear higher proportion of floating leaves would help in cleaning fresh water bodies contaminated with ionic forms of heavy metals.
Motivation and compliance with intraoral elastics.
Veeroo, Helen J; Cunningham, Susan J; Newton, Jonathon Timothy; Travess, Helen C
2014-07-01
Intraoral elastics are commonly used in orthodontics and require regular changing to be effective. Unfortunately, poor compliance with elastics is often encountered, especially in adolescents. Intention for an action and its implementation can be improved using "if-then" plans that spell out when, where, and how a set goal, such as elastic wear, can be put into action. Our aim was to determine the effect of if-then plans on compliance with elastics. To identify common barriers to compliance with recommendations concerning elastic wear, semistructured interviews were carried out with 14 adolescent orthodontic patients wearing intraoral elastics full time. Emerging themes were used to develop if-then plans to improve compliance with elastic wear. A prospective pilot study assessed the effectiveness of if-then planning aimed at overcoming the identified barriers on compliance with elastic wear. Twelve participants were randomized equally into study and control groups; the study group received information about if-then planning. The participants were asked to collect used elastics, and counts of these were used to assess compliance. A wide range of motivational and volitional factors were described by the interviewed participants, including the perceived benefits of elastics, cues to remember, pain, eating, social situations, sports, loss of elastics, and breakages. Compliance with elastic wear was highly variable among patients. The study group returned more used elastics, suggesting increased compliance, but the difference was not significant. The use of if-then plans might improve compliance with elastic wear when compared with routine clinical instructions. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Multi-Objective Optimization of Submerged Arc Welding Process
Directory of Open Access Journals (Sweden)
Saurav Datta
2010-06-01
Full Text Available Submerged arc welding (SAW is an important metal fabrication technology specially applied to join metals of large thickness in a single pass. In order to obtain an efficient joint, several process parameters of SAW need to be studied and precisely selected to improve weld quality. Many methodologies were proposed in the past research to address this issue. However, a good number of past work seeks to optimize SAWprocess parameters with a single response only. In practical situations, not only is the influence of process parameters and their interactive effects on output responses are to be critically examined but also an attempt is to be made to optimize more than one response, simultaneously. To this end, the present study considers four process control parameters viz. voltage (OCV, wire feed rate, traverse speed and electrode stick-out. The selected weld quality characteristics related to features of bead geometry are depth of penetration, reinforcement and bead width. In the present reporting, an integrated approach capable of solving the simultaneous optimization of multi-quality responses in SAW was suggested. In the proposed approach, the responses were transformed into their individual desirability values by selecting appropriate desirability function. Assuming equal importance for all responses, these individual desirability values were aggregated to calculate the overall desirability values. Quadratic Response Surface Methodology (RSM was applied to establish a mathematical model representing overall desirability as a function involving linear, quadratic and interaction effect of process control parameters. This model was optimized finally within the experimental domain using PSO (Particle Swarm Optimization algorithm. A confirmatory test showed a satisfactory result. A detailed methodology of RSM, desirability function (DF and a PSO-based optimization approach was illustrated in the paper.
Fallout plume of submerged oil from Deepwater Horizon
Valentine, David L.; Fisher, G. Burch; Bagby, Sarah C.; Nelson, Robert K.; Reddy, Christopher M.; Sylva, Sean P.; Woo, Mary A.
2014-01-01
The sinking of the Deepwater Horizon in the Gulf of Mexico led to uncontrolled emission of oil to the ocean, with an official government estimate of ∼5.0 million barrels released. Among the pressing uncertainties surrounding this event is the fate of ∼2 million barrels of submerged oil thought to have been trapped in deep-ocean intrusion layers at depths of ∼1,000–1,300 m. Here we use chemical distributions of hydrocarbons in >3,000 sediment samples from 534 locations to describe a footprint of oil deposited on the deep-ocean floor. Using a recalcitrant biomarker of crude oil, 17α(H),21β(H)-hopane (hopane), we have identified a 3,200-km2 region around the Macondo Well contaminated by ∼1.8 ± 1.0 × 106 g of excess hopane. Based on spatial, chemical, oceanographic, and mass balance considerations, we calculate that this contamination represents 4–31% of the oil sequestered in the deep ocean. The pattern of contamination points to deep-ocean intrusion layers as the source and is most consistent with dual modes of deposition: a “bathtub ring” formed from an oil-rich layer of water impinging laterally upon the continental slope (at a depth of ∼900–1,300 m) and a higher-flux “fallout plume” where suspended oil particles sank to underlying sediment (at a depth of ∼1,300–1,700 m). We also suggest that a significant quantity of oil was deposited on the ocean floor outside this area but so far has evaded detection because of its heterogeneous spatial distribution. PMID:25349409
Isogeometric shell formulation based on a classical shell model
Niemi, Antti
2012-09-04
This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.
Strength conditions for the elastic structures with a stress error
Matveev, A. D.
2017-10-01
As is known, the constraints (strength conditions) for the safety factor of elastic structures and design details of a particular class, e.g. aviation structures are established, i.e. the safety factor values of such structures should be within the given range. It should be noted that the constraints are set for the safety factors corresponding to analytical (exact) solutions of elasticity problems represented for the structures. Developing the analytical solutions for most structures, especially irregular shape ones, is associated with great difficulties. Approximate approaches to solve the elasticity problems, e.g. the technical theories of deformation of homogeneous and composite plates, beams and shells, are widely used for a great number of structures. Technical theories based on the hypotheses give rise to approximate (technical) solutions with an irreducible error, with the exact value being difficult to be determined. In static calculations of the structural strength with a specified small range for the safety factors application of technical (by the Theory of Strength of Materials) solutions is difficult. However, there are some numerical methods for developing the approximate solutions of elasticity problems with arbitrarily small errors. In present paper, the adjusted reference (specified) strength conditions for the structural safety factor corresponding to approximate solution of the elasticity problem have been proposed. The stress error estimation is taken into account using the proposed strength conditions. It has been shown that, to fulfill the specified strength conditions for the safety factor of the given structure corresponding to an exact solution, the adjusted strength conditions for the structural safety factor corresponding to an approximate solution are required. The stress error estimation which is the basis for developing the adjusted strength conditions has been determined for the specified strength conditions. The adjusted strength
Elastic knots of Space-Time may improve QED, QCD
Kriske, Richard
2016-03-01
This author had previously suggested that the time dimension of Electric fields and Magnetic fields are different. This matter was apparently settled with the Special Theory, in which each Observer, has his own Dimension of Time, that is ``elastic'' with one Dimension of Space. The independence of E and M, when they are not varying with time, leads one wonder if they are the same time. For a moving Observer, the two fields are joined through Faraday and Ampere's law. Particle Physics has made the simple Special Relativity interpretation murky. A photon does not simply become either an Electric field or a Magnetic field when viewed in its ''rest frame''. Because of this all kinds of extra sub theories are used, such as the Photon is quantized, and is massless in its rest frame, and always moves at the velocity of light. As for the Photon of the magnetic, or just the electric field, it is ``off the mass shell''. Perhaps a better theory is that the elasticity of time and the fact the ``Two'' observers show up in the theory, is that there has to be two dimensions of time, tied in a knot, in order for a field to become a Particle. The knot tying in EM is simple, when the E field varies it produces M, and vice-versa. For massive particles the knots are more complicated, more dimensions.
Directory of Open Access Journals (Sweden)
Xiao Qi Ye
Full Text Available Carbon assimilation by submerged plants is greatly reduced due to low light levels. It is hypothesized that submergence reduces carbohydrate contents and that plants recover from submergence in the same way as darkness-treated plants. To test this hypothesis, the responses of plants to submergence and darkness were studied and compared. Plants of a submergence-tolerant species, Alternanthera philoxeroides, were exposed to well drained and illuminated conditions, complete submergence conditions or darkness conditions followed by a recovery growth period in a controlled experiment. The biomass maintenance and accumulation, carbohydrate content dynamics and respiration rate in the plants were assessed to quantify the carbohydrate utilization rate and regrowth. The submerged plants maintained higher chlorophyll contents, more green leaf tissue and more biomass; recovered more quickly; and accumulated more carbohydrates and biomass than darkness-treated plants. The respiration rate was continuously reduced in the same pattern under both stress conditions but was maintained at a significantly lower level in the submerged plants; the total soluble sugar and total fructan contents were decreased at approximately the same rate of decrease, reaching similar low levels, in the two stress treatments. The A. philoxeroides plants were more tolerant of submergence than darkness. The faster recovery of desubmerged plants could not be explained by the similar carbohydrate contents at the start of recovery. Other types of carbon reserves besides carbohydrates or other mechanisms such as higher post-stress photosynthetic performance might be involved.
Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle
Niu, Kaiyang; Frolov, Timofey; Xin, Huolin L.; Wang, Junling; Asta, Mark; Zheng, Haimei
2015-01-01
Iron hydroxide is found in a wide range of contexts ranging from biominerals to steel corrosion, and it can transform to anhydrous oxide via releasing O2 gas and H2O. However, it is not well understood how gases transport through a crystal lattice. Here, we present in situ observation of the nucleation and migration of gas bubbles in iron (hydr)oxide using transmission electron microscopy. We create Pb–FeOOH model core–shell nanoparticles in a liquid cell. Under electron irradiation, iron hydroxide transforms to iron oxide, during which bubbles are generated, and they migrate through the shell to the nanoparticle surface. Geometric phase analysis of the shell lattice shows an inhomogeneous stain field at the bubbles. Our modeling suggests that the elastic interaction between the core and the bubble provides a driving force for bubble migration. PMID:26438864
Shen, Xiaoqin; Ren, Dawei; Cao, Xiaoshan; Wang, Ji
2017-11-06
In this study, cut-off frequencies of the circumferential SH waves in functionally graded piezoelectric-piezomagnetic material (FGPPM) cylinder shells with traction free, electrical and magnetic open boundary conditions are investigated analytically. The Wentzel-Kramers-Brillouin (WKB) method is employed for solving differential equations with variable coefficients for general cases. For comparison, Bessel functions and Kummer functions are used for solving cut-off frequency problems in homogenous and ideal FGPPM cylinder shells. It is shown that the WKB solution for the cut-off frequencies has good precise. The set of cut-off frequencies is a series of approximate arithmetic progressions, for which the difference is a function of the density and the effective elastic parameter. The relationship between the difference and the gradient coefficient is described. These results provide theoretical guidance for the non-destructive evaluation of curved shells based on the cut-off frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Calculation and design of lattice cylindrical shells manufactured of unidirectional CFRPs
Golushko, S.; Semisalov, B.
2017-10-01
The work is devoted to numerical simulation of the stationary stress-strain state of lattice cylindrical shells made of unidirectional carbon fiber reinforced plastics and to their optimal design. After averaging stiffness characteristics of lattice structure, the displacement and stress formulations for continuum anisotropic equivalents of lattice shells are given on the basis of classical relations of 3D theory of elasticity. While using a special fast pseudo-spectral algorithm, the solutions to problems of axial compression of anisogrid shells are obtained and compared one to another. The algorithm provides exponential decrease of error of approximation and requires small computational resources. Using this algorithm we have found the optimal geometrical parameters of structure ensuring its bearing capacity under given non-uniform loads.
Acoustic radiation of damped cylindrical shell with arbitrary thickness in the fluid field
Zhang, Jun-Jie; Li, Tian-Yun; Ye, Wen-Bing; Zhu, Xiang
2010-12-01
The insertion loss of acoustic radiation of damped cylindrical shell described by 3-D elasticity Navier equations under radial harmonic applied load in fluid is presented. The classical integral transform technique, potential theory and Lamè resolution are used to derive the solutions of Navier equations. The higher precision inversion computation is introduced to solve the linear equations. Comparing with acoustic radiation of one-layer cylindrical shell, the influence of thickness, mass density, dilatational wave loss factor and Young's modulus of damping material and circumferential mode number of the cylindrical shell on the insertion loss is concluded. The theoretical model in the paper can be used to deal with the arbitrary thickness and any frequency of the coated layer in dynamic problem. The conclusions may be of theoretical reference to the application of damping material to noise and vibration control of submarines and underwater pipes.
Nemeth, Michael P.
2014-01-01
Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
Prediction of Elastic-Plastic Behaviour of Structures at Notches
Directory of Open Access Journals (Sweden)
Tanweer Hussain
2012-07-01
Full Text Available Under the condition of elastic-plastic deformation, aero engine casings experience local stress and strain concentrations along with associated variations in load paths and stiffness. The accurate prediction of such behaviour is clearly necessary for design optimisation, potentially leading to beneficial weight savings. The present research seeks to tackle the objective of accurate characterisation of elasticplastic casing behaviour. The objective is to develop approximate techniques for predicting the elasticplastic behaviour, for both generalised load-displacement responses (i.e. for global response and notch stress-strain responses. Accurate prediction of the stress-strain distribution at a notch is difficult and existing notch prediction techniques can only be used for small strains. This paper seeks to develop novel techniques for predicting large elastic-plastic notch strain and associated stresses, with application to aero engine casing notches. The repeated local joints at the spoke-shell casing are of particular interest as they are the most likely sites for plastic deformation and possibly crack initiation. These local joints incorporate realistic notch-type features and the load cases cover a range of loading combinations, to develop insight and understanding of the elastic-plastic behaviour. This work analyse a double edgenotched flat bar with semicircular notches and a representative case of actual aero engine casing-type structures in a more simplified form. The investigation was carried out for structures for which stress and total strain are related by a power law. The equivalent stress at a notch can be estimated, given the value of n, by a linear interpolation between the stresses for a cases n=1 and n=0. The application of the notch stress-strain prediction method is illustrated through use of examples of notch components. The predictions are compared with results obtained using finite element analyses and approximate methods
Solitary and cnoidal wave scattering by a submerged horizontal plate in shallow water
Directory of Open Access Journals (Sweden)
Masoud Hayatdavoodi
2017-06-01
Full Text Available Solitary and cnoidal wave transformation over a submerged, fixed, horizontal rigid plate is studied by use of the nonlinear, shallow-water Level I Green-Naghdi (GN equations. Reflection and transmission coefficients are defined for cnoidal and solitary waves to quantify the nonlinear wave scattering. Results of the GN equations are compared with the laboratory experiments and other theoretical solutions for linear and nonlinear waves in intermediate and deep waters. The GN equations are then used to study the nonlinear wave scattering by a plate in shallow water. It is shown that in deep and intermediate depths, the wave-scattering varies nonlinearly by both the wavelength over the plate length ratio, and the submergence depth. In shallow water, however, and for long-waves, only the submergence depth appear to play a significant role on wave scattering. It is possible to define the plate submergence depth and length such that certain wave conditions are optimized above, below, or downwave of the plate for different applications. A submerged plate in shallow water can be used as a means to attenuate energy, such as in wave breakers, or used for energy focusing, and in wave energy devices.
[Influence of Submerged Plants on Microbial Community Structure in Sediment of Hongze Lake].
Zhang, Ding-yu; Zhang, Ting-xi; Dong, Dan-ping; Li, De-fang; Wang, Guo-xiang
2016-05-15
Phospholipid fatty acids (PLFAs) method was applied to analyze the influence of submerged plants on sediment microbial community structure, in order to investigate the changes of sediment microbial community structure for different kinds of the submerged plants in different growth periods. Particularly, Potamogeton crispus L., Potamogeton pectinatus L and the mixed group were chosen as the typical submerged plants in Hongze Lake for investigation in this paper. The results indicated that the change of total PLFAs in different periods was significant, on the contrary, the PLFA change for different groups in the same period was insignificant. The values of G⁺ PLFA/G⁻ PLFA in the submerged plant group were also highly related to the different growth periods, which demonstrated that the root function of the submerged plant had a severe impact on the microbial community in sediment. Furthermore, some environmental factors, such as Temperature, pH, TOC and DO, were correlated to characteristic phospholipid of PLFAs in sediment, which means the environmental factors could also affect the microbial community structure.
Suspension of Egg Hatching Caused by High Humidity and Submergence in Spider Mites.
Ubara, Masashi; Osakabe, Masahiro
2015-08-01
We tested the effects of high humidity and submergence on egg hatching of spider mites. In both the high humidity and submergence treatments, many Tetranychus and Panonychus eggs did not hatch until after the hatching peak of the lower humidity or unsubmerged controls. However, after humidity decreased or water was drained, many eggs hatched within 1-3 h. This was observed regardless of when high humidity or submergence treatments were implemented: either immediately after oviposition or immediately before hatching was due. Normal eyespot formation was observed in most eggs in the high humidity and submergence treatments, which indicates that spider mite embryos develop even when eggs are underwater. Therefore, delays in hatching are not caused by delayed embryonic development. A delay in hatching was always observed in Panonychus citri (McGregor) but was more variable in Tetranychus urticae Koch and Tetranychus kanzawai Kishida. The high humidity and submergence treatments affected but did not suppress larval development in these species. In contrast, many Oligonychus eggs died following the high humidity treatments. In Tetranychus and Panonychus spider mites, suspension of egg hatching may mitigate the adverse effects of rainfall. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Seto, Mayumi; Takamura, Noriko; Iwasa, Yoh
2013-02-21
Shallow lakes and ponds are often characterised either by clear water with abundant submerged macrophytes or by turbid water with abundant phytoplankton. Blooms of toxic filamentous blue-green algae (cyanobacteria) often dominate the phytoplankton community in eutrophic lakes, which threatens ecological functions and biodiversity of freshwater ecosystems. We studied a simple lake model in order to evaluate individual and combined suppressive effects of rooted submerged and rooted floating-leaved macrophytes on algal blooms. Floating-leaved plants are superior competitors for light, whereas submerged plants absorb and reduce available phosphorus in a water column that rooted floating-leaved plants exploit to a lesser extent. We found that mixed vegetation that includes both submerged and floating-leaved plants is more resistant than vegetation comprised by a single plant type to algal invasion triggered by phosphorus loading. In addition, competitive exclusion of submerged plants by floating-leaved plants may promote an algal bloom. These predictions were confirmed by the decision tree analysis of field data from 35 irrigation ponds in Hyogo Prefecture, Japan. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tanaka, Norio; Jinadasa, K B S N; Werellagama, D R I B; Mowjood, M I M; Ng, W J
2006-01-01
Improvement of primary effluent quality by using an integrated system of emergent plants (Scirpus grossus in the leading subsurface flow arrangement) and submergent plants (Hydrilla verticillata in a subsequent channel) was investigated. The primary effluent was drawn from a septic tank treating domestic sewage from a student dormitory at the University of Peradeniya, Sri Lanka. Influent and effluent samples were collected once every 2 weeks from May 2004 through July 2005 and analyzed to determine water quality parameters. Both the emergent and submergent plants were harvested at predetermined intervals. The results suggested that harvesting prolonged the usefulness of the system and the generation of a renewable biomass with potential economic value. The mean overall pollutant removal efficiencies of the integrated emergent and submergent plant system were biological oxygen demand (BOD5), 65.7%; chemical oxygen demand (COD), 40.8%; ammonium (NH4+-N), 74.8%; nitrate (NO3--N), 38.8%; phosphate (PO43-), 61.2%; total suspended solids (TSS), 65.8%; and fecal coliforms, 94.8%. The submergent plant subsystem improved removal of nutrients that survived the emergent subsystem operated at low hydraulic retention times. The significant improvement in effluent quality following treatment by the submergent plant system indicates the value of incorporating such plants in wetland systems.
Variable Joint Elasticities in Running
Peter, Stephan; Grimmer, Sten; Lipfert, Susanne W.; Seyfarth, Andre
In this paper we investigate how spring-like leg behavior in human running is represented at joint level. We assume linear torsion springs in the joints and between the knee and the ankle joint. Using experimental data of the leg dynamics we compute how the spring parameters (stiffness and rest angles) change during gait cycle. We found that during contact the joints reveal elasticity with strongly changing parameters and compare the changes of different parameters for different spring arrangements. The results may help to design and improve biologically inspired spring mechanisms with adjustable parameters.
Wave propagation in elastic solids
Achenbach, Jan
1984-01-01
The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat
Elastic Moduli of Carbon Nanohorns
Directory of Open Access Journals (Sweden)
Dinesh Kumar
2011-01-01
Full Text Available Carbon nanotube is a special case of carbon nanohorns or carbon nanocones with zero apex angle. Research into carbon nanohorns started almost at the same time as the discovery of nanotubes in 1991. Most researchers focused on the investigation of nanotubes, and the exploration of nanohorns attracted little attention. To model the carbon nanohorns, we make use of a more reliable second-generation reactive empirical bond-order potential by Brenner and coworkers. We investigate the elastic moduli and conclude that these nanohorns are equally strong and require in-depth investigation. The values of Young's and Shear moduli decrease with apex angle.
Characteristics and Limitations of Submerged GPS L1 Observations
Steiner, Ladina; Geiger, Alain
2017-04-01
Extensive amount of water stored in snow covers has a high impact on flood development during snow melting periods. Early assessment of these parameters in mountain environments enhance early-warning and thus prevention of major impacts. Sub-snow GNSS techniques are lately suggested to determine liquid water content, snow water equivalent or considered for avalanche rescue. This technique is affordable, flexible, and provides accurate and continuous observations independent on weather conditions. However, the characteristics of GNSS observations for applications within a snow-pack still need to be further investigated. The magnitude of the main interaction processes involved for the GPS wavelength propagating through different layers of snow, ice or water is theoretically examined. Liquid water exerts the largest influence on GPS signal propagation through a snow-pack. Therefore, we focus on determining the characteristics of GNSS observables under water. An experiment was set-up to investigate the characteristics and limitations of submerged GPS observations using a pool, a level control by communicating pipes, a geodetic and a low-cost GPS antenna, and a water level sensor. The GPS antennas were placed into the water. The water level was increased daily by a step of two millimeters up to thirty millimeters above the antenna. Based on this experiment, the signal penetration depth, satellite availability, the attenuation of signal strength and the quality of solutions are analyzed. Our experimental results show an agreement with the theoretically derived attenuation parameter and signal penetration depth. The assumption of water as the limiting parameter for GPS observations within a snow-pack can be confirmed. Higher wetness in a snow-pack leads to less transmission, higher refraction, higher attenuation and thus a decreased penetration depth as well as a reduced quality of the solutions. In consequence, GPS applications within a snow-pack are heavily impacted by
Shell-model calculations for p-shell hypernuclei
Millener, D. J.
2012-01-01
The interpretation of hypernuclear gamma-ray data for p-shell hypernuclei in terms of shell-model calculations that include the coupling of Lambda- and Sigma-hypernuclear states is briefly reviewed. Next, Lambda 8Li, Lambda 8Be, and Lambda 9Li are considered, both to exhibit features of Lambda-Sigma coupling and as possible source of observed, but unassigned, hypernuclear gamma rays. Then, the feasibility of measuring the ground-state doublet spacing of Lambda 10Be, which, like Lambda 9Li, co...
Survival after submergence in the pupae of five species of blow flies (Diptera: Calliphoridae).
Singh, D; Greenberg, B
1994-09-01
Survival of pupae of known ages after 1 to 5 d of submersion under water was assessed by determining the emergence of Protophormia terraenovae (Robineau-Desvoidy), Calliphora vicina (Robineau-Desvoidy), Cochliomyia macellaria (F.), Phormia regina (Meigen), and Phaenicia sericata (Meigen). Survival after 1 d of submergence was < 14% in the white puparial stage, 0-100% in pharate adults nearing eclosion, and approximately 100% in pupae between these two stages. This pattern inversely tracks O2 consumption during metamorphosis. Twenty-five percent of the pupae of three species (P. terraenovae, P. regina, and P. sericata) produced normal adults after 4 d of submersion, but none after 5 d. Among survivors, the pupation period was extended by the duration of submersion. Pupae of C. vicina were least able to withstand drowning. These data are potentially useful in estimating duration of submergence of a corpse in forensic investigations where the corpse becomes submerged after the larvae have developed and pupariated.
Xing, Wei; Wu, Haoping; Hao, Beibei; Huang, Wenmin; Liu, Guihua
2013-05-07
To directly select submerged macrophytes with high accumulation capability from the field, 24 eutrophic lakes along the middle and lower reaches of the Yangtze River were investigated in the study. These eutrophic lakes have large amounts of heavy metals in both water and sediments because of human activities. The results showed that Najas marina is a hyperaccumulator of As and Cd, Ceratophyllum demersum is a hyperaccumulator of Co, Cr, and Fe, and Vallisneria natans is a hyperaccumulator of Pb. Strong positive correlations were found between concentrations of heavy metals in tissues of submerged macrophytes, probably because of coaccumulation of heavy metals. However, for most heavy metals, no significant correlations were found between submerged macrophytes and their surrounding environments. In conclusion, N. marina, C. demersum, and V. natans are good candidate species for removing heavy metals from eutrophic lakes.
Lee, Thomas; Schill, Mark E; Tanasovski, Tome
2011-01-01
Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b
Demand Elasticities for Mobile Telecommunications in Austria
Dewenter, Ralf; Haucap, Justus
2007-01-01
This paper analyses price elasticities in the Austrian market for mobile telecommunications services using data on firm specific tariffs in the period between January 1998 and March 2002. Dynamic panel data regressions are used to estimate short-run and long-run demand elasticities for business customers and for private consumers with both postpaid contracts and prepaid cards.We find that business customers have a higher elasticity of demand than private consumers, where postpaid customers te...
Active elastic metamaterials with applications in acoustics
Pope, Simon; Laalej, Hatim; Daley, Steve
2012-01-01
International audience; Elastic metamaterials provide a new approach to solving existing problems in acoustics. They have also been associated with novel concepts such as acoustic invisibility and subwavelength imaging. To be applied to many of the proposed applications a metamaterial would need to have the desired mass density and elastic moduli over a wide frequency band. To minimise scatter in acoustics applications the impedance of solid elastic metamaterials also need to be matched to th...
Einstein viscosity with fluid elasticity
Einarsson, Jonas; Yang, Mengfei; Shaqfeh, Eric S. G.
2018-01-01
We give the first correction to the suspension viscosity due to fluid elasticity for a dilute suspension of spheres in a viscoelastic medium. Our perturbation theory is valid to O (ϕ Wi2) in the particle volume fraction ϕ and the Weissenberg number Wi =γ ˙λ , where γ ˙ is the typical magnitude of the suspension velocity gradient, and λ is the relaxation time of the viscoelastic fluid. For shear flow we find that the suspension shear-thickens due to elastic stretching in strain "hot spots" near the particle, despite the fact that the stress inside the particles decreases relative to the Newtonian case. We thus argue that it is crucial to correctly model the extensional rheology of the suspending medium to predict the shear rheology of the suspension. For uniaxial extensional flow we correct existing results at O (ϕ Wi ) , and find dramatic strain-rate thickening at O (ϕ Wi2) . We validate our theory with fully resolved numerical simulations.
Elegent -- an elastic event generator
Kašpar, Jan
2014-01-01
Although elastic scattering of nucleons may look like a simple process, it presents a long-lasting challenge for theory. Due to missing hard energy scale, the perturbative QCD can not be applied. Instead, many phenomenological/theoretical models have emerged. In this paper we present a unified implementation of some of the most prominent models in a C++ library, moreover extended to account for effects of the electromagnetic interaction. The library is complemented with a number of utilities. For instance, programs to sample many distributions of interest in four-momentum transfer squared, t, impact parameter, b, and collision energy sqrt(s). These distributions at ISR, SppS, RHIC, Tevatron and LHC energies are available for download from the project web site. Both in the form of ROOT files and PDF figures providing comparisons among the models. The package includes also a tool for Monte-Carlo generation of elastic scattering events, which can easily be embedded in any other program framework.
Continuum mechanics elasticity, plasticity, viscoelasticity
Dill, Ellis H
2006-01-01
FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...
Antunes, Cristina; Correia, Otília; Marques da Silva, Jorge; Cruces, Anabela; Freitas, Maria da Conceição; Branquinho, Cristina
2012-09-01
Submerged macrophytes are key in coastal ecosystems, with important structural and functional roles. Thus, the characterization of the submerged aquatic vegetation dynamics is of prime importance for assessing the ecological status of coastal ecosystems. The main aim of this study was to assess the spatial and temporal dynamics of submerged macrophytes biomass in a temporarily open coastal lagoon in Melides, Portugal, and to evaluate the physiological performance of the dominant macrophyte in the system. This lagoon is subject to several disturbances such as the dramatic changes in water physicochemical parameters over time, since temporarily opens to the sea occur renewing the lagoon water content. Moreover it is under a Mediterranean climate with the inherently high temporal variability of precipitation and high temperatures during the summer. Our study shows that the submerged macrophyte community was dominated initially by Ruppia cirrhosa and then replaced by Potamogeton pectinatus, which showed a marked temporal and spatial pattern with extremely high values of biomass in August and in the inner part of the lagoon. The spatial and temporal biomass patterns in submerged macrophytes were mainly related with water level, salinity, pH and transparency. The physiological performance of R. cirrhosa was lower when there was greater biomass accumulation and in extremely shallow waters, whereas physiological vigor seemed to be greater at moderate temperatures and in areas with higher salinity and dissolved oxygen. The data from this study can be used to predict submerged biomass macrophyte responses to extreme water quality changes and to feed a decision support system for the best period to promote the seasonal artificial breaching of the sandy barrier.
Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound
Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.
2016-01-01
Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.
Shell model Monte Carlo methods
Energy Technology Data Exchange (ETDEWEB)
Koonin, S.E. [California Inst. of Tech., Pasadena, CA (United States). W.K. Kellogg Radiation Lab.; Dean, D.J. [Oak Ridge National Lab., TN (United States)
1996-10-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of {gamma}-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs.
Faraday wave lattice as an elastic metamaterial
Domino, L; Patinet, Sylvain; Eddi, A
2016-01-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying sub-wavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Learning Shell scripting with Zsh
Festari, Gaston
2014-01-01
A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.
Stability of facetted translation shells
DEFF Research Database (Denmark)
Almegaard, Henrik; Vanggaard, Ole
2004-01-01
This article is discussing the spatial stability i.e. rigidity of double curved shell surfaces under different support conditions. It is based upon a method developed by Henrik Almegaard, as part of the theory concerning the stringer system (ALM04a).......This article is discussing the spatial stability i.e. rigidity of double curved shell surfaces under different support conditions. It is based upon a method developed by Henrik Almegaard, as part of the theory concerning the stringer system (ALM04a)....
Szabo, S.; Scheffer, M.; Roijackers, R.M.M.; Waluto, B.; Zambrano, L.
2010-01-01
1. The asymmetric competition for light and nutrients between floating and submerged aquatic plants is thought to be key in explaining why dominance by either of these groups can be stable and difficult to change. 2. Although the shading effect of floating plants on submerged plants has been well
Netten, J.J.C.; Arts, G.H.P.; Gylstra, R.; Nes, van E.H.; Scheffer, M.; Roijackers, R.M.M.
2010-01-01
In many aquatic ecosystems, free-floating plants compete with submerged plants for nutrients and light. Being on top of the water surface free-floating plants are superior competitors for light. Submerged plants can take up nutrients from the sediment and the water column, hereby reducing these
Vanderstukken, M.; Mazzeo, N.; Colen, W.; Declerck, S.A.J.; Muylaert, K.
2011-01-01
1. In temperate regions, submerged macrophytes can hamper phytoplankton blooms. Such an effect could arise directly, for instance via allelopathy, or indirectly, via competition for nutrients or the positive interaction between submerged macrophytes and zooplankton grazing. However, there is some
The Shell-Model Code NuShellX@MSU
Brown, B. A.; Rae, W. D. M.
2014-06-01
Use of the code NuShellX@MSU is outlined. It connects to the ENSDF data files for automatic comparisons to energy level data. Operator overlaps provide predictions for spectroscopic factors, two-nucleon transfer amplitudes, nuclear moments, gamma decay and beta decay.
The Shell-Model Code NuShellX@MSU
Energy Technology Data Exchange (ETDEWEB)
Brown, B.A., E-mail: brown@nscl.msu.edu [Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Rae, W.D.M. [Garsington, Oxfordshire, OX44 (United Kingdom)
2014-06-15
Use of the code NuShellX@MSU is outlined. It connects to the ENSDF data files for automatic comparisons to energy level data. Operator overlaps provide predictions for spectroscopic factors, two-nucleon transfer amplitudes, nuclear moments, gamma decay and beta decay.
Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro
The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.
Energy Technology Data Exchange (ETDEWEB)
Fu, Zhenjin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Su, Lin; Li, Jing; Yang, Ruizhuang; Zhang, Zhanwen; Liu, Meifang; Li, Jie [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo, E-mail: LB6711@126.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)
2014-08-20
Highlights: • n-Hexadecyl bromide was encapsuled in elastic silicone shell. • The surfaces of microcapsules were smooth and the cross sections were compact. • Latent heat of microcapsules was 76.35 J g{sup −1}. • The microencapsulation ratio was 49 wt.%. • The microcapsules had good thermal stability. - Abstract: The elastic silicone/n-hexadecyl bromide microcapsules were prepared as novel microencapsulated phase change materials by microfluidic approach with the co-flowing channels, where the double oil1-in-oil2-in-water (O1/O2/W) droplets with a core–shell geometry were fabricated. The thermal characterizations of the microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The DSC results showed that the microcapsules had good energy storage capacity with melting and freezing enthalpies 76.35 J g{sup −1} and 78.67 J g{sup −1}, respectively. The TGA investigation showed that the microcapsules had good thermal stability. The surfaces of microcapsules were smooth and the cross sections were compact from the results of optical microscope and scanning electron microscopy (SEM). Optical microscope showed that the silicone shell can provide expansion place due to its elastic property. Therefore, the silicone/n-hexadecyl bromide microcapsules showed good potential as thermal regulating textile and thermal insulation materials.
Weppner, S. P.; Elster, Ch.
1997-04-01
Advances in a consistent microscopic derivation of the first-order term within the spectator expansion of multiple scattering theory provide a basis for an investigation of important underlying physical degrees of freedom. In a full-folding model of the optical potential for elastic nucleon-nucleus scattering a fully off-shell NN t-matrix is convoluted with a density matrix describing the target. Here we study the significance of the off-shell properties of NN t-matrices on elastic nucleon-nucleus observables. Our calculations are carried out with several modern NN potential models (Nijmegen, Argonne V18, and charge dependent Bonn) which can be considered on-shell equivalent. We will show that although these potentials exhibit off-shell differences, only regions within ~1 fm-1 of the on-shell condition give major contributions to the optical potential. The NN potentials under consideration have a similar structure in this region and thus reproduce like proton-nucleus observables. [2mm] ^ This work is supported in part by the U.S. Department of Energy under contract Nos. DE-FG02-93ER40756, the Ohio Supercomputer Center, and the Pittsburgh Supercomputer Center.
Mesoscale structure of chiral nematic shells.
Zhou, Ye; Guo, Ashley; Zhang, Rui; Armas-Perez, Julio C; Martínez-González, José A; Rahimi, Mohammad; Sadati, Monirosadat; de Pablo, Juan J
2016-11-09
There is considerable interest in understanding and controlling topological defects in nematic liquid crystals (LCs). Confinement, in the form of droplets, has been particularly effective in that regard. Here, we employ a Landau-de Gennes formalism to explore the geometrical frustration of nematic order in shell geometries, and focus on chiral materials. By varying the chirality and thickness in uniform shells, we construct a phase diagram that includes tetravalent structures, bipolar structures (BS), bent structures and radial spherical structures (RSS). It is found that, in uniform shells, the BS-to-RSS structural transition, in response to both chirality and shell geometry, is accompanied by an abrupt change of defect positions, implying a potential use for chiral nematic shells as sensors. Moreover, we investigate thickness heterogeneity in shells and demonstrate that non-chiral and chiral nematic shells exhibit distinct equilibrium positions of their inner core that are governed by shell chirality c.
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-05-01
The boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section is solved. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are given in a closed analytical form suitable for theoretical modeling of misfit accommodation in relevant heterostructures.
Lefrançois, A
1976-01-01
The method of dimensional analysis is applied to the evaluation of deformation, stress, and ideal buckling strength (which is independent of the values of the elastic range), of shells subject to external pressure. The relations obtained are verified in two examples: a cylindrical ring and a tube with free ends and almost circular cross- section. Further, it is shown how and to what extent the results obtained from model tests can be used to predict the behaviour of geometrically similar shells which are made of the same material, or even of a different material.
Mathematical methods for elastic plates
Constanda, Christian
2014-01-01
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...
Multidiscipline simulation of elastic manipulators
Directory of Open Access Journals (Sweden)
T. Rølvåg
1992-10-01
Full Text Available This paper contributes to multidiscipline simulation of elastic robot manipulators in FEDEM. All developments presented in this paper are based on the formulations in FEDEM, a simulation system developed by the authors which combines finite element, mechanism and control analysis. In order to establish this general simulation system as an efficient multidiscipline robot design tool a robot control system including a high level robot programming language, interpolation algorithms, path generation algorithms, forward and inverse kinematics, control systems, gear and transmission models are implemented. These new features provide a high level of integration between traditionally separate design disciplines from the very beginning of the design and optimization process. Several simulations have shown that high fidelity mathematical models can be derived and used as a basis for dynamic analysis and controller design in FEDEM.
Elastic modulus of hard tissues.
Bar-On, Benny; Wagner, H Daniel
2012-02-23
This work aims at evaluating the elastic modulus of hard biological tissues by considering their staggered platelet micro-structure. An analytical expression for the effective modulus along the stagger direction is formulated using three non-dimensional structural variables. Structures with a single staggered hierarchy (e.g. collagen fibril) are first studied and predictions are compared with the experimental results and finite element simulations from the literature. A more complicated configuration, such as an array of fibrils, is analyzed next. Finally, a mechanical model is proposed for tooth dentin, in which variations in the multi-scale structural hierarchy are shown to significantly affect the macroscopic mechanical properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimization Of Elastic Bridge Trusses
Directory of Open Access Journals (Sweden)
Ignas Rimkus
2013-12-01
Full Text Available The article analyzes the problems of optimizing elastic bridgetrusses, which is a tool for seeking the establishment of theminimum volume (mass of construction and optimization of thecross-section area and height as well as the structure of the truss.It has been formulated as a nonlinear discrete mathematical programmingproblem. The upper band of the truss works not onlyfor compression but also for bending. The cross-sections of theelements are designed from rolled steel sections. Mathematicalmodels are prepared by using the finite element method and complyingwith requirements for the strength, stiffness and stabilityof the structure. The formulated problems are solved referringto an iterative process and applying the mathematical softwarepackage “MATLAB” along with routine “fmincon”. The ratio ofbuckling is corrected in every case of iteration. Requirementsfor cross-section assortment (discretion are fulfilled employingthe branch and bound method.
High elastic modulus polymer electrolytes
Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel
2013-10-22
A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.
Shell morphology of core-shell latexes based on conductive polymers
Huijs, F.M; Vercauteren, F.F.; de Ruiter, B.; Kalicharan, D; Hadziioannou, G
Core-shell latexes with a conductive shell can be used to prepare transparent conducting layers. We have focussed on the relation between the conducting polymer content and the shell morphology and on its influence on conductivity. At low polypyrrole (PPy) concentrations the shell has a smooth
Reversible simulations of elastic collisions
Energy Technology Data Exchange (ETDEWEB)
Perumalla, Kalyan S.; Protopopescu, Vladimir A.
2013-05-01
Consider a system of N identical hard spherical particles moving in a d-dimensional box and undergoing elastic, possibly multi-particle, collisions. We develop a new algorithm that recovers the pre-collision state from the post-collision state of the system, across a series of consecutive collisions, \\textit{with essentially no memory overhead}. The challenge in achieving reversibility for an n-particle collision (where, in general, n<< N) arises from the presence of nd-d-1 degrees of freedom (arbitrary angles) during each collision, as well as from the complex geometrical constraints placed on the colliding particles. To reverse the collisions in a traditional simulation setting, all of the particular realizations of these degrees of freedom (angles) during the forward simulation must be tracked. This requires memory proportional to the number of collisions, which grows very fast with N and d, thereby severely limiting the \\textit{de facto} applicability of the scheme. This limitation is addressed here by first performing a pseudo-randomization of angles, which ensures determinism in the reverse path for any values of n and d. To address the more difficult problem of geometrical and dynamic constraints, a new approach is developed which correctly samples the constrained phase space. Upon combining the pseudo-randomization with correct phase space sampling, perfect reversibility of collisions is achieved, as illustrated for n<=3, d=2, and n=2, d=3. This result enables, for the first time, reversible simulations of elastic collisions with essentially zero memory accumulation. In principle, the approach presented here could be generalized to larger values of n, which would be of definite interest for molecular dynamics simulations at high densities.
Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling
Stehr, Sebastian; Stranghöner, Natalie
2017-06-01
The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.
Lattice mechanical properties of some fcc f-shell metals
Baria, J K
2003-01-01
A pseudopotential depending on an effective core radius is proposed to study the binding energy, equation of state, ion-ion interaction, phonon dispersion curves (q-space and r-space analysis), mode Grueneisen parameters and dynamical elastic constants of some fcc f-shell metals La, Yb, Ce and Th. The contribution of the s-like electrons is calculated in the second-order perturbation theory for the potential while d- and f-like electron is taken into account by introducing repulsive short-range Born-Mayer term. The parameter of the potential is evaluated by zero pressure condition. An excellent agreement between theoretical investigations and experimental findings is achieved which confirms the present formalism. (author)
Shell formation and nuclear masses
Energy Technology Data Exchange (ETDEWEB)
Zuker, A. P. [IPHC, IN2P3-CNRS, Universite Louis Pasteur, F-67037 Strasbourg (France)]. e-mail: Andres.Zuker@IReS.in2p3.fr
2008-12-15
We describe the basic mechanisms responsible for nuclear bulk properties and shell formation incorporated in the Duflo Zuker models. The emphasis is put on explaining why functionals of the occupancies can be so efficient in accounting for data with minimal computational effort. (Author)
Shell theorem for spontaneous emission
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter
2013-01-01
and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....
Energy Technology Data Exchange (ETDEWEB)
Doster, W. [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Nakagawa, H. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany); Japan Atomic Energy Agency, Quantum Beam Science Directorate, Tokai, Ibaraki 319-1195 (Japan); Appavou, M. S. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)
2013-07-28
Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at T{sub d} from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature T{sub g}. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature T{sub d}.
Evaluation of Antenna Foundation Elastic Modulus
Mcginness, H.; Anderson, G.
1983-01-01
An experiment to measure the elastic deflection of the DSS 14 concrete pedestal under the weight of the antenna was conducted in February 1983 and is compared to a similiar experiment made in 1968. Comparison of the results confirms the decrease in elastic modulus measured on core samples recently taken from the pedestal.
Modulography: elasticity imaging of atherosclerotic plaques
R. Baldewsing (Radj)
2006-01-01
textabstractModulography is an experimental elasticity imaging method. It has potential to become an all-in-one in vivo tool (a) for detecting vulnerable atherosclerotic coronary plaques, (b) for assessing information related to their rupture-proneness and (c) for imaging their elastic material
Elastic moduli of nearly pure polycrystalline plutonium
Migliori, Albert; Shekhter, Arkady; Betts, Jon B.; Fanelli, Victor
2012-02-01
We measure elastic moduli of microalloyed poly-crystalline cylindrical specimen of Pu-239. We observe α->β->γ->δ phase transitions and find that the elastic moduli of nearly pure plutonium are the same as those of Ga-stabilized plutonium.
Wave propagation in elastic layers with damping
DEFF Research Database (Denmark)
Sorokin, Sergey; Darula, Radoslav
2016-01-01
The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...
Vibrations of a pipe on elastic foundations
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
is investigated. Two cases of elastic foundations are considered: rotational and both linear and rotational. The major findings are the variations in frequency with flow velocity and displacements at different points and times. Keywords. Cantilevered pipe; vibrations of pipes; elastic foundations; exter- nal transverse force. 1.
Elastic least-squares reverse time migration
Feng, Zongcai
2017-03-08
We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.
Elasticity of a quantum monolayer solid
DEFF Research Database (Denmark)
Bruch, Ludwig Walter
1992-01-01
A perturbation-theory formulation of the zero-temperature elastic constants is used to verify symmetry relations for a (monolayer) triangluar lattice. A generalization of the Cauchy relation between the two elastic constants of the triangular lattice with central-pair-potential interactions...
21 CFR 886.3800 - Scleral shell.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scleral shell. 886.3800 Section 886.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3800 Scleral shell. (a) Identification. A scleral shell is a device made of glass or plastic that is...
Protein profiles of hatchery egg shell membrane
Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...
Theoretical elastic response of the cornea to refractive surgery: risk factors for keratectasia.
Guirao, Antonio
2005-01-01
To explore the role that mechanical elastic factors may have in post-refractive surgery corneal phenomena, from mild curvature changes to keratectasia. The central cornea near the apex was modeled as an elastic spherical thin shell loaded by the intraocular pressure (IOP). Equations for myopic laser in situ keratomileusis (LASIK) were obtained to estimate shifts and curvature changes of the posterior corneal surface at the apex. The effect of every parameter was studied, identifying potential risk factors for ectasia. Theoretically, corneal thinning by ablation will produce an elastic deformation of the posterior surface that depends on the corneal parameters (curvature, Young's modulus, Poisson ratio, and thickness), the IOP, and the ablation profile. In particular, a forward shift and an increase in power of the posterior surface was predicted for myopic LASIK, in agreement with previous experimental findings. These changes rise non-linearly with the attempted correction, and are greater for thinner preoperative corneas, higher IOP smaller Young's modulus, and thicker flaps. Corneas with Young's modulus half the average or less, or thickness <500 microm, may present high risk of ectasia, especially for high IOP and thick flaps. Some postoperative effects may be explained in part by elasticity. Research efforts are needed to explain other biomechanical behaviors. The accepted criterion of 250 microm residual bed is insufficient for fine patient screening--depending on the individual ocular parameters, it could be more restrictive. Advances in technology are needed to create a preoperative examination including two-dimensional maps of topography, pachymetry, and Young's modulus.
High pressure phase transition and variation of elastic constants of diluted magnetic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Varshney, Dinesh; Sharma, P.; Kaurav, N. [School of Physics, Vigyan Bhawan, Devi Ahilya University, Takshila Campus, Indore 452017 (India); Shah, S. [Department of Physics, P. M. B. Gujarati Science College, Indore-452001 (India); Singh, R.K. [M. P. Bhoj (Open) University, Shivaji Nagar, Bhopal-462016 (India)
2004-11-01
A theoretical study of the high-pressure phase transition and elastic behavior in diluted magnetic semiconductors Zn{sub 0.83}Mn{sub 0.17}Se, using a three-body interaction (TBI) potential caused by the electron-shell deformation of the overlapping ions is carried out. The estimated values of phase transition pressure and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zincblende (B3) to rock salt (B1). The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. The inconsistency in the deduced value of pressure derivative of second order elastic constant with the available data is attributed to the fact that we derive expressions neglecting thermal effects and assuming the overlap repulsion significant only up to nearest neighbors. The vdW interaction is effective in obtaining the thermodynamical parameters such as Debye temperature, Gruneisen parameter, thermal expansion coefficient, compressibility as well phase stability in diluted magnetic semiconductors. It is revealed that TBI model has a promise to predict the phase transition pressure and the pressure variation of elastic constants of other semiconductors as well. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Effect of heat input on dilution and heat affected zone in submerged ...
Indian Academy of Sciences (India)
Submerged arc welding (SAW) is a fusion joining process, known for its high deposition capabilities. This process is useful in joining thick section components used in various industries. Besides joining, SAW can also be used for surfacing applications. Heat Affected Zone (HAZ) produced within the base metal as a result of ...
Effect of heat input on dilution and heat affected zone in submerged ...
Indian Academy of Sciences (India)
Effect of heat input on dilution and heat affected zone in submerged arc welding process. HARI OM1,∗ and SUNIL PANDEY2. 1Department of Mechanical Engineering, YMCA University of Science and. Technology, Sector 06, Faridabad 121 006, India. 2Department of Mechanical Engineering, Indian Institute of Technology ...
Environmental cracking behavior of submerged arc-welded supermartensitic stainless steel weldments
Srinivasan, P. Bala; Sharkawy, S. W.; Dietzel, W.
2004-04-01
Supermartensitic stainless steel welds produced by submerged are welding were assessed for their microstructure and properties. Slow strain rate tests conducted on these specimens revealed that both the parent material and the weld metals are susceptible to cracking under conditions of hydrogen (H) charging.
Possibilities of Application of Carbon-Fluorine Containing Additions in Submerged-Arc Welding
Kozyrev, N. A.; Kryukov, N. E.; Kryukov, R. E.; Igushev, V. F.; Kovalskii, I. I.
2015-09-01
The paper provides results of comparative analysis of the effect of carbonaceous components introduced into welding fluxes on molten metal - slag interaction. A positive influence of carbonaceous additives on gas content and mechanical properties of welds is demonstrated. Carbon and fluorine containing additives are emphasized to be promising for automatic submerged arc welding.
Modification of the submerged coil to prevent microbial carryover error in thermal death studies.
Keller, Susanne E; Shazer, Arlette G; Fleischman, Gregory J; Chirtel, Stuart; Anderson, Nathan; Larkin, John
2008-04-01
A submerged coil unit generates death rate data for foodborne pathogens through precise computer-controlled sequential sampling rather than the usual manually timed, labor-intensive single sampling associated with other approaches. Our work with Yersinia pseudotuberculosis and Listeria monocytogenes Scott A using the submerged coil unit indicated non-log-linear death rates with large degrees of tailing. Varying degrees of cell adhesion to the surface of the exit port resulted in carryover that was likely the primary cause of these non-log-linear kinetics. This carryover also resulted in erroneously high measured levels of thermal resistance for both organisms. To address the carryover problem, modifications were made to the exit port of the submerged coil unit to ensure continuous and uniform heat treatment. These modifications resulted in a 2-fold decrease in measured D-values for L. monocytogenes Scott A and a 10-fold decrease in measured D-values for Y. pseudotuberculosis. D-values measured with the modified machine for L. monocytogenes Scott A were similar to those found in the literature. Slight tailing in survival curves persisted with the modified method, particularly for Y. pseudotuberculosis. These results indicate that kinetic data for microbial death rates obtained using an unmodified submerged coil unit must be viewed with suspicion in light of the significant potential for carryover.
Modelling of wave propagation over a submerged sand bar using SWASH
Digital Repository Service at National Institute of Oceanography (India)
Jishad, M.; Vu, T.T.T.; JayaKumar, S.
A non-hydrostatic numerical model "SWASH" (Simulating WAves till SHore) is used to study the wave propagation over a submerged sand bar in a wave flume The SWASH model is calibrated and further used to validate the wave propagation for two different...
The surface energy parameters of the invasive aquatic weed, Hydrilla verticillata, were determined using contact angle measurements using two different methods. The abaxial and adaxial surfaces of the leaves and stem were characterized for the weed while submerged in water using captive air and octa...
Surprising spectra of root-associated fungi in submerged aquatic plants.
Kohout, Petr; Sýkorová, Zuzana; Ctvrtlíková, Martina; Rydlová, Jana; Suda, Jan; Vohník, Martin; Sudová, Radka
2012-04-01
Similarly to plants from terrestrial ecosystems, aquatic species harbour wide spectra of root-associated fungi (RAF). However, comparably less is known about fungal diversity in submerged roots. We assessed the incidence and diversity of RAF in submerged aquatic plants using microscopy, culture-dependent and culture-independent techniques. We studied RAF of five submerged isoetid species collected in four oligotrophic freshwater lakes in Norway. Levels of dark septate endophytes (DSE) colonization differed among the lakes and were positively related to the organic matter content and negatively related to pH. In total, we identified 41 fungal OTUs using culture-dependent and culture-independent techniques, belonging to Mucoromycotina, Chytridiomycota, Glomeromycota, Ascomycota as well as Basidiomycota. Sequences corresponding to aquatic hyphomycetes (e.g. Nectria lugdunensis, Tetracladium furcatum and Varicosporium elodeae) were obtained. Eight arbuscular mycorrhizal taxa belonging to the orders Archaeosporales, Diversisporales and Glomerales were also detected. However, the vast majority of the fungal species detected (e.g. Ceratobasidium sp., Cryptosporiopsis rhizophila, Leptodontidium orchidicola, and Tuber sp.) have previously been known only from roots of terrestrial plants. The abundance and phylogenetic distribution of mycorrhizal as well as nonmycorrhizal fungi in the roots of submerged plants have reshaped our views on the fungal diversity in aquatic environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
I Gede Wenten
2012-02-01
Full Text Available The application of membrane to replace secondary clarifier of conventional activated sludge, known as membrane bioreactor, has led to a small footprint size of treatment with excellent effluent quality. The use of MBR eliminates almost all disadvantages encountered in conventional wastewater treatment plant such as low biomass concentration and washout of fine suspended solids. However, fouling remains as a main drawback. To minimize membrane fouling, a new configuration of submerged membrane bioreactor for aerobic industrial wastewater treatment has been developed. For the new configuration, a bed of porous particle is applied to cover the submerged ends-free mounted ultrafiltration membrane. Membrane performance was assessed based on flux productivity and selectivity. By using tapioca wastewater containing high organic matter as feed solution, reasonably high and stable fluxes around 11 l/m2.h were achieved with COD removal efficiency of more than 99%. The fouling analysis also shows that the newly configured ends-free membrane bioreactor exhibits lower irreversible resistance compared with the submerged one. In addition, the performance of pilot scale system, using a membrane module with 10 m2 effective area and reactor tank with 120 L volume, was also assessed. The flux achieved from the pilot scale system around 8 l/m2.h with COD removal of more than 99%. Hence, this study has demonstrated the feasibility of the newly configured submerged ends-free MBR at larger scale.
Underwater exploration of submerged towns near Tranquebar (Tarangambadi) on Tamilnadu coast
Digital Repository Service at National Institute of Oceanography (India)
Rao, S.R.
to the transgression of the sea. The foot of the medieval habitation deposit north of the temple is of great archaeological importance. Innumerable coins, mostly of copper and a few of silver, lead and gold were found indicating wreck or structure submergence....
Shan, Yuqi; Liu, Xingnian; Yang, Kejun; Liu, Chao
2017-10-01
For overbank flows, submerged flexible vegetation on floodplains increases channel resistance and decreases channel conveyance capability. This study presents an analytical model for estimating the stage-discharge relationship in a meandering compound channel with dense, submerged, flexible vegetation on floodplains under high flow conditions. The mean velocity within a canopy was linked to the depth-averaged velocity, and a relationship between the two velocities was proposed. The governing equation was deduced in curvilinear coordinates, and the lateral shear stresses were found to be negligible, as validated by our experimental measurements in a large-scale meandering channel. Then, analytical solutions of subarea discharges and total discharge were derived by ignoring lateral shear stresses. Measurements from two flume experiments and one field study were used to verify the proposed model. The field case involved a natural river with both submerged and emergent grass on the floodplains. Good agreement between predictions and measurements indicated that the model accurately predicted subarea discharges and the stage-discharge relationships in a meandering compound channel with submerged vegetation. Finally, the predictions of this model were sensitive to the secondary flow parameters in the main channel but insensitive to those on the floodplains.
Cortés-Lorenzo, C.; Sipkema, D.; Rodríguez-Díaz, M.; Fuentes, S.; Juárez-Jiménez, B.; Rodelas, B.; Smidt, H.; González-López, J.
2014-01-01
The influence of salt (NaCl) on bacterial and archaeal communities in a submerged fixed bed bioreactor system for the treatment of urban wastewater was determined by DGGE and 454 pyrosequencing of PCR-amplified 16S ribosomal RNA gene fragments. Cluster analysis of DGGE fingerprints showed
Liu, Hui; Bu, Hongmei; Liu, Guihua; Wang, Zhixiu; Liu, Wenzhi
2015-12-01
Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks.
Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China.
Wang, Zhixiu; Yao, Lu; Liu, Guihua; Liu, Wenzhi
2014-09-01
Through retaining runoff and pollutants such as heavy metals from surrounding landscapes, ponds around a lake play an important role in mitigating the impacts of human activities on lake ecosystems. In order to determine the potential for heavy metal accumulation of submerged macrophytes, we investigated the concentrations of 10 heavy metals (i.e., As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in water, sediments, and submerged macrophytes collected from 37 ponds around the Dianchi Lake in China. Our results showed that both water and sediments of these ponds were polluted by Pb. Water and sediments heavy metal concentrations in ponds received urban and agricultural runoff were not significantly higher than those in ponds received forest runoff. This result indicates that a large portion of heavy metals in these ponds may originate from atmospheric deposition and weathering of background soils. Positive relationships were found among heavy metal concentrations in submerged macrophytes, probably due to the coaccumulation of heavy metals. For most heavy metals, no significant relationships were found between submerged macrophytes and their water and sediment environments. The maximum concentrations of Cr, Fe and Ni in Ceratophyllum demersum were 4242, 16,429 and 2662mgkg(-1), respectively. The result suggests that C. demersum is a good candidate species for removing heavy metals from polluted aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.
Polder, R.B.; Peelen, W.H.A.; Leegwater, G.
2008-01-01
Since about 1980 Corrosion Monitoring Systems have been used in many concrete structures in aggressive environmentworldwide. While these systemswork properly in aboveground environment, some questions have arisen for submerged conditions, e.g. the outer sides of tunnels, piers in seawater or
A comparative study of the lipase yield by solid state and submerged ...
African Journals Online (AJOL)
STORAGESEVER
2009-01-05
Jan 5, 2009 ... A comparative study of lipase enzyme yields by solid state fermentation (SSF) and submerged fermentation (SmF) was performed here. Three fungal colonies were isolated from biopharmaceutical oil waste collected from “Oushadhi” (The Pharmaceutical Corporation (IM) Kerala Ltd). The pure colonies.
Wave forces limit the establishment of submerged macrophytes in large shallow lakes
Zuidam, van B.G.; Peeters, E.T.H.M.
2015-01-01
We studied the effect of waves on submerged macrophytes and hypothesized that exposure to large wave forces can hamper seedling establishment. In an indoor experiment in cylindrical mesocosms we tested whether large wave forces indeed inhibited the establishment of Chara globularis and Potamogeton
Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current
Paul, M.; Bouma, T.J.; Amos, C.L.
2012-01-01
Accurate wave height prediction along the shore plays an important role in coastal protection and management. To account for the effect of submerged vegetation in wave-attenuation models, it is important to understand how the interaction between vegetation characteristics and hydrodynamic forcing