WorldWideScience

Sample records for submerged aquatic macrophytes

  1. [Effects of light on submerged macrophytes in eutrophic water: research progress].

    Science.gov (United States)

    Li-Sha, Zou; Ze-Yu, Nie; Xiao-Yan, Yao; Ji-Yan, Shi

    2013-07-01

    The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while light is the main limiting factor. This paper summarized the factors affecting the light extinction in water and the mechanisms of light intensity affecting the physiology of submerged macrophytes, with the focuses on the metabolic mechanisms of carbon, nitrogen, and phosphorus, the responses of antioxidant enzyme system, and the feedbacks of pigment composition and concentration in the common submerged macrophytes under low light stress. Several engineering techniques applied in the ecological restoration of submerged macrophytes were presented, and the framework of the restoration of submerged macrophytes in eutrophic water was proposed. Some problems in current research and several suggestions on future research were addressed, which could help the related research and engineering practices.

  2. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  3. Invasive crayfish threaten the development of submerged macrophytes in lake restoration.

    Science.gov (United States)

    van der Wal, Jessica E M; Dorenbosch, Martijn; Immers, Anne K; Vidal Forteza, Constanza; Geurts, Jeroen J M; Peeters, Edwin T H M; Koese, Bram; Bakker, Elisabeth S

    2013-01-01

    Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.

  4. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Directory of Open Access Journals (Sweden)

    Hong-Li Li

    Full Text Available Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot and two levels of water depth (30 cm and 70 cm. Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  5. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology

    OpenAIRE

    Arts, G.; Davies, J.; Dobbs, M.; Ebke, P.; Hanson, M.; Hommen, U.; Knauer, K.; Loutseti, S.; Maltby, L.; Mohr, S.; Poovey, A.; Poulsen, V.

    2010-01-01

    \\ud Introduction and background\\ud \\ud Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species be...

  7. Submerged macrophytes mitigate direct and indirect insecticide effects in freshwater communities.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2015-01-01

    Understanding how ecological interactions mitigate the impacts of perturbations such as pesticides in biological communities is an important basic and applied question for ecologists. In aquatic ecosystems, new evidence from microcosm experiments suggests that submerged macrophytes can buffer cladocerans from pulse exposures to the widely used insecticide malathion, and that mitigation increases with macrophyte density. However, whether these results scale up to more complex aquatic communities where ecological interactions such as competition can alter toxicity is unknown. Further, macrophyte abilities to mitigate different insecticide exposure scenarios (i.e. single versus repeated pulses) have never been tested. To address these gaps, we performed a factorial mesocosm experiment examining the influence of four macrophyte treatments (0, 10, 50, or 100 Elodea Canadensis shoots planted per mesocosm) crossed with three malathion exposure scenarios (no insecticide, single pulse, repeated pulses) on aquatic communities containing zooplankton, phytoplankton, periphyton, two snail species, and larval amphibians. In the absence of macrophytes, single malathion pulses caused short-term declines in cladoceran abundance followed by their rapid recovery, which precluded any indirect effects (i.e. trophic cascades). However, repeated malathion pulses caused cladoceran extinctions, resulting in persistent phytoplankton blooms and reduced abundance of one snail species. In contrast, with macrophytes present, even at low density, malathion had no effect on any taxa. We also discovered novel effects of macrophytes on the benthic food web. In the two highest macrophyte treatments, we observed trends of reduced periphyton biomass, decreased abundance of one snail species, and decreased amphibian time to and mass at metamorphosis. To our knowledge, this is the first evidence of negative submerged macrophyte effects on amphibians, a taxa of global conservation concern. Our findings

  8. Submerged Macrophytes Mitigate Direct and Indirect Insecticide Effects in Freshwater Communities

    Science.gov (United States)

    Brogan, William R.; Relyea, Rick A.

    2015-01-01

    Understanding how ecological interactions mitigate the impacts of perturbations such as pesticides in biological communities is an important basic and applied question for ecologists. In aquatic ecosystems, new evidence from microcosm experiments suggests that submerged macrophytes can buffer cladocerans from pulse exposures to the widely used insecticide malathion, and that mitigation increases with macrophyte density. However, whether these results scale up to more complex aquatic communities where ecological interactions such as competition can alter toxicity is unknown. Further, macrophyte abilities to mitigate different insecticide exposure scenarios (i.e. single versus repeated pulses) have never been tested. To address these gaps, we performed a factorial mesocosm experiment examining the influence of four macrophyte treatments (0, 10, 50, or 100 Elodea Canadensis shoots planted per mesocosm) crossed with three malathion exposure scenarios (no insecticide, single pulse, repeated pulses) on aquatic communities containing zooplankton, phytoplankton, periphyton, two snail species, and larval amphibians. In the absence of macrophytes, single malathion pulses caused short-term declines in cladoceran abundance followed by their rapid recovery, which precluded any indirect effects (i.e. trophic cascades). However, repeated malathion pulses caused cladoceran extinctions, resulting in persistent phytoplankton blooms and reduced abundance of one snail species. In contrast, with macrophytes present, even at low density, malathion had no effect on any taxa. We also discovered novel effects of macrophytes on the benthic food web. In the two highest macrophyte treatments, we observed trends of reduced periphyton biomass, decreased abundance of one snail species, and decreased amphibian time to and mass at metamorphosis. To our knowledge, this is the first evidence of negative submerged macrophyte effects on amphibians, a taxa of global conservation concern. Our findings

  9. Submerged macrophytes mitigate direct and indirect insecticide effects in freshwater communities.

    Directory of Open Access Journals (Sweden)

    William R Brogan

    Full Text Available Understanding how ecological interactions mitigate the impacts of perturbations such as pesticides in biological communities is an important basic and applied question for ecologists. In aquatic ecosystems, new evidence from microcosm experiments suggests that submerged macrophytes can buffer cladocerans from pulse exposures to the widely used insecticide malathion, and that mitigation increases with macrophyte density. However, whether these results scale up to more complex aquatic communities where ecological interactions such as competition can alter toxicity is unknown. Further, macrophyte abilities to mitigate different insecticide exposure scenarios (i.e. single versus repeated pulses have never been tested. To address these gaps, we performed a factorial mesocosm experiment examining the influence of four macrophyte treatments (0, 10, 50, or 100 Elodea Canadensis shoots planted per mesocosm crossed with three malathion exposure scenarios (no insecticide, single pulse, repeated pulses on aquatic communities containing zooplankton, phytoplankton, periphyton, two snail species, and larval amphibians. In the absence of macrophytes, single malathion pulses caused short-term declines in cladoceran abundance followed by their rapid recovery, which precluded any indirect effects (i.e. trophic cascades. However, repeated malathion pulses caused cladoceran extinctions, resulting in persistent phytoplankton blooms and reduced abundance of one snail species. In contrast, with macrophytes present, even at low density, malathion had no effect on any taxa. We also discovered novel effects of macrophytes on the benthic food web. In the two highest macrophyte treatments, we observed trends of reduced periphyton biomass, decreased abundance of one snail species, and decreased amphibian time to and mass at metamorphosis. To our knowledge, this is the first evidence of negative submerged macrophyte effects on amphibians, a taxa of global conservation concern

  10. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology.

    Science.gov (United States)

    Arts, Gertie; Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-05-01

    Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). These topics were addressed during the workshop entitled "Aquatic Macrophyte Risk Assessment for Pesticides" (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.

  11. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  12. Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes.

    Science.gov (United States)

    Pi, N; Ng, J Z; Kelly, B C

    2017-06-15

    Studies investigating the bioaccumulation behavior of perfluoroalkyl substances (PFASs) in aquatic macrophytes are limited. The present study involved controlled mesocosm experiments to assess uptake and elimination rate constants (k u, k e ), bioconcentration factors (BCFs) and translocation factors (TFs) of several perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) in two aquatic plant species, including one submerged species (Echinodorus horemanii) and one free-floating species (Eichhornia crassipes). The results indicated all PFASs were readily accumulated in these aquatic macrophytes. k u and BCFs increased with increasing perfluoroalkyl chain length. For PFCAs and PFSAs with identical perfluoroalkyl chain length, the corresponding PFSA exhibited higher bioaccumulation potential. On a whole-plant basis, the bioaccumulation potential of PFASs in submerged and free-floating macrophytes were comparable, indicating sorption to plant biomass is similar in the different species. Conversely, when considering accumulation in foliage, BCFs in the free-floating macrophyte were substantially lower compared to submerged species, especially for longer-chain PFASs. Compounds with shorter perfluoroalkyl chain length (PFBS, PFPeA and PFHxA) exhibited preferential translocation to leaf tissue (TFs >1). BCFs exhibited a sigmoidal relationship with pefluoroalkyl chain length, membrane-water distribution coefficients (D mw ), protein-water distribution coefficients (D pw ) and organic-water partition coefficients (K oc ). For these trends, maximum BCF values were exhibited by long-chain PFCAs, with a log D mw , log D pw and log K oc of 6.47, 5.72 and 5.04, respectively. These findings are useful for future design and implementation of phytoremediation systems, as well for future develop of mechanistic models for predicting the environmental fate and distribution of these contaminants of concern. Copyright © 2017. Published by Elsevier Ltd.

  13. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China).

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Shi, Qiao; Hao, Beibei; Liu, Han; Wang, Zhixiu; Liu, Guihua

    2015-05-13

    Stoichiometric homeostasis of element composition is one of the central concepts of ecological stoichiometry. We analyzed concentrations of macroelements (C, N, P, Ca, K, Mg, S), microelements (Cu, Fe, Mn, Mo, Ni, Zn) and beneficial elements (Na, Se, Si) in submerged macrophytes, water and sediments across 20 Yunnan plateau lakes. We predicted that tissue element composition in submerged macrophytes is affected by lake trophic level and taxonomy, and submerged macrophytes have weak stoichiometric homeostasis for all above 16 elements. Canonical discriminant analyses successfully discriminated among trophic level groups and taxa groups. Of all the elements, C, N, P and S most effectively discriminated among trophic level groups across 20 lakes, revealing lake trophic level mostly affect tissue macroelement composition in submerged macrophytes; while Ca, K and Se most effectively discriminated among submerged macrophytes taxa groups, suggesting taxonomy mostly affect compositions of macroelements and beneficial elements in submerged macrophytes. In addition, the stoichiometric homeostatic coefficient of 1/HCa:C for all five taxa of submerged macrophytes were less than zero, suggesting submerged macrophytes in Yunnan plateau lakes have strong Ca stoichiometric homeostasis. Our findings, not only broaden the knowledge of multielement stoichiometric homeostasis, but also help to choose most appropriate lake management strategy.

  14. [Algal control ability of allelopathically active submerged macrophytes: a review].

    Science.gov (United States)

    Xiao, Xi; Lou, Li-ping; Li, Hua; Chen, Ying-xu

    2009-03-01

    The inhibitory effect of allelochemicals released by submerged macrophytes on phytoplankton is considered as one of the mechanisms that contribute to the stabilization of clear-water status in shallow lakes. This paper reviewed the research progress in the allelopathy of submerged macrophytes on algae from the aspects of the occurrence frequency and coverage of allelopathically active submerged macrophytes in lakes, and the kinds and allelopathical effects of the allelochemicals released from the macrophytes. The previous researches indicated that allelopathically active submerged macrophyte species such as Myriophyllum, Ceratophyllum, and Elodea were efficient to control phytoplankton, especially when their biomass was high enough, and the dominant algae were sensitive species. The allelochemicals such as hydroxybenzene released by the submerged macrophytes could inhibit the growth of algae. Different phytoplankton species exhibited different sensitivity against allelochemicals, e.g., cyanobacteria and diatom were more sensitive than green algae, while epiphytic species were less sensitive than phytoplankton. Environmental factors such as light, temperature, and nutrients could significantly affect the allelopathical effect of submerged macrophytes. The research of the allelopathy of submerged macrophytes is still at its beginning, and further researches are needed on the effects of environmental factors on the allelopathy, extraction and identification of allelochemicals, selective algal control mechanisms, and metabolism of the allelochmicals.

  15. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil.

    Science.gov (United States)

    Mormul, Roger Paulo; Ferreira, Fernando Alves; Michelan, Thaisa Sala; Carvalho, Priscilla; Silveira, Marcio José; Thomaz, Sidinei Magela

    2010-12-01

    In the last three decades, rapid assessment surveys have become an important approach for measuring aquatic ecosystem biodiversity. These methods can be used to detect anthropogenic impacts and recognize local or global species extinctions. We present a floristic survey of the aquatic macrophytes along the Brazilian margin of the Itaipu Reservoir conducted in 2008 and compare this with a floristic survey conducted ten years earlier. We used ordination analysis to determine whether assemblage composition differed among reservoir arms. Macrophyte species were sampled in each of the 235 sampling stations using a boat, which was positioned inside three places of each macrophyte stand to record species and search for small plants. We also collected submerged plants using a rake with the boat moving at constant velocity for ten minutes. We assigned individual macrophyte species to life form and identified representative species for each life form. A total of 87 macrophyte taxa were identified. The "emergent" life forms contained the highest number of species, followed by "rooted submerged" life forms. The extensive survey of macrophytes undertaken in September 2008 recorded more species than a survey conducted between 1995 and 1998. This could be due to changes in water physico-chemistry, disturbances due to water drawdown and the long period between surveys, which may have allowed natural colonization by other species. Additionally, differences in the classification systems and taxonomic resolution used in the surveys may account for differences in the number of species recorded. Assemblage composition varied among the arms and was affected by underwater radiation (as measured using a Secchi disk) and fetch. Five non-native species were found. Two of these non-native species (Urochloa subquadripara and Hydrilla verticillata) are of special concern because they have a high frequency of occurrence and occupy large marginal areas of the reservoir. Future surveys should be

  16. Effect of submerged, freshwater aquatic macrophytes and littoral sediments on pan evaporation in the Lake Balaton region, Hungary

    Science.gov (United States)

    Anda, A.; Simon, B.; Soos, G.; Teixeira da Silva, J. A.; Kucserka, T.

    2016-11-01

    The evaporation (Ep) of a US Class A pan (C) with submerged, freshwater aquatic macrophytes (Potamogeton perfoliatus, Myriophyllum spicatum and Najas marina), hereafter macrophytes (Ps) and a sediment-covered bottom (S) was measured in Hungary during 2014-2015 using reference E of Shuttleworth (Eo) and Penman-Monteith crop reference evapotranspiration (crop ETo). There were two main climatic controls affecting variation in E: direct (air and water temperature) and indirect (wind-mediated change affecting the penetration of sunlight; precipitation inflow, impacting plant emergence). Lower seasonal mean Ep rates of 2.75 ± 0.89, 2.83 ± 0.91 and 3.06 ± 1.14 mm day-1 were observed in C, S and Ps, respectively, during the wet 2014. In the 2015 season, higher overall daily mean Ep rates for C, S and Ps were 3.76 ± 1.3, 4.19 ± 1.34 and 4.65 ± 1.52 mm day-1, respectively. A comparison of US Class A pan Ep containing macrophytes/sediments with that of a standard US Class A pan showed that pan coefficients (Kap and Kas) might allow for more accurate on-site lake E estimates. In 2014, seasonal mean Kas and Kap were 1.04 ± 0.14 and 1.09 ± 0.18, respectively. Slightly higher Ka values were observed during the warm and dry 2015 (Kas: 1.15 ± 0.22; Kap: 1.26 ± 0.23). A Ka value greater than 1 indicates that the Ep of a US Class A pan containing macrophytes and sediment is always higher than that of C. The calculated Eo overestimated measured Ep of Ps during the course of this study. During the warm-dry growing season, crop ETo was closest to Ep of Ps. Empirical coefficients can be useful for estimating E of lakes with submerged macrophytes more precisely. The accuracy of the estimate of Keszthely Bay's E improved by 9.85% when Ka was determined on site.

  17. Modeling Refuge Effect of Submerged Macrophytes in Lake System.

    Science.gov (United States)

    Lv, Dongyu; Fan, Meng; Kang, Yun; Blanco, Krystal

    2016-04-01

    This paper considers a significant problem in biological control of algae issue in ecological environment. A four-dimensional dynamic model is carefully formulated to characterize the interactions among phytoplankton, submerged macrophyte, zooplankton, and general fish class in a lake ecosystem. The predation relationship is modeled by Beddington-DeAngelis functional responses derived from the classical Holling time budget arguments. Qualitative analyses of the global dynamics show that the system can generate very rich dynamics with potentially 10 different equilibria and several bistable scenarios. We perform analysis on the existence and local stability of equilibria and explore the refuge effect of macrophyte on the zooplankton with numerical simulations on aquatic ecosystems. We also discuss effective methods of biological control used to restrain the increase of phytoplankton. Our study shows the proposed model could have rich and complex dynamics including but not limited to bistable and chaotic phenomenon. Numerical simulation results demonstrate that both the refuge constant and the density of the macrophytes are two key factors where refuge effects take place. In addition, the intraspecific competition between the macrophyte and the phytoplankton can also affect the macrophyte's refuge effect. Our analytical and simulation results suggest that macrophytes provide structure and shelter against predation for zooplankton such that it could restore the zooplankton population, and that planting macrophyte properly might achieve the purpose of controlling algae growth.

  18. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China.

    Science.gov (United States)

    Wang, Zhixiu; Yao, Lu; Liu, Guihua; Liu, Wenzhi

    2014-09-01

    Through retaining runoff and pollutants such as heavy metals from surrounding landscapes, ponds around a lake play an important role in mitigating the impacts of human activities on lake ecosystems. In order to determine the potential for heavy metal accumulation of submerged macrophytes, we investigated the concentrations of 10 heavy metals (i.e., As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in water, sediments, and submerged macrophytes collected from 37 ponds around the Dianchi Lake in China. Our results showed that both water and sediments of these ponds were polluted by Pb. Water and sediments heavy metal concentrations in ponds received urban and agricultural runoff were not significantly higher than those in ponds received forest runoff. This result indicates that a large portion of heavy metals in these ponds may originate from atmospheric deposition and weathering of background soils. Positive relationships were found among heavy metal concentrations in submerged macrophytes, probably due to the coaccumulation of heavy metals. For most heavy metals, no significant relationships were found between submerged macrophytes and their water and sediment environments. The maximum concentrations of Cr, Fe and Ni in Ceratophyllum demersum were 4242, 16,429 and 2662mgkg(-1), respectively. The result suggests that C. demersum is a good candidate species for removing heavy metals from polluted aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process.

    Science.gov (United States)

    Zhang, Guosen; Wang, Yu; Jiang, Jinhui; Yang, Shao

    2017-06-01

    Bisphenol A (BPA), a typical endocrine disruptor, has been found in global aquatic environments, causing great concern. The capabilities of five common submerged macrophytes to remove BPA from water and the contributions of epiphytic microorganisms were investigated. Macrophytes removed 62%-100% of total BPA (5 mg/L) over 12 days; much higher rates than that observed in the control (2%, F = 261.511, p = 0.000). Ceratophyllum demersum was the most efficient species. C. demersum samples from lakes with different water qualities showed no significant differences in BPA removal rates. Moreover, removal, inhibition or re-colonization of epiphytic microorganisms did not significantly change the BPA removal rates of C. demersum. Therefore, the contributions of epiphytic microorganisms to the BPA removal process were negligible. The rate of BPA accumulation in C. demersum was 0.1%, indicating that BPA was mainly biodegraded by the macrophyte. Hence, submerged macrophytes, rather than epiphytic microorganisms, substantially contribute to the biodegradation of BPA in water.

  20. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil

    Directory of Open Access Journals (Sweden)

    Roger Paulo Mormul

    2010-12-01

    Full Text Available In the last three decades, rapid assessment surveys have become an important approach for measuring aquatic ecosystem biodiversity. These methods can be used to detect anthropogenic impacts and recognize local or global species extinctions. We present a floristic survey of the aquatic macrophytes along the Brazilian margin of the Itaipu Reservoir conducted in 2008 and compare this with a floristic survey conducted ten years earlier. We used ordination analysis to determine whether assemblage composition differed among reservoir arms. Macrophyte species were sampled in each of the 235 sampling stations using a boat, which was positioned inside three places of each macrophyte stand to record species and search for small plants. We also collected submerged plants using a rake with the boat moving at constant velocity for ten minutes. We assigned individual macrophyte species to life form and identified representative species for each life form. A total of 87 macrophyte taxa were identified. The "emergent" life forms contained the highest number of species, followed by "rooted submerged" life forms. The extensive survey of macrophytes undertaken in September 2008 recorded more species than a survey conducted between 1995 and 1998. This could be due to changes in water physico-chemistry, disturbances due to water drawdown and the long period between surveys, which may have allowed natural colonization by other species. Additionally, differences in the classification systems and taxonomic resolution used in the surveys may account for differences in the number of species recorded. Assemblage composition varied among the arms and was affected by underwater radiation (as measured using a Secchi disk and fetch. Five non-native species were found. Two of these non-native species (Urochloa subquadripara and Hydrilla verticillata are of special concern because they have a high frequency of occurrence and occupy large marginal areas of the reservoir. Future

  1. Macroinvertebrates associated with two submerged macrophytes ...

    African Journals Online (AJOL)

    Macroinvertebrates associated with two submerged macrophytes, Lagarosiphon ilicifolius and Vallisneria aethiopica , in the Sanyati Basin, Lake Kariba, Zimbabwe: effect of plant morphological complexity.

  2. Colonization of leaf litter of two aquatic macrophytes, Mayaca fluviatilis Aublet and Salvinia auriculata Aublet by aquatic macroinvertebrates in a tropical reservoir

    Directory of Open Access Journals (Sweden)

    Marcia Cristina de Paula

    2011-04-01

    Full Text Available Decomposition and colonization of S. auriculata and M. fluviatilis by macroinvertebrates were analyzed during 40 days to determine whether differences existed on colonization by aquatic macroinvertebrates of two macrophytes with distinct habits (submerged versus fluctuant. Leaf litter of S. auriculata and M. fluviatilis were incubated in 24 litter bags (12 of each species, in a small reservoir surrounded by a cerrado fragment with low level of anthropic impact. After 10, 20, 30 and 40 days, the litter bags were removed and aquatic macroinvertebrates community was analyzed. Two hundred twenty macroinvertebrates were associated with S. auriculata and 261 were associated with M. fluviatilis, identified in 24 taxa. Both macrophyte species were colonized mainly by macroinvertebrate predators. Ablabesmyia with predator and collector food mechanisms was present in all sampling. The data showed an expressive increase of abundance during the process of decomposition and a decrease at the end of the experiment, in both macrophytes. Cluster analysis permitted inference that the colonization of the leaf liter by macroinvertebrates was determinated by incubation time of leaf litter not by the habit of macrophytes (submerged or fluctuant.

  3. THE INFLUENCE OF SUBMERGED MACROPHYTES ON SEDIMENTARY DIATOM ASSEMBLAGES(1).

    Science.gov (United States)

    Vermaire, Jesse C; Prairie, Yves T; Gregory-Eaves, Irene

    2011-12-01

    Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long-term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole-lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P macrophyte, nutrient-limited lakes (BiomEpiV ≥525 μg · L(-1) ; total phosphorus [TP] macrophyte, nutrient-limited lakes (BiomEpiV macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance. © 2011 Phycological Society of America.

  4. Factors affecting palatability of four submerged macrophytes for grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Sun, Jian; Wang, Long; Ma, Lin; Min, Fenli; Huang, Tao; Zhang, Yi; Wu, Zhenbin; He, Feng

    2017-12-01

    Grass carp can weaken the growth and reproductive capacity of submerged macrophytes by consuming valuable tissues, but factors affecting palatability of submerged macrophytes for grass carp rarely are considered. In this study, relative consumption rate of grass carp with regard to submerged macrophytes was in the following order: Hydrilla verticillata > Vallisneria natans > Ceratophyllum demersum > Myriophyllum spicatum. Firmness of macrophytes was in the following order: M. spicatum > C. demersum > H. verticillata = V. natans, whereas shear force was M. spicatum > C. demersum > H. verticillata > V. natans. After crude extracts of M. spicatum were combined with H. verticillata, grass carp fed on fewer macrophyte pellets that contained more plant secondary metabolites (PSMs). This indicated that structure and PSMs affected palatability of macrophytes.PSMs do not contribute to reduction in palatability through inhibition of intestinal proteinases activity, but they can cause a decrease in the abundance of Exiguobacterium, Acinetobacter-yielding proteases, lipases, and cellulose activity, which in turn can weaken the metabolic capacity of grass carp and adversely affect their growth. Thus, the disadvantages to the growth and development of grass carp caused by PSMs may drive grass carp to feed on palatable submerged macrophytes with lower PSMs.

  5. Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale.

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Hao, Beibei; Liu, Guihua

    2013-10-01

    Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.

  6. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community

    NARCIS (Netherlands)

    Wendt-Rasch, L.; Brink, van den P.J.; Crum, S.J.H.; Woin, P.

    2004-01-01

    The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated

  7. Size-dependent responses of zooplankton to submerged macrophyte restoration in a subtropical shallow lake

    Science.gov (United States)

    Zeng, Lei; He, Feng; Zhang, Yi; Liu, Biyun; Dai, Zhigang; Zhou, Qiaohong; Wu, Zhenbin

    2018-03-01

    To explore the size-dependent responses of zooplankton to submerged macrophyte restoration, we collected macrophyte, zooplankton and water quality samples seasonally from a subtropical shallow lake from 2010 to 2012. Special attention was given to changes in rotifers and crustaceans (cladocerans and copepods). The rotifers were grouped into three size classes (400 μm) to explore their size-related responses to macrophyte restoration. The results showed that during the restoration, the annual mean biomass and macrophyte coverage increased significantly from 0 to 637 g/m2 and 0 to 27%, respectively. In response, the density and biomass of crustaceans and the crustacean-to-rotifer ratio increased significantly, while the rotifer density decreased significantly. Moreover, rotifers showed significant sizedependent responses to macrophyte restoration. Specially, rotifers sized zooplankton tended to boom, while that of small rotifers was inhibited during macrophyte restoration. Redundancy analysis (RDA) revealed positive correlations between macrophytes and crustaceans, rotifers and COD or Chl- a, but negative correlations between macrophytes and COD or Chl- a, and between crustaceans and Chl- a. Moreover, the results indicate that increased predation on phytoplankton by large-sized zooplankton might be an important mechanism for macrophyte restoration during development of aquatic ecosystems, and that this mechanism played a very important role in promoting the formation of a clear-water state in subtropical shallow lakes.

  8. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    Science.gov (United States)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  9. Phytoremediation potential of aquatic macrophyte, Azolla.

    Science.gov (United States)

    Sood, Anjuli; Uniyal, Perm L; Prasanna, Radha; Ahluwalia, Amrik S

    2012-03-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.

  10. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we......Many terrestrial plant canopies regulate spatial patterns in leaf density and leaf inclination to distribute light evenly between the photosynthetic tissue and to optimize light utilization efficiency. Sessile aquatic macrophytes, however, cannot maintain the same well-defined three...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  11. Responses of aquatic macrophytes to anthropogenic pressures: comparison between macrophyte metrics and indices.

    Science.gov (United States)

    Camargo, Julio A

    2018-02-26

    Macrophyte responses to anthropogenic pressures in two rivers of Central Spain were assessed to check if simple metrics can exhibit a greater discriminatory and explanatory power than complex indices at small spatial scales. Field surveys were undertaken during the summer of 2014 (Duraton River) and the spring of 2015 (Tajuña River). Aquatic macrophytes were sampled using a sampling square (45 × 45 cm). In the middle Duraton River, macrophytes responded positively to the presence of a hydropower dam and a small weir, with Myriophyllum spicatum and Potamogeton pectinatus being relatively favored. Index of Macrophytes (IM) was better than Macroscopic Aquatic Vegetation Index (MAVI) and Fluvial Macrophyte Index (FMI) in detecting these responses, showing positive and significant correlations with total coverage, species richness, and species diversity. In the upper Tajuña River, macrophytes responded both negatively and positively to the occurrence of a trout farm effluent and a small weir, with Leptodictyum riparium and Veronica anagallis-aquatica being relatively favored. Although IM, MAVI, and FMI detected both negative and positive responses, correlations of IM with total coverage, species richness, and species diversity were higher. Species evenness was not sensitive enough to detect either positive or negative responses of aquatic macrophytes along the study areas. Overall, traditional and simple metrics (species composition, total coverage, species richness, species diversity) exhibited a greater discriminatory and explanatory power than more recent and complex indices (IM, MAVI, FMI) when assessing responses of aquatic macrophytes to anthropogenic pressures at impacted specific sites.

  12. Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland

    OpenAIRE

    Choi Jong-Yun; Jeong Kwang-Seuk; La Geung-Hwan; Joo Gea-Jae

    2014-01-01

    Submerged macrophytes improve the structural heterogeneity of microhabitats in aquatic ecosystems, often providing an important habitat for zooplankton. However, excessive development of free-floating macrophytes on the water surface can reduce the biomass of submerged macrophytes and result in a relatively simple habitat structure. We hypothesized that controlling the development of free-floating macrophytes would result in a more complex habitat structure by promoting the development of sub...

  13. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi

    2016-10-01

    Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3-64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7-25.4%), Firmicutes (3.0-20.1%), Acidobacteria (2.7-15.7%), Actinobacteria (2.2-8.7%), Bacteroidetes (0.5-9.7%), and Verrucomicrobia (2.4-5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen.

  14. [Influence of submerged macrophytes on phosphorus transference between sediment and overlying water in the growth period].

    Science.gov (United States)

    Wang, Li-Zhi; Wang, Guo-Xiang; Yu, Zhen-Fei; Zhou, Bei-Bei; Chen, Qiu-Min; Li, Zhen-Guo

    2012-02-01

    In order to study the process of phosphorus transfer between sediment and overlying water, Hydrilla verticillata and Vallisneria natans were cultured in spring, Potamogeton crispus was cultured in winter. Changes of environmental factors and phosphorus concentrations in water and sediment were investigated. The results indicated that: submerged macrophytes could reduce all phosphorus fractions in the overlying water. Phosphorus concentrations in overlying water maintained in a relative low level in the growth period of submerged macrophytes. The concentrations of total phosphorus (TP) in overlying water of H. verticillata, V. natans and P. crispus were 0.03-0.05, 0.04-0.12, 0.02-0.11 mg x L(-1), respectively. All phosphorus fractions in sediment were reduced. The maximum value between submerged macrophyte and control of H. verticillata, V. natans and P. crispus were 35.34, 60.67 and 25.92 mg x kg(-1), respectively. Dissolved oxygen (DO), redox potential (Eh) and pH in overlying water increased (DO 10.0-14.0 mg x L(-1), Eh 185-240 mV, pH 8.0-11.0) in the submerged macrophytes groups. Submerged macrophytes increased Eh( -140 - -23 mV) and maintained pH(7.2-8.0) in neutral range. The results indicated that submerged macrophytes affected phosphorus transferring between sediment and overlying water through increasing DO, Eh and pH in overlying water, and Eh in sediment.

  15. AMEG: the new SETAC advisory group on auqatic macrophyte ecotoxicology

    OpenAIRE

    Arts, G.H.P.; Davies, J.; Dobbs, M.; Ebke, P.; Hanson, M.A.

    2010-01-01

    ntroduction and background Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of dif...

  16. Distribution and abundance of submerged aquatic macrophytes in a reactor cooling reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Grace, J.B.

    1977-08-01

    Measurements of ash-free dry weight were used to characterize the effects of a heated effluent on submerged macrophytes in a reactor cooling reservoir. The species which were most abundant during the summers of 1974 and 1975 were Myriophyllum spicatum L. and Eleocharis acicularis (L.) R. and S. Examination of the vertical distribution of the shoot biomass of Myriophyllum revealed that plants in heated areas grew closer to the water surface than plants in unheated areas. The biomass of the second most abundant species, Eleocharis acicularis, was less at 0.5 m depths in heated areas (more than 5C/sup 0/ warmer than unheated areas) than at equal depths in unheated areas. Species diversity was greater at heated locations because of a greater equitability (i.e., evenness of distribution of biomass) among species.

  17. Microcystin production in epiphytic cyanobacteria on submerged macrophytes.

    Science.gov (United States)

    Mohamed, Zakaria A; Al Shehri, Abdulrahman M

    2010-06-15

    Cyanotoxins have been largely studied in planktonic and benthic cyanobacteria, but microcystin (MCYST) production in epiphytic cyanobacteria has not been reported yet. The present study reports for the first time the MCYST production in epiphytic cyanobacteria on submerged macrophytes. During this study, four common submerged macrophytes in eutrophic pond in Saudi Arabia were surveyed for the presence of toxic epiphytic cyanobacteria. The results showed that chlorophyll-a and total biovolume of epiphytic cyanobacteria differed significantly among submerged plants with highest values obtained in Stratiotes aloides and lowest in Elodea canadensis. Epiphytic materials collected from Ceratophyllum demersum and S. aloides had higher species diversities than materials collected from E. canadensis and Myriophyllum verticillatum. The cyanobacteria, Merismopedia tenuissima and Leptolyngbya boryana were recorded with a high abundance in epiphytic materials collected from all submerged macrohpytes. Based on Enzyme-linked immunosorbent assay (ELISA), these two species were found to produce MCYSTs (MCYSTs) with concentrations of 1438 and 630 microg g(-1) dry weight, respectively. HPLC analysis of the methanolic extracts of the two species showed that M. tenuissima extract contained MCYST-RR and -LR/demethyl LR plus 3 minor unidentified MCYSTs, while L. boryana extract contained MCYST-YR, -LR/demethyl LR, and 2 minor unidentified MCYSTs. This study suggests that epiphytic species should be considered during monitoring of toxic cyanobacteria in water sources. 2010 Elsevier Ltd. All rights reserved.

  18. Fish Diversity in Relation to Aquatic Macrophytes and ...

    African Journals Online (AJOL)

    An investigation of fish diversity in relation to aquatic macrophytes and physicochemical parameters of Ona Lake in Asaba was carried out within a period of eighteen months. Fish samples were collected fortnightly from three sampling sites using cast, gill and trigger nets. Aquatic macrophytes found in close association with ...

  19. What role do beds of submerged macrophytes play in structuring estuarine fish assemblages? Lessons from a warm-temperate South African estuary

    Science.gov (United States)

    Sheppard, Jill N.; James, Nicola C.; Whitfield, Alan K.; Cowley, Paul D.

    2011-11-01

    Habitat variability is one of the factors influencing species richness within estuarine systems, and a loss of habitat can result in a restructuring of the estuarine ichthyofaunal assemblage, particularly if these conditions persist over long time periods. The potential effects of the loss of extensive submerged macrophyte beds ( Ruppia cirrhosa and Potamogeton pectinatus) on an estuarine fish assemblage were investigated through an analysis of a long-term seine net catch dataset from the temporarily open/closed East Kleinemonde Estuary, South Africa. Catch data for a 12-year period, encompassing six years of macrophyte presence and six years of macrophyte senescence, indicated that the loss of this habitat did not influence species richness but changes in the relative abundance of certain species were evident. A shift in dominance from vegetation-associated species to those associated with sandy environments ( e.g. members of the family Mugilidae) was observed. However, species wholly dependent on macrophytes such as the critically endangered estuarine pipefish Syngnathus watermeyeri were only recorded during years when macrophyte beds were present, while vegetation-associated species such as the sparid Rhabdosargus holubi persisted at lower levels of relative abundance. The reduced abundance of all vegetation-associated fish species during years of macrophyte senescence was probably reflective of declining food resources resulting from the loss of macrophyte beds and/or increased vulnerability to predation. Submerged beds of aquatic plants are therefore important habitats within temporarily open/closed estuaries, South Africa's dominant estuary type.

  20. Monitoring the effects of floods on submerged macrophytes in a large river.

    Science.gov (United States)

    Ibáñez, Carles; Caiola, Nuno; Rovira, Albert; Real, Montserrat

    2012-12-01

    The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton to a macrophyte-dominated system. Macrophytes started to spread at the end of the 1990s and since 2002 artificial floods (flushing flows) of short duration (1-2 days) are released from the Riba-roja dam once or twice a year in order to reduce macrophyte density. The aim of this study was to analyse the spatiotemporal trends of the submerged macrophytes in two stretches of the lower Ebro River using high-resolution hydroacoustic methods, in order to elucidate the effects of artificial floods and natural floods on its distribution and abundance. Results showed that the mean cover in the two studied stretches (Móra and Ginestar) was not reduced after a flushing flow (from 36.59% to 55.85% in Móra, and from 21.18% to 21.05% in Ginestar), but it was greatly reduced after the natural flood (down to 9.79% in Móra and 2.04% in Ginestar); surprisingly the cover increased in Móra after the artificial flood. In order to increase the efficiency of floods in controlling macrophyte spreading, the magnitude and frequency of them should largely increase, as well as the suspended sediment load, approaching as much as possible to the original flood pattern before dam construction. Hydroacoustic methods combined with geostatistics and interpolation in GIS can accurately monitor spatiotemporal trends of submerged macrophytes in large rivers. This is the first article to apply this monitoring system to submerged macrophytes in rivers. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The structuring role of submerged macrophytes in a large subtropical shallow lake

    NARCIS (Netherlands)

    Finkler Ferreira, Tiago; Crossetti, Luciane O.; Motta Marques, David M.L.; Cardoso, Luciana; Fragoso, Carlos Ruberto; Nes, van Egbert H.

    2018-01-01

    It is well known that submerged macrophytes exert positive feedback effects that enhance the water transparency, stabilizing the clear-water state in shallow temperate lakes. However, the structuring effect of macrophytes on the food web of subtropical and tropical ecosystems is still poorly

  2. Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii

    NARCIS (Netherlands)

    Vanderstukken, M.; Declerck, S.A.J.; Decaestecker, E.; Muylaert, K.

    2014-01-01

    Keywords: allelochemicals; chemical ecology; competition; nutrient limitation; shallow lakes Summary 1.It is well known that submerged macrophytes can suppress phytoplankton blooms in lakes and thus promote water quality and biodiversity. One of the possible mechanisms through which submerged

  3. Measuring ecological change of aquatic macrophytes in Mediterranean rivers

    OpenAIRE

    Dodkins, Ian; Aguiar, Francisca; Rivaes, Rui; Albuquerque, António; Rodriguez-Gonzalez, Patricia; Ferreira, Maria Teresa

    2012-01-01

    A metric was developed for assessing anthropogenic impacts on aquatic macrophyte ecology by scoring macrophyte species along the main gradient of community change. A measure of ecological quality was then calculated by Weighted Averaging (WA) of these species scores at a monitoring site, and comparison to a reference condition score. This metric was used to illustrate the difficulties of developing aquatic macrophyte indices based on indicator species in Mediterranean rivers. The ...

  4. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study

    NARCIS (Netherlands)

    Vanderstukken, M.; Mazzeo, N.; Colen, W.; Declerck, S.A.J.; Muylaert, K.

    2011-01-01

    1. In temperate regions, submerged macrophytes can hamper phytoplankton blooms. Such an effect could arise directly, for instance via allelopathy, or indirectly, via competition for nutrients or the positive interaction between submerged macrophytes and zooplankton grazing. However, there is some

  5. Metal concentrations in aquatic macrophytes as influenced by soil and acidification

    Science.gov (United States)

    Sparling, D.W.; Lowe, T.P.

    1998-01-01

    Bioavailability of metals to aquatic plants is dependent on many factors including ambient metal concentration, pH of soil or water, concentration of ligands, competition with other metals for binding sites, and mode of exposure. Plants may be exposed to metals through water, air, or soil, depending on growth form. This paper examines the influence of soil type under two regimens of water acidification on metal uptake by four species of aquatic macrophytes: smartweed (Polygonum sagittatum), burreed (Sparganium americanum), pondweed (Potamogeton diversifolius), and bladderwort (Utricularia vulgaris) in constructed, experimentally acidified wetlands. Soil types consisted of a comparatively high-metal clay or a lower-metal sandy loam. Each pond was either acidified to pH ca. 4.85.3 or allowed to remain circumneutral. Metal concentrations tended to be higher in the submerged bladderwort and pondweed than in the emergent burreed and smartweed. Soils were important to plant metal concentrations in all species, but especially in the emergents. Acidification influenced plant concentrations of some metals and was especially important in the submerged pondweed. Bioaccumulation of metals occurred for Mn, B, Sr, Ba, and Zn, compared to soil concentrations.

  6. Aquatic macrophyte community varies in urban reservoirs with different degrees of eutrophication

    Directory of Open Access Journals (Sweden)

    Suelen Cristina Alves da Silva

    2014-06-01

    Full Text Available AIM: Investigate spatial and temporal variation in the aquatic macrophyte community in four urban reservoirs located in Curitiba metropolitan region, Brazil. We tested the hypothesis that aquatic macrophyte community differ among reservoirs with different degrees of eutrophication. METHODS: The reservoirs selected ranged from oligotrophic/mesotrophic to eutrophic. Sampling occurred in October 2011, January 2012 and June 2012. Twelve aquatic macrophytes stands were sampled at each reservoir. Species were identified and the relative abundance of aquatic macrophytes was estimated. Differences among reservoirs and over sampling periods were analyzed: i through two‑way ANOVAs considering the stand extent (m and the stand biodiversity - species richness, evenness, Shannon-Wiener index and beta diversity (species variation along the aquatic macrophyte stand; and ii through PERMANOVA considering species composition. Indicator species that were characteristic for each reservoir were also identified. RESULTS: The aquatic macrophyte stand extent varied among reservoirs and over sampling periods. Species richness showed only temporal variation. On the other hand, evenness and Shannon-Wiener index varied only among reservoirs. The beta diversity of macrophyte stands did not vary among reservoirs or over time, meaning that species variability among aquatic macrophyte stands was independent of the stand extent and reservoir eutrophication. Community composition depended on the reservoir and sampling period. CONCLUSIONS: Our results support our initial expectation that reservoirs of different degrees of eutrophication have different aquatic macrophyte communities. As a consequence, each reservoir had particular indicator species. Therefore, monitoring and management efforts must be offered for each reservoir individually.

  7. Environmental study of some metals on several aquatic macrophytes

    African Journals Online (AJOL)

    Aquatic macrophytes can be used in the study of quality of water ecosystems and in monitoring of metals and other pollutants. This study was focused on assessment of metals accumulation in certain aquatic macrophytes (biomonitors), in comparison with water and sediment (abiotic monitors) of the lake. Concentrations of ...

  8. Assessing Environmental Impact on Aquatic Macrophyte Species ...

    African Journals Online (AJOL)

    Impact of environmental variables on distribution and composition of aquatic macrophyte community in a tropical river was assessed for one year (March 2009 to February 2010). Hypothesis tested was that the spatial variation in environmental variables on the river's longitudinal gradient affects macrophyte species ...

  9. Competition between free-floating and submerged macrophytes in a future of climate change

    NARCIS (Netherlands)

    Netten, J.J.C.

    2011-01-01


    This research was about the asymmetric competition between free-floating and submerged macrophytes in shallow freshwater ecosystems. I studied the effect of climate change on the dominance of free-floating macrophytes in temperate regions. The research approach was a combination of outdoor

  10. A microcosm system to evaluate the toxicity of the triazine herbicide simazine on aquatic macrophytes

    International Nuclear Information System (INIS)

    Vervliet-Scheebaum, Marco; Straus, Alain; Tremp, Horst; Hamer, Mick; Maund, Stephen J.; Wagner, Edgar; Schulz, Ralf

    2010-01-01

    This study evaluates the effects of the triazine herbicide simazine in an outdoor pond microcosm test system that contained two submerged rooted species (Myriophyllum spicatum and Elodea canadensis) and two emergent rooted species (Persicaria amphibia and Glyceria maxima) over a period of 84 days. Simazine was applied to the microcosms at nominal concentrations of 0.05, 0.5 and 5 mg/L. General biological endpoints and physiological endpoints were used to evaluate herbicide toxicity on macrophytes and the algae developing naturally in the system. Concentration-related responses of macrophytes and algae were obtained for the endpoints selected, resulting in a no observed ecologically adverse effect concentration (NOEAEC) at simazine concentrations of 0.05 mg active ingredient/L after 84 days. E. canadensis was the most negatively affected species based on length increase, which was consistently a very sensitive parameter for all macrophytes. The experimental design presented might constitute a suitable alternative to conventional laboratory single-species testing. - Simazine at concentrations of 0.05 mg/L does not cause long-term negative effects to aquatic macrophytes or algae.

  11. A microcosm system to evaluate the toxicity of the triazine herbicide simazine on aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Vervliet-Scheebaum, Marco, E-mail: marco.vervliet@biologie.uni-freiburg.d [Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg (Germany); Straus, Alain [Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg (Germany); Tremp, Horst [Institute for Environmental Sciences, University Koblenz-Landau, Fortstr. 7, 76829 Landau (Germany); Hamer, Mick [Ecological Sciences, Syngenta Crop Protection AG, Jealott' s Hill International Research Centre, Bracknell, Berkshire RG42 6EY (United Kingdom); Maund, Stephen J. [Ecological Sciences, Syngenta Crop Protection AG, 4002 Basel (Switzerland); Wagner, Edgar [Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg (Germany); Schulz, Ralf [Institute for Environmental Sciences, University Koblenz-Landau, Fortstr. 7, 76829 Landau (Germany)

    2010-02-15

    This study evaluates the effects of the triazine herbicide simazine in an outdoor pond microcosm test system that contained two submerged rooted species (Myriophyllum spicatum and Elodea canadensis) and two emergent rooted species (Persicaria amphibia and Glyceria maxima) over a period of 84 days. Simazine was applied to the microcosms at nominal concentrations of 0.05, 0.5 and 5 mg/L. General biological endpoints and physiological endpoints were used to evaluate herbicide toxicity on macrophytes and the algae developing naturally in the system. Concentration-related responses of macrophytes and algae were obtained for the endpoints selected, resulting in a no observed ecologically adverse effect concentration (NOEAEC) at simazine concentrations of 0.05 mg active ingredient/L after 84 days. E. canadensis was the most negatively affected species based on length increase, which was consistently a very sensitive parameter for all macrophytes. The experimental design presented might constitute a suitable alternative to conventional laboratory single-species testing. - Simazine at concentrations of 0.05 mg/L does not cause long-term negative effects to aquatic macrophytes or algae.

  12. [Isolation, Purification and Identification of Antialgal Activity Substances of Ethyl Acetate Extracts from the Submerged Macrophytes Potamogeton crispus].

    Science.gov (United States)

    Sun, Ying-ying; Su, Zhen-xia; Pu, Yin-fang; Xiao, Hui; Wang, Chang-hai

    2015-10-01

    Previous studies showed that ethyl acetate extracts from the submerged macrophytes Potamogeton crispus can significantly inhibit the growth of Karenia mikimitoi. Further, two antialgal activity compounds (1-2) were successfully isolated from this submerged macrophytes through a combination of silica gel column chromagraphy and repeated preparative thin-layer chromatography in this paper. These two antialgal activity compounds exhibited antialgal active against Karenia mikimitoi. Furthermore, their structure were identified on the basis of spectroscopic data: one flavonid named Trichodermatides B, and one alkaloid named 2-methylheptylisonicotinate. These two compounds were for the first time isolated from both Potamogeton crispus and submerged macrophytes.

  13. TOXICITY OF INDUSTRIAL EFFLUENT ON TOTAL CHLOROPHYLL CONTENT OF CERTAIN AQUATIC MACROPHYTES

    OpenAIRE

    Singh Priti; Vishen Ashish; Wadhwani R; Pandey Y.N

    2012-01-01

    To assess the toxicity of industrial effluents on certain macrophytes, the total chlorophyll content of free floating, submerged and emergent macrophytes were estimated in concentrations of industrial effluents at varying exposure duration. The result revealed reduction in total chlorophyll content of exposed macrophytes at higher concentrations of industrial effluents on prolonged duration.

  14. Algal communities associated with aquatic macrophytes in some ...

    African Journals Online (AJOL)

    This study describes the algal communities of six ponds colonised by aquatic macrophytes in Nyanza Province, Kenya. Plankton samples were collected from the water column and epiphytic samples from macrophytes such as Azolla, Pistia, Nymphaea, Ipomoea and Ludwigia. Pond pH, temperature, conductivity, ...

  15. Checklist of the Aquatic Macrophytes

    African Journals Online (AJOL)

    Professor, Department of Plant Science, Obafemi Awolowo University, Ile Ife, Osun State. 3. Professor, Department of Botany, Obafemi Awolowo University, Ile Ife, Osun State. (Received: October, 2010; Accepted: May, 2011). The occurrence and diversity of aquatic macrophytes on Jebba Lake were documented during the ...

  16. Macrophytes: Ecology of aquatic plants

    NARCIS (Netherlands)

    Bornette, G.; Puijalon, S.

    2009-01-01

    Aquatic plants contribute to maintaining key functions and related biodiversity in freshwater ecosystems, and to provide the needs of human societies. The way the ecological niches of macrophytes are determined by abiotic filters and biotic ones is considered. A simple, broadly applicable model of

  17. Different response of phytochelatins in two aquatic macrophytes ...

    African Journals Online (AJOL)

    Phytochelatins (PCs) have been proposed as potential biomarkers for an evaluation of metal toxicity. However, most studies have been generally limited to high concentrations of metals. In this study, two submerged macrophytes Ceratophyllum demersum L. and Elodea canadensis Michx. were adopted to investigate the ...

  18. Levels and distribution of cobalt and nickel in the aquatic macrophytes found in Skadar Lake, Montenegro.

    Science.gov (United States)

    Kastratović, Vlatko; Bigović, Miljan; Jaćimović, Željko; Kosović, Milica; Đurović, Dijana; Krivokapić, Slađana

    2018-02-06

    Macrophytes react to changes in the quality of the environment in which they live (water/sediment), and they are good bioindicators of surface water conditions. In the present study, the content of the metals cobalt (Co) and nickel (Ni) was determined in the sediment, the water, and different organs of macrophytes from six localities around Lake Skadar, across four different seasons of year. The aquatic macrophytes that have been used as bioindicator species in this study are Phragmites australis (an emerged species), Ceratophyllum demersum (a submerged species), and Lemna minor (a floating species). The aim of this study was to determine the distribution of metals in macrophyte tissues and also to discover the degree of bioaccumulation of the investigated metals, depending both on the location and on the season. The content of Co and Ni in the examined parts of the macrophytes was in the range of 0.04-8.78 and 0.30-28.5 ppm, respectively. The greatest content of the investigated metal in the organs of P. australis and C. demersum was recorded at the beginning of and during the growing season. Greater concentrations of metals in the tissue of L. minor were observed at the end of the growing season.

  19. Enhanced effects of biotic interactions on predicting multispecies spatial distribution of submerged macrophytes after eutrophication.

    Science.gov (United States)

    Song, Kun; Cui, Yichong; Zhang, Xijin; Pan, Yingji; Xu, Junli; Xu, Kaiqin; Da, Liangjun

    2017-10-01

    Water eutrophication creates unfavorable environmental conditions for submerged macrophytes. In these situations, biotic interactions may be particularly important for explaining and predicting the submerged macrophytes occurrence. Here, we evaluate the roles of biotic interactions in predicting spatial occurrence of submerged macrophytes in 1959 and 2009 for Dianshan Lake in eastern China, which became eutrophic since the 1980s. For the four common species occurred in 1959 and 2009, null species distribution models based on abiotic variables and full models based on both abiotic and biotic variables were developed using generalized linear model (GLM) and boosted regression trees (BRT) to determine whether the biotic variables improved the model performance. Hierarchical Bayesian-based joint species distribution models capable of detecting paired biotic interactions were established for each species in both periods to evaluate the changes in the biotic interactions. In most of the GLM and BRT models, the full models showed better performance than the null models in predicting the species presence/absence, and the relative importance of the biotic variables in the full models increased from less than 50% in 1959 to more than 50% in 2009 for each species. Moreover, co-occurrence correlation of each paired species interaction was higher in 2009 than that in 1959. The findings suggest biotic interactions that tend to be positive play more important roles in the spatial distribution of multispecies assemblages of macrophytes and should be included in prediction models to improve prediction accuracy when forecasting macrophytes' distribution under eutrophication stress.

  20. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation

    DEFF Research Database (Denmark)

    Cazzanelli, Matteo; Perlt, Trine Warming; Christoffersen, Kirsten Seestern

    2008-01-01

    Several studies have shown that submerged macrophytes provide a refuge for zooplankton against fish predation, whereas the role of emergent and floating-leaved species, which are often dominant in eutrophic turbid lakes, is far less investigated. Zooplankton density in open water and amongst....... As a consequence, especially in turbid lakes, the ecological role of these functional types of vegetation, and not merely that of submerged macrophyte species, should be taken into consideration....

  2. Capabilities of Seven Species of Aquatic Macrophytes for Phytoremediation of Pentachlorophenol Contaminated Sediment

    Science.gov (United States)

    Zhao, Liangyuan; Guo, Weijie; Li, Qingyun; Li, Huan; Zhao, Weihua; Cao, Xiaohuan

    2017-01-01

    Sediments are regarded as the ultimate sink of pentachlorophenol(PCP) in aquatic environment, and capabilities of seven species of aquatic macrophytes for remediating PCP contaminated sediment were investigated. Seven species of aquatic macrophytes could significantly accelerate the degradation of PCP in sediments. Among all, canna indica L., Acorus calamus L. and Iris tectorum Maxim. can be used as efficient alternative plants for remediation of PCP contaminated sediment, which attained 98%, 92% and 88% of PCP removal in sediments, respectively. PCP was detected only in root tissues and the uptake was closely related to the root lipid contents of seven plants. The presence of seven aquatic macrophytes significantly increased microbial populations and the activities of dehydrogenase compared with control sediments, indicating that rhizosphere microorganism played important role in the remediation process. In conclusion, seven species of aquatic macrophytes may act as promising tools for the PCP phytoremediation in aquatic environment, especially Canna indica L., Acorus calamus L. and Iris tectorum Maxim.

  3. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Science.gov (United States)

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  4. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Science.gov (United States)

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  5. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Directory of Open Access Journals (Sweden)

    Mo-Zhu Wang

    Full Text Available Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  6. Distribution of C, N, P in aquatic plants of some lakes in the middle of Yangtze river

    International Nuclear Information System (INIS)

    Huang Liang; Wu Ying; Zhou Juzhen; Zhang Jing; Li Wei

    2003-01-01

    By analyzing three elements (C, N, P, 13 C) in the ten aquatic plants of nine lakes in the middle of Yangtze River, the concentrations of C, N and δ 13 C in leaves of aquatic macrophytes depend on the environment where they live in. The concentration of C and N in leaves of submerged macrophytes is significantly lower than that of leaves of floating and emergent macrophytes because of limitation of inorganic carbon; And at the same time, because δ 13 C of inorganic carbon in water is higher than that of CO 2 in air, δ 13 C of leaves of submerged macrophytes is higher than that of leaves of floating and emergent macrophytes. (authors)

  7. Spatiotemporal dynamics of submerged macrophytes in a Mediterranean coastal lagoon

    Science.gov (United States)

    Obrador, Biel; Pretus, Joan Lluís

    2010-03-01

    The seasonal and interannual dynamics of the biomass and spatial distribution of a macrophyte meadow were explored in a Mediterranean coastal lagoon (Albufera des Grau, Balearic Islands) from 2002 to 2007. The dynamics in the main physicochemical variables were also analysed to assess the factors involved in the spatiotemporal variability of the submerged macrophytes. The meadows were dominated by Ruppia cirrhosa, which showed a marked seasonal cycle with winter quiescence and complete annual regrowth. The annual production of R. cirrhosa had high interannual variability and was amongst the highest described for this species in the literature, ranging 327-919 gDW m -2. The spatial distribution of macrophytes was determined by light availability and wave exposure, with the highest abundances found in shallow and gently sloped areas sheltered from the strong northerly winds. The interannual variations in macrophyte descriptors (area of occurrence, average depth of the meadows, and maximum biomass) were mainly related to water turbidity and salinity, but the effect of these variables was constrained to the spring and summer months, respectively. A significant negative correlation between the extent of coverage of R. cirrhosa and the water level at the end of the previous annual cycle was observed, suggesting a positive effect of desiccation on the extent of coverage of the macrophytes. After six years of apparent stability, the macrophytes abruptly disappeared from the lagoon. Although the mechanisms are not clear, this shift was likely attributable to a combination of several factors.

  8. Aquatic macrophyte diversity of the Pantanal wetland and upper basin

    Directory of Open Access Journals (Sweden)

    VJ. Pott

    Full Text Available This is a short review of the state of the art concerning diversity of aquatic macrophytes and the main aquatic vegetation types in the Brazilian Pantanal wetland and upper watershed. There are ca. 280 species of aquatic macrophytes on the Pantanal floodplain, with scarce endemism. On the upper watershed, Cerrado wetlands (veredas and limestone springs have a distinct flora from the Pantanal, with twice the species richness. As a representative case of aquatic habitats influenced by river flood, some primary data are presented for the Pantanal Matogrossense National Park and associated Acurizal Preserve, analysing the floristic similarity among aquatic vegetation types. We comment on problems of conservation and observe that Panicum elephantipes Nees is one of the few natives to compete with the invasive Urochloa arrecta (Hack. ex T. Durand & Schinz Morrone & Zuloaga.

  9. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  10. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes

    Science.gov (United States)

    Hilt, Sabine; Alirangues Nuñez, Marta M.; Bakker, Elisabeth S.; Blindow, Irmgard; Davidson, Thomas A.; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H.; Janssen, Annette B. G.; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L.; Mooij, Wolf M.; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D.

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative

  11. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes.

    Science.gov (United States)

    Hilt, Sabine; Alirangues Nuñez, Marta M; Bakker, Elisabeth S; Blindow, Irmgard; Davidson, Thomas A; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H; Janssen, Annette B G; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L; Mooij, Wolf M; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative

  12. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands

    Science.gov (United States)

    Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.

    2017-02-01

    The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove

  13. Effects of taxonomy, sediment, and water column on C:N:P stoichiometry of submerged macrophytes in Yangtze floodplain shallow lakes, China.

    Science.gov (United States)

    Su, Haojie; Wu, Yao; Xie, Ping; Chen, Jun; Cao, Te; Xia, Wulai

    2016-11-01

    Carbon (C), nitrogen (N) and phosphorus (P) are the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb nutrients from sediments by root uptake. However, the C:N:P stoichiometric signatures of plant tissue are affected by many additional factors such as taxonomy, nutrient availability, and light availability. We first revealed the relative importance of taxonomy, sediment, and water column on plant C:N:P stoichiometry using variance partitioning based on partial redundancy analyses. Results showed that taxonomy was the most important factor in determining C:N:P stoichiometry, then the water column and finally the sediment. In this study, a significant positive relationship was found between community C concentration and macrophyte community biomass, indicating that the local low C availability in macrophytes probably was the main reason why submerged macrophytes declined in Yangtze floodplain shallow lakes. Based on our study, it is suggested that submerged macrophytes in Yangtze floodplain shallow lakes are primarily limited by low light levels rather than nutrient availability.

  14. Xylanase and cellulase activities during anaerobic decomposition of three aquatic macrophytes.

    Science.gov (United States)

    Nunes, Maíra F; da Cunha-Santino, Marcela B; Bianchini, Irineu

    2011-01-01

    Enzymatic activity during decomposition is extremely important to hydrolyze molecules that are assimilated by microorganisms. During aquatic macrophytes decomposition, enzymes act mainly in the breakdown of lignocellulolytic matrix fibers (i.e. cellulose, hemicellulose and lignin) that encompass the refractory fraction from organic matter. Considering the importance of enzymatic activities role in decomposition processes, this study aimed to describe the temporal changes of xylanase and cellulose activities during anaerobic decomposition of Ricciocarpus natans (freely-floating), Oxycaryum cubense (emergent) and Cabomba furcata (submersed). The aquatic macrophytes were collected in Óleo Lagoon, Luiz Antonio, São Paulo, Brazil and bioassays were accomplished.  Decomposition chambers from each species (n = 10) were set up with dried macrophyte fragments and filtered Óleo Lagoon water. The chambers were incubated at 22.5°C, in the dark and under anaerobic conditions. Enzymatic activities and remaining organic matter were measured periodically during 90 days. The temporal variation of enzymes showed that C. furcata presented the highest decay and the highest maximum enzyme production. Xylanase production was higher than cellulase production for the decomposition of the three aquatic macrophytes species.

  15. Foliar uptake of cesium from the water column by aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States); Hinton, T.G. [Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29801 (United States)]. E-mail: thinton@srel.edu; Whicker, F.W. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)

    2006-07-01

    The probable occurrence and rate of foliar absorption of stable cesium ({sup 133}Cs) from the water column by aquatic macrophyte species was analyzed following the addition of {sup 133}Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10{sup 3} L kg{sup -1} d{sup -1}) and a loss rate parameter k (d{sup -1}) were estimated for each species using time series of {sup 133}Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the {sup 133}Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u {>=} 0.75 x 10{sup 3} L kg{sup -1} d{sup -1}. Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for {sup 137}Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  16. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    International Nuclear Information System (INIS)

    Espinoza-Quinones, F.R.; Rizzutto, M.A.; Added, N.; Tabacniks, M.H.; Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N.

    2009-01-01

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr 6+ mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  17. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Quinones, F.R. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)], E-mail: f.espinoza@terra.com.br; Rizzutto, M.A.; Added, N.; Tabacniks, M.H. [Physics Institute, University of Sao Paulo, Rua do Matao s/n, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)

    2009-04-15

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr{sup 6+} mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  18. Oligochaeta (Annelida, Clitellata in the Aquatic Macrophytes in Dam of Ribeirão of Anhumas Screamers (Américo Brasiliense-Sp

    Directory of Open Access Journals (Sweden)

    Nathalie Aparecida De Oliveira Sanches

    2014-06-01

    Full Text Available Macrophytes have different morphological structural complexities, offering to animals the availability of various niches. These plants are also an important substrate for the development of periphyton, which has a high nutritional value and is one of the main foods of aquatic invertebrates, mainly Naididae. This study aimed at examinining the diversity of Oligochaeta community in macrophytes belonging to genus Egeria sp. and Salvinia sp., in lagoons of Ribeirão das Anhumas dam. These macrophytes have distinct three-dimensional characteristics and different habits, being Egeria fixed submerged and Salvinia free floating. The collections of macrophytes were carried out between the months of August 2012 and April 2013. Samples of 100g (wet weight of each genus were taken from plant biomass and the removal of the plants from the environment was made with the aid of a sieve with 0.21 mm mesh. Considering the two macrophytes analyzed, Egeria sp. was the one that presented greater diversity, richness and abundance in relation to Salvinia sp. These results demonstrate that macrophytes are important for the establishment of oligochaetes, mainly providing protection and food, and possibly the morphology and habit of the plants are the most influential factors in the association of oligofauna with these plants.

  19. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes.

    Science.gov (United States)

    Pi, N; Ng, J Z; Kelly, B C

    2017-12-01

    Information regarding the bioaccumulation behaviour of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs) in aquatic plants is limited. The present study involved controlled hydroponic experiments to assess uptake and elimination rate constants (k u , k e ), bioconcentration factors (BCFs) and translocation factors (TFs) of several PhACs and EDCs in two aquatic macrophyte species, including one submerged species (Echinodorus horemanii) and one free-floating species (Eichhornia crassipes). The results revealed that the studied compounds are readily taken up in these aquatic plants. While bioconcentration factors (BCFs) and translocation factors (TFs) of the test compounds varied substantially, no discernible relationship with physicochemical properties such as octanol-water distribution coefficient (D ow ), membrane-water distribution coefficient (D mw ) and organic carbon-water partition coefficient (K oc ). Diphenhydramine and triclosan exhibited the highest degree of uptake and bioaccumulation potential. For example, the whole-plant BCF of triclosan in E. horemanii was 4390L/kg, while the whole-plant BCF of diphenhydramine in E. crassipes was 6130L/kg. BCFs of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), estrone (E1) and bisphenol A (BPA) were relatively low (2-150L/kg). BCFs were generally higher in free-floating aquatic macrophyte species compared to the submerged species. For the free-floating species, E. crassipes, the majority of PhACs and EDCs were more allocated in roots compared to leaves, with TFs1). The study findings may be useful for design and implementation of phytoremediation systems, as well as aid future modeling and risk assessment initiatives for these emerging organic contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A new mechanism of macrophyte mitigation: how submerged plants reduce malathion's acute toxicity to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2014-08-01

    A growing body of evidence suggests that aquatic plants can mitigate the toxicity of insecticides to sensitive aquatic animals. The current paradigm is that this ability is driven primarily by insecticide sorption to plant tissues, especially for hydrophobic compounds. However, recent work shows that submerged plants can strongly mitigate the toxicity of the relatively hydrophilic insecticide malathion, despite the fact that this compound exhibits a slow sorption rate to plants. To examine this disparity, we tested the hypothesis that the mitigating effect of submerged plants on malathion's toxicity is driven primarily by the increased water pH from plant photosynthesis causing the hydrolysis of malathion, rather than by sorption. To do this, we compared zooplankton (Daphnia magna) survival across five environmentally relevant malathion concentrations (0, 1, 4, 6, or 36 μg L(-1)) in test containers where we chemically manipulated water pH in the absence of plants or added the submerged plant (Elodea canadensis) but manipulated plant photosynthetic activity via shading or no shading. We discovered that malathion was equally lethal to Daphnia at all concentrations tested when photosynthetically inactive (i.e. shaded) plants were present (pH at time of dosing=7.8) or when pH was chemically decreased (pH=7.7). In contrast, when photosynthetically active (i.e. unshaded) plants were present (pH=9.8) or when pH was chemically increased (pH=9.5), the effects of 4 and 6 μg L(-1) of malathion on Daphnia were mitigated strongly and to an equal degree. These results demonstrate that the mitigating effect of submerged plants on malathion's toxicity can be explained entirely by a mechanism of photosynthesizing plants causing an increase in water pH, resulting in rapid malathion hydrolysis. Our findings suggest that current ecotoxicological models and phytoremediation strategies may be overlooking a critical mechanism for mitigating pesticides. Copyright © 2014 Elsevier Ltd

  1. Influence of light intensity on the toxicity of atrazine to the submerged freshwater aquatic macrophyte Elodea canadensis.

    Science.gov (United States)

    Brain, Richard A; Hoberg, James; Hosmer, Alan J; Wall, Steven B

    2012-05-01

    Light intensity can have a profound influence on the degree of phytotoxicity experienced by plants exposed to photosystem II (PSII) inhibiting herbicides. This relationship was evaluated in the submerged aquatic macrophyte Elodea canadensis exposed to three different concentrations of atrazine (510, 1000 and 2000 μg a.i./L) plus an untreated control at three different light intensities (0, 500 and 6000 lx) under static-renewal conditions for 14 days. Under 500 lx light intensity, control plants demonstrated a rapid increase in shoot length but minimal increase in dry shoot weight, suggesting limited photosynthesis. Based on shoot-length and biomass, growth was not affected by any atrazine exposure relative to controls under dark conditions (0 lx). Under low-light conditions at 500 lx, exposures to 510, 1000 and 2000 μg a.i./L atrazine significantly decreased net shoot lengths by 34%, 38% and 35%, respectively, relative to corresponding (500 lx) controls. However, atrazine exposure under this light condition did not significantly decrease biomass (dry shoot weight). Compared to 6000 lx, only approximately 8% of photosynthetically active radiation (PAR) was measured under 500 lx intensity, indicating that minimal PAR was available for photosynthesis. Under optimal light conditions (6000 lx), net shoot lengths significantly decreased in the treated atrazine groups by 48%, 51% and 68%, and net dry shoot weights (biomass) were significantly decreased by 79%, 81% and 91%, respectively, relative to corresponding (6000 lx) controls. These data show that under low light conditions, atrazine-induced effects on dry shoot weight (biomass) are dependent on available PAR and active photosynthesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  3. Studies on the treatment efficiency of sediment phosphorus with a combined technology of PCFM and submerged macrophytes

    International Nuclear Information System (INIS)

    Zhang, Yi; He, Feng; Xia, Shibin; Zhou, Qiaohong; Wu, Zhenbin

    2015-01-01

    The removal efficiency of sediment phosphorus (P) in all fractions with a combined technology of porous ceramic filter media (PCFM) and submerged macrophytes was studied in Donghu Lake, Wuhan, China. The adsorption kinetic models of the sediment P in all fractions on PCFM could be described well by a power function equations (Q t  = k · t a , 0 < a < 1). The P removal capacity of the combination of PCFM and Potamogeton crispus, a submerged macrophyte, was higher for all P forms than that of the combination of PCFM and another macrophyte, Vallisneria spiralis. This study suggested that the combination of PCFM and macrophytes could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. The combined technology could be further applied to treat internal P loading in eutrophic waters. - Highlights: • PCFM were tested as novel sorbents for sediment P in all fractions removal. • Adsorption kinetic models of sediment P on PCFM could be described by power function equations. • Combination of PCFM and macrophytes could achieve a synergetic sediment P removal. • Combined technology could be further applied to treat internal P loading in eutrophic waters. - The combination of PCFM and macrophytes could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that used separately.

  4. Effect of paclobutrazol on three different aquatic macrophytes under ...

    African Journals Online (AJOL)

    Effect of paclobutrazol on three different aquatic macrophytes under in vitro monoculture or polyculture conditions. Kitti Bodhipadma, Sompoch Noichinda, Thanaphol Maneeruang, Koravisd Nathalang, Luepol Punnakanta, David WM Leung ...

  5. Evaluation of invasions and declines of submersed aquatic macrophytes

    Science.gov (United States)

    Chambers, P.A.; Barko, J.W.; Smith, C.S.

    1993-01-01

    During the past 60 yr, sightings of aquatic macrophyte species in geographic regions where they had previously not been found have occurred with increasing frequency, apparently due to both greater dispersal of the plants as a result of human activities as well as better documentation of plant distribution. Intercontinental invasions, such as Myriophyllum spicatum and Hydrilla into North America, Elodea canadensis into Europe and Elodea nuttallii, Egeria densa and Cabomba caroliniana into Japan, have generally been well documented. However, the spread of an exotic species across a continent after its initial introduction (e.g., Potamogeton crispus in North America) or the expansion of a species native to a continent into hitherto unexploited territory (e.g.,the expansion of the North American native Myriophyllum heterophyllum into New England) have received little attention. Natural declines in aquatic macrophyte communities have also received little scientific study although there are many accounts of macrophyte declines. The best-documented example comes from the marine literature where extensive declines of eelgrass (Zostera) occurred in the 1930s along the Atlantic coast due to a pathogenic marine slime mold (''wasting disease''). The aim of this workshop was to identify examples of invasions or natural declines of aquatic macrophyte species throughout the world and assess the importance of environmental factors in their control. Forty-five scientists and aquatic plant managers from ten countries participated in the workshop. Eleven of the participants contributed written evaluations of species invasions and declines in their geo-graphic region. These were distributed to registered participants prior to the meeting and served as the starting-point of workshop discussions. To address the topics raised in the working papers, the participants divided into four working groups to evaluate: 1. Environmental controls of species invasions. 2. Biotic controls of species

  6. Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake.

    Science.gov (United States)

    Zhao, Da-yong; Luo, Juan; Zeng, Jin; Wang, Meng; Yan, Wen-ming; Huang, Rui; Wu, Qinglong L

    2014-01-01

    Abundances and community compositions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in unvegetated sediment and the rhizosphere sediments of three submerged macrophytes (Ceratophyllum demersum, Vallisneria spinulosa, and Potamogeton crispus) were investigated in a large, eutrophic freshwater lake, Lake Taihu. Abundances of archaeal ammonia monooxygenase alpha-subunit (amoA) gene (from 6.56 × 10(6) copies to 1.06 × 10(7) copies per gram of dry sediment) were higher than those of bacterial amoA (from 6.13 × 10(5) to 3.21 × 10(6) copies per gram of dry sediment) in all samples. Submerged macrophytes exhibited no significant effect on the abundance and diversity of archaeal amoA gene. C. demersum and V. spinulosa increased the abundance and diversity of bacterial amoA gene in their rhizosphere sediment. However, the diversity of bacterial amoA gene in the rhizosphere sediments of P. crispus was decreased. The data obtained in this study would be helpful to elucidate the roles of submerged macrophytes involved in the nitrogen cycling of eutrophic lake ecosystems.

  7. Effects of linuron on a rooted aquatic macrophyte in sediment-dosed test systems

    NARCIS (Netherlands)

    Buresova, H.; Crum, S.J.H.; Belgers, J.D.M.; Adriaanse, P.I.; Arts, G.H.P.

    2013-01-01

    Effects of linuron on the sediment-rooted aquatic macrophyte Myriophyllum spicatum L. were studied in sediment-dosed test systems following a proposed guideline with extended test duration. Sediment, pore water, overlying water and macrophyte shoots were sampled weekly for chemical analyses. Linuron

  8. Studies on the treatment efficiency of sediment phosphorus with a combined technology of PCFM and submerged macrophytes.

    Science.gov (United States)

    Zhang, Yi; He, Feng; Xia, Shibin; Zhou, Qiaohong; Wu, Zhenbin

    2015-11-01

    The removal efficiency of sediment phosphorus (P) in all fractions with a combined technology of porous ceramic filter media (PCFM) and submerged macrophytes was studied in Donghu Lake, Wuhan, China. The adsorption kinetic models of the sediment P in all fractions on PCFM could be described well by a power function equations (Qt = k · t(a), 0 macrophyte, was higher for all P forms than that of the combination of PCFM and another macrophyte, Vallisneria spiralis. This study suggested that the combination of PCFM and macrophytes could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. The combined technology could be further applied to treat internal P loading in eutrophic waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biomechanical tactics of chiral growth in emergent aquatic macrophytes

    Science.gov (United States)

    Zhao, Zi-Long; Zhao, Hong-Ping; Li, Bing-Wei; Nie, Ben-Dian; Feng, Xi-Qiao; Gao, Huajian

    2015-01-01

    Through natural selection, many plant organs have evolved optimal morphologies at different length scales. However, the biomechanical strategies for different plant species to optimize their organ structures remain unclear. Here, we investigate several species of aquatic macrophytes living in the same natural environment but adopting distinctly different twisting chiral morphologies. To reveal the principle of chiral growth in these plants, we performed systematic observations and measurements of morphologies, multiscale structures, and mechanical properties of their slender emergent stalks or leaves. Theoretical modeling of pre-twisted beams in bending and buckling indicates that the different growth tactics of the plants can be strongly correlated with their biomechanical functions. It is shown that the twisting chirality of aquatic macrophytes can significantly improve their survivability against failure under both internal and external loads. The theoretical predictions for different chiral configurations are in excellent agreement with experimental measurements. PMID:26219724

  10. Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose?

    Science.gov (United States)

    Schoelynck, Jonas; Bal, Kris; Backx, Hans; Okruszko, Tomasz; Meire, Patrick; Struyf, Eric

    2010-04-01

    *Although silica (Si) is not an essential element for plant growth in the classical sense, evidence points towards its functionality for a better resistance against (a)biotic stress. Recently, it was shown that wetland vegetation has a considerable impact on silica biogeochemistry. However, detailed information on Si uptake in aquatic macrophytes is lacking. *We investigated the biogenic silica (BSi), cellulose and lignin content of 16 aquatic/wetland species along the Biebrza river (Poland) in June 2006 and 2007. The BSi data were correlated with cellulose and lignin concentrations. *Our results show that macrophytes contain significant amounts of BSi: between 2 and 28 mg BSi g(-1). This is in the same order of magnitude as wetland species (especially grasses). Significant antagonistic correlations were found between lignin, cellulose and BSi content. Interestingly, observed patterns were opposite for wetland macrophytes and true aquatic macrophytes. *We conclude that macrophytes have an overlooked but potentially vast storage capacity for Si. Study of their role as temporal silica sinks along the land-ocean continuum is needed. This will further understanding of the role of ecosystems on land ocean transport of this essential nutrient.

  11. Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range

    Directory of Open Access Journals (Sweden)

    Cristina Pulido

    2014-08-01

    Full Text Available Distribution of aquatic macrophytes in lakes is related to geographical, morphological, catchment and water chemistry variables as well as human impacts, which modify the original environment. Here, we aim at building statistical models to establish the ecological niches of 11 aquatic macrophytes (10 different phanerogams and the genus Nitella from oligotrophic soft-water lakes and infer their ecological requirements and environmental constraints at the southernmost limit of their distribution. Macrophyte occurrence and environmental variables were obtained from 86 non-exploited oligotrophic soft-water lakes from the Pyrenees (Southern Europe; 42º50´N, 1º00´E; macrophytes inhabited 55 of these lakes. Optimum ranges and macrophyte occurrence were predicted in relation to 18 geographical, morphological, catchment and water chemistry variables using univariate and multivariate logistic models. Lakes at low altitude, in vegetated catchments and with low water concentration of NO3- and SO4-2, were the most suitable to host macrophytes. In general, individual species of aquatic macrophytes showed clear patterns of segregation along conductivity and pH gradients, although the specific combination of variables selected in the best models explaining their occurrence differed among species.  Based on the species response to pH and conductivity, we found Isoetes lacustris have its optimum in waters with low conductivity and pH (i.e. negative monotonic response. In contrast, Callitriche palustris, Ranunculus aquatilis, Subularia aquatica, Nitella spp., and Myriophyllum alterniflorum showed an optimum at intermediate values (i.e. unimodal response, whereas Potamogeton berchtoldii, Potamogeton alpinus, and Ranunculus trichophyllus as species had their optimum at relatively high water pH and conductivity (i.e. positive monotonic response. This pattern has been observed in other regions for the same species, although with different optima and tolerance

  12. Effects of contrasting omnivorous fish on submerged macrophyte biomass in temperate lakes: a mesocosm experiment

    NARCIS (Netherlands)

    Dorenbosch, M.; Bakker, E.S.

    2012-01-01

    1.Freshwater fish can affect aquatic vegetation directly by consuming macrophytes or indirectly by changing water quality. However, most fish in the temperate climate zone have an omnivorous diet. The impact of fish as aquatic herbivores in temperate climates therefore remains unclear and depends on

  13. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil

    Directory of Open Access Journals (Sweden)

    Roger Paulo Mormul

    2010-12-01

    Full Text Available In the last three decades, rapid assessment surveys have become an important approach for measuring aquatic ecosystem biodiversity. These methods can be used to detect anthropogenic impacts and recognize local or global species extinctions. We present a floristic survey of the aquatic macrophytes along the Brazilian margin of the Itaipu Reservoir conducted in 2008 and compare this with a floristic survey conducted ten years earlier. We used ordination analysis to determine whether assemblage composition differed among reservoir arms. Macrophyte species were sampled in each of the 235 sampling stations using a boat, which was positioned inside three places of each macrophyte stand to record species and search for small plants. We also collected submerged plants using a rake with the boat moving at constant velocity for ten minutes. We assigned individual macrophyte species to life form and identified representative species for each life form. A total of 87 macrophyte taxa were identified. The "emergent" life forms contained the highest number of species, followed by "rooted submerged" life forms. The extensive survey of macrophytes undertaken in September 2008 recorded more species than a survey conducted between 1995 and 1998. This could be due to changes in water physico-chemistry, disturbances due to water drawdown and the long period between surveys, which may have allowed natural colonization by other species. Additionally, differences in the classification systems and taxonomic resolution used in the surveys may account for differences in the number of species recorded. Assemblage composition varied among the arms and was affected by underwater radiation (as measured using a Secchi disk and fetch. Five non-native species were found. Two of these non-native species (Urochloa subquadripara and Hydrilla verticillata are of special concern because they have a high frequency of occurrence and occupy large marginal areas of the reservoir. Future

  14. 異なる酸素条件下で沈水植物(コカナダモ、エビモ)の生長、栄養塩吸収およびいくつかの生化学的パラメータに対するアンモニウムイオン濃度の影響について

    OpenAIRE

    TANJEENA, ZAMAN

    2013-01-01

    Submerged macrophytes are important functional and structural elements of aquatic ecosystems, and fulfill several important functions in these systems. They can be regarded as key species; changes in the macrophyte community can have major consequences for the aquatic ecosystems. Many different types of submerged aquatic macrophytes have been identified globally. Most submerged aquatic macrophytes belong to the families Ceratophyllaceae, Haloragaceae, Hydrocharitaceae, Nymphaeaceae and Potam...

  15. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: Roles of light, sediment nutrient levels, and propagule density

    NARCIS (Netherlands)

    Verhofstad, M.J.J.M.; Alirangues Núñez, M. M.; Reichman, E. P.; van Donk, E.; Lamers, L. P.M.; Bakker, E. S.

    2017-01-01

    After restoration, eutrophicated shallow freshwaters may show mass development of only one or two submerged macrophyte species, lowering biodiversity and hampering recreation. It is unclear which environmental factors govern this high percentage of the volume inhabited (PVI2) by submerged

  16. Application of in-situ bioassays with macrophytes in aquatic mesocosm studies.

    Science.gov (United States)

    Coors, Anja; Kuckelkorn, Jochen; Hammers-Wirtz, Monika; Strauss, Tido

    2006-10-01

    Aquatic mesocosm studies assess ecotoxicological effects of chemicals by using small artificial ponds as models of lentic ecosystems. In this study, methods of controlled insertion of macrophytes within an outdoor mesocosm study were explored. Although analytically confirmed concentrations of the model herbicide terbuthylazine were high enough to expect direct effects on phytoplankton, functional parameters and dominant taxa abundance indicated only minor and transient effects. In-situ assays with Lemna minor, Myriophyllum spicatum, Potamogeton lucens and Chara globularis revealed adverse effects at concentrations in accordance with literature data. Complex interactions such as nutrient limitation and competition were possible reasons for the observed growth promotion at the lower concentration of about 5 microg/l terbuthylazine. The approach of macrophyte in-situ bioassays within a mesocosm study proved to be applicable. Presumed advantages are simultaneous acquisition of toxicity data for several species of aquatic plants under more realistic conditions compared to laboratory tests and inclusion of macrophytes as important structural and functional components in mesocosms while limiting their domination of the model ecosystem.

  17. Spatial distribution and biomass of aquatic rooted macrophytes and their relevance in the metabolism of a Mediterranean coastal lagoon

    Directory of Open Access Journals (Sweden)

    Biel Obrador

    2007-03-01

    Full Text Available This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.

  18. Can aquatic macrophytes mobilize technetium by oxidizing their rhizosphere?

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.

    1991-01-01

    Technetium (Tc) is very mobile in aerated surface environments, but is essentially immobile and biologically unavailable in anaerobic sediments. Aquatic macrophyte roots penetrate anaerobic sediments, carrying O 2 downward and frequently creating oxidizing conditions in their rhizosphere. The authors hypothesized that this process could mobilize otherwise unavailable Tc, possibly leading to incorporation of Tc into human or animal foods. Through experiments with rice (Oryza sativa L.), and with a novel artificial macrophyte root, they concluded that this pathway is unlikely to be important for annual plants, especially in soils with a high biological oxygen demand. The relatively slow oxidation of Tc limited its mobilization by short-lived root systems

  19. Forecasting the impact of an invasive macrophyte species in the littoral zone through aquatic insect species composition

    Directory of Open Access Journals (Sweden)

    Hugo H. L. Saulino

    2017-11-01

    Full Text Available ABSTRACT Invasive macrophytes threaten freshwater ecosystem biodiversity. We analyzed the impact of the invasive white ginger lily (Hedychium coronarium J. König, Zingiberaceae on aquatic insect assemblages living in the littoral zone of a tropical reservoir. We took aquatic insect samples in the littoral zone on four main vegetal profile banks: white ginger monotypic bank, forest partially invaded, native macrophyte monotypic bank and riparian forest. At each vegetal bank, we measured abiotic variables such as dissolved oxygen, pH, water temperature and depth. We analyzed the aquatic insects through abundance, richness and Simpson diversity. We used the non-Metric Multidimensional Scaling (nMDS analysis to analyze the spatial distribution of each assemblage, and Analysis of similarities (ANOSIM to verify differences amongst dissimilarity distances. Additionally, we analyzed the main taxa associated with invasive macrophytes through indicator species analyses using IndVal index. We observed that the invasive macrophyte banks presented higher abundance of associated specimens, as well as lower dissimilarity of aquatic insect assemblages. Additionally, invasive macrophytes shifted the water pH and littoral depth of reservoir banks. The IndVal index indicated eight aquatic insects as indicator species. Labrundinia unicolor Silva, 2013, Ablabesmyia depaulai Neubern, 2013 and Diastatops Rambur, 1842 were indicator species on banks. We concluded that invasion of white ginger lily caused loss of shallow littoral habitat and altered the pH of the surrounding water probably by high decomposition rate and high production of plant biomass. We suggest the use of species of aquatic insects as indicator species to monitor white ginger lily impact in freshwater systems.

  20. Aquatic macrophytes in the large, sub-tropical Itaipu Reservoir, Brazil

    OpenAIRE

    Roger Paulo Mormul; Fernando Alves Ferreira; Thaisa Sala Michelan; Priscilla Carvalho; Marcio José Silveira; Sidinei Magela Thomaz

    2010-01-01

    In the last three decades, rapid assessment surveys have become an important approach for measuring aquatic ecosystem biodiversity. These methods can be used to detect anthropogenic impacts and recognize local or global species extinctions. We present a floristic survey of the aquatic macrophytes along the Brazilian margin of the Itaipu Reservoir conducted in 2008 and compare this with a floristic survey conducted ten years earlier. We used ordination analysis to determine whether assemblage ...

  1. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are contaminants of aquatic ecosystems with numerous sources, both anthropogenic and natural. The toxicity of HAAs to aquatic plants is generally uncharacterized. Laboratory tests were conducted with three macrophytes (Lemna gibba, Myriophyllum sibiricum and Myriophyllum spicatum) to assess the toxicity of five HAAs. Myriophyllum spp. has been proposed as required test species for pesticide registration in North America, but few studies have been conducted under standard test conditions. The HAAs in the present experiments were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). MCA was the most toxic to Myriophyllum spp. with EC 50 values ranging from 8 to 12.4 mg/l depending on the endpoint, followed by DCA (EC 50 range 62-722.5 mg/l), TCA (EC 50 range 49.5-1702.6 mg/l), CDFA (EC 50 range 105.3 to >10,000 mg/l) and with TFA (EC 50 range 222.1 to 10,000 mg/l) the least toxic. Generally, L. gibba was less sensitive to HAA toxicity than Myriophyllum spp., with the difference in toxicity between them approximately threefold. The range of toxicity within Myriophyllum spp. was normally less than twofold. Statistically, plant length and node number were the most sensitive endpoints as they had the lowest observed coefficients of variation, but they were not the most sensitive to HAA toxicity. Toxicological sensitivity of endpoints varied depending on the measure of effect chosen and the HAA, with morphological endpoints usually an order of magnitude more sensitive than pigments for all plant species. Overall, mass and root measures tended to be the most sensitive indicators of HAA toxicity. The data from this paper were subsequently used in an ecological risk assessment for HAAs and aquatic plants. The assessment found HAAs to be of low risk to aquatic macrophytes and the results are described in the second manuscript of this series

  2. Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination.

    Science.gov (United States)

    Xu, Peng; Xiao, Enrong; Xu, Dan; Li, Juan; Zhang, Yi; Dai, Zhigang; Zhou, Qiaohong; Wu, Zhenbin

    2018-05-01

    The phosphorus reduction in water column was attempted by integrating sediment microbial fuel cells (SMFCs) with the submerged macrophyte Vallisneria spiralis. A comparative study was conducted to treat simulated water rich in phosphate with a control and three treatments: SMFC alone (SMFC), submerged macrophytes alone (macophyte), and combined macrophytes and fuel cells (M-SMFC). All treatments promoted phosphorus flux from the water column to sediments. Maximum phosphorus reduction was obtained in proportion to the highest stable phosphorus level in sediments in M-SMFC. For the initial phosphate concentrations of 0.2, 1, 2, and 4 mg/L, average phosphate values in the overlying water during four phases decreased by 33.3% (25.0%, 8.3%), 30.8% (5.1%, 17.9%), 36.5% (27.8%, 15.7%), and 36.2% (0.7%, 22.1%) for M-SMFC (macrophyte, SMFC), compared with the control. With macrophyte treatment, the obvious phosphorus release from sediments was observed during the declining period. However, such phenomenon was significantly inhibited with M-SMFC. The electrogenesis bacteria achieved stronger phosphorus adsorption and assimilation was significantly enriched on the closed-circuit anodes. The higher abundance of Geobacter and Pseudomonas in M-SMFC might in part explain the highest phosphorus reduction in the water column. M-SMFC treatment could be promising to control the phosphorus in eutrophic water bodies.

  3. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion

    International Nuclear Information System (INIS)

    Zhu Junying; Liu Biyun; Wang Jing; Gao Yunni; Wu Zhenbin

    2010-01-01

    For revealing the mechanism of allelopathic influence on phytoplankton by aquatic macrophytes, the growth and photosynthetic activities of cyanobacteria Microcystis aeruginosa and the chlorophyte Selenastrum capricornutum were investigated when they coexisted with submerged macrophyte Myriophyllum spicatum and were exposed to allelopathic polyphenols: pyrogallic acid (PA), gallic acid (GA), ellagic acid (EA) and (+)-catechin (CA). According to the results of coexistence assays, the non-photochemical quenching (NPQ) and effective quantum efficiency (YII) of M. aeruginosa were affected earlier and more rapidly than the cell density. However, the influence of M. spicatum on S. capricornutum was not found. When the Toxicity Index (TI) was applied to evaluate the combined effects of binary and multiple mixtures of polyphenols, it was found that the four tested polyphenols with the proportion identified in the M. spicatum-cultured solution were observed to present synergistic effect (0.36-0.49) according to the cell density, NPQ and YII of M. aeruginosa. With the combined effects of polyphenols on S. capricornutum, only additive action (0.52-1.62) was found. On the other hand, PA (2.97 mg L -1 ), GA (2.65 mg L -1 ) caused significant reductions of photosystem II (PSII) and whole electron transport chain activities of M. aeruginosa by 71.43 and 18.37%, 70.95 and 40.77% (P < 0.05), respectively, after 24-h exposure, but no inhibition effect was found in S. capricornutum. The dark respiration and photosystem I (PSI) activities of M. aeruginosa were significantly increased by exposure to PA and GA (P < 0.05). Nevertheless, EA and CA had no influence on the electron transport activities of the tested organisms. These results indicate that the reduction in photosynthetic activity of M. aeruginosa and the synergistic effect of allelochemicals may be two important causes for the inhibition of undesired phytoplankton by submersed macrophytes in natural aquatic ecosystems, and

  4. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Junying [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Liu Biyun [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Wang Jing; Gao Yunni [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Wu Zhenbin, E-mail: wuzb@ihb.ac.cn [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China)

    2010-06-10

    For revealing the mechanism of allelopathic influence on phytoplankton by aquatic macrophytes, the growth and photosynthetic activities of cyanobacteria Microcystis aeruginosa and the chlorophyte Selenastrum capricornutum were investigated when they coexisted with submerged macrophyte Myriophyllum spicatum and were exposed to allelopathic polyphenols: pyrogallic acid (PA), gallic acid (GA), ellagic acid (EA) and (+)-catechin (CA). According to the results of coexistence assays, the non-photochemical quenching (NPQ) and effective quantum efficiency (YII) of M. aeruginosa were affected earlier and more rapidly than the cell density. However, the influence of M. spicatum on S. capricornutum was not found. When the Toxicity Index (TI) was applied to evaluate the combined effects of binary and multiple mixtures of polyphenols, it was found that the four tested polyphenols with the proportion identified in the M. spicatum-cultured solution were observed to present synergistic effect (0.36-0.49) according to the cell density, NPQ and YII of M. aeruginosa. With the combined effects of polyphenols on S. capricornutum, only additive action (0.52-1.62) was found. On the other hand, PA (2.97 mg L{sup -1}), GA (2.65 mg L{sup -1}) caused significant reductions of photosystem II (PSII) and whole electron transport chain activities of M. aeruginosa by 71.43 and 18.37%, 70.95 and 40.77% (P < 0.05), respectively, after 24-h exposure, but no inhibition effect was found in S. capricornutum. The dark respiration and photosystem I (PSI) activities of M. aeruginosa were significantly increased by exposure to PA and GA (P < 0.05). Nevertheless, EA and CA had no influence on the electron transport activities of the tested organisms. These results indicate that the reduction in photosynthetic activity of M. aeruginosa and the synergistic effect of allelochemicals may be two important causes for the inhibition of undesired phytoplankton by submersed macrophytes in natural aquatic ecosystems

  5. Can aquatic macrophytes be biofilters for gadolinium based contrasting agents?

    Science.gov (United States)

    Braun, Mihály; Zavanyi, Györgyi; Laczovics, Attila; Berényi, Ervin; Szabó, Sándor

    2018-05-15

    The use of gadolinium-based contrasting agents (GBCA) is increasing because of the intensive usage of these agents in magnetic resonance imaging (MRI). Waste-water treatment does not reduce anthropogenic Gd-concentration significantly. Anomalous Gd-concentration in surface waters have been reported worldwide. However, removal of GBCA-s by aquatic macrophytes has still hardly been investigated. Four aquatic plant species (Lemna gibba, Ceratophyllum demersum, Elodea nuttallii, E. canadensis) were investigated as potential biological filters for removal of commonly used but structurally different GBCA-s (Omniscan, Dotarem) from water. These plant species are known to accumulate heavy metals and are used for removing pollutants in constructed wetlands. The Gd uptake and release of the plants was examined under laboratory conditions. Concentration-dependent infiltration of Gd into the body of the macrophytes was measured, however significant bioaccumulation was not observed. The tissue concentration of Gd reached its maximum value between day one and four in L. gibba and C. demersum, respectively, and its volume was significantly higher in C. demersum than in L. gibba. In C. demersum, the open-chain ligand Omniscan causes two-times higher tissue Gd concentration than the macrocyclic ligand Dotarem. Gadolinium was released from Gd-treated duckweeds into the water as they were grown further in Gd-free nutrient solution. Tissue Gd concentration dropped by 50% in duckweed treated by Omniscan and by Dotarem within 1.9 and 2.9 days respectively. None of the macrophytes had a significant impact on the Gd concentration of water in low and medium concentration levels (1-256 μg L -1 ). Biofiltration of GBCA-s by common macrophytes could not be detected in our experiments. Therefore it seems that in constructed wetlands, aquatic plants are not able to reduce the concentration of GBCA-s in the water. Furthermore there is a low risk that these plants cause the

  6. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    Science.gov (United States)

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  7. Potential for phosphate mitigation from agricultural runoff by three aquatic macrophytes

    Science.gov (United States)

    Phosphate from agricultural runoff is considered a contributor to eutrophication. Three aquatic macrophyte species, Leersia oryzoides, Typha latifolia, and Sparganium americanum, were investigated for their phosphate mitigation ability. Mesocosms were exposed to flowing phosphate enriched water (1...

  8. Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China.

    Science.gov (United States)

    Fan, Zhou; Han, Rui-Ming; Ma, Jie; Wang, Guo-Xiang

    2016-07-01

    nirK and nirS genes are important functional genes involved in the denitrification pathway. Recent studies about these two denitrifying genes are focusing on sediment and wastewater microbe. In this study, we conducted a comparative analysis of the abundance and diversity of denitrifiers in the epiphyton of submerged macrophytes Potamogeton malaianus and Ceratophyllum demersum as well as in bacterioplankton in the shallow fresh lake Taihu, China. Results showed that nirK and nirS genes had significant different niches in epiphyton and bacterioplankton. Bacterioplankton showed greater abundance of nirK gene in terms of copy numbers and lower abundance of nirS gene. Significant difference in the abundance of nirK and nirS genes also existed between the epiphyton from different submerged macrophytes. Similar community diversity yet different community abundance was observed between epiphytic bacteria and bacterioplankton. No apparent seasonal variation was found either in epiphytic bacteria or bacterioplankton; however, environmental parameters seemed to have direct relevancy with nirK and nirS genes. Our study suggested that submerged macrophytes have greater influence than seasonal parameters in shaping the presence and abundance of bacterial denitrifiers. Further investigation needs to focus on the potential contact and relative contribution between denitrifiers and environmental factors.

  9. Growth Control of Cyanobacteria by Three Submerged Macrophytes

    Science.gov (United States)

    Wang, Haiou; Zhong, Guangrong; Yan, Hai; Liu, Hu; Wang, Yao; Zhang, Chun

    2012-01-01

    Abstract To illustrate the control of harmful cyanobacterial growth and the removal of nutritients from fresh water, three submerged macrophytes were grown in the raw water of Guishui Lake. Lindernia rotundifolia, Hygrophila stricta, and Cryptocoryne crispatula were grown together in situ to assess their effectiveness in nutrient removal in microcosms. Results revealed the inhibitory effects of these species on cyanobacterial growth. In addition, water quality in the planted microcosms showed improvement when compared to the water quality of the unplanted microcosm. At all treatments studied, the chemical oxygen demand in the planted microcosms was lower than that in the unplanted microcosms, and the removal rate of all the nitrogen and phosphate in the planted microcosms was better than that of the microcosm without plants. Our study offers a useful algal control method for the lakes or reservoirs that suffer from harmful cyanobacterial blooms. PMID:22693412

  10. Accumulation of trace metals by aquatic macrophytes and their possible use in phytoremediation techniques

    Directory of Open Access Journals (Sweden)

    Michaela Hillermannová

    2008-01-01

    Full Text Available The aim of the performed research was to obtain knowledge on the ability of aquatic plants naturally growing at a site to absorb trace metals contained in bottom sediments and surface water. Furthermore, we compared differences in the accumulation of trace metals by the individual groups of aquatic plants (submerged and emergent and assessed a possible use of the individual plant species in phytoremediation techniques. Representative samples of water, sediments and aquatic macrophytes were taken from three anthropogenically loaded streams in six monitoring cycles in several collection profiles differing in the distance from a source of contamination. The samples were analysed for the total content of selected trace metals (As, Cd, Pb, Al, Hg, Zn, Fe, Mn, Cr, Ni and Cu. For comparison, one profile at an unloaded site was sampled as well. The obtained results were subjected to multivariate statistical analysis of data. Increased contents of Fe, Al, Mn, Cr and Zn were detected in sediments and plant biomass at loaded sites, namely 2–3× higher than at the comparing site. The contents of metals in surface water samples were altogether below the detection limit of the analytical method. When evaluating the individual plant species, we can state that the lowest contents of metals were detected in shore species (reed canary grass Phalaroides arundinacea, wood club-rush Scirpus silvaticus and red dock Rumex aquaticus; plant species growing in the very water current (water star-wort Callitriche sp. and flote-grass Glyceria fluitans exhibited mean contents of metals. In species forming mats (Fontinalis antipyretica and Cladophora sp., these contents were several times higher as compared to the previous species. The results of the performed research show that one of important factors, which influence the accumulation of trace metals in plants, is their ecological group (emergent – submerged affiliation and the species classification within this group

  11. Aquatic macrophytes from Danube Delta lagoons Musura Bay and Zatonul Mare

    Directory of Open Access Journals (Sweden)

    Sava D.,

    2016-05-01

    Full Text Available The Romanian Danube Delta, a unique, young and continuing to grow region situated in the eastern part of Europe, is the largest continuous marshland and the second largest delta on the continent, and also a favorable place for developing a unique flora and fauna in Europe, with many rare and protected species. The predominance of the aquatic environment, led to the existence of a particular macrophytic flora. In this context, the purpose of this paper is to contribute to the study of aquatic macrophytes. The present study took place over two years, between 2013-2014, and in each year a number of expeditions were made in the two lagoons (Musura Bay and Zătonul Mare in different seasons, in order to observe the diverse flora, because, due to seasonal variation in water quality, there might be a significantly seasonality of the vegetation also.

  12. [Effects of two submerged macrophytes on dissolved inorganic nitrogen in overlying water and interstitial water].

    Science.gov (United States)

    Yang, Wen-Bin; Li, Yang; Sun, Gong-Xian

    2014-06-01

    Ceratophyllum demersum (C. demersum) and Vallisneria spiralis L. (V. spiralis L.) were studied as model submerged macrophytes. The effects of the submerged macrophytes on the forms and concentration of the dissolved inorganic nitrogen (DIN) in the overlying water and the interstitial water, as well as the diffusion flux of DIN in the water-sediment interface were investigated by batch simulation experiment. The results indicated that the removal effect of DIN in the overlying water was better than that in the interstitial water by submerged macrophytes. The removal efficiency of DIN in the overlying water and the interstitial water followed the order of NO2(-) -N > NH4(+) -N > NO3(-) -N. The removal rate of DIN by C. demersum was higher than that of V. spiralis L. in the overlying water, while the result was converse in the interstitial water. C. demersum and V. spiralis L. decreased the diffusion flux of NH4(+) -N and NO2(-) -N, and increased the diffusion flux of NO3(-) -N significantly. Consequently, NO3(-) -N replaced NH4(+) -N and became the main form of DIN, which diffused from the interstitial water to the overlying water. The impact of the diffusion flux of NO3(-) -N between C. demersum and V. spiralis L. showed no significant difference, and the result was the same for NH4(+) -N. C. demersum and V. spiralis L. increased the width of variation of the three nitrogen forms to total DIN in the overlying water and the interstitial water, the influence on the ratio of DIN by C. demersum was greater than that of V. spiralis L. in the overlying water, while the result was opposite in the interstitial water. In general, C. demersum had more influence in the overlying water, while V. spiralis L. had more influence in the interstitial water, and the influence of DIN diffusion flux was not significant.

  13. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.

    Science.gov (United States)

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-09-30

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA

  14. Temporal changes of aquatic macrophytes vegetation in a Iowland groundwater feed eutrophic course (Klátovské rameno, Slovakia

    Directory of Open Access Journals (Sweden)

    Helena Oťahel'ová

    2011-01-01

    Full Text Available Klátovské rameno is the lowland slow-flowing groundwater feed eutrophic tributary of the Malý Dunaj River (Danube Plain, where our study of temporal changes of aquatic macrophytes vegetation was realised in 1999 and 2005. For survey of aquatic vascular macrophytes the Kohler’s method (Janauer 2003 was used, which is compliant with European standard EN 14184. Altogether 35 aquatic macrophyte species were recorded during the survey. Nuphar lutea persisted as the most dominant species in 1996 and 2005. Species diversity increased slightly after the nine years: ten species immigrated to the watercourse. The changes in species abundance have shown weak differences, however the abundance of Sparganium emersum has increased markedly. Alien species Elodea canadensis and both S. emersum and Hydrocharis morsus-ranae significantly enlarged their distribution in the stream. The ecological quality of the river, based on the aquatic macrophytes assessment criteria, was slightly impaired after nine years, but still 90% of its studied course has a high or good ecological status.

  15. Hydrologic cycle and dynamics of aquatic macrophytes in two intermittent rivers of the semi-arid region of Brazil

    Directory of Open Access Journals (Sweden)

    F. Pedro

    Full Text Available The dynamics of aquatic macrophytes in intermittent rivers is generally related to the characteristics of the resistance and resilience of plants to hydrologic disturbances of flood and drought. In the semi-arid region of Brazil, intermittent rivers and streams are affected by disturbances with variable intensity, frequency, and duration throughout their hydrologic cycles. The aim of the present study is to determine the occurrence and variation of biomass of aquatic macrophyte species in two intermittent rivers of distinct hydrologic regimes. Their dynamics were determined with respect to resistance and resilience responses of macrophytes to flood and drought events by estimating the variation of biomass and productivity throughout two hydrologic cycles. Twenty-one visits were undertaken in the rewetting, drying, and drought phases in a permanent puddle in the Avelós stream and two temporary puddles in the Taperoá river, state of Paraíba, Northeast Brazil. The sampling was carried out by using the square method. Floods of different magnitudes occurred during the present study in the river and in the stream. The results showed that floods and droughts are determining factors in the occurrence of macrophytes and in the structure of their aquatic communities. The species richness of the aquatic macrophyte communities was lower in the puddles of the river and stream subject to flood events, when compared to areas where the run-off water is retained. At the beginning of the recolonization process, the intensity of the floods was decisive in the productivity and biomass of the aquatic macrophytes in the Taperoá river and the Avelós stream. In intermediate levels of disturbance, the largest values of productivity and biomass and the shortest time for starting the recolonization process occurred.

  16. Morphometry and retention time as forcing functions to establishment and maintenance of aquatic macrophytes in a tropical reservoir

    Directory of Open Access Journals (Sweden)

    M. B. Cunha-Santino

    Full Text Available Abstract Macrophytes may constitute an important resource for several chemical, physical and biological processes within aquatic ecosystems. This study considers that in tropical reservoirs with low retention time and with low values of shoreline development (DL, the expansion and persistence of aquatic macrophytes are mainly reported to local conditions (e.g., hydrodynamic and wind exposure rather than trophic status and depth of the euphotic zone. In this context, this study aimed at describing and comparing the incidence of aquatic macrophytes in a throughflowing, non-dendritic tropical reservoir. During February 2006 to November 2007, eight limnological surveys were performed quarterly within the Ourinhos Reservoir, and in the mouth areas of its tributaries. At the six sampling stations 30 variables were measured. The number of sites with plants varied between 21 and 38 and at the end of the 1st year the total richness was found. The sampling survey outcome the recognition of 18 species of aquatic macrophytes; Cyperaceae (2 genera and 1 species, Pontederiaceae (3 species and Onarograceae (3 genera were the families with higher diversity. Seven species (Typha domingensis Pers., Myriophyllum aquaticum (Vell. Verdec, Salvinia auriculata Aubl., Eichhornia azurea (Sw. Kunth, Eleocharis sp1, Eichhornia crassipes (Mart. Solms, Oxycaryum cubense (Poepp. & Kunth Lye always were present and were more frequent in the sites. The occurrence of emergent species predominated (45.9%, followed by submersed rooted (24.5%, free floating (19.5%, floating rooted (9.7% and free submersed (0.3%. Although limnological variables and the distribution of macrophytes have discriminated the same sampling points, the stepwise multiple linear regressions did not pointed out strong correspondences (or coherence among the most constant and distributed macrophyte species and the selected limnological variables, as well the trophic statuses. Seeing the low relationship among

  17. Morphometry and retention time as forcing functions to establishment and maintenance of aquatic macrophytes in a tropical reservoir.

    Science.gov (United States)

    Cunha-Santino, M B; Fushita, A T; Peret, A C; Bianchini-Junior, I

    2016-05-03

    Macrophytes may constitute an important resource for several chemical, physical and biological processes within aquatic ecosystems. This study considers that in tropical reservoirs with low retention time and with low values of shoreline development (DL), the expansion and persistence of aquatic macrophytes are mainly reported to local conditions (e.g., hydrodynamic and wind exposure) rather than trophic status and depth of the euphotic zone. In this context, this study aimed at describing and comparing the incidence of aquatic macrophytes in a throughflowing, non-dendritic tropical reservoir. During February 2006 to November 2007, eight limnological surveys were performed quarterly within the Ourinhos Reservoir, and in the mouth areas of its tributaries. At the six sampling stations 30 variables were measured. The number of sites with plants varied between 21 and 38 and at the end of the 1st year the total richness was found. The sampling survey outcome the recognition of 18 species of aquatic macrophytes; Cyperaceae (2 genera and 1 species), Pontederiaceae (3 species) and Onarograceae (3 genera) were the families with higher diversity. Seven species (Typha domingensis Pers., Myriophyllum aquaticum (Vell.) Verdec, Salvinia auriculata Aubl., Eichhornia azurea (Sw.) Kunth, Eleocharis sp1, Eichhornia crassipes (Mart.) Solms, Oxycaryum cubense (Poepp. & Kunth) Lye) always were present and were more frequent in the sites. The occurrence of emergent species predominated (45.9%), followed by submersed rooted (24.5%), free floating (19.5%), floating rooted (9.7%) and free submersed (0.3%). Although limnological variables and the distribution of macrophytes have discriminated the same sampling points, the stepwise multiple linear regressions did not pointed out strong correspondences (or coherence) among the most constant and distributed macrophyte species and the selected limnological variables, as well the trophic statuses. Seeing the low relationship among limnological

  18. MACROPHYTE RICHNESS AND AQUATIC VEGETATION COMPLEXITY OF THE LAKE IDRO (NORTHERN ITALY

    Directory of Open Access Journals (Sweden)

    R. Bolpagni

    2013-04-01

    Full Text Available A detailed survey was performed to examine the floristic richness and the structural complexity, spatial patterns and conservation value of aquatic plant communities within the littorals of Lake Idro (northern Italy. During the summers of 2010-2011 we proceeded to characterize aquatic macrophyte meadows applying standardized procedures using transects (44 and plots (49 arrayed perpendicular to the shoreline and randomly positioned within the vegetated belt, respectively. Lake Idro is characterized by rather high floristic richness (20 macrophytes but low levels of vegetation structural complexity (8 vegetation units. Nevertheless, a clear zonation of the littoral vegetation was identified with two main macro-layers: a deeper layer (between 6-10 m of depth dominated by Chara globularis and an upper one (from 6 m of depth to water-air atmosphere mainly colonized by alien elodeids (mainly Elodea nuttallii and Lagarosiphon major. For the first time a complete floristic-vegetation analysis of the Lake Idro was presented. Our data confirm the poor ecological status of the basin, even though the lacustrine vegetation can be considered of conservation concern. Further investigations are needed to improve present evaluations, especially with respect to the impact of eutrophication on macrophytic communities.

  19. Aquatic macrophyte composition of some tropical tin-mined ponds in ...

    African Journals Online (AJOL)

    A survey of aquatic macrophytes was conducted for nine tin-mined lakes located around Jos in September 1998 and February 1999 to coincide with the wet and dry season conditions. A total of 48 species were found in all ponds, 46 species classified into 14 families for the wet season and 24 species classified into 11 ...

  20. Arsenic accumulation by edible aquatic macrophytes.

    Science.gov (United States)

    Falinski, K A; Yost, R S; Sampaga, E; Peard, J

    2014-01-01

    Edible aquatic macrophytes grown in arsenic (As)-contaminated soil and sediment were investigated to determine the extent of As accumulation and potential risk to humans when consumed. Nasturtium officinale (watercress) and Diplazium esculentum (warabi) are two aquatic macrophytes grown and consumed in Hawaii. Neither has been assessed for potential to accumulate As when grown in As-contaminated soil. Some former sugarcane plantation soils in eastern Hawaii have been shown to have concentrations of total As over 500 mg kg(-1). It was hypothesized that both species will accumulate more As in contaminated soils than in non-contaminated soils. N. officinale and D. esculentum were collected in areas with and without As-contaminated soil and sediment. High soil As concentrations averaged 356 mg kg(-1), while low soil As concentrations were 0.75 mg kg(-1). Average N. officinale and D. esculentum total As concentrations were 0.572 mg kg(-1) and 0.075 mg kg(-1), respectively, corresponding to hazard indices of 0.12 and 0.03 for adults. Unlike previous studies where watercress was grown in As-contaminated water, N. officinale did not show properties of a hyperaccumulator, yet plant concentrations in high As areas were more than double those in low As areas. There was a slight correlation between high total As in sediment and soil and total As concentrations in watercress leaves and stems, resulting in a plant uptake factor of 0.010, an order of magnitude higher than previous studies. D. esculentum did not show signs of accumulating As in the edible fiddleheads. Hawaii is unique in having volcanic ash soils with extremely high sorption characteristics of As and P that limit release into groundwater. This study presents a case where soils and sediments were significantly enriched in total As concentration, but the water As concentration was below detection limits. © 2013 Published by Elsevier Inc.

  1. An invasion risk map for non-native aquatic macrophytes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Argantonio Rodríguez-Merino

    2017-05-01

    Full Text Available Freshwater systems are particularly susceptible to non-native organisms, owing to their high sensitivity to the impacts that are caused by these organisms. Species distribution models, which are based on both environmental and socio-economic variables, facilitate the identification of the most vulnerable areas for the spread of non-native species. We used MaxEnt to predict the potential distribution of 20 non-native aquatic macrophytes in the Iberian Peninsula. Some selected variables, such as the temperature seasonality and the precipitation in the driest quarter, highlight the importance of the climate on their distribution. Notably, the human influence in the territory appears as a key variable in the distribution of studied species. The model discriminated between favorable and unfavorable areas with high accuracy. We used the model to build an invasion risk map of aquatic macrophytes for the Iberian Peninsula that included results from 20 individual models. It showed that the most vulnerable areas are located near to the sea, the major rivers basins, and the high population density areas. These facts suggest the importance of the human impact on the colonization and distribution of non-native aquatic macrophytes in the Iberian Peninsula, and more precisely agricultural development during the Green Revolution at the end of the 70’s. Our work also emphasizes the utility of species distribution models for the prevention and management of biological invasions.

  2. Uranium accumulation by aquatic macrophyte, Pistia stratiotes

    International Nuclear Information System (INIS)

    Bhainsa, K.C.; D'Souza, S.F.

    2012-01-01

    Uranium accumulation by aquatic macrophyte, Pistia stratiotes from aqueous solution was investigated in laboratory condition. The objective was to evaluate the uranium accumulation potential and adopt the plant in uranium containing medium to improve its uptake capacity. The plant was found to tolerate and grow in the pH range of 3-7. Accumulation of uranium improved with increasing pH and the plant could remove 70% uranium from the medium (20 mg/L) within 24 hours of incubation at pH 5-6. Uptake of uranium on either side of this pH range decreased

  3. The role of emergent vegetation in structuring aquatic insect communities in peatland drainage ditches

    NARCIS (Netherlands)

    Whatley, M.H.; van Loon, E.E.; Vonk, J.A.; van der Geest, H.G.; Admiraal, W.

    2014-01-01

    Availability of macrophyte habitat is recognized as an important driver of aquatic insect communities in peatland drainage ditches; however, eutrophication can lead to the decline of submerged vegetation. While emergent vegetation is able to persist in eutrophicated ditches, vegetation removal,

  4. Hydroponic Uptake of Atrazine and Lambda-cyhalothrin in Aquatic Macrophytes

    Science.gov (United States)

    Bouldin, J. L.; Farris, J. L.; Moore, M. T.; Smith, S.; Cooper, C. M.

    2005-05-01

    Phytoremediation encompasses an array of plant-associated processes known to mitigate contaminants from soil, sediment, and water. Modification of pesticides associated with agricultural runoff includes processes directly associated with aquatic macrophytes in addition to soil geochemical modifications and associated rhizospheric degradation. Remediation attributes of two vegetative species common to agricultural drainages in the Mississippi Delta, USA, were assessed using atrazine and lambda-cyhalothrin. Concentrations used in 8-d hydroponic exposures were calculated using recommended field applications and a 5% runoff model from a 0.65-cm rainfall event on a 2.02-ha field. While greater atrazine uptake was measured in Juncus effusus, greater lambda-cyhalothrin uptake occurred in Ludwigia peploides. Maximum pesticide uptake was reached within 48 h for each exposure and subsequent translocation of pesticides to upper plant biomass occurred in macrophytes exposed to atrazine. Sequestration of 98.2% of lambda-cyhalothrin in roots of L. peploides was measured after 8 d. Translocation of lambda-cyhalothrin in J. effusus resulted in 25.4% of pesticide uptake partitioned to upper plant biomass. These individual macrophyte remediation studies measured species- and pesticide-specific uptake rates, indicating that the seasonality of pesticide applications and macrophyte emergence might interact strongly to enhance mitigation capabilities in edge-of-field conveyance structures.

  5. Performance assessment of aquatic macrophytes for treatment of municipal wastewater.

    Science.gov (United States)

    Shah, Mumtaz; Hashmi, Hashim Nisar; Ali, Arshad; Ghumman, Abdul Razzaq

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte

  6. How TK-TD and population models for aquatic macrophytes could support the risk assessment for plant protection products.

    Science.gov (United States)

    Hommen, Udo; Schmitt, Walter; Heine, Simon; Brock, Theo Cm; Duquesne, Sabine; Manson, Phil; Meregalli, Giovanna; Ochoa-Acuña, Hugo; van Vliet, Peter; Arts, Gertie

    2016-01-01

    This case study of the Society of Environmental Toxicology and Chemistry (SETAC) workshop MODELINK demonstrates the potential use of mechanistic effects models for macrophytes to extrapolate from effects of a plant protection product observed in laboratory tests to effects resulting from dynamic exposure on macrophyte populations in edge-of-field water bodies. A standard European Union (EU) risk assessment for an example herbicide based on macrophyte laboratory tests indicated risks for several exposure scenarios. Three of these scenarios are further analyzed using effect models for 2 aquatic macrophytes, the free-floating standard test species Lemna sp., and the sediment-rooted submerged additional standard test species Myriophyllum spicatum. Both models include a toxicokinetic (TK) part, describing uptake and elimination of the toxicant, a toxicodynamic (TD) part, describing the internal concentration-response function for growth inhibition, and a description of biomass growth as a function of environmental factors to allow simulating seasonal dynamics. The TK-TD models are calibrated and tested using laboratory tests, whereas the growth models were assumed to be fit for purpose based on comparisons of predictions with typical growth patterns observed in the field. For the risk assessment, biomass dynamics are predicted for the control situation and for several exposure levels. Based on specific protection goals for macrophytes, preliminary example decision criteria are suggested for evaluating the model outputs. The models refined the risk indicated by lower tier testing for 2 exposure scenarios, while confirming the risk associated for the third. Uncertainties related to the experimental and the modeling approaches and their application in the risk assessment are discussed. Based on this case study and the assumption that the models prove suitable for risk assessment once fully evaluated, we recommend that 1) ecological scenarios be developed that are also

  7. Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland.

    Science.gov (United States)

    Wu, Suqing; He, Shengbing; Zhou, Weili; Gu, Jianya; Huang, Jungchen; Gao, Lei; Zhang, Xu

    2017-12-01

    Decomposition of aquatic macrophytes usually generates significant influence on aquatic environment. Study on the aquatic macrophytes decomposition may help reusing the aquatic macrophytes litters, as well as controlling the water pollution caused by the decomposition process. This study verified that the decomposition processes of three different kinds of aquatic macrophytes (water hyacinth, hydrilla and cattail) could exert significant influences on water quality of the receiving water, including the change extent of pH, dissolved oxygen (DO), the contents of carbon, nitrogen and phosphorus, etc. The influence of decomposition on water quality and the concentrations of the released chemical materials both followed the order of water hyacinth > hydrilla > cattail. Greater influence was obtained with higher dosage of plant litter addition. The influence also varied with sediment addition. Moreover, nitrogen released from the decomposition of water hyacinth and hydrilla were mainly NH 3 -N and organic nitrogen while those from cattail litter included organic nitrogen and NO 3 - -N. After the decomposition, the average carbon to nitrogen ratio (C/N) in the receiving water was about 2.6 (water hyacinth), 5.3 (hydrilla) and 20.3 (cattail). Therefore, cattail litter might be a potential plant carbon source for denitrification in ecological system of a constructed wetland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Distribution of 238Pu and 239240Pu in aquatic macrophytes from a midwestern watershed

    International Nuclear Information System (INIS)

    Wayman, C.W.; Bartelt, G.E.; Alberts, J.J.

    1977-01-01

    Aquatic macrophytes were collected in the Great Miami River, Ohio, above and below Miamisburg and in the canal and ponds, near the Mound Laboratory, which contain sediments of a high activity (approximately 10 3 to 10 6 times) relative to the river sediments. Macrophytes collected in the river below Miamisburg have higher activities of 238 Pu than those collected from above the city. Macrophytes from the canal and ponds contain high specific activities of 238 Pu and 239 , 240 Pu with the exception of cattails grown in the ponds. Concentration factors are reported and discussed with reference to possible modes of plutonium accumulation and distribution within the plants

  9. [The distribution of artificial radionuclides in the biomass of macrophytes of the Yenisei River].

    Science.gov (United States)

    Zotina, T A

    2009-01-01

    The Yenisei River is contaminated with artificial radionuclides due to the operation of the Mining-and-Chemical Combine (MCC), Rosatom, producing weapon grade plutonium for several decades. Artificial radionuclides including activation isotopes and transuranics, are detected in the biomass of submerged aquatic plants of the river. We investigated the distribution of artificial radionuclides in the biomass of macrophytes from radioactively contaminated part of the Yenisei River with chemical fractionation techniques. Artificial radionuclides were detected in extracellular and intracellular compartments of the macrophytes. The distribution of radionuclides among the biomass fractions differed essentially. 54Mn was preferably in mobile, exchangeable form compared to other isotopes. Essential portion of 137Cs was in non exchangeable form. Significant activity of artificial radionuclides was detected in the particles of suspended matter of the river, attached to the plant surfaces. Radioactive isotopes were distributed among biomass fractions similar to stable isotopes. The distribution of potassium and 137Cs differed essentially. On the basis of the results obtained the assumptions on the further migration of radionuclides accumulated by aquatic macrophytes in the Yenisei River have been done.

  10. Phytoremediation of anatoxin-a by aquatic macrophyte Lemna trisulca L.

    Science.gov (United States)

    Kaminski, Ariel; Bober, Beata; Chrapusta, Ewelina; Bialczyk, Jan

    2014-10-01

    The neurotoxin anatoxin-a (ANTX-a), one of the most common cyanotoxin, poses a health risk to people and can be lethal to aquatic organisms. This paper presents results on its bioremediation by the aquatic macrophyte Lemna trisulca. We show that the plant is resistant to the harmful impact of toxin and is capable of removing ANTX-a from water. Some of the ANTX-a concentrations which were used in our experiments were much higher than those found in natural conditions. The exposition of L. trisulca to 2.5 μg ANTX-a/mL did not affect its biomass accumulation within 24 d. Significant decreases in biomass content by 21% and 30% were demonstrated in samples cultivated in media containing 12.5 μg ANTX-a/mL after 18 and 24 day of experiment, respectively. One gram of fresh weight (f.w.) of L. trisulca cultured for 14 d in the media containing 50 μg ANTX-a removed 95% of the initial toxin concentration; for media with 250 μg ANTX-a, 86% was removed. In tests of ANTX-a binding stability and degradation we transferred the macrophyte to fresh media without added toxin; within 14 d the content of accumulated ANTX-a in the macrophyte decreased by 76% (from initial 19.3 μg ANTX-a/gf.w.), 71% (from 37.3 μg ANTX-a/g f.w.) and 47% (from 63.7 μg ANTX-a/g f.w.). The quantity of ANTX-a released to media was minimal: from 3.5% to 5.1% of the initial bioaccumulated value. The data show that part of the ANTX-a was degraded. Mass spectra analyses did not indicate transformation of ANTX-a to already known forms. These findings suggest that L. trisulca has much potential as a phytoremediation agent for stabilization of aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Using linoleic acid embedded cellulose acetate membranes to in situ monitor polycyclic aromatic hydrocarbons in lakes and predict their bioavailability to submerged macrophytes.

    Science.gov (United States)

    Tao, Yuqiang; Xue, Bin; Yao, Shuchun

    2015-05-19

    To date no passive sampler has been used to predict bioavailability of contaminants to macrophytes. Here a novel passive sampler, linoleic acid embedded cellulose acetate membrane (LAECAM), was developed and used to in situ measure the freely dissolved concentrations of ten polycyclic aromatic hydrocarbons in the sediment porewaters and the water columns of two lakes in both winter and summer and predict their bioavailability to the shoots of resident submerged macrophytes (Potamogeton malainus, Myriophyllum spicata, Najas minor All., and Vallisneria natans (Lour.) Hara). PAH sampling by LAECAMs could reach equilibrium within 21 days. The influence of temperature on LAECAM-water partition coefficients was 0.0008-0.0116 log units/°C. The method of LAECAM was comparable with the active sampling methods of liquid-liquid extraction combined with fDOC adjustment, centrifugation/solid-phase extraction (SPE), and filtration/SPE but had several advantages. After lipid normalization, concentrations of the PAHs in LAECAMs were not significantly different from those in the macrophytes. In contrast, concentrations of the PAHs in the triolein containing passive sampler (TECAM) deployed simultaneously with LAECAM were much higher. The results suggest that linoleic acid is more suitable than triolein as the model lipid for passive samplers to predict bioavailability of PAHs to submerged macrophytes.

  12. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    International Nuclear Information System (INIS)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G.

    2004-01-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including 241 Am). 241 Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of 241 Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of 241 Am from the biomass. The content of 241 Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of 241 Am in the plants were in inverse proportion to their biomass. We obtained new data on release of 241 Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial 241 Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of 241 Am and retain americium for long periods of time in biomass. (author)

  13. Invasive Macrophytes Control the Spatial and Temporal Patterns of Temperature and Dissolved Oxygen in a Shallow Lake: A Proposed Feedback Mechanism of Macrophyte Loss

    Directory of Open Access Journals (Sweden)

    Maria P. Vilas

    2017-12-01

    Full Text Available Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia. Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time (r2 = 0.98, and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season (r2 > 0.78 at all times. As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we

  14. Invasive Macrophytes Control the Spatial and Temporal Patterns of Temperature and Dissolved Oxygen in a Shallow Lake: A Proposed Feedback Mechanism of Macrophyte Loss.

    Science.gov (United States)

    Vilas, Maria P; Marti, Clelia L; Adams, Matthew P; Oldham, Carolyn E; Hipsey, Matthew R

    2017-01-01

    Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia). Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time ( r 2 = 0.98), and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season ( r 2 > 0.78 at all times). As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we hypothesized

  15. Effect of Hydrologic Alteration on the Community Succession of Macrophytes at Xiangyang Site, Hanjiang River, China.

    Science.gov (United States)

    Yang, Na; Zhang, Yehui; Duan, Kai

    2017-01-01

    With the intensification of human activities over the past three decades in China, adverse effects on river ecosystem become more serious especially in the Hanjiang River. Xiangyang site is an important spawn ground for four domestic fishes in the downstream region of Hanjiang River. Based on the field survey results of macrophytes during 1997-2000 and 2013-2014, community succession of aquatic macrophytes at Xiangyang site was evaluated and discussed. Two-key ecologic-related hydrologic characteristics, flow regime and water level, were identified as the main influence factors. The EFC (environmental flow components) parameters were adopted to evaluate the alteration of flow regimes at Xiangyang site during 1941-2013. Evaluation results demonstrate a highly altered flow process after being regulated by reservoir. The flow patterns tend to be an attenuation process with no large floods occurring but a higher monthly low flow. Furthermore, the water level decreased and fluctuation reduced after the dam was built, which caused the decrease of biomass but favored the submerged macrophytes during 1995-2009. However, with the water level increasing after 2010 and gently fluctuating, due to uplift by the hydraulic projects downstream as well as the flow attenuation, the dominant position of submerged macrophytes will be weakened.

  16. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents

    Directory of Open Access Journals (Sweden)

    Henry-Silva Gustavo Gonzaga

    2006-01-01

    Full Text Available The effluents from fish farming can increase the quantity of suspended solids and promote the enrichment of nitrogen and phosphorus in aquatic ecosystems. In this context, the aim of this work was to evaluate the efficiency of three species of floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Salvinia molesta to treat effluents from Nile tilapia culture ponds. The effluent originated from a 1,000-m² pond stocked with 2,000 male Nile tilapia Oreochromis niloticus. The treatment systems consisted of 12 experimental tanks, three tanks for each macrophyte species, and three control tanks (without plants. Water samples were collected from the: (i fish pond source water, (ii effluent from fish pond and (iii effluents from the treatment tanks. The following water variables were evaluated: turbidity, total and dissolved nitrogen, ammoniacal-N, nitrate-N, nitrite-N, total phosphorus and dissolved phosphorus. E. crassipes and P. stratiotes were more efficient in total phosphorus removal (82.0% and 83.3%, respectively and total nitrogen removal (46.1% and 43.9%, respectively than the S. molesta (72.1% total phosphorus and 42.7% total nitrogen and the control (50.3% total phosphorus and 22.8% total nitrogen, indicating that the treated effluents may be reused in the aquaculture activity.

  17. Fish assemblage dynamics in a Neotropical floodplain relative to aquatic macrophytes and the homogenizing effect of a flood pulse

    Science.gov (United States)

    Gomes, L.C.; Bulla, C. K.; Agostinho, A. A.; Vasconcelos, L. P.; Miranda, Leandro E.

    2012-01-01

    The presence of aquatic macrophytes is a key factor in the selection of habitats by fish in floodplain lakes because these plants enhance the physical and biological complexities of aquatic habitats. The seasonal flood pulse may influence this interaction, but there is no information in the literature about the effects that flood events may have on macrophytes assemblages and its associated effects on fish assemblages. Thus, this article aimed to investigate whether species richness, evenness and similarities in fish assemblage composition differed between littoral areas vegetated with macrophytes and unvegetated areas, before and after a flood. We sampled three lakes in the floodplain of the upper Paraná River basin. Sampling was conducted before (December 2004 and January 2005) and after (early March, late March and May 2005) a flood event. Overall, species richness and evenness were higher in macrophytes-covered areas. Before the flood, the composition of fish assemblages was distinct when comparing vegetated and unvegetated areas. After the flood, the similarity in fish assemblage composition was higher, indicating a homogenization effect of floods for fish inhabiting littoral areas of floodplain lakes. After the flood, opportunistic species dominated the fish assemblages in aquatic macrophytes, apparently restructuring assemblages in the littoral, restarting a succession process. Thus, the observed homogenization effect of the flood could minimize biological interactions and could induce fish assemblages to begin a new process of structurization.

  18. Modeling the element cycle of aquatic plants

    International Nuclear Information System (INIS)

    Asaeda, Takashi

    2007-01-01

    Aquatic plants play an important role in element cycles in wetlands and the efficiency of the process is extremely related to their proportional biomass allocation to above- and belowground organs. Therefore, the framework of most macrophyte productivity models is usually similar with a mass-balance approach consisting of gross production, respiration and mortality losses and the translocation between organs. These growth models are incorporated with decomposition models to evaluate the annual cycle of elements. Perennial emergent macrophytes with a relatively large biomass have a particularly important role in element cycles. Their phenological stages, such as the beginning of hibernation of belowground rhizome systems, emergence of new shoots in spring with resources stocked in the rhizomes, flowering, downward translocation of photosynthetic products later on and then the mortality of the aboveground system in late autumn, depend on the environmental conditions, basically the nutrients, water depth, climatic variations, etc. Although some species retain standing dead shoots for a long time, dead shoots easily fall into water, starting to decompose in the immediate aftermath. However, their decomposition rates in the water are relatively low, causing to accumulate large amounts of organic sediments on the bottom. Together with the deposition of allochthonous suspended matters in the stand, this process decreases the water depth, transforming wetlands gradually into land. The depth of penetration of roots into the sediments to uptake nutrients and water is extremely site specific, however, in water-logged areas, the maximum penetrable depth may be approximately estimated by considering the ability of oxygen transport into the rhizome system. The growth of perennial submerged plants is also estimated by a process similar to that of emergent macrophytes. However, compared with emergent macrophytes, the root system of submerged macrophytes is weaker, and the nutrient

  19. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: roles of light, sediment nutrient levels, and propagule density

    NARCIS (Netherlands)

    Verhofstad, M.J.J.M.; Alirangues, Marta Maria; Reichman, Erik; van Donk, E.; Lamers, L.P.M.; Bakker, E.S.

    2017-01-01

    Abstract After restoration, eutrophicated shallow freshwaters may show mass development of only one or two submerged macrophyte species, lowering biodiversity and hampering recreation. It is unclear which environmental factors govern this high percentage of the volume inhabited (PVI11 PVI: The

  20. Have grass carp driven declines in macrophyte occurrence and ...

    African Journals Online (AJOL)

    The Vaal River, South Africa, historically had a rich diversity of native submerged macrophytes with at least 13 species from 5 families recorded. Over the past 10 years there has been a noticeable reduction in the occurrence and diversity of submerged macrophytes in the river. It is possible that this is linked to the recent ...

  1. Use of aquatic macrophytes in substrate composition to produce moringa seedlings

    Directory of Open Access Journals (Sweden)

    Walda Monteiro Farias

    2016-03-01

    Full Text Available The use of aquatic macrophytes in substrate composition to produce seedlings of moringa is a sustainable alternative. Therefore, the objective of this research was to evaluate the development of moringa seedlings using substrates composed with aquatic macrophytes, and to determine concentrations of N, P and K in the seedlings. We used different combinations of weeds (M, manure (E and topsoil (TV to compose the substrates. The experiment was conducted in a 3 × 4 factorial in randomized arrangement with four replications. We evaluated plant height, crown diameter and stem, relative growth rate in height, canopy diameter and in stem, dry matter of aerial part and of roots, root length and root/shoot ratio, besides the content of N, P and K in seedlings. Moringa seedlings showed reduced growth when produced in substrates composed only with cattail. Water lettuce and substrates composed of 60% M + 30%E + 10 % TV and 70% M + 30% E, promoted greater nutrition and growth of moringa seedlings. The substrate 60M +30E +10TV composed by water hyacinth and cattail resulted in greater amount of P in moringa seedlings.

  2. Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?

    Science.gov (United States)

    Kuiper, Jan J.; Verhofstad, Michiel J. J. M.; Louwers, Evelien L. M.; Bakker, Elisabeth S.; Brederveld, Robert J.; van Gerven, Luuk P. A.; Janssen, Annette B. G.; de Klein, Jeroen J. M.; Mooij, Wolf M.

    2017-04-01

    Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo—to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.

  3. Comparison of aquatic macrophyte community structure between natural wetlands and rice fields with different cultivation ages

    OpenAIRE

    Rolon, A. S.; Godoy, R. S.; Maltchik, L.

    2017-01-01

    Abstract Recent studies indicate that rice fields contribute to the conservation of aquatic plants, however, repeated cultivation can reduce the species diversity harbored by rice fields. Repeated tillage, agrochemical application and environmental homogeneity can reduce plant diversity and select for species more tolerant to disturbance. Our hypotheses were: 1) macrophyte richness and biomass decrease with increased rice crop age; and 2) macrophyte species of rice fields are a subsample of n...

  4. Aquatic macrophytes in natural and managed wetlands of Rio Grande do Sul State, Southern Brazil Macrófitas aquáticas em áreas úmidas naturais e manejadas do Rio Grande do Sul, sul do Brasil

    OpenAIRE

    Ana Silvia Rolon; Henrique Flores Homem; Leonardo Maltchik

    2010-01-01

    AIM: This study gathers the main results obtained from studies regarding dynamic of aquatic macrophyte community in natural and managed wetlands of Southern Brazil. We analyzed the aquatic macrophytes diversity in wetlands of Southern Brazil, the environmental factors that determine the structure of the aquatic macrophyte community in fragmented wetlands, the effects of floods on the dynamics of macrophytes, and the contributions to the rice field for the conservation of aquatic macrophytes; ...

  5. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G. [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk (Russian Federation)

    2004-07-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including {sup 241}Am). {sup 241}Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of {sup 241}Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of {sup 241}Am from the biomass. The content of {sup 241}Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of {sup 241}Am in the plants were in inverse proportion to their biomass. We obtained new data on release of {sup 241}Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial {sup 241}Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of {sup 241}Am and retain americium for long periods of time in biomass. (author)

  6. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  8. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  9. Submerged Aquatic Vegetation of Bogue Sound, North Carolina 1992 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 1992, 1:20,000 scale aerial photography for Bogue Sound, North Carolina was collected as part of an effort to map submerged aquatic vegetation (SAV) in...

  10. Method for assessment and classification of water courses by using the community of aquatic macrophytes

    International Nuclear Information System (INIS)

    Minciardi, M.R.; Spada, C.D.; Rossi, G.L.; Angius, R.; Orru, G.; Mancini, L.; Pace, G.; Mercheggiani, S.; Puccinelli, C.

    2009-01-01

    Studies about aquatic macrophytes as bio indicator community in Europe have been carried out since 70s. Efficient macrophytes indices, mainly for the assessment of trophic state, have been defined in nineties. In 2000, WFD includes macrophytes among the ecological quality elements for running waters. To implement Directive 2000/60/C E, European countries had to define methodologies to evaluate the ecological status of water bodies by macrophytes assessment, but almost all Member States continue to use trophic indexes. Researches carried out in Italy during last 10 years confirm the presence and the evaluability in all river types, and the efficiency of macrophytes community as bio indicator. Besides, many European indices have been tested to assess their applicability throughout the country. Particularly, the Index Macrofitique Biologique en Riviere (IBMR), formalized in France in 2003 as trophic index and currently used as french national method, is applicable in Italy. This index not only allows to evaluate the trophic level metric, but can also be used, as proposed in France, as index of ecological status, expressed as distance from the expected trophic state. [it

  11. Interactions between piscivores, zooplanktivores and zooplankton in submerged macrophytes : Preliminary observations from enclosure and pond experiments

    DEFF Research Database (Denmark)

    Jacobsen, Lene; Perrow, M.R.; Landkildehus, F.

    1997-01-01

    behavioural changes of zooplanktivores has received little attention, even though this may be an important mechanism in enhancing the stability of submerged macrophytes in shallow lakes. Preliminary observations from an unreplicated large-scale field enclosure experiment and a replicated pond experiment...... and the presence of zooplanktivores typically changed the habitat selection of cladoceran zooplankton. In the case of piscivore/zooplanktivore interactions, the risk of predation was enough to generate clear responses even where the losses to predation were low. However, only in the enclosure experiment...

  12. Microdistribution of 241Am in structures of submerged macrophyte Elodea canadensis growing in the Yenisei River

    International Nuclear Information System (INIS)

    Bondareva, L.; Vlasova, I.; Mogilnaya, O.; Bolsunovsky, A.; Kalmykov, S.

    2010-01-01

    A submerged macrophyte of the Yenisei River, Elodea canadensis, was used to study the microdistribution of the artificial radionuclide 241 Am among different components of the plant. The total amount of 241 Am added to the experimental system was 1850 ± 31 Bq/L. The total amount of 241 Am accumulated by the plants was 182 Bq per sample, or 758,333 ± 385 Bq/kg dry mass. It has been found that the major portion of 241 Am accumulated by E. canadensis, up to 85%, was bound to solid components of the cells. It is observed that the microdistribution of 241 Am within different components of the submerged plant E. canadensis was not uniform. 241 Am distribution vary depending on the age of the leaf blades, the state of the cells and morphological features of the plant stem.

  13. Microdistribution of 241Am in structures of submerged macrophyte Elodea canadensis growing in the Yenisei River.

    Science.gov (United States)

    Bondareva, L; Vlasova, I; Mogilnaya, O; Bolsunovsky, A; Kalmykov, S

    2010-01-01

    A submerged macrophyte of the Yenisei River, Elodea canadensis, was used to study the microdistribution of the artificial radionuclide (241)Am among different components of the plant. The total amount of (241)Am added to the experimental system was 1850+/-31 Bq/L. The total amount of (241)Am accumulated by the plants was 182 Bq per sample, or 758,333+/-385 Bq/kg dry mass. It has been found that the major portion of (241)Am accumulated by E. canadensis, up to 85%, was bound to solid components of the cells. It is observed that the microdistribution of (241)Am within different components of the submerged plant E. canadensis was not uniform. (241)Am distribution vary depending on the age of the leaf blades, the state of the cells and morphological features of the plant stem.

  14. Fish associated with aquatic macrophytes in the Chacororé-Sinhá Mariana Lake system and Mutum River, Pantanal of Mato Grosso, Brazil.

    Science.gov (United States)

    Pacheco, E B; Da-Silva, C J

    2009-02-01

    On the left bank of the Cuibá River, one of the main tributaries of the Pantanal in Mato Grosso, are located the Chacororé and Sinhá Mariana Lakes and the Mutum River, the littoral regions of which are covered with aquatic macrophytes, dominated by the species Eichhornia crassipes and Eichhornia azurea. To examine the ichthyofauna associated with this vegetation, in the year 2003, 3510 fish were collected, distributed among 83 species, and the limnological variables verified near the macrophyte stands where they were sampled. The most abundant and richest order was the Characiformes, followed by the Gymnotiformes and Siluriformes. Analysis of similarity showed a very low, or null, index that the limnological conditions and morphology of the aquatic macrophyte species provide habitat sufficiently homogeneous to give. The limnological conditions and morphology of the aquatic macrophyte species provide a sufficient habitat heterogeneity to give very low, or null, index values. Thus, environmental conservation measures should be more effective in promoting the conservation of the species, given the high levels of biological diversity found in the habitats studied.

  15. Quantitative and qualitative characteristics of dissolved organic matter from eight dominant aquatic macrophytes in Lake Dianchi, China.

    Science.gov (United States)

    Qu, Xiaoxia; Xie, Li; Lin, Ying; Bai, Yingchen; Zhu, Yuanrong; Xie, Fazhi; Giesy, John P; Wu, Fengchang

    2013-10-01

    The aim of this research was to determine and compare the quantitative and qualitative characteristics of dissolved organic matters (DOM) from eight aquatic macrophytes in a eutrophic lake. C, H, N, and P in ground dry leaves and C, N, and P in DOM of the species were determined, and C/N, C/P, C/H, DOC/C, TDN/N, TDP/P, DOC/TDN, and DOC/TDP were calculated. Chemical structures of the DOM were characterized by the use of multiple techniques including UV-visible, FT-IR, and (13)C CP/MAS spectra. The results showed subtle differences in quantity and quality of DOM among species and life-forms. Except oriental pepper which had a C/H of 0.7, C/H of all the other species was 0.6. C/N and C/P of ground leaves was 10.5-17.3 and 79.4-225.3, respectively, which were greater in floating and submerged species than in the others. Parrot feather also had a small C/P (102.8). DOC/C, TDN/N, and TDP/P were 7.6-16.8, 5.5-22.6, and 22.9-45.6 %, respectively. Except C/N in emergent and riparian species, C/N in the other species and C/P in all the species were lower in their DOM than in the ground leaves. DOM of the macrophytes had a SUVA254 value of 0.83-1.80. The FT-IR and (13)C NMR spectra indicated that the DOM mainly contained polysaccharides and/or amino acids/proteins. Percent of carbohydrates in the DOM was 37.3-66.5 % and was highest in parrot feather (66.5 %) and crofton weed (61.5 %). DOM of water hyacinth, water lettuce, and sago pondweed may have the greatest content of proteins. Aromaticity of the DOM was from 6.9 % in water lettuce to 17.8 % in oriental pepper. DOM of the macrophytes was also different in polarity and percent of Ar-OH. Distinguished characteristics in quantity and quality of the macrophyte-derived DOM may induce unique environmental consequences in the lake systems.

  16. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, V.K.; Upadhyaya, A.R.; Pandey, S.K.; Tripathi, B.D. [Banaras Hindu University, Varanasi (India)

    2008-03-15

    Three aquatic plants Eichhornia crassipes, Lemna minor and Spirodela polyrhhiza were used in laboratory for the removal of heavy metals from the coal mining effluent. Plants were grown singly as well as in combination during 21 days phytoremediation experiment. Results revealed that combination of E. crassipes and L. minor was the most efficient for the removal of heavy metals while E. crassipes was the most efficient in monoculture. Significant correlations between metal concentration in final water and macrophytes were obtained. Translocation factor i.e. ratio of shoot to root metal concentration revealed that metals were largely retained in the roots of aquatic macrophytes. Analytical results showed that plant roots have accumulated heavy metals approximately 10 times of its initial concentration. These plants were also subjected to toxicity assessment and no symptom of metal toxicity was found therefore, this method can be applied on the large scale treatment of waste water where volumes generated are very high and concentrations of pollutants are low.

  17. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    Science.gov (United States)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  18. Competition between two submersed aquatic macrophytes, Potamogeton pectinatus and Potamogeton gramineus, across a light gradient

    Science.gov (United States)

    Submersed aquatic macrophyte communities, are often limited by the availability of light. Thus, they offer a unique opportunity to evaluate competition when light is the limiting resource. Competitive abilities of Potamogeton pectinatus (L.) Börner and Potamogeton gramineus L. were estimated using a...

  19. The decomposition of estuarine macrophytes under different ...

    African Journals Online (AJOL)

    The aim of this study was to determine the decomposition characteristics of the most dominant submerged macrophyte and macroalgal species in the Great Brak Estuary. Laboratory experiments were conducted to determine the effect of different temperature regimes on the rate of decomposition of 3 macrophyte species ...

  20. The influence of permanently submerged macrophytes on sediment mercury distribution, mobility and methylation potential in a brackish Norwegian fjord.

    Science.gov (United States)

    Olsen, Marianne; Schaanning, Morten Thorne; Braaten, Hans Fredrik Veiteberg; Eek, Espen; Moy, Frithjof E; Lydersen, Espen

    2018-01-01

    Macrophytes are shown to affect the microbial activity in different aqueous environments, with an altering of the sediment cycling of mercury (Hg) as a potential effect. Here, we investigated how a meadow with permanently submerged macrophytes in a contaminated brackish fjord in southern Norway influenced the conditions for sulfate reducing microbial activity, the methyl-Hg (MeHg) production and the availability of MeHg. Historically discharged Hg from a chlor-alkali plant (60-80tons, 1947-1987) was evident through high Hg concentrations (491mgTot-Hgkg -1 , 268μgMeHgkg -1 ) in intermediate sediment depths (10-20cm) outside of the meadow, with reduced concentrations within the meadow. Natural recovery of the fjord was revealed by lower sediment surface concentrations (1.9-15.5mgTot-Hgkg -1 , 1.3-3.2μgMeHgkg -1 ). Within the meadow, vertical gradients of sediment hydrogen sulfide (H 2 S) E h and pH suggested microbial sulfate reduction in 2-5cm depths, coinciding with peak values of relative MeHg levels (0.5% MeHg). We assume that MeHg production rates was stimulated by the supply and availability of organic carbon, microbial activity and a sulfide oxidizing agent (e.g. O 2 ) within the rhizosphere. Following this, % MeHg in sediment (0-5cm) within the meadow was approximately 10× higher compared to outside the meadow. Further, enhanced availability of MeHg within the meadow was demonstrated by significantly higher fluxes (p<0.01) from sediment to overlying water (0.1-0.6ngm -2 d -1 ) compared to sediment without macrophytes (0.02-0.2ngm -2 d -1 ). Considering the productivity and species richness typical for such habitats, submerged macrophyte meadows located within legacy Hg contaminated sediment sites may constitute important entry points for MeHg into food webs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Microdistribution of {sup 241}Am in structures of submerged macrophyte Elodea canadensis growing in the Yenisei River

    Energy Technology Data Exchange (ETDEWEB)

    Bondareva, L., E-mail: lydiabondareva@gmail.co [Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Vlasova, I. [Chemistry Department Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Mogilnaya, O.; Bolsunovsky, A. [Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Kalmykov, S. [Chemistry Department Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

    2010-01-15

    A submerged macrophyte of the Yenisei River, Elodea canadensis, was used to study the microdistribution of the artificial radionuclide {sup 241}Am among different components of the plant. The total amount of {sup 241}Am added to the experimental system was 1850 +- 31 Bq/L. The total amount of {sup 241}Am accumulated by the plants was 182 Bq per sample, or 758,333 +- 385 Bq/kg dry mass. It has been found that the major portion of {sup 241}Am accumulated by E. canadensis, up to 85%, was bound to solid components of the cells. It is observed that the microdistribution of {sup 241}Am within different components of the submerged plant E. canadensis was not uniform. {sup 241}Am distribution vary depending on the age of the leaf blades, the state of the cells and morphological features of the plant stem.

  2. In situ experiments to determine the uptake of copper by the aquatic macrophyte Najas tenuifolia R.Br

    International Nuclear Information System (INIS)

    Hart, B.T.; Jones, M.J.; Breen, P.

    1984-01-01

    In situ experiments, in which ionic copper was added to an enclosed area of the aquatic macrophyte Najas tenuifolia R.Br., showed that this plant can rapidly (in around six hours) take up considerable amounts of the added copper. Epiphytes (and their associated microfauna) present on this macrophyte took up the added copper even more rapidly, but also seemed to release the copper equally fast. At the end of the three day experiment 30% to 60% of the added copper was associated with the macrophytes and 15% to 20% was still in the water column. The remainder of the copper was associated with the 'epiphyte component', the sediments and probably also the walls of the plastic enclosure

  3. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community.

    Science.gov (United States)

    Wendt-Rasch, L; Van den Brink, P J; Crum, S J H; Woin, P

    2004-03-01

    The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated eutrophic ecosystems with a high Lemna surface coverage (Lemna). This paper describes the fate of the chemicals as well as their effects on the growth of Myriophyllum spicatum and the periphytic algal community. In the Elodea-dominated microcosms significant increase in the biomass and alterations of species composition of the periphytic algae were observed, but no effect on M. spicatum growth could be recorded in response to the treatment. The opposite was found in the Lemna-dominated microcosms, in which decreased growth of M. spicatum was observed but no alterations could be found in the periphytic community. In the Elodea-dominated microcosms the species composition of the periphytic algae diverged from that of the control following treatment with 0.5% spray drift emission of the label-recommended rate (5% for lambda-cyhalothrin), while reduced growth of M. spicatum in the Lemna-dominated microcosms was recorded at 2% drift (20% for lambda-cyhalothrin). This study shows that the structure of the ecosystem influences the final effect of pesticide exposure.

  4. Anatomy of the root of eight species of emergent aquatic macrophytes from the upper Paraná river, Paraná State, Brazil floodplain - doi: 10.4025/actascibiolsci.v32i3.5509 Anatomy of the root of eight species of emergent aquatic macrophytes from the upper Paraná river, Paraná State, Brazil floodplain - doi: 10.4025/actascibiolsci.v32i3.5509

    Directory of Open Access Journals (Sweden)

    Angela Maria Marques Sanches Marques

    2010-09-01

    Full Text Available The upper Paraná River floodplain is characterized by the existence of several aquatic and transitional habitats between the aquatic and terrestrial environment, influencing the presence and distribution of aquatic macrophytes. Samples were taken from different places and permanent slides were prepared for analysis and capture of images with the objective of comparing the anatomy of the roots of eight species of emergent aquatic macrophytes. The species feature uniseriate epidermis with narrow and long cells, cortex composed of uniseriate or biseriate exodermis, with or without thickening, aerenchyma with great gaps, uniseriate endodermis, with or without thickening, continuous or interrupted pericycle, and central cylinder with variable number of xylem poles.The upper Paraná River floodplain is characterized by the existence of several aquatic and transitional habitats between the aquatic and terrestrial environment, influencing the presence and distribution of aquatic macrophytes. Samples were taken from different places and permanent slides were prepared for analysis and capture of images with the objective of comparing the anatomy of the roots of eight species of emergent aquatic macrophytes. The species feature uniseriate epidermis with narrow and long cells, cortex composed of uniseriate or biseriate exodermis, with or without thickening, aerenchyma with great gaps, uniseriate endodermis, with or without thickening, continuous or interrupted pericycle, and central cylinder with variable number of xylem poles.

  5. Oxidative stress responses of submerged macrophyte Vallisneria asiatica to different concentrations of cyanobacteria

    Science.gov (United States)

    Kang, Caixia; Kuba, Takahiro; Hao, Aimin; Iseri, Yasushi; Li, Chunjie; Zhang, Zhenjia

    2015-03-01

    In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was >109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of V. asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.

  6. Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, U.S.A.

    Science.gov (United States)

    Sass, Laura L.; Bozek, Michael A.; Hauxwell, Jennifer A.; Wagner, Kelly; Knight, Susan

    2010-01-01

    Aquatic macrophyte communities were assessed in 53 lakes in Wisconsin, U.S.A. along environmental and land use development gradients to determine effects human land use perturbations have on aquatic macrophytes at the watershed and riparian development scales. Species richness and relative frequency were surveyed in lakes from two ecoregions: the Northern Lakes and Forests Ecoregion and the Southeastern Wisconsin Till Plain Ecoregion. Lakes were selected along a gradient of watershed development ranging from undeveloped (i.e., forested), to agricultural to urban development. Land uses occurring in the watershed and in perimeters of different width (0–100, 0–200, 0–500, and 0–1000 m from shore, in the watershed) were used to assess effects on macrophyte communities. Snorkel and SCUBA were used to survey aquatic macrophyte species in 18 quadrats of 0.25 m2 along 14 transects placed perpendicular to shore in each lake. Effects of watershed development (e.g., agriculture and/or urban) were tested at whole-lake (entire littoral zone) and near-shore (within 7 m of shore) scales using canonical correspondence analysis (CCA) and linear regression. Overall, species richness was negatively related to watershed development, while frequencies of individual species and groups differed in level of response to different land use perturbations. Effects of land use in the perimeters on macrophytes, with a few exceptions, did not provide higher correlations compared to land use at the watershed scale. In lakes with higher total watershed development levels, introduced species, particularly Myriophyllumspicatum, increased in abundance and native species, especially potamids, isoetids, and floating-leaved plants, declined in abundance. Correlations within the northern and southeastern ecoregions separately were not significant. Multivariate analyses suggested species composition is driven by environmental responses as well as human development pressures. Both water

  7. GigaUnit Transplant System: A New Mechanical Tool for Transplanting Submerged Aquatic Vegetation

    National Research Council Canada - National Science Library

    Shafer, Deborah J

    2008-01-01

    Submerged aquatic vegetation (SAV) performs many important ecosystem functions, including wave attenuation and sediment stabilization, water quality improvement, primary production, food web support for secondary consumers...

  8. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments

    NARCIS (Netherlands)

    Boedeltje, G; ter Heerdt, GNJ; Bakker, JP

    Seed bank studies focused on submerged aquatic plants are generally performed under submerged conditions, using the seedling-emergence method. However, if a study targets at both submerged species and helophytes, submerged conditions are generally not suitable. We tested the emergence of seedlings

  9. Distribution of stable and radioactive metals among the biomass compartments of the macrophytes of the Yenisei river and estimation of the dose rate

    International Nuclear Information System (INIS)

    Zotina, T.A.; Bolsunovskiy, A.Ya.; Sukovatyj, A.G.

    2008-01-01

    Artificial radioactive metals are annually detected in the biomass of submerged macrophytes in the zone radioactive contamination of the Yenisei river. It has been shown by other authors that metals are not uniformly distributed in the biomass of aquatic macrophytes. In this research the distribution of stable and radioactive isotopes of metals was investigated among the biomass compartments of the macrophytes from the Yenisei river with chemical fractionation technique. Dose rates from the intra- and extracellular radionuclides have been estimated. According to the data obtained the distribution of metals among intra- and extracellular compartments was different. The major portion of Co, Mn and Zn was accumulated in the biomass in more mobile form, than Cr and Fe. Artificial radioactive isotopes were detected in the same compartments as stable metals. Essential portion of artificial radionuclides and stable metals was detected in the particles of seston, attached to the surface of the macrophytes.

  10. The Future of Freshwater Macrophytes in a Changing World: Dissolved Organic Carbon Quantity and Quality and Its Interactions With Macrophytes

    Directory of Open Access Journals (Sweden)

    Rosanne E. Reitsema

    2018-05-01

    Full Text Available Freshwater ecosystems are confronted with the effects of climate change. One of the major changes is an increased concentration of aquatic carbon. Macrophytes are important in the aquatic carbon cycle and play as primary producers a crucial role in carbon storage in aquatic systems. However, macrophytes are affected by increasing carbon concentrations. The focus of this review lies on dissolved organic carbon (DOC, one of the most abundant forms of carbon in aquatic ecosystems which has many effects on macrophytes. DOC concentrations are rising; the exact cause of this increase is not known, although it is hypothesized that climate change is one of the drivers. The quality of DOC is also changing; for example, in urban areas DOC composition is different from the composition in natural watersheds, resulting in DOC that is more resistant to photo-degradation. Plants can benefit from DOC as it attenuates UV-B radiation, it binds potentially harmful heavy metals and provides CO2 as it breaks down. Yet plant growth can also be impaired under high DOC concentrations, especially by humic substances (HS. HS turn the water brown and attenuate light, which limits macrophyte photosynthesis at greater depths. This leads to lower macrophyte abundance and lower species diversity. HS form a wide class of chemicals with many different functional groups and they therefore have the ability to interfere with many biochemical processes that occur in freshwater organisms. Few studies have looked into the direct effects of HS on macrophytes, but there is evidence that HS can interfere with photosynthesis by entering macrophyte cells and causing damage. DOC can also affect reactivity of heavy metals, water and sediment chemistry. This indirectly affects macrophytes too, so they are exposed to multiple stressors that may have contradictive effects. Finally, macrophytes can affect DOC quality and quantity as they produce DOC themselves and provide a substrate to

  11. Regulation and role of epiphytic nitrification and denitrification in macrophyte-dominated systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Peder G.

    2000-02-01

    This thesis examines mechanisms regulating bacterial nitrification and denitrification in attached microbial communities on surfaces of aquatic macrophytes. It also evaluates the role of epiphytic nitrification and denitrification for the nitrogen turnover in macrophyte-dominated nutrient-rich freshwater. Epiphytic nitrification is promoted in light and epiphytic denitrification occurs mainly in dark, because the metabolic activity of the aquatic macrophyte and its epiphytes induce in light high and in dark low oxygen concentrations in epiphytic communities. Epiphytic nitrification and denitrification are also affected by the physical and chemical characteristics of the aquatic macrophyte. The spatial distribution of nitrification in emergent macrophyte wetlands is related to the species composition of the emergent vegetation, possibly because of a macrophyte species-related release of organic nitrification inhibitors. Contrasting to nitrifying bacteria, which are lithotrophic, denitrifying bacteria use organic substances as an energy source and are therefore stimulated by the release of organic matter from aquatic macrophytes. Epiphytic communities support more denitrification in nutrient-rich than in nutrient-poor environments. In lakes and ponds, epiphytic denitrification is higher at sheltered locations than at locations exposed to wind-induced water movements or currents. In flowing water, epiphytic denitrification occurs mainly at low oxygen concentrations in the surrounding water. However, because aquatic macrophytes impede water flow and induce low oxygen concentrations in dark, epiphytic denitrification can be present within dense vegetation despite of high oxygen concentrations in the surrounding water. Epiphytic nitrification is almost unaffected by flow conditions, and can occur both in light and in dark. In shallow-water systems such as treatment wetlands, aquatic macrophytes often provide most of the accessible surface area for attached nitrifying and

  12. Biodiversity patterns of macrophyte and macroinvertebrate communities in two lagoons of Western Greece.

    Science.gov (United States)

    Fyttis, G.; Reizopoulou, S.; Papastergiadou, E.

    2012-04-01

    Aquatic macrophytes and benthic macroinvertebrates were studied seasonally (Spring, Autumn, Summer) between the years 2009 - 2011 in two coastal lagoons (Kotychi and Prokopos) located in Peloponnese, Greece, in order to investigate spatial and temporal biodiversity trends related to hydrological processes (degree of confinement, nitrates, phosphates, chl-a, total suspended materials, light irradiance, pH, salinity, temperature and dissolved oxygen). Kotychi lagoon presents a better communication with the sea, while Prokopos has a high degree of confinement. Both ecosystems seasonally receive freshwater input from streams. The submerged aquatic macrophytes constituted a major component of the ecosystems studied. In total, 22 taxa of aquatic macrophytes (angiosperms and macroalgae), 16 taxa for Kotychi (2 Rhodophyta, 8 Chlorophyta, 5 Magnoliophyta, 1 Streptophyta) and 14 taxa for Prokopos (1 Rhodophyta, 5 Chlorophyta, 5 Magnoliophyta, 3 Streptophyta) were found. Ruppia cirrhosa, and Potamogeton pectinatus were dominant in both lagoons. Kotychi lagoon was also dominated by Zostera noltii and Prokopos by Zannichellia pallustris ssp. pedicellata, while the biomass of aquatic species peaked during the summer periods, in both lagoons. The total number of macroinvertebrates found in the lagoons was 28 taxa for Kotychi and 19 for Prokopos. Chironomidae were dominant in both lagoons, while Kotychi was also dominated by Lekanesphaera monodi and Monocorophium insidiosum, and Prokopos by Ostracoda and Lekanesphaera monodi. Benthic diversity ranged from 1.33 to 2.57 in Kotychi and from 0.67 to 2.48 in Prokopos. Species richness, diversity, and abundance of benthic macroinvertebrates were strongly related to aquatic vegetation and to the degree of communication with the marine environment. Moreover, species richness and abundance of both macrophytes and macroinvertebrates were mainly dependent on depth, temperature, pH and concentration of total suspended materials (TSM). Results

  13. Simulated bioavailability of phosphorus from aquatic macrophytes and hytoplankton by aqueous suspension and incubation with alkaline phosphatase

    Science.gov (United States)

    Bioavailability of phosphorus (P) in aquatic macrophytes and algae on lake eutrophication was studied by evaluation their P forms and quantities in their water suspensions and impact by alkaline phosphatase hydrolysis. using solution 31P-nuclear magnetic resonance (NMR). The laboratory suspension an...

  14. Cellulase and xylanase activity during the decomposition of three aquatic macrophytes in a tropical oxbow lagoon

    Directory of Open Access Journals (Sweden)

    L Sciessere

    2011-09-01

    Full Text Available Due to the connection between enzymatic activity and degradation of different fractions of organic matter, enzyme assays can be used to estimate degradation rates of particulate and dissolved organic carbon in freshwater systems. The aim of this study was to quantify and model the enzymatic degradation involving the decomposition of macrophytes, describing temporal activity of cellulases (EC 3.2.1.4 and EC 3.2.1.91 and xylanase (EC 3.2.1.8 during in situ decomposition of three aquatic macrophytes (Salvinia sp., Eichhornia azurea and Cyperus giganteus on the surface and water-sediment interface (w-s interface of an oxbow lagoon (Óleo lagoon within a natural Brazilian Savanna Reserve. Overall, the enzymatic degradation of aquatic macrophytes in Óleo lagoon occurred during the whole year and was initiated together with leaching. Xylanase production was ca. 5 times higher than cellulase values due to easy access to this compound by cellulolytic microorganisms. Enzymatic production and detritus mass decay were similar on the surface and w-s interface. Salvinia sp. was the most recalcitrant detritus, with low mass decay and enzymatic activity. E. azurea and C. giganteus decomposition rates and enzymatic production were high and similar. Due to the physicochemical homogeneity observed in the Óleo lagoon, the differences between the decay rates of each species are mostly related with detritus chemical quality.

  15. The role of pH in structuring communities of Maine wetland macrophytes and chironomid larvae (Diptera)

    Science.gov (United States)

    Woodcock, T.S.; Longcore, J.R.; McAuley, D.G.; Mingo, T.M.; Bennatti, C.R.; Stromborg, K.L.

    2005-01-01

    Aquatic vascular plants, or macrophytes, are an important habitat component for many wetland organisms, and larvae of chironomid midges are ubiquitous components of wetland fauna. Many chironomids are primary consumers of algae and detritus and form an essential energetic link between allochthonous and autochthonous primary production and higher trophic levels, while others are predators and feed on smaller invertebrates. Live macrophytes serve mostly as habitat, whereas plant detritus serves as both habitat and as a food source. Assemblages of macrophytes and chironomid larvae were surveyed in ten Maine wetlands, five with low pH (5.5), and explained in terms of physical and chemical habitat variables. Macrophyte richness was significantly greater, and richness of chironomid larvae was lower, in low pH wetlands. There was no difference in chironomid abundance related to pH. However, community structure was related to pH, suggesting that competitive dominance of a few taxa was responsible for lower richness in low pH wetlands, whereas competition was weaker in high pH wetlands, making coexistence of more chironomid taxa possible. An examination of individual chironomid taxa by stepwise multiple regression showed that distribution of most taxa was controlled by water chemistry variables and macrophyte habit (i.e., floating, submergent).

  16. Trade-off between drag reduction and light interception of macrophytes: comparing five aquatic plants with contrasting morphology

    NARCIS (Netherlands)

    Bal, K.D.; Bouma, T.J.; Buis, K.; Struyf, E.; Jonas, S.; Backx, H.; Meire, P.

    2011-01-01

    1. Macrophytes in running waters experience an often dynamic and harsh environment. To avoid breakage, plants have to reduce the experienced drag force. However, by reducing leaf area, photosynthetic production is less. Aquatic plants therefore have to find a balance between reducing drag and

  17. Remote sensing of macrophyte morphological traits: Implications for the management of shallow lakes

    Directory of Open Access Journals (Sweden)

    Paolo Villa

    2017-03-01

    Full Text Available Macrophytes are important elements of freshwater ecosystems, fulfilling a pivotal role in biogeochemical cycles. The synoptic capabilities provided by remote sensing make it a powerful tool for monitoring aquatic vegetation characteristics and the functional status of shallow lake systems in which they occur. The latest generation of airborne and spaceborne imaging sensors can be effectively exploited for mapping morphologically – and physiologically – relevant vegetation features based on their canopy spectral response. The objectives of this study were to calibrate semi-empirical models for mapping macrophyte morphological traits (i.e., fractional cover, leaf area index and above-water biomass from hyperspectral data, and to investigate the capabilities of remote sensing in supporting macrophyte monitoring and management. We calibrated spectral models using in situ reflectance and morphological trait measures and applied them to airborne hyperspectral imaging data, acquired over two shallow European water bodies (Lake Hídvégi, in Hungary, and Mantua lakes system, in Italy in two key phenological phases. Maps of morphological traits were produced covering a broad range of aquatic plant types (submerged, floating, and emergent, common to temperate and continental regions, with an error level of 5.4% for fractional cover, 0.10 m2 m-2 for leaf area index, and 0.06 kg m-2 for above-water biomass. Based on these maps, we discuss how remote sensing could support monitoring strategies and shallow lake management with reference to our two case studies: i.e., by providing insight into spatial and species-wise variability, by assessing nutrient uptake by aquatic plants, and by identifying hotspot areas where invasive species could become a threat to ecosystem functioning and service provision.

  18. Uptake of inorganic phosphorus by the aquatic plant Isoetes australis inhabiting oligotrophic vernal rock pools

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Pulido, Cristina; Pedersen, Ole

    2017-01-01

    The submerged aquatic freshwater macrophyte Isoetes australis S. Williams grows in rock pools situated in south-western Australia, an environment where dissolved inorganic phosphorus (Pi) availability possibly limits growth. In contrast to the two coexisting aquatic species, Glossostigma drummundii...... experiment revealed high amounts of Pi translocation internally in the plant which seemed to go from roots and oldest leaves to younger leaves. As a result of the high root to shoot ratio, high surface area, root uptake kinetics, and sediment Pi availability, roots accounted for 87% of plant Pi uptake...

  19. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay: Status Report, 2003-2006

    National Research Council Canada - National Science Library

    Shafer, Deborah J; Bergstrom, Peter

    2008-01-01

    In 2003, the U.S. Army Engineer Research and Development Center (ERDC) and the National Oceanic and Atmospheric Administration Chesapeake Bay Office began a comprehensive research effort to restore submerged aquatic vegetation (SAV...

  20. The effects of cadmium pulse dosing on physiological traits and growth of the submerged macrophyte Vallisneria spinulosa and phytoplankton biomass: a mesocosm study.

    Science.gov (United States)

    Liu, Hui; Cao, Yu; Li, Wei; Zhang, Zhao; Jeppesen, Erik; Wang, Wei

    2017-06-01

    Pulse inputs of heavy metals are expected to increase with a higher frequency of extreme climate events (heavy rain), leading to stronger erosion of contaminated and fertilized farmland soils to freshwaters, with potentially adverse effects on lake ecosystems. We conducted a 5-month mesocosm study to elucidate the responses of the submerged macrophyte Vallisneria spinulosa and phytoplankton to four different doses of cadmium (Cd): 0 (control), 0.05, 0.5, and 5 g m -2 (CK, I, II, and III, respectively) under mesotrophic conditions. We found that total phosphorus concentrations were larger in the three Cd pulse treatments, whereas total nitrogen concentrations did not differ among the four treatments. The contents of chlorophyll a and soluble sugar in macrophyte leaves decreased in III, and total biomass, ramet number, plant height, and total stolon length of macrophytes were lower in both II and III. In contrast, abundances of the three main phytoplankton taxa-Cyanophyta, Chlorophyta, and Bacillariophyta-did not differ among treatments. Total phytoplankton biomass was, however, marginally lower in CK than in the Cd treatments. We conclude that exposure to strong Cd pulses led to significantly reduced growth of macrophytes, while no obvious effect appeared for phytoplankton.

  1. Submerged macrophyte communities in the Forsmark area. Building of a GIS application as a tool for biomass estimations

    International Nuclear Information System (INIS)

    Fredriksson, Ronny

    2005-12-01

    The aim of this study was to compile the information from previous studies to produce a GIS application that both illustrates the distribution of different vegetation communities and also makes it possible to estimate the total biomass of the different vegetation communities and its associated fauna. The GIS application was created by means of the software Arc View 3.3 by Environmental Systems Research Institute, Inc. Distribution readings and quantitative data of submerged macrophyte communities and its associated fauna was obtained from studies by Kautsky et al. and by Borgiel. Information about the macrophyte distribution in Laangoersviken, located in the northern parts of Kallrigafjaerden, was obtained from a report by Upplandsstiftelsen. Information about water depth and bottom substrate was available as USGS DEM file, produced by Geological Survey of Sweden. Complementary data of the covering degree of submerged vegetation was obtained from a study using an under water video camera by Tobiasson. Quantitative data on macrophyte and faunal biomass were either obtained from the primary SKB data base SICADA or directly from reports. Samples were compiled and analysed according to dominating vegetation. The work was carried out as follows: Where information about the bottom substrate was available polygons were created by means of the substrate shape file and depth grid from Geological Survey of Sweden. The vegetation community and the covering degree on a certain depth and substrate combination were determined by compiled information from studies by Kautsky and by Borgiel. All observations from a certain bottom substrate were analysed to find the dominating vegetation within different depth ranges. After determining the dominating vegetation, the covering degrees of different macrophyte classes within each depth range were calculated as a mean of all readings. Areas without information about the bottom substrate, but still adjacent to areas included in the

  2. Submerged macrophyte communities in the Forsmark area. Building of a GIS application as a tool for biomass estimations

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Ronny [Univ. of Kalmar (Sweden)

    2005-12-15

    The aim of this study was to compile the information from previous studies to produce a GIS application that both illustrates the distribution of different vegetation communities and also makes it possible to estimate the total biomass of the different vegetation communities and its associated fauna. The GIS application was created by means of the software Arc View 3.3 by Environmental Systems Research Institute, Inc. Distribution readings and quantitative data of submerged macrophyte communities and its associated fauna was obtained from studies by Kautsky et al. and by Borgiel. Information about the macrophyte distribution in Laangoersviken, located in the northern parts of Kallrigafjaerden, was obtained from a report by Upplandsstiftelsen. Information about water depth and bottom substrate was available as USGS DEM file, produced by Geological Survey of Sweden. Complementary data of the covering degree of submerged vegetation was obtained from a study using an under water video camera by Tobiasson. Quantitative data on macrophyte and faunal biomass were either obtained from the primary SKB data base SICADA or directly from reports. Samples were compiled and analysed according to dominating vegetation. The work was carried out as follows: Where information about the bottom substrate was available polygons were created by means of the substrate shape file and depth grid from Geological Survey of Sweden. The vegetation community and the covering degree on a certain depth and substrate combination were determined by compiled information from studies by Kautsky and by Borgiel. All observations from a certain bottom substrate were analysed to find the dominating vegetation within different depth ranges. After determining the dominating vegetation, the covering degrees of different macrophyte classes within each depth range were calculated as a mean of all readings. Areas without information about the bottom substrate, but still adjacent to areas included in the

  3. Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx.

    Science.gov (United States)

    Dogan, Muhittin; Saygideger, Saadet Demirors; Colak, Ugur

    2009-08-01

    Effects of Pb accumulation on the contents of chlorophylls (a and b), carotenoid, ascorbic acid (AsA), non-protein SH groups and protein were investigated in aquatic macrophyte Elodea canadensis. Pb accumulation in E. canadensis tissues increased with increasing metal concentrations. The increases at 1, 10 and 100 mg/L Pb are about 12.0, 44.6 and 71.1 times greater than control, respectively. Contents of chlorophylls, carotenoid and protein were adversely affected by Pb accumulation. Induction of non-protein SH groups and AsA showed that Pb accumulation caused oxidative stress. It is also possible that increased non-protein SH groups by Pb accumulation may be due to their role in Pb detoxification.

  4. Macrophytic flora and vegetation of the rivers Svrljiški and Beli Timok (Eastern Serbia

    Directory of Open Access Journals (Sweden)

    Jenačković, D.

    2010-12-01

    Full Text Available Floristic and phytocoenological investigations of macrophytic vegetation of the rivers Svrljiški and Beli Timok in Eastern Serbia were performed. Analysis of the collected plants showed that the hydrophilous flora contains 26 species from 17 families and 21 genuses. Phytocoenological analysis showed 5 different associations from 3 alliances, 3 orders and 3 classis. Aquatic vegetation is represented by the associations Myriophyllo-Potametum and Potametum nodosi, moor vegetation by associations Scirpetum lacustris and Sparganietum erecti, while nitrophilous vegetation is represented by association Polygono-Bidentetum tripartitae. These associations have formed three clear vegetation belts: submerged, floating and emerged vegetation.

  5. Accumulation of {sup 241}Am by suspended matter, diatoms and aquatic weeds of the Yenisei River

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.A., E-mail: t_zotina@ibp.r [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Bolsunovsky, A.Ya.; Bondareva, L.G. [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk 660036 (Russian Federation)

    2010-02-15

    In this work we experimentally estimated the capacities of the key components of the Yenisei River (Russia): particulate suspended matter (seston), diatom microalgae, and submerged macrophytes for accumulating {sup 241}Am from water. In our experiments large particles of seston (>8 mum), comparable in size with diatoms, took up most of americium from water. The accumulation of americium by isolated diatom algae (Asterionella formosa and Diatoma vulgare) was lower than by total seston. The concentration factors (CFs) of {sup 241}Am for seston of the Yenisei River in our experiments were (2.8-6.9).10{sup 5}; for diatoms - (1.5-4.2).10{sup 4}. The CFs for aquatic plant Elodea canadensis were within the same order of magnitude as those for diatoms. Activity concentration and CFs of {sup 241}Am were nearly the same in experiments under dark and light conditions. This is indicative of an energy independent mechanism of americium uptake from the water by diatoms and submerged macrophytes.

  6. Accumulation of copper by the aquatic macrophyte Salvinia biloba Raddi (Salviniaceae

    Directory of Open Access Journals (Sweden)

    F. Freitas

    2017-07-01

    Full Text Available Abstract Aquatic macrophytes have properties and mechanisms which are useful for the removal of substances in solution, commonly used in phytoremediation processes in aquatic environments. This study evaluated the performance of copper (Cu accumulation by Salvinia biloba Raddi (Salviniaceae in different metal concentrations (1, 3 and 5 µg mL-1, as well as the control treatment, measured at intervals of 0, 7 and 14 days under laboratory conditions, with control as to pH and luminosity. After the experiment, the S. biloba biomass was washed, kiln dried, crushed and subjected to the process of digestion, and subsequently the accumulated copper content was determined by atomic absorption spectroscopy. The results showed that S. biloba is apt at accumulating copper, varying significantly between different treatments and days of exposure to the contaminant, as well as its interaction (treatment × days. The highest accumulation values were observed in treatment with 5 µg mL-1, which at 14 days, with 11,861 µg g-1 of copper. We observed symptoms of toxicity and mortality in plants, probably indicating the effect of copper on the species when at high levels. Salvinia biloba is an efficient species in the removal of copper in solution, its recommendation as a remediating agent in aquatic ecosystems being possible.

  7. Use of native aquatic macrophytes in the reduction of organic matter from dairy effluents.

    Science.gov (United States)

    Queiroz, Rita de Cássia Souza de; Andrade, Rodrigo Santos; Dantas, Isadora Rosário; Ribeiro, Vinícius de Souza; Neto, Luciano Brito Rodrigues; Almeida Neto, José Adolfo de

    2017-08-03

    Considering the diversity and the unexplored potential of regional aquatic flora, this study aimed to identify and analyze the potential of native aquatic macrophytes to reduce the organic matter of dairy wastewater (DW) using experimental constructed wetlands. The dairy wastewater (DW) had an average chemical oxygen demand (COD) of 7414.63 mg/L and then was diluted to 3133.16 mg/L (D1) and to 2506.53 mg/L (D2). Total solids, COD, temperature, and pH analyses were performed, and the biochemical oxygen demand (BOD) was estimated from the COD values. The best performance in the reduction of the organic matter was observed for Polygonum sp. (87.5% COD and 79.6% BOD) and Eichhornia paniculata (90% COD and 83.7% BOD) at dilution D1, on the 8th day of the experiment. However, the highest total solids removal was observed for Polygonum sp. (32.2%), on the 4th day, at dilution D2. The total solid (TS) concentration has also increased starting from the 8th day of the experiment was observed which may have been due to the development of mosquito larvae and their mechanical removal by sieving, thus changing the steady state of the experimental systems. The macrophytes Polygonum sp. and E. paniculata were considered suitable for the reduction of organic matter of DW using constructed wetlands.

  8. Remedial Investigation Addendum Report Data Item A009. Volume 1: Report Test

    Science.gov (United States)

    1993-12-01

    placed over the vegetation. Once the square had settled, phytomacrofauna were collected from submerged macrophytes and the water column with D-frame...with aquatic macrophytes , including sweet water lily (Nymphaea odorata) and water shield (Brasenia schreberi). Submerged macrophytes (primarily water...Miller, G.J., 1984. Chemistry and Ecotoxicology of Pollution. John Wiley & Sons, New York, pp. 71-85. ABB Environmental Services, Inc. W0069310.M80 7005

  9. Vulnerabilities of macrophytes distribution due to climate change

    Science.gov (United States)

    Hossain, Kaizar; Yadav, Sarita; Quaik, Shlrene; Pant, Gaurav; Maruthi, A. Y.; Ismail, Norli

    2017-08-01

    The rise in the earth's surface and water temperature is part of the effect of climatic change that has been observed for the last decade. The rates of climate change are unprecedented, and biological responses to these changes have also been prominent in all levels of species, communities and ecosystems. Aquatic-terrestrial ecotones are vulnerable to climate change, and degradation of the emergent aquatic macrophyte zone would have contributed severe ecological consequences for freshwater, wetland and terrestrial ecosystems. Most researches on climate change effects on biodiversity are contemplating on the terrestrial realm, and considerable changes in terrestrial biodiversity and species' distributions have been detected in response to climate change. This is unfortunate, given the importance of aquatic systems for providing ecosystem goods and services. Thus, if researchers were able to identify early-warning indicators of anthropogenic environmental changes on aquatic species, communities and ecosystems, it would certainly help to manage and conserve these systems in a sustainable way. One of such early-warning indicators concerns the expansion of emergent macrophytes in aquatic-terrestrial ecotones. Hence, this review highlights the impact of climatic changes towards aquatic macrophytes and their possible environmental implications.

  10. Macrophytes: Freshwater Forests of Lakes and Rivers.

    Science.gov (United States)

    McDermid, Karla J.; Naiman, Robert J.

    1983-01-01

    Physical, chemical, and biological effects on macrophytes (aquatic plants) on the freshwater ecosystem are discussed. Research questions and issues related to these organisms are also discussed, including adaptations for survival in a wet environment, ecological consequences of large-scale macrophyte eradication, seasonal changes in plant…

  11. Retrospective assessment of macrophytic communities in southern Lake Garda (Italy from in situ and MIVIS (Multispectral Infrared and Visible Imaging Spectrometer data

    Directory of Open Access Journals (Sweden)

    Claudia Giardino

    2012-01-01

    Full Text Available In situ and hyperspectral MIVIS (Multispectral Infrared and Visible Imaging Spectrometer images acquired over a period of 13 years are used to assess changes in macrophyte colonization patterns in the coastal zones of the Sirmione Peninsula in the southern part of Lake Garda (Italy. In situ data (abundance, cover density and diversity of macrophyte communities and MIVIS-derived maps of colonized substrates are analyzed by considering the variability of the main hydrological and physicochemical variables in order to indicate the main factors that explain the spatiotemporal variability of macrophyte communities. The results show a considerable modification in terms of macrophyte structural complexity and colonized areas. Almost 98% of macrophyte meadows (in particular communities with a density of over 70% are lost and subsequently replaced by moderate to extremely rare communities with density from 10% to 40%. Well-established submerged macrophytes are replaced by de-structured communities characterized by moderate to scarce density: on average lower than 30%. The study indicates that macrophyte distribution along the littoral zone of the Sirmione Peninsula is certainly linked to water transparency and water level fluctuation. The results also indicate that the worsening of eutrophication may be associated with the gradual disappearance of macrophyte meadows, but may also be accelerated by herbivorous aquatic birds grazing there. Lastly, the increasing frequency and number of catamaran tours could be considered a threat for the stability of these valuable communities.

  12. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    AMMONIA-OXIDIZING ARCHAEA AND BACTERIA IN THE RHIZOSPHERE OF FRESHWATER MACROPHYTES Martina Herrmann and Andreas Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Aquatic macrophytes such as Littorella uniflora and Lobelia dortmanna release oxygen from...... their roots and thereby stimulate nitrification and coupled nitrification-denitrification in their rhizosphere. However, oxygen release and inorganic nitrogen concentrations differ markedly between macrophyte species. We therefore propose (i) that the rhizosphere of freshwater macrophytes harbours a species......-specific microbial community distinct from that of unvegetated sediment and (ii) that aquatic macrophytes have an impact on abundance and activity of nitrifying and denitrifying bacteria in freshwater sediment. The goal of this study was to test these hypotheses for the key functional group for coupled nitrification...

  13. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31P NMR coupled with enzymatic hydrolysis

    Science.gov (United States)

    Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...

  14. Satellite remote sensing of submerged aquatic vegetation distribution and status in the Currituck Sound, NC.

    Science.gov (United States)

    2012-11-01

    Submerged Aquatic Vegetation (SAV) is an important component in any estuarine ecosystem. As such, it is regulated by federal and state agencies as a jurisdictional resource, where impacts to SAV are compensated through mitigation. Historically, tradi...

  15. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sook [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Brown, Murray T. [School of Marine Science and Engineering, University of Plymouth, Plymouth, Devon PL4 8AA (United Kingdom); Han, Taejun, E-mail: hanalgae@hanmail.net [Division of Life Science, University of Incheon, Incheon 406-840 (Korea, Republic of); Institute of Green Environmental Research, University of Incheon, Incheon 406-840 (Korea, Republic of)

    2012-01-15

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 {mu}M phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC{sub 50} value of 2.70 {mu}M. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F{sub v}/F{sub m}) significantly declined with increasing phenol concentrations with resultant EC{sub 50} of 1.91 {mu}M and coefficients of variation (CVs) generated for the EC{sub 50} values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 {mu}M was found but declined markedly at higher concentrations. The significant correlation between the F{sub v}/F{sub m} and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  16. Phenol toxicity to the aquatic macrophyte Lemna paucicostata

    International Nuclear Information System (INIS)

    Park, Ji-Sook; Brown, Murray T.; Han, Taejun

    2012-01-01

    Phenol is a ubiquitous environmental pollutant and a widely used reference toxicant for many bioassays. However, little information is available regarding the toxic effects of phenol on aquatic macrophytes. Seventy-two hour bioassays, with different end-points, were carried out to assess phenol toxicity in Lemna paucicostata. A concentration-dependent decline in frond multiplication and colony disintegration was observed, with 11.38 and 22.76 μM phenol resulting in browning of fronds and colony disintegration, respectively. Growth of fronds, as measured by changes in surface area, was significantly inhibited with EC 50 value of 2.70 μM. When pulse amplitude modulated chlorophyll a (Chl a) fluorescence imaging (i-PAM) was employed, the maximum quantum yield of PS II (F v /F m ) significantly declined with increasing phenol concentrations with resultant EC 50 of 1.91 μM and coefficients of variation (CVs) generated for the EC 50 values of less than 4.7%. A gradual increase in fluorescence emissions from chlorophylls a and b and pheophytin up to a concentration of 2.85 μM was found but declined markedly at higher concentrations. The significant correlation between the F v /F m and surface growth rate data implies that the former is an appropriate biomarker of whole plant toxicity. Using imaging Chl a fluorescence on L. paucicostata provides a rapid, sensitive and reliable method for assessing the toxic risks posed by phenol to aquatic ecosystems and has practical applications for municipal and industrial waste water management.

  17. Ecology, fish and fishery of Lake Liambezi, a recently refilled ...

    African Journals Online (AJOL)

    Lake Liambezi (300 km2) refilled in 2009 after a prolonged 22-year dry period. Its aquatic macrophyte populations, fish fauna and fishery shortly after refilling are described. The emergent aquatic macrophyte Phragmites australis formed dense stands covering large parts of the lake, while extensive beds of submerged ...

  18. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    International Nuclear Information System (INIS)

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P.

    2016-01-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state 13 C NMR and solution 31 P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O–C–O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH 3 and COO/N–C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH 3 and COO/N–C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. - Highlights: • WEOM derived from aquatic macrophytes was characterized. • C and P in WEOM were characterized by solid 13 C NMR and solution 31 P NMR. • Degradation and transformation of macrophyte-derived C and P were investigated. • Macrophyte-derived WEOM are important source for bioavailable nutrients in lakes.

  19. Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida.

    Science.gov (United States)

    Najar, Ishtiyaq Ahmed; Khan, Anisa B

    2013-09-01

    In the present study, potential of Eisenia fetida to recycle the different types of fresh water weeds (macrophytes) used as substrate in different reactors (Azolla pinnata reactor, Trapa natans reactor, Ceratophyllum demersum reactor, free-floating macrophytes mixture reactor, and submerged macrophytes mixture reactor) during 2 months experiment is investigated. E. fetida showed significant variation in number and weight among the reactors and during the different fortnights (P macrophytes mixture reactor (number 105 ± 5.77 %; weight 41.07 ± 3.97 % ). ANOVA showed significant variation in cocoon production (F4 = 15.67, P macrophyte affects the growth and reproduction pattern of E. fetida among the different reactors, further the addition of A. pinnata in other macrophytes reactors can improve their recycling by E. fetida.

  20. Checklist das macrófitas aquáticas do Pantanal, Brasil Checklist of the aquatic macrophytes of the Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    Vali Joana Pott

    1997-12-01

    Full Text Available O Pantanal, por ser alagável, é ambiente favorável ao desenvolvimento de muitas plantas aquáticas. Para atender demandas de levantamentos florísticos regionais, fez-se a listagem das macrófitas aquáticas do Pantanal, com base em coletas depositadas nos Herbários CPAP (EMBRAPA, COR (Universidade Federal de Mato Grosso do Sul, CH (Universidade Federal de Mato Grosso e K (Kew. Até o momento, foram levantadas 242 espécies, distribuídas em 106 gêneros e 54 famílias. As famílias mais numerosas são Poaceae (22 espécies, Cyperaceae(17, Leguminosae e Scrophulariaceae(14, Alismataceae e Onagraceae(13, Pontederiaceae(11, Lentibulariaceae(10, Characeae(9, emnaceae, Malvaceae e Nymphaeaceae(8. A maioria das demais famílias apresentam uma ou duas espécies cada. Quanto à forma biológica, 39% são plantas emergentes, 28% anfíbias, 11,5% flutuantes fixas, 8% flutuantes livres, 8% submersas fixas, 3,8% submersas livres e 1,7% epífítas. Os principais gêneros em número de espécies são Nymphaea, Utricularia, Echinodorus, Ludwigia, Polygonum, Aeschynomene, Cyperus, Eleocharis e Bacopa.The Pantanal, being a wetland, is a favorable environment for the development of many aquatic plants. This list of aquatic macrophytes of the Pantanal was made based on field collections, deposited at Herbarium CPAP (EMBRAPA, COR (Universidade Federal de Mato Grosso do Sul, CH (Universidade Federal de Mato Grosso and K (Kew, to support regional floristic surveys. Until present, 242 species were listed, distributed within 106 genera and 54 families. The most numerous families were Poaceae (22 species Cyperaceae(17, Leguminosae and Scrophulariaceae(14, Alismataceae and Onagraceae(13, Pontederiaceae (11, Lentibulariaceae(10, Characeae(9, Lemnaceae, Malvaceae andNymphaeaceae(8. The majority of other families has one or two species each. The life form spectrum includes 39% emergent plants, 28% amphibious, 11,5% rooted floating, 8% free floating, 8% rooted submerged

  1. Guidelines for the Acquisition of Aerial Photography for Digital Photo-Interpretation of Submerged Aquatic Vegetation (SAV)

    National Research Council Canada - National Science Library

    Jackson, Sam S; Graves, Mark R; Shafer, Deborah J

    2006-01-01

    Monitoring the success of large-scale submerged aquatic vegetation (SAV) restoration projects requires the ability to detect and map the presence or absence of SAV, as well as assess changes in SAV distributions over time...

  2. Fish community responses to submerged aquatic vegetation in Maumee Bay, Western Lake Erie

    Science.gov (United States)

    Miller, Jacob; Kocovsky, Patrick; Wiegmann, Daniel; Miner, Jeffery G.

    2018-01-01

    Submerged aquatic vegetation (SAV) in clearwater systems simultaneously provides habitat for invertebrate prey and acts as refugia for small fishes. Many fishes in Lake Erie rely on shallow, heavily vegetated bays as spawning grounds and the loss or absence of which is known to reduce recruitment in other systems. The Maumee River and Maumee Bay, which once had abundant macrophyte beds, have experienced a decline of SAV and an increase in suspended solids (turbidity) over the last century due to numerous causes. To compare fish communities in open‐water (turbid) and in SAV (clearer water) habitats in this region, which is designated by the U.S. Environmental Protection Agency as an Area of Concern, and to indicate community changes that could occur with expansion of SAV habitat, we sampled a 300‐ha sector of northern Maumee Bay that contained both habitats. Using towed neuston nets through patches of each habitat, we determined that areas of SAV contained more species and a different species complex (based on the Jaccard index and the wetland fish index), than did the open‐water habitat (averaging 8.6 versus 5 species per net trawl). The SAV habitat was dominated by centrarchids, namely Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, and Black Crappie Pomoxis nigromaculatus. Open‐water habitat was dominated by Spottail Shiner Notropis hudsonius, Gizzard Shad Dorosoma cepedianum, and White Perch Morone americana, an invasive species. These results indicate that restoration efforts aimed at decreasing turbidity and increasing the distribution of SAV could cause substantive shifts in the fish community and address important metrics for assessing the beneficial use impairments in this Area of Concern.

  3. Landscapes of facilitation: how self-organized patchiness of aquatic macrophytes promotes diversity in streams.

    Science.gov (United States)

    Cornacchia, Loreta; van de Koppel, Johan; van der Wal, Daphne; Wharton, Geraldene; Puijalon, Sara; Bouma, Tjeerd J

    2018-04-01

    Spatial heterogeneity plays a crucial role in the coexistence of species. Despite recognition of the importance of self-organization in creating environmental heterogeneity in otherwise uniform landscapes, the effects of such self-organized pattern formation in promoting coexistence through facilitation are still unknown. In this study, we investigated the effects of pattern formation on species interactions and community spatial structure in ecosystems with limited underlying environmental heterogeneity, using self-organized patchiness of the aquatic macrophyte Callitriche platycarpa in streams as a model system. Our theoretical model predicted that pattern formation in aquatic vegetation - due to feedback interactions between plant growth, water flow and sedimentation processes - could promote species coexistence, by creating heterogeneous flow conditions inside and around the plant patches. The spatial plant patterns predicted by our model agreed with field observations at the reach scale in naturally vegetated rivers, where we found a significant spatial aggregation of two macrophyte species around C. platycarpa. Field transplantation experiments showed that C. platycarpa had a positive effect on the growth of both beneficiary species, and the intensity of this facilitative effect was correlated with the heterogeneous hydrodynamic conditions created within and around C. platycarpa patches. Our results emphasize the importance of self-organized patchiness in promoting species coexistence by creating a landscape of facilitation, where new niches and facilitative effects arise in different locations. Understanding the interplay between competition and facilitation is therefore essential for successful management of biodiversity in many ecosystems. © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  4. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock(®)).

    Science.gov (United States)

    Spears, Bryan M; Mackay, Eleanor B; Yasseri, Said; Gunn, Iain D M; Waters, Kate E; Andrews, Christopher; Cole, Stephanie; De Ville, Mitzi; Kelly, Andrea; Meis, Sebastian; Moore, Alanna L; Nürnberg, Gertrud K; van Oosterhout, Frank; Pitt, Jo-Anne; Madgwick, Genevieve; Woods, Helen J; Lürling, Miquel

    2016-06-15

    Lanthanum (La) modified bentonite is being increasingly used as a geo-engineering tool for the control of phosphorus (P) release from lake bed sediments to overlying waters. However, little is known about its effectiveness in controlling P across a wide range of lake conditions or of its potential to promote rapid ecological recovery. We combined data from 18 treated lakes to examine the lake population responses in the 24 months following La-bentonite application (range of La-bentonite loads: 1.4-6.7 tonnes ha(-1)) in concentrations of surface water total phosphorus (TP; data available from 15 lakes), soluble reactive phosphorus (SRP; 14 lakes), and chlorophyll a (15 lakes), and in Secchi disk depths (15 lakes), aquatic macrophyte species numbers (6 lakes) and aquatic macrophyte maximum colonisation depths (4 lakes) across the treated lakes. Data availability varied across the lakes and variables, and in general monitoring was more frequent closer to the application dates. Median annual TP concentrations decreased significantly across the lakes, following the La-bentonite applications (from 0.08 mg L(-1) in the 24 months pre-application to 0.03 mg L(-1) in the 24 months post-application), particularly in autumn (0.08 mg L(-1) to 0.03 mg L(-1)) and winter (0.08 mg L(-1) to 0.02 mg L(-1)). Significant decreases in SRP concentrations over annual (0.019 mg L(-1) to 0.005 mg L(-1)), summer (0.018 mg L(-1) to 0.004 mg L(-1)), autumn (0.019 mg L(-1) to 0.005 mg L(-1)) and winter (0.033 mg L(-1) to 0.005 mg L(-1)) periods were also reported. P concentrations following La-bentonite application varied across the lakes and were correlated positively with dissolved organic carbon concentrations. Relatively weak, but significant responses were reported for summer chlorophyll a concentrations and Secchi disk depths following La-bentonite applications, the 75th percentile values decreasing from 119 μg L(-1) to 74 μg L(-1) and increasing from

  5. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera.

    Science.gov (United States)

    Erhard, Daniela; Pohnert, Georg; Gross, Elisabeth M

    2007-08-01

    The submersed macrophyte Elodea nuttallii (Hydrocharitaceae) is invasive in Europe and frequently found in aquatic plant communities. Many invertebrate herbivores, such as larvae of the generalist aquatic moth, Acentria ephemerella (Lepidoptera, Pyralidae), avoid feeding on E. nuttallii and preferably consume native species. First instar larvae exhibited a high mortality on E. nuttallii compared to the native macrophyte Potamogeton perfoliatus. Mortality of older larvae was also high when fed E. nuttallii exposed to high light intensities. Growth of older larvae was strongly reduced on E. nuttallii compared to pondweeds (Potamogeton lucens). Neither differences in nitrogen nor phosphorus content explained the different performance on these submerged macrophytes, but plants differed in their flavonoid content. To investigate whether plant-derived allelochemicals from E. nuttallii affect larval performance in the same way as live plants, we developed a functional bioassay, in which Acentria larvae were reared on artificial diets. We offered larvae Potamogeton leaf disks coated with crude Elodea extracts and partially purified flavonoids. Elodea extracts deterred larvae from feeding on otherwise preferred Potamogeton leaves, and yet, unknown compounds in the extracts reduced growth and survival of Acentria. The flavonoid fraction containing luteolin-7-O-diglucuronide, apigenin-7-O-diglucuronide, and chrysoeriol-7-O-diglucuronide strongly reduced feeding of larvae, but did not increase mortality. The concentrations of these compounds in our assays were 0.01-0.09% of plant dry mass, which is in the lower range of concentrations found in the field (0.02-1.2%). Chemical defense in E. nuttallii thus plays an ecologically relevant role in this aquatic plant-herbivore system.

  6. Investigation of Darwin’s naturalization hypothesis in invaded macrophyte communities

    Science.gov (United States)

    Although native macrophytes are beneficial in aquatic ecosystems, invasive macrophytes can cause significant ecological and economic harm. Numerous studies have attributed invasiveness to species’ characteristics, whereas others attribute invasion to biotic and abiotic characteristics of the invaded...

  7. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state {sup 13}C NMR and solution {sup 31}P NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shasha [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhu, Yuanrong, E-mail: zhuyuanrong07@mails.ucas.ac.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Meng, Wei, E-mail: mengwei@craes.org.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); He, Zhongqi [USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124 (United States); Feng, Weiying [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Chen [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Giesy, John P. [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state {sup 13}C NMR and solution {sup 31}P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O–C–O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH{sub 3} and COO/N–C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH{sub 3} and COO/N–C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. - Highlights: • WEOM derived from aquatic macrophytes was characterized. • C and P in WEOM were characterized by solid {sup 13}C NMR and solution {sup 31}P NMR. • Degradation and transformation of macrophyte-derived C and P were investigated. • Macrophyte-derived WEOM are important source for bioavailable nutrients in lakes.

  8. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems

    OpenAIRE

    Mo Shuqing; Zhang Xiufeng; Tang Yali; Liu Zhengwen; Kettridge Nicholas

    2017-01-01

    Eutrophication resulting from nutrient loading to freshwater habitats is a severe problem, leading to degradation of ecosystems, including deterioration of water quality, water clarity and loss of biodiversity. Measures enacted to restore degraded freshwater ecosystems often involve the reintroduction of submerged plants and aquatic animals with beneficial ecological functions. In a mesocosm experiment, three treatments (planting with Vallisneria natans, introduction of the snail Bellamya aer...

  9. Fluoride remediation using floating macrophytes

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-04-01

    Full Text Available Six aquatic macrophytes, such as Pistia stratiotes, Ceratophyllum demersum, Nymphoides indica, Lemna major, Azolla pinnata,and Eichhornia crassipes were considered for remove fluoride from aqueous solution. Five different concentrations (10, 30, 50, and 100 ppm of fluoride solution were taken in 1 L plastic container. Fixed weight (20 g of macrophytes along with 500 ml fluoride solution was taken in each plastic container for 72 hours observation. Results demonstrated all the macrophytes show highest fluoride removal during 24 h to 48 h, but after 72 h their efficiency reduced drastically. The species N. indica showed better removal efficiency than other experimental macrophytes. In general, pigment measurement data indicated higher concentration at 72 h. However, Pistia sp. showed higher concentration of pigmentation at intermediate time interval (48 h. Higher level of dry weight to fresh weight ratio was recorded for L. major and A. pinnata at all concentrations, excepting at 10 ppm. In addition, all macrophytes showed lower RGR at higher concentration. Isotherm study indicated that macrophyte C. demersum is a good fitted with Freundlich and Langmuir isotherm whereas L. major with Langmuir isotherm during 24 hours.

  10. SUBMERGED MACROPHYTE EFFECTS ON NUTRIENT EXCHANGES IN RIVERINE SEDIMENTS

    Science.gov (United States)

    Submersed macrophytes are important in nutrient cycling in marine and lacustrine systems, although their role in nutrient exchange in tidally-influenced riverine systems is not well studied. In the laboratory, plants significantly lowered porewater nutrient pools of riverine sedi...

  11. Abstract/ introduction

    African Journals Online (AJOL)

    User

    2011-12-29

    Dec 29, 2011 ... of eutrophication on aquatic ecosystems is the disappearance of submerged macrophytes ... macrophyte plants (e.g. Rowmanowska- Duda and .... plant exposure to 5.0 μg/l of MC-LR, the production of a .... Toxicology, 43:.

  12. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  13. Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Mi-Hee; Pflugmacher, Stephan, E-mail: stephan.pflugmacher@tu-berlin.de

    2013-08-15

    Highlights: •We examined time-dependent metabolic changes in C. demersum exposed to anatoxin-a. •Biotransformation and antioxidative defense mechanisms responded positively to anatoxin-a. •Decline in chlorophylls contents was detected in company with irreversible plant growth inhibition during exposure to anatoxin-a. •Anatoxin-a exhibits phytotoxic allelopathy by provoking oxidative stress. •Macrophytes may have interactions with anatoxin-a in aquatic environments. -- Abstract: Recently, aquatic macrophytes have been considered as promising tools for eco-friendly water management with a low running cost. However, only little information is available thus far regarding the metabolic capacity of macrophytes for coping with cyanobacterial toxins (cyanotoxins) in the aquatic environment. Cyanotoxins have become emerging contaminants of great concern due to the high proliferation of cyanobacteria (cyanobacterial bloom) accelerated by eutrophication and climate change. Anatoxin-a, one of the common and major cyanotoxins, is suggested as a high priority water pollutant for regulatory consideration owing to its notoriously rapid mode of action as a neurotoxin. In this study, the time-course metabolic regulation of the submerged macrophyte Ceratophyllum demersum (C. demersum) was investigated during exposure to anatoxin-a at an environmentally relevant concentration (15 μg/L). Biotransformation and antioxidative systems in C. demersum responded positively to anatoxin-a through the promoted synthesis of most of the involved enzymes within 8 h. Maximum enzyme activities were exhibited after 24 or 48 h of exposure to anatoxin-a. However, an apparent decline in enzyme activities was also observed at longer exposure duration (168 and 336 h) in company with high steady-state levels of cell internal H{sub 2}O{sub 2}, which showed its highest level after 48 h. Meanwhile, irreversible inhibitory influence on chlorophyll content (vitality) was noticed, whereas the ratio of

  14. Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a

    International Nuclear Information System (INIS)

    Ha, Mi-Hee; Pflugmacher, Stephan

    2013-01-01

    Highlights: •We examined time-dependent metabolic changes in C. demersum exposed to anatoxin-a. •Biotransformation and antioxidative defense mechanisms responded positively to anatoxin-a. •Decline in chlorophylls contents was detected in company with irreversible plant growth inhibition during exposure to anatoxin-a. •Anatoxin-a exhibits phytotoxic allelopathy by provoking oxidative stress. •Macrophytes may have interactions with anatoxin-a in aquatic environments. -- Abstract: Recently, aquatic macrophytes have been considered as promising tools for eco-friendly water management with a low running cost. However, only little information is available thus far regarding the metabolic capacity of macrophytes for coping with cyanobacterial toxins (cyanotoxins) in the aquatic environment. Cyanotoxins have become emerging contaminants of great concern due to the high proliferation of cyanobacteria (cyanobacterial bloom) accelerated by eutrophication and climate change. Anatoxin-a, one of the common and major cyanotoxins, is suggested as a high priority water pollutant for regulatory consideration owing to its notoriously rapid mode of action as a neurotoxin. In this study, the time-course metabolic regulation of the submerged macrophyte Ceratophyllum demersum (C. demersum) was investigated during exposure to anatoxin-a at an environmentally relevant concentration (15 μg/L). Biotransformation and antioxidative systems in C. demersum responded positively to anatoxin-a through the promoted synthesis of most of the involved enzymes within 8 h. Maximum enzyme activities were exhibited after 24 or 48 h of exposure to anatoxin-a. However, an apparent decline in enzyme activities was also observed at longer exposure duration (168 and 336 h) in company with high steady-state levels of cell internal H 2 O 2 , which showed its highest level after 48 h. Meanwhile, irreversible inhibitory influence on chlorophyll content (vitality) was noticed, whereas the ratio of

  15. Evaluation of the feeding preference between the aquatic macrophytes Egeria densa and Chara indica by the invasive mollusk Melanoides tuberculata.

    Science.gov (United States)

    Medeiros, E L; Henry-Silva, G G

    2017-01-01

    This study evaluated the feeding preference of the invasive mollusk Melaniudes tuberculata between the aquatic macrophytes Egeria densa and Chara indica. The experiment consisted of twelve experimental units (glass aquariums) each of which contained three liters of water and three compartments. Fragments of E. densa and C. indica were placed in separate compartments within each unit; the third compartment, which did not contain macrophytes, was used as the control. Twenty Melanoides tuberculata individuals were placed in each unit and monitored hourly over the course of 24 hours for preferential movements. Physical and chemical water variables were measured at the beginning and end of the experiment. Habitat complexity was determined through collected macrophyte fragments and determined using the Fractop program. After 24 hours, the highest average number of individuals was observed in the treatment with Chara indica (ten individuals), which differed significantly from the treatment with E. densa (four individuals) and the control treatment (two individuals). The number of individuals between the E. densa and control treatment were similar. M. tuberculata showed a clear feeding preference for C. indica.

  16. Performance of free water surface flow constructed wetland with floating aquatic macrophytes

    Directory of Open Access Journals (Sweden)

    C. Soler

    2018-04-01

    Full Text Available The aim of this study was to evaluate the behavior of constructed wetlands with aquatic macrophytes in decreasing the concentration of pollutants from urban effluents. A pilot-scale system with two coverages of floating plants and two hydraulic residence times, working with continuous flow laminar was built. The lower concentration of chemical oxygen demand and biological oxygen demand, were obtained with the lower coverage and higher hydraulic residence times. With little influence of the variables on the concentration of total nitrogen and total suspended solids, being the significant response for total phosphorus with the lowest plant coverage. There was a highly significant removal of total coliforms, regardless of coverage and in favor of higher hydraulic residence times. The use of free water surface wetlands is auspicious for sanitary control, showing low incidence on total nitrogen and total phosphorus.

  17. Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India.

    Science.gov (United States)

    Khatun, Amina; Pal, Sandipan; Mukherjee, Aloke Kumar; Samanta, Palas; Mondal, Subinoy; Kole, Debraj; Chandra, Priyanka; Ghosh, Apurba Ratan

    2016-01-01

    The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus . The concentration of metals in sediment were, from highest to lowest, Mn (205.0±65.5 mg/kg)>Cu (29.9±10.2 mg/kg)>Pb (22.7±10.3 mg/kg)>Cd (3.7±2.2 mg/kg). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations ( p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation ( p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta .

  18. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments.

    Science.gov (United States)

    Hand, L H; Kuet, S F; Lane, M C; Maund, S J; Warinton, J S; Hill, I R

    2001-08-01

    Aquatic exposure assessments for pesticides are generally based on laboratory studies performed in water alone or water sediment systems. Although aquatic macrophytes, which include a variety of bryophytes, macroalgae, and angiosperms, can be a significant component of many aquatic ecosystems, their impact on pesticide fate is generally not included in exposure assessments. To investigate the influence of aquatic plants on the fate and behavior of the pyrethroid insecticide lambda (lambda)-cyhalothrin, two laboratory experiments (to assess adsorption and degradation) and an indoor microcosm study (to assess fate under semirealistic conditions) were conducted. In the laboratory studies, adsorption to macrophytes was extensive and essentially irreversible, and degradation occurred rapidly by cleavage of the ester bond. In the indoor microcosm, which contained water, sediment, and macrophytes from a pond, degradation was also rapid, with DT50 and DT90 values of less than 3 and 19 h, respectively, for dissipation from the water column and of less than 3 and 56 h, respectively, for the whole system. For adsorptive and readily degraded pesticides like lambda-cyhalothrin, we conclude that macrophytes have considerable influence on fate and behavior in surface waters.

  19. Aquatic macrophytes in natural and managed wetlands of Rio Grande do Sul State, Southern Brazil Macrófitas aquáticas em áreas úmidas naturais e manejadas do Rio Grande do Sul, sul do Brasil

    Directory of Open Access Journals (Sweden)

    Ana Silvia Rolon

    2010-06-01

    Full Text Available AIM: This study gathers the main results obtained from studies regarding dynamic of aquatic macrophyte community in natural and managed wetlands of Southern Brazil. We analyzed the aquatic macrophytes diversity in wetlands of Southern Brazil, the environmental factors that determine the structure of the aquatic macrophyte community in fragmented wetlands, the effects of floods on the dynamics of macrophytes, and the contributions to the rice field for the conservation of aquatic macrophytes; METHODS: The information was obtained from several researches carried in several spatial scales and different wetlands types over the last 10 years in Southern Brazil; RESULTS: The studies have reported the occurrence of approximately 250 species of aquatic macrophytes. Wetland area, habitat diversity, altitude and hydroperiod were determinant for macrophyte richness and composition in wetlands of Southern Brazil. Furthermore, flood events, long or short-term ones, are strongly associated to the structure of the aquatic macrophyte community. The rice field systems of Southern Brazil (crops and irrigation channel shelter a representative number of species of macrophyte found at natural wetlands in this region. The agricultural practices adopted over rice cultivation cycle in the rice fields have influenced the macrophyte richness and biomass. The different hydrological management practices adopted after the harvesting period (presence or lack of water surface did not influence the macrophyte richness and biomass, however it influenced the species composition; CONCLUSIONS: The increasing process of wetland degradation (e.g. fragmentation, flood control and rice field expansion presents a threat to the conservation aquatic macrophyte species.OBJETIVO: Este estudo reúne os principais resultados obtidos em trabalhos sobre a dinâmica da comunidade de macrófitas aquáticas em áreas úmidas naturais e manejadas do sul do Brasil. Nós analisamos a diversidade de

  20. Ecological Stoichiometry Characteristics of Aquatic Macrophytes in the Decomposition Process%水生植物分解过程中生态化学计量学特征研究

    Institute of Scientific and Technical Information of China (English)

    张雷燕; 关保华; 程寒飞; 詹茂华

    2017-01-01

    Plant matter from three macrophytes from different environments was dried and analyzed over time to in-vestigate macrophyte stoichiometry during decomposition and the effect of environment on macrophyte stoichiometry . A floating plant, Lemna minor, and two submerged plants, Vallisneria natans and Potamogeton malaianus, were prepared and placed in three water environments:Treatment A:beaker with 200 mL tap water +3 cm of sediment in a greenhouse;Treatment B: beaker with 200 mL tap water in a greenhouse; Treatment C: in situ in a pond. Each treatment was run in triplicate with six plants per trial.Each week for five weeks, one plant was randomly se-lected from each treatment for determination of dry weight, TN, TC and TP.The C/N range in the three macro-phytes was 7.43-10.06, much lower than the global level of 22.5, and the C/P range was 43.09-91.77, sig-nificantly higher than the global level of 23.2.The results indicate that, with the same assimilation capacity of C, the utilization efficiency of N is higher than that of P.The N/P range (4.71-9.24) in the three macrophytes was lower than the global level of 14, showing that N was the limiting nutrient for the macrophytes.Furthermore, the submerged plants V.natans, and P.malaianus exhibited similar C/N ratios in the greenhouse and under natural conditions, indicating a consistent release rate of C and N from the submerged macrophytes and implying a small environmental effect.However, the C/N ratio of L.minor varied markedly between treatments, implying a large environmental effect.The C/N ratio in L.minor and V.natans increased rapidly at the beginning, indicating that the release rate of N from both macrophytes was higher than the release rate of C.The C/P and N/P ratio in the three macrophytes increased rapidly in the first week and the ratios varied significantly among the three groups.This indicates that the P release rate from the three macrophytes was higher than the release rates of C and N during the first

  1. Characterization of phosphorus forms in lake macrophytes and algae by solution (31)P nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Giesy, John P; He, Zhongqi; Song, Lirong; Fan, Mingle

    2016-04-01

    Debris from aquatic macrophytes and algae are important recycling sources of phosphorus (P), which can result in continuing blooms of algae by recycling bioavailable P in the eutrophic lakes. However, knowledge of forms of P in aquatic macrophytes and algae and their contribution to internal loads of P in lakes is limited. Without such knowledge, it is difficult to develop appropriate strategies to remediate and or restore aquatic ecosystems that have become eutrophic. Therefore, in this work, P was extracted from six types of aquatic macrophytes and algae collected from Tai Lake of China and characterized by use of solution (31)P-nuclear magnetic resonance (NMR) spectroscopy. When extracted by 0.5 M NaOH-25 mM EDTA, extraction recovery of total P(TP) and organic P(Po) exceeded 90 %. Concentrations of Po in algae and aquatic macrophytes were 5552 mg kg(-1) and 1005 mg kg(-1) and accounted for 56.0 and 47.2 % of TP, respectively. When Po, including condensed P, was characterized by solution (31)P-NMR Po in algae included orthophosphate monoesters (79.8 %), pyrophosphate (18.2 %), and orthophosphate diester (2.0 %), and Po in aquatic macrophytes included orthophosphate monoesters (90.3 %), pyrophosphate (4.2 %), and orthophosphate diester (5.5 %). Additionally, orthophosphate monoesters in algal debris mainly included β-glycerophosphate (44.1 %), α-glycerophosphate (13.5 %), and glucose 6-phosphate (13.5 %). Orthophosphate monoesters in aquatic macrophytes mainly included β-glycerophosphate (27.9 %), α-glycerophosphate (24.6 %), and adenosine 5' monophosphate (8.2 %). Results derived from this study will be useful in better understanding nutrient cycling, relevant eutrophication processes, and pollution control for freshwater lakes.

  2. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Mo Shuqing

    2017-01-01

    Full Text Available Eutrophication resulting from nutrient loading to freshwater habitats is a severe problem, leading to degradation of ecosystems, including deterioration of water quality, water clarity and loss of biodiversity. Measures enacted to restore degraded freshwater ecosystems often involve the reintroduction of submerged plants and aquatic animals with beneficial ecological functions. In a mesocosm experiment, three treatments (planting with Vallisneria natans, introduction of the snail Bellamya aeruginosa and a combined treatment with both plants and snails were compared with controls to evaluate their effects on trophic state. The total nitrogen (TN, total phosphorus (TP and chlorophyll a (Chl a concentrations of planktonic and benthic algal samples were determined every two weeks, along with light intensity at the sediment surface. The plant-only treatment significantly reduced the TN levels and planktonic and benthic algal biomass and increased the light intensity at the sediment surface. The snail-only treatment reduced the concentrations of TN and reduced planktonic and benthic algal biomass. The combined treatment decreased the concentrations of TN and TP, reduced planktonic algal biomass and increased the light intensity on the sediment surface. The results indicate that while submerged plants and snails can both improve water quality, the most pronounced effect in aquatic ecosystems is achieved by their presence in combination. A combined reintroduction approach may provide enhanced benefits in restoring the eutrophic ecosystems, following the reduction of external nutrient loading.

  3. Leachates and elemental ratios of macrophytes and benthic algae of an Andean high altitude wetland

    Directory of Open Access Journals (Sweden)

    Beatriz MODENUTTI

    2011-08-01

    Full Text Available In wetlands, macrophytes and filamentous algae constitute an important carbon source for the total content of Dissolved Organic Matter (DOM of the environment. Mallín wetland meadows are highly diverse and rare habitats in Patagonia, that can be characterized as wet meadows with a dense cover mainly dominated by herbaceous plants. We carried out a field study comparing elemental composition (C:N:P of benthic algae (Spirogyra sp. and Zygnema sp. and the submerged macrophyte (Myriophyllum quitense from a high latitude wetland (local name: mallín. Besides we performed laboratory experiments in order to study the effect of ultraviolet radiation (UVR on the optical properties and nutrient release of DOM from leachates of these benthic algae and submerged macrophyte. The obtained results indicated that macrophyte leachates could contribute significantly to changes in the optical characteristics of the wetlands while benthic algae contribute with leachates with low photoreactivity. Finally, nutrient release differs among plant species and season: benthic algae leachates release more P in spring, while M. quitense releases more of this nutrient in autumn. These results suggested that the different colonization may contribute differentially to the chemical environment of the wetland.

  4. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2016-09-01

    Full Text Available Aquatic vegetation has important ecological and regulatory functions and should be monitored in order to detect ecosystem changes. Field data collection is often costly and time-consuming; remote sensing with unmanned aircraft systems (UASs provides aerial images with sub-decimetre resolution and offers a potential data source for vegetation mapping. In a manual mapping approach, UAS true-colour images with 5-cm-resolution pixels allowed for the identification of non-submerged aquatic vegetation at the species level. However, manual mapping is labour-intensive, and while automated classification methods are available, they have rarely been evaluated for aquatic vegetation, particularly at the scale of individual vegetation stands. We evaluated classification accuracy and time-efficiency for mapping non-submerged aquatic vegetation at three levels of detail at five test sites (100 m × 100 m differing in vegetation complexity. We used object-based image analysis and tested two classification methods (threshold classification and Random Forest using eCognition®. The automated classification results were compared to results from manual mapping. Using threshold classification, overall accuracy at the five test sites ranged from 93% to 99% for the water-versus-vegetation level and from 62% to 90% for the growth-form level. Using Random Forest classification, overall accuracy ranged from 56% to 94% for the growth-form level and from 52% to 75% for the dominant-taxon level. Overall classification accuracy decreased with increasing vegetation complexity. In test sites with more complex vegetation, automated classification was more time-efficient than manual mapping. This study demonstrated that automated classification of non-submerged aquatic vegetation from true-colour UAS images was feasible, indicating good potential for operative mapping of aquatic vegetation. When choosing the preferred mapping method (manual versus automated the desired level of

  5. Biochemical fractionation and cellular distribution of americium and plutonium in the biomass of freshwater macrophytes

    International Nuclear Information System (INIS)

    Zotina, T.A.; Kalacheva, G.S.; Bolsunovsky, A.Ya.

    2011-01-01

    Accumulation of americium ( 241 Am) and plutonium ( 238,242 Pu) and their distribution in cell compartments and biochemical components of the biomass of freshwater aquatic plants Elodea canadensis, Ceratophyllum demersum and Myrioplyllum spicatum and aquatic moss Fontinalis antipyretica have been investigated in laboratory experiments. Americium and plutonium taken up from water by Elodea canadensis apical shoots were mainly absorbed by structural components of plant cells (90% for 241 Am; 89% for 238 Pu and 82-87% for 242 Pu). About 10-18% of isotope activity was recorded in the cytosol fraction. The major concentration (76-92%) of americium was bound to cell wall cellulose-like polysaccharides of Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum and Fontinalis antipyretica, 8-24% of americium activity was registered in the fraction of proteins and carbohydrates, and just a minor concentration (<1%) in the lipid fraction. The distribution of plutonium in the biomass fractions of Elodea was similar to that of americium. Hence, americium and plutonium had the highest affinity to cellulose-like polysaccharides of cell walls of freshwater submerged macrophytes. (author)

  6. AMEG: the new SETAC advisory group on auqatic macrophyte ecotoxicology

    NARCIS (Netherlands)

    Arts, G.H.P.; Davies, J.; Dobbs, M.; Ebke, P.; Hanson, M.A.

    2010-01-01

    ntroduction and background Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test

  7. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.

    Science.gov (United States)

    Greenway, M

    2003-01-01

    From a botanical perspective the major difference between waste stabilisation ponds and wetlands is the dominance of algae or floating plants in the former and emergent plants in the latter. Algae, floating and submerged plants remove nutrients directly from the water column whereas emergent species remove nutrients from the sediment. Water depth is a crucial factor in determining which plant types will become established. Surface flow constructed wetlands offer the greatest potential to grow a wide variety of different types of macrophytes. In assessing the suitability of plant species for nutrient removal, consideration must be given not only to nutrient uptake for growth but also storage of nutrients as plant biomass. A survey of macrophytes in 15 surface flow constructed wetlands treating secondary effluent was conducted in Queensland; 63 native species and 14 introduced species were found. Emergent species have been able to tolerate deeper water than in their natural environment and permanent waterlogging. All species grew well in the higher nutrient enriched wastewater. Submerged, floating leaved-attached and free floating species had the highest tissue nutrient content, followed by aquatic creepers. All these species remove nutrients from the water column. Emergent species had lower nutrient content but a greater biomass and were therefore able to store more nutrients per unit area of wetland. In order to maximise the efficiency of constructed wetlands for nutrient removal, a range of species should be used. Native species should be selected in preference to introduced/exotic species.

  8. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-11-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg-1 and 2318 to 8395 mg kg-1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes.

  9. Nutrient uptake from liquid digestate using ornamental aquatic macrophytes (Canna indica, Iris pseudacorus, Typha latifolia) in a constructed wetland system

    Science.gov (United States)

    Ediviani, W.; Priadi, C. R.; Moersidik, S. S.

    2018-05-01

    Indonesia has implemented energy recovery from organic (food) waste by anaerobic digestion method, but the digestate was commonly treated only by composting, and still as a separated treatment (not integrated into a resource recovery system). Whilst not getting any pretreatment, the digestate was disposed to the environment and then act as a pollutant. Yet it contains nutrients which could be recovered as a nutrient source for plants. The study was about how ornamental aquatic macrophytes could uptake nitrogen from liquid digestate in a constructed wetland method. Canna indica, Iris pseudacorus, and Typha latifolia were the experimented ornamental aquatic macrophytes used to uptake the nutrient (nitrogen—N) from liquid digestate. The study showed that the highest N uptake was done by C. indica (25.1%) which has the highest biomass increment as well (80.5%). Effluent quality improvement also shown by N removal by C. indica (68.5—76.4% TN), I. pseudacorus (61.8—71.3% TN), and T. latifolia (61.6—74.5%). This research proved that C. indica has the performance for the N uptake, best N removal efficiency, with a great growth rate as well. This system using C. indica could also improve the water quality of the effluent and add the aesthetic of environment.

  10. ANN Model for Predicting the Impact of Submerged Aquatic Weeds Existence on the Hydraulic Performance of Branched Open Channel System Accompanied by Water Structures

    International Nuclear Information System (INIS)

    Abdeen, Mostafa A. M.; Abdin, Alla E.

    2007-01-01

    The existence of hydraulic structures in a branched open channel system urges the need for considering the gradually varied flow criterion in evaluating the different hydraulic characteristics in this type of open channel system. Computations of hydraulic characteristics such as flow rates and water surface profiles in branched open channel system with hydraulic structures require tremendous numerical effort especially when the flow cannot be assumed uniform. In addition, the existence of submerged aquatic weeds in this branched open channel system adds to the complexity of the evaluation of the different hydraulic characteristics for this system. However, this existence of aquatic weeds can not be neglected since it is very common in Egyptian open channel systems. Artificial Neural Network (ANN) has been widely utilized in the past decade in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of submerged aquatic weeds existence on the hydraulic performance of branched open channel system. Specifically the current paper investigates a branched open channel system that consists of main channel supplies water to two branch channels that are infested by submerged aquatic weeds and have water structures such as clear over fall weirs and sluice gates. The results of this study showed that ANN technique was capable, with small computational effort and high accuracy, of predicting the impact of different infestation percentage for submerged aquatic weeds on the hydraulic performance of branched open channel system with two different hydraulic structures

  11. Aquatic plant surface as a niche for methanotrophs

    Directory of Open Access Journals (Sweden)

    Naoko eYoshida

    2014-02-01

    Full Text Available This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7 – 37 μmol⋅h-1⋅g-1 dry weight, which was ca 5.7-370 fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105 to 107 copies⋅g-1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86-89% to Methylocaldum gracile.

  12. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    Science.gov (United States)

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu +2 , Hg +2 , Pb +2 , and Zn +2 ). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  13. Development of a macrophyte-based index of biotic integrity for Minnesota lakes

    Science.gov (United States)

    Beck, M.W.; Hatch, L.K.; Vondracek, B.; Valley, R.D.

    2010-01-01

    Traditional approaches for managing aquatic resources have often failed to account for effects of anthropogenic disturbances on biota that are not directly reflected by chemical and physical proxies of environmental condition. The index of biotic integrity (IBI) is a potentially effective assessment method to integrate ecological, functional, and structural aspects of aquatic systems. A macrophyte-based IBI was developed for Minnesota lakes to assess the ability of aquatic plant communities to indicate environmental condition. The index was developed using quantitative point intercept vegetation surveys for 97 lakes that represent a range of limnological and watershed characteristics. We followed an approach similar to that used in Wisconsin to develop the aquatic macrophyte community index (AMCI). Regional adaptation of the AMCI required the identification of species representative of macrophyte communities in Minnesota. Metrics and scaling methods were also substantially modified to produce a more empirically robust index. Regression analyses indicated that IBI scores reflected statewide differences in lake trophic state (R2 = 0.57, F = 130.3, df = 1, 95, p indicated a unique response of the IBI to human-induced stress separate from a response to natural lake characteristics. The IBI was minimally affected by differences in sample point density as indicated by Monte Carlo analyses of reduced sampling effort. Our analysis indicates that a macrophyte IBI calibrated for Minnesota lakes could be useful for identifying differences in environmental condition attributed to human-induced stress gradients. ?? 2010 Elsevier Ltd.

  14. Submerged Aquatic Vegetation observations from Coastal Alabama, Gulf of Mexico from 2015-05-01 to 2016-06-21 (NCEI Accession 0161265)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of GIS data documenting the location, species composition, and other habitat characteristics of submerged aquatic vegetation (SAV) in coastal...

  15. Submerged Aquatic Vegetation observations from Coastal Alabama, Gulf of Mexico from 2002-07-23 to 2003-04-17 (NCEI Accession 0162519)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mobile Bay National Estuary Program (MBNEP) contracted Barry A. Vittor and Associates, Inc. to conduct digital aerial image surveys of submerged aquatic...

  16. Mitigating with macrophytes: submersed plants reduce the toxicity of pesticide-contaminated water to zooplankton.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2013-03-01

    In ecotoxicology, appreciation is growing for the influence that ecological interactions have on the toxicity of contaminants, such as insecticides, to sensitive species. Most previous studies, however, have focused on factors that exacerbate insecticide effects on species, while factors that may mitigate these effects have been relatively ignored. In aquatic habitats, a small number of studies have shown that submersed macrophytes can remove some insecticides from the water column via sorption. Although examining sorption dynamics is important for understanding the environmental fate of insecticides, whether and to what extent macrophytes actually mitigate insecticide effects on aquatic species remains unknown. In the present study, the authors examined how much and how quickly several realistic densities of the macrophyte Elodea canadensis decreased the toxicity of the insecticide malathion to Daphnia magna, a keystone aquatic herbivore. To do this, the authors quantified Daphnia survival in outdoor test systems (0.95 L) exposed to a factorial combination of five Elodea densities crossed with five malathion concentrations. The authors discovered that malathion's lethality to Daphnia decreased with increasing Elodea density. Furthermore, the rate at which Elodea reduced malathion's toxicity in the water column increased with macrophyte density. These results provide strong evidence that submersed macrophytes can mitigate the ecological impacts of a popular insecticide and further support that ecological interactions can strongly influence contaminant environmental effects. Copyright © 2013 SETAC.

  17. Evaluation of butachlor for control of some submerged macrophytes along with its impact on biotic components of freshwater system

    Directory of Open Access Journals (Sweden)

    A. Chattopadhyay, S. Adhikari, S. P. Adhikary, S. Ayyappan

    2006-04-01

    Full Text Available In this investigation, the efficacy of the herbicide butachlor, (N-butoxymethyl-2 chloro-21, 61 diethyl acetanilide was tested against few common submerged macrophytes namely Hydrilla (Hydrilla verticillata (L. Royale, Najas (Najas minor All., Nechamandra (Nechamandra alternifolia (Roxb. Thwaites and Ottelia (Ottelia alismoides (L. Pers. of freshwater fish ponds. Almost complete decay of Hydrilla, Nechamandra and Ottelia was achieved at 7.5 L of active ingredient/ha/m butachlor within 15 days while the herbicide showed no negative effect on Najas. However at the same concentration of butachlor, total mortality of zooplankton and water fern Azolla (Azolla caroliniana Lamarck occurred within seven days. In case of few freshwater fish species like Rohu (Labeo rohita, Channa (Channa punctatus, Anabas (Anabas testitudineus and Heteropneustes (Heteropneustes fossilis, total mortality occurred upto 90 days after application of the same dose of butachlor but fish survived beyond 120 days of herbicide application indicating degradation of the herbicides.

  18. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  19. Decomposition dynamic of two aquatic macrophytes Trapa bispinosa Roxb. and Nelumbo nucifera detritus.

    Science.gov (United States)

    Zhou, Xiaohong; Feng, Deyou; Wen, Chunzi; Liu, Dan

    2018-03-29

    In freshwater ecosystems, aquatic macrophytes play significant roles in nutrient cycling. One problem in this process is nutrient loss in the tissues of untimely harvested plants. In this study, we used two aquatic species, Nelumbo nucifera and Trapa bispinosa Roxb., to investigate the decomposition dynamics and nutrient release from detritus. Litter bags containing 10 g of stems (plus petioles) and leaves for each species detritus were incubated in the pond from November 2016 to May 2017. Nine times litterbags were retrieved on days 6, 14, 25, 45, 65, 90, 125, 145, and 165 after the decomposition experiment for the monitoring of biomass loss and nutrient release. The results suggested that the dry masses of N. nucifera and T. bispinosa decomposed by 49.35-69.40 and 82.65-91.65%, respectively. The order of decomposition rate constants (k) is as follows: leaves of T. bispinosa (0.0122 day -1 ) > stems (plus petioles) of T. bispinosa (0.0090 day -1 ) > leaves of N. nucifera (0.0060 day -1 ) > stems (plus petioles) of N. nucifera (0.0030 day -1 ). Additionally, the orders of time for 50% dry mass decay, time for 95% dry mass decay, and turnover rate are as follows: leaves  0.05). In addition, the decomposition time had also significant effects on the detritus decomposition dynamic and nutrient release. However, the contributors of species and decomposition time on detritus decomposition were significantly different on the basis of their F values of two-way ANOVA results. This study can provide scientific bases for the aquatic plant scientific management in freshwater ecosystems of the East region of China.

  20. The influence of aquatic macrophytes on distribution and feeding habit of two Asplanchna species (A. priodonta and A. herrickii in shallow wetlands, South Korea

    Directory of Open Access Journals (Sweden)

    Jong-Yun Choi

    2014-06-01

    Full Text Available We tested the hypothesis that the spatial distribution and diet composition of Asplanchna species might be affected by the presence of aquatic macrophytes in 33 wetlands in South Korea. We estimated the densities of Asplanchna and other rotifer and crustacean, together with environmental parameters, in both vegetated and open water zones, from May to June 2011. In the present study, two species of Asplanchna, A. priodonta and A. herrickii, were observed and significantly more abundant in open water zones lacking macrophytes. In particular, the density of A. priodonta was higher than that of A. herrickii, and the density of A. priodonta was strongly positively correlated with the area of open water. In addition, gut content analysis was used to determine their dietary preferences, with the finding that there was apparent differentiation in food source utilisation between the two Asplanchna species; A. priodonta consumed some protozoa, phytoplankton, and exclusively pelagic rotifer, while A. herrickii consumed primarily Euglena. In particular, Keratella and Polyarthra were most commonly consumed by A. priodonta in open water. Macrophytes represent a suitable habitat for epiphytic rotifer but not for pelagic rotifer; this characteristic drives pelagic rotifer such as Asplanchna towards open water and may be responsible for the significant negative correlation that we observed between macrophyte and Asplanchna densities.

  1. Herbivory on freshwater and marine macrophytes

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Wood, Kevin A.; Pagès, Jordi F.; Veen, G.F.; Christianen, Marjolijn J.A.; Santamaría, Luis; Nolet, Bart A.; Hilt, Sabine

    2016-01-01

    Until the 1990s, herbivory on aquatic vascular plants was considered to be of minor importance, and the predominant view was that freshwater and marine macrophytes did not take part in the food web: their primary fate was the detritivorous pathway. In the last 25 years, a substantial body of

  2. Macrophytes in the cooling ponds of Ukrainian nuclear and thermal power plants

    International Nuclear Information System (INIS)

    D'yachenko, T.N.

    2013-01-01

    Attention is focused at the macrophytes role in the functioning of the natural-technological cooling ponds ecosystems, at the features of aquatic plants and station water supply system interaction. It was considered the degree of macrophytes scrutiny and it was pointed out the necessity of monitoring and controlling their condition in the cooling ponds of Ukrainian power plants.

  3. Temporal variations in methane emissions from emergent aquatic macrophytes in two boreonemoral lakes.

    Science.gov (United States)

    Milberg, Per; Törnqvist, Lina; Westerberg, Lars M; Bastviken, David

    2017-07-01

    Methane (CH 4 ) emissions via emergent aquatic macrophytes can contribute substantially to the global CH 4 balance. We addressed temporal variability in CH 4 flux by using the static chamber approach to quantify fluxes from plots dominated by two species considered to differ in flux transport mechanisms ( Phragmites australis , Carex rostrata ). Temporal variability in daily mean emissions from early June to early October was substantial. The variable that best explained this variation was air temperature. Regular and consistent diel changes were absent and therefore less relevant to include when estimating or modelling CH 4 emissions. Methane emissions per m 2 from nearby plots were similar for Phragmites australis and Carex rostrata indicating that CH 4 production in the system influenced emissions more than the species identity. This study indicates that previously observed diel patterns and species-effects on emissions require further evaluation to support improved local and regional CH 4 flux assessments.

  4. Biological indication with the aid of submerged vegetation - potential and limits; Bioindikation mit Hilfe Hoeherer Wasserpflanzen - Moeglichkeiten und Grenzen

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, W.

    1991-12-31

    From 1986 to 1989 the submerged vegetation of the running waters of the `Schwaebische Alb` and `Oberschwaben` were investigated. The qualitative and quantitative distribution of macrophytes depends in the first place on the occurence of extreme discharges overlaying other factors influencing the distribution of macrophytes (trophical state). The effects of increasing eutrophication can be proved, too, by reconstructing the increase resp. decrease of suitable indicator-species [Groenlandia densa (L.) FOURR.] within a larger area. The effects of water-regulation measures with ensueing eutrophication can be demonstrated in the specific case of the submerged vegetation of the Danube river and the `suedbadische Oberrheinaue`. (orig.)

  5. Macrophyte Communities of Andean Rivers: Composition and Relation with Environmental Factors

    Directory of Open Access Journals (Sweden)

    Alida Marcela Gómez Rodríguez

    2017-01-01

    Full Text Available Small streams of tropical Andes have been poorly studied. Therefore, there is little information about the structure, dynamics and function of their macrophyte communities. In this research, aquatic plant communities of 18 Andean streams of La Vieja (Quindío and Otún (Risaralda river basins were studied; those are some of the basins most affected by anthropic activities in the country. Streams were selected according to their association with the main land’s uses of the region in both basins. The aim of the study was to evaluate the effect of land use on the structure of macrophyte communities. Streams running exclusively through each land use were selected. Sampling was done in two different climatic seasons of year 2006. Vegetation found (54 species belonging to 25 families was dominated by species with high capability of adaptation to changing and disturbed environments. Richness and abundance of macrophytes were lower than those reported in other tropical aquatic systems. Variables associated with land use, such as temperature, conductivity and type of substrate of the streams mainly explained the structure of the macrophyte communities: streams running on meat-cattle areas -with higher temperatures, conductivity and dominance of sandy-slimy substrates- had higher macrophyte species richness and abundance than streams of protected-forest areas, with higher coverage by riparian vegetation, lower temperatures and conductivity and rocky substrates.

  6. Kinetics of extracellular release of 14C-labelled organic carbon by submerged macrophytes

    International Nuclear Information System (INIS)

    Soendergaard, M.

    1981-01-01

    The release of extracellular organic carbon (EOC) by six submerged freswater macrophytes was measured in time course studies with a 14 C-technique. Incubation in light in an open water-flow system made it possible to assay the time courses of 14 C-fixation and the simultaneous release of labelled EOC. Heterotrophic utilization of the released products by epiphytic communities was measured. Two patterns of release kinetics were found: (1) Constant rates of release occurred during the incubations, (2) The rates still increased after 24 h of incubation. During the first hours of incubation the rates of release increased in all species. Elodea reached constant rates after 2-4 h and Littorella and Ceratophyllum demersum after about 20 h. In the experiments with C. submersum and Nitella the rates of release increased almost linearly during the entire incubation period. The kinetics of release were in agreement with the molecular weight distribution of the dissolved EOC measured with gel chromatography. Low molecular weight products ( 10000 Daltons) dominated the dissolved EOC released by C. submersum and Nitella. A large fraction (18-60%) of the total EOC could be recovered on filters with a pore size of 0.2 μm. This particulate fraction probably represents some abiotic removal. The quantities of relase were low in all species and did not exceed 0.9% of the photosynthetic carbon fixation. Heterotrophic uptake by the epiphytic communities was less than 10% of the EOC released. The results emphasize that the 14 C-labelling of extracellular products is a time dependent process. (author)

  7. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants.

    Science.gov (United States)

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.

  8. The remote sensing of aquatic macrophytes Part 1: Color-infrared aerial photography as a tool for identification and mapping of littoral vegetation. Part 2: Aerial photography as a quantitative tool for the investigation of aquatic ecosystems. [Lake Wingra, Wisconsin

    Science.gov (United States)

    Gustafson, T. D.; Adams, M. S.

    1973-01-01

    Research was initiated to use aerial photography as an investigative tool in studies that are part of an intensive aquatic ecosystem research effort at Lake Wingra, Madison, Wisconsin. It is anticipated that photographic techniques would supply information about the growth and distribution of littoral macrophytes with efficiency and accuracy greater than conventional methods.

  9. Limnological variables and nutritional content of submerged aquatic macrophytes in a tropical lagoon Variáveis limnológicas e conteúdo nutricional de macrófitas aquáticas submersas em uma lagoa tropical

    Directory of Open Access Journals (Sweden)

    Bruno dos Santos Esteves

    2010-06-01

    Full Text Available AIM: The aim of this study was to evaluate elemental composition (C, N and P and carbohydrate and lipids content of aquatic macrophytes Egeria densa, Ceratophyllum demersum and Najas marina found in a lagoon of Norte Fluminense and relate these data to limnological parameters measured in the same period; METHODS: The samples were obtained from 10 sites throughout the lagoon in July/2001 (dry season and January/2002 (rainy season with determinations limnological parameters and quantification of nutrient content and biochemical composition of the aquatic macrophytes; RESULTS: High values of electrical conductivity and alkalinity explain the spatial distribution of the studied macrophytes; and the pH values (OBJETIVO: O objetivo deste estudo foi avaliar a composição elementar (C, N e P e conteúdo de carboidratos e lipídeos das macrófitas aquáticas Egeria densa, Ceratophyllum demersum e Najas marina encontradas em uma lagoa do Norte Fluminense, e relacionar esses dados a parâmetros limnológicos medidos em igual período; MÉTODOS: As amostras foram obtidas em julho/2001 (período seco e janeiro/2002 (período chuvoso, em 10 pontos ao longo da lagoa do Campelo com determinações de parâmetros limnológicos e quantificação de componentes nutricionais e bioquímicos das macrófitas aquáticas; RESULTADOS: Elevados valores de condutividade elétrica e alcalinidade explicam a distribuição espacial das macrófitas estudadas, e os valores de pH (<9,0, supersaturação de O2 e subsaturação de CO2 sugerem uma elevada produção primária, tanto fitoplanctônica quanto de macrófitas submersas. Para os nutrientes avaliados nas macrófitas aquáticas, variações sazonais significativas foram observadas no conteúdo de fósforo total (p < 0,05, de nitrogênio total e carbono total, entretanto, sem qualquer padrão definido entre períodos sazonais e macrófitas. Observou-se tendência às maiores concentrações de P nos tecidos das macr

  10. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    Science.gov (United States)

    LIU, S. S.; Zhu, Y.; Meng, W.; Wu, F.

    2016-12-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state 13C NMR and solution 31P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  11. Experimental evidence for enhanced top-down control of freshwater macrophytes with nutrient enrichment.

    Science.gov (United States)

    Bakker, Elisabeth S; Nolet, Bart A

    2014-11-01

    The abundance of primary producers is controlled by bottom-up and top-down forces. Despite the fact that there is consensus that the abundance of freshwater macrophytes is strongly influenced by the availability of resources for plant growth, the importance of top-down control by vertebrate consumers is debated, because field studies yield contrasting results. We hypothesized that these bottom-up and top-down forces may interact, and that consumer impact on macrophyte abundance depends on the nutrient status of the water body. To test this hypothesis, experimental ponds with submerged vegetation containing a mixture of species were subjected to a fertilization treatment and we introduced consumers (mallard ducks, for 8 days) on half of the ponds in a full factorial design. Over the whole 66-day experiment fertilized ponds became dominated by Elodea nuttallii and ponds without extra nutrients by Chara globularis. Nutrient addition significantly increased plant N and P concentrations. There was a strong interactive effect of duck presence and pond nutrient status: macrophyte biomass was reduced (by 50%) after the presence of the ducks on fertilized ponds, but not in the unfertilized ponds. We conclude that nutrient availability interacts with top-down control of submerged vegetation. This may be explained by higher plant palatability at higher nutrient levels, either by a higher plant nutrient concentration or by a shift towards dominance of more palatable plant species, resulting in higher consumer pressure. Including nutrient availability may offer a framework to explain part of the contrasting field observations of consumer control of macrophyte abundance.

  12. Flow controls on lowland river macrophytes: a review.

    Science.gov (United States)

    Franklin, Paul; Dunbar, Michael; Whitehead, Paul

    2008-08-01

    We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised.

  13. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper

    International Nuclear Information System (INIS)

    Monferrán, Magdalena V.; Pignata, María L.; Wunderlin, Daniel A.

    2012-01-01

    The aquatic macrophyte, Potamogeton pusillus was evaluated for the removal of Cu 2+ and Cr +6 from aqueous solutions during 15 days phytoextraction experiments. Results show that P. pusillus is capable of accumulating substantial amount of Cu and Cr from individual solutions (either Cu 2+ or Cr +6 ). Significant correlations between metal removal and bioaccumulation were obtained. Roots and leaves accumulated the highest amount of Cu and Cr followed by stems. The bioaccumulation of Cr was significantly enhanced in the presence of Cu, showing a synergic effect on Cr +6 removal, presenting a good alternative for the removal of these metals from polluted aquifers. To the extent of our knowledge, this is the first report on both enhanced phytoextraction of Cr +6 in presence of Cu +2 and bioaccumulation of these heavy metals by P. pusillus. - Highlights: ► First report on enhanced phytoextraction of Cr +6 in the presence of Cu +2 by P. pusillus. ► P. pusillus can be a good candidate for phytoremediation of contaminated water bodies. ► Roots and leaves presented higher accumulation, suggesting that they are in charge of metal uptake. - We report enhanced effect of Cu +2 upon phytoextraction of Cr +6 by Potamogeton pusillus from water. Metals accumulation occurs mainly in roots and leaves of this aquatic plant.

  14. Macrophytes in estuarine gradients : Flow through flexible vegetation

    NARCIS (Netherlands)

    Dijkstra, J.T.

    2012-01-01

    Aquatic plants –or macrophytes- are an important part of coastal, estuarine and freshwater ecosystems worldwide, both from an ecological and an engineering viewpoint. Their meadows provide a wide range of ecosystem services: forming a physical protection of the shoreline, enhancing water quality and

  15. Assessment of metal sorption mechanisms by aquatic macrophytes using PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Módenes, A.N., E-mail: anmodenes@yahoo.com.br [Department of Chemical Engineering-Postgraduate Program, West Parana State University, Campus of Toledo, rua da Faculdade 645, Jd. La Salle, 85903-000 Toledo, PR (Brazil); Espinoza-Quiñones, F.R.; Santos, G.H.F.; Borba, C.E. [Department of Chemical Engineering-Postgraduate Program, West Parana State University, Campus of Toledo, rua da Faculdade 645, Jd. La Salle, 85903-000 Toledo, PR (Brazil); Rizzutto, M.A. [Physics Institute, University of São Paulo, Rua do Matão s/n, Travessa R 187, 05508-900 São Paulo, SP (Brazil)

    2013-10-15

    Highlights: • Divalent metal ion removals by Egeria densa biosorbent. • Multielements concentrations in biosorbent samples by PIXE analysis. • Elements mass balance in liquid and solid phase before and after metal removals. • Assessment of the mechanisms involved in Cd{sup 2+} and Zn{sup 2+} removal by biosorbent. • Confirmation of the signature of ion exchange process in metal removal. -- Abstract: In this work, a study of the metal sorption mechanism by dead biomass has been performed. All batch metal biosorption experiments were performed using the aquatic macrophyte Egeria densa as biosorbent. Divalent cadmium and zinc solutions were used to assess the sorption mechanisms involved. Using a suitable equilibrium time of 2 h and a mixture of 300 mg biosorbent and 50 mL metal solution at pH 5, monocomponent sorption experiments were performed. In order to determine the residual amounts of metals in the aqueous solutions and the concentrations of removed metals in the dry biomass, Particle Induced X-ray Emission (PIXE) measurements in thin and thick target samples were carried out. Based on the strong experimental evidence from the mass balance among the major elements participating in the sorption processes, an ion exchange process was identified as the mechanism responsible for metal removal by the dry biomass.

  16. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis

    International Nuclear Information System (INIS)

    Yuan, Dong-hai; Guo, Xu-jing; Wen, Li; He, Lian-sheng; Wang, Jing-gang; Li, Jun-qi

    2015-01-01

    Fluorescence excitation-emission matrix (EEM) spectra coupled with parallel factor analysis (PARAFAC) was used to characterize dissolved organic matter (DOM) derived from macrophyte decomposition, and to study its complexation with Cu (II) and Cd (II). Both the protein-like and the humic-like components showed a marked quenching effect by Cu (II). Negligible quenching effects were found for Cd (II) by components 1, 5 and 6. The stability constants and the fraction of the binding fluorophores for humic-like components and Cu (II) can be influenced by macrophyte decomposition of various weight gradients in aquatic plants. Macrophyte decomposition within the scope of the appropriate aquatic phytomass can maximize the stability constant of DOM-metal complexes. A large amount of organic matter was introduced into the aquatic environment by macrophyte decomposition, suggesting that the potential risk of DOM as a carrier of heavy metal contamination in macrophytic lakes should not be ignored. - Highlights: • Macrophyte decomposition increases fluorescent DOM components in the upper sediment. • Protein-like components are quenched or enhanced by adding Cu (II) and Cd (II). • Macrophyte decomposition DOM can impact the affinity of Cu (II) and Cd (II). • The log K M and f values showed a marked change due to macrophyte decomposition. • Macrophyte decomposition can maximize the stability constant of DOM-Cu (II) complexes. - Macrophyte decomposition DOM can influence on the binding affinity of metal ions in macrophytic lakes

  17. Ecological responses of epilithic diatoms and aquatic macrophytes to fish farm pollution in a Spanish river

    Directory of Open Access Journals (Sweden)

    Camargo, Julio A.

    2007-12-01

    Full Text Available We examined the ecological responses of epilithic diatoms and aquatic macrophytes to organic pollution and nutrient enrichment caused by a trout farm effluent in the upper Tajuña River (Guadalajara, Spain. Four sampling sites were selected over the study area: one site (S-1 placed upstream from the trout farm was used as a reference station; sampling sites S-2, S-3 and S-4 were set, respectively, about 10, 100 and 1000 metres downriver of the trout farm outlet. The river bottom was mainly stony with cobbles and pebbles at S-1, S-3 and S-4, but at S-2 it was covered by a thick layer of organic sediment. Although some macrophyte species (Apium nodiflorum, Groenlandia densa were either absent or fewer downstream of the farm, abundance (% coverage and diversity (number of species for the aquatic macrophyte community as a whole increased. In contrast, epilithic diatoms were completely absent at S-2, and some species (Diploneis parma, Fragilaria ulna, Gomphonema angustatum, Nitzschia dissipata were also absent at S-3 and S-4. Indeed, diatom diversity (number of species was lower at S-3 and S-4 than at S-1. However, diatom abundance (cells/cm2 was higher at S-3 and S-4 than at S-1. Biological indices for diatoms (IBD, TDI indicated a better water quality at S-1 than at S-3 and S-4, with a clear tendency to improve with distance from the fish farm. In contrast, biological indices of macrophytes (IM, IVAMG indicated a similar water quality at S-1, S-3 and S-4, but with bad water quality at S-2. We conclude that epilithic diatoms may be more useful than aquatic macrophytes for biological monitoring of fish farm pollution in fluvial ecosystems. However, as historical and seasonal factors may be relevant to understanding the distribution, abundance and diversity of primary producers in running waters, further studies on long-term seasonal changes are needed to improve the use of macrophyte and diatom indices in assessing fish farm pollution.En este trabajo

  18. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes

    International Nuclear Information System (INIS)

    Sune, N.; Sanchez, G.; Caffaratti, S.; Maine, M.A.

    2007-01-01

    The aim of this work was to determine chromium and cadmium bioaccumulation processes of two free-floating macrophytes commonly used in wetlands for water treatment: Salvinia herzogii and Pistia stratiotes. Metal removal from the solution involves two stages: a fast one and a slow one. The fast stage of the Cd uptake is significantly different for each species, while it is not significantly different in Cr uptake. The most important processes of Cd uptake are biological ones in S. herzogii and adsorption, chelation and ionic exchange are in P. stratiotes. The main processes of Cr uptake in both macrophytes are adsorption, chelation and ion exchange. The slow stage is different for each species and metal. Cr precipitation induced by roots occurs in P. stratiotes. Cr uptake through leaves is probably the main cause of the increase of Cr in the aerial parts of S. herzogii. - Cd uptake processes are biological processes in S. herzogii and adsorption, chelation and ionic exchange are in P. stratiotes, whereas Cr uptake processes in both macrophytes are adsorption, chelation and ion exchange

  19. Net primary productivity of some aquatic macrophytes in sewage-sullage mixture.

    Science.gov (United States)

    Kanungo, V K; Sinha, S; Naik, M L

    2001-07-01

    Sewage-sullage mixture from Raipur city is spread over a vast area surrounding the city. This mixture has a pH always above neutrality with high turbidity. Transparency was nil with the absence of phenolphthalein alkalinity and dissolved oxygen. Hardness was high with low nitrogen and phosphorus concentration. Human consumable. acquatic macrophytes are cultivated in such waste water. Net primary productivity of three macrophytes: Ipomoea aquatica, Marsilea quadrifolia and Nelumbo nucifera were evaluated while being cultivated in such sewage-sullage mixture. Productivity was determined either with periodic biomass removal (I. aquatica and M. quadrifolia) or through removing the biomass only once at the time of growing season (N. nucifera). Growing season productivity of up to 27.48. 19.81 and 9.49 g m(-2) and day(-1) and extrapolated productivity of up to 100.30, 72.31 and 34.64 mt. ha(-1) yr(-1) was recorded for I. aquatica. M. quadrifolia and N. nucifera respectively. Thus, these macrophytes are yielding a high amount of human consumable biomass from an area which neither be a useless wetland.

  20. Effects of aquatic vegetation type on denitrification

    NARCIS (Netherlands)

    Veraart, A.J.; Bruijne, de W.J.J.; Peeters, E.T.H.M.; Klein, de J.J.M.; Scheffer, M.

    2011-01-01

    In a microcosm 15N enrichment experiment we tested the effect of floating vegetation (Lemna sp.) and submerged vegetation (Elodea nuttallii) on denitrification rates, and compared it to systems without macrophytes. Oxygen concentration, and thus photosynthesis, plays an important role in regulating

  1. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  2. Macrophyte community development and its implication for fisheries ...

    African Journals Online (AJOL)

    Agricultural activities, and poor management practices over the years have led to high siltation rates and consequent extensive growth of emergent aquatic macrophytes such as Typha australis, Nymphaea lotus, Echinochloa pyramidalis and Leersia hexandra, as well as marginal plants such as Mimosa pigra and Sesbania ...

  3. The association between invertebrates and macrophytes in a ...

    African Journals Online (AJOL)

    The invertebrate fauna associated with aquatic macrophytes in the littoral of Lake Kariba was studied over a three-month period in 2002. Animals from seven classes — Hirudinea, Oligochaeta, Turbellaria, Insecta, Crustacea, Bivalvia and Gastropoda — were collected. Two hirudineans, Placobdella sp. and Haemopsis sp., ...

  4. Foliar uptake of 137Cs from the water column by aquatic macrophytes

    International Nuclear Information System (INIS)

    Kelly, M.S.; Pinder, J.E. III

    1996-01-01

    A transplant experiment was performed to determine the relative importances of root uptake from the sediments and foliar uptake from the water column in determining the accumulation of 137 Cs by aquatic macrophytes. Uncontaminated individuals of three species, Brasenia schreberi, Nymphaea odorata and Nymphoides cordata, were transplanted into pots containing either contaminated sediments (i.e. 1.2 Bq 137 Cs g -1 dry mass) or uncontaminated sediments (i.e. -1 dry mass) and immersed in Pond B, a former reactor cooling pond where 137 Cs concentrations in surface waters range from 0.4 to 0.8 Bq liter -1 . The plants is uncontaminated sediments rapidly accumulated 137 Cs from the water column and after 35 days of immersion had 137 Cs concentrations in leaves that were: (1) not statistically significantly different from those for plants in contaminated sediments; and (2) similar to those for the same species growing naturally in Pond B. The similarity in 137 Cs concentrations between naturally-occurring plants and those in pots with uncontaminated sediments suggests that foliar uptake from the water column is the principal mode of Cs accumulation by these species in Pond B. (author)

  5. Enantioselective accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte Lemna minor.

    Science.gov (United States)

    Wang, Fang; Yi, Xiaotong; Qu, Han; Chen, Li; Liu, Donghui; Wang, Peng; Zhou, Zhiqiang

    2017-09-01

    Pesticides are frequently detected in water bodies due to the agricultural application, which may pose impacts on aquatic organisms. The enantioselective bioaccumulation and metabolism of the herbicide lactofen in aquatic floating macrophyte Lemna minor (L. minor) were studied and the potential L. minor phytoremediation was investigated. Ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS-MS) analysis for lactofen and its two known metabolites in L. minor was performed. The initial concentrations of racemic lactofen, R-lactofen and S-lactofen were all 30μgL -1 in the growth solution. The distribution of lactofen and its metabolites in growth solution and L. minor was determined throughout a 5-d laboratory trial. It was observed that S-lactofen was preferentially taken up and metabolized in L. minor. After rac-lactofen exposure, the accumulation amount of S-lactofen was approximately 3-fold more than that of R-lactofen in L. minor and the metabolism rate of S-lactofen (T 1/2 =0.92 d) was significantly faster than R-lactofen (T 1/2 =1.55 d). L. minor could only slightly accelerate the metabolism and removal of lactofen in the growth solution. As for the metabolites, desethyl lactofen was found to be the major metabolite in L. minor and the growth solution, whereas the metabolite acifluorfene was undetectable. No interconversion of the two enantiomers was observed after individual enantiomer exposure, indicating they were configurationally stable. The findings of this work represented that the accumulation and metabolism of lactofen in L. minor were enantioselective, and L. minor had limited capacity for the removal of lactofen and its metabolite in water. Copyright © 2017. Published by Elsevier Inc.

  6. Environmental study of some metals on several aquatic macrophytes

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... Concentration of Fe, Mn, Cu and Pb (mgkg-1 dry weight) in leaves, stems and roots of five macrophytes (BTS = Bidens tripartitus - stem, BTL = Bidens tripartitus – leaf, PAS = Polygonum amphibium - stem, PAL = Polygonum amphibium – leaf, LES = Lycopus europaeus - stem, LEL = Lycopus europaeus ...

  7. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    Science.gov (United States)

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Impact of Invertebrate Herbivory on Native Aquatic Macrophytes

    Science.gov (United States)

    2007-08-01

    this macroalga occupied the entire water column, it may have had a competitive advantage for light over V. americana, which grew closer to the...dry biomass of five macrophyte species between two treatments ; an insecticide treatment to remove invertebrate herbivores, and a control where the...Heitmeyer and Vohs 1984, Dibble et al. 1996), improve water clarity and quality, and reduce rates of shoreline erosion and sediment resuspension (Smart

  9. Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S; Wetzel, R G

    1981-01-01

    Scirpus subterminalis Torr., a submerged angiosperm abundant in many hardwater lakes of the Great Lakes region, was investigated for various photosynthetic carbon fixation properties in relation to available inorganic carbon and levels of carbon fixing enzymes. Photosynthetic experiments were CO/sub 2/ and HCO/sub 3//sup -/ were supplied at various concentrations showed that Scirpus was able to utilize HCO/sub 3//sup -/ at those concentrations close to natural conditions. However, when CO/sub 2/ concentrations were increased above ambient, photosynthetic rates increased markedly. It was concluded that the photosynthetic potential of this plant in many natural situations may be limited by inorganic carbon uptake in the light. Phosphoenolpyruvate carboxylase (PEPcase)/ribulose-1,5-bisphosphate carboxylase (ruBPcase) ratios of the leaves varied between 0.5 and 0.9 depending on substrate concentration during assay. The significance of PEP-mediated carbon fixation of Scirpus (basically a C/sub 3/ plant) in the dark was investigated. Malate accumulated in the leaves during the dark period of a 24-h cycle and malate levels decreased significantly during the following light period. The accumulation was not due to transport of malate from the roots. Carbon uptake rates in the dark by the leaves of Scirpus were lower than malate accumulation rates. Therefore, part of the malate was likely derived from respired CO/sub 2/. Carbon uptake rates in the light were much higher than malate turnover rates. It was estimated that carbon fixation via malate could contribute up to 12% to net photosynthetic rates. The ecological significance of this type of metabolism in submerged aquatics is discussed.

  10. Climate-related differences in the dominance of submerged macrophytes in shallow lakes

    NARCIS (Netherlands)

    Kosten, S.; Kamarainen, A.; Jeppesen, E.; Nes, van E.H.; Peeters, E.T.H.M.; Lacerot, G.; Scheffer, M.

    2009-01-01

    It has been suggested that shallow lakes in warm climates have a higher probability of being turbid, rather than macrophyte dominated, compared with lakes in cooler climates, but little field evidence exists to evaluate this hypothesis. We analyzed data from 782 lake years in different climate zones

  11. Richness and distribution of aquatic macrophytes in Brazilian semi-arid aquatic ecosystems Riqueza e distribuição de macrófitas aquáticas em ecossistemas aquáticos do semi-árido brasileiro

    Directory of Open Access Journals (Sweden)

    Gustavo Gonzaga Henry-Silva

    2010-06-01

    Full Text Available AIM: The aim of this study was to evaluate the richness and distribution of the aquatic macrophytes in the basin of the Apodi/Mossoró River, in the semi-arid region (caatinga of Rio Grande do Norte, Brazil; METHODS: A survey of the floristic composition of the aquatic macrophytes was made at 20 sampling stations in the basin at four seasons (August/2007, November/2007, February/2008, May/2008. Specimens of each species were collected and deposited in the Dárdano de Andrade Lima Herbarium of the Universidade Federal Rural do Semi-Árido; RESULTS: We found 40 species of aquatic macrophytes, in 33 genera and 22 families. The families with the most species were Poaceae and Cyperaceae, and the most species-rich genera were Cyperus and Eleocharis. The most common plant form was amphibian (42.5%, followed by emergent (27.5%, free-floating (12.5%, rooted-submersed (10.0%, and floating-leaved (7.5%. The lowest richness was observed at the estuarine region (3 species, and the highest richness in the upper basin (17 species. The rooted-submersed Hydrothrix gardneri Hooker f. and Ceratophyllum demersum L. were observed in great abundance and frequency in the Santa Cruz Reservoir of Apodi, especially in areas close to cage farms of Nile tilapia (Oreochromis niloticus (Linnaeus, 1758. The most common free-floating species were Eichhornia crassipes (Mart. Solms., Pistia stratiotes L., and Salvinia auriculata Aubl., predominantly in stretches that run through urban centers; CONCLUSION: The species richness of aquatic macrophytes in aquatic environments of the caatinga is similar to that observed in other basins of Brazil. Because of the many dams and reservoirs in the semi-arid Northeast, inventory and monitoring of aquatic macrophytes have become essential, especially in basins that will receive water from the diversion of the São Francisco River.OBJETIVO: Nós objetivamos avaliar a riqueza e a distribuição das macrófitas aquáticas nos ambientes aqu

  12. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).

    Science.gov (United States)

    Demirezen Yilmaz, Dilek; Akbulut, Hatice

    2011-01-01

    In this study, laboratory tests were performed in order to examine growth characteristics of floating aquatic macrophytes (Lemna gibba and Lemna minor) in the presence of wastewater with circulation. The results showed that circulation of the waste water enhanced the kinetics of the process, as compared to the control systems. However, prolonged application of high circulation level had a different effect. In the presence of circulation with aquatic plants, there was additional 85.3-88.2% for BODs and 59.6-66.8% for COD decreases in the water quality indicators. In this study, the effectiveness of L. gibba and L. minor with circulation addition for the removal of four heavy metals (Pb, Ni, Mn, and Cu) from waste water was also investigated. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the waste water. At the end of the study of circulation, L. gibba provided the metal removal for Cu, Pb, Ni, and Mn in the waste water as the ratio of 57%, 60%, 60%, and 62%, respectively. In this context, the best results were obtained when the action of L. gibba and L. minor plants, was combined with that of circulation. It is shown that in the presence of L. gibba and L. minor plants that are supplemented with circulation, the national standards of biochemical oxygen demand (BOD5) 27-33 mgL(-1) and chemical oxygen demand (COD) 62-78 mgL(-1) for L. minor and L. gibba, respectively, were reached after treatment. The new results can be used for design calculations regarding expected removal of pollutants by aquatic floating plants.

  13. Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms.

    Science.gov (United States)

    Mohr, S; Berghahn, R; Feibicke, M; Meinecke, S; Ottenströer, T; Schmiedling, I; Schmiediche, R; Schmidt, R

    2007-05-01

    The chloroacetamide metazachlor is a commonly used pre-emergent herbicide to inhibit growth of plants especially in rape culture. It occurs in surface and ground water due to spray-drift or run-off in concentrations up to 100 microgL(-1). Direct and indirect effects of metazachlor on aquatic macrophytes were investigated at oligo- to mesotrophic nutrient levels employing eight stream and eight pond indoor mesocosms. Five systems of each type were dosed once with 5, 20, 80, 200 and 500 microgL(-1) metazachlor and three ponds and three streams served as controls. Pronounced direct negative effects on macrophyte biomass of Potamogeton natans, Myriophyllum verticillatum and filamentous green algae as well as associated changes in water chemistry were detected in the course of the summer 2003 in both pond and stream mesocosms. Filamentous green algae dominated by Cladophora glomerata were the most sensitive organisms in both pond and stream systems with EC(50) ranging from 3 (streams) to 9 (ponds) microgL(-1) metazachlor. In the contaminated pond mesocosms with high toxicant concentrations (200 and 500 microgL(-1)), a species shift from filamentous green algae to the yellow-green alga Vaucheria spec. was detected. The herbicide effects for the different macrophyte species were partly masked by interspecific competition. No recovery of macrophytes was observed at the highest metazachlor concentrations in both pond and stream mesocosms until the end of the study after 140 and 170 days. Based on the lowest EC(50) value of 4 microgL(-1) for total macrophyte biomass, it is argued that single exposure of aquatic macrophytes to metazachlor to nominal concentrations >5 microgL(-1) is likely to have pronounced long-term effects on aquatic biota and ecosystem function.

  14. The Use of Aquatic Macrophyte Ecotoxicological Assays in Monitoring Coastal Effluent Discharges in Southern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Burridge, T.R.; Karistianos, M.; Bidwell, J

    1999-01-01

    Germination inhibition of zoospores of the aquatic, brown algal macrophyte Ecklonia radiata was employed to assess the toxicity of sewage effluents under short to long term exposure and under modified salinity conditions. The rate of germination inhibition was determined for exposure times between 2 and 48 h in salinity modified and unmodified regimes and under reduced salinity conditions alone. The results indicated that rate of germination inhibition increased with duration of exposure to sewage effluents and to salinity reduction alone, and that response to the effluents may be enhanced under conditions of reduced salinity. Whilst the effect of primary treated effluent was primarily that of toxicity, secondary treated effluent effects appeared to be primarily that of reduced salinity although at a greater rate than would be expected for salinity reduction alone. The assay is suggested to provide a mechanism for monitoring sewage effluent quality and to monitor potential impacts of sewage effluent discharge on kelp communities in southern Australia.

  15. The Use of Aquatic Macrophyte Ecotoxicological Assays in Monitoring Coastal Effluent Discharges in Southern Australia

    International Nuclear Information System (INIS)

    Burridge, T.R.; Karistianos, M.; Bidwell, J.

    1999-01-01

    Germination inhibition of zoospores of the aquatic, brown algal macrophyte Ecklonia radiata was employed to assess the toxicity of sewage effluents under short to long term exposure and under modified salinity conditions. The rate of germination inhibition was determined for exposure times between 2 and 48 h in salinity modified and unmodified regimes and under reduced salinity conditions alone. The results indicated that rate of germination inhibition increased with duration of exposure to sewage effluents and to salinity reduction alone, and that response to the effluents may be enhanced under conditions of reduced salinity. Whilst the effect of primary treated effluent was primarily that of toxicity, secondary treated effluent effects appeared to be primarily that of reduced salinity although at a greater rate than would be expected for salinity reduction alone. The assay is suggested to provide a mechanism for monitoring sewage effluent quality and to monitor potential impacts of sewage effluent discharge on kelp communities in southern Australia

  16. Chlorodifluoroacetic acid fate and toxicity to the macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.

    Science.gov (United States)

    Hanson, M L; Sibley, P K; Mabury, S A; Muir, D C; Solomon, K R

    2001-12-01

    Chlorodifluoroacetic acid (CDFA) is a novel haloacetic acid (HAA) and has been recently documented in aquatic systems. It is a suspected degradation product of the refrigerants 1,1,2-trichloro-1,1-difluoroethane (CFC-113) and 1-chloro-1,1-difluoroethane (HCFC-142b). Haloacetic acids can be phytotoxic, putatively acting through inhibition of the citric acid cycle. Replicate (n = 3) 12,000-L model aquatic ecosystems (microcosms) were dosed once at 0.5, 1, 5, and 20 mg/L of neutralized CDFA. Three microcosms served as controls. Each microcosm was stocked with eight individual apical shoots of both Myriophyllum spicatum and Myriophyllum sibiricum and sampled at regular intervals over a 42-d exposure period. The plants were assessed for the somatic endpoints of plant length, root growth, node number, and wet and dry mass and the biochemical endpoints of chlorophyll-a/b and carotenoid content as well as citric acid levels. The duckweed Lemna gibba was also introduced into these systems and monitored over a period of 14 d for wet/dry mass, plant/frond number, chlorophyll content, and growth rate. Concentrations of CDFA remained constant in the water column over the course of the fate investigation (241 d), indicating that this compound undergoes little, if any, degradation in aquatic systems. Results showed few statistically significant differences from controls for all three plant species with exposure to CDFA but no biologically relevant impacts. Overall, CDFA does not appear to pose any risk to these aquatic macrophytes at current environmental concentrations.

  17. Flow and scour around vertical submerged structures

    Indian Academy of Sciences (India)

    The safety of the foundations of submerged hydraulic structures due to excessive local scour is threatened by the erosive action of the waves and currents passing around these structures. Fish and aquatic habitat is seriously affected due to the modification of the flow field caused by these submerged structures. Hence, the ...

  18. Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Brain, Richard A [Centre for Toxicology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Wilson, Christian J [Centre for Toxicology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Johnson, David J [Centre for Toxicology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Sanderson, Hans [Centre for Toxicology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Bestari, Ketut [Centre for Toxicology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Hanson, Mark L [Centre for Toxicology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Sibley, Paul K [Centre for Toxicology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Solomon, Keith R [Centre for Toxicology, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2005-12-15

    The impact of a mixture of oxytetracycline, chlortetracycline, tetracycline and doxycycline on Myriophyllum sibiricum and Lemna gibba was investigated using fifteen 12,000-L microcosms (k = 5, n = 3). Significant concentration-response relationships were only found for M. sibiricum, where dry mass was 69, 47, 30, and 7% of controls at respective treatment concentrations of 0.080, 0.218, 0.668, and 2.289 {mu}mol/L. Somatic endpoints were strongly and negatively correlated with percent light transmission, except plant length, which was positively correlated. Treated microcosms experienced a reduction in the percent of surface irradiance penetrating the water column as high as 99.8% at a depth of 70 cm, relative to controls. Position relative to the water column was likely responsible for the differential effects observed between floating (L. gibba) and submerged (M. sibiricum) species of macrophytes. A hazard quotient assessment of the lowest EC{sub 10} value indicated significant risk, exceeding the critical HQ value, but not the lowest EC{sub 25} value. - Mixtures of tetracycline antibiotics pose a risk to submerged but not floating aquatic plants.

  19. Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms

    International Nuclear Information System (INIS)

    Brain, Richard A.; Wilson, Christian J.; Johnson, David J.; Sanderson, Hans; Bestari, Ketut; Hanson, Mark L.; Sibley, Paul K.; Solomon, Keith R.

    2005-01-01

    The impact of a mixture of oxytetracycline, chlortetracycline, tetracycline and doxycycline on Myriophyllum sibiricum and Lemna gibba was investigated using fifteen 12,000-L microcosms (k = 5, n = 3). Significant concentration-response relationships were only found for M. sibiricum, where dry mass was 69, 47, 30, and 7% of controls at respective treatment concentrations of 0.080, 0.218, 0.668, and 2.289 μmol/L. Somatic endpoints were strongly and negatively correlated with percent light transmission, except plant length, which was positively correlated. Treated microcosms experienced a reduction in the percent of surface irradiance penetrating the water column as high as 99.8% at a depth of 70 cm, relative to controls. Position relative to the water column was likely responsible for the differential effects observed between floating (L. gibba) and submerged (M. sibiricum) species of macrophytes. A hazard quotient assessment of the lowest EC 10 value indicated significant risk, exceeding the critical HQ value, but not the lowest EC 25 value. - Mixtures of tetracycline antibiotics pose a risk to submerged but not floating aquatic plants

  20. Aquatic Plant Control Research Program: The Habitat Value of Aquatic Macrophytes for Macroinvertebrates

    Science.gov (United States)

    1989-11-01

    seagrass ) and reported that it quickly colonized with algae and invertebrates that were on live plants. Rooke (1986) found considerable dif- ferences...al. (1982) observed that seagrass (Zostera marina) reduced current velocities inside the plant bed, but current velocities were actually higher over...hard-water lakes (Mickle and Wetzel 1978a, 1978b, 1979). Diurnal changes in photosynthesis rates within the boundary layer of macrophyte beds can cause a

  1. Combining Spectral Data and a DSM from UAS-Images for Improved Classification of Non-Submerged Aquatic Vegetation

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2017-03-01

    Full Text Available Monitoring of aquatic vegetation is an important component in the assessment of freshwater ecosystems. Remote sensing with unmanned aircraft systems (UASs can provide sub-decimetre-resolution aerial images and is a useful tool for detailed vegetation mapping. In a previous study, non-submerged aquatic vegetation was successfully mapped using automated classification of spectral and textural features from a true-colour UAS-orthoimage with 5-cm pixels. In the present study, height data from a digital surface model (DSM created from overlapping UAS-images has been incorporated together with the spectral and textural features from the UAS-orthoimage to test if classification accuracy can be improved further. We studied two levels of thematic detail: (a Growth forms including the classes of water, nymphaeid, and helophyte; and (b dominant taxa including seven vegetation classes. We hypothesized that the incorporation of height data together with spectral and textural features would increase classification accuracy as compared to using spectral and textural features alone, at both levels of thematic detail. We tested our hypothesis at five test sites (100 m × 100 m each with varying vegetation complexity and image quality using automated object-based image analysis in combination with Random Forest classification. Overall accuracy at each of the five test sites ranged from 78% to 87% at the growth-form level and from 66% to 85% at the dominant-taxon level. In comparison to using spectral and textural features alone, the inclusion of height data increased the overall accuracy significantly by 4%–21% for growth-forms and 3%–30% for dominant taxa. The biggest improvement gained by adding height data was observed at the test site with the most complex vegetation. Height data derived from UAS-images has a large potential to efficiently increase the accuracy of automated classification of non-submerged aquatic vegetation, indicating good possibilities

  2. Chemical warfare in freshwater. Allelpathic effects of macrophytes on phytoplankton

    NARCIS (Netherlands)

    Mulderij, G.

    2006-01-01

    Aquatic macrophytes can excrete chemical substances into their enviroment and these compounds may inhibit the growth of phytoplankton. This process is defined as allelopathy: one organism has effects on another via the excretion of a (mixture of) chemical substance(s). With laboratory and field

  3. Chemical warfare in freshwater, allelopathic effects of macrophytes on phytoplankton

    NARCIS (Netherlands)

    Mulderij, G.

    2006-01-01

    Aquatic macrophytes can excrete chemical substances into their enviroment and these compounds may inhibit the growth of phytoplankton. This process is defined as allelopathy: one organism has effects on another via the excretion of a (mixture of) chemical substance(s). With laboratory and field

  4. Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than to the availability of free CO2 in air-equilibrated water

    DEFF Research Database (Denmark)

    Eller, Franziska; Alnoee, Anette B.; Boderskov, Teis

    2015-01-01

    1. The future increase in the atmospheric CO2 concentration is likely to affect the growth and performance of submerged freshwater macrophytes because of higher concentrations of free CO2 in the water at air equilibrium. We measured the plastic responses to free CO2 and light for several traits...... in all four species. 4. As the growth and photosynthesis of the four invasive bicarbonate users were only slightly affected by the CO2 availability in air-equilibrated water, the future rise in atmospheric CO2 is unlikely to exacerbate their invasive behaviour and may even reduce their competitiveness...... compensation point, and with higher concentrations of photosynthetic pigments and quantum yield. The bicarbonate uptake capacity was generally highest at the high light intensity and high concentrations of free CO2. Plasticity indices for light intensity were consistently higher than for CO2 availability...

  5. Experiments in water-macrophyte systems to uncover the dynamics of pesticide mitigation processes in vegetated surface waters/streams.

    Science.gov (United States)

    Stang, Christoph; Bakanov, Nikita; Schulz, Ralf

    2016-01-01

    Knowledge on the dynamics and the durability of the processes governing the mitigation of pesticide loads by aquatic vegetation in vegetated streams, which are characterized by dynamic discharge regimes and short chemical residence times, is scarce. In a static long-term experiment (48 h), the dissipation of five pesticides from the aqueous phase followed a biphasic pattern in the presence of aquatic macrophytes. A dynamic concentration decrease driven by sorption to the macrophytes ranged from 8.3 to 60.4% for isoproturon and bifenox, respectively, within the first 2 h of exposure. While the aqueous concentrations of imidacloprid, isoproturon, and tebufenozide remained constant thereafter, the continuous but decelerated concentration decrease of difenoconazole and bifenox in the water-macrophyte systems used here was assumed to be attributed to macrophyte-induced degradation processes. In addition, a semi-static short-term experiment was conducted, where macrophytes were transferred to uncontaminated medium after 2 h of exposure to simulate a transient pesticide peak. In the first part of the experiment, adsorption to macrophytes resulted in partitioning coefficients (logK D_Adsorp) ranging from 0.2 for imidacloprid to 2.2 for bifenox. One hour after the macrophytes were transferred to the uncontaminated medium, desorption of the compounds from the macrophytes resulted in a new phase equilibrium and K D_Desorp values of 1.46 for difenoconazole and 1.95 for bifenox were determined. A correlation analysis revealed the best match between the compound affinity to adsorb to macrophytes (expressed as K D_Adsorp) and their soil organic carbon-water partitioning coefficient (K OC) compared to their octanol-water partitioning coefficient (K OW) or a mathematically derived partitioning coefficient.

  6. Appearance of new taxa: invertebrates, phytoplankton and bacteria in an alkaline, saline, meteorite crater lake, South Africa

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2009-04-01

    Full Text Available of purple sulphur bacteria in the lake. The absence of submerged and emergent aquatic macrophytes in the lake limits habitat diversity for attached diatoms in the littoral regions. Both the numbers of families and the density of the benthic invertebrates...

  7. Accumulation of transuranic elements in the aquatic biota of the Belarusian sector of contaminated area near the Chernobyl nuclear power plant - Accumulation of transuranic elements in aquatic biota of Belarusian sector of contaminated area of Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Alexander; Mironov, Vladislav [International Sakharov Environmental University. Box 220070, 23 Dolgobrodskaya Street, Minsk, 220070 (Belarus)

    2014-07-01

    The evolution of nuclear contamination of Belarus territory after Chernobyl accident includes the four stages: 1. Iodine-neptunium stage, caused mainly by short-lived radionuclides {sup 131}I, {sup 239}Np and others with a half-life period of several weeks; II. Intermediate stage, caused by radionuclides with a half-life period of a year ({sup 144}Ce, {sup 106}Ru, {sup 134}Cs, etc.); III. Strontium-cesium stage, caused by {sup 90}Sr and {sup 137}Cs with a half-life period of about 30 years; IV. Plutonium-americium, caused by long-lived α-emitting radionuclides {sup 241}Am (period of half-life of 432 years) and {sup 239+240}Pu, having high radio and chemo-toxicity. According to forecasts, activity of {sup 241}Am to 2050 year will increase by 2.5 times and it will be the most important dose-related factor for the aquatic biota within the Chernobyl accident zone. In 2002 - 2008 years we have studied the accumulation of trans-uranic elements (TUE, {sup 241}Am, {sup 239+240}Pu) in basic components of water body ecosystems within the Chernobyl zone - non-flowing Perstok Lake, weak-flowing Borschevka flooding and small Braginka River. Among investigated components are water, bottom sediments, submerged macrophytes (Ceratophyllum submersum, Hydrocharis morsus-ranae, Lemna minor, Nuphar lutea, Stratiotes aloides), emergent macrophytes (Typha spp.), shellfish and fish. In the soil cover in the vicinity of the Perstok Lake activity of {sup 241}Am at present is equivalent to 300 - 600 Bq.kg{sup -1}, that is the basic source of its income to the lake. Radionuclides mobility in the water environment is higher than in the soil, that facilitates the rapid incorporation of {sup 241}Am to the trophic nets of water bodies and its removal by near-water animals in the terrestrial biotopes, including outside Chernobyl zone. Thus, the activity of {sup 241}Am in bottom sediments in the Perstok Lake and Borschevka flooding in 2008 year reach respectively 324 and 131 Bq.kg{sup -1}, and the

  8. Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum.

    Science.gov (United States)

    Zhou, Qingyang; Gao, Jingqing; Zhang, Ruimin; Zhang, Ruiqin

    2017-09-01

    Ammonia has been a major reason of macrophyte decline in the water environment, and ammonium ion toxicity should be seen as universal, even in species frequently labeled as "NH 4 + specialists". To study the effects of high NH 4 + -N stress of ammonium ion nitrogen on tolerant submerged macrophytes and investigate the pathways of nitrogen assimilation in different organisms, Myriophyllum aquaticum was selected and treated with various concentrations of ammonium ions at different times. Increasing of ammonium concentration leads to an overall increase in incipient ammonia content in leaves and stems of plants. In middle and later stages, high concentrations of NH 4 + ion nitrogen taken up by M. aquaticum decreased, whereas the content of NO 3 - ion nitrogen increased. Moreover, in M. aquaticum, the activities of the enzymes nitrate reductase, glutamine synthetase and asparagine synthetase changed remarkably in the process of alleviating NH 4 + toxicity and deficiency. The results of the present study may support the studies on detoxification of high ammonium ion content in NH 4 + -tolerant submerged macrophytes and exploration of tissue-specific expression systems. Copyright © 2017. Published by Elsevier Inc.

  9. Exploring the Spatial-Seasonal Dynamics of Water Quality, Submerged Aquatic Plants and Their Influencing Factors in Different Areas of a Lake

    Directory of Open Access Journals (Sweden)

    Kun Li

    2017-09-01

    Full Text Available The degradation of water quality in lakes and its negative effects on freshwater ecosystems have become a serious problem worldwide. Exploring the dynamics in the associated factors is essential for water pollution management and control. GIS interpolation, principal component analysis (PCA and multivariate statistical techniques were used to identify the main pollution sources in different areas of Honghu Lake. The results indicate that the spatial distribution of the concentrations of total nitrogen (TN, total phosphate (TP, ammonia nitrogen (NH4+–N, and permanganate index (CODMn have similar characteristics and that their values gradually increased from south to north during the three seasons in Honghu Lake. The major influencing factors of water quality varied across the different areas and seasons. The relatively high concentrations of TN and TP, which might limit the growth of submerged aquatic plants, were mainly caused by anthropogenic factors. Our work suggests that spatial analyses combined with PCA are useful for investigating the factors that influence water quality and submerged aquatic plant biomass in different areas of a lake. These findings provide sound information for the future water quality management of the lake or even the entire lake basin.

  10. Macrophyte Species Drive the Variation of Bacterioplankton Community Composition in a Shallow Freshwater Lake

    Science.gov (United States)

    Zeng, Jin; Bian, Yuanqi; Xing, Peng

    2012-01-01

    Macrophytes play an important role in structuring aquatic ecosystems. In this study, we explored whether macrophyte species are involved in determining the bacterioplankton community composition (BCC) in shallow freshwater lakes. The BCC in field areas dominated by different macrophyte species in Taihu Lake, a large, shallow freshwater lake, was investigated over a 1-year period. Subsequently, microcosm experiments were conducted to determine if single species of different types of macrophytes in an isolated environment would alter the BCC. Denaturing gradient gel electrophoresis (DGGE), followed by cloning and sequence analysis of selected samples, was employed to analyze the BCC. The DGGE results of the field investigations indicated that the BCC changed significantly from season to season and that the presence of different macrophyte species resulted in lower BCC similarities in the summer and fall. LIBSHUFF analysis of selected clone libraries from the summer demonstrated different BCCs in the water column surrounding different macrophytes. Relative to the field observations, the microcosm studies indicated that the BCC differed more pronouncedly when associated with different species of macrophytes, which was also supported by LIBSHUFF analysis of the selected clone libraries. Overall, this study suggested that macrophyte species might be an important factor in determining the composition of bacterial communities in this shallow freshwater lake and that the species-specific influence of macrophytes on BCC is variable with the season and distance. PMID:22038598

  11. Effect of alkaline pretreatment on mesophilic and thermophilic anaerobic digestion of a submerged macrophyte: Inhibition and recovery against dissolved lignin during semi-continuous operation.

    Science.gov (United States)

    Koyama, Mitsuhiko; Watanabe, Keiko; Kurosawa, Norio; Ishikawa, Kanako; Ban, Syuhei; Toda, Tatsuki

    2017-08-01

    The long-term effect of alkaline pretreatment on semi-continuous anaerobic digestion (AD) of the lignin-rich submerged macrophyte Potamogeton maackianus was investigated using mesophilic and thermophilic conditions. In pretreated reactors, dissolved lignin accumulated to high levels. CH 4 production under the pretreated condition was higher than that of the untreated condition, but decreased from Days 22 (mesophilic) and 42 (thermophilic). However, CH 4 production subsequently recovered, although dissolved lignin accumulated. Further, the change in the microbial community was observed between conditions. These results suggest that dissolved lignin temporarily inhibited AD, although acclimatization to dissolved lignin occurred during long-term operation. During the steady state period, mesophilic conditions achieved a 42% increase in the CH 4 yield using pretreatment, while thermophilic conditions yielded an 8% increment. Because volatile fatty acids accumulated even after acclimatization during the thermophilic pretreated condition and was discharged with the effluent, improvement of the methanogenic step would enable enhanced CH 4 recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mercury in aquatic forage of large herbivores: impact of environmental conditions, assessment of health threats, and implications for transfer across ecosystem compartments.

    Science.gov (United States)

    Bergman, Brenda Gail; Bump, Joseph K

    2014-05-01

    Mercury (Hg) is a leading contaminant across U.S. water bodies, warranting concern for wildlife species that depend upon food from aquatic systems. The risk of Hg toxicity to large herbivores is little understood, even though some large herbivores consume aquatic vascular plants (macrophytes) that may hyper-accumulate Hg. We investigated whether total Hg and methylmercury (MeHg) in aquatic forage may be of concern to moose (Alces alces) and beaver (Castor canadensis) by measuring total Hg and MeHg concentrations, calculating sediment-water bioconcentration factors for macrophyte species these herbivores consume, and estimating herbivore daily Hg consumption. Abiotic factors impacting macrophyte Hg were assessed, as was the difference in Hg concentrations of macrophytes from glacial lakes and those created or expanded by beaver damming. The amount of aquatic-derived Hg that moose move from aquatic to terrestrial systems was calculated, in order to investigate the potential for movement of Hg across ecosystem compartments by large herbivores. Results indicate that the Hg exposure of generalist herbivores may be affected by macrophyte community composition more so than by many abiotic factors in the aquatic environment. Mercury concentrations varied greatly between macrophyte species, with relatively high concentrations in Utricularia vulgaris (>80 ng g(-1) in some sites), and negligible concentrations in Nuphar variegata (~6 ng g(-1)). Macrophyte total Hg concentration was correlated with water pH in predictable ways, but not with other variables generally associated with aquatic Hg concentrations, such as dissolved organic carbon. Moose estimated daily consumption of MeHg is equivalent to or below human reference levels, and far below wildlife reference levels. However, estimated beaver Hg consumption exceeds reference doses for humans, indicating the potential for sub-lethal nervous impairment. In regions of high moose density, moose may be ecologically important

  13. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    Science.gov (United States)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  14. Impact of human activities on water level and clarity and underwater light climate of Vallisneria spiralis L. in Poyan Lake, China

    NARCIS (Netherlands)

    Wu, G.

    2008-01-01

    Almost 95% of the world population of Siberian crane (Grus leucogeranus) winter in Poyang Lake, China. Here they forage on the tubers of the submerged aquatic macrophyte Vallisneria spiralis L. The growth and production of V. spiralis are regulated by the local hydrology, which might also be

  15. Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy?

    NARCIS (Netherlands)

    Mulderij, G.; Mau, B.; De Senerpont Domis, L.N.; Smolders, A.J.P.; Van Donk, E.

    2009-01-01

    The aquatic macrophyte Stratiotes aloides Linnaeus, which has recently received attention in studies on allelopathy, has been shown to suppress phytoplankton growth. In the Netherlands, S. aloides often co-occurs with floating filamentous algae. However, filamentous algae are generally absent in

  16. Application of macrophytes as biosorbents for radioactive liquid waste treatment

    International Nuclear Information System (INIS)

    Vieira, Ludmila Cabreira

    2016-01-01

    Radioactive waste as any other type of waste should be treated and disposed adequately. It is necessary to consider its physical, chemical and radiological characteristics for choosing the appropriate action for the treatment and final disposal. Many treatment techniques currently used are economically costly, often invalidating its use and favoring the study of other treatment techniques. One of these techniques is biosorption, which demonstrates high potential when applied to radioactive waste. This technology uses materials of biological origin for removing metals. Among potential biosorbents found, macrophyte aquatics are useful because they may remove uranium present in the liquid radioactive waste at low cost. This study aims to evaluate the biosorption capacity of macrophyte aquatics Pistia stratiotes, Limnobium laevigatum, Lemna sp and Azolla sp in the treatment of liquid radioactive waste. This study was divided into two stages, the first one is characterization and preparation of biosorption and the other is tests, carried out with uranium solutions and real samples. The biomass was tested in its raw form and biosorption assays were performed in polypropylene vials containing 10 ml of solution of uranium or 10ml of radioactive waste and 0.20g of biomass. The behavior of biomass was evaluated by sorption kinetics and isotherm models. The highest sorption capacities found was 162.1 mg / g for the macrophyte Lemna sp and 161.8 mg / g for the Azolla sp. The equilibrium times obtained were 1 hour for Lemna sp, and 30 minutes for Azolla sp. With the real waste, the macrophyte Azolla sp presented a sorption capacity of 2.6 mg / g. These results suggest that Azolla sp has a larger capacity of biosorption, therefore it is more suitable for more detailed studies of treatment of liquid radioactive waste. (author)

  17. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o, closed-circuit (SMFC-c, aquatic plants with open-circuit (P-SMFC-o and aquatic plants with closed-circuit (P-SMFC-c. The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the

  18. Analysis of the impact of water level fluctuations on macrophytes in Miyun Reservoir after receiving water transferred by the South-to-North Water Diversion Project

    Science.gov (United States)

    Yu, L.; Gu, H.; Lou, C. H.; Zhang, L.; Meng, Q. Y.

    2016-08-01

    As the main primary producers in aquatic ecosystems, macrophytes affect the structure and function of aquatic ecosystems, and their distribution is controlled by water depth. Miyun Reservoir in Beijing will have to experience substantial changes in water level and surface area as it begins to receive water transferred by the South-to-North Water Diversion Project, which will have an adverse impact on the macrophytes growing there. In this study, a hydrodynamic model was constructed with MIKE21 and then used in a simulation in three scenarios: dry year, normal year and wet year. The results suggest that during water diversion, the annual and interannual water level fluctuations will be too significant for them to adapt and as a result, the original macrophytes in the reservoir tend to die and disappear completely. The area of the zone suitable for macrophyte growth, or suitable growth zone (SGZ), fluctuated. Restricted by the main dam and auxiliary dam to its south, the overall suitable growth zone moved toward the northeast and northwest of the reservoir, with a northeastward movement of its centroid. The distance and path of movement varied between scenarios. After the water diversion was completed, the suitable growth zone shrunk in the three scenarios. It is predicted that the macrophyte species diversity and richness of the reservoir can recover to the levels recorded before water diversion only in dry year. These results suggest that manual interventions should be implemented after water diversion to speed up the natural recovery of aquatic plant communities in Miyun Reservoir and thereby maintain the stability of the aquatic ecosystem.

  19. Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil

    Directory of Open Access Journals (Sweden)

    M. M. Molisani

    Full Text Available This paper reports on a study to determine the Hg content in the five most abundant aquatic macrophyte species (Elodea densa, Sagittaria montevidensis, Salvinia auriculata, Pistia stratiotes and Eichhornia crassipes in two artificial reservoirs flooded by water diverted from the Paraíba do Sul river, SE Brazil. The potential of these species for Hg accumulation and their role in Hg transport along the river system due to macrophyte management were evaluated. Mercury concentrations were higher in free-floating than in rooted species. Roots were also richer in Hg than were leaves. Dry weight Hg concentrations in leaves and roots from all species varied from 46-246 ng.g-1 to 37-314 ng.g-1, respectively. These values are higher than those reported for uncontaminated lakes in Brazil and in other tropical areas and similar to those reported for moderately contaminated sites. Mercury concentrations can be attributed to fluvial transport from the heavily industrialized Paraíba do Sul river basin. Intensive sampling of Pistia stratiotes from two sites in the Vigário reservoir was performed to evaluate the capacity of Hg incorporation in short periods of time. The results showed a significant negative correlation between Hg content and size class of individual plants, demonstrating the importance of juveniles, fast growing plants in absorbing Hg. The foremost impact related to Hg contents in the studied area concerns the periodic removal of macrophytes for reservoir management, followed by disposal in nearby areas. This results in the mobilization of 0.52 to 1.3 Kg of Hg per year, a significant fraction of the Hg burden present in reservoir waters. Disposal of such material may result in Hg leaching to river systems, affecting the Hg transfer throughout the basin.

  20. Does the Lagoa do Peixe sandbar opening influence the macrophyte richness and composition in Southern Brazil wetlands?

    Directory of Open Access Journals (Sweden)

    Ana Silvia Rolon

    2013-03-01

    Full Text Available The Lagoa do Peixe has its connection with the sea artificially opened every year at the end of winter. However, this management has been carried out without the evaluation of the impact of this opening in the aquatic biodiversity. This information is crucial for the management of the natural resources of the Lagoa do Peixe National Park, the unique Ramsar site in Southern Brazil. The following questions were analyzed: (1 Do richness and composition of aquatic macrophytes from Lagoa do Peixe floodplain varies temporarily according to the sandbar opening and closing? (2 Does the variation pattern of the macrophyte community changed according to the sandbar opening and closing? A set of eight sampling sites of 1ha were selected over the Lagoa do Peixe floodplain: four sites not influenced by the artificial sandbar opening and four sites influenced by this event, being two sites closer to the sandbar opening and the two sites distant to the sandbar opening. The samplings were carried out between November 2007 and October 2009. The results show that although the artificial sandbar breaching does not affect the aquatic macrophyte richness at the floodplain, it affects the dynamics of species composition. The hydrological variation related to this management can be the main factor of the continuous change in the species composition in the floodplain, especially in the Southern portion. In order to avoid impacts in the macrophyte conservation, the artificial sandbar opening should be considered carefully, since the area of study is one of the most important conservation units to wetland systems in Southern Brazil.

  1. Does the Lagoa do peixe sandbar opening influence the macrophyte richness and composition in Southern Brazil wetlands?

    Science.gov (United States)

    Rolon, Ana Silvia; Rocha, Odete; Maltchik, Leonardo

    2013-03-01

    The Lagoa do Peixe has its connection with the sea artificially opened every year at the end of winter. However, this management has been carried out without the evaluation of the impact of this opening in the aquatic biodiversity. This information is crucial for the management of the natural resources of the Lagoa do Peixe National Park, the unique Ramsar site in Southern Brazil. The following questions were analyzed: (1) Do richness and composition of aquatic macrophytes from Lagoa do Peixe floodplain varies temporarily according to the sandbar opening and closing? (2) Does the variation pattern of the macrophyte community changed according to the sandbar opening and closing? A set of eight sampling sites of 1ha were selected over the Lagoa do Peixe floodplain: four sites not influenced by the artificial sandbar opening and four sites influenced by this event, being two sites closer to the sandbar opening and the two sites distant to the sandbar opening. The samplings were carried out between November 2007 and October 2009. The results show that although the artificial sandbar breaching does not affect the aquatic macrophyte richness at the floodplain, it affects the dynamics of species composition. The hydrological variation related to this management can be the main factor of the continuous change in the species composition in the floodplain, especially in the Southern portion. In order to avoid impacts in the macrophyte conservation, the artificial sandbar opening should be considered carefully, since the area of study is one of the most important conservation units to wetland systems in Southern Brazil.

  2. Will the Three Gorges Dam affect the underwater light climate of Vallisneria spiralis L. and food habitat of Siberian crane in Poyang Lake?

    NARCIS (Netherlands)

    Wu, G.; Leeuw, de J.; Skidmore, A.K.; Prins, H.H.T.; Best, E.P.H.; Liu, Y.

    2009-01-01

    Almost 95% of the entire population of the Siberian crane (Grus leucogeranus) winter in Poyang Lake, China, where they forage on the tubers of the submerged aquatic macrophyte Vallisneria spiralis. The Three Gorges Dam on the Yangtze River may possibly affect this food source of the Siberian crane

  3. Aquatic macrophytes as indicators of heavy metal pollution of water in DTD canal system

    Directory of Open Access Journals (Sweden)

    Pajević Slobodanka P.

    2003-01-01

    Full Text Available The aim of this investigation was to establish the presence or absence of chemical contamination of water and the littoral zone (banks of Danube-Tisza-Danube (DTD canal system. The investigation covered the canal section from Bezdan to Prigrevica. By analyzing the chemical composition of dominant aquatic species in four locations of the section, we defined the species with the highest capacity to accumulate nutrients and heavy metals. Concentrations of P and K as well as of a beneficial element Na in the tissues of the analyzed macrophytes were both species- and site-dependent. The highest accumulation was registered for Ceratophyllum demersum while the species Elodea canadensis showed increased P and K accumulation values in the location Sombor. The lowest concentrations of almost all heavy metals were recorded near Sombor, indicating that this section suffered the lowest chemical pollution. Highest concentrations of all of the analyzed heavy metals were recorded in the tissue of Ceratophyllum demersum from the location Prigrevica, possibly due to the influx of polluted drainage waters from surrounding agricultural areas as well as industrial wastewaters. The obtained results showed that the enforcement of biomonitoring and analyses of other parameters indicative of ecosystem conditions might be useful for improved protection of areas experiencing a strong human impact.

  4. Dinâmica da composição e cobertura de espécies de macrófitas aquáticas e a escolha de indicadores de impacto ambiental em um rio com ecoturismo Composition and coverage dynamics of aquatic macrophytes species and the choose of environmental impact indicators in a river with ecotourism tour

    Directory of Open Access Journals (Sweden)

    Antônio dos Santos Junior

    2011-12-01

    Full Text Available ResumoEstudos sobre ecologia de macrófitas aquáticas em ambiente natural no Brasil são relativamente escassos. Anualmente, um grande número de turistas é recebido para a prática da flutuação nas águas do rio Sucuri, Bonito, Estado de Mato Grosso do Sul. Os objetivos deste estudo foram: (1 descrever a composição e a cobertura relativa das espécies de macrófitas aquáticas no Rio Sucuri, (2 investigar o padrão de desbaste das macrófitas aquáticas no decorrer do ano e (3 eleger espécies com potencial de serem indicadoras de impacto ambiental da atividade turística. Foi empregado o método do intercepto em linha modificado para amostrar a composição e cobertura relativa das espécies de macrófitas aquáticas. Foram identificadas dezessete espécies macrófitas aquáticas. Durante o estudo foram observadas variações na composição e cobertura relativa das espécies de macrófitas aquáticas. Gomphrena elegans Mart. foi a espécie dominante em termos de cobertura relativa. Duas espécies apresentaram as características consideradas importantes para a indicação de impactos da atividade turística, considerando os resultados de cobertura relativa, frequência e desbaste: Nymphaea gardneriana Planch. e Myriophyllum aquaticum (Vell. Verdc. Assim, é sugerido que o monitoramento dos impactos do turismo sobre as macrófitas seja realizado na sua organização biológica populacional.AbstractEcologic studies around aquatic macrophytes in natural environment in Brazil are relatively scarce. Annually, many tourists have been received for floating practice on Sucuri river, in Bonito, Mato Grosso do Sul state. The aims of this research were: (1 describing the composition and the relative coverage of aquatic macrophytes in Sucuri river, (2 investigating the pattern of thinning of aquatic macrophytes during the year, and (3 electing species, such as indicators of environmental impact done by tourism. Intercept line method modified was

  5. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    Science.gov (United States)

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events. © The Author 2017. Published by

  6. The cross-ecosystem impact of deer on an endangered submerged macrophyte, Ranunculus nipponicus var. submersus

    Directory of Open Access Journals (Sweden)

    Hino Takafumi

    2015-07-01

    Full Text Available Macrophytes are a critical component of freshwater ecosystems and are often eaten by cervids. However, the impact of cervids on macrophytes is not well known. In this study, we investigated the effect of sika deer (Cervus nippon yesoensis on the endangered macrophyte Ranunculus nipponicus var. submersus in a spring stream in southwestern Hokkaido, Japan. We monitored the frequency of stream habitat use by deer by using sensor cameras in photography mode for four seasons. We also monitored deer feeding behavior on R. nipponicus var. submersus using sensor cameras in movie mode. To quantitatively evaluate the impact of deer on R. nipponicus var. submersus, we conducted a field experiment in which deer were excluded from part of the stream. We selected 10 pairs of adjacent patches of R. nipponicus var. submersus and set up exclosures covering one patch in each pair. We assessed the frequency of deer feeding and trampling on the control patches using the sensor cameras in photography mode and measured the mean macrophyte stem length in the exclosure and control patches every month for four seasons. To compare abiotic conditions between the exclosure and control patches, we investigated canopy openness, water depth, water temperature, electrical conductivity, pH, current velocity, and water quality at each patch during the growing season. The frequency of deer in the stream habitat was higher from spring to summer than in other seasons. Direct evidence of deer feeding behavior on R. nipponicus var. submersus was recorded using the sensor cameras. Deer often fed on and trampled on the control patches, particularly from spring to summer. The R. nipponicus var. submersus stem length was longer in the exclosure patches than in control patches (P 0.189. Stem growth of R. nipponicus var. submersus differed among seasons (P <0.001, and was low from winter to spring. In addition, exclosure and seasonality significantly affected stem length (P <0.001, and the

  7. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  8. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    Science.gov (United States)

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  9. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  10. Elemental gradients in macrophytes from a reactor effluent gradient

    International Nuclear Information System (INIS)

    Grace, J.B.; Tilly, L.J.

    1978-01-01

    The tissues of submersed macrophtes from along the thermal gradient were analyzed for phosphorus to determine whether any pattern correspondent to standing crop distributions could be detected. Although water concentrations of phosphorus showed no detectable relationship to the thermal effluent, tissue concentrations of this element in submersed macrophytes declined with distance from the effluent entry point. The occurrence of this concentration pattern suggests that phosphorus availability is greater near the discharge. Because phosphorus is the element most often determined to limit aquatic productivity, its greater availability may partially account for the apparent enhancement of macrophte growth near the thermal discharge. A patter of macrophyte abundance which indicated enchancement related to the discharge gradient in the reactor-cooling reservoir, Par Pond is reported. Correlative data tended to implicate light and temperature as important in influencing the differential abundance pattern

  11. Long-term changes in the flora and vegetation of Lake Mikołajskie (Poland as a result of its eutrophication

    Directory of Open Access Journals (Sweden)

    Barbara Solińska-Górnicka

    2014-01-01

    Full Text Available Changes in littoral flora as well as aquatic and swamp vegetation were analysed with increasing eutrophication of the mesotrophic Lake Mikołajskie. Over 30 years the habitat conditions of the lake deteriorated and the phy-tolittoral was reduced from a zone 6 metres wide to one of only 2 metres. In addition, the number of submerged macrophyte species decreased by 50% and the frequency of most of the remaining species declined severalfold. No new species were encountered. Species retreating from the lake littoral included all Chara species, Potamogeton obtusifolius, P. natans and Hydrocharis morsus-ranae. A significant lowering of the phytosociological diversity and species richness of aquatic and swamp communities was observed. By 1994, six of the 12 associations identified in 1964 and representing the submerged and floating-leaved vegetation (e.g. Nitellopsidetum ubtusae, Charetum asperae and Potamogetonetum compressi were no longer present. In turn, 6 swamp communities from among the original 14 identified in the lake were lacking (e.g. Typhetum angustifoliae, Sugittario-Sparganietum emersi and Eleocharitetum palustris. At the same time, two new aquatic and swamp communities appeared (Ranunculetum circinuti, Myriophylletum spicati, Caricetum acutiformis and Caricetum distichae. In contrast there was an increase in the species richness of reedswamp communities due to an influx of marshland species. While the 1990s witnessed a distinct decrease in concentrations of nutrients in Lake Mikołajskie, the consequent increase in water transparency was not associated with an increase in the area of submerged macrophytes, or the species richness of aquatic vegetation.

  12. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  13. Macrophytes of the Grlište reservoir (Serbia: Fifteen years after its establishment

    Directory of Open Access Journals (Sweden)

    Stanković Ž.

    2009-01-01

    Full Text Available A large number of macrophytes, often in dense populations, have developed on the Grlište Reservoir, Serbia over a period of 15 years. Fast development of vegetation is a consequence of anthropogenic impact in lake management. The methodology used in this research covered 100% of the water body, including all areas with or without aquatic plants. The results indicate that plant communities are still in the early phase of development. This leaves space for future development of competitor macrophyte species (Najas marina, Eleocharis palustris, Typha latifolia, Typha angustifolia, Phragmites australis, etc. capable of endangering stability of the lake, which will tend toward eutrophication.

  14. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  15. Aquatic arsenic: Phytoremediation using floating macrophytes

    OpenAIRE

    Azizur Rahman, Mohammad; Hasegawa, Hiroshi

    2011-01-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated ...

  16. Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation Stressors in Mobile Bay

    Science.gov (United States)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Quattrochi, Dale; Thom, Ronald; Woodruff, Dana; Judd, Chaeli; Ellis, Jean; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2009-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land use change in Mobile and Baldwin counties on SAV stressors and controlling factors (temperature, salinity, and sediment) in Mobile Bay. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use scenarios in 1948, 1992, 2001, and 2030. Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the Bay. Theses results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid with four vertical profiles throughout Mobile Bay. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to land use driven flow changes with the restoration potential of SAVs.

  17. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents.

    Science.gov (United States)

    Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani

    2017-05-01

    Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.

  18. Functional groups of entomofauna associated to aquatic macrophytes in Correntoso river, Rio Negro sub-region, Pantanal, Mato Grosso do Sul State, Brazil - doi: 10.4025/actascibiolsci.v34i1.7822

    Directory of Open Access Journals (Sweden)

    José Sabino

    2011-11-01

    Full Text Available This work aimed to study the structure of functional groups of entomofauna associated to aquatic macrophytes in Correntoso river, Rio Negro sub-region, Pantanal, Mato Grosso do Sul State, Brazil. Six samples were taken in different seasonal periods; ebb, dry and wet. The organisms were collected using D net (300 m mesh, sweeping five times through the roots of macrophyte banks at each sample session. Three environments were compared (open, intermediary, close using data from six collection sites, through which were analyzed absolute abundance, observed richness of families and the sampled specimens were also separated in functional groups. A total of 60 families from 12 orders of Insecta were registered, totaling 19,773 sampled insects. The largest number of families was categorized into predators functional group, with 34 families collected, followed by the collectors with 17, shredders-herbivores ten and scrapers eight.

  19. Water reservoirs - aquatic ecosystems subject to eutrophication processes

    International Nuclear Information System (INIS)

    Ionita, Veronica

    1997-01-01

    The paper presents some aspects relating to eutrophication of Batca Doamnei and Reconstructia hydropower lakes situated near Piatra Neamt town. The presence of phosphorus salts in the two water reservoirs (ten times the admissible content) is responsible for excessive growth of plants. In Reconstructia lake the diversity of species is also explained by the existence of large amounts of nitrogen salts. The general characteristic of aquatic macrophyte is the resistance to large variations of environmental factors (water level, currents, temperature, turbidity, organic material content), adaptation to water pollution conditions and development of adverse condition resistant forms. Besides Cladophora, a harmful species in fishing waters when growing excessively, others species are favorable to aquatic life and help to the consolidation of complex lake biocenoses, providing support, food and habitation for many small animal species which also favor other species economically valuable. The aquatic macrophytes are true biological filters which maintain the natural auto-purging potential of the waters. Taking into consideration these facts, the direct and indirect effects of plant destruction on the whole ecosystem should be carefully analyzed

  20. Multispectral televisional measuring control of the ecological state of waterbodies on the characteristics macrophytes

    Science.gov (United States)

    Petruk, Vasil; Kvaternyuk, Sergii; Kozachuk, Anastasia; Sailarbek, Saltanat; Gromaszek, Konrad

    2015-12-01

    Improved methods for multispectral measuring television monitoring of the ecological state of water bodies on the characteristics of macrophytes groups to assess complex human impact on their environment. Integral assessment of water pollution is based on research products of higher aquatic plants and their communities by optical methods.

  1. Demonstration and Field Evaluation of Streambank Stabilization with Submerged Vanes

    Science.gov (United States)

    Whitman, H.; Hoopes, J.; Poggi, D.; Fitzpatrick, F.; Walz, K.; ,

    2001-01-01

    The effectiveness of submerged vanes for reducing bank erosion and improving aquatic habitat is being evaluated at a site on North Fish Creek, a Lake Superior tributary. Increased runoff from agricultural areas with clayey soils has increased flood magnitudes and the erosion potential/transport capacity of the stream. Most of the creek's sediment load originates from the erosion of 17 large bluffs. This creek contains important recreational fisheries that are potentially limited by the loss of aquatic habitat from deposition of sediment on spawning beds. Submerged vanes are a cost effective and environmentally less intrusive alternative to traditional structural stabilization measures. Submerged vanes protrude from a channel bed, are oriented at an angle to the local velocity, and are distributed along a portion of channel. They induce a transverse force and torque on the flow along with longitudinal vortexes that alter the cross sectional shape and alignment of the channel. Submerged vanes were installed at a bluff/bend site in summer and fall 2000. The number, size, and layout of the vanes were based upon the channel morphology under estimated bankfull conditions. The effectiveness of the vanes will be evaluated by comparing surveys of the bluff face, streamflow, and channel conditions for several years after installation of the submerged vanes with surveys before and immediately after their installation.

  2. Oxygen uptake from aquatic macrophyte decomposition from Piraju Reservoir (Piraju, SP, Brazil

    Directory of Open Access Journals (Sweden)

    I. Bianchini Jr.

    Full Text Available The kinetics of oxygen consumption related to mineralisation of 18 taxa of aquatic macrophytes (Cyperus sp, Azolla caroliniana, Echinodorus macrophyllus, Eichhornia azurea, Eichhornia crassipes, Eleocharis sp1, Eleocharis sp2, Hetereanthera multiflora, Hydrocotyle raniculoides, Ludwigia sp, Myriophyllum aquaticum, Nymphaea elegans, Oxycaryum cubense, Ricciocarpus natans, Rynchospora corymbosa, Salvinia auriculata, Typha domingensis and Utricularia foliosa from the reservoir of Piraju Hydroelectric Power Plant (São Paulo state, Brazil were described. For each species, two incubations were prepared with ca. 300.0 mg of plant (DW and 1.0 L of reservoir water sample. The incubations were maintained in the dark and at 20 ºC. Periodically the dissolved oxygen (DO concentrations were measured; the accumulated DO values were fitted to 1st order kinetic model and the results showed that: i high oxygen consumption was observed for Ludwigia sp (533 mg g-1 DW, while the lowest was registered for Eleocharis sp1 (205 mg g-1 DW mineralisation; ii the higher deoxygenation rate constants were verified in the mineralisation of A. caroliniana (0.052 day-1, H. raniculoides (0.050 day-1 and U. foliosa (0.049 day-1. The oxygen consumption rate constants of Ludwigia sp and Eleocharis sp2 mineralisation (0.027 day-1 were the lowest. The half-time of oxygen consumption varied from 9 to 26 days. In the short term, the detritus of E. macrophyllus, H. raniculoides, Ludwigia sp, N. elegans and U. foliosa were the critical resources to the reservoir oxygen demand; while in the long term, A. caroliniana, H. multiflora and T. domingensis were the resources that can potentially contribute to the benthic oxygen demand of this reservoir.

  3. Submerged macrophyte biomass distribution in the shallow saline lake Fuente de Piedra (Spain as function of environmental variables

    Directory of Open Access Journals (Sweden)

    Conde-Álvarez, Rafael M.

    2012-06-01

    Full Text Available Aquatic macrophyte biomass, diaspore bank distribution and their relationship to spatial variability of depth, nutrients (nitrite, nitrate, ammonium and soluble reactive phosphorus as well as sediment granulometry in an athalassohaline lake have been studied during one wet hydrological year. The results indicate that species growing in the lake show different spatial distribution patterns throughout the lake. Indirect gradient analysis (canonical analysis results showed a first axis defined as a function of Ulva flexuosa Wulfen biomass which is, in turn, positively correlated with interstitial ammonium and Soluble Reactive Phosphorus (SRP. The second axis was mainly established due to Lamprothamnium papulosum (Wallr. J. Groves biomass which correlated positively to depth and negatively to interstitial ammonium and SRP. These results revealed a NESW eutrophic gradient allowing the U. Flexuosa biomass proliferation. This phenomenon could increase the shadow effect over the rest of the macrophytes inhabiting this shallow lake. Moreover, the eutrophic harmful effect on the macrophyte physiology and over the diaspore bank could have important consequences in the survival of such important populations. The results reported in this study show the need for studies as the base to select sampling points for monitoring this wetland.

    La distribución de la biomasa de los macrófitos acuáticos y de su banco de semillas y oogonios ha sido investigada en relación a la profundidad, los nutrientes (nitrito, nitrato, amonio y fósforo soluble reactivo y la granulometría del sedimento durante un año hidrológico húmedo. Los resultados muestran patrones de distribución diferentes en las distintas especies. Los resultados del análisis canónico basado en análisis de gradiente indirecto muestran un primer eje definido en función de la biomasa de U. Flexuosa, Wulfen que, a su vez, está positivamente correlacionada con el

  4. Richness and composition of macrophyte assemblages in four Amazonian lakes - doi: 10.4025/actascibiolsci.v35i3.11602

    Directory of Open Access Journals (Sweden)

    Sidinei Magela Thomaz

    2013-08-01

    Full Text Available Aquatic macrophytes are an important component in the structure of lakes in Neotropical floodplains, for example, because they support a high diversity of invertebrates and vertebrates. In this paper, we tested whether or not the variability of macrophyte assemblages is lower in spatially close quadrats than among quadrats of different lakes. The study was carried in four lakes in a large Amazonian floodplain (Purus river, where floating meadows were investigated. A total of 49 taxa of macrophytes were found. Five species dominated and three species were rare. Taxa richness, composition and beta diversity differed more between than within lakes. Because high beta diversity was found among the lakes, they should be considered individually important for maintaining the gamma diversity of macrophytes within the Purus River floodplain, and this should be considered in plans of lake management.  

  5. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation

    Science.gov (United States)

    Gebrehiwot, Mesfin; Kifle, Demeke; Triest, Ludwig

    2017-12-01

    Understanding the biodiversity value of littoral zones of lakes is a priority for aquatic biodiversity conservation. However, less emphasis has been given to the littoral part of tropical African lakes, with many of the previous researches focusing only on the open water side. The aim of the present study was, therefore, to investigate the impact of the littoral zone of a shallow freshwater tropical lake (Ziway, Ethiopia), dominated by two emergent macrophytes, on zooplankton community structure. We hypothesized that the wetland vegetation serves as a preferred microhabitat for zooplankton communities. A lake with substantial coverage of emergent macrophytes was monitored monthly from January to August, 2016. The monitoring included the measurements of physical, chemical, and biological parameters. Sampling sites were selected to represent areas of the macrophyte vegetation ( Typha latifolia and Phragmites australis) and the open water part of the lake. Sites with macrophyte vegetation were found to be the home of more dense and diverse zooplankton community. However, during the period of high vegetation loss, the density of crustacean zooplankton showed significant reduction within the patches of macrophytes. From biodiversity conservation perspective, it was concluded that the preservation of such small areas of macrophytes covering the littoral zone of lakes could be as important as protecting the whole lake. However, the rapid degradation of wetland vegetation by human activities is a real threat to the lake ecosystem. In the not-too-far future, it could displace and evict riparian vegetation and the biota it supports.

  6. Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata.

    Science.gov (United States)

    Spengler, Annette; Wanninger, Lena; Pflugmacher, Stephan

    2017-09-01

    The present study focused on oxidative stress effects in the aquatic macrophyte Hydrilla verticillata after exposure to titanium dioxide nanoparticles (TiO 2 -NPs). Experiments were conducted with different TiO 2 -NPs and concentrations (0.1 mg/L and 10 mg/L) in a time-dependent manner (0 h, 24 h, 48 h, 96 h, 168 h). To assess various levels of the oxidative stress response in H. verticillata, the level of hydrogen peroxide (H 2 O 2 ), the ratio of reduced to oxidized glutathione (GSH/GSSG), and activities of the antioxidative enzymes catalase (CAT) and glutathione reductase (GR) were evaluated. Study results imply oxidative stress effects after TiO 2 -NP exposure as adaptations in plant metabolism became apparent to counteract increased ROS formation. All TiO 2 -NPs caused elevated activities of the enzymes CAT and GR. Moreover, decreased ratios of GSH/GSSG indicated an activation of GSH-dependent pathways counteracting ROS formation. Plants exposed to a bulk-sized control revealed a size-dependent influence on the antioxidative stress response. As H 2 O 2 level increases were solely detected after exposure to 10 mg/L TiO 2 -NPs and nano-exposed plants showed normalization in its antioxidative stress response after 168h of exposure, it can be suggested that macrophytes are able to cope with currently predicted low-level exposures to TiO 2 -NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.

    Science.gov (United States)

    Kautza, Adam; Mazeika, S; Sullivan, P

    2016-03-01

    Rivers are increasingly recognized as providing nutritional subsidies (i.e., energy and nutrients) to adjacent terrestrial food webs via depredation of aquatic organisms (e.g., emergent aquatic insects, crayfish, fish) by terrestrial consumers. However, because these prey organisms assimilate energy from both aquatic (e.g., benthic algae, phytoplankton, aquatic macrophytes) and terrestrial (e.g., riparian leaf detritus) primary producers, river subsidies to terrestrial consumers represent a combination of aquatically and terrestrially derived energy. To date, the explicit contribution of energy derived from aquatic primary producers to terrestrial consumers has not been fully explored yet might be expected to be quantitatively important to terrestrial food webs. At 12 reaches along a 185-km segment of the sixth-order Scioto River system (Ohio, USA), we quantified the relative contribution of energy derived from aquatic primary producers to a suite of terrestrial riparian consumers that integrate the adjacent landscape across multiple spatial scales through their foraging activities (tetragnathid spiders, rove beetles, adult coenagrionid damselflies, riparian swallows, and raccoons). We used naturally abundant stable isotopes (13C and 15N) of periphyton, phytoplankton, macrophytes, and terrestrial vegetation to evaluate the energetic contribution of aquatic primary producers to terrestrial food webs. Shoreline tetragnathid spiders were most reliant on aquatic primary producers (50%), followed by wider-ranging raccoons (48%), damselflies (44%), and riparian swallows (41%). Of the primary producers, phytoplankton (19%) provisioned the greatest nutritional contribution to terrestrial consumers (considered collectively), followed by periphyton (14%) and macrophytes (11%). Our findings provide empirical evidence that aquatic primary producers of large streams and rivers can be a critical nutritional resource for terrestrial food webs. We also show that aquatically

  8. Aquatic macrophytes in cool aseasonal and seasonal streams: a comparison between Ecuadorian highland and Danish lowland streams

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Terneus, Esteban

    2001-01-01

    -forms (submerged, amphibious, semiaquatic) was, however, different as submerged plants were less diverse in the Ecuadorian streams. Further, all submerged plants found in the Ecuadorian streams belonged to cosmopolitan genera with a mainly north-temperate distribution. We suggest that the low number of submerged...

  9. Polluting macrophytes Colombian lake Fúquene used as substrate by edible fungus Pleurotus ostreatus.

    Science.gov (United States)

    Martínez-Nieto, Patricia; García-Gómez, Gustavo; Mora-Ortiz, Laura; Robles-Camargo, George

    2014-01-01

    Invasive aquatic plants from Lake Fúquene (Cundinamarca, Colombia), water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.) have been removed mechanically from the lake and can be used for edible mushrooms production. The growth of the oyster mushroom (Pleurotus ostreatus) on these aquatic macrophytes was investigated in order to evaluate the possible use of fruiting bodies and spent biomass in food production for human and animal nutrition, respectively. Treatments included: water hyacinth, Brazilian elodea, sawdust, rice hulls and their combinations, inoculated with P. ostreatus at 3%. Water hyacinth mixed with sawdust stimulated significantly fruiting bodies production (P = 3.3 × 10(-7)) with 71% biological efficacy, followed by water hyacinth with rice husk (55%) and elodea with rice husk (48%), all of these have protein contents between 26 and 47%. Loss of lignin (0.9-21.6%), cellulose (3.7-58.3%) and hemicellulose (1.9-53.8%) and increment in vitro digestibility (16.7-139.3%) and reducing sugars (73.4-838.4%) were observed in most treatments. Treatments spent biomass presented Relative Forage Values (RFV) from 46.1 to 232.4%. The results demonstrated the fungus degrading ability and its potential use in aquatic macrophytes conversion biomass into digestible ruminant feed as added value to the fruiting bodies production for human nutrition.

  10. Aquatic macrophytes as indicators of water quality in subtropical shallow lakes, Southern Brazil Macrófitas aquáticas como indicadores da qualidade da água em pequenos lagos rasos subtropicais, Sul do Brasil

    Directory of Open Access Journals (Sweden)

    Sabrina Amaral Pereira

    2012-03-01

    Full Text Available AIMS: We evaluated the potential of aquatic macrophyte communities as bioindicators in six small shallow lakes. METHODS: The sampling was conducted monthly for one year, during which all macrophytes were surveyed, and the water temperature, dissolved oxygen, pH, conductivity, total alkalinity, chlorophyll-a, suspended matter, total nitrogen (Nt and total phosphorus (Pt were measured. RESULTS: In total, forty-three species were recorded, and there were significant differences in the species richness and limnological conditions among the lakes studied. A canonical correspondence analysis showed that the concentration of nutrients (Nt and Pt, chlorophyll-a, suspended matter, dissolved oxygen and pH were the most important predictors of the distribution of macrophytes. Some emergents were related to the high concentration of nutrients, chlorophyll-a, and suspended matter. Moreover, the most submersed species were associated with environments with low nutrient concentrations and the lowest values chlorophyll-a and suspended matter. In addition, some species submerged and floating were related to low values pH, alkalinity and dissolved oxygen. Limnological differences between lakes may be cited as the main causes of the observed heterogeneous distribution of macrophytes. CONCLUSIONS: These results indicate the importance of limnological characteristics of the different environments in the macrophyte community composition and the potential role of this community as a bioindicator in shallow lakes in southern Brazil.OBJETIVO: Foi avaliado o potencial bioindicador da comunidade de macrófitas aquáticas em seis pequenos lagos rasos. MÉTODOS: O acompanhamento foi mensal durante um ano, sendo que em cada coleta, além do registro de todas as espécies de macrófitas foram determinadas a temperatura da água, oxigênio dissolvido, pH, condutividade elétrica, alcalinidade total, clorofila-a, material em suspensão, nitrogênio total (Nt e fósforo total

  11. Plant pigment types, distributions, and influences on shallow water submerged aquatic vegetation mapping

    Science.gov (United States)

    Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert

    2004-11-01

    Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.

  12. Submersed Aquatic Vegetation Modeling Output Online

    National Research Council Canada - National Science Library

    Yin, Yao; Rogala, Jim; Sullivan, John; Rohweder, Jason

    2005-01-01

    .... Predictions for distribution of submerged aquatic vegetation beds can potentially increase hunter observance of voluntary avoidance zones where foraging birds are left alone to feed undisturbed...

  13. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    Science.gov (United States)

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of

  14. Detecting submerged features in water: modeling, sensors, and measurements

    Science.gov (United States)

    Bostater, Charles R., Jr.; Bassetti, Luce

    2004-11-01

    It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.

  15. Remote sensing of aquatic plants. [New York, Florida, Texas, Louisiana, Mississippi, South Carolina

    Science.gov (United States)

    Long, K. S.; Link, L. E., Jr.

    1977-01-01

    Various sensors were tested in terms of their ability to detect and discriminate among noxious aquatic macrophytes. A survey of researchers currently studying the problem and a brief summary of their work is included. Results indicated that the sensor types best suited to assessment of the aquatic environment are color, color infrared, and black-and-white infrared film, which furnish consistently high contrasts between aquatic plants and their surroundings.

  16. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation

    Directory of Open Access Journals (Sweden)

    Jinlei Yu

    2016-10-01

    Full Text Available Fish removal has been used to restore temperate lakes, and positive effects on ecological state and water clarity have frequently been recorded in many lakes. Recently, a supplementary measure, transplantation of submerged macrophytes after fish removal, has been applied to restore warm Chinese shallow lakes in order to compensate for the expected lack of increasing grazing control of phytoplankton after the biomanipulation. These measures have successfully shifted turbid warm lakes to a clear water state, but little is known about the responses to restoration of key physico-chemical variables. We analyzed the seasonal variation in nutrient concentrations in two subtropical and one tropical biomanipulated shallow Chinese lakes subjected to restoration. In all three lakes, a marked decline occurred in the concentrations of lake total nitrogen (TN, total phosphorus (TP, total suspended solids (TSS, and chlorophyll a (Chl a, while the transparency (SD:WD ratio, Secchi depth to water depth ratio increased. A clear water state was established, lasting so far for 7 to 23 months, and TN, TP, Chl a, and TSS levels in the three restored lakes decreased to, on average, 49%, 58%, 41%, and 18% of the level prior to restoration and/or the level in a reference lake, respectively, while the annual mean SD:WD ratio exhibited a 1.5–4 fold increase. In conclusion, lake restoration by transplantation of submerged macrophytes after fish removal had major positive effects on the physico-chemical variables in our study lakes. However, continuous control of omnivorous and herbivorous fish biomass is recommended as the fish typically present in warm, shallow lakes to some extent feed on submerged macrophytes, when available.

  17. The effects of artificial sandbar breaching on the macrophyte communities of an intermittently open estuary

    Science.gov (United States)

    Ribeiro, Jose Pedro N.; Saggio, Ângelo; Lima, Maria Inês Salgueiro

    2013-04-01

    Artificial sandbar opening of intermittently open estuaries is a practice utilised worldwide to improve water quality, fishing, and recreational amenities and to prevent the flooding of adjacent properties. Breaching causes the water level to drop drastically, exposing plants to two water level extremes. With some exceptions, estuarine communities are adversely affected by this practice. Although breaching can happen naturally, artificial breaching is on the rise, and the impact of manipulating water levels on estuarine communities needs to be investigated. In this work, we described the breaching cycles of the Massaguaçu River Estuary and proposed flooding scenarios for the estuary's macrophyte banks based on our data. We calculated the relationship between plant distribution and flooding conditions and used our calculations to predict the estuary community's composition depending on the water level at breaching time. We discovered a strong relationship between plant distribution and flooding conditions, and we predicted that the estuarine community would be markedly different between flooding scenarios. Low frequency flooding scenarios would be related to submerged macrophytes and, as the flooding frequency increases, macrophytes would be replaced by amphibious plants, and eventually by the arboreal stratus. Therefore, we concluded that an increase in artificial breaching cycles would have a detrimental impact on the estuary community.

  18. Analysis of heavy metal flow in the river Przemsza, Katowice region, using macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Lewander, M.

    1995-06-01

    The river Przemsza, in southern Poland, was investigated with the aim to determine the flow of Cd, Pb and Zn between the submerged macrophytes Potamogeton pectinatus and Myriophyllum verticillatum, sediment and water, and to find out if a pollution gradient was present along the investigated part of the river. In order to determine the uptake of heavy metals from water and sediment macrophytes were planted in pots along the river, in unpolluted and polluted sediment during six weeks in the summer of 1993. After harvesting the plants were dried, wet digested and analysed by atomic absorption spectrophotometry. Parallel in situ experiments and outdoor experiments in sealed jars were performed. No significant decreased pollution gradient in the sediment or the macrophytes content could be detected. However, the water concentration of Zn decreased slightly along the gradient and in both experiments Pb concentration in the water also decreased. The concentrations of metals in the plants and sediments were probably depending on local stream conditions as well as increasing organic content. The study suggests that the macrophytes took up metals both from water and sediment. The unpolluted sediment accumulated Pb and Zn in both experiments, while Cd was accumulated in the in situ experiment. Metal concentration in the polluted sediment decreased during the study period, either due to plant uptake or loss to the water. Metals lost from the polluted sediment to the water were taken up by the plant shoots. Lead mainly accumulated in the roots while Zn accumulated in the plant shoots, and Cd was distributed almost equally between shoots and roots. 18 refs, 2 figs, 6 tabs

  19. Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...

  20. Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki [Graduate School of Science and Engineering, Ehime University, Ehime (Japan); Sano, Sakae [Faculty of Education, Ehime University, Ehime (Japan); Ha, Nguyen Thi Hoang

    2009-09-15

    Sb, As, Cu, and Zn toxicity and contamination have become a growing concern in recent years. Phytoremediation, a plant based and cost effective technology, may be an effective approach in the cleanup of water contaminated by these metals. In this study, the aquatic macrophyte Eleocharis acicularis was used in laboratory and field experiments to assess its capability to accumulate Sb, As, Cu, and Zn, and thereby investigate its potential application in phytoremediation. The results showed that E. acicularis adapted well to water contaminated by these metals. The removal rates of Sb, As, Cu, and Zn in the laboratory experiment were 3.04, 2.75, 0.417, and 1.49 {mu}g/L/day, respectively. The highest concentrations of these metals accumulated in E. acicularis after 10 days of the laboratory experiment were 6.29, 6.44, 20.5, and 73.5 mg/kg dry weight, respectively. Only 8% of As, 12% of Sb, 87% of Cu and 93% of Zn removed from the water were used by E. acicularis. The highest concentrations of Sb, As, Cu, and Zn accumulated in E. acicularis after 10 wk of the field experiment were 76.0, 22.4, 33.9, and 266 mg/kg dry weight, respectively. The results indicate that E. acicularis has the ability to accumulate Sb, As, Cu, and Zn from contaminated water. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake.

    Science.gov (United States)

    Attermeyer, K; Flury, S; Jayakumar, R; Fiener, P; Steger, K; Arya, V; Wilken, F; van Geldern, R; Premke, K

    2016-02-05

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km(2)) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets.

  2. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake

    Science.gov (United States)

    Attermeyer, K.; Flury, S.; Jayakumar, R.; Fiener, P.; Steger, K.; Arya, V.; Wilken, F.; van Geldern, R.; Premke, K.

    2016-02-01

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km2) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets.

  3. Effects of submerged vegetation on water clarity across climates

    NARCIS (Netherlands)

    Kosten, S.; Lacerot, G.; Jeppesen, E.; Motta Marques, D.M.L.; Nes, van E.H.; Mazzeo, N.; Scheffer, M.

    2009-01-01

    A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate

  4. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Andersen, Frede Østergaard; Jensen, Henning S.

    2016-01-01

    Phosphate (Pi) uptake kinetics were determined in shoot and root tissues for four freshwater macrophyte species, Littorella uniflora, Potamogeton perfoliatus, Myriophyllum alterniflorum and Elodea canadensis, using a radioactive 33P phosphate technique. Collection of plant material in the oligotr...

  5. What is left? Macrophyte meadows and Atlantic herring (Clupea harengus) spawning sites in the Greifswalder Bodden, Baltic Sea

    Science.gov (United States)

    Kanstinger, Philipp; Beher, Jutta; Grenzdörffer, Görres; Hammer, Cornelius; Huebert, Klaus B.; Stepputis, Daniel; Peck, Myron A.

    2018-02-01

    Coastal zones are productive areas of marine ecosystems which are also hotspots of anthropogenic activities causing habitat degradation. In the southwest Baltic Sea, eutrophication is thought to have caused the massive reduction in submerged macrophytes observed in recent decades. Here, we surveyed the submarine vegetation and examined locations of spawning of herring (Clupea harengus) in the Greifswalder Bodden, one of the most important reproductive habitats of the Western Baltic Spring Spawner herring stock (WBSS). This stock deposits eggs onto submerged vegetation and changes in macrophyte coverage are expected to influence the availability of reproductive habitat. Aerial, underwater video tows and SCUBA surveys conducted in spring 2009 revealed that only ∼7% of the lagoon was vegetated. Herring eggs were observed on 12 of 32 SCUBA transects, at depths between 0.2 and 5 m and were attached to a variety of spermatophyte and algae species but not to stones or mussels. A classification tree model indicated that spawning sites were strongly associated with the vegetation cover within a 100- and 500-m radius, implying that herring schools preferentially spawn on dense and large underwater meadows. Only ∼5% of the lagoon now falls into this vegetation category. Despite 20 years of efforts to reduce eutrophication, no increase in macroalgae and spermatophyte vegetation towards the historical level of 90% coverage in the area is apparent.

  6. Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata

    Directory of Open Access Journals (Sweden)

    Ahmad Farid Abu Bakar

    2013-01-01

    Full Text Available The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2% and zinc (93.7% and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8% compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5% and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.

  7. Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata)

    Science.gov (United States)

    Yusoff, Ismail; Fatt, Ng Tham; Othman, Faridah; Ashraf, Muhammad Aqeel

    2013-01-01

    The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water. PMID:24102060

  8. Short Note An integrated remote sampling approach for aquatic ...

    African Journals Online (AJOL)

    A sampling method and apparatus for collecting meaningful and quantifiable samples of aquatic macroinvertebrates, and the macrophytes they are associated with, are presented. Where physical danger from wildlife is a significant factor, especially in Africa, this apparatus offers some safety in that it can be operated from a ...

  9. Watershed and Hydrodynamic Modeling for Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation and Seagrasses in Mobile Bay

    Science.gov (United States)

    Estes, Maurice G.; Al-Hamdan, Mohammed; Thom, Ron; Quattrochi, Dale; Woodruff, Dana; Judd, Chaeli; Ellism Jean; Watson, Brian; Rodriguez, Hugo; Johnson, Hoyt

    2009-01-01

    There is a continued need to understand how human activities along the northern Gulf of Mexico coast are impacting the natural ecosystems. The gulf coast is experiencing rapid population growth and associated land cover/land use change. Mobile Bay, AL is a designated pilot region of the Gulf of Mexico Alliance (GOMA) and is the focus area of many current NASA and NOAA studies, for example. This is a critical region, both ecologically and economically to the entire United States because it has the fourth largest freshwater inflow in the continental USA, is a vital nursery habitat for commercially and recreational important fisheries, and houses a working waterfront and port that is expanding. Watershed and hydrodynamic modeling has been performed for Mobile Bay to evaluate the impact of land use change in Mobile and Baldwin counties on the aquatic ecosystem. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use Scenarios in 1948, 1992, 2001, and 2030. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on observed trends. All land use scenarios were developed to a common land classification system developed by merging the 1992 and 2001 National Land Cover Data (NLCD). The LSPC model output provides changes in flow, temperature, sediments and general water quality for 22 discharge points into the Bay. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment concentrations on a grid with four vertical profiles throughout the Bay s aquatic ecosystems. The models were calibrated using in-situ data collected at sampling stations in and around Mobile bay. This phase of the project has focused on sediment modeling because of its significant influence on light attenuation which is a critical factor in the health of submerged aquatic

  10. Macrophyte Communities of Andean Rivers: Composition and Relation with Environmental Factors

    OpenAIRE

    Alida Marcela Gómez Rodríguez; Luz Teresa Valderrama Valderrama; Carlos A. Rivera-Rondón

    2017-01-01

    Small streams of tropical Andes have been poorly studied. Therefore, there is little information about the structure, dynamics and function of their macrophyte communities. In this research, aquatic plant communities of 18 Andean streams of La Vieja (Quindío) and Otún (Risaralda) river basins were studied; those are some of the basins most affected by anthropic activities in the country. Streams were selected according to their association with the main land’s uses of the region in both basin...

  11. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.

    Science.gov (United States)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-04-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas-water interface to promote O₂ uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O₂ from floodwaters when in darkness and CO₂ entry when in light. O₂ microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water-gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O₂ deficiency and oxidative stress. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  12. Flow Management to Control Excessive Growth of Macrophytes - An Assessment Based on Habitat Suitability Modeling.

    Science.gov (United States)

    Ochs, Konstantin; Rivaes, Rui P; Ferreira, Teresa; Egger, Gregory

    2018-01-01

    Mediterranean rivers in intensive agricultural watersheds usually display outgrowths of macrophytes - notably alien species - due to a combination of high concentrations of nutrients in the water runoff and low flows resulting from water abstraction for irrigation. Standard mechanical and chemical control is used to mitigate the problems associated with excessive growth of plant biomass: mainly less drainage capacity and higher flood risk. However, such control measures are cost and labor-intensive and do not present long-term efficiency. Although the high sensitivity of aquatic vegetation to instream hydraulic conditions is well known, management approaches based on flow management remain relatively unexplored. The aim of our study was therefore to apply physical habitat simulation techniques promoted by the Instream Flow Incremental Method (IFIM) to aquatic macrophytes - the first time it has been applied in this context - in order to model shifts in habitat suitability under different flow scenarios in the Sorraia river in central Portugal. We used this approach to test whether the risk of invasion and channel encroachment by nuisance species can be controlled by setting minimum annual flows. We used 960 randomly distributed survey points to analyze the habitat suitability for the most important aquatic species (including the invasive Brazilian milfoil Myriophyllum aquaticum , Sparganium erectum , and Potamogeton crispus ) in regard to the physical parameters 'flow velocity,' 'water depth,' and 'substrate size'. We chose the lowest discharge period of the year in order to assess the hydraulic conditions while disturbances were at a low-point, thus allowing aquatic vegetation establishment and subsistence. We then used the two-dimensional hydraulic River2D software to model the potential habitat availability for different flow conditions based on the site-specific habitat suitability index for each physical parameter and species. Our results show that the growth

  13. Water quality and communities associated with macrophytes in a shallow water-supply reservoir on an aquaculture farm.

    Science.gov (United States)

    Sipaúba-Tavares, L H; Dias, S G

    2014-05-01

    Plankton communities and macrofauna associated to aquatic macrophyte stands in a shallow water-supply reservoir (21°14'09″S; 48°18'38″W) on an aquaculture farm were compared to evaluate the relationship between organism densities and some abiotic features of the reservoir. Water and communities associated were sampled at two sites, one in an area with the predominance of Eichhornia azurea (Sw.) Kunth and the other with the predominance of Salvinia auriculata Aublet. Communities associated with macrophytes were sampled with floating quadrants (0.5 m2); the macrophytes were washed and plankton and macrofauna were fixated with 4% formalin and 1% lugol iodine; the specimens were then identified and counted. Plankton and macrofauna communities associated with S. auriculata and E. azurea had a similar diversity of species but different (pmacrophytes presence in the shallow reservoir is a strong predictor of favourable conditions to maintain great diversity plankton community and macrofauna associated with plants. The role of macrophytes is important for not only stabilising the clear-water state and maintaining high diversity of organisms associated, but also it seems to be a good alternative to maintaining desirable water-supply quality for aquaculture farms.

  14. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-01-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas–water interface...... or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O2 deficiency and oxidative...... stress....

  15. Impacts of mute swans (Cygnus olor) on submerged aquatic vegetation in Illinois River Valley backwaters

    Science.gov (United States)

    Stafford, Joshua D.; Michael W. Eichholz,; Adam C. Phillips,

    2012-01-01

    Wetland loss in North America has been considerable and well documented, and the establishment of exotic species in remaining wetlands can further reduce their ability to support native flora and fauna. In the Chesapeake Bay and Great Lakes ecosystems, exotic mute swans (Cygnus olor) have been found to negatively impact wetlands through degradation of submerged aquatic vegetation (SAV) communities. Mute swan populations have expanded into many areas of mid-continental North America outside the Great Lakes ecosystem, but the environmental impact of these populations is not well known. Mid-continental wetlands in North America differ in physical characteristics (e.g., size, depth, and permanency) and aquatic vegetation species composition compared to wetlands in other areas where mute swans have been studied and, thus, may be more or less susceptible to degradation from swan herbivory. To investigate the impact of mute swan herbivory on SAV communities in mid-continent wetlands, we used exclosures to prevent swans from foraging in 2 wetland complexes in central Illinois. Above-ground biomass of vegetation did not differ between exclosures and controls; however, mean below-ground biomass was greater in exclosures (52.0 g/m2, SE = 6.0) than in controls (34.4 g/m2 SE = 4.0). Thus, although swan densities were lower in our study region compared to that of previous studies, we observed potentially detrimental impacts of swan herbivory on below-ground biomass of SAV. Our results indicate that both above-ground and below-ground impacts of herbivory should be monitored, and below-ground biomass may be most sensitive to swan foraging.

  16. Shade and flow effects on ammonia retention in macrophyte-rich streams: implications for water quality

    International Nuclear Information System (INIS)

    Wilcock, Robert J.; Scarsbrook, Mike R.; Cooke, James G.; Costley, Kerry J.; Nagels, John W.

    2004-01-01

    Controlled releases of NH 4 -N and conservative tracers (Br - and Cl - ) to five reaches of four streams with contrasting macrophyte communities have shown differing retentions, largely as a result of the way plants interact with stream flow and velocity. First-order constants (k) were 1.0-4.8 d -1 and retention of NH 4 -N was 6-71% of amounts added to each reach. Distance travelled before a 50% reduction in concentration was achieved were 40-450 m in three streams under low-flow conditions, and 2400-3800 m at higher flows. Retention (%) of NH 4 -N can be approximated by a simple function of travel time and k, highlighting the importance of the relationship between macrophytes and stream velocity on nutrient processing. This finding has significant management implications, particularly with respect to restoration of riparian shade. Small streams with predominantly marginal emergent plants are likely to have improved retention of NH 4 -N as a result of shading or other means of reducing plant biomass. Streams dominated by submerged macrophytes will have impaired NH 4 -N retention if plant biomass is reduced because of reduced contact times between NH 4 -N molecules and reactive sites. In these conditions water resource managers should utilise riparian shading in concert with unshaded vegetated reaches to achieve a balance between enhanced in-stream habitat and nutrient processing capacity

  17. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    Energy Technology Data Exchange (ETDEWEB)

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  18. Flow Management to Control Excessive Growth of Macrophytes – An Assessment Based on Habitat Suitability Modeling

    Science.gov (United States)

    Ochs, Konstantin; Rivaes, Rui P.; Ferreira, Teresa; Egger, Gregory

    2018-01-01

    Mediterranean rivers in intensive agricultural watersheds usually display outgrowths of macrophytes – notably alien species – due to a combination of high concentrations of nutrients in the water runoff and low flows resulting from water abstraction for irrigation. Standard mechanical and chemical control is used to mitigate the problems associated with excessive growth of plant biomass: mainly less drainage capacity and higher flood risk. However, such control measures are cost and labor-intensive and do not present long-term efficiency. Although the high sensitivity of aquatic vegetation to instream hydraulic conditions is well known, management approaches based on flow management remain relatively unexplored. The aim of our study was therefore to apply physical habitat simulation techniques promoted by the Instream Flow Incremental Method (IFIM) to aquatic macrophytes – the first time it has been applied in this context – in order to model shifts in habitat suitability under different flow scenarios in the Sorraia river in central Portugal. We used this approach to test whether the risk of invasion and channel encroachment by nuisance species can be controlled by setting minimum annual flows. We used 960 randomly distributed survey points to analyze the habitat suitability for the most important aquatic species (including the invasive Brazilian milfoil Myriophyllum aquaticum, Sparganium erectum, and Potamogeton crispus) in regard to the physical parameters ‘flow velocity,’ ‘water depth,’ and ‘substrate size’. We chose the lowest discharge period of the year in order to assess the hydraulic conditions while disturbances were at a low-point, thus allowing aquatic vegetation establishment and subsistence. We then used the two-dimensional hydraulic River2D software to model the potential habitat availability for different flow conditions based on the site-specific habitat suitability index for each physical parameter and species. Our results show

  19. The influence of plant-associated filter feeders on phytoplankton biomass: a mesocosm study

    NARCIS (Netherlands)

    Vanderstukken, M.; Declerck, S.A.J.; Pals, A.; De Meester, L.; Muylaert, K.

    2010-01-01

    Low phytoplankton biomass usually occurs in the presence of submerged macrophytes, possibly because submerged macrophytes enhance top-down control of phytoplankton by offering a refuge for efficient grazers like Daphnia against fish predation. However, other field studies also suggest that submerged

  20. Aquatic Resources of Rocky Mountain Arsenal Adams County, Colorado

    Science.gov (United States)

    1989-09-01

    Consequently, temperatures rise and oxygen levels fall. Primary producers in these stretches shift from periphyton to phytoplankton (suspended algae ...trees and have rocky substrates. Primary production in these cold- water and coolwater reaches is generally limited to periphyton (attached algae ...Adams County. Biotic components investigated included phytoplankton , zooplankton, aquatic macrophytes, benthic macroinvertebrates, fish eggs and

  1. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2017-01-01

    Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log K ow ) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log K ow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Proceedings of the Subcontractors' Review Meeting: Aquatic Species Program

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Aquatic Species Program (ASP) addresses the utilization of plant biomass that naturally occurs in wetland or submerged areas. Processes are being developed through this program to make use of such aquatic species, capitalizing on their inherent capacity for rapid growth as well as their extraordinary chemical compositions.

  3. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants...... of this terrestrial plant species to submergence for gas exchange capacity is also shown. Shoot acclimation to submergence involved a reduction of the diffusion resistance to gases, which was not only functional by increasing diffusion of oxygen into the plant, but also by increasing influx of CO2, which enhances...... maintain relatively high internal oxygen pressures under water, and even may release oxygen via the roots into the sediment, also in dark. Based on these results, we challenge the dogma that oxygen pressures in submerged terrestrial plants immediately drop to levels at which aerobic respiration is impaired...

  4. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  5. Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis)

    International Nuclear Information System (INIS)

    Bolsunovsky, A.; Zotina, T.; Bondareva, L.

    2005-01-01

    The source of radioactive contamination of the Yenisei River floodplain, including contamination with transuranic elements, is the Mining-and-Chemical Combine of the Russian Ministry of Atomic Energy, which has for many years been producing weapons-grade plutonium. Transuranic elements have been detected not only in the soil and sediment of the river but also in the biomass of aquatic plants. This work is an investigation of accumulation and release of 241 Am by a submerged macrophyte of the Yenisei River (Elodea canadensis) in laboratory experiments. In 2000-2003, laboratory experiments were carried out with biomass of E. canadensis Mich. and filtered river water. The samples were collected from the Yenisei River upstream of the discharge of the Combine's radioactive effluent. The experiments showed that 241 Am is accumulated by Elodea biomass: the activity concentration of 241 Am can reach 3280 ± 240 Bq/g, with the concentration factor for 241 Am 16 600 ± 2200 l/kg. Results of chemical fractionation have proved that in the course of 241 Am accumulation by Elodea biomass, 241 Am tightly bound to biomass increases from 11% to 27% of the total 241 Am in the biomass. Release of 241 Am from the decaying Elodea biomass has been evaluated experimentally. By the end of the experiment (lasting up to 127 days), the Elodea plants had lost up to 65% of their initial 241 Am activity and the rate of 241 Am release into the water environment reached 23 Bq/day

  6. Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis).

    Science.gov (United States)

    Bolsunovsky, A; Zotina, T; Bondareva, L

    2005-01-01

    The source of radioactive contamination of the Yenisei River floodplain, including contamination with transuranic elements, is the Mining-and-Chemical Combine of the Russian Ministry of Atomic Energy, which has for many years been producing weapons-grade plutonium. Transuranic elements have been detected not only in the soil and sediment of the river but also in the biomass of aquatic plants. This work is an investigation of accumulation and release of 241Am by a submerged macrophyte of the Yenisei River (Elodea canadensis) in laboratory experiments. In 2000-2003, laboratory experiments were carried out with biomass of E. canadensis Mich. and filtered river water. The samples were collected from the Yenisei River upstream of the discharge of the Combine's radioactive effluent. The experiments showed that 241Am is accumulated by Elodea biomass: the activity concentration of 241Am can reach 3280+/-240 Bq/g, with the concentration factor for 241Am 16 600+/-2200l/kg. Results of chemical fractionation have proved that in the course of 241Am accumulation by Elodea biomass, 241Am tightly bound to biomass increases from 11% to 27% of the total 241Am in the biomass. Release of 241Am from the decaying Elodea biomass has been evaluated experimentally. By the end of the experiment (lasting up to 127 days), the Elodea plants had lost up to 65% of their initial 241Am activity and the rate of 241Am release into the water environment reached 23 Bq/day.

  7. Haloacetic acids in the aquatic environment. Part II: ecological risk assessment

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are environmental contaminants found in aquatic ecosystems throughout the world as a result of both anthropogenic and natural production. The ecological risk posed by these compounds to organisms in freshwater environments, with a specific focus on aquatic macrophytes, was characterized. The plants evaluated were Lemna gibba, Myriophyllum spicatum and M. sibiricum and the HAAs screened were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). Laboratory toxicity data formed the basis of the risk assessment, but field studies were also utilized. The estimated risk was calculated using hazard quotients (HQ), as well as effect measure distributions (EMD) in a modified probabilistic ecological risk assessment. EMDs were used to estimate HAA thresholds of toxicity for use in HQ assessments. This threshold was found to be a more sensitive measure of low toxicity than the no observed effect concentrations (NOEC) or the effective concentration (EC 10 ). Using both deterministic and probabilistic methods, it was found that HAAs do not pose a significant risk to freshwater macrophytes at current environmental concentrations in Canada, Europe or Africa for both single compound and mixture exposures. Still, HAAs are generally found as mixtures and their potential interactions are not fully understood, rendering this phase of the assessment uncertain and justifying further effects characterization. TCA in some environments poses a slight risk to phytoplankton and future concentrations of TFA and CDFA are likely to increase due to their recalcitrant nature, warranting continued environmental surveillance of HAAs. - Current environmental concentrations of haloacetic acids do not pose a risk to aquatic macrophytes, but could impact plankton

  8. Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes.

    Science.gov (United States)

    Lambert, S J; Thomas, K V; Davy, A J

    2006-05-01

    Antifouling paints are used to reduce the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of a biocide. Two 'booster' biocides in common use are the triazine herbicide Irgarol 1051 (N-2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), and diuron (1-(3,4-dichlorophenyl)-3,3-dimethylurea), which are designed to inhibit algal photosynthesis. Previous research has been directed at the effects of these compounds in marine and estuarine environments. In 2001 we sampled the main rivers and shallow freshwater lakes (Broads) of East Anglia UK for Irgarol 1051, its metabolite GS26575 (2-methylamino-4-tert-butylamino-6-amino-s-triazine) and diuron in order to establish the baseline environmental concentrations of these compounds in freshwater systems of eastern UK and to investigate their possible effects on aquatic plants. Irgarol 1051, GS26575 and diuron were found in water samples collected from 21 locations. The highest concentrations were found in the Norfolk and Suffolk Broads in May. The rivers Great Ouse, Wissey, Bure and Yare also contained all three compounds, as did the Great Ouse Cut-off Channel. The toxicity of these biocides to three macrophyte species (Apium nodiflorum, Chara vulgaris, and Myriophyllum spicatum) was investigated. Deleterious effects on relative growth rate, the maximum quantum efficiency (Fv/Fm) of photosystem II and, for Apium, root mass production were found. C. vulgaris was generally most sensitive; growth, especially of roots, was strongly affected in A. nodiflorum; growth rate of M. spicatum was sensitive to diuron. No observed effect concentrations (NOEC) were interpolated using standard toxicological analysis. These were compared with measured environmental concentrations (MEC) to determine the ranges of risk quotients (MEC/NOEC). Both Irgarol 1051 and diuron represented significant risks to A. nodiflorum and C. vulgaris in this area.

  9. The incidence of arbuscular mycorrhiza in two submerged Isoëtes species

    Czech Academy of Sciences Publication Activity Database

    Sudová, Radka; Rydlová, Jana; Čtvrtlíková, Martina; Havránek, P.; Adamec, Lubomír

    2011-01-01

    Roč. 94, č. 4 (2011), s. 183-187 ISSN 0304-3770. [The Biology of Fungi. IMC9. Edinburgh, (01.08.2010-06.08.2010)] R&D Projects: GA ČR GAP504/10/0781; GA ČR GA206/07/1200 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z60170517 Keywords : arbuscular mycorrhizal fungi * aquatic macrophytes * dark septate endophytes Subject RIV: EF - Botanics Impact factor: 1.516, year: 2011

  10. Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa

    International Nuclear Information System (INIS)

    Zhang Xin; Uroic, M. Kalle; Xie Wanying; Zhu Yongguan; Chen Baodong; McGrath, Steve P.; Feldmann, Jörg; Zhao Fangjie

    2012-01-01

    The rootless duckweed Wolffia globosa can accumulate and tolerate relatively large amounts of arsenic (As); however, the underlying mechanisms were unknown. W. globosa was exposed to different concentrations of arsenate with or without L-buthionine sulphoximine (BSO), a specific inhibitor of γ-glutamylcysteine synthetase. Free thiol compounds and As(III)–thiol complexes were identified and quantified using HPLC – high resolution ICP-MS – accurate mass ESI-MS. Without BSO, 74% of the As accumulated in the duckweed was complexed with phytochelatins (PCs), with As(III)–PC 4 and As(III)–PC 3 being the main species. BSO was taken up by the duckweed and partly deaminated. The BSO treatment completely suppressed the synthesis of PCs and the formation of As(III)–PC complexes, and also inhibited the reduction of arsenate to arsenite. BSO markedly decreased both As accumulation and As tolerance in W. globosa. The results demonstrate an important role of PCs in detoxifying As and enabling As accumulation in W. globosa. - Highlights: ► W. globosa can accumulate and tolerate relatively large amounts of arsenic. ► Majority of the As accumulated in W. globosa was complexed with phytochelatins (PCs). ► As(III)–PC 4 and As(III)–PC 3 are the main complex species. ► Complexation of arsenite with phytochelatins plays a key role in As tolerance and accumulation. - Complexation of arsenite with phytochelatins plays a key role in both arsenic tolerance and accumulation in the aquatic macrophyte Wolffia globosa.

  11. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants

  12. Ecological Effects of Exotic and Native Aquatic Vegetation

    Science.gov (United States)

    2009-08-01

    related problem for fish. Normally, carbon dioxide released during respiration is utilized in photosynthesis or escapes into the atmo- sphere...with algae for nutrients and light (Boyd 1979). Phytoplankton populations are often suppressed in well-established stands of ERDC/EL TR-09-10 8...aquatic plants, and primary productivity is either dependent upon macrophytes and/or periphyton associated with them. Generally, the presence of

  13. Abiotic controls of emergent macrophyte density in a bedrock channel - The Cahaba River, AL (USA)

    Science.gov (United States)

    Vaughn, Ryan S.; Davis, Lisa

    2015-10-01

    Research examining bedrock channels is growing. Despite this, biotic-abiotic interactions remain a topic mostly addressed in alluvial systems. This research identified hydrogeomorphic factors operating at the patch-scale (100-102 m) in bedrock shoals of the Cahaba River (AL) that help determine the distribution of the emergent aquatic macrophyte, Justicia americana. Macrophyte patch density (number of stems/m2) and percent bedrock void surface area (rock surface area/m2 occupied by joints, fractures, and potholes) were measured (n = 24 within two bedrock shoals) using stem counts and underwater photography, respectively. One-dimensional hydrologic modeling (HEC-RAS 4.1.0) was completed for a section within a shoal to examine velocity and channel depth as controlling variables for macrophyte patch density. Results from binary logistic regression analysis identified depth and velocity as good predictors of the presence or absence of Justicia americana within shoal structures (depth p = 0.001, velocity p = 0.007), which is a similar finding to previous research conducted in alluvial systems. Correlation analysis between bedrock surface void area and stem density demonstrated a statistically significant positive correlation (r = 0.665, p = 0.01), elucidating a link between abiotic-biotic processes that may well be unique to bedrock channels. These results suggest that the amount of void space present in bedrock surfaces, in addition to localized depth and velocity, helps control macrophyte patch density in bedrock shoal complexes. The utility of geomorphology in explaining patch-scale habitat heterogeneity in this study highlights geomorphology's potential to help understand macrophyte habitat heterogeneity at the reach scale, while also demonstrating its promise for mapping and understanding habitat heterogeneity at the system scale.

  14. The distribution and accumulation of chromium in the water, sediment and macrophytes of Skadar lake

    Directory of Open Access Journals (Sweden)

    Kastratović Vlatko

    2016-01-01

    Full Text Available The aquatic macrophytes Phragmites australis (Cav. Trin. ex Steud., Ceratophyllum demersum L., and Lemna minor L. were used as bioindicator plant species in order to define contamination level by Cr in Skadar lake (Montenegro. Plants, water and sediments were tested for the content of Cr at six locations around Lake Skadar during four periods in 2011. The content of Cr in the examined sediment was in the range of 35.6-127 mg/kg dry weight. The largest proportion of detected Cr (50.6% was associated with the oxidizable phase in the form of organic complexes. The concentration of Cr in the studied macrophytes declined in the following order: C. demersum > P. australis > L. minor. The highest average content of Cr was detected in the leaf of C. demersum (11.4 mg/kg in April.

  15. Fish associated with aquatic macrophytes in the Chacororé-Sinhá Mariana Lake system and Mutum River, Pantanal of Mato Grosso, Brazil Peixes associados a macrófitas aquáticas no sistema de baías Chacororé-Sinhá Mariana e rio Mutum, Pantanal - MT

    Directory of Open Access Journals (Sweden)

    EB. Pacheco

    2009-02-01

    Full Text Available On the left bank of the Cuibá River, one of the main tributaries of the Pantanal in Mato Grosso, are located the Chacororé and Sinhá Mariana Lakes and the Mutum River, the littoral regions of which are covered with aquatic macrophytes, dominated by the species Eichhornia crassipes and Eichhornia azurea. To examine the ichthyofauna associated with this vegetation, in the year 2003, 3510 fish were collected, distributed among 83 species, and the limnological variables verified near the macrophyte stands where they were sampled. The most abundant and richest order was the Characiformes, followed by the Gymnotiformes and Siluriformes. Analysis of similarity showed a very low, or null, index that the limnological conditions and morphology of the aquatic macrophyte species provide habitat sufficiently homogeneous to give. The limnological conditions and morphology of the aquatic macrophyte species provide a sufficient habitat heterogeneity to give very low, or null, index values. Thus, environmental conservation measures should be more effective in promoting the conservation of the species, given the high levels of biological diversity found in the habitats studied.À margem esquerda do rio Cuiabá, um dos principais afluentes do Pantanal matogrossense, estão localizadas as baías Chacororé e Sinhá Mariana e o rio Mutum, cujas regiões litorâneas são cobertas por macrófitas aquáticas. Com o intuito de se verificar a ictiofauna associada a esta vegetação, no ano de 2003, foram coletados 3510 peixes distribuídos em 83 espécies e verificados os valores das variáveis limnológicas próximo aos bancos de macrófitas onde estes foram amostrados. A ordem mais abundante e de maior riqueza foi Characiformes, seguida por Gymnotiformes e Siluriformes. As condições limnológicas e a morfologia das espécies de macrófitas proporcionam heterogeneidade de hábitat suficiente para obtenção de valores dos índices de similaridade baixos ou mesmo

  16. Aquatic macroinvertebrates associated with Eichhornia azurea (Swartz Kunth and relationships with abiotic factors in marginal lentic ecosystems (São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    CV. Silva

    Full Text Available Marginal lakes are characterised by their having high biological diversity due to the presence of aquatic macrophytes in their coastal zones, providing habitats for refuge and food for animal community members. Among the fauna components associated with macrophytes, aquatic macroinvertebrates are important because they are an energy source for predators and fish. In six lakes and two different seasons (March and August 2009, the ecological attributes of aquatic macroinvertebrate community associated with Eichhornia azurea were compared and the controlling environmental factors were identified. Since the attributes of macroinvertebrate community are strictly associated with abiotic variables of each distinct habitat, our hypothesis was that each site associated with the same floating aquatic macrophyte (E. azurea should have a typical composition and density of organisms. We identified 50 taxa of macroinvertebrates, with greater taxa richness for aquatic insects (37 taxa divided into eight orders; the order Diptera being the most abundant in the two study periods. On the other hand, higher values of total taxa richness were recorded in August. Dissolved oxygen and pH presented the greatest number of significant positive correlations with the different taxa. The animals most frequently collected in the six lakes in March and August 2009 were Hirudinea, Oligochaeta, Hydrachnidae, Conchostraca, Ostracoda, Noteridae, Ceratopogonidae, Chironomidae, Culicidae, Caenidae, Pleidae, Aeshnidae, Libellulidae, Coenagrionidae and Nematoda. Only densities of Trichoptera, Ostracoda and Conchostraca presented the highest significant differences between lakes in both study periods and considering the composition of macroinvertebrates no significant differences were registered for macroinvertebrate composition.

  17. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.

    Science.gov (United States)

    Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S

    2018-01-15

    Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [3H]Leucine incorporation method as a tool to measure secondary production by periphytic bacteria associated to the roots of floating aquatic macrophyte.

    Science.gov (United States)

    Miranda, M R; Guimarães, J R D; Coelho-Souza, A S

    2007-10-01

    The present study assessed the application of [(3)H]Leucine incorporation into protein by periphytic bacteria associated with the roots of the floating aquatic macrophyte Eichornia crassipes. Basic assumptions underlying the method, such as linearity of leucine incorporation, saturation level of incorporation rates, incorporation into other macromolecules, specificity of incorporation for bacterial assemblages and [(3)H]Leucine degradation during samples storage were tested, and two procedures for extracting the incorporated leucine were compared. Both methods gave the same results, however, the hot TCA extraction method was less time consuming than the alkaline extraction method. Incorporation of [(3)H]Leucine was linear for up to 40 min. Saturation concentration of [(3)H]Leucine incorporation into protein was 1500 nM. An experiment with prokaryotic and eukaryotic inhibitors showed no significant [(3)H]Leucine incorporation into eukaryotes even in high leucine concentrations. No significant amounts of radiolabel were incorporated into other macromolecules. The maximum time of sample storage after the incubation is 15 days. The leucine incorporation method can be a reliable tool to measure bacterial production in the periphyton root-associated bacteria.

  19. Coexistence of fish species in a large lowland river: food niche partitioning between small-sized percids, cyprinids and sticklebacks in submersed macrophytes.

    Science.gov (United States)

    Dukowska, Małgorzata; Grzybkowska, Maria

    2014-01-01

    In the spring and summer of each year, large patches of submersed aquatic macrophytes overgrow the bottom of the alluvial Warta River downstream of a large dam reservoir owing to water management practices. Environmental variables, macroinvertebrates (zoobenthos and epiphytic fauna, zooplankton) and fish abundance and biomass were assessed at this biologically productive habitat to learn intraseasonal dynamics of food types, and their occurrence in the gut contents of small-sized roach, dace, perch, ruffe and three-spined stickleback. Gut fullness coefficient, niche breadth and niche overlap indicated how the fishes coexist in the macrophytes. Chironomidae dominated in the diet of the percids. However, ruffe consumed mostly benthic chironomids, while perch epiphytic chironomids and zooplankton. The diet of dace resembled that in fast flowing water although this rheophilic species occurred at unusual density there. The generalist roach displayed the lowest gut fullness coefficient values and widest niche breadth; consequently, intraspecific rather than interspecific competition decided the fate of roach. Three-spined stickleback differed from the other fishes by consuming epiphytic simuliids and fish eggs. The diet overlap between fishes reaching higher gut fullness coefficient values was rather low when the food associated with the submersed aquatic macrophytes was most abundant; this is congruent with the niche overlap hypothesis that maximal tolerable niche overlap can be higher in less intensely competitive conditions.

  20. Aquatic Species Program Review: Proceedings of the March 1983 Principal Investigators Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The Aquatic Species Program (ASP) addresses the utilization of plant biomass that naturally occurs in wetland or submerged areas. Processes are being developed through this program to make use of such aquatic species, capitalizing on their inherent capacity for rapid growth as well as their extraordinary chemical compositions.

  1. The distribution of radionuclides between the sediments and macrophytes in the cooling pond of the Ignalina NPP - The Distribution of Radionuclides in Freshwater Hydro Ecosystem's Bottom Sediments and Macrophytes depending on the Ecological Conditions

    International Nuclear Information System (INIS)

    Marciulioniene, D.; Jefanova, O.; Mazeika, J.

    2014-01-01

    The distribution of 137 Cs, 60 Co, 54 Mn in the aquatory of lake Drukshiai (the monitoring stations), the coastal area of this lake, the industrial drainage systems channel of the Ignalina NPP and the cooling water channel of the Ignalina NPP was analyzed on the basis of long-term (1988-2009) investigations of radionuclides specific activity in bottom sediments and macrophytes, also the ability of radionuclides falling into lake Drukshiai from the Ignalina NPP through effluents channels was assessed. It was established that 137 Cs, 60 Co and 54 Mn in the bottom sediments and the macrophytes were distributed quite differently in the monitoring stations of lake Drukshiai and the coastal area as well as in the industrial drainage systems channel of the Ignalina NPP and the cooling water channel of the Ignalina NPP. The different characteristics of the sediments, various ecological conditions, as well as the existing anthropogenic environmental factors and the different in the ecological groups of the plants could have had impact on the distribution of 137 Cs, 60 Co and 54 Mn in the bottom sediments and the aquatic plants in lake Drukshiai and the effluents channels of the Ignalina NPP. The 137 Cs, 60 Co and 54 Mn specific activity's values were significantly higher in macrophytes from the industrial drainage systems channel of Ignalina NPP than in macrophytes from the cooling water channel. Nevertheless the specific activities level of these radionuclides differed only slightly in the macrophytes from the areas which were impacted by the effluents channels of the Ignalina NPP. This can be explained by the fact that the phyto-remediation (as the form of auto-purification) of these effluents from the radionuclides had been present in the industrial drainage systems channel of Ignalina NPP before entering the water into lake Drukshiai. (authors)

  2. The aquatic habit and host plants of Paracles klagesi (Rothschild (Lepidoptera, Erebidae, Arctiinae in Brazil

    Directory of Open Access Journals (Sweden)

    Aurélio R. Meneses

    2013-09-01

    Full Text Available The aquatic habit and host plants of Paracles klagesi (Rothschild (Lepidoptera, Erebidae, Arctiinae in Brazil. The aquatic caterpillar Paracles klagesi (Rothschild, 1910 was collected from the headwaters of a stream in an ecotone between Cerrado and Babaçu forest in northeastern Brazil. The single caterpillar found was observed feeding on the macrophyte Tonina fluviatilis Aubl. (Eriocaulaceae and other aquatic plants of the family Nymphaeaceae present in the area, but also accepted as food Elodea canadensis Michx. (Hydrocharitaceae and Cabomba sp. (Cabombaceae under laboratory conditions.

  3. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake.

    Science.gov (United States)

    Mentes, Anikó; Szabó, Attila; Somogyi, Boglárka; Vajna, Balázs; Tugyi, Nóra; Csitári, Bianka; Vörös, Lajos; Felföldi, Tamás

    2018-02-01

    Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterised by open-water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36%-72%), Bacteroidetes (12%-33%) and Actinobacteria (5%-26%), but in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Temporal changes in spatial patterns of submersed macrophytes in two impounded reaches of the Upper Mississippi River, USA, 1998-2009

    Science.gov (United States)

    De Jager, Nathan R.; Yin, Yao

    2011-01-01

    We examined temporal changes in spatial patterns of submersed aquatic macrophytes during a recent three-fold increase in macrophyte abundance and in response to the cumulative effects of management actions (island construction and water level management) and changes in regional environmental conditions (turbidity) in two navigation pools of the Upper Mississippi River, Pool 8 (managed) and Pool 13 (unmanaged). We used cross-correlograms to quantify changes in the degree and range of spatial correlation between submersed macrophytes and depth across the impounded portions of the two pools from 1998-2009. Along with increases in abundance, we observed gradual expansion of submersed macrophytes into deeper water in both pools. However, we detected no temporal change in spatial patterns in Pool 13, where the range of spatial correlation was ~ 1500-2500 m in length in the downriver direction and ~ 500-1000 m in length in the crossriver direction. We initially detected similar ranges of spatial correlation in Pool 8, but over time the range of correlation in the cross river direction increased from ~ 500 m in 1998 to ~ 2000 m by 2009. Thus, the expansion of submersed macrophytes into deeper water areas in Pool 8 appears to have occurred in the cross-river direction and led to increases in patch size and a more symmetrical patch configuration. Hence, very similar temporal changes in submersed macrophyte abundance corresponded with different diffusion dynamics and spatial patterns in the two pools. We hypothesize that management actions altered spatial patterns of depth, water flow and/or wind fetch and led to the differences in spatial patterns reported here.

  5. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis.

    Science.gov (United States)

    Mal, Tarun K; Adorjan, Peter; Corbett, Andrea L

    2002-01-01

    Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment.

  6. Application of macrophytes as biosorbents for radioactive liquid waste treatment; Aplicacao de macrofitas como biossorventes no tratamento de rejeitos radioativos liquidos

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Ludmila Cabreira

    2016-07-01

    Radioactive waste as any other type of waste should be treated and disposed adequately. It is necessary to consider its physical, chemical and radiological characteristics for choosing the appropriate action for the treatment and final disposal. Many treatment techniques currently used are economically costly, often invalidating its use and favoring the study of other treatment techniques. One of these techniques is biosorption, which demonstrates high potential when applied to radioactive waste. This technology uses materials of biological origin for removing metals. Among potential biosorbents found, macrophyte aquatics are useful because they may remove uranium present in the liquid radioactive waste at low cost. This study aims to evaluate the biosorption capacity of macrophyte aquatics Pistia stratiotes, Limnobium laevigatum, Lemna sp and Azolla sp in the treatment of liquid radioactive waste. This study was divided into two stages, the first one is characterization and preparation of biosorption and the other is tests, carried out with uranium solutions and real samples. The biomass was tested in its raw form and biosorption assays were performed in polypropylene vials containing 10 ml of solution of uranium or 10ml of radioactive waste and 0.20g of biomass. The behavior of biomass was evaluated by sorption kinetics and isotherm models. The highest sorption capacities found was 162.1 mg / g for the macrophyte Lemna sp and 161.8 mg / g for the Azolla sp. The equilibrium times obtained were 1 hour for Lemna sp, and 30 minutes for Azolla sp. With the real waste, the macrophyte Azolla sp presented a sorption capacity of 2.6 mg / g. These results suggest that Azolla sp has a larger capacity of biosorption, therefore it is more suitable for more detailed studies of treatment of liquid radioactive waste. (author)

  7. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis

    Energy Technology Data Exchange (ETDEWEB)

    Mal, T.K.; Adorjan, Peter; Corbett, A.L

    2002-12-01

    Elodea canadensis may be a good biomonitor for copper, but not a good bioaccumulator. - Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment.

  8. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis

    International Nuclear Information System (INIS)

    Mal, T.K.; Adorjan, Peter; Corbett, A.L.

    2002-01-01

    Elodea canadensis may be a good biomonitor for copper, but not a good bioaccumulator. - Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment

  9. Applicator Training Manual for: Aquatic Weed Control.

    Science.gov (United States)

    Herron, James W.

    The aquatic weeds discussed in this manual include algae, floating weeds, emersed weeds, and submerged weeds. Specific requirements for pesticide application are given for static water, limited flow, and moving water situations. Secondary effects of improper application rates and faulty application are described. Finally, techniques of limited…

  10. Avaliação da degradação de macrófitas aquáticas descartadas em ambiente protegido Assessment of the degradation of aquatic macrophytes discarded into a protected environment

    Directory of Open Access Journals (Sweden)

    V.R.S. Cezar

    2005-06-01

    Full Text Available Com o intuito de buscar informações sobre a degradação de macrófitas aquáticas descartadas em pilhas, após ações do controle mecânico, foi conduzido um experimento no Departamento de Recursos Naturais - Ciências Ambientais, UNESP, campus de Botucatu-SP. Para atender o objetivo proposto, foram montadas pilhas com volume de 2,25 m³, compostas, principalmente, por três espécies de macrófitas, retiradas do reservatório da UHE Americana/SP. Foram coletadas amostras na montagem das pilhas, aos 15, 30, 60 e 90 dias, para o acompanhamento da temperatura da pilha e do pH do material orgânico durante o processo, além de uma análise química do composto ao final dos 90 dias. Os tratamentos foram: T1 - somente plantas aquáticas e revolvimento da pilha a cada sete dias; T2 - somente plantas aquáticas e revolvimento a cada quatro dias; T3 - plantas aquáticas + permagel, com revolvimento a cada sete dias; e T4 - plantas aquáticas + permagel e revolvimento a cada quatro dias. Utilizou-se o delineamento estatístico inteiramente casualizado, sendo a análise estatística realizada para coleta aos 90 dias, empregando o programa SISVAR. Concluiu-se que os resultados de macro e micronutrientes, temperatura, umidade, pH, relação C/N e redução do volume das pilhas foram semelhantes aos observados quando se procedeu ao descarte em pilhas com volume de 4,5 m³ sobre o solo.An experiment was carried out at the Department of Natural Resources - Environmental Science, UNESP, Botucatu-SP to evaluate the degradation of aquatic macrophytes discarded in stacks, after mechanical control measures. Stacks of 2.25 m³ volume were set up, composed of three species of macrophytes collected from the Americana UHE reservoir in Sao Paulo. Stack samples were collected at 15, 30, 60 and 90 days, for temperature monitoring and organic material pH assessment during the process, besides compound chemical analysis at day 90. The treatments were: T1-only aquatic

  11. Catastrophic shifts in the aquatic primary production revealed by a small low-flow section of tropical downstream after dredging.

    Science.gov (United States)

    Marotta, H; Enrich-Prast, A

    2015-11-01

    Dredging is a catastrophic disturbance that directly affects key biological processes in aquatic ecosystems, especially in those small and shallow. In the tropics, metabolic responses could still be enhanced by the high temperatures and solar incidence. Here, we assessed changes in the aquatic primary production along a small section of low-flow tropical downstream (Imboassica Stream, Brazil) after dredging. Our results suggested that these ecosystems may show catastrophic shifts between net heterotrophy and autotrophy in waters based on three short-term stages following the dredging: (I) a strongly heterotrophic net primary production -NPP- coupled to an intense respiration -R- likely supported by high resuspended organic sediments and nutrients from the bottom; (II) a strongly autotrophic NPP coupled to an intense gross primary production -GPP- favored by the high nutrient levels and low solar light attenuation from suspended solids or aquatic macrophytes; and (III) a NPP near to the equilibrium coupled to low GPP and R rates following, respectively, the shading by aquatic macrophytes and high particulate sedimentation. In conclusion, changes in aquatic primary production could be an important threshold for controlling drastic shifts in the organic matter cycling and the subsequent silting up of small tropical streams after dredging events.

  12. Distribution and production of submerged macrophytes in Tipper Grund (Ringkøbing Fjord, Denmark), and the impact of waterfowl grazing

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    1980-01-01

    waterfowl plant consumption in the entire area (1400 ha) was estimated as 283 t ash-free dry wt, representing about 30% (15-60%) of the annual macrophyte production (968 t ash-free dry wt), or nearly half the maximum biomass. In spite of this high percentage, the direct effect of grazing could...

  13. Mesohaline submerged aquatic vegetation survey along the U.S. gulf of Mexico coast, 2001 and 2002: A salinity gradient approach

    Science.gov (United States)

    Merino, J.H.; Carter, J.; Merino, S.L.

    2009-01-01

    Distribution of marine submerged aquatic vegetation (SAV; i.e., seagrass) in the northern Gulf of Mexico coast has been documented, but there are nonmarine submersed or SAV species occurring in estuarine salinities that have not been extensively reported. We sampled 276 SAV beds along the gulf coast in Florida, Alabama, Mississippi, Louisiana, and Texas in 2001 and 2002 in oligohaline to polyhaline (0 to 36 parts per thousand) waters to determine estuarine SAV species distribution and identify mesohaline SAV communities. A total of 20 SAV and algal species was identified and habitat characteristics such as salinity, water depth, pH, conductivity, turbidity, dissolved oxygen, and sediment composition were collected. Fourteen SAV species occurred two or more times in our samples. The most frequently occurring species was Ruppia maritima L. (n = 148), occurring in over half of SAV beds sampled. Eleocharis sp. (n = 47), characterized with an emergent rather than submerged growth form, was a common genus in the SAV beds sampled. A common marine species was Halodule wrightii Asch. (n = 36). Nonindigenous species Myriophyllum spicatum L. (n = 31) and Hydrilla verticillata (L. f.) Royle (n = 6) were present only in oligohaline water. Analyzing species occurrence and environmental characteristics using canonical correspondence and two-way indicator species analysis, we identify five species assemblages distinguished primarily by salinity and depth. Our survey increases awareness of nonmarine SAV as a natural resource in the gulf, and provides baseline data for future research. ?? 2009 by the Marine Environmental Sciences Consortium of Alabama.

  14. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity O papel das macrófitas na estruturação de habitat em ambientes aquáticos: métodos de medida, causas e consequências para a composição das assembléias animais e biodiversidade

    Directory of Open Access Journals (Sweden)

    Sidinei Magela Thomaz

    2010-06-01

    Full Text Available Aquatic macrophytes play an important role in structuring communities in aquatic environments. These plants provide physical structure, increase habitat complexity and heterogeneity and affect various organisms like invertebrates, fishes and waterbirds. The complexity provided by macrophytes has been exhaustively studied in aquatic environments. However, macrophyte complexity has rarely been measured in a standardized fashion, making comparisons among different studies and the establishment of general conclusions difficult. To address this issue, this review is focused on questions related to the habitat structural complexity provided by these plants, exploring: i how complexity has been viewed by ecologists, with an emphasis on macrophyte studies; ii the pros and cons of several methods used to quantify plant complexity; iii the consequences of habitat structuring by macrophytes on invertebrates and fish and possible causes, mediated by habitat complexity, that lead to changes in these animal assemblages; iv potential impacts of non-native macrophyte species on habitat complexity and v the importance of complexity provided by macrophytes to management strategies for maintaining aquatic biodiversity. We examined literature produced in both temperate and tropical regions, but prioritized the latter. We found a great variety of habitat complexity measurements that are applied to aquatic macrophytes to understand their influence on attached animal assemblages. A lack of standardization (considering the wide range of techniques and scales of resolution used limits comparisons between different studies exploring this subject, in which biological samples and physical substrates were used to explore these relationships. Macrophytes affect animal assemblages and promote biodiversity through a chain of mechanisms, related to habitat complexity, that involve the availability of shelter and feeding sites. Invasive macrophyte species may modify habitat

  15. A model for the effect of submerged aquatic vegetation on turbulence induced by an oscillating grid

    Science.gov (United States)

    Pujol, Dolors; Colomer, Jordi; Serra, Teresa; Casamitjana, Xavier

    2012-12-01

    The aim of this study is to model, under controlled laboratory conditions, the effect of submerged aquatic vegetation (SAV) on turbulence generated in a water column by an oscillating grid turbulence (OGT). Velocity profiles have been measured by an acoustic Doppler velocimeter (MicroADV). Experimental conditions are analysed in two canopy models (rigid and semi-rigid), using nine plant-to-plant distances (ppd), three stem diameters (d), four types of natural SAV (Cladium mariscus, Potamogeton nodosus, Myriophyllum verticillatum and Ruppia maritima) and two oscillation grid frequencies (f). To quantify this response, we have developed a non-dimensional model, with a specific turbulent kinetic energy (TKE), f, stroke (s), d, ppd, distance from the virtual origin to the measurement (zm) and space between grid bars (M). The experimental data show that, at zm/zc 1, TKE decreases faster with zm and scales to the model variables according to TKE/(f·s)∝(·(. Therefore, at zm/zc > 1 the TKE is affected by the geometric characteristics of the plants (both diameter and plant-to-plant distance), an effect called sheltering. Results from semi-rigid canopies and natural SAV are found to scale with the non-dimensional model proposed for rigid canopies. We also discuss the practical implications for field conditions (wind and natural SAV).

  16. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  17. Coastal Maine Submerged Aquatic Vegetation Data 1993-1997 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Maine's eelgrass (SAV) meadows form an important aquatic habitat for the state. These meadows provide shelter for juvenile fish, and invertebrates. In certain...

  18. Urea increased nickel and copper accumulation in the leaves of Egeria densa (Planch.) Casp. and Ceratophyllum demersum L. during short-term exposure.

    Science.gov (United States)

    Maleva, Maria; Borisova, Galina; Chukina, Nadezhda; Kumar, Adarsh

    2018-02-01

    In the present study, two fresh water plant species Egeria densa (Planch.) Casp. and Ceratophyllum demersum L. were subjected to separate and combined action of urea (2mМ) and metals (Ni and Cu, 10μM) to investigate the phytoremediation potential of these two submerged macrophytes during short-term experiments (48h). Both submerged macrophytes demonstrated high accumulative potential for Ni and Cu (average bioconcentration factors were 2505 for Ni and 3778 for Cu). The urea (2 mM) was not significantly toxic for studied plant species. Futhermore, urea worked as an additional source of nitrogen and stimulated some metabolic processes such as the synthesis of photosynthetic pigments, soluble proteins, non-enzymatic antioxidants, and activated some enzymes. Adding urea to the metals increased their accumulation in both macrophytes (on average by 35% for Ni and 15% for Cu). Combined action of urea and Ni did not have a significant effect on antioxidant response, but caused a sharp increase of urease activity (4 folds on an average) in both plants. The copper exerted a stronger toxic effect on both studied macrophytes compared to nickel. Adding urea to copper in some cases diminished the toxic action of this metal. Study concludes that the responses of E. densa and C. demersum to urea and metal action (separate and combined) were depended on the type of pollutant and the activity of antioxidant defence system. Therefore, the studied aquatic macrophytes found to be potential phytoremediators of water bodies, the addition of an organic nitrogen source in the form of urea in environmentally relevant concentration will increase the efficiency of phytoextraction of metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Method for assessment and classification of water courses by using the community of aquatic macrophytes; Metodo per la valutazione e la classificazione dei corsi d'acqua utilizzando la comunita delle macrofite acquatiche

    Energy Technology Data Exchange (ETDEWEB)

    Minciardi, M R; Spada, C D; Rossi, G L; Angius, R; Orru, G [Sezione Biologia Ambientale e Conservazione della Natura Centro Ricerche Saluggia, ENEA, Vercelli (Italy); Mancini, L; Pace, G; Mercheggiani, S; Puccinelli, C [Dipt. di ambiente e connessa prevenzione primaria, Istituto Superiore di Sanita, Roma (Italy)

    2009-07-01

    Studies about aquatic macrophytes as bio indicator community in Europe have been carried out since 70s. Efficient macrophytes indices, mainly for the assessment of trophic state, have been defined in nineties. In 2000, WFD includes macrophytes among the ecological quality elements for running waters. To implement Directive 2000/60/C E, European countries had to define methodologies to evaluate the ecological status of water bodies by macrophytes assessment, but almost all Member States continue to use trophic indexes. Researches carried out in Italy during last 10 years confirm the presence and the evaluability in all river types, and the efficiency of macrophytes community as bio indicator. Besides, many European indices have been tested to assess their applicability throughout the country. Particularly, the Index Macrofitique Biologique en Riviere (IBMR), formalized in France in 2003 as trophic index and currently used as french national method, is applicable in Italy. This index not only allows to evaluate the trophic level metric, but can also be used, as proposed in France, as index of ecological status, expressed as distance from the expected trophic state. [Italian] In Europa, sin dagli anni '70, le macrofite acquatiche sono studiate come comunita bioindicatrice. E degli anni '90 la formalizzazione di Indici Macrofitici efficienti, soprattutto nella valutazione dello stato trofico. Nel 2000 la WFD include le macrofite tra gli elementi di qualita' ecologica per le acque correnti. Per il corretto recepimento della Direttiva 2000/60/CE i vari paesi europei hanno dovuto definire metodologie di valutazione stato ecologico dei corpi idrici in funzione dello stato della comunita' macrofitica, ma, in quasi tutti gli Stati membri si e continuato ad utilizzare anche indici macrofitici di stato trofico nell'ambito del monitoraggio dei corpi idrici. Le ricerche condotte in Italia negli ultimi 10 anni confermano la presenza di comunita' significative e valutabili in ogni

  20. Agrochemical mitigation of three aquatic macrophytes: implications for ecosystem services

    Science.gov (United States)

    Agricultural runoff containing nitrogen and phosphorus is a major contributor to eutrophication in aquatic systems. Vegetated drainage ditches lining agricultural fields have been investigated for their potential to mitigate runoff, acting similarly to a wetland as they filter contaminants. The ef...

  1. Monitoring aquatic environments with autonomous systems

    DEFF Research Database (Denmark)

    Christensen, Jesper Philip Aagaard

    High frequency measurements from autonomous sensors have become a widely used tool among aquatic scientists. This report focus primarily on the use of ecosystem metabolism based on high frequency oxygen measurements and relates the calculations to spatial variation, biomass of the primary producers...... and in shallow systems the macrophytes can completely dominate primary production. This was despite the fact that the plants in the studied system were light-saturated most of the light hours and occasionally carbon limited. It was also shown that the GPP and the total phytoplankton biomass in a nutrient...

  2. Aquatic Plant Management Program current status and seasonal workplan

    Energy Technology Data Exchange (ETDEWEB)

    Burns, E.R.; Bates, A.L.; Webb, D.H.

    1993-07-01

    The objective of the TVA Aquatic Plant Management Program is to support in an environmentally and economically responsible manner, the balanced multiple uses of the water resource of the Tennessee Valley. This is accomplished by following an integrated approach to prevent introduction and spread of noxious species, documenting occurrence and spread of existing species, and suppressing or eliminating problems in designated high use areas. It is not the TVA objective, nor is it biologically feasible and prudent to eliminate all aquatic vegetation. Aerial photography, helicopter reconnaissance, and field surveys are used to assess distributions and abundance of various aquatic macrophytes. Water level fluctuations are supplemented by herbicide applications to control undesirable vegetation. Investigations are conducted to evaluate water level fluctuation schemes, as well as biological, mechanical, and alternative chemical control techniques which offer potential for more environmentally compatible and cost-effective management operations.

  3. Accumulation and release of {sup 241}Am by a macrophyte of the Yenisei River (Elodea canadensis)

    Energy Technology Data Exchange (ETDEWEB)

    Bolsunovsky, A. [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036 (Russian Federation)]. E-mail: radecol@ibp.ru; Zotina, T. [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036 (Russian Federation); Bondareva, L. [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036 (Russian Federation)

    2005-07-01

    The source of radioactive contamination of the Yenisei River floodplain, including contamination with transuranic elements, is the Mining-and-Chemical Combine of the Russian Ministry of Atomic Energy, which has for many years been producing weapons-grade plutonium. Transuranic elements have been detected not only in the soil and sediment of the river but also in the biomass of aquatic plants. This work is an investigation of accumulation and release of {sup 241}Am by a submerged macrophyte of the Yenisei River (Elodea canadensis) in laboratory experiments. In 2000-2003, laboratory experiments were carried out with biomass of E. canadensis Mich. and filtered river water. The samples were collected from the Yenisei River upstream of the discharge of the Combine's radioactive effluent. The experiments showed that {sup 241}Am is accumulated by Elodea biomass: the activity concentration of {sup 241}Am can reach 3280 {+-} 240 Bq/g, with the concentration factor for {sup 241}Am 16 600 {+-} 2200 l/kg. Results of chemical fractionation have proved that in the course of {sup 241}Am accumulation by Elodea biomass, {sup 241}Am tightly bound to biomass increases from 11% to 27% of the total {sup 241}Am in the biomass. Release of {sup 241}Am from the decaying Elodea biomass has been evaluated experimentally. By the end of the experiment (lasting up to 127 days), the Elodea plants had lost up to 65% of their initial {sup 241}Am activity and the rate of {sup 241}Am release into the water environment reached 23 Bq/day.

  4. Peculiar features of the Chernobyl release plutonium and americium accumulation by macrophytes of water systems in Gomel region

    International Nuclear Information System (INIS)

    Kudryashov, V.P.; Gaponenko, V.I.; Zubareva, A.V.

    2008-01-01

    Investigation of transuranian elements 239Pu, 240Pu, 241Am, as well as 137Cs and 90Sr after Chernobyl accident release adsorption and accumulation by the macrophytes of water systems in Gomel region of the Republic of Belarus was realized. Noted biological diversity in accumulation of radionuclides by the terrain flora was also typical for the higher aquatic plants. Research results showed that the degree of accumulation depended on the morphophysiological peculiarities of each plant body. Various indices of radionuclide accumulation coefficient for each analysed transuranian element were stated in one and the same aquatic media with the equal physical and chemical properties. Accumulation of transuranian elements by macrophytes was determined by the peculiar properties of radionuclides as chemical elements and by the forms of their existence in the aqueous media. In one and the same analysed plant of the certain water system the accumulation coefficients of different radionuclides differed. Similarity in concentrations of different radionuclides in all studied water systems was analysed. Research results showed that accumulation indices of comparatively easity determined 137Cs could help to determine the relative concentration of other radionuclides which could be analyzed with more difficulties (90 Sr, and especially 239Pu, 240Pu, 241Am)

  5. Fatores ecológicos associados à colonização e ao desenvolvimento de macrófitas aquáticas e desafios de manejo Ecological factors associated to aquatic macrophyte colonization and growth and management challenges

    Directory of Open Access Journals (Sweden)

    S.M. Thomaz

    2002-01-01

    Full Text Available As macrófitas constituem-se em uma importante assembléia de ecossistemas aquáticos continentais, mas seu crescimento excessivo pode provocar danos aos usos múltiplos de alguns ambientes. Durante o processo de sucessão ecológica, a maioria dos ecossistemas aquáticos é colonizada, em diferentes graus, pela vegetação aquática. No entanto, explosões populacionais são usualmente decorrentes de ações antrópicas, como introduções de espécies exóticas e alterações de habitats. O conhecimento da ecologia e biologia das espécies de macrófitas que colonizam ecossistemas tropicais ainda é escasso. Entretanto, esse conhecimento é fundamental para a predição do desenvolvimento da vegetação aquática e para subsidiar as medidas de manejo, quando estas forem necessárias. Os métodos de controle e manejo são eficazes em pequenos ambientes e sua aplicação pode ser acompanhada por uma série de impactos ecológicos, nem sempre avaliados apropriadamente. O desenvolvimento de métodos com reduzidos impactos ambientais e que sejam eficientes em grandes ecossistemas é um desafio. Deve-se ainda considerar que, embora em algumas situações o manejo seja necessário no sentido de reduzir uma parcela das populações de macrófitas, em outras ele deveria ser utilizado para estimular a colonização e o incremento desta vegetação.The aquatic macrophytes have been considered an important community in freshwater ecosystems. However, their excessive colonization and growth usually cause serious impacts on multiple use of these ecosystems. Most aquatic environments are colonized at different degrees by aquatic plants in some phase of ecological succession. Nevertheless, massive growth is usually associated with anthropogenic actions such as introduction of alien species and habitats of alterations. Knowledge about ecology and biology of the species that colonize tropical ecosystems is still scarce. This knowledge is fundamental to predict

  6. Nekton density patterns and hurricane recovery in submerged aquatic vegetation, and along non-vegetated natural and created edge habitats

    Science.gov (United States)

    La Peyre, M.K.; Gordon, J.

    2012-01-01

    We compared nekton habitat value of submerged aquatic vegetation, flooded non-vegetated natural and man-made edge habitats in mesohaline interior marsh areas in southwest Louisiana using a 1-m 2 throw trap and 3-mm bag seine. When present, SAV habitats supported close to 4 times greater densities and higher species richness of nekton as compared to either natural or man-made edge habitats, which supported similar densities to one another. Three species of concern (bayou killifish, diamond killifish, chain pipefish) were targeted in the analysis, and two of the three were collected almost entirely in SAV habitat. During the course of the study, Hurricanes Ike and Gustav passed directly over the study sites in September 2008. Subsequent analyses indicated significant reductions in resident nekton density 1-mo post hurricanes, and only limited recovery 13-mo post-hurricane. Possible alteration of environmental characteristics such as scouring of SAV habitat, deposition of sediment over SAV, edge erosion and marsh loss, and extended high salinities may explain these lasting impacts. ?? 2011.

  7. Phytotoxicity of four herbicides on Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii.

    Science.gov (United States)

    Pan, Huiyun; Li, Xiaolu; Xu, Xiaohua; Gao, Shixiang

    2009-01-01

    The physiological effects of 4 herbicides (butachlor, quinclorac, bensulfuron-methyl and atrazine) on 3 submerged macrophytes (Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii) were tested in laboratory. The variables of the relative growth rate and the photosynthetic pigment content showed that all of the tested herbicides affected the growth of the plants obviously, even at the lowest concentration (0.0001 mg/L). Except for the C. demersum treated with quinclorac at 0.005 and 0.01 mg/L, the relative growth rates of the plants were inhibited significantly (p < 0.01). Statistical analysis of chlorophyll a (Chl-a) contents was carried out with both the t-test and one-way ANOVA to determine the difference between the treatment and control. The results showed that Chl-a contents of the plants in all treatment groups were affected by herbicides significantly, except for the C. demersum treated with bensulfuron-methyl at 0.0005 mg/L. The decrease in Chl-a content was positively correlated to the dosage of the herbicides in most treatment groups. It was suggested that herbicides in water bodies might potentially affect the growth of aquatic macrophytes. Since the Chl-a content of submerged macrophytes responded to the stress of herbicides sensitively and directly, it could be used as a biomaker in environmental monitoring or in the ecological risk assessment of herbicide contamination.

  8. Effects of Cd and Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft and hard water including a German lake

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, Elisa, E-mail: Elisa.Andresen@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Opitz, Judith, E-mail: Daniela.Opitz@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Thomas, George, E-mail: George.Thomas@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: Ha-Jo.Staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Dienemann, Holger, E-mail: Holger.Dienemann@smul.sachsen.de [Saxon State Company for Environment and Agriculture, Business Domain 5 (Laboratory), Department 53, Bitterfelder Str. 25, D-04849 Bad Düben (Germany); Jenemann, Kerstin, E-mail: Kerstin.Jenemann@smul.sachsen.de [Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Abteilung Wasser, Boden, Wertstoffe, Zur Wetterwarte 11, D-01109 Dresden (Germany); Dickinson, Bryan C., E-mail: Bryan.Dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: Hendrik.Kuepper@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-10-15

    Highlights: •Hardly any macrophytic growth occurred in an oligotrophic hard water lake in Germany. •All parameters were optimal, besides elevated, nanomolar concentrations of Ni and Cd. •We cultivated submerged macrophytes in real and simulated hard and soft lake water. •Nanomolar Cd and Ni inhibited the plants’ photosynthetic light reactions in soft water. •The inhibition was synergistic, i.e. stronger than the addition of Cd and Ni effects. -- Abstract: Even essential trace elements are phytotoxic over a certain threshold. In this study, we investigated whether heavy metal concentrations were responsible for the nearly complete lack of submerged macrophytes in an oligotrophic lake in Germany. We cultivated the rootless aquatic model plant Ceratophyllum demersum under environmentally relevant conditions like sinusoidal light and temperature cycles and a low plant biomass to water volume ratio. Experiments lasted for six weeks and were analysed by detailed measurements of photosynthetic biophysics, pigment content and hydrogen peroxide production. We established that individually non-toxic cadmium (3 nM) and slightly toxic nickel (300 nM) concentrations became highly toxic when applied together in soft water, severely inhibiting photosynthetic light reactions. Toxicity was further enhanced by phosphate limitation (75 nM) in soft water as present in many freshwater habitats. In the investigated lake, however, high water hardness limited the toxicity of these metal concentrations, thus the inhibition of macrophytic growth in the lake must have additional reasons. The results showed that synergistic heavy metal toxicity may change ecosystems in many more cases than estimated so far.

  9. Effects of Cd and Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft and hard water including a German lake

    International Nuclear Information System (INIS)

    Andresen, Elisa; Opitz, Judith; Thomas, George; Stärk, Hans-Joachim; Dienemann, Holger; Jenemann, Kerstin; Dickinson, Bryan C.; Küpper, Hendrik

    2013-01-01

    Highlights: •Hardly any macrophytic growth occurred in an oligotrophic hard water lake in Germany. •All parameters were optimal, besides elevated, nanomolar concentrations of Ni and Cd. •We cultivated submerged macrophytes in real and simulated hard and soft lake water. •Nanomolar Cd and Ni inhibited the plants’ photosynthetic light reactions in soft water. •The inhibition was synergistic, i.e. stronger than the addition of Cd and Ni effects. -- Abstract: Even essential trace elements are phytotoxic over a certain threshold. In this study, we investigated whether heavy metal concentrations were responsible for the nearly complete lack of submerged macrophytes in an oligotrophic lake in Germany. We cultivated the rootless aquatic model plant Ceratophyllum demersum under environmentally relevant conditions like sinusoidal light and temperature cycles and a low plant biomass to water volume ratio. Experiments lasted for six weeks and were analysed by detailed measurements of photosynthetic biophysics, pigment content and hydrogen peroxide production. We established that individually non-toxic cadmium (3 nM) and slightly toxic nickel (300 nM) concentrations became highly toxic when applied together in soft water, severely inhibiting photosynthetic light reactions. Toxicity was further enhanced by phosphate limitation (75 nM) in soft water as present in many freshwater habitats. In the investigated lake, however, high water hardness limited the toxicity of these metal concentrations, thus the inhibition of macrophytic growth in the lake must have additional reasons. The results showed that synergistic heavy metal toxicity may change ecosystems in many more cases than estimated so far

  10. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  11. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Kyle F. Flynn

    2014-12-01

    Full Text Available A passive method for remote sensing of the nuisance green algae Cladophora glomerata in rivers is presented using an unmanned aerial vehicle (UAV. Included are methods for UAV operation, lens distortion correction, image georeferencing, and spectral analysis to support algal cover mapping. Eighteen aerial photography missions were conducted over the summer of 2013 using an off-the-shelf UAV and three-band, wide-angle, red, green, and blue (RGB digital camera sensor. Images were post-processed, mosaicked, and georeferenced so automated classification and mapping could be completed. An adaptive cosine estimator (ACE and spectral angle mapper (SAM algorithm were used to complete the algal identification. Digital analysis of optical imagery correctly identified filamentous algae and background coverage 90% and 92% of the time, and tau coefficients were 0.82 and 0.84 for ACE and SAM, respectively. Thereafter, algal cover was characterized for a one-kilometer channel segment during each of the 18 UAV flights. Percent cover ranged from <5% to >50%, and increased immediately after vernal freshet, peaked in midsummer, and declined in the fall. Results indicate that optical remote sensing with UAV holds promise for completing spatially precise, and multi-temporal measurements of algae or submerged aquatic vegetation in shallow rivers with low turbidity and good optical transmission.

  12. Study on the mercury evolution in a laboratory multi specific aquatic system by using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Bubach, Debora; Guevara, Sergio Ribeiro; Arribere, Maria A.; Pechen de d'Angelo, Ana; Ferrari, Ana; Venturino, Andres

    1999-01-01

    A preliminary study on the evolution of mercury in the organisms of a laboratory multi specific aquatic system was performed using Instrumental Neutron Activation Analysis (INAA). Some of the possible effects of mercury toxicity were monitored by analyzing early biochemical indicators. The system consisted of an aquarium with bed sediments, aquatic macrophytes (Myriophyllum sp.), bivalves (Diplodom sp.) and exotic fish, simulating a long term contamination situation of unknown causes, where the sediments are the contaminant reservoir. Samples of the abiotic components of the system were analyzed at the beginning of the experiment, and again when the organisms were sampled. Fish carcass, kidney and liver samples, bivalve hepatopancreas, and whole macrophytes were extracted ana analyzed for mercury and other elements by INAA at the beginning of the experiment, and after 48 and 96 hours. Since some crustal elements such as Sc and La were detected in the hepatopancreas and macrophyte samples, enrichment factors for mercury, with respect to the <63 μm sediment fraction, were computed to discriminate the metabolized Hg content from that associated to the particulate. The hepatopancreas index, some indicators of oxidative stress (γ-Glutamyl-cysteinyl-glycine content and lipid peroxidation) and brain acetilcolinesterasa were measured as early indicators of toxicity. (author)

  13. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  14. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides)

    DEFF Research Database (Denmark)

    Jampeetong, Arunothai; Brix, Hans; Kantawanichkul, Suwasa

    2012-01-01

    This study assesses the growth and morphological responses, nitrogen uptake and nutrient allocation in four aquatic macrophytes when supplied with different inorganic nitrogen treatments (1) NH4+, (2) NO3−, or (3) both NH4+ and NO3−. Two free-floating species (Salvinia cucullata Roxb. ex Bory...... and Ipomoea aquatica Forssk.) and two emergent species (Cyperus involucratus Rottb. and Vetiveria zizanioides (L.) Nash ex Small) were grown with these N treatments at equimolar concentrations (500 M). Overall, the plants responded well to NH4+. Growth as RGR was highest in S. cucullata (0.12±0.003 d−1......) followed by I. aquatica (0.035 ±0.002 d−1), C. involucratus (0.03±0.002 d−1) and V. zizanioides (0.02±0.003 d−1). The NH4+ uptake rate was significantly higher than the NO3− uptake rate. The free-floating species had higher nitrogen uptake rates than the emergent species. The N-uptake rate differed between...

  15. The distribution of radionuclides between the sediments and macrophytes in the cooling pond of the Ignalina NPP - The Distribution of Radionuclides in Freshwater Hydro Ecosystem's Bottom Sediments and Macrophytes depending on the Ecological Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marciulioniene, D.; Jefanova, O.; Mazeika, J. [Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lietuva (Lithuania)

    2014-07-01

    The distribution of {sup 137}Cs, {sup 60}Co, {sup 54}Mn in the aquatory of lake Drukshiai (the monitoring stations), the coastal area of this lake, the industrial drainage systems channel of the Ignalina NPP and the cooling water channel of the Ignalina NPP was analyzed on the basis of long-term (1988-2009) investigations of radionuclides specific activity in bottom sediments and macrophytes, also the ability of radionuclides falling into lake Drukshiai from the Ignalina NPP through effluents channels was assessed. It was established that {sup 137}Cs, {sup 60}Co and {sup 54}Mn in the bottom sediments and the macrophytes were distributed quite differently in the monitoring stations of lake Drukshiai and the coastal area as well as in the industrial drainage systems channel of the Ignalina NPP and the cooling water channel of the Ignalina NPP. The different characteristics of the sediments, various ecological conditions, as well as the existing anthropogenic environmental factors and the different in the ecological groups of the plants could have had impact on the distribution of {sup 137}Cs, {sup 60}Co and {sup 54}Mn in the bottom sediments and the aquatic plants in lake Drukshiai and the effluents channels of the Ignalina NPP. The {sup 137}Cs, {sup 60}Co and {sup 54}Mn specific activity's values were significantly higher in macrophytes from the industrial drainage systems channel of Ignalina NPP than in macrophytes from the cooling water channel. Nevertheless the specific activities level of these radionuclides differed only slightly in the macrophytes from the areas which were impacted by the effluents channels of the Ignalina NPP. This can be explained by the fact that the phyto-remediation (as the form of auto-purification) of these effluents from the radionuclides had been present in the industrial drainage systems channel of Ignalina NPP before entering the water into lake Drukshiai. (authors)

  16. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems

    Digital Repository Service at National Institute of Oceanography (India)

    Vardanyan, L.G.; Ingole, B.S.

    .85 Co 16.7 20.6 12.8 23 Table: 2I: Heavy metal concentrations in Nelymbium speciosum Heavy metal (? g/g dry wt.) Nelymbium speciosum Root (0.0505) Stem (0.0504) Leaf (0.0503) Flower.... The metals are thereby made available to grazing moluscs and, thus, reintroduced into the food web via fish to birds and humans. In addition, macrophytes in shallow coastal zones function as living filters for nutrients and metals that become bound...

  17. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation.

    Science.gov (United States)

    Costa, Marcela Brandão; Tavares, Francesca Valêncio; Martinez, Claudia Bueno; Colares, Ioni Gonçalves; Martins, Camila de Martinez Gaspar

    2018-07-15

    This study investigated the ability of Potamogeton pectinatus L. to accumulate copper and its effects on plants. In accumulation tests, macrophytes were exposed (96 h) to different copper concentrations (0-1000 µM) and the metal was measured in media and plant tissues (roots, stems and leaves) to determine the bioconcentration factor (BCF). Plants accumulated high concentrations of copper in a dose-dependent manner and roots was the main organ for copper accumulation. However, the more copper increased in water, the more BCF values decreased. It may be due to either saturation of copper uptake or down-regulation of metal uptake by plants. In the physiological and morphological analyses, plants were kept (96 h) in Hoagland nutrient solution without copper, in full Hoagland solution (0.5 µM Cu) and in Hoagland medium with copper from 1 to 100 µM. The absence and the presence of copper above to 1 µM inhibited photosynthesis. Chlorophylls and carotenoid levels also decreased with the excess of copper, a fact that may have affected the photosystem II-dependent of chlorophyll and caused photosynthesis suppression. Only macrophytes at 10 µM Cu showed decrease in length and number of leaves on the 10th day of the test, when they died. Chlorosis and necrosis were observed in control groups and groups with extra copper, but not in Hoalgand group. Overall, the macrophyte P. pectinatus can be considered a suitable plant for monitoring environments contaminated by copper, based on results of copper accumulation in the plant, decrease in pigment concentration and presence of chlorosis and necrosis. However, values of BCF based on fresh water tissues was not proper to indicate the use of P. pectinatus for cleaning environments contaminated by copper. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Aquatic insect assemblages of man-made permanent ponds, Buenos Aires city, Argentina.

    Science.gov (United States)

    Fontanarrosa, M S; Collantes, M B; Bachmann, A O

    2013-02-01

    Freshwater habitats are important elements within urban green space and they are endangered by various types of human activity. With the aim to increase the knowledge about species biodiversity in urban ecosystems, we characterised the assemblages of aquatic insects in four permanent man-made ponds in Buenos Aires city (Argentina) during a 1-year period. We recorded 32 species with Sigara spp. (Hemiptera) as the most abundant. The removal of aquatic vegetation from the studied ponds may have affected both the establishment and permanence of the insect community. Swimmers were the dominant group in the studied sites, followed by burrowers and sprawlers, and only a few strictly climbers were collected. Therefore, all sampled ponds were dominated by collectors (principally gatherers), secondarily by predators and only few shredders were detected, which was much affected by the removal of macrophytes. Non-parametric abundance indexes estimated a number of species very close to the observed number in each site. Conversely, the incidence indexes estimated more species because there were many more taxa present only in one sample than those represented by few individual in a sample. Our data provides some insights on the community of man-made ponds that can improve the management of these aquatic urban habitats. Considering that macrophytes affect animal assemblages due to their role as physical structures that increase the complexity or heterogeneity of habitats, they should not be removed by authorities in order to promote biodiversity.

  19. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    Science.gov (United States)

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sensitivity of submersed freshwater macrophytes and endpoints in laboratory toxicity tests

    International Nuclear Information System (INIS)

    Arts, Gertie H.P.; Belgers, J. Dick M.; Hoekzema, Conny H.; Thissen, Jac T.N.M.

    2008-01-01

    The toxicological sensitivity and variability of a range of macrophyte endpoints were statistically tested with data from chronic, non-axenic, macrophyte toxicity tests. Five submersed freshwater macrophytes, four pesticides/biocides and 13 endpoints were included in the statistical analyses. Root endpoints, reflecting root growth, were most sensitive in the toxicity tests, while endpoints relating to biomass, growth and shoot length were less sensitive. The endpoints with the lowest coefficients of variation were not necessarily the endpoints, which were toxicologically most sensitive. Differences in sensitivity were in the range of 10-1000 for different macrophyte-specific endpoints. No macrophyte species was consistently the most sensitive. Criteria to select endpoints in macrophyte toxicity tests should include toxicological sensitivity, variance and ecological relevance. Hence, macrophyte toxicity tests should comprise an array of endpoints, including very sensitive endpoints like those relating to root growth. - A range of endpoints is more representative of macrophyte fitness than biomass and growth only

  1. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris

    NARCIS (Netherlands)

    Vreeburg, RAM; Benschop, JJ; Peeters, AJM; Colmer, TD; Ammerlaan, AHM; Staal, M; Elzenga, TM; Staals, RHJ; Darley, CP; McQueen-Mason, SJ; Voesenek, LACJ

    The semi-aquatic dicot Rumex palustris responds to complete submergence by enhanced elongation of young petioles. This elongation of petiole cells brings leaf blades above the water surface, thus reinstating gas exchange with the atmosphere and increasing survival in flood-prone environments. We

  2. Diversity and biomass of native macrophytes are negatively related to dominance of an invasive Poaceae in Brazilian sub-tropical streams

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Gonçalves Fernandes

    2013-06-01

    Full Text Available Besides exacerbated exploitation, pollution, flow alteration and habitats degradation, freshwater biodiversity is also threatened by biological invasions. This paper addresses how native aquatic macrophyte communities are affected by the non-native species Urochloa arrecta, a current successful invader in Brazilian freshwater systems. We compared the native macrophytes colonizing patches dominated and non-dominated by this invader species. We surveyed eight streams in Northwest Paraná State (Brazil. In each stream, we recorded native macrophytes' richness and biomass in sites where U. arrecta was dominant and in sites where it was not dominant or absent. No native species were found in seven, out of the eight investigated sites where U. arrecta was dominant. Thus, we found higher native species richness, Shannon index and native biomass values in sites without dominance of U. arrecta than in sites dominated by this invader. Although difficult to conclude about causes of such differences, we infer that the elevated biomass production by this grass might be the primary reason for alterations in invaded environments and for the consequent impacts on macrophytes' native communities. However, biotic resistance offered by native richer sites could be an alternative explanation for our results. To mitigate potential impacts and to prevent future environmental perturbations, we propose mechanical removal of the invasive species and maintenance or restoration of riparian vegetation, for freshwater ecosystems have vital importance for the maintenance of ecological services and biodiversity and should be preserved.

  3. Large-Scale Mapping and Predictive Modeling of Submerged Aquatic Vegetation in a Shallow Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2002-01-01

    Full Text Available A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m, and variable sediment types. Based on sampling carried out in AugustœSeptember 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat. A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  4. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake.

    Science.gov (United States)

    Havens, Karl E; Harwell, Matthew C; Brady, Mark A; Sharfstein, Bruce; East, Therese L; Rodusky, Andrew J; Anson, Daniel; Maki, Ryan P

    2002-04-09

    A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV) over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS) technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m), and variable sediment types. Based on sampling carried out in August-September 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat). A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  5. Trait modality distribution of aquatic macrofauna communities as explained by pesticides and water chemistry

    OpenAIRE

    Ieromina, O.; Musters, C. J. M.; Bodegom, P. M.; Peijnenburg, W. J. G. M.; Vijver, M. G.

    2016-01-01

    Analyzing functional species? characteristics (species traits) that represent physiological, life history and morphological characteristics of species help understanding the impacts of various stressors on aquatic communities at field conditions. This research aimed to study the combined effects of pesticides and other environmental factors (temperature, dissolved oxygen, dissolved organic carbon, floating macrophytes cover, phosphate, nitrite, and nitrate) on the trait modality distribution ...

  6. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information

    Science.gov (United States)

    Luo, Juhua; Duan, Hongtao; Ma, Ronghua; Jin, Xiuliang; Li, Fei; Hu, Weiping; Shi, Kun; Huang, Wenjiang

    2017-05-01

    Spatial information of the dominant species of submerged aquatic vegetation (SAV) is essential for restoration projects in eutrophic lakes, especially eutrophic Taihu Lake, China. Mapping the distribution of SAV species is very challenging and difficult using only multispectral satellite remote sensing. In this study, we proposed an approach to map the distribution of seven dominant species of SAV in Taihu Lake. Our approach involved information on the life histories of the seven SAV species and eight distribution maps of SAV from February to October. The life history information of the dominant SAV species was summarized from the literature and field surveys. Eight distribution maps of the SAV were extracted from eight 30 m HJ-CCD images from February to October in 2013 based on the classification tree models, and the overall classification accuracies for the SAV were greater than 80%. Finally, the spatial distribution of the SAV species in Taihu in 2013 was mapped using multilayer erasing approach. Based on validation, the overall classification accuracy for the seven species was 68.4%, and kappa was 0.6306, which suggests that larger differences in life histories between species can produce higher identification accuracies. The classification results show that Potamogeton malaianus was the most widely distributed species in Taihu Lake, followed by Myriophyllum spicatum, Potamogeton maackianus, Potamogeton crispus, Elodea nuttallii, Ceratophyllum demersum and Vallisneria spiralis. The information is useful for planning shallow-water habitat restoration projects.

  7. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures.

    Science.gov (United States)

    Guittonny-Philippe, Anna; Petit, Marie-Eléonore; Masotti, Véronique; Monnier, Yogan; Malleret, Laure; Coulomb, Bruno; Combroux, Isabelle; Baumberger, Teddy; Viglione, Julien; Laffont-Schwob, Isabelle

    2015-01-01

    Constructed wetlands (CWs) offer an alternative to traditional industrial wastewater treatment systems that has been proved to be efficient, cost-effective and environmentally friendly. Most of the time, CWs are planted with proliferative species such as Phragmites australis or with plants originating from nurseries, both representing a risk for the natural biodiversity conservation of aquatic ecosystems located downstream of the CWs. For the removal of metals and organic pollutant mixtures present in industrial effluents, it is necessary to select tolerant plant species that are able to produce a high aboveground biomass and to develop a healthy belowground system. Wild plant species growing in aquatic bodies at industrial outfalls could constitute suitable tolerant species to use in CWs for industrial effluent treatment. To test this hypothesis, we assessed, under laboratory conditions (using an experimental design), the tolerance to mixtures of metals (Al, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Sn, Zn) or/and organic pollutants (THC, PHE, PYR, LAS) of five European sub-cosmopolitan native macrophytes (Alisma lanceolatum, Carex cuprina, Epilobium hirsutum, Iris pseudacorus and Juncus inflexus) that had been collected in a polluted Mediterranean wetland, after a field study (crossing ecological relevés and analyses of contaminant concentrations in water and sediments). Our results demonstrated that research on phytoremediation of industrial effluents should focus much more on the use of native macrophytes growing at short distances from industrial discharges (such as C. cuprina in this study), and that root/shoot ratio, aerial height and proportion of green leaves are good and cost-effective indicators of plant tolerance to metals and organic pollutant mixtures in laboratory studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Macrophyte distribution and ecological status of the Turiec River (Slovakia: Changes after seven years

    Directory of Open Access Journals (Sweden)

    Hrivnák R.

    2009-01-01

    Full Text Available Characteristics of diversity, abundance, distribution, and ecological status of aquatic macrophytes were observed in 2000 and 2007 on a circa 4.5 km long section of the Turiec River using Kohler's method. In comparison to 2000, the total number of macrophytes in 2007 increased markedly (from 25 to 35, although only the numbers of amphi­phytes and helophytes were changed substantially. The number of hydrophytes increased from 11 to 12; an invasive, Elodea canadenis, was the only new species. The relative plant mass of hydrophytes represents the bulk of all recorded species (95 and 80% in 2000 and 2007, respectively, and it was changed for most hydrophytes. The most significant changes were detected for Myriophyllum spicatum (decrease, filamentous algae (decrease, and Potamogeton crispus (increase. In 2007, the mean mass total (MMT sum of hydrophytes decreased from 16.46 to 14.5. On the other hand, the MMTsum of amphiphytes and helophytes doubled in value (7.4 and 14.1 in 2000 and 2007, respectively. Within hydrophytes, Batrachium species (including B. aquatile and B. trichophyllum, Myriophyllum spicatum, and Potamogeton crispus were ubiquitous (distribution ratio d > 0.5 in 2000, whereas in 2007 only Batrachium species and Potamogeton crispus were ubiquitous. At all times, Batrachium species were the most frequent species in the study area, and their abundance was relatively high (MMT> 2.5. A poor ecological status (MMP = 0.378 and MMP = 0.333 in 2000 and 2007, respectively of the surveyed river section was found in both years, but a slight decline of quality as determined on the basis of aquatic plants was observed after 7 years.

  9. Field assessment of oxytetracycline exposure to the freshwater macrophytes Egeria densa Planch. and Ceratophyllum demersum L

    International Nuclear Information System (INIS)

    Hanson, M.L.; Knapp, C.W.; Graham, D.W.

    2006-01-01

    In a microcosm study, two aquatic macrophytes, Egeria densa and Ceratophyllum demersum were exposed to nominal concentrations of 0, 5, 20, 50, and 250 μg/L oxytetracycline (n = 3), plus 20 μg/L oxytetracycline amended with additional nitrogen (N) and phosphorus (P). Responses were monitored bi-weekly over a six-week exposure period. Both plant species exhibited a significant decline in growth in the 250 μg/L oxytetracycline and the N- and P-amended units. Decreased light penetration resulting from accumulating oxytetracycline by-products appears to be the primary modifier in the growth of these plants. Increased susceptibility to oxytetracycline exposure was noted in some paired plantings (e.g., E. densa root development), relative to individual plants in these treatments, however, no clear explanation for this response is available. Based on the toxicity data generated in this study, we estimate that current concentrations of oxytetracycline in freshwater environments do not pose a direct risk to E. densa and C. demersum. - Oxytetracycline did not pose a risk for two freshwater macrophytes

  10. Field assessment of oxytetracycline exposure to the freshwater macrophytes Egeria densa Planch. and Ceratophyllum demersum L

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, M L [Department of Environment and Geography, University of Manitoba, 118 Isbister Building, Winnipeg, Manitoba R3T 2N2 (Canada); Knapp, C W [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Graham, D W [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States)

    2006-06-15

    In a microcosm study, two aquatic macrophytes, Egeria densa and Ceratophyllum demersum were exposed to nominal concentrations of 0, 5, 20, 50, and 250 {mu}g/L oxytetracycline (n = 3), plus 20 {mu}g/L oxytetracycline amended with additional nitrogen (N) and phosphorus (P). Responses were monitored bi-weekly over a six-week exposure period. Both plant species exhibited a significant decline in growth in the 250 {mu}g/L oxytetracycline and the N- and P-amended units. Decreased light penetration resulting from accumulating oxytetracycline by-products appears to be the primary modifier in the growth of these plants. Increased susceptibility to oxytetracycline exposure was noted in some paired plantings (e.g., E. densa root development), relative to individual plants in these treatments, however, no clear explanation for this response is available. Based on the toxicity data generated in this study, we estimate that current concentrations of oxytetracycline in freshwater environments do not pose a direct risk to E. densa and C. demersum. - Oxytetracycline did not pose a risk for two freshwater macrophytes.

  11. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    Directory of Open Access Journals (Sweden)

    MAJID ALI

    2013-04-01

    Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  12. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)

    2013-04-15

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  13. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na 2 S 2 O 3 ) in water to remove the gaseous iodine (I 2 ) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber

  14. Impact of acidification and eutrophication on macrophyte communities in soft waters in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, J G.M.

    1983-01-01

    During the last decades a strong decline has been noticed in the number of waters dominated by Littorellion species, mostly isoetids such as Lobelia dortmanna L., Isoetes lacustris L. and Littorella uniflora (L.) Aschers. Sixty-eight waters, which were known to be dominated by L. uniflora after 1950 were investigated. In 1980, L. uniflora appeared to be absent or to have strongly decreased in 53 (78%) of the waters. In 41 of them, Littorella had been replaced by submerged Juncus bulbosus L. and/or Sphagnum spp. These changes seem to have been caused by changed inorganic carbon budgets as a consequence of acidification. In the remaining 12 waters, eutrophication of the water and/or sediment seems to be responsible for the changes in the plant communities. Enrichment with phosphate of the mineral sediment alone, leads to luxurious growth of submerged, rooted macrophyte species such as Myriophyllum alterniflorum DC and Ranunculus peltatus Schrank, whereas phosphate-enrichment of both sediment and water leads to luxurious growth of pleustophytes such as Riccia fluitans L. and Lemna minor L. in small, shallow waters, and to plankton bloom and luxurious growth of epiphytes in larger, deeper waters. In these cases light limitation seems to be responsible for the disappearance or decline of the Littorellion species. 41 references, 1 figure, 4 tables.

  15. A Simulation Model on the Competition for Light of Meadow-forming and Canopy-forming Aquatic Macrophytes at High and Low Nutrient Availability

    National Research Council Canada - National Science Library

    Best, Elly

    2004-01-01

    A simulation model has been developed that focuses on the ability of two competing submersed macrophytes, meadow-forming and canopy-forming, to maintain their biomass under different environmental conditions...

  16. Seasonal and interspecific nutrient mitigation comparisons of three emergent aquatic macrophytes

    Science.gov (United States)

    The purpose of this experiment was to measure both summer and winter nutrient mitigation efficiencies of three aquatic plants found in agricultural drainage ditches in the lower Mississippi River Basin. Mesocosms (1.25 x 0.6 x 0.8 m) were filled with sediment and planted with monocultures of one of...

  17. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates

    Science.gov (United States)

    Nakamoto, Kenta; Hayakawa, Jun; Kawamura, Tomohiko; Kodama, Masafumi; Yamada, Hideaki; Kitagawa, Takashi; Watanabe, Yoshiro

    2018-07-01

    Various aspects of plant diversity such as species diversity and phylogenetic diversity enhance the species diversity of associated animals in terrestrial systems. In marine systems, however, the effects of macrophyte diversity on the species diversity of associated animals have received little attention. Here, we sampled in a subtropical seagrass-seaweed mixed bed to elucidate the effect of the macrophyte phylogenetic diversity based on the taxonomic relatedness as well as the macrophyte species diversity on species diversity of mobile epi-benthic invertebrates. Using regression analyses for each macrophyte parameter as well as multiple regression analyses, we found that the macrophyte phylogenetic diversity (taxonomic diversity index: Delta) positively influenced the invertebrate species richness and diversity index (H‧). Although the macrophyte species richness and H‧ also positively influenced the invertebrate species richness, the best fit model for invertebrate species richness did not include them, suggesting that the macrophyte species diversity indirectly influenced invertebrate species diversity. Possible explanations of the effects of macrophyte Delta on the invertebrate species diversity were the niche complementarity effect and the selection effect. This is the first study which demonstrates that macrophyte phylogenetic diversity has a strong effect on the species diversity of mobile epi-benthic invertebrates.

  18. Macrophytes shape trophic niche variation among generalist fishes.

    Directory of Open Access Journals (Sweden)

    Ivana Vejříková

    Full Text Available Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N and carbon (δ13C isotopic mixing models, perch (Perca fluviatilis L. and rudd (Scardinius erythrophthalmus (L. showed larger individual variation (i.e., variance in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.. Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence

  19. Macrophytes shape trophic niche variation among generalist fishes

    Science.gov (United States)

    Vejřík, Lukáš; Šmejkal, Marek; Čech, Martin; Sajdlová, Zuzana; Frouzová, Jaroslava; Kiljunen, Mikko; Peterka, Jiří

    2017-01-01

    Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall

  20. EUTROPHICATION OF WATER RESERVOIRS AND ROLE OF MACROPHYTES IN THIS PROCESS

    Directory of Open Access Journals (Sweden)

    Joanna Jadwiga Sender

    2017-06-01

    Full Text Available The paper presents the problem related with the process of eutrophication, with special emphasis on dam reservoirs. Eutrophication is a global process, threatening the water ecosystem on every continent. It often leads to their degradation. Particularly vulnerable to eutrophication are artificial reservoirs which are dam reservoirs. This paper describes the mechanisms of eutrophication. We also pointed to the importance of aquatic plants in the process of water purification, as well as the possibility of multilateral use. Recently, in the world and in Poland there is a tendency to pay attention to the natural or semi-natural method of water purification (including constructed wetland. On the one hand, the presence of macrophytes in water bodies is a guarantor of good ecological status, on the other hand, the undeniable aesthetic value.

  1. The uptake of radiationless by some fresh water aquatic biota review

    International Nuclear Information System (INIS)

    Abdel Malik, W.E.Y.; Ibrahim, A.S.; El-Shinawy, R.M.K.

    2005-01-01

    The work presented in this paper reviews many studies carried out by the authors along the last thirty years. The behaviour of the radionuclides in the aquatic ecology of Ismailia Canal stream is of great interest for the evaluation of the possible hazards that may occur to man through the movement of such radionuclides via food chain. Laboratory investigations have been carried out in order to understand the accumulation and release of some radionuclide by some aquatic biota (aquatic macrophyte aquatic plants, some snails species and some fish species) inhabiting this fresh water stream. Different parameters such as water ph, contact time, water salinity, etc. were used in these investigations. The kinetic analysis of the uptake process of some radio nuclides by certain biota was performed. From this analysis, it was possible (through the statistical methods) to investigate that the uptake process proceeded through different steps with different rates depending on the radionuclide and the biota species. It was possible to conclude that some of the selected biota can be used as biological indicators for certain radionuclides

  2. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.

  3. Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands

    DEFF Research Database (Denmark)

    Quenta, Estefania; Molina-Rodriguez, Jorge; Gonzales, Karina

    2016-01-01

    to which there is high α-diversity at intermediate levels of glacial influence due to the high degree of environmental heterogeneity caused by glacier water. This α-diversity pattern generates high levels of between-site aquatic community variation (high β diversity) and increases regional diversity (γ......The rapid melting of glacier cover is one of the most obvious impacts of climate change on alpine ecosystems and biodiversity. Our understanding of the impact of a decrease in glacier runoff on aquatic biodiversity is currently based on the 'glacier-heterogeneity-diversity' paradigm, according......-diversity). There is a rich conceptual background in favor of this paradigm, but empirical data supporting it are scarce. We investigated this paradigm by analyzing the different diversity patterns (α, β and γ-diversity) of four aquatic groups (zooplankton, macroinvertebrates, algae and macrophytes) living in high...

  4. Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms.

    Science.gov (United States)

    Wieczorek, Matthias V; Bakanov, Nikita; Lagadic, Laurent; Bruns, Eric; Schulz, Ralf

    2017-04-01

    Interest in stream mesocosms has recently revived for higher tier aquatic macrophyte risk assessment of plant protection products mainly because 1) the highest predicted environmental concentrations for the assessment of effects are frequently derived from stream scenarios, and 2) they allow an effect assessment using stream-typical pulse exposures. Therefore, the present stream mesocosm study used an herbicide pulse exposure and evaluated the responses of Elodea canadensis and Myriophyllum spicatum. Macrophytes were exposed for 24 h to 1 μg/L, 3 μg/L, 10 μg/L, and 30 μg/L of the herbicide iofensulfuron-sodium with a subsequent recovery period of 42 d. Biological endpoints were growth rates of the main, side, and total shoot length, the shoot number, the maximum root length, and the dry weight. The total shoot length was identified as the most sensitive endpoint; the growth rate of the total shoot length was inhibited by up to 66% and 45% in M. spicatum and E. canadensis, respectively. The lowest no observed effect concentrations (NOECs) were observed at day 7 and/or day 14 after herbicide treatment and were 1 μg/L for M. spicatum and 3 μg/L for E. canadensis. The no-observed-ecologically-adverse-effect concentrations (NOEAECs) were 10 μg/L and 30 μg/L for M. spicatum and E. canadensis, respectively. Such or similar mesocosm designs are useful to simulate typical stream exposures and estimate herbicide effects on aquatic macrophytes in stream systems. Environ Toxicol Chem 2017;36:1090-1100. © 2016 SETAC. © 2016 SETAC.

  5. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki

    2012-10-18

    Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land. © 2012 Blackwell Publishing Ltd.

  6. Local and regional variability in fish community structure, richness and diversity of 56 Danish lakes with contrasting depth and trophic state

    DEFF Research Database (Denmark)

    Menezes, Rosemberg; Borchsenius, Finn; Svenning, J.-C.

    Habitat distribution of fish might be influenced by food availability, competition, predation,composition of aquatic plants and water clarity. It has been found that a shift from a turbid to a clear water state in a lake lead to higher proportion of piscivorous fish and a habitat shift of prey fish...... oligotrophic lakes due to high turbidity leading to loss of submerged macrophytes and thus habitat variability. Also the influence of piscivorous birds on the fish distribution in the littoral zone may differ between lake types leading to a more homogeneous distribution along the littoral area in eutrophic...

  7. Caloric density of aquatic macrophytes in different environments of the Baía river subsystem, upper Paraná river floodplain, Brazil

    Directory of Open Access Journals (Sweden)

    Célia de Almeida Lopes

    2006-09-01

    Full Text Available The aim of this work was to determine the caloric density of leaves, stems and roots of aquatic macrophytes in different environments of the Baía subsystem (Baía river and Fechada and Guaraná lagoons on the Upper Paraná river floodplain, in addition to identify the variability between ecological groups. Samplings of Eichhornia crassipes, Salvinia spp, Pistia stratiotes, Eichhornia azurea, Polygonum sp, Cyperaceae and Poaceae were carried out in February 2003. Spatial differences in the caloric densities were not observed for these plants. Caloric density values varied from 1906.9 cal/g dry weight (root to 4675.0 cal/g dry weight (leaf. However, significant differences between the caloric content averages of the vegetative structures were observed only for Polygonum sp and Salvinia spp. In relation to the ecological groups, the highest average value was verified for the emergent macrophytes (3529.7 ± 722.5, which were significantly different from the floating ones (3056.5 ± 571.0. There was no difference between the sites included in the subsystem when the caloric densities were compared.O presente trabalho teve por objetivo determinar a densidade calórica de folhas, caules e raízes de macrófitas aquáticas, em diferentes ambientes do subsistema Baía (Rio Baía e lagoas Fechada e do Guaraná na planície de inundação do alto rio Paraná, além de identificar a variabilidade entre grupos ecológicos. As amostragens foram realizadas em fevereiro de 2003, sendo coletadas amostras de diferentes macrófitas, Eichhornia crassipes, Salvinia spp, Pistia stratiotes, Eichhornia azurea, Polygonum sp, Cyperaceae e Poaceae. Diferenças espaciais nas densidades calóricas não foram observadas para as plantas estudadas. Os valores de densidade calórica variaram de 1906,9 cal/g de peso seco (raiz a 4675,0 cal/g de peso seco (folha. Entretanto, diferenças significativas entre as médias dos conteúdos calóricos das estruturas vegetativas foram

  8. Influence of lead-doped hydroponic medium on the adsorption/bioaccumulation processes of lead and phosphorus in roots and leaves of the aquatic macrophyte Eicchornia crassipes.

    Science.gov (United States)

    Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; de Oliveira, Ana Paula; Trigueros, Daniela Estelita Goes

    2013-11-30

    In this study, lead bioaccumulation by the living free-floating aquatic macrophyte Eicchornia crassipes in different hydroponic conditions with variations in phosphorus and lead concentrations was investigated. A set of growth experiments in hydroponic media doped with lead and phosphorus within a wide concentration range was performed for 32 days in a greenhouse. All experiments were carried out with periodic replacement of all nutrients and lead. The concentration of lead and nutrients in biomass was determined by synchrotron radiation-excited total reflection X-ray fluorescence. By increasing the lead concentration in the medium, a reduction in biomass growth was observed, but a higher phosphorus retention in roots and leaves was shown at lower lead concentrations. In addition, an increase in the amount of bioaccumulated lead and phosphorus in roots was observed for higher lead and phosphorus concentrations in the medium, reaching saturation values of 4 mg Pb g(-1) and 7 mg P g(-1), respectively. Four non-structural kinetic models were tested, to represent the bioaccumulation of lead and phosphorus in roots. Pseudo-second order and irreversible kinetic models described the lead bioaccumulation data well, however, an irreversible kinetic model better fitted phosphorus uptake in roots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John.

    Science.gov (United States)

    Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T

    2015-09-01

    The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Assessment of the abnormal growth of floating macrophytes in Winam Gulf (Kenya) by using MODIS imagery time series

    Science.gov (United States)

    Fusilli, L.; Collins, M. O.; Laneve, G.; Palombo, A.; Pignatti, S.; Santini, F.

    2013-02-01

    The objective of this research study is to assess the capability of time-series of MODIS imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the abnormal growth of the floating macrophytes in order to support monitoring and management action of Lake Victoria water resources. The proliferation of invasive plants and aquatic weeds is of growing concern. Starting from 1989, Lake Victoria has been interested by the high infestation of water hyacinth with significant socio-economic impact on riparian populations. In this paper, we describe an approach based on the time-series of MODIS to derive the temporal behaviour, the abundance and distribution of the floating macrophytes in the Winam Gulf (Kenyan portion of the Lake Victoria) and its possible links to the concentrations of the main water constituencies. To this end, we consider the NDVI values computed from the MODIS imagery time-series from 2000 to 2009 to identify the floating macrophytes cover and an appropriate bio-optical model to retrieve, by means of an inverse procedure, the concentrations of chlorophyll a, coloured dissolved organic matter and total suspended solid. The maps of the floating vegetation based on the NDVI values allow us to assess the spatial and temporal dynamics of the weeds with high time resolution. A floating vegetation index (FVI) has been introduced for describing the weeds pollution level. The results of the analysis show a consistent temporal relation between the water constituent concentrations within the Winam Gulf and the FVI, especially in the proximity of the greatest proliferation of floating vegetation in the last 10 years that occurred between the second half of 2006 and the first half of 2007.The adopted approach will be useful to implement an automatic system for monitoring and predicting the floating macrophytes proliferation in Lake Victoria.

  11. Effects of the decomposing liquid of Cladophora oligoclona on Hydrilla verticillata turion germination and seedling growth.

    Science.gov (United States)

    Zhang, Lu; Peng, Xue; Liu, Biyun; Zhang, Yi; Zhou, Qiaohong; Wu, Zhenbin

    2018-08-15

    Excessive proliferation of filamentous green algae (FGA) has been considered an important factor resulting in the poor growth or even decline of submerged macrophytes. However, there is a lack of detailed information regarding the effect of decaying FGA on submerged macrophytes. This study aimed to investigate whether the decomposing liquid from Cladophora oligoclona negatively affects Hydrilla verticillata turion germination and seedling growth. The results showed that the highest concentrations of decomposing liquid treatments inhibited the turion germination rate, which was the lowest than other treatments, at only 84%. The chlorophyll a fluorescence (JIP test) and physiological indicators (chlorophyll a content, soluble sugars, Ca 2+ /Mg 2+ -ATPase and PAL activity) were also measured. The chlorophyll a content in the highest concentration (40% of original decomposing liquid) treatment group decreased by 43.53% than that of the control; however, soluble sugars, Ca 2+ /Mg 2+ -ATPase, and PAL activity increased by 172.46%, 271.19%, and 26.43% respectively. The overall results indicated that FGA decay has a considerable effect on submerged macrophyte turion germination and seedling growth, which could inhibit their expansion and reproduction. This study emphasized the need to focus on effects of FGA decomposition on the early growth stages of submerged macrophytes and offered technological guidance for submerged vegetation restoration in lakes and shallow waters. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Does the Lagoa do Peixe sandbar opening influence the macrophyte richness and composition in Southern Brazil wetlands?

    Directory of Open Access Journals (Sweden)

    Ana Silvia Rolon

    2013-03-01

    Full Text Available The Lagoa do Peixe has its connection with the sea artificially opened every year at the end of winter. However, this management has been carried out without the evaluation of the impact of this opening in the aquatic biodiversity. This information is crucial for the management of the natural resources of the Lagoa do Peixe National Park, the unique Ramsar site in Southern Brazil. The following questions were analyzed: (1 Do richness and composition of aquatic macrophytes from Lagoa do Peixe floodplain varies temporarily according to the sandbar opening and closing? (2 Does the variation pattern of the macrophyte community changed according to the sandbar opening and closing? A set of eight sampling sites of 1ha were selected over the Lagoa do Peixe floodplain: four sites not influenced by the artificial sandbar opening and four sites influenced by this event, being two sites closer to the sandbar opening and the two sites distant to the sandbar opening. The samplings were carried out between November 2007 and October 2009. The results show that although the artificial sandbar breaching does not affect the aquatic macrophyte richness at the floodplain, it affects the dynamics of species composition. The hydrological variation related to this management can be the main factor of the continuous change in the species composition in the floodplain, especially in the Southern portion. In order to avoid impacts in the macrophyte conservation, the artificial sandbar opening should be considered carefully, since the area of study is one of the most important conservation units to wetland systems in Southern Brazil.La Lagoa do Peixe, en el sur de Brasil, tiene conexión artificial con el mar, porque cada año, al final del invierno, se abre un canal con tractor. Sin embargo, esta práctica se ha levado a cabo sin la evaluación de los efectos de esta apertura en la biodiversidad acuática. Las siguientes preguntas fueron analizadas: (1 ¿Varían la

  13. Proceedings of the SERI Biomass Program Principal Investigators' Review Meeting: Aquatic Species Program Reports; 23-25 June 1982, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    The Aquatic Species Program (ASP) is concerned with how plant biomass that naturally occurs in wetland or submerged areas is utilized. Processes are being developed in this program to make use of those aquatic species, capitalizing on their inherent capacity for rapid growth as well as on their extraordinary chemical compositions.

  14. Observations on marine macrophytes of the republic of Seychelles

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Jagtap, T.G.

    The distribution of macrophytes was studies from the major islands (Mahe, Praslin and La Digue) of the Seychelles Archipelago. The macrophytes were represented by 72 species of seaweeds, 8 species of mangroves and 6 species of seagrass. The dominant...

  15. Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation.

    Science.gov (United States)

    Herrera-Silveira, Jorge A; Morales-Ojeda, Sara M

    2009-01-01

    The coastal environment of the Yucatan Peninsula (SE, Mexico) includes a wide variety of ecosystems ranging from mangroves to coral reefs, resulting in a heterogeneous landscape. Specifically, the marine system is characterized by environmental differences which respond to regional and local forcing functions such as marine currents and groundwater discharges (GD). Such functional characteristics were used here to define four subregions across the Yucatan coast and diagnose the health status of this coastal marine ecosystem. To achieve this goal, we conducted an analysis and integration of water quality variables, an eutrophic assessment, evaluated changes in submerged aquatic vegetation (SAV), and analyzed the community structure and distribution of harmful phytoplankton. The first step was to determine the reference values for each subregion based on data previously collected from 2002 to 2006 along the coast of Yucatan, 200m offshore. The trophic index (TRIX) and Canadian index for aquatic life (CCMEWQI) were used to diagnose each subregion and then the ASSETS approach was conducted for Dzilam and Progreso, sampling localities on each end of the health status continuum (those with the best and worst conditions). Overall, results indicated that the marine coastal ecosystem of Yucatan is in good condition; however, differences were observed between subregions that can be attributed to local forcing functions and human impacts. Specifically, the central region (zone HZII, Progreso-Telchac) showed symptoms of initial eutrophication due to nutrient inputs from human activities. The eastern region (zone HZ III, Dzilam-Las Bocas) showed a meso-eutrophic condition linked to natural groundwater discharges, while the other two subregions western (zone HZI Celestun-Palmar) and caribbean (zone HZ IV Ria Lagartos-El Cuyo) exhibited symptoms of oligo-mesotrophic condition. These findings may be considered baseline information for coastal ecosystem monitoring programs in

  16. Photosynthetic response of the floating-leaved macrophyte Nymphoides peltata to a temporary terrestrial habitat and its implications for ecological recovery of Lakeside zones

    Directory of Open Access Journals (Sweden)

    Yu H.

    2014-01-01

    Full Text Available For the ecological recovery of lakeside zones in shallow eutrophic lakes, choosing suitable aquatic macrophytes which could adapt to the temporary terrestrial habitat due to water level change is very important. In the present study, an experimental approach was carried out to explore the photosynthetic response of the typical floating-leaved aquatic plant Nymphoides peltata (N. peltata to varying environmental factors. N. peltata grown under aquatic and terrestrial habitats showed similar photosynthesis-irradiance response patterns. The investigation of diurnal changes in gas exchange revealed that the net photosynthetic rate (PN and water-use efficiency (WUE of the N. peltata grown in the terrestrial habitat were 68% and 94% higher, respectively, than those in the aquatic habitat at nine in the morning. N. peltata grown in the terrestrial habitat had approximately 51% less stomatal density and a 77% smaller stomatal aperture area compared with those grown in aquatic habitats. The above results indicated that N. peltata could be well-acclimated to the terrestrial habitat by developing a series of photosynthetic acclimation features. Our study may provide an important reference for restoration in lakeside zones of shallow eutrophic lakes.

  17. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano

    International Nuclear Information System (INIS)

    Alvarez, Rene; Liden, Gunnar

    2008-01-01

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m -3 d -1 . Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process

  18. Decreasing but still significant facilitation effect of cold-season macrophytes on wetlands purification function during cold winter.

    Science.gov (United States)

    Zou, Xiangxu; Zhang, Hui; Zuo, Jie; Wang, Penghe; Zhao, Dehua; An, Shuqing

    2016-06-01

    To identify the facilitation effect of a cool-season aquatic macrophyte (FEam) for use in effluent purification via constructed floating wetlands (CFWs) and to determine the possible pathways used during a winter period with an average temperature of less than 5 °C, pilot-scale CFWs were planted with the cold-season macrophyte Oenanthe clecumbens and were operated as batch systems. Although some leaves withered, the roots retained relatively high levels of activity during the winter, which had average air and water temperatures of 3.63 and 5.04 °C, respectively. The N and P removal efficiencies in CFWs decreased significantly in winter relative to those in late autumn. The presence of cool-season plants resulted in significant improvements in N and P removal, with a FEam of 15.23-25.86% in winter. Microbial N removal accounted for 71.57% of the total N removed in winter, and the decrease in plant uptake was the dominant factor in the wintertime decrease in N removal relative to that in late autumn. These results demonstrate the importance of cold-season plants in CFWs for the treatment of secondary effluent during cold winters.

  19. Study of methylation sites and factors in contaminated aquatic systems in the Amazon using an optimized radiochemical technique - Brazil

    International Nuclear Information System (INIS)

    Davee Guimaraes, Jean Remy; Narvaez Mauro, Jane Beatriz; Roulet, Marc; Meili, Markus; Hylander, Lars

    2001-01-01

    In the last few years, some new data have brought light on the Hg cycle in the Amazon. Roulet et al (1998 and 1999) found high natural Hg contents in soils and showed that soil erosion, due to agriculture and other human activities, had increased the Hg burdens in aquatic systems. They also showed that, surprisingly, the activity of goldminers on many upstream affluents of the Tapajos river did not result in downstream gradients in dissolved or particulate Hg. Our own data (Malm et al, 1995, 1997) from long term surveys show little or no reduction in fish or human hair Hg levels in different water basins, despite a 3 to 10-fold decrease in goldmining activities since 1990. Regardless of the on-going debate on the relative magnitude of natural and man-made Hg sources in the Amazon, Hg is being transported and increasingly accumulated in productive lakes and floodplains in all the Amazon basin, leading riverine populations to unsafe Hg exposure levels. This Hg transport is done mainly in the particulate form, and the floating vegetation is a very efficient particle trap, besides providing support to an abundant periphyton, features that favor MeHg formation and bio-availability. A high Hg methylation potential in macrophytes is relevant for many reasons. This characteristic tropical aquatic vegetation produces highly bioavailable MeHg, because of its high standing stock (1 kg dw. m -2 , Sioli, 1986) in direct contact with the water column and very high relative area. Because the root zone of these floating aquatic plants is densely populated by a varied fauna of invertebrates and fish and represents an essential carbon source for aquatic food chains, it may constitute a major pathway of MeHg uptake into tropical aquatic food webs. In contrast, the production of MeHg in surface sediments is ∼30 times lower than in macrophyte roots, its bioavailability is probably limited, as well as the sediment-water flux of MeHg. Moreover, the role of floating meadows as important

  20. Potencial alelopático de macrófitas aquáticas de um estuário cego Allelopathic potential of aquatic macrophytes from a blind estuary

    Directory of Open Access Journals (Sweden)

    Leandro Kenji Takao

    2011-06-01

    Full Text Available Macrófitas aquáticas representam uma das comunidades mais produtivas e através de sua atividade metabólica são capazes de produzir grandes interferências no ambiente. As interações alelopáticas são aparentemente aumentadas sob condições de estresse biótico e abiótico e podem existir em estuários devido à competição, variações de salinidade e outros fatores. O objetivo desse trabalho foi avaliar as propriedades alelopáticas de extratos aquosos foliares de 25 espécies de macrófitas aquáticas de um estuário cego. Testamos os efeitos dos extratos foliares em quatro concentrações sobre a germinação de alface. Ordenamos e comparamos as espécies doadoras de acordo com a dose reposta sobre a variedade de tratamentos a partir de valores únicos de índices alelopáticos. Onze das 25 espécies diminuíram a porcentagem de germinação, todas diminuíram a velocidade de germinação e aumentaram a entropia informacional de germinação das sementes da espécie alvo em pelo menos uma das concentrações testadas. Crinum americanum L., Sagittaria montevidensis Cham. & Schl. e Ipomoea cairica (L Sweet apresentaram os maiores valores de índice alelopático. Em geral, as menores porcentagens de germinação coincidiram com as menores velocidades e maiores entropias informacionais de germinação das sementes de alface, mostrando um conjunto de alterações ocorrendo simultaneamente com o aumento da concentração dos extratos.Aquatic macrophytes represent one of the most productive communities and through metabolic activity are capable of producing great interference in the environment. Allelopathic interactions are apparently increased under biotic and abiotic stress and may exist in estuaries due to competition, salinity variation and other factors. The aim of this study was to evaluate the allelopathic properties of leaf extracts of 25 aquatic macrophyte species from a blind estuary. We tested leaf extract effects in four

  1. Effects of CO 2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllumdemersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO 2 to O 2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O 2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO 2 gas mixed with N 2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol -1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol M -2 s -1, which was controlled with a metal halide lamp. Temperature was kept at 28°C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m -2 s -1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol -1, respectively. The net photosynthetic rate increased with increasing CO 2 levels from 0.3 to 3.0 mmol mol -1 showing the maximum value, 75 nmolO 2 gDW -1 s -1, at 2-3 mmol mol -1 CO 2 and gradually decreased with increasing CO 2 levels from 3.0 to 10 mmol mol -1. The results demonstrate that C. demersum could be an efficient CO 2 to O 2 converter under a 2.0 mmol mol -1 CO 2 level and relatively low PPFD levels in aquatic food production modules.

  2. Aquatic macrophytes drive sediment stoichiometry and the suspended particulate organic carbon composition of a tropical coastal lagoon Macrófitas aquáticas determinam a estequiometria do sedimento e a composição do carbono orgânico particulado em suspensão de uma lagoa costeira tropical

    Directory of Open Access Journals (Sweden)

    Cláudio Cardoso Marinho

    2010-06-01

    Full Text Available AIM: This research aimed to evaluate (1 the influence of the aquatic macrophytes Typha domingensis Pers., Eleocharis interstincta (Vahl Roem. & Schult. (emergent and Potamogeton stenostachys K. Schum. (submersed on sediment stoichiometry and (2 the contribution of these aquatic macrophytes to organic carbon composition in different compartments of a tropical coastal lagoon (Cabiúnas Lagoon, Macaé-RJ; METHODS: The concentration of carbon (C, nitrogen (N and phosphorus (P was determined in 2-cm intervals in the first 10 cm of sediment in both littoral and limnetic regions. In the littoral region, the sediment was collected in three different sites: T. domingensis, E. interstincta and P. stenostachys stands. In order to know the pathways of C in Cabiunas lagoon, the isotopic signature (δ13C of restinga terrestrial vegetation, zooplankton, phytoplankton, macrophytes, dissolved and suspended material on water were evaluated; RESULTS: The concentrations of C and N in the sediment of the E. interstincta and T. domingensis stands were significantly higher than in the sediment of the limnetic region. The concentration of phosphorus in the sediment colonized by T. domingensis was higher than in the limnetic region and in P. stenostachys stand. The highest molar C:P ratios were found in E. interstincta and P. stenostachys stands. The highest N:P ratios were also found in the littoral region. Carbon stable isotopic analysis (δ13C signatures showed that a majority of the particulate organic carbon (POC in the water column had aquatic macrophyte tissues origin; CONCLUSIONS: Emergent macrophytes strongly contribute to nutrient enrichment of the sediment of Cabiúnas lagoon. In general, macrophyte detritus alters the littoral region sediment stoichiometry and quality for decomposers, by accumulating much more C in relation to N and P when compared to limnetic region. However, macrophytes importance isn't restricted to the sediment once they have a central

  3. Effect of clone size on submergence tolerance and post-submergence growth recovery in Carex brevicuspis (Cyperaceae

    Directory of Open Access Journals (Sweden)

    Zhengmiao Deng

    2016-12-01

    Full Text Available Clonal plants are prevalent in wetlands and play important roles in maintaining the functions of the ecosystem. In the present study, we determined the effect of clone sizes (R1, R2, and R3 comprising 1, 3, and 5clumping ramets on the tolerance of Carex brevicuspis growing under 30-cm-deep water to three different periods (one, two, and three months of submergence and its growth recovery one month after de-submergence. Our results showed that the relative growth rate (RGR of C. brevicuspis significantly declined with increasing submergence time, and was higher in R3 and R5 than in R1 plants under both submergence and post-submergence conditions. The concentration of water-soluble carbohydrates (WSCs was highest in R3, intermediate in R5, and the lowest in R1 plants during the first two months of submergence, indicating an optimal trade-off between energy investment and vegetative growth (i.e., buds and ramets production in C. brevicuspis. WSCs were significantly reduced with increasing submergence time, while the starch content was significantly reduced only during the third month of submergence, implying that WSCs were a direct energy source for C. brevicuspis during submergence. The number of buds was higher in R5 than in R3 and R1 plants after two and three months of submergence, which directly resulted in a significantly higher post-submergence ramet production in R5 plants. These results indicated that plants with relatively larger clone sizes display better tolerance to submergence stress and post-submergence growth recovery. Therefore, we speculate that the large clone size in C brevicuspis might be an effective adaptive mechanism to survive under submergence stress in floodplain wetlands.

  4. Establishing a baseline of estuarine submerged aquatic vegetation resources across salinity zones within coastal areas of the northern Gulf of Mexico

    Science.gov (United States)

    Hillmann, Eva R.; DeMarco, Kristin; LaPeyre, Megan K.

    2016-01-01

    Coastal ecosystems are dynamic and productive areas that are vulnerable to effects of global climate change. Despite their potentially limited spatial extent, submerged aquatic vegetation (SAV) beds function in coastal ecosystems as foundation species, and perform important ecological services. However, limited understanding of the factors controlling SAV distribution and abundance across multiple salinity zones (fresh, intermediate, brackish, and saline) in the northern Gulf of Mexico restricts the ability of models to accurately predict resource availability. We sampled 384 potential coastal SAV sites across the northern Gulf of Mexico in 2013 and 2014, and examined community and species-specific SAV distribution and biomass in relation to year, salinity, turbidity, and water depth. After two years of sampling, 14 species of SAV were documented, with three species (coontail [Ceratophyllum demersum], Eurasian watermilfoil [Myriophyllum spicatum], and widgeon grass [Ruppia maritima]) accounting for 54% of above-ground biomass collected. Salinity and water depth were dominant drivers of species assemblages but had little effect on SAV biomass. Predicted changes in salinity and water depths along the northern Gulf of Mexico coast will likely alter SAV production and species assemblages, shifting to more saline and depth-tolerant assemblages, which in turn may affect habitat and food resources for associated faunal species.

  5. Influence of three aquatic macrophytes on mitigation of nitrogen species from agricultural runoff

    Science.gov (United States)

    Agricultural runoff containing nitrogen fertilizer is a major contributor to eutrophication in aquatic systems. One method of lowering amounts of nitrogen entering rivers or lakes is the transport of runoff through vegetated drainage ditches. Drainage ditch vegetation can enhance the mitigation of...

  6. Brackish marsh zones as a waterfowl habitat resource in submerged aquatic vegetation beds in the northern Gulf of Mexico

    Science.gov (United States)

    DeMarco, Kristin; Hillmann, Eva R.; Brasher, Michael G.; LaPeyre, Megan K.

    2016-01-01

    Submerged aquatic vegetation (SAV) beds are shallow coastal habitats that are increasingly exposed to the effects of sea-level rise (SLR). In the northern Gulf of Mexico (nGoM), an area especially vulnerable to SLR, the abundance and distribution of SAV food resources (seeds, rhizomes, and tissue) can influence the carrying capacity of coastal marshes to support wintering waterfowl. Despite the known importance of SAV little is known about their distribution across coastal landscapes and salinity zones or how they may be impacted by SLR. We estimated SAV cover and seed biomass in coastal marshes from Texas to Alabama from 1 June – 15 September 2013 to assess variation in SAV and seed resource distribution and abundance across the salinity gradient. Percent cover of SAV was similar among salinity zones (10%–20%) although patterns of distribution differed. Specifically, SAV occurred less frequently in saline zones, but when present the percent coverage was greater than in fresh, intermediate and brackish. Mean seed biomass varied greatly and did not differ significantly among salinity zones. However, when considering only seed species identified as waterfowl foods, the mean seed biomass was lower in saline zones (1.2 g m–2). Alteration of nGoM marshes due to SLR will likely shift the distribution and abundance of SAV resources, and these shifts may affect carrying capacity of coastal marshes for waterfowl and other associated species.

  7. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Hestir, E.L.; Schoellhamer, David H.; Jonathan Greenberg,; Morgan-King, Tara L.; Ustin, S.L.

    2016-01-01

    Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.

  8. Alum application to improve water quality in a municipal wastewater treatment wetland: Effects on macrophyte growth and nutrient uptake

    DEFF Research Database (Denmark)

    Malecki-Brown, Lynette M.; White, John R.; Brix, Hans

    2010-01-01

    Application of low doses of alum to treatment wetlands to reduce elevated outflow winter phosphorus concentrations were tested in mesocosms vegetated with either Typha domingensis, Schoenoplectus californicus, or submerged aquatic vegetation (SAV) (Najas guadalupensis-dominated). Alum was pumped......-treated SAV as compared to the control, and in Typha and Schoenoplectus the concentrations were 4- and 2-fold, higher, respectively. The N/P ratios in the plant tissues were low (

  9. Physiological performance and thermal tolerance of major Red Sea macrophytes

    KAUST Repository

    Weinzierl, Michael S.

    2017-12-01

    As anthropogenically-forced ocean temperatures continue to rise, the physiological response of marine macrophytes becomes exceedingly relevant. The Red Sea is a semi-isolated sea- the warmest in the world (SST up to 34°C) - already exhibiting signs of rapid warming rates exceeding those of other tropical oceans. This will have profound effects on the physiology of marine organisms, specifically marine macrophytes, which have direct influence on the dynamic carbonate system of the Red Sea. The aim of this paper is to define the physiological capability and thermal optima and limits of six ecologically important Red Sea macrophytes- ranging from seagrasses to calcifying and non-calcifying algae- and to describe the effects of increasing thermal stress on the performance and limits of each macrophyte in terms of activation energy. Of the species considered, Halophila stipulacae, Halimeda optunia, Halimeda monile and Padina pavonica thrive in thermal extremes and may be more successful in future Red Sea warming scenarios. Specifically, Halimeda opuntia increased productivity and calcification rates up to 38°C, making it the most thermally resilient macrophyte. Halophila stipulacae is the most productive seagrass, and hence has the greatest positive effect on Omega saturation state and offers chemical buffer capacity to future ocean acidification.

  10. Lung collapse among aquatic reptiles and amphibians during long-term diving.

    Science.gov (United States)

    Ultsch, Gordon R; Brainerd, Elizabeth L; Jackson, Donald C

    2004-09-01

    Numerous aquatic reptiles and amphibians that typically breathe both air and water can remain fully aerobic in normoxic (aerated) water by taking up oxygen from the water via extrapulmonary avenues. Nevertheless, if air access is available, these animals do breathe air, however infrequently. We suggest that such air breathing does not serve an immediate gas exchange function under these conditions, nor is it necessarily related to buoyancy requirements, but serves to keep lungs inflated that would otherwise collapse during prolonged submergence. We also suggest that lung deflation is routine in hibernating aquatic reptiles and amphibians in the northern portions of their ranges, where ice cover prevents surfacing for extended periods.

  11. Effects of Co2 Concentrations and light intensity on photosynthesis of a rootless submerged plant, ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    Aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality in addition to green microalgae. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for plant function in aquatic food production modules including both plant culture and fish culture systems . The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known level CO 2 gas mixed with N2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 100 mmol mol-1 . Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1 , which was controlled with a metal halide lamp. Temperature was kept at 28 C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol-1 , respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 70 nmolO 2 gDW s at 3.0 mmol mol-1 CO2 and gradually decreased with increasing CO 2 levels from 3.0 to 100 mmol mol-1 . The results demonstrate that Ceratophyllum demersum L. could be an efficient CO 2 to O2 converter under a 3.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.

  12. Potential role of propagule banks in the development of aquatic vegetation in backwaters along navigation canals

    NARCIS (Netherlands)

    Boedeltje, G; Bakker, JP; ter Heerdt, GNJ

    The diversity and abundance of plant species in propagule banks of backwaters along two navigation canals in The Netherlands were studied in order to assess the relationship with the standing vegetation and the potential role of propagule banks in the establishment of (submerged) aquatic vegetation.

  13. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  14. Role of glutathione in tolerance to arsenite in Salvinia molesta, an aquatic fern

    Directory of Open Access Journals (Sweden)

    Adinan Alves da Silva

    2017-09-01

    Full Text Available ABSTRACT In many plant species, tolerance to toxic metals is highly dependent on glutathione, an essential metabolite for cellular detoxification. We evaluated the responses of glutathione metabolism to arsenite (AsIII in Salvinia molesta, an aquatic fern that has unexplored phytoremediation potential. Plants were exposed to different AsIII concentrations in nutrient solution for 24 h. AsIII caused cell membrane damage to submerged leaves, indicating oxidative stress. There was an increase in the glutathione content and ϒ-glutamylcysteine synthetase enzyme activity in the submerged and floating leaves. The glutathione peroxidase and glutathione sulfotransferase enzymes also showed increased activity in both plant parts, whereas glutathione reductase only showed increased activity in the submerged leaves. These findings suggest an important role for glutathione in the protection of S. molesta against the toxic effects of AsIII, with more effective tolerance responses in the floating leaves.

  15. Review of alien marine macrophytes in Tunisia

    Directory of Open Access Journals (Sweden)

    Y. R. SGHAIER

    2015-01-01

    Full Text Available In the present study, the list of alien marine macrophytes introduced into Tunisia was updated in the light of available data and new observations. A total of 27 alien marine macrophytes have been recorded so far from Tunisia: 18 Rhodophyta, 3 Ochrophyta, 5 Chlorophyta and 1 Magnoliophyta. For each species, the locality (-ies, the year (or period and the source of the first observation in Tunisia are given. The distribution and the status (casual, cryptogenic, established or questionable of species in Tunisia were evaluated and, where appropriate, discussed. Among them, Hypnea cornuta is reported for the first time from Tunisia. Fourteen alien marine macrophytes are established, whereas seven cryptogenic and two casual species require further investigation. Eleven species are considered as invasive or potentially invasive in the Mediterranean Sea: Acrothamnion preissii, Asparagopsis armata, A. taxiformis Indo-Pacific lineage, Hypnea cornuta, Lophocladia lallemandii, Womersleyella setacea, Caulerpa chemnitzia, C. cylindracea, C. taxifolia, Codium fragile subsp. fragile and Halophila stipulacea. Finally, the case of four questionable species is also discussed.

  16. Species pool versus site limitations of macrophytes in urban waters

    DEFF Research Database (Denmark)

    Vermonden, K.; Leuven, R.S.E.W.; van der Velde, G.

    2010-01-01

    of species expected from species-area relationships of artificial water bodies in rural areas. In urban areas, the number of macrophyte species was similar to artificial water systems in rural areas. Macrophyte species present in the study areas also were generally found within 20-30 km distance to the study...

  17. Assess the environmental health status of macrophyte ecosystems using an oxidative stress biomarker. Case studies: The Gulf of Aqaba and the Lagoon of Venice

    Science.gov (United States)

    Wahsha, Mohammad; Juhmani, Abdul-Salam; Buosi, Alessandro; Sfriso, Andrea; Sfriso, Adriano

    2017-04-01

    Macrophytes play a fundamental role in structuring communities in aquatic environments. They contribute to maintaining the ecosystem services. Unfortunately, nowadays, they are threatened by different sources of pollution. The release of such potentially toxic elements (PTEs) to the environment may influence negatively the ecosystem health, which often limits and sometimes disqualifies the ecosystem biodiversity. Indeed, the increasing concentration and distribution of PTEs in the marine ecosystem by mismanagement of industrial activities, overuse of agrochemicals, and waste disposal are causing worldwide concern. The aim of this work is to describe the developing of an innovative early warning tool, based on the implementation of the lipid peroxidation oxidative stress biomarker for the assessment and monitoring of ecological status in response to PTEs in different marine environments. Six sites were selected along the Jordanian coastline of the Gulf of Aqaba and the lagoon of Venice in Italy according to different morphological, ecological conditions and anthropogenic impact. Our results indicated that the effect of PTEs causes oxidative stress to macrophytes; in particular: Ulva fasciata and Ulva lactuca collected from the lagoon of Venice and Gulf of Aqaba respectively. The oxidative stress by PTEs alters the biochemical processes, as it stimulates the generation of reactive oxygen species (ROS) and accordingly the oxidative degradation of lipids (LPO). The by-products of LPO, the organic compound malondialdehyde (MDA) is significantly correlated (pVenice, macrophytes, lipid peroxidation.

  18. Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in a eutrophic lake.

    Science.gov (United States)

    Yao, Lu; Chen, Chengrong; Liu, Guihua; Liu, Wenzhi

    2018-03-01

    Decline of submerged vegetation is one of the most serious ecological problems in eutrophic lakes worldwide. Although restoration of submerged vegetation is widely assumed to enhance ecological functions (e.g., nitrogen removal) and aquatic biodiversity, the evidence for this assumption is very limited. Here, we investigated the spatio-temporal patterns of sediment potential nitrification, unamended denitrification and N 2 O production rates along a vegetation gradient in the Lake Honghu, where submerged vegetation was largely restored by prohibiting net-pen aquaculture. We also used five functional genes as markers to quantify the abundance of sediment nitrifying and denitrifying microorganisms. Results showed that unvegetated sediments supported greater nitrification rates than rhizosphere sediments of perennial or seasonal vegetation. However, the absence of submerged vegetation had no significant effect on denitrification and N 2 O production rates. Additionally, the abundance of functional microorganisms in sediments was not significantly different among vegetation types. Season had a strong effect on both nitrogen cycling processes and microbial abundances. The highest nitrification rates were observed in September, while the highest denitrification rates occurred in December. The temporal variation of sediment nitrification, denitrification and N 2 O production rates could be due to changes in water quality and sediment properties rather than submerged vegetation and microbial abundances. Our findings highlight that vegetation restoration in eutrophic lakes improves water quality but does not enhance sediment nitrogen removal rates and microbial abundances. Therefore, for reducing the N level in eutrophic lakes, major efforts should be made to control nutrients export from terrestrial ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Toxic and feeding deterrent effects of native aquatic macrophytes on exotic grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Murphy, Joseph E; Beckmen, Kimberlee B; Johnson, Julie K; Cope, Rhian B; Lawmaster, Todd; Beasley, Val R

    2002-08-01

    Declines of amphibians have been attributed to many factors including habitat degradation. The introduction of grass carp (Ctenopharyngodon idella) as a biological agent for aquatic plant control in ponds and lakes managed narrowly for human recreation has likely contributed to amphibian declines through massive plant removal and associated habitat simplification and thus degradation. This research examined the interactions among grass carp and three Midwestern aquatic plants (Jussiaea repens, Ranunculus longirostris, and R. flabellaris) that may be of value in rehabilitation of habitats needed by amphibians. The feeding preference study found that C. idella avoided eating both J. repens and R. longirostris. Ranunculus species studied to date contain a vesicant toxin called ranunculin that is released upon mastication. The study that compared the effects of R. flabellaris, J. repens and a control food administered by tube feeding to C. idella found significant lesions only in the mucosal epithelium of the individuals exposed to R.flabellaris. The avoidance by C. idella of J. repens and R. longirostris in the feeding preference study, and the significant toxicity of R. flabellaris demonstrated by the dosing study, indicate these plants warrant further examination as to their potential effectiveness in aquatic amphibian habitat rehabilitation.

  20. Biomonitoring of selected freshwater macrophytes to assess lake trace element contamination: a case study of Nal Sarovar Bird Sanctuary, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Rita N. KUMAR

    2006-02-01

    Full Text Available A biomonitoring study was carried out at Nal Sarovar Bird Sanctuary, a proposed Ramsar site, Gujarat State, India, to ascertain the degree of trace element contamination. The study focused on assessment of trace element contamination in certain aquatic macrophytes to be used as biomonitors, in comparison with the sediments (abiotic monitor for heavy metal pollution. Good information was provided by analyzing roots, stems and leaves of native aquatic plants (biomonitors represented by eight species: Bergia odorata, Hydrilla verticillata, Ipomoea aquatica, Najas graminea, Nelumbo nucifera, Phragmites karka, Typha angustata and Vellisnaria spiralis, alongwith surface sediments and water, were analyzed for Cd, Co, Cu, Cu, Ni, Pb and Zn contamination. The highest concentrations of the trace elements were measured in Ipomoea aquatica and the lowest in Bergia odorata. Based on the concentration and toxicity status observed in the lake's vegetation, the six metals are arranged in the following decreasing order: Zn > Cu > Ni > Co > Pb > Cd. Compared with the standard, normal and critical toxicity range in plants, the detected values of Cd and Pb falls within normal range, while that of Co, Ni and Cu were within the critical range. However, Zn showed the highest concentration and alarming toxicity levels, which is considered as one of the most hazardous pollutants in Nal Sarovar Bird Sanctuary. Certain aquatic macrophytes species are also proposed as biomonitors for the investigated heavy metal pollutants. Such result was significant in the plant species such as Ipomoea aquatica and Phragmites karka, which are the two most useful species in biomonitoring studies due to their ability to accumulate elements in high concentration in the roots and their availability throughout the year. The results showed the significant difference in accumulation rate of some metals like Zn, Cu and Ni in different plant organs, which showed more accumulation in root than

  1. Non-indigenous invertebrates, fish and macrophytes in Lake Garda (Italy

    Directory of Open Access Journals (Sweden)

    Cristina CAPPELLETTI

    2011-08-01

    Full Text Available As observed in many countries, lakes are involved in an important process of colonization by non-indigenous species (NIS. Since 1725, 37 species of non-indigenous fish, invertebrates and macrophytes have been recorded in Lake Garda, the largest Italian lake. This phenomenon is particularly important for invertebrates and macrophytes, as their pathways of introduction are accidental. Recently among the 100 Worst Invasive Alien Species in Europe, the invertebrates Corbicula fluminea, Dikerogammarus villosus and Procambarus clarkii, and the macrophytes Lagarosiphon major, Elodea nuttallii and Elodea canadensis have been recorded in Lake Garda. In order to define the present status of non-indigenous species in Lake Garda, published and unpublished data were reviewed.

  2. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure.

  3. Using algae and submerged calcifying water flora for treating neutral to alkaline uranium-contaminated water

    International Nuclear Information System (INIS)

    Dienemann, C.; Dienemann, H.; Stolz, L.; Dudel, E.G.

    2005-01-01

    Elimination of uranium from neutral to alkaline water is a complex technical process involving decarbonation, usually with HCl, followed by uranium removal by adding alkaline substances. In passive water treatment systems, uranium species - which often consist of a combination of oxidation and reduction stages - are not sufficiently considered. Algae and submerged water plants provide a natural alternative. They remove carbon dioxides or hydrogen carbonate, depending on the species, thus reducting the concentrations of the carbonate species. As the uranium species in alkaline water are coupled on the one hand to the carbonate species and on the other hand on the earth alkali metals, algae and submerged calcifying water plants are an excellent preliminary stage as a supplement to conventional passive water treatment systems. For a quantification of this effect, laboratory experiments were made with Cladophara spec. and with uranium concentrations of 100, 250 and 1000 μg U.L -1 at pH 8.3. The pH was adjusted with NaOH resp. Na2CO3 resulting in different uranium species. After 20 minutes, there was a difference in self-absorption between the different species (higher uranium concentration for NaOH than for Na2CO3), which was no longer observeable after 24 h. On the basis of data on the biomass development of macrophytic algae (Cladophora and Microspora) in a flowing river section near Neuensalz/Vogtland district, the final dimensions of a purification stage of this type are assessed. (orig.)

  4. US State Submerged Lands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submerged Lands Act (43 U.S.C. Section 1301 et seq.) grants coastal states title to natural resources located within their coastal submerged lands and navigable...

  5. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications

    OpenAIRE

    Van Hoeck, Arne; Horemans, Nele; Monsieurs, Pieter; Cao, Hieu Xuan; Vandenhove, Hildegarde; Blust, Ronny

    2015-01-01

    Background: Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. Res...

  6. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Filtering high resolution hyperspectral imagery and analyzing it for quantification of water quality parameters and aquatic vegetation

    Science.gov (United States)

    Pande-Chhetri, Roshan

    High resolution hyperspectral imagery (airborne or ground-based) is gaining momentum as a useful analytical tool in various fields including agriculture and aquatic systems. These images are often contaminated with stripes and noise resulting in lower signal-to-noise ratio, especially in aquatic regions where signal is naturally low. This research investigates effective methods for filtering high spatial resolution hyperspectral imagery and use of the imagery in water quality parameter estimation and aquatic vegetation classification. The striping pattern of the hyperspectral imagery is non-parametric and difficult to filter. In this research, a de-striping algorithm based on wavelet analysis and adaptive Fourier domain normalization was examined. The result of this algorithm was found superior to other available algorithms and yielded highest Peak Signal to Noise Ratio improvement. The algorithm was implemented on individual image bands and on selected bands of the Maximum Noise Fraction (MNF) transformed images. The results showed that image filtering in the MNF domain was efficient and produced best results. The study investigated methods of analyzing hyperspectral imagery to estimate water quality parameters and to map aquatic vegetation in case-2 waters. Ground-based hyperspectral imagery was analyzed to determine chlorophyll-a (Chl-a) concentrations in aquaculture ponds. Two-band and three-band indices were implemented and the effect of using submerged reflectance targets was evaluated. Laboratory measured values were found to be in strong correlation with two-band and three-band spectral indices computed from the hyperspectral image. Coefficients of determination (R2) values were found to be 0.833 and 0.862 without submerged targets and stronger values of 0.975 and 0.982 were obtained using submerged targets. Airborne hyperspectral images were used to detect and classify aquatic vegetation in a black river estuarine system. Image normalization for water

  8. Coleoptera associated with macrophytes of the genus Salvinia in four oxbow lakes in two river basins in southeast Brazil.

    Science.gov (United States)

    Paula-Bueno, M C; Fonseca-Gessner, A A

    2015-11-01

    Macrophytes in oxbow lakes represent an important substrate for the Coleoptera. Two oxbow lakes the Rio Paranapanema were studied and the other two Rio Mogi-Guaçu, in the State de São Paulo, Brasil. In this study, there is greater similarity between the communities of Coleoptera of lakes greater connectivity with the main river channel or the difference in the species of Salvinia collected in the lakes studied interferes Coleoptera fauna that uses as substrate. A total of 9,222 specimens of Coleoptera were collected and identified in 10 families and 40 genera. The analysis MDS for abundance of Coleoptera showed the grouping of the oxbow lakes the Paranapanema River and a distancing the oxbow lakes the Mogi-Guaçu. The PERMANOVA test did not reveal any difference in the fauna between the wet and dry periods. It was concluded that the connectivity between river and lake is not decisive for the richness and abundance of aquatic fauna of Coleoptera. Therefore, the richness and abundance of aquatic Coleoptera associated vary with the species of Salvinia used as substrate.

  9. Study on the mercury evolution in a laboratory multi specific aquatic system by using instrumental neutron activation analysis; Estudio de la evolucion del mercurio en un sistema acuatico de laboratorio multiespecifico utilizando analisis por activacion neutronica instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Bubach, Debora; Guevara, Sergio Ribeiro; Arribere, Maria A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche. Lab. de Analisis por Activacion Nautronica; Pechen de d`Angelo, Ana; Ferrari, Ana; Venturino, Andres [Universidad Nacional del Comahue, Neuquen (Argentina). Facultad de Ingenieria

    1999-11-01

    A preliminary study on the evolution of mercury in the organisms of a laboratory multi specific aquatic system was performed using Instrumental Neutron Activation Analysis (INAA). Some of the possible effects of mercury toxicity were monitored by analyzing early biochemical indicators. The system consisted of an aquarium with bed sediments, aquatic macrophytes (Myriophyllum sp.), bivalves (Diplodom sp.) and exotic fish, simulating a long term contamination situation of unknown causes, where the sediments are the contaminant reservoir. Samples of the abiotic components of the system were analyzed at the beginning of the experiment, and again when the organisms were sampled. Fish carcass, kidney and liver samples, bivalve hepatopancreas, and whole macrophytes were extracted ana analyzed for mercury and other elements by INAA at the beginning of the experiment, and after 48 and 96 hours. Since some crustal elements such as Sc and La were detected in the hepatopancreas and macrophyte samples, enrichment factors for mercury, with respect to the <63 {mu}m sediment fraction, were computed to discriminate the metabolized Hg content from that associated to the particulate. The hepatopancreas index, some indicators of oxidative stress ({gamma}-Glutamyl-cysteinyl-glycine content and lipid peroxidation) and brain acetilcolinesterasa were measured as early indicators of toxicity. (author) 23 refs., 4 tabs.

  10. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.

    Science.gov (United States)

    Delmail, David; Labrousse, Pascal; Hourdin, Philippe; Larcher, Laure; Moesch, Christian; Botineau, Michel

    2013-01-01

    Nowadays, submersed aquatic macrophytes play a key role in stream ecology and they are often used as biomonitors of freshwater quality. So, these plants appear as natural candidates to stream rehabilitation experiments. Among them, the stream macrophyte Myriophyllum alterniflorum is used recently as biomonitor and is potentially useful for the restoration of heavy-metal contaminated localities. The best way to obtain a mass production of watermilfoil plants is micropropagation. We developed in vitro culture of M. alterniflorum and the effects of five media on the plant development were assessed. Five morphological and four physiological endpoints were examined leading to the recommendation of the Murashige and Skoog medium for ecotoxicological studies on chlorophyllous parts, and of the Gaudet medium for root cytotoxicity and phytoremediation studies. Micropropagated clones were acclimatized in a synthetic medium and in situ reintroduction was performed efficiently. This is the first report of micropropagated plants transplantation in streams. The successful establishment of watermilfoil beds even in polluted areas strongly suggested that ecological restoration using micropropagated watermilfoil is a promising biotechnology for phytoremediation and rehabilitation of degraded areas. Moreover, high bioconcentration factors evidenced that watermilfoil hyperaccumulates Cd and Cu, and could be potentially used in phytoremediation studies.

  11. Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Jacobsen, Dean

    2002-01-01

    1. Many amphibious plant species grow in the transition between terrestrial and submerged vegetation in small lowland streams. We determined biomass development, leaf turnover rate and invertebrate herbivory during summer in terrestrial and aquatic populations of three amphibious species...... production (average 1.2-5.1%) than aquatic populations (2.9-17.3%), while the same plant dry mass was consumed per unit ground area. 3. Grazing loss increased linearly with leaf age apart from the youngest leaf stages. Grazing loss during the lifetime of leaves was therefore 2.4-3.1 times higher than mean...... apparent loss to standing leaves of all ages. The results imply that variation in density of grazers relative to plant production can account for differences in grazing impact between terrestrial and aquatic populations, and that fast leaf turnover keeps apparent grazing damage down. 4. We conclude...

  12. FATTY ACID SIGNATURES DIFFERENTIATE MARINE MACROPHYTES AT ORDINAL AND FAMILY RANKS(1).

    Science.gov (United States)

    Galloway, Aaron W E; Britton-Simmons, Kevin H; Duggins, David O; Gabrielson, Paul W; Brett, Michael T

    2012-08-01

    Primary productivity by plants and algae is the fundamental source of energy in virtually all food webs. Furthermore, photosynthetic organisms are the sole source for ω-3 and ω-6 essential fatty acids (EFA) to upper trophic levels. Because animals cannot synthesize EFA, these molecules may be useful as trophic markers for tracking sources of primary production through food webs if different primary producer groups have different EFA signatures. We tested the hypothesis that different marine macrophyte groups have distinct fatty acid (FA) signatures by conducting a phylogenetic survey of 40 marine macrophytes (seaweeds and seagrasses) representing 36 families, 21 orders, and four phyla in the San Juan Archipelago, WA, USA. We used multivariate statistics to show that FA composition differed significantly (P macrophytes confirmed that this pattern was robust on a global scale (P macrophyte taxa shows a clear relationship between macrophyte phylogeny and FA content and strongly suggests that FA signature analyses can offer a viable approach to clarifying fundamental questions about the contribution of different basal resources to food webs. Moreover, these results imply that taxa with commercially valuable EFA signatures will likely share such characteristics with other closely related taxa that have not yet been evaluated for FA content. © 2012 Phycological Society of America.

  13. Influence of aquatic macrophytes on the littoral zone habitats of the Lake Ladoga, NW Russia

    Czech Academy of Sciences Publication Activity Database

    Raspopov, M.; Adamec, Lubomír; Husák, Štěpán

    2002-01-01

    Roč. 74, č. 4 (2002), s. 315-321 ISSN 0032-7786 R&D Projects: GA AV ČR KSK6005114 Keywords : higher aquatic plants * physical and chemical factors * littoral phytophilous zooplankton Subject RIV: EF - Botanics

  14. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.

    Science.gov (United States)

    Regier, Nicole; Cosio, Claudia; von Moos, Nadia; Slaveykova, Vera I

    2015-06-01

    In this study, the uptake and sub-toxic effects of CuO nanoparticles (CuO-NPs), dissolved Cu(II) alone or in combination with UV radiation on the aquatic macrophyte Elodea nuttallii were studied. Emphasis was on Cu accumulation, growth, photosynthesis and the oxidative stress related enzymes peroxidase (POD) and superoxide dismutase (SOD). The results showed stronger Cu accumulation in plants exposed to 10 mg L(-1) CuO-NPs, corresponding to 1.4-2 mg L(-1) dissolved Cu(II), than to 256 μg L(-1) Cu(II). However, the ratio between the accumulated Cu and dissolved Cu in CuO treatments was lower than in Cu(II) treatments. Additional UV exposure increased accumulation in both treatments, with the effect being stronger for Cu accumulation from CuO-NPs than for dissolved Cu(II). Photosynthetic capacity was strongly reduced by UV treatment, whereas remained unaffected by Cu(II) or CuO-NP treatments. Similarly, the increase of SOD activity was more pronounced in the UV treatments. On the other hand, POD activity enhancement was strongest in the plants exposed to CuO-NPs for 24 h. Expression of the copper transporter COPT1 as revealed by RT-qPCR was inhibited by Cu(II) and CuO-NP treatment, limiting the uptake of excess Cu into the cells. Overall, the combined exposure of E. nuttallii to UV radiation with CuO-NPs or Cu(II) has a higher impact than exposure to CuO-NPs or Cu(II) alone. The results imply that heavy pollution of natural water with CuO-NPs or dissolved Cu might have stronger effects in combination with natural UV irradiation on organisms in situ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Impact of water composition on association of Ag and CeO₂ nanoparticles with aquatic macrophyte Elodea canadensis.

    Science.gov (United States)

    Van Koetsem, Frederik; Xiao, Yi; Luo, Zhuanxi; Du Laing, Gijs

    2016-03-01

    In this study, the potential association of (citrate-stabilized) Ag (14.1 ± 1.0 nm) and CeO2 (6.7 ± 1.2 nm) engineered nanoparticles (ENPs), or their ionic counterparts, with the submerged aquatic plant Elodea canadensis, was examined and, in particular, parameters affecting the distribution of the nanoparticles (or metal ions) between plant biomass and the water phase were assessed using five distinct aqueous matrices (i.e. tap water, 10 % Hoagland's solution and three natural surface water samples). Individual plants were exposed to varying concentrations of Ag and CeO2 ENPs or Ag(+) and Ce(3+) ions during 72-h-lasting batch experiments. A dose-dependent increase of silver or cerium in plant biomass was observed for both the nanoparticles and the ions, whereby exposure to the latter systematically resulted in significantly higher biomass concentrations. Furthermore, the apparent plant uptake of CeO2 ENPs appeared to be higher than that for Ag ENPs when comparing similar exposure concentrations. These findings suggest that association with E. canadensis might be affected by particle characteristics such as size, composition, surface charge or surface coating. Moreover, the stability of the ENPs or ions in suspension/solution may be another important aspect affecting plant exposure and uptake. The association of the nanoparticles or ions with E. canadensis was affected by the physicochemical characteristics of the water sample. The silver biomass concentration was found to correlate significantly with the electrical conductivity (EC), dry residue (DR) and Cl(-), K, Na and Mg content in the case of Ag ENPs or with the EC, inorganic carbon (IC) and Cl(-), NO3 (-), Na and Mg content in the case of Ag(+) ions, whereas significant relationships between the cerium biomass concentration and the EC, DR, IC and Ca content or the pH, EC, DR, IC and Cl(-), Ca and Mg content were obtained for CeO2 ENPs or Ce(3+) ions, respectively. Results also indicated that the Ag

  16. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    Science.gov (United States)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  17. Genetic and nutritional characterization of some macrophytes, inhabiting the Bardawil Lagoon, Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    Hosam E. Elsaied

    2015-12-01

    Full Text Available The ecological and economical significances of macrophytes, inhabiting the Mediterranean Lagoon, Bardawil, northern Sinai, Egypt, are still ambiguous, due to lack of knowledge. This study focused on genetic and nutritional characterization of three dominant macrophyte species at Bardawil Lagoon. Genetic identifications were done through genomic DNA extraction, followed by PCR amplifications and sequencing of 18S rRNA genes of the studied species. Phylogenetic analyses indicated that two of the recorded species showed homologies with the seagrass species, Posidonia oceanica and Halophila ovalis, with nucleotide identities 94.5% and 96.8%, respectively. The third species showed a unique phylogenetic lineage, representing nucleotide identity average, 86.5%, among the brown seaweeds, Heterokontophyta. Nutritional analyses indicated that the recorded seaweed-like macrophyte had the highest recommended nutritional contents, crude protein, 24.67%, with a total amino acid composition of 6.64 g/100 g protein, and carbohydrate, 38.16%, besides a calorific value of 3.063 K cal/g, among the studied macrophytes. To the best of our knowledge, this is the first attempt to characterize macrophyte community in Bardawil Lagoon, using both genetic and biochemical approaches.

  18. Impact of invasive aquatic macrophytes on the population and behavioral ecology of mosquitoes (Diptera: Culicidae)

    Science.gov (United States)

    A field survey, three outdoor cage enclosure experiments, and laboratory studies were conducted to elucidate the impact of the invasive aquatic weeds Eichhornia crassipes (floating water hyacinth), Ludwigia hexapetala (emergent water yellow-primrose), and Egeria densa (submersed Brazilian waterweed)...

  19. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body.

    Science.gov (United States)

    Song, Yu-Zhi; Wang, Jin-Qi; Gao, Yong-Xia

    2017-04-01

    The disappearance of submerged vascular macrophytes in shallow eutrophic lakes is a common phenomenon in the world. To explore the mechanism of the decline in submerged macrophyte abundance due to the growth of epiphytic algae along a nutrient gradient in eutrophic water, a 2 × 3 factorial experiment was performed over 4 weeks with the submerged macrophyte (Myriophyllum spicatum L.) by determining the plant's biomass and some physiological indexes, such as chlorophyll (Chl) content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity in the leaves of M. spicatum L. on days 7, 14, 21, and 28, which are based on three groups of nitrogen and phosphorus levels in the water body (N-P [mg L -1 ]: NP1 0.5-0.05, NP2 2.5-0.25, NP3 4.5-0.45) and two levels of epiphytic algae (the epiphytic algae group and the control group). Epiphytic algal biomass was also assayed. The results indicated that epiphytic algal biomass remarkably enhanced in the course of the experiment with elevated levels of nitrogen and phosphorus in the water. Under the same level of nutrient condition, plants' biomass accumulation and Chl content were higher in the control group than that in the epiphytic algae group, respectively, while MDA content and SOD activity in the former were lower than that in the latter. The influences of epiphytic algae on the biomass accumulation and Chl content and MDA content became greater and greater with elevated levels of nutrients. In general, in this experiment, water nutrients promoted the growth of both epiphytic algae and submerged plants, while the growth of epiphytic algae hindered submerged macrophytes' growth by reducing Chl content and promoting peroxidation of membrane lipids in plants.

  20. Inibição da mineralização de compostos nitrogenados de lixiviado de macrófita aquática: adequação metodológica = Inhibition of the mineralization of nitrogen compounds in leachate from aquatic macrophytes: methodological adequacy

    Directory of Open Access Journals (Sweden)

    Maíra de Figueiredo Nunes

    2008-04-01

    Full Text Available Este estudo visou estabelecer as concentrações adequadas da nitrapirina para a inibição das demandas de oxigênio produzidas pelas oxidações dos compostos nitrogenados durante a mineralização aeróbia de lixiviado, utilizando a macrófita aquática Myriophyllumaquaticum como fonte de matéria orgânica dissolvida (MOD. Para tanto, realizaram-se incubações com lixiviado com diferentes tratamentos: (i tratamento com MOD, (ii tratamento com MOD + nitrapirina em diferentes concentrações (10; 25 e 50 mg L-1,visando encontrar a concentração que inibisse o processo de nitrificação, (iii tratamento com MOD + NH4SO2, (iv tratamento com MOD + NH4SO2 + nitrapirina, e (v tratamento com MOD + azida. A partir destas incubações, foram efetuadas medições periódicas da quantidade de oxigênio dissolvido destes tratamentos. Os resultados indicaram que a proporção de 10 mg L-1 de nitrapirina para cada 10 mg C de lixiviado é eficaz para inibir a oxidação dos compostos nitrogenados de lixiviados de macrófitas aquáticas.This study aimed to establish the adequate concentrations of nitrapyrin for the effective inhibition of oxygen demandrequired for the oxidation of nitrogen compounds during aerobic mineralization of leachate. The aquatic macrophyte Myriophyllum aquaticum was used as a source of dissolved organic matter (DOM. The leachate was incubated in several chambers, containing different composition and treatments: (i treatment with leachate (DOM, (ii treatment with DOM plus nitrapyrin in different concentrations (10; 25 and 50 mg L-1, aiming at finding the right concentration that inhibits the nitrification process, (iii treatment withDOM plus NH4SO2, (iv treatment containing DOM and nitrapyrin plus NH4SO2, and (v treatment with DOM plus azide. The dissolved oxygen amount in each incubation treatment was periodically measured. The results indicated that the ratio of 10 mg L-1 of nitrapyrin for each 10 mg C of leachate is efficient in