WorldWideScience

Sample records for submarine volcanic activity

  1. Submarine silicic volcanism: Processes and products

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.

    The occurrence of submarine silicic volcanics is rare at the mid-oceanic ridges, abyssal depths, seamounts and fracture zones. Hydrothermal processes are active in submarine silicic environments and are associated with host ores of Cu, Au, Ag, Pb...

  2. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  3. Intermediate products of sulfur disproportional reaction and their physical role in effusive to explosive submarine volcanic activity

    Science.gov (United States)

    Nakamura, K.; Takano, B.; Butterfield, D. A.; Resing, J.; Chadwick, W. W.; Embley, R. W.

    2009-12-01

    Recent direct observations of submarine volcanic activity in the Mariana Arc are giving us a chance to examine the role of volcanic gas in submarine volcanic conduits. Unlike subaerial volcanoes, where hydrogeologic conditions have different character from place to place, the overlying water mass above submarine volcanoes gives a uniform hydrographic setting. Currently, the places where we can directly observe submarine volcanic activity are located deeper than 400 m, which raises the boiling point of seawater to over 240 deg C. This situation allows us to examine the interaction of volcanic gases with ambient seawater at a shorter distance from the magma source than at subaerial volcanic settings. Arc volcano settings give us longer and more frequent opportunities to make observations and provide a more diverse range of submarine volcanism than ridge settings. Among the three major components of volcanic gases (i.e., H2O, CO2 and SO2), water follows a two phase boundary below the critical temperature after volatile components leave from the magmatic source. Milky sulfur sol bearing hydrothermal fluid is commonly observed throughout Mariana active sites. Most of the sulfur sol (colloidal elemental sulfur and polysulfides) might be formed by disproportional reaction of sulfur dioxide with seawater when water vapor shrinks to liquid water. The reaction creates not only sulfur sol but also various types of sulfite, which affects the pH of seawater. We detected short-lived sulfite species in the water column above several active Mariana volcanoes such as NW Rota-1, Daikoku and Nikko by on-board HPLC. Because most observations are made on the liquid phase side of H2O boundary, it is very hard to get data to investigate the physical and chemical sulfur sol forming process occurring on the vapor phase side or at the critical state (i.e., near the magma source process). Carbon dioxide behaves as a gas at a wide range of pressures and temperatures and carries heat and

  4. Microbial community differentiation between active and inactive sulfide chimneys of the Kolumbo submarine volcano, Hellenic Volcanic Arc.

    Science.gov (United States)

    Christakis, Christos A; Polymenakou, Paraskevi N; Mandalakis, Manolis; Nomikou, Paraskevi; Kristoffersen, Jon Bent; Lampridou, Danai; Kotoulas, Georgios; Magoulas, Antonios

    2018-01-01

    Over the last decades, there has been growing interest about the ecological role of hydrothermal sulfide chimneys, their microbial diversity and associated biotechnological potential. Here, we performed dual-index Illumina sequencing of bacterial and archaeal communities on active and inactive sulfide chimneys collected from the Kolumbo hydrothermal field, situated on a geodynamic convergent setting. A total of 15,701 OTUs (operational taxonomic units) were assigned to 56 bacterial and 3 archaeal phyla, 133 bacterial and 16 archaeal classes. Active chimney communities were dominated by OTUs related to thermophilic members of Epsilonproteobacteria, Aquificae and Deltaproteobacteria. Inactive chimney communities were dominated by an OTU closely related to the archaeon Nitrosopumilus sp., and by members of Gammaproteobacteria, Deltaproteobacteria, Planctomycetes and Bacteroidetes. These lineages are closely related to phylotypes typically involved in iron, sulfur, nitrogen, hydrogen and methane cycling. Overall, the inactive sulfide chimneys presented highly diverse and uniform microbial communities, in contrast to the active chimney communities, which were dominated by chemolithoautotrophic and thermophilic lineages. This study represents one of the most comprehensive investigations of microbial diversity in submarine chimneys and elucidates how the dissipation of hydrothermal activity affects the structure of microbial consortia in these extreme ecological niches.

  5. A submarine volcanic eruption leads to a novel microbial habitat.

    Science.gov (United States)

    Danovaro, Roberto; Canals, Miquel; Tangherlini, Michael; Dell'Anno, Antonio; Gambi, Cristina; Lastras, Galderic; Amblas, David; Sanchez-Vidal, Anna; Frigola, Jaime; Calafat, Antoni M; Pedrosa-Pàmies, Rut; Rivera, Jesus; Rayo, Xavier; Corinaldesi, Cinzia

    2017-04-24

    Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus's hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus's hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus's hair can drive the restart of biological systems after submarine volcanic eruptions.

  6. Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand

    Science.gov (United States)

    Stoffers, P.; Hannington, M.; Wright, I.; Herzig, P.; de Ronde, C.; Scientific Party, Shipboard

    1999-10-01

    Hot springs in active geothermal areas such as Yellowstone National Park, the Geysers geothermal field in California, and the Taupo volcanic zone in New Zealand are notably enriched in the trace metals Au, Ag, As, Sb, and Hg. Such near-surface hot springs have formed many of the world's important deposits of gold and silver and some of the largest deposits of mercury. The majority of these are associated with continental geothermal systems in subaerial environments. Here we report the discovery of active mercury-depositing hot springs in a submarine setting, at nearly 200 m water depth, within the offshore extension of the Taupo volcanic zone of New Zealand. These vents contain the first documented occurrence of elemental mercury on the sea floor and provide an important link between offshore hydrothermal activity and mercury-depositing geothermal systems on land. The discovery has implications for mercury transport in sea-floor hydrothermal systems and underscores the importance of submarine volcanic and geothermal activity as a source of mercury in the oceans.

  7. First Use of an Autonomous Glider for Exploring Submarine Volcanism in the SW Pacific

    Science.gov (United States)

    Matsumoto, H.; Embley, R. W.; Haxel, J. H.; Dziak, R. P.; Bohnenstiehl, D. R.; Stalin, S.; Meinig, C.

    2010-12-01

    A 1000-m Slocum glider® (Teledyne Webb Research Corporation) with CTD, turbidity, and hydrophone sensors was operated for two days in the Northeast Lau Basin. The survey was conducted near West Mata Volcano, where in November of 2008 the NOAA PMEL Vents program observed an active eruption at its 1207 m summit—the deepest submarine activity ever before witnessed. Our goal was to use the glider as a forensic tool to search for other nearby eruption sites with onboard sensors that detect the chemical and hydroacoustic signatures associated with the volcanic and hydrothermal plumes. The glider was launched approximately 40 km to the west of West Mata. It flew toward West Mata and was recovered near the summit of the volcano after repeating 13 yos during a 41-hour mission. Although the recordings were affected by mechanical noise from the glider’s rudder, the data demonstrate that the system can detect the wide-band noises (>1 kHz) associated with submarine volcanic and intense hydrothermal activity. The glider recorded complex acoustic amplitudes due to the multiple raypaths from West Mata as well as temporal variations in the volcano’s rate of activity, and demonstrated that these geologic processes contribute to the region’s high ambient noise levels. With the exception of the deployment and recovery, the mission was managed entirely by the shore teams in PMEL (Seattle, WA) and OSU labs (Newport, OR), ~5000 miles away without an engineer onboard. The dive cycle of the 950-m dives was ~3.5 hours and the average speed was ~0.27 cm/s. The CTD data were downloaded at every surface cycle and appeared to be of high quality. However we found that the sensitivity of the Wetlabs ECO flntu turbidity sensor was not adequate for the detection of volcanic plumes. The mission demonstrated PMEL’s ability to use autonomous gliders to monitor a variety of environmental parameters including ambient sound levels, temperature, salinity and turbidity for the purpose of finding

  8. Long-term eruptive activity at a submarine arc volcano.

    Science.gov (United States)

    Embley, Robert W; Chadwick, William W; Baker, Edward T; Butterfield, David A; Resing, Joseph A; de Ronde, Cornel E J; Tunnicliffe, Verena; Lupton, John E; Juniper, S Kim; Rubin, Kenneth H; Stern, Robert J; Lebon, Geoffrey T; Nakamura, Ko-ichi; Merle, Susan G; Hein, James R; Wiens, Douglas A; Tamura, Yoshihiko

    2006-05-25

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes.

  9. Submarine geology and geomorphology of active Sub-Antarctic volcanoes: Heard and McDonald Islands

    Science.gov (United States)

    Watson, S. J.; Coffin, M. F.; Whittaker, J. M.; Lucieer, V.; Fox, J. M.; Carey, R.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Martin, T.; Cooke, F.

    2016-12-01

    Heard and McDonald Islands (HIMI) are World Heritage listed sub-Antarctic active volcanic islands in the Southern Indian Ocean. Built atop the Kerguelen Plateau by Neogene-Quaternary volcanism, HIMI represent subaerial exposures of the second largest submarine Large Igneous Province globally. Onshore, processes influencing island evolution include glaciers, weathering, volcanism, vertical tectonics and mass-wasting (Duncan et al. 2016). Waters surrounding HIMI are largely uncharted, due to their remote location. Hence, the extent to which these same processes shape the submarine environment around HIMI has not been investigated. In early 2016, we conducted marine geophysical and geologic surveys around HIMI aboard RV Investigator (IN2016_V01). Results show that volcanic and sedimentary features prominently trend east-west, likely a result of erosion by the eastward flowing Antarctic Circumpolar Current and tidal currents. However, spatial patterns of submarine volcanism and sediment distribution differ substantially between the islands. >70 sea knolls surround McDonald Island suggesting substantial submarine volcanism. Geophysical data reveals hard volcanic seafloor around McDonald Island, whereas Heard Island is characterised by sedimentary sequences tens of meters or more thick and iceberg scours - indicative of glacial processes. Differences in submarine geomorphology are likely due to the active glaciation of Heard Island and differing rock types (Heard: alkali basalt, McDonald: phonolite), and dominant products (clastics vs. lava). Variations may also reflect different magmatic plumbing systems beneath the two active volcanoes (Heard produces larger volumes of more focused lava, whilst McDonald extrudes smaller volumes of more evolved lavas from multiple vents across the edifice). Using geophysical data, corroborated with new and existing geologic data, we present the first geomorphic map revealing the processes that shape the submarine environment around HIMI.

  10. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    Science.gov (United States)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-17

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  11. Gravitational, erosional and depositional processes on volcanic ocean islands: Insights from the submarine morphology of Madeira Archipelago

    Science.gov (United States)

    Quartau, Rui; Ramalho, Ricardo S.; Madeira, José; Santos, Rúben; Rodrigues, Aurora; Roque, Cristina; Carrara, Gabriela; Brum da Silveira, António

    2018-01-01

    The submarine flanks of volcanic ocean islands are shaped by a variety of physical processes. Whilst volcanic constructional processes are relatively well understood, the gravitational, erosional and depositional processes that lead to the establishment of large submarine tributary systems are still poorly comprehended. Until recently, few studies have offered a comprehensive source-to-sink approach, linking subaerial morphology with near-shore shelf, slope and far-field abyssal features. In particular, few studies have addressed how different aspects of the subaerial part of the system (island height, climate, volcanic activity, wave regime, etc.) may influence submarine flank morphologies. We use multibeam bathymetric and backscatter mosaics of an entire archipelago - Madeira - to investigate the development of their submarine flanks. Crucially, this dataset extends from the nearshore to the deep sea, allowing a solid correlation between submarine morphologies with the physical and geological setting of the islands. In this study we also established a comparison with other island settings, which allowed us to further explore the wider implications of the observations. The submarine flanks of the Madeira Archipelago are deeply dissected by large landslides, most of which also affected the subaerial edifices. Below the shelf break, landslide chutes extend downslope forming poorly defined depositional lobes. Around the islands, a large tributary system composed of gullies and channels has formed where no significant rocky/ridge outcrops are present. In Madeira Island these were likely generated by turbidity currents that originated as hyperpycnal flows, whilst on Porto Santo and Desertas their origin is attributed to storm-induced offshore sediment transport. At the lower part of the flanks (-3000 to -4300 m), where seafloor gradients decrease to 0.5°-3°, several scour and sediment wave fields are present, with the former normally occurring upslope of the latter

  12. Volcanic activity and climatic changes.

    Science.gov (United States)

    Bryson, R A; Goodman, B M

    1980-03-07

    Radiocarbon dates of volcanic activity suggest variations that appear to be related to climatic changes. Historical eruption records also show variations on the scale of years to centuries. These records can be combined with simple climatic models to estimate the impact of various volcanic activity levels. From this analysis it appears that climatic prediction in the range of 2 years to many decades requires broad-scale volcanic activity prediction. Statistical analysis of the volcanic record suggests that some predictability is possible.

  13. Geological Implications on the Different Products of Submarine Volcanism in Sangihe Waters : View from the Rov (Remotely Operated Vehicles)

    Science.gov (United States)

    Priyadi, B.; Basuki, N.; Abidin, H.; Permana, H.; Handayani, L.; Wirasantosa, S.; Nganro, N.; Djamaluddin, R.; Ch. Kusuma, L.; Ratna Setyawidati, N.; Makarim, S.; Solihudin, T.

    2010-12-01

    Index Satal 2010, a joint marine research of Indonesia - USA, was realized in June-August 2010 to explore the deep sea of the Sangihe - Talaud Waters of Indonesia. This research was conducted by RV Baruna Jaya-4 and RV Okeanos Explorer of NOAA. Beside conducting multi beam imagery, RV Okeanos Explorer produced photos and video of the selected sites through high definition cameras mounted on an ROV operated from onboard RV Okeanos Explorer. The following discussion were based on ROV observation concerning the occurrence of volcanic products in the dive sites. Two submarine volcanoes (Naung and Kawio Barat), indicate various textures of submarine volcanic products from which magmatic composition and eruption types can be inferred. Lava is mostly observed around Kawio Barat and reflecting slightly coarse grained, thick and less structured, and in some spots flow textures could be observed especially in rough morphology. The overlying lavas show finer grain size with relatively shinny surface and darker color and supposedly having less contents of silica as it forms pillow and sheeting joint structures. The rock composition is presumably basaltic and is related with the subduction systems of the Sangihe arc. The coarser lavas might be more andesitic in composition, hence they are originated from the more differentiated magma chamber. This phenomenon indicates a change of magmatic composition from more differentiated magma to the less differentiated one. Geologically, this observation may indicate new formation of magma that may be related with the increasing intensity of subduction activity. Volcanic products around Naung are observed as pyroclastic covers on basaltic lavas. Pyroclastics present as lapilli deposit in light to dark brown colors forming stratification of 2 cm to 30 cm thick and unconsolidated clastic materials. The occurrence of pebble-size fragments of igneous rocks associated with pyroclastics indicate a phreatic to phreato-magmatic explosions of the

  14. Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes Ruptura sísmica submarina, tectónica y volcanismo activo a lo largo de la Falla Liquiñe-Ofqui e implicancias para el peligro sísmico en los Andes patagónicos

    OpenAIRE

    Gabriel Vargas; Sofía Rebolledo; Sergio A Sepúlveda; Alfredo Lahsen; Ricardo Thiele; Brian Townley; Cristóbal Padilla; Rodrigo Rauld; Maria José Herrera; Marisol Lara

    2013-01-01

    The Liquiñe-Ofqui fault zone (LOFZ) in the Patagonian Andes is an active major transpressional intra-arc fault system along which Quaternary faulting and volcanism develop. Subaerial and submarine geomorphologic and structural characterization of latest Pleistocene-Holocene faults and monogenetic volcanoes allows us to assess geological cartography of active faults and the kinematic model for recent tectonics during postglacial times, since 12,000 cal. years BP. This allows increasing the bas...

  15. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    Science.gov (United States)

    Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed.

  16. Segmentation and tracking of anticyclonic eddies during a submarine volcanic eruption using ocean colour imagery.

    Science.gov (United States)

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangrà, Pablo

    2015-04-14

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments.

  17. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands.

    Directory of Open Access Journals (Sweden)

    Isabel Ferrera

    Full Text Available The submarine volcanic eruption occurring near El Hierro (Canary Islands in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012. Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m, coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria. Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer

  18. Prodigious submarine landslides during the inception and early growth of volcanic islands.

    Science.gov (United States)

    Hunt, James E; Jarvis, Ian

    2017-12-12

    Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth's surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard.

  19. Submarine Arc Volcanism in the Southern Mariana Arc: Results of Recent ROV studies

    Science.gov (United States)

    Nichols, A. R.; Tamura, Y.; Stern, R. J.; Embley, R. W.; Hein, J. R.; Jordan, E.; Ribeiro, J. M.; Sica, N.; Kohut, E. J.; Whattam, S. A.; Hirahara, Y.; Senda, R.; Nunokawa, A.

    2009-12-01

    The submarine Diamante cross-arc volcanoes (~16°N) and the Sarigan-Zealandia Bank Multi-Volcano Complex (SZBMVC; ~16°45’N), north and south, respectively, of Anatahan Island in the southern Mariana Arc, were studied during several dives in June 2009 using the ROV Hyper-Dolphin, cruise NT09-08 (R/V Natsushima); neither has been studied in detail before. The data collected provide a new perspective on how the subduction factory operates to complement previous studies on other cross-arc volcanic chains in the Izu-Bonin-Mariana Arc. The Diamante complex consists of three major edifices, two cones (West and Central Diamante) and a more complex caldera-like edifice at the volcanic front (East Diamante). West and Central Diamante are basaltic volcanoes but East Diamante has a more complex history. Our studies indicate initial construction of a basaltic volcano. Magmatic evolution led to a violent caldera-forming and quieter dome-building events. Post-caldera quiescence allowed a carbonate platform to grow, now preserved on the eastern caldera wall. Felsic magma or hot rock provides a heat source for an active hydrothermal field associated with felsic domes in the caldera, which NOAA investigators discovered in 2004. A new type of hydrothermal deposit was discovered in the hydrothermal field, consisting of large sulfide-sulfate mounds topped by bulbous constructions of low-temperature Fe and Mn oxides. Vents on the mounds were observed to emit shimmering water. The SZBMVC consists of six closely spaced edifices whose loci are aligned along two parallel trends, one along the volcanic front (Zealandia Bank, Sarigan and South Sarigan), and one about 15 km west towards the rear-arc (Northwest Zealandia, West Zealandia and West Sarigan). Zealandia Bank dives revealed that, as with East Diamante, initial activity was basaltic and became more evolved with time. The western half of Zealandia Bank is dominated by felsic lavas centered on a small (~2 km diameter) caldera and

  20. North Sea submarine cable disruptions and fishing activity

    NARCIS (Netherlands)

    Hintzen, N.T.; Machiels, M.A.M.

    2014-01-01

    At the North Sea seafloor, numerous submarine cables are positioned that connect telecommunication networks between countries. Worldwide, human activities cause most of the cable disruptions with fisheries accounting for nearly half of all reported faults. Due to a recent increase of submarine cable

  1. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    OpenAIRE

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-01-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore...

  2. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    Science.gov (United States)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  3. New insights on the petrology of submarine volcanics from the Western Pontine Archipelago (Tyrrhenian Sea, Italy)

    Science.gov (United States)

    Conte, A. M.; Perinelli, C.; Bianchini, G.; Natali, C.; Martorelli, E.; Chiocci, F. L.

    2016-11-01

    The Pontine Islands form a volcanic archipelago in the Tyrrhenian Sea. It consists of two edifices, the islands of Ponza, Palmarola and Zannone and the islands of Ventotene and Santo Stefano, respectively. The Archipelago developed during two main volcanic cycles in the Plio-Pleistocene: 1) the Pliocene episode erupted subalkaline, silica-rich volcanic units, which constitute the dominant products in the western edifice (Ponza and Zannone Islands); 2) the Pleistocene episode erupted more alkaline products, represented by evolved rocks (trachytes to peralkaline rhyolites) in the islands of Ponza and Palmarola and by basic to intermediate rocks in the eastern edifice (Ventotene and Santo Stefano Islands). In this paper we present new geochemical and petrological data from submarine rock samples collected in two oceanographic cruises and a scuba diving survey. The main result is the recovery of relatively undifferentiated lithotypes that provide further insights on the magmatic spectrum existing in the Pontine Archipelago, allowing modelling of the whole suite of rocks by fractional crystallization processes. New major and trace element data and thermodynamic constrains (by the software PELE) indicate the existence of three distinct evolutionary trends corresponding to a HK calcalkaline series in the Pliocene, followed by a transitional and then by a shoshonite series in the Pleistocene. In particular, the transitional series, so far overlooked in the literature, is required in order to explain the genesis of several peralkaline felsic rocks recognized in the Archipelago. On the whole, the new geochemical data i) confirm the orogenic signature of the suites, ii) allow to rule out an anatectic origin for both subalkaline and peralkaline rhyolites and iii) indicate highly heterogeneous mantle sources, due to crustal components variously recycled in the mantle via subduction.

  4. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    Science.gov (United States)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  5. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    Science.gov (United States)

    Lauritano, C.; Ruocco, M.; Dattolo, E.; Buia, M. C.; Silva, J.; Santos, R.; Olivé, I.; Costa, M. M.; Procaccini, G.

    2015-07-01

    Submarine volcanic vents are being used as natural laboratories to assess the effects of increased ocean acidity and carbon dioxide (CO2) concentration on marine organisms and communities. However, in the vicinity of volcanic vents other factors in addition to CO2, which is the main gaseous component of the emissions, may directly or indirectly confound the biota responses to high CO2. Here we used for the first time the expression of antioxidant and stress-related genes of the seagrass Posidonia oceanica to assess the stress levels of the species. Our hypothesis is that unknown factors are causing metabolic stress that may confound the putative effects attributed to CO2 enrichment only. We analyzed the expression of 35 antioxidant and stress-related genes of P. oceanica in the vicinity of submerged volcanic vents located in the islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize gene expression patterns. Fifty-one percent of genes analyzed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls at both Ischia and Panarea, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The up-regulation of genes involved in the free radical detoxification response (e.g., CAPX, SODCP and GR) indicates that, in contrast with Ischia, P. oceanica at the Panarea site faces stressors that result in the production of reactive oxygen species, triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. These proteins are activated to adjust stress-accumulated misfolded proteins and prevent their aggregation as a response to some stressors, not necessarily high temperature. This is the first

  6. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  7. Evidence of persistent seismo-volcanic activity at Marsili seamount

    Directory of Open Access Journals (Sweden)

    Antonino D'Alessandro

    2012-06-01

    Full Text Available The Marsili submarine volcano is the largest European volcano, and it can be considered as the key to our understanding of the dynamics of the spreading and back-arc lithosphere formation in the Tyrrhenian sector [Marani et al. 2004, and references therein]. Despite its size, it is very difficult to monitor due to its geographical position [D'Alessandro et al. 2011], and it still remains little known. In 2006, the Centro Nazionale Terremoti (National Earthquake Centre of the Istituto Nazionale di Geofisica e Vulcanologia (INGV deployed a broadband ocean-bottom seismometer with hydrophone (OBS/H [Mangano et al. 2011] on the flat top of Marsili volcano, at a depth of ca. 790 m. In only nine days, the instrument recorded ca. 800 seismo-volcanic events [D'Alessandro et al. 2009]. This revealed the intense seismo-volcanic activity of Marsili volcano for the first time. […] 

  8. Influence of the submarine volcanic eruption off El Hierro (Canary Islands) on the mesopelagic cephalopod's metal content.

    Science.gov (United States)

    Lozano-Bilbao, Enrique; Gutiérrez, Ángel José; Hardisson, Arturo; Rubio, Carmen; González-Weller, Dailos; Aguilar, Natacha; Escánez, Alejandro; Espinosa, José María; Canales, Paula; Lozano, Gonzalo

    2017-10-12

    This work investigates whether a submarine volcanic eruption off El Hierro (Canary Islands) in October 2011 influenced the metal contents of two deep water cephalopod species: Abraliopsis morisii and Pyroteuthis margaritifera. This was assessed by comparing metal contents in specimens collected off the island of El Hierro and in the neighbouring islands of La Palma and Tenerife during an experimental deep water fishing trip. The concentration of 20 heavy metals was analyzed in 180 specimens of A. morisii and P. margaritifera collected around the three islands to test for inter-island differences for each species and metal. While both species showed geographical differences in metal concentrations, the main finding was that A. morisii could be a bioindicator species for metals such as Li, Sr and Ca. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Active Volcanic Plumes on Io

    Science.gov (United States)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http

  10. Active Volcanic Eruptions on Io

    Science.gov (United States)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can

  11. Characterizing Volcanic Processes using Near-bottom, High Resolution Magnetic Mapping of the Caldera and Inner Crater of the Kick'em Jenny Submarine Volcano

    Science.gov (United States)

    Ruchala, T. L.; Chen, M.; Tominaga, M.; Carey, S.

    2016-12-01

    Kick'em Jenny (KEJ) is an active submarine volcano located in the Lesser Antilles subduction zone, 7.5 km north of the Caribbean island Grenada. KEJ, known as one of the most explosive volcanoes in Caribbean, erupted 12 times since 1939 with recent eruptions in 2001 and possibly in 2015. Multiple generations of submarine landslides and canyons have been observed in which some of them can be attributed to past eruptions. The structure of KEJ can be characterized as a 1300 m high conical profile with its summit crater located around 180 m in depth. Active hydrothermal venting and dominantly CO2 composition gas seepage take place inside this 250m diameter crater, with the most activity occurring primarily within a small ( 70 x 110 m) depression zone (inner crater). In order to characterize the subsurface structure and decipher the processes of this volcanic system, the Nautilus NA054 expedition in 2014 deployed the underwater Remotely Operated Vehicle (ROV) Hercules to conduct near-bottom geological observations and magnetometry surveys transecting KEJ's caldera. Raw magnetic data was corrected for vehicle induced magnetic noise, then merged with ROV to ship navigation at 1 HZ. To extract crustal magnetic signatures, the reduced magnetic data was further corrected for external variations such as the International Geomagnetic Reference Field and diurnal variations using data from the nearby San Juan Observatory. We produced a preliminary magnetic anomaly map of KEJ's caldera for subsequent inversion and forward modeling to delineate in situ magnetic source distribution in understanding volcanic processes. We integrated the magnetic characterization of the KEJ craters with shipboard multibeam, ROV visual descriptions, and photomosaics. Initial observations show the distribution of short wavelength scale highly magnetized source centered at the north western part of the inner crater. Although locations of gas seeps are ubiquitous over the inner crater area along ROV

  12. Volcanic red-bed copper mineralisation related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada

    Science.gov (United States)

    Cabral, Alexandre Raphael; Beaudoin, Georges

    2007-11-01

    Two types of native copper occur in Upper Silurian basaltic rocks in the Mont Alexandre area, Quebec Appalachians: (1) type 1 forms micrometric inclusions in plagioclase and is possibly magmatic in origin, whereas (2) type 2 occurs as coarse-grained patches rimmed by cuprite in altered porphyritic basalt. Type 1 has higher contents of sulphur (2,000-20,263 ppm) and arsenic (146-6,017 ppm), and a broader range of silver abundances (<65-2,186 ppm Ag) than type 2 (149-1,288 ppm S, <90-146 As, <65-928 ppm Ag). No mineral inclusions of sulphide or arsenide in native copper were observed at the electron-microprobe scale. Primary igneous fabrics are preserved, but the basaltic flows are pervasively oxidised and plagioclase is albitised. Chlorite replaces plagioclase and forms interstitial aggregates in the groundmass and has Fe/(Fe+Mg) ratios ranging from 0.29 to 0.36 with calculated temperatures between 155°C and 182°C. Copper sulphides in vacuoles and veinlets are associated with malachite, fibro-radiating albite and yarrowite (Cu9S8 with up to 0.3 wt% Ag). Bulk-rock concentrations of thallium and lithium range from 70 to 310 ppb and 10 to 22 ppm, respectively, and thallium is positively correlated with Fe2O3. Such concentrations of thallium and lithium are typical of spilitisation during heated seawater-basalt interaction. Spilitisation is consistent with the regional geological setting of deepwater-facies sedimentation, but is different from current models for volcanic red-bed copper, which indicate subaerial oxidation of volcanic flows. The volcanic red-bed copper model should be re-examined to account for native copper mineralisation in basalts altered by warm seawater.

  13. The 1998-2001 submarine lava balloon eruption at the Serreta ridge (Azores archipelago): Constraints from volcanic facies architecture, isotope geochemistry and magnetic data

    Science.gov (United States)

    Madureira, Pedro; Rosa, Carlos; Marques, Ana Filipa; Silva, Pedro; Moreira, Manuel; Hamelin, Cédric; Relvas, Jorge; Lourenço, Nuno; Conceição, Patrícia; Pinto de Abreu, Manuel; Barriga, Fernando J. A. S.

    2017-01-01

    The most recent submarine eruption observed offshore the Azores archipelago occurred between 1998 and 2001 along the submarine Serreta ridge (SSR), 4-5 nautical miles WNW of Terceira Island. This submarine eruption delivered abundant basaltic lava balloons floating at the sea surface and significantly changed the bathymetry around the eruption area. Our work combines bathymetry, volcanic facies cartography, petrography, rock magnetism and geochemistry in order to (1) track the possible vent source at seabed, (2) better constrain the Azores magma source(s) sampled through the Serreta submarine volcanic event, and (3) interpret the data within the small-scale mantle source heterogeneity framework that has been demonstrated for the Azores archipelago. Lava balloons sampled at sea surface display a radiogenic signature, which is also correlated with relatively primitive (low) 4He/3He isotopic ratios. Conversely, SSR lavas are characterized by significantly lower radiogenic 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios than the lava balloons and the onshore lavas from the Terceira Island. SSR lavas are primitive, but incompatible trace-enriched. Apparent decoupling between the enriched incompatible trace element abundances and depleted radiogenic isotope ratios is best explained by binary mixing of a depleted MORB source and a HIMU­type component into magma batches that evolved by similar shallower processes in their travel to the surface. The collected data suggest that the freshest samples collected in the SSR may correspond to volcanic products of an unnoticed and more recent eruption than the 1998-2001 episode.

  14. The Keelung Submarine Volcano in the near-shore area of northern Taiwan and its tectonic implication

    Science.gov (United States)

    Tsai, Ching-Hui; Hsu, Shu-Kun; Lin, Shiao-Shan; Yang, Tsanyao F.; Wang, Shiou-Ya; Doo, Wen-Bin; Lee, Hsiao-Fen; Lan, Tefang; Huang, Jian-Cheng; Liang, Chin-Wei

    2017-11-01

    The Taiwan mountain belt has been created due to the collision between the Philippine Sea Plate and the Eurasian Plate. Northernmost Taiwan and its offshore area are now under post-collisional collapse. The post-collisional magmatism is distributed around northern Taiwan. Here we first report a submarine volcano, named Keelung Submarine Volcano, existing in the near-shore area of northern Taiwan. The high 3He/4He ratios in the collected seawater samples suggest that the magma of the Keelung Submarine Volcano is derived from a mantle source. Geometrically, both the Keelung Submarine Volcano and the Tatun Volcano Group are situated above the western border of the subducted Philippine Sea Plate and may have a same magma source. Both volcanic areas belong to the northern Taiwan volcanic zone, instead of the Ryukyu volcanic front. The Keelung Submarine Volcano has been rotated clockwise ∼48° after its formation, which implies that the Keelung Submarine Volcano has formed before the Luzon arc collided against northern Taiwan. Consequently, the post-collisional model to explain the formation of the northern Taiwan volcanic zone is questionable. As indicated by numerous shallow earthquakes and persistent emissions of the volcanic gases out of the seafloor around the volcanic cone, the Keelung Submarine Volcano is as active as the Tatun Volcano Group. For the sake of volcanic hazard assessment, it is essential to monitor the activity of the Keelung Submarine Volcano.

  15. Spatial and temporal variations of diffuse CO2 degassing at El Hierro volcanic system: Relation to the 2011-2012 submarine eruption

    Science.gov (United States)

    Melián, Gladys; Hernández, Pedro A.; Padrón, Eleazar; Pérez, Nemesio M.; Barrancos, José; Padilla, Germán.; Dionis, Samara; Rodríguez, Fátima; Calvo, David; Nolasco, Dacil

    2014-09-01

    We report herein the results of extensive diffuse CO2 emission surveys performed on El Hierro Island in the period 1998-2012. More than 17,000 measurements of the diffuse CO2 efflux were carried out, most of them during the volcanic unrest period that started in July 2011. Two significant precursory signals based on geochemical and geodetical studies suggest that a magma intrusion processes might have started before 2011 in El Hierro Island. During the preeruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep-seated magmatic gases to the surface. The second one, between 24 October and 27 November 2011, started before the most energetic seismic events of the volcanic-seismic unrest. The data presented here demonstrate that combined continuous monitoring studies and discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption.

  16. Submarine Warfare in the 20th & 21st Centuries: A Bibliography

    National Research Council Canada - National Science Library

    Huygen, Michaele

    2003-01-01

    There are constant motions in the sea caused by atmospheric and seabed activities volcanic disruptions marine animals ships and submarines -- all of which create what is called the ambient noise level of the oceans...

  17. Tellurium in active volcanic environments: Preliminary results

    Science.gov (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  18. Researchers rapidly respond to submarine activity at Loihi Volcano, Hawaii

    Science.gov (United States)

    The 1996 Loihi Science Team

    The largest swarm of earthquakes ever observed at a Hawaiian volcano occurred at Loihi Seamount during July and early August 1996. The earthquake activity formed a large summit pit crater similar to those observed at Kilauea, and hydrothermal activity led to the formation of intense hydrothermal plumes in the ocean surrounding the summit. To investigate this event, the Rapid Response Cruise (RRC) was dispatched to Loihi in early August and two previously planned LONO cruises (named for a Hawaiian warrior god) sailed in September and October on the R/V Kaimikai-O-Kanaloa. Calm weather and a newly refurbished ship provided excellent opportunities for documenting the volcanic, hydrothermal plume, vent, and biological activities associated with the earthquake swarm.

  19. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    Science.gov (United States)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3 × 2km2 sized magma chamber emplaced at ∼ 2.5 km beneath the seafloor connected to the permeable cone via a ∼ 200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first

  20. Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes Ruptura sísmica submarina, tectónica y volcanismo activo a lo largo de la Falla Liquiñe-Ofqui e implicancias para el peligro sísmico en los Andes patagónicos

    Directory of Open Access Journals (Sweden)

    Gabriel Vargas

    2013-01-01

    Full Text Available The Liquiñe-Ofqui fault zone (LOFZ in the Patagonian Andes is an active major transpressional intra-arc fault system along which Quaternary faulting and volcanism develop. Subaerial and submarine geomorphologic and structural characterization of latest Pleistocene-Holocene faults and monogenetic volcanoes allows us to assess geological cartography of active faults and the kinematic model for recent tectonics during postglacial times, since 12,000 cal. years BP. This allows increasing the basic geological knowledge necessary for determining the seismic hazard associated with cortical structures in the Aysén region in southern Chile. Fault cartography and field observations suggest dominant dextral-reverse strike slip along north-south and locally NNW-striking faults, dextral-normal strike slip along NE to NNE- striking faults, and sinistral strike slip along east-west faults. This kinematics is consistent with regional SW-NE shortening in the context of a major transpressional fault zone. Holocene and even historic monogenetic and sub-aquatic volcanism occurred in this tectonic setting in a close spatial relationship and probably favored by the activity and local architecture of faults. Submarine fault scarps and deformed sediments observed at the bottom of the Aysén Fjord were associated with the destructive April 2007 Mw6.2 earthquake located along the LOFZ. Our observations show that this earthquake occurred along dextral 15-20 km long N-S structure named Punta Cola Fault (PCF. This fault system is located some kilometres to the east of the main N-S Río Cuervo Fault (RCF. Most of the epicentres of the seismic swarm during 2007 were located along or in between both structures. The study area is a transference zone between N-S regional branches of the LOFZ. The cartography of fault segments proposed here together with geophysical and geologic data suggest that large earthquakes Mw6.2-6.5 can be typically expected along most of the active

  1. Earthquakes and submarine volcanism in the Northeast Pacific: Exploration in the time domain based on 21-years of hydroacoustic monitoring

    Science.gov (United States)

    Hammond, S. R.; Dziak, R. P.; Fox, C. G.

    2012-12-01

    Monitoring of regional seismic activity in the Northeast Pacific has been accomplished for the past 21 years using US Navy's Sound Surveillance System (SOSUS) hydrophone arrays. Seafloor seismic activity in this region occurs along the spreading center and transform boundaries between the Juan de Fuca, Pacific and North American plates. During the time span, from 1991 through 2011, nearly 50,000 earthquakes were detected and located. The majority of these events were associated with these tectonic boundaries but sections of several plate boundaries were largely aseismic during the this time span. While most of the earthquakes were associated with geological structures revealed in bathymetric maps of the region, there were also less easily explained intraplate events including a swarm of events within the interior of the southern portion of the Juan de Fuca plate. The location and sequential timing of events on portions of the plate boundaries also suggests ordered patterns of stress release. Among the most scientifically significant outcomes of acoustic monitoring was the discovery that deep seafloor magmatic activity can be accompanied by intense (> 1000 events/day) earthquake swarms. The first swarm detected by SOSUS, in 1993, was confirmed to have been associated with an extrusive volcanic eruption which occurred along a segment of the Juan de Fuca spreading center. Notably, this was the first deep spreading center eruption detected, located, and studied while it was active. Subsequently, two more swarms were confirmed to have been associated with volcanic eruptions, one on the Gorda spreading center in 1996 and the other at Axial volcano in 1998. One characteristic of these swarm events is migration of their earthquake locations 10s of km along the ridge axis tracking the movement of magma down-rift. The most rapid magma propagation events have been shown to be associated with seafloor eruptions and dramatic, transient changes in hydrothermal circulation as

  2. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  3. Exploring the submarine Graham Bank in the Sicily Channel

    Directory of Open Access Journals (Sweden)

    Mauro Coltelli

    2016-05-01

    Full Text Available In the Sicily Channel, volcanic activity has been concentrated mainly on the Pantelleria and Linosa islands, while minor submarine volcanism took place in the Adventure, Graham and Nameless banks. The volcanic activity spanned mostly during Plio-Pleistocene, however, historical submarine eruptions occurred in 1831 on the Graham Bank and in 1891 offshore Pantelleria Island. On the Graham Bank, 25 miles SW of Sciacca, the 1831 eruption formed the short-lived Ferdinandea Island that represents the only Italian volcano active in historical times currently almost completely unknown and not yet monitored. Moreover, most of the Sicily Channel seismicity is concentrated along a broad NS belt extending from the Graham Bank to Lampedusa Island. In 2012, the Istituto Nazionale di Geofisica e Vulcanologia (INGV carried out a multidisciplinary oceanographic cruise, named “Ferdinandea 2012”, the preliminary results of which represent the aim of this paper. The cruise goal was the mapping of the morpho-structural features of some submarine volcanic centres located in the northwestern side of the Sicily Channel and the temporary recording of their seismic and degassing activity. During the cruise, three OBS/Hs (ocean bottom seismometer with hydrophone were deployed near the Graham, Nerita and Terribile submarine banks. During the following 9 months they have recorded several seismo-acoustic signals produced by both tectonic and volcanic sources. A high-resolution bathymetric survey was achieved on the Graham Bank and on the surrounding submarine volcanic centres. A widespread and voluminous gas bubbles emission was observed by both multibeam sonar echoes and a ROV (remotely operated vehicle along the NW side of the Graham Bank, where gas and seafloor samples were also collected.

  4. Volcanic activity at Tvashtar Catena, Io

    Science.gov (United States)

    Milazzo, M.P.; Keszthelyi, L.P.; Radebaugh, J.; Davies, A.G.; Turtle, E.P.; Geissler, P.; Klaasen, K.P.; Rathbun, J.A.; McEwen, A.S.

    2005-01-01

    Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (??? 500 km 2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ???400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ???1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W. ?? 2005 Elsevier Inc. All rights reserved.

  5. Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins

    Science.gov (United States)

    Scholz, Florian; Hensen, Christian; Schmidt, Mark; Geersen, Jacob

    2013-01-01

    In order to investigate how submarine weathering processes may affect the water balance of sediments at convergent plate margins, six sediment cores were retrieved off Central Chile at water depth between ˜800 and 4000 m. The sediment solid phase was analyzed for its major element composition and the pore fluids were analyzed for dissolved sulfate, sulfide, total alkalinity, major cations, chloride, bromide, iodide, hydrocarbons as well as the carbon isotopic composition of methane. Because of negligible weathering on land, surface sediments off Central Chile are rich in reactive silicate minerals and have a bulk composition similar to volcanic rocks in the adjacent Andes. Deep-sourced fluxes of alkalinity, cations and chloride indicate that silicate minerals are subject to weathering in the forearc during burial. Comparison of deep-sourced signals with data from nearby Ocean Drilling Program Sites reveals two different types of weathering processes: In shallow (tens of meters), methanic sediments of slope basins with high organic carbon burial rates, reactive silicate minerals undergo incongruent dissolution through reaction with CO2 from methanogenesis. At greater burial depth (hundreds of meters), silicate weathering is dominated by authigenic smectite formation. This process is accompanied by uptake of water into the clay interlayers thus leading to elevated salinities in the surrounding pore water. Deep-seated smectite formation is more widespread than shallow silicate dissolution, as it is independent from the availability of CO2 from methanogenesis. Although solute transport is not focused enough to form cold seeps in the proper sense, tectonically induced, diffuse fluid flow transfers the deep-seated signal of smectite formation into the shallow sediments. The temperature-controlled conversion of smectite to illite is considered the most important dehydration process in marine forearc environments (depth of kilometers). However, in agreement with other

  6. Physical activity aboard nuclear submarines as measured by pedometry. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Bondi, K.R.; Dougherty, J.H.

    1985-05-23

    Activity levels of 44 submarines were monitored before and during a fleet ballistic missile submarine patrol. These levels were determined by use of a pedometer worn on the hip. Readings were obtained daily and recorded in a log as miles walked. Through extensive preliminary testing it was determined that the miles unit was useless, due to variability in the sensitivity of the pedometer pendulum movements and the inability to determine a meaningful stride length . Results for any combination of pedometer/user were, however, repeatable. For lack of a better term, results are reported in miles per day and are as follows: Control = 2.11 + or - 0.32 and Underway = 1.01 + or - 0.27 (P<.05 Student T). This reduction of more than 50% in activity level may in part be responsible for the physical deconditioning observed during the course of a 40-70 day submergence period.

  7. ESR dating of submarine hydrothermal activities using barite in sulfide deposition

    Science.gov (United States)

    Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.

    2012-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much

  8. Coexistence of pumice and manganese nodule fields-evidence for submarine silicic volcanism in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    -Fe, black colour, broken 63.65 n.d Mn-Fe within vesicles, broken 55 26 n d Maltana, Indonesia 65.38 15 50 Krakatau, Indonesia 67.64 15 79 1883 Krakatoa eruption 69 40 15 90 Pumice-like ejecta from Krakatoa 68 99 16 07 Samples 1-10: present study, 11... by ferroman- ganese oxides. Analyses of a few samples show averages of 61.67% SiO2 and 12.86% AI20 3 (Table 1). Pumice, mainly derived from explosive silicic volcanism, has a low specific gravity, the shape and size of the vesicles allowing them...

  9. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  10. Evolution of submarine eruptive activity during the 2011-2012 El Hierro event as documented by hydroacoustic images and remotely operated vehicle observations

    Science.gov (United States)

    Somoza, L.; González, F. J.; Barker, S. J.; Madureira, P.; Medialdea, T.; de Ignacio, C.; Lourenço, N.; León, R.; Vázquez, J. T.; Palomino, D.

    2017-08-01

    Submarine volcanic eruptions are frequent and important events, yet they are rarely observed. Here we relate bathymetric and hydroacoustic images from the 2011 to 2012 El Hierro eruption with surface observations and deposits imaged and sampled by ROV. As a result of the shallow submarine eruption, a new volcano named Tagoro grew from 375 to 89 m depth. The eruption consisted of two main phases of edifice construction intercalated with collapse events. Hydroacoustic images show that the eruptions ranged from explosive to effusive with variable plume types and resulting deposits, even over short time intervals. At the base of the edifice, ROV observations show large accumulations of lava balloons changing in size and type downslope, coinciding with the area where floating lava balloon fallout was observed. Peaks in eruption intensity during explosive phases generated vigorous bubbling at the surface, extensive ash, vesicular lapilli and formed high-density currents, which together with periods of edifice gravitational collapse, produced extensive deep volcaniclastic aprons. Secondary cones developed in the last stages and show evidence for effusive activity with lava ponds and lava flows that cover deposits of stacked lava balloons. Chaotic masses of heterometric boulders around the summit of the principal cone are related to progressive sealing of the vent with decreasing or variable magma supply. Hornitos represent the final eruptive activity with hydrothermal alteration and bacterial mats at the summit. Our study documents the distinct evolution of a submarine volcano and highlights the range of deposit types that may form and be rapidly destroyed in such eruptions.Plain Language SummaryToday and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred underwater. However, in comparison to subaerial eruption, little is known about submarine eruptive processes as they are dangerous to cruise it over

  11. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    Science.gov (United States)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  12. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation

    Science.gov (United States)

    Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, Xudong

    2008-01-01

    The mineralogy and geochemistry of a superhigh-organic-sulfur (SHOS) coal of Late Permian age from the Yanshan Coalfield, Yunnan Province, southwestern China, have been studied using optical microscope, low-temperature ashing plus X-ray diffraction analysis, scanning electron microscope equipped with energy-dispersive X-ray spectrometer, a sequential chemical extraction procedure, and inductively coupled plasma mass spectrometry. The M9 Coal from the Yanshan Coalfield is a SHOS coal that has a total sulfur content of 10.12%-11.30% and an organic sulfur content of 8.77%-10.30%. The minerals in the coal consist mainly of high-temperature quartz, sanidine, albite, muscovite, illite, pyrite, and trace amounts of kaolinite, plagioclase, akermanite, rutile, and dawsonite. As compared with ordinary worldwide (bituminous coals and anthracite) and Chinese coals, the M9 Coal is remarkably enriched in B (268????g/g), F (841????g/g), V (567????g/g), Cr (329????g/g), Ni (73.9????g/g), Mo (204????g/g), and U (153????g/g). In addition, elements including Se (25.2????g/g), Zr (262????g/g), Nb (20.1????g/g), Cd (2.07????g/g), and Tl (2.03????g/g) are also enriched in the coal. Occurrence of high-temperature quartz, sanidine, muscovite, and illite in the M9 Coal is evidence that there is a volcanic ash component in the coal that was derived from acid volcanic ashes fallen into the swamp during peat accumulation. Occurrence of albite and dawsonite in the coal and strong enrichment of some elements, including F, S, V, Cr, Ni, Mo and U, are attributed to the influence by submarine exhalation which invaded along with seawater into the anoxic peat swamp. Abundances of lithophile elements, including rare earth elements, Nb, Y, Zr, and TiO2, indicate that the silicate minerals in the coal were derived from the northern Vietnam Upland to the south of the basin. ?? 2008 Elsevier B.V. All rights reserved.

  13. Diffuse CO_{2} degassing monitoring of the oceanic active volcanic island of El Hierro, Canary Islands, Spain

    Science.gov (United States)

    Hernández, Pedro A.; Norrie, Janice; Withoos, Yannick; García-Merino, Marta; Melián, Gladys; Padrón, Eleazar; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Pérez, Nemesio M.

    2017-04-01

    Even during repose periods, volcanoes release large amounts of gases from both visible (fumaroles, solfataras, plumes) and non-visible emanations (diffuse degassing). In the last 20 years, there has been considerable interest in the study of diffuse degassing as a powerful tool in volcano monitoring programs, particularly in those volcanic areas where there are no visible volcanic-hydrothermal gas emissions. Historically, soil gas and diffuse degassing surveys in volcanic environments have focused mainly on CO2 because it is, after water vapor, the most abundant gas dissolved in magma. As CO2 travels upward by advective-diffusive transport mechanisms and manifests itself at the surface, changes in its flux pattern over time provide important information for monitoring volcanic and seismic activity. Since 1998, diffuse CO2 emission has been monitored at El Hierro Island, the smallest and south westernmost island of the Canarian archipelago with an area of 278 km2. As no visible emanations occur at the surface environment of El Hierro, diffuse degassing studies have become the most useful geochemical tool to monitor the volcanic activity in this volcanic island. The island experienced a volcano-seismic unrest that began in July 2011, characterized by the location of a large number of relatively small earthquakes (MHierro at depths between 8 and 15 km. On October 12, 2011, a submarine eruption was confirmed during the afternoon of October 12, 2011 by visual observations off the coast of El Hierro, about 2 km south of the small village of La Restinga in the southernmost part of the island. During the pre-eruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep seated magmatic gases to the surface. The second

  14. NeMO-Net: A System for Near Real-Time Remote Sensing of Hydrothermal and Biological Activity in the Caldera of an Active Submarine Volcano

    Science.gov (United States)

    Hammond, S. R.; Butterfield, D.; Embley, R. W.; Meinig, C.; Stalin, S.

    2001-12-01

    In July of 2000, a camera and three temperature sensors were placed on the seafloor near a hydrothermal vent located in the caldera of an active submarine volcano. The volcano's summit lies at a depth of about 1500 m and is located at 46° N, 130° W, approximately 250 nautical miles off the Oregon coast. The volcano is the site of a long-term interdisciplinary study focused in part on discovering relationships between submarine volcanic and hydrothermal activity and a microbial biosphere which exists beneath the sea floor within the volcano's summit caldera. NeMO-Net utilizes an acoustic modem to communicate with a surface mooring anchored nearby. The mooring, in turn, is linked from the ocean surface to the Pacific Marine Environmental Laboratory by means of satellite systems. A unique feature of NeMO-Net is that it enables shore-based investigators to interrogate and command the system to perform specific tasks, the results of which are then reported back typically within several minutes . In the initial year-long deployment, photographic images, along with hourly readings from the three temperature probes, were available on a website which was updated every 24 hours. During the year, the camera documented a dynamic vent biological community as well as water temperature variations due to the influence of tides, and possibly with changing vent fluid temperatures The NeMO-Net system is under continuing development with particular emphasis on linking it to multiple sea floor instruments including near-real-time chemical and water samplers. Near-future plans also call for NeMO Net to be linked to a resident sea floor AUV.

  15. Characteristics and features of the submarine landslides in passive and active margin southwestern offshore Taiwan

    Science.gov (United States)

    Yeh, Y. C.

    2016-12-01

    In the past decade, numerous multi-channel seismic surveys as well as near seafloor high resolution geophysical investigations were conducted in order to explore and estimate the reserves of gas hydrate southwestern offshore Taiwan. The previous object was focused on searching substitute energy (i.e. gas hydrate) rather than geo-hazards. However, it is suggested that most of the gas hydrate is generally distributed at slope area southwestern offshore Taiwan, which indicates the slope may be failed when steady state was disturbed by some factors, such as sea level or climate change. In addition, once gas hydrate was dissociated, this may induce submarine landslide that further cause devastated tsunami. Thus, it is of great urgency to investigate potential landslide area, particularly, the hydrate-rich continental slope (active and passive margins) in adjacent to populous city like Kaohsiung. In this study, we collected several high resolution multi-channel seismic data with ten seconds shooting rate and 3.125 meters group interval streamer by using R/V ORI and R/V ORV. The seismic data were processed in conventional data processing strategy: bad trace clean, geometry settings, band-pass filter, de-convolution, surface-related multiple rejection, radon filter, stacking,kirchhoff migration and time to depth conversion. Combine the results obtained from the MCS data and subbottom profiles, two major results could be raised in the active margin as followed: (1) Most of the surface creeping and landslide was occurred shallower than 500 meters in water depth, which should be related to the inter-bedded fluid activities. (2) The landslide distribution is lagly affected by the presence of diaper, suggesting the subsequent mud diapirism may destruct slope stability; (3) The submarine landslide deeper than 800 meters in water depth distributes in the thrust fold area, that is probably referred to active thrusting. In the passive margin, large volume mass transportation

  16. The Extremes of Volcanic Activity: Earth and Jupiter's Moon Io

    Science.gov (United States)

    Lowes, L. L.; Lopes, R.

    2004-12-01

    Jupiter's moon Io is the solar system's most volcanically active body, and the only place that magmatic volcanic eruptions have been observed beyond Earth. One of the first images of Io obtained by NASA's Voyager 1 spacecraft in 1979 shows a plume above one of its volcanoes. The NASA Voyager and Galileo spacecraft imaged many explosive eruptions of plumes and deposits - which travel hundreds of kilometers (farther than on the Earth or the Moon). Very hot lavas that are erupting from volcanic vents on Io may be similar to lavas that erupted on Earth billions of years ago. Understanding the physical processes driving volcanic eruptions is important for the understanding of terrestrial volcanoes, not only because of their potential hazards, but also as geologic resources, biologic environments, and for their role in shaping the surface of Earth and other planets. Volcanic eruptions are perhaps the most dramatic events on Earth, and are of intrinsic interest to students, youth, and adults. Topics involving volcanoes are a part of the national science education benchmarks for understanding the Earth's composition and structure for grades 6-8 (the process of creating landforms) and grades 9-12 (the effects of movement of crustal plates). Natural events on Earth coupled with exciting discoveries in space can serve to heighten the awareness of these phenomena and provide learning opportunities for real world applications of science. Educational applications for youth to compare volcanic activity on Io and Earth have been done through NASA-sponsored field trip workshops to places such as Yellowstone National Park (allowing educators to experience environments similar to those on other worlds), targeted classroom and hands-on activities, special interest books, and other resources. A sampling of such activities will be presented, and discussion invited on other related developmentally appropriate resources and activities.

  17. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  18. Activation of gas bubble emissions indicated by the upward decreasing Lead-210 activity at a submarine mud volcano (TY1) offshore southwestern Taiwan

    Science.gov (United States)

    Hiruta, Akihiro; Yang, Tsanyao Frank; Lin, Saulwood; Su, Chih-Chieh; Chen, Nai-Chen; Chen, Yi-Jyun; Chen, Hsuan-Wen; Yang, Tsung-Han; Huang, Yu-Chun; Wei, Kuo-Yen; Huang, Jyh-Jaan; Chen, Song-Chuen; Song, Sheng-Rong

    2017-11-01

    A submarine mud volcano (MV) known as TY1 is one of the largest conical structures found offshore southwestern Taiwan. Active gas bubble emissions at the flat crest of the mud volcano disperse sediment particles into the water column. Changes in the mud volcanism of TY1 were revealed by radiograph and grain size analysis of the sediment cores. 210Pb geochronology was applied to the near-seafloor sediments to reveal the detailed mud volcanism from the deposition rate. In a 58-cm long sediment core taken from the northern margin of the crest, known as TY1-N.170, the size and frequency of the mud clasts decrease upward. The clasts are smaller than 8 mm above a sediment depth of 34 cm below the sea floor (cmbsf). Sediments between 0 and 19 cmbsf are massive, and particles larger than 2 mm are absent. An enrichment of coarse, silt-sized particles in the massive sediment unit and the restricted distribution of the unit suggest that the massive unit was generated by re-deposition of sediment particles that were dispersed into the water column by gas bubble emission. These characteristics suggest that during the last mud volcanism of TY1, there was a decrease in mud eruption energy, and gas bubble emission became the main activity. In core TY1-S.440, taken from the southern slope, a massive sediment unit enriched with coarse, silt-sized particles, is intercalated between mud breccia structures. This suggests repeated mud breccia flows caused by TY1. The excess 210Pb activity present in the massive sediment unit of TY1-N.170 suggests activation of gas bubble emission. In the massive unit, a decrease in excess 210Pb activity appears upward toward the seafloor. The highest value is 3.1 dpm/g at 19.8 cmbsf (26.4 g/cm2 in cumulative mass); values lower than 1.0 dpm/g are distributed 2.8-6.8 cmbsf (3.6-8.8 g/cm2). The upwardly decreasing trend is opposite that of the reference core from which a reasonable areal sedimentation rate was obtained using a constant-flux constant

  19. Glass shards, pumice fragments and volcanic aerosol particles - diagenesis a recorder of volcanic activity?

    Science.gov (United States)

    Obenholzner, J. H.; Schroettner, H.; Poelt, P.; Delgado, H.

    2003-04-01

    Detailed SEM/EDS studies of Triassic (Southern Alps, A, I, Sl) and Miocene (Mixteca Alta, Mexico) tuffs revealed that volcanic glass shards can be replaced by zeolites (analcite), chlorites and smectites preserving the shape of primary shards (1). The Triassic pyroclastic deposits have been incorporated in the pre-Alpine burial diagenesis, the Miocene pyroclastic deposits are bentonites. The volcanologist is impressed by the circumstances that million years old pyroclast relict textures can be sized. Shape parameters obtained by image analysis can be compared with much younger pyroclastic deposits (2). Both deposits have not been effected by shearing. The alteration of pumice fragments of Triassic age is not a simple replacement process. Intergrowth of different illites and chlorites and probably vesicle filling by SiO2 and subsequent overgrowth make a reconstruction sometimes difficult. These processes are accompanied by the formation of REE-, Y- and Zr-bearing minerals as well as with the alteration of zircons. Studies of recently erupted ash from Popocatepetl volcano reveal the presence of a variety of µm-sized contact-metamorphosed clasts being a part of the volcanic ash (3). Such clasts should be present in many older pyroclastic deposits, especially where volcanoes had been situated on massive sedimentary units providing contact metamorphism in the realm of a magma chamber or during magma ascent. Volcanic aerosol particles collected in 1997 from the passively degassing plume of Popocatepetl volcano revealed in FESEM/EDS analysis (H. Schroettner and P. Poelt) a wide spectrum of fluffy, spherical and coagulated spherical particles (µm-sized). Under pre-vacuum conditions they remained stable for ca. 3 years (3). In nature the fate of these particles in the atmosphere is unknown. Are there relicts in marine, lacustrine sediments and ice cores, which could be used as proxies of volcanic activity? (1) Obenholzner &Heiken,1999. Ann.Naturhist.Mus.Wien, 100 A, 13

  20. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  1. Evolution of volcanic gas composition during repeated culmination of volcanic activity at Kuchinoerabujima volcano, Japan

    Science.gov (United States)

    Shinohara, H.; Hirabayashi, J.; Nogami, K.; Iguchi, M.

    2011-04-01

    Chemical and isotopic compositions of low to medium temperature fumarolic gasses were measured at various fumaroles of Kuchinoerabujima volcano from 1993 to 2009 by the combination of fumarolic gas sampling and Multi-GAS measurement of volcanic plumes. Repeated culmination of the volcanic activity was observed as contemporaneous occurrence of seismic swarms, summit inflation and demagnetization, almost every two years after 1999. Fumarolic activity also increased parallel with these activities; new fumarolic fields of low-temperature fumaroles at boiling point formed at the southern and western rims of the summit crater in 2003 and intense degassing activity started at medium-temperature fumaroles inside the summit crater in 2008. The low-temperature fumarolic gasses have peculiar composition with high H 2/H 2O, CO/CO 2 and SO 2/H 2S ratios, typical features of high-temperature volcanic gasses, but also with low HCl and total S contents, typical features of low-temperature gasses. These features indicate that the gasses are formed by low-temperature differentiation of high-temperature gasses. Variation of H and O isotopic ratios of the low-temperature gasses indicates that the gasses are formed by isoenthalpic processes of vapor-liquid separation at 100 °C of a high-temperature gas and meteoric water mixture, implying that the high-temperature gas was injected into a shallow aquifer without cooling. Temperatures of the high-temperature gasses were estimated as 550-700 °C based on the equilibrium temperature calculation with considering the low-temperature differentiation. The medium-temperature fumarolic gasses from the summit crater have typical compositions of high-temperature volcanic gasses and are estimated as the source gas of the boiling point fumaroles. The H 2/H 2O and CO 2/S t ratios of the low-temperature fumaroles increased from 2004 to 2009, which is interpreted to be caused by the evolution of thermal structure of a shallow gas storage region of a

  2. Active Volcanism on Io as Seen by Galileo SSI

    Science.gov (United States)

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  3. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    Science.gov (United States)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  4. Miocene Current-Modified Submarine Fans

    Science.gov (United States)

    Arce Perez, L. E.; Snedden, J.; Fisher, W. L.

    2016-12-01

    In the southwestern Gulf of Mexico, new and newly reprocessed seismic data has revealed a series of large bedforms, with set thicknesses of 130 to 250 meters. These exhibit hummocky, oblique and shingled to parallel seismic clinoform reflections. This seismic package has a paleowater depth of 450 meters. Those shingled seismic reflections in offshore east Mexico are interpreted as contourite drift deposits. These Miocene-age contourites may be related to strong ocean bottom currents that modified submarine fans and transported sediment to the north. Those contourites were identified on older seismic data, but are better imaged and interpreted on this new data. Plans are to map out and investigate the origin and extent of fans and contourites that extends over a large area of the Gulf of Mexico. In the Early Miocene several submarine fans systems were formed by the sediment input related to orogenic activity in Mexico. Submarine fan development persisted into the Middle Miocene due to continued uplift and erosion of the Mexican landmass. Initial, contourites are small and close proximity to the deep-water fan. In the Late Miocene time, contourite drift field reached its maximum extent in the Mexican deepwater area, anchored on its southern end by a submarine mound. This mounded submarine fan is located in the offshore northeast Veracruz and can be linked to increased uplift and erosion of the Trans-Mexican volcanic belt. In the Miocene-Pliocene, the large contourite drift begins to diminish in size and scale and is moribund by the Pliocene, with establishment of oceanic circulation similar to the present day. This research is important to understand more about the Gulf of Mexico and also for the Miocene timeframe that is a key phase in the earth's history. The role of the change in bottom water flow during progressive closure of the equatorial seaway separating North and South America will also be investigated.

  5. Impact of Volcanic Activity on AMC Channel Operations

    Science.gov (United States)

    2014-06-13

    Figure 2: Ash Detected Outside Iceland within 40°–70°N and 40°W–30°E (Scientific Reports, 2014) The potential for tectonic plate movement ...active volcanic settings in the world. The location and behavior of volcanoes are a direct result of tectonic plate boundaries and the dynamic nature...cargo movement . Additionally, the results of this study may propel AMC leadership to increase funding for future research and development efforts or

  6. Submarine landslides: advances and challenges

    Science.gov (United States)

    Locat, Jacques; Lee, Homa J.

    2002-01-01

    Due to the recent development of well-integrated surveying techniques of the sea floor, significant improvements were achieved in mapping and describing the morphology and architecture of submarine mass movements. Except for the occurrence of turbidity currents, the aquatic environment (marine and fresh water) experiences the same type of mass failure as that found on land. Submarine mass movements, however, can have run-out distances in excess of 100 km, so their impact on any offshore activity needs to be integrated over a wide area. This great mobility of submarinemass movements is still not very well understood, particularly for cases like the far-reaching debris flows mapped on the Mississippi Fan and the large submarine rock avalanches found around many volcanic islands. A major challenge ahead is the integration of mass movement mechanics in an appropriate evaluation of the hazard so that proper risk assessment methodologies can be developed and implemented for various human activities offshore, including the development of natural resources and the establishment of reliable communication corridors. Key words : submarine slides, hazards, risk assessment, morphology, mobility, tsunami. Le dveloppement rcent de techniques de levs hydrograhiques pour les fonds marins nous a permis d'atteindre une qualit ingale dans la cartographie et la description des glissements sous marins. l'exception des courants de turbidit, on retrouve dans le domaine aquatique les mmes types de mouvements de terrain que sur terre. Par contre, les glissements sous-marins peuvent atteindre des distances excdant 100 km de telle sorte que leur impact sur les activits offshore doit tre pris en compte sur degrandes tendues. La grande mobilit des glissements sous-marins n'est pas encore bien comprise, comme pour le cas des coules dedbris cartographies sur le cne du Mississippi ainsi que pour les grandes avalanches rocheuses sous-marines retrouves au pourtour des les volcaniques. Un dfi majeur

  7. Possible Micrometeorological Anomalies Induced by Volcanic Activity Recorded at Stromboli Island (Aeolian Archipelago, Italy

    Directory of Open Access Journals (Sweden)

    Paolo Madonia

    2015-01-01

    Full Text Available Hourly values of atmospheric pressure and air temperature have been acquired at the top of two volcanic islands, Stromboli and Salina in the Aeolian Archipelago (Italy, very similar in height and morphology but completely different with regard to their volcanic activity state: the former is permanently active, whereas the latter is extinguished. During the last four years Stromboli experienced normal activity, volcanic unrests, and an effusive eruption (August–November 2014. The comparative analysis of the recorded data, both in the time and frequency domains, evidenced a peculiar micrometeorological regime at Stromboli, more turbulent during unrests with respect to the quieter periods, but showing an apparent paradox during eruptions, characterized by a lower atmospheric turbulence. These observations suggest that the studied volcanic-micrometeorological system is chaotic, due to contemporary opposite transients generated in the atmosphere by volcanic activity changes, and that micrometeorological conditions in volcanic areas are controlled both by exogenous processes and volcanic activity.

  8. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    Science.gov (United States)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are

  9. New insights from high resolution bathymetric surveys in the Panarea volcanic complex (Aeolian Islands, Italy)

    Science.gov (United States)

    Anzidei, M.; Esposito, A.

    2003-04-01

    During November 2002 the portion of the Panarea volcanic complex (Aeolian Islands, Italy), which includes the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera, experienced an intense submarine gaseous exhalation that produced a spectacular submarine fumarolic field. The submarine volcanic activity of the Aeolian area was already known during historical times by Tito Livio, Strabone and Plinio (SGA, 1996), that reported exhalation episodes and submarine eruptions. During the last decade geological, structural, geochemical and volcanological studies performed on the Panarea volcanic complex, evidenced a positive gravimetric anomaly, tectonic discontinuities and several centres of geothermal fluid emission (Barberi et al., 1974; Lanzafame and Rossi, 1984; Bellia et al., 1986; Gabianelli et al., 1990; Italiano and Nuccio, 1991; Calanchi et al., 1995,1999). With the aim to estimate the crustal deformation of the submarine area of the archipelago, connected with the exhalation activity, we produced a detailed Marine Digital Terrain Model (MDTM) of the seafloor by means of a high resolution bathymetric survey. We used the multi beam technique coupled with GPS positioning in RTK mode. We obtained a MDTM with an average pixel of 0.5 m. Our MDTM allowed to estimate the location, deep, shape and size of the exhalation centres and seafloor morphological-structural features, opening new questions for the evaluation of the volcanic hazard of Panarea area which date is still debated.

  10. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  11. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    Science.gov (United States)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  12. Submarine geothermal resources

    Science.gov (United States)

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (< 200 m) and within sight of land. Other interesting areas include the Sea of Japan, the Sea of Okhotsk and the Andaman Sea along the margins of the western Pacific, the Tyrrhenian Sea west of Italy, and the southern California borderland and west flank of the Juan de Fuca Ridge off the west coast of the United States. Many questions remain to be

  13. Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous)

    Science.gov (United States)

    Scaife, J. D.; Ruhl, M.; Dickson, A. J.; Mather, T. A.; Jenkyns, H. C.; Percival, L. M. E.; Hesselbo, S. P.; Cartwright, J.; Eldrett, J. S.; Bergman, S. C.; Minisini, D.

    2017-12-01

    Oceanic Anoxic Event 2 (OAE 2), during the Cenomanian-Turonian transition (˜94 Ma), was the largest perturbation of the global carbon cycle in the mid-Cretaceous and can be recognized by a positive carbon-isotope excursion in sedimentary strata. Although OAE 2 has been linked to large-scale volcanism, several large igneous provinces (LIPs) were active at this time (e.g., Caribbean, High Arctic, Madagascan, Ontong-Java) and little clear evidence links OAE 2 to a specific LIP. The Mid-Cenomanian Event (MCE, ˜96 Ma), identified by a small, 1‰ positive carbon-isotope excursion, is often referred to as a prelude to OAE 2. However, no underlying cause has yet been demonstrated and its relationship to OAE 2 is poorly constrained. Here we report sedimentary mercury (Hg) concentration data from four sites, three from the southern margin of the Western Interior Seaway and one from Demerara Rise, in the equatorial proto-North Atlantic Ocean. We find that, in both areas, increases in mercury concentrations and Hg/TOC ratios coincide with the MCE and the OAE 2. However, the increases found in these sites are of a lower magnitude than those found in records of many other Mesozoic events, possibly characteristic of a marine rather than atmospheric dispersal of mercury for both events. Combined, the new mercury data presented here are consistent with an initial magmatic pulse at the time of the MCE, with a second, greater pulse at the onset of OAE 2, possibly related to the emplacement of LIPs in the Pacific Ocean and/or the High Arctic.

  14. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  15. Eighteen years of geochemical monitoring at the oceanic active volcanic island of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.

    2016-04-01

    We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m-2 d-1) up to 457 g m-2 d-1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d-1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m-2 d-1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d-1, value slightly higher that the background CO2 emission estimated at 422 t d-1 (Melián et

  16. GRID based Thermal Images Processing for volcanic activity monitoring

    Science.gov (United States)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  17. Mapping Cryo-volcanic Activity from Enceladus’ South Polar Region

    Science.gov (United States)

    Tigges, Mattie; Spitale, Joseph N.

    2017-10-01

    Using Cassini images taken of Enceladus’ south polar plumes at various times and orbital locations, we are producing maps of eruptive activity at various times. The purpose of this experiment is to understand the mechanism that controls the cryo-volcanic eruptions.The current hypothesis is that Tiger Stripe activity is modulated by tidal forcing, which would predict a correlation between orbital phase and the amount and distribution of eruptive activity. The precise nature of those correlations depends on how the crust is failing and how the plumbing system is organized.We use simulated curtains of ejected material that are superimposed over Cassini images, obtained during thirteen different flybys, taken between mid-2009 and mid-2012. Each set represents a different time and location in Enceladus’ orbit about Saturn, and contains images of the plumes from various angles. Shadows cast onto the backlit ejected material by the terminator of the moon are used to determine which fractures were active at that point in the orbit.Maps of the spatial distribution of eruptive activity at various orbital phases can be used to evaluate various hypotheses about the failure modes that produce the eruptions.

  18. Study of Volcanic Activity at Different Time Scales Using Hypertemporal Land Surface Temperature Data

    NARCIS (Netherlands)

    Pavlidou, Efthymia; Hecker, Chris; van der Werff, Harald; van der Meijder, Mark

    2017-01-01

    We apply a method for detecting subtle spatiotemporal signal fluctuations to monitor volcanic activity. Whereas midwave infrared data are commonly used for volcanic hot spot detection, our approach utilizes hypertemporal longwave infrared-based land surface temperature (LST) data. Using LST data of

  19. Gish Bar Patera, Io: Geology and Volcanic Activity, 1996-2001

    Science.gov (United States)

    Perry, Jason; Radebaugh, Jani; Lopes, Rosaly; McEwen, Alfred; Keszthelyi, Laszlo

    2003-01-01

    Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.

  20. Predicting changes in volcanic activity through modelling magma ascent rate.

    Science.gov (United States)

    Thomas, Mark; Neuberg, Jurgen

    2013-04-01

    It is a simple fact that changes in volcanic activity happen and in retrospect they are easy to spot, the dissimilar eruption dynamics between an effusive and explosive event are not hard to miss. However to be able to predict such changes is a much more complicated process. To cause altering styles of activity we know that some part or combination of parts within the system must vary with time, as if there is no physical change within the system, why would the change in eruptive activity occur? What is unknown is which parts or how big a change is needed. We present the results of a suite of conduit flow models that aim to answer these questions by assessing the influence of individual model parameters such as the dissolved water content or magma temperature. By altering these variables in a systematic manner we measure the effect of the changes by observing the modelled ascent rate. We use the ascent rate as we believe it is a very important indicator that can control the style of eruptive activity. In particular, we found that the sensitivity of the ascent rate to small changes in model parameters surprising. Linking these changes to observable monitoring data in a way that these data could be used as a predictive tool is the ultimate goal of this work. We will show that changes in ascent rate can be estimated by a particular type of seismicity. Low frequency seismicity, thought to be caused by the brittle failure of melt is often linked with the movement of magma within a conduit. We show that acceleration in the rate of low frequency seismicity can correspond to an increase in the rate of magma movement and be used as an indicator for potential changes in eruptive activity.

  1. The community of deep-sea decapod crustaceans between 175 and 2600 m in submarine canyons of a volcanic oceanic island (central-eastern Atlantic)

    Science.gov (United States)

    Pajuelo, José G.; Triay-Portella, Raül; Santana, José I.; González, José A.

    2015-11-01

    The community structure and faunal composition of deep-sea decapod crustaceans in submarine canyons on the slope off Gran Canaria Island (Canary Islands, central-eastern Atlantic) were investigated. Samples were collected during five research cruises (115 stations) at depths between 175 and 2554 m. A total of 26387 decapod specimens, belonging to 24 families and 38 species, were collected with traps. A cluster analysis of the stations showed four distinct assemblages: (i) in the transition area between shelf and slope (175-302 m); (ii) on the upper slope (361-789 m); (iii) on the middle slope (803-1973 m); and iv) on the lower slope (2011-2554 m). The deep-sea decapod fauna of the Canary Islands is dominated by shrimp of the family Pandalidae, which make up more than 23% of the species. Within the Pandalidae, species of the genus Plesionika stand out as those of greatest abundance on the island slope. The greatest diversity of species was located on the upper slope. The standardized mean abundance and mean biomass for the transition zone between the shelf and slope and for the upper slope were nearly 5 times greater in abundance and 4 times greater in biomass than those estimated for the middle slope, and nearly 53 and 29 times greater for the lower slope, indicating a lower abundance and biomass at the shallower part of the insular slope. The mean weight per individual showed an increasing pattern with depth and an inverse pattern with the bottom temperature and salinity. The existence of depth boundaries around the Canary Islands is known to be closely linked to oceanographic conditions, determined by the water masses present in this archipelago explaining the discontinuities observed at depths of 800 and 2000 m. The boundary observed inside the bathymetric region of the Eastern North Atlantic Central Water can be related with the transition zone between the shelf and the slope of the island.

  2. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  3. Submarine pyroclastic deposits in Tertiary basins, NE Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Kralj

    2013-12-01

    Full Text Available In Tertiary basins of NE Slovenia, Upper Oligocene volcanic activity occurred in a submarine environment that experienced contemporaneous clastic sedimentation. Pyroclastic deposits are essentially related to gas- and watersupported eruption-fed density currents. At Trobni Dol, the Lako Basin, an over 100 m thick deposit formed by a sigle sustained volcanic explosion that fed gas-supported pyroclastic flow. Diagnostic features are large matrixshard content, normal grading of pumice lapilli, collapsed pumice lapilli and the presence of charcoal. In the Smrekovec Volcanic Complex, several but only up to 5 m thick deposits related to eruption-fed gassupported pyroclastic flows occur. Deposits settled from water-supported eruption-fed density currents form fining- and thinning-upward sedimentary units which resemble the units of volcaniclastic turbidites. Pyroclastic deposits related to gas- and water-supported density currents occur in an up to 1000 m thick succession composed of coherent volcanics, autoclastic, pyroclastic, reworked volcaniclastic and mixed volcaniclastic-siliciclastic deposits that indicate a complex explosive and depositional history of the Smrekovec Volcanic Complex.

  4. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  5. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  6. Development and experimental verification of a robust active noise control system for a diesel engine in submarines

    Science.gov (United States)

    Sachau, D.; Jukkert, S.; Hövelmann, N.

    2016-08-01

    This paper presents the development and experimental validation of an ANC (active noise control)-system designed for a particular application in the exhaust line of a submarine. Thereby, tonal components of the exhaust noise in the frequency band from 75 Hz to 120 Hz are reduced by more than 30 dB. The ANC-system is based on the feedforward leaky FxLMS-algorithm. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.

  7. Learning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes

    Directory of Open Access Journals (Sweden)

    Gilda M. Currenti

    2017-05-01

    Full Text Available Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical, which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e., deformation, gravity, and magnetic fields to hydrothermal activity on the basis of a sound geological framework (e.g., distribution and pathways of the flows, the presence of fractured zones, caprock. A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii the elastostatic equation for the deformation field and (iii the Poisson's equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that, being above the accuracies of

  8. WIDE SCALE TRIGGERING FOR VOLCANIC ACTIVITY OF TERRESTRIAL AND EXTRATERRESTRIAL ORIGIN

    OpenAIRE

    Madonia, Paolo

    2009-01-01

    Volcanic activity is considered one of the possible causes for mass extinctions occurred during the geologic history of the Earth. Volcanic products from high energetic explosive eruptions, ejected up to the stratosphere and dispersed worldwide or on a regional scale by atmospheric currents, may significantly change the amount of solar irradiance received at ground level, causing dramatic climatic changes on their own responsible for the mass extinctions. The amount of energy, i.e. the ...

  9. Submarine basaltic fountain eruptions in a back-arc basin during the opening of the Japan Sea

    Science.gov (United States)

    Hosoi, Jun; Amano, Kazuo

    2017-11-01

    Basaltic rock generated during the middle Miocene opening of the Japan Sea, is widely distributed on the back-arc side of the Japanese archipelago. Few studies have investigated on submarine volcanism related to opening of the Japan Sea. The present study aimed to reconstruct details of the subaqueous volcanism that formed the back-arc basin basalts (BABB) during this event, and to discuss the relationship between volcanism and the tectonics of back-arc opening, using facies analyses based on field investigation. The study area of the southern Dewa Hills contains well-exposed basalt related to the opening of the Japan Sea. Five types of basaltic rock facies are recognized: (1) coherent basalt, (2) massive platy basalt, (3) jigsaw-fit monomictic basaltic breccia, (4) massive or stratified coarse monomictic basaltic breccia with fluidal clasts, and (5) massive or stratified fine monomictic basaltic breccia. The basaltic rocks are mainly hyaloclastite. Based on facies distributions, we infer that volcanism occurred along fissures developed mainly at the center of the study area. Given that the rocks contain many fluidal clasts, submarine lava fountaining is inferred to have been the dominant eruption style. The basaltic rocks are interpreted as the products of back-arc volcanism that occurred by tensional stress related to opening of the Japan Sea, which drove strong tectonic subsidence and active lava fountain volcanism.

  10. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins

    Science.gov (United States)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.

    2008-12-01

    Submarine geohazards are some of the most devastating natural events in terms of lives lost and economic impact. Earthquakes pose a big threat to society and infrastructure, but the understanding of their episodic generation is incomplete. Tsunamis are known for their potential of striking coastlines world-wide. Other geohazards originating below the sea surface are equally dangerous for undersea structures and the coastal population: submarine landslides and volcanic islands collapse with little warning and devastating consequences. The European scientific community has a strong focus on geohazards along European and nearby continental margins, especially given their high population densities, and long historic and prehistoric record of hazardous events. For example, the Mediterranean is surrounded by very densely-populated coastline and is the World's leading holiday destination, receiving up 30% of global tourism. In addition, its seafloor is criss-crossed by hydrocarbon pipelines and telecommunication cables. However, the governing processes and recurrence intervals of geohazards are still poorly understood. Examples include, but are not limited to, earthquakes and volcanic eruptions along the active tectonic margins of the Mediterranean and Sea of Marmara, landslides on both active and passive margins, and tsunamites and seismites in the sedimentary record that suggest a long history of similar events. The development of geophysical networks, drilling, sampling and long-term monitoring are crucial to the understanding of earthquake, landslide, and tsunami processes, and to mitigate the associated risks in densely populated and industrialized regions such as Europe. Scientific drilling, particularly in the submarine setting, offers a unique tool to obtain drill core samples, borehole measurements and long-term observations. Hence, it is a critical technology to investigate past, present, and possible future influences of hazardous processes in this area. The

  11. Breathing modes of Kolumbo submarine volcano (Santorini, Greece).

    Science.gov (United States)

    Bakalis, Evangelos; Mertzimekis, Theo J; Nomikou, Paraskevi; Zerbetto, Francesco

    2017-04-13

    Submarine volcanoes, such as Kolumbo (Santorini, Greece) are natural laboratories for fostering multidisciplinary studies. Their investigation requires the most innovative marine technology together with advanced data analysis. Conductivity and temperature of seawater were recorded directly above Kolumbo's hydrothermal vent system. The respective time series have been analyzed in terms of non-equilibrium techniques. The energy dissipation of the volcanic activity is monitored by the temperature variations of seawater. The venting dynamics of chemical products is monitored by water conductivity. The analysis of the time series in terms of stochastic processes delivers scaling exponents with turning points between consecutive regimes for both conductivity and temperature. Changes of conductivity are shown to behave as a universal multifractal and their variance is subdiffusive as the scaling exponents indicate. Temperature is constant over volcanic rest periods and a universal multifractal behavior describes its changes in line with a subdiffusive character otherwise. The universal multifractal description illustrates the presence of non-conservative conductivity and temperature fields showing that the system never retains a real equilibrium state. The existence of a repeated pattern of the combined effect of both seawater and volcanic activity is predicted. The findings can shed light on the dynamics of chemical products emitted from the vents and point to the presence of underlying mechanisms that govern potentially hazardous, underwater volcanic environments.

  12. Breathing modes of Kolumbo submarine volcano (Santorini, Greece)

    Science.gov (United States)

    Bakalis, Evangelos; Mertzimekis, Theo J.; Nomikou, Paraskevi; Zerbetto, Francesco

    2017-04-01

    Submarine volcanoes, such as Kolumbo (Santorini, Greece) are natural laboratories for fostering multidisciplinary studies. Their investigation requires the most innovative marine technology together with advanced data analysis. Conductivity and temperature of seawater were recorded directly above Kolumbo’s hydrothermal vent system. The respective time series have been analyzed in terms of non-equilibrium techniques. The energy dissipation of the volcanic activity is monitored by the temperature variations of seawater. The venting dynamics of chemical products is monitored by water conductivity. The analysis of the time series in terms of stochastic processes delivers scaling exponents with turning points between consecutive regimes for both conductivity and temperature. Changes of conductivity are shown to behave as a universal multifractal and their variance is subdiffusive as the scaling exponents indicate. Temperature is constant over volcanic rest periods and a universal multifractal behavior describes its changes in line with a subdiffusive character otherwise. The universal multifractal description illustrates the presence of non-conservative conductivity and temperature fields showing that the system never retains a real equilibrium state. The existence of a repeated pattern of the combined effect of both seawater and volcanic activity is predicted. The findings can shed light on the dynamics of chemical products emitted from the vents and point to the presence of underlying mechanisms that govern potentially hazardous, underwater volcanic environments.

  13. Submarine landslides: processes, triggers and hazard prediction.

    Science.gov (United States)

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.

  14. Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity.

    Science.gov (United States)

    Spatola, Daniele; Pennino, Valentina; Basilone, Luca; Interbartolo, Francesco; Micallef, Aaron; Sulli, Attilio; Basilone, Walter

    2016-04-01

    morphometric analysis of these volcanoes has been conducted: they are up to about 115-160 m high and 500-1500 m wide. Most of them show very strongly inclined flanks with 30° of average slope. The SCV2 and SCV3 form the Graham Bank, 3.5X2.8 km wide, elongated in the NW-SE direction. At the top of SCV2 focused seepage plumes were observed in the entire water column, through the CHIRP data, where we calculated that they release, a volume of about 10950 m3 and 43960 m3of gases, respectively. In this work, we present the first results of a data collection that have got as main result the identification and mapping of the fluid escape structures revealing the relationship between the active tectonic with migration of fluids, to be used to assess the Submarine Geo-Hazard in the Sicily Channel. We identified two fluid escape fields whose genesis and evolution appear linked to the neotectonic and volcanic activities respectively, that represent the main controlling factors for the migration of fluid; considering the good correlation between pockmarks and the main identified fault systems. In conclusion, our results suggest that the degassing of fluids in this region is rooted at depth, and is mainly aligned with the NW-SE dip/strike slip fault systems, repeatedly reactivated, and linked to the volcanic activity.

  15. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  16. Volcanic Ash Activates the NLRP3 Inflammasome in Murine and Human Macrophages

    Directory of Open Access Journals (Sweden)

    David E. Damby

    2018-01-01

    Full Text Available Volcanic ash is a heterogeneous mineral dust that is typically composed of a mixture of amorphous (glass and crystalline (mineral fragments. It commonly contains an abundance of the crystalline silica (SiO2 polymorph cristobalite. Inhalation of crystalline silica can induce inflammation by stimulating the NLRP3 inflammasome, a cytosolic receptor complex that plays a critical role in driving inflammatory immune responses. Ingested material results in the assembly of NLRP3, ASC, and caspase-1 with subsequent secretion of the interleukin-1 family cytokine IL-1β. Previous toxicology work suggests that cristobalite-bearing volcanic ash is minimally reactive, calling into question the reactivity of volcanically derived crystalline silica, in general. In this study, we target the NLRP3 inflammasome as a crystalline silica responsive element to clarify volcanic cristobalite reactivity. We expose immortalized bone marrow-derived macrophages of genetically engineered mice and primary human peripheral blood mononuclear cells (PBMCs to ash from the Soufrière Hills volcano as well as representative, pure-phase samples of its primary componentry (volcanic glass, feldspar, cristobalite and measure NLRP3 inflammasome activation. We demonstrate that respirable Soufrière Hills volcanic ash induces the activation of caspase-1 with subsequent release of mature IL-1β in a NLRP3 inflammasome-dependent manner. Macrophages deficient in NLRP3 inflammasome components are incapable of secreting IL-1β in response to volcanic ash ingestion. Cellular uptake induces lysosomal destabilization involving cysteine proteases. Furthermore, the response involves activation of mitochondrial stress pathways leading to the generation of reactive oxygen species. Considering ash componentry, cristobalite is the most reactive pure-phase with other components inducing only low-level IL-1β secretion. Inflammasome activation mediated by inhaled ash and its potential relevance in

  17. Volcanic ash activates the NLRP3 inflammasome in murine and human macrophages

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Baxter, Peter J.; Kueppers, Ulrich; Schnurr, Max; Dingwell, Donald B.; Duewell, Peter

    2018-01-01

    Volcanic ash is a heterogeneous mineral dust that is typically composed of a mixture of amorphous (glass) and crystalline (mineral) fragments. It commonly contains an abundance of the crystalline silica (SiO2) polymorph cristobalite. Inhalation of crystalline silica can induce inflammation by stimulating the NLRP3 inflammasome, a cytosolic receptor complex that plays a critical role in driving inflammatory immune responses. Ingested material results in the assembly of NLRP3, ASC, and caspase-1 with subsequent secretion of the interleukin-1 family cytokine IL-1β. Previous toxicology work suggests that cristobalite-bearing volcanic ash is minimally reactive, calling into question the reactivity of volcanically derived crystalline silica, in general. In this study, we target the NLRP3 inflammasome as a crystalline silica responsive element to clarify volcanic cristobalite reactivity. We expose immortalized bone marrow-derived macrophages of genetically engineered mice and primary human peripheral blood mononuclear cells (PBMCs) to ash from the Soufrière Hills volcano as well as representative, pure-phase samples of its primary componentry (volcanic glass, feldspar, cristobalite) and measure NLRP3 inflammasome activation. We demonstrate that respirable Soufrière Hills volcanic ash induces the activation of caspase-1 with subsequent release of mature IL-1β in a NLRP3 inflammasome-dependent manner. Macrophages deficient in NLRP3 inflammasome components are incapable of secreting IL-1β in response to volcanic ash ingestion. Cellular uptake induces lysosomal destabilization involving cysteine proteases. Furthermore, the response involves activation of mitochondrial stress pathways leading to the generation of reactive oxygen species. Considering ash componentry, cristobalite is the most reactive pure-phase with other components inducing only low-level IL-1β secretion. Inflammasome activation mediated by inhaled ash and its potential relevance in chronic pulmonary

  18. New insights into landslide processes around volcanic islands from Remotely Operated Vehicle (ROV) observations offshore Montserrat

    National Research Council Canada - National Science Library

    Watt, S. F. L; Jutzeler, M; Talling, P. J; Carey, S. N; Sparks, R. S. J; Tucker, M; Stinton, A. J; Fisher, J. K; Wall‐Palmer, D; Hühnerbach, V; Moreton, S. G

    2015-01-01

    Submarine landslide deposits have been mapped around many volcanic islands, but interpretations of their structure, composition, and emplacement are hindered by the challenges of investigating deposits directly...

  19. Submarine Medicine Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Submarine Medicine Team conducts basic and applied research on biomedical aspects of submarine and diving environments. It focuses on ways to optimize the health...

  20. Volcanic tremor associated with eruptive activity at Bromo volcano

    Directory of Open Access Journals (Sweden)

    E. Gottschämmer

    1999-06-01

    Full Text Available Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The analysis of the seismograms shows that the signals produced by the volcanic sources cover the frequency range from at least 25 Hz down to periods of several minutes and underlines, therefore, the importance of broadband recordings. Frequency analysis reveals that the signal can be divided into four domains. In the traditional frequency range of volcanic tremor (1-10 Hz sharp transitions between two distinct values of the tremor amplitude can be observed. Additional tremor signal including frequencies from 10 to 20 Hz could be found during late November and early December. Throughout the whole experiment signals with periods of some hundred seconds were observed which are interpreted as ground tilts. For these long-period signals a particle motion analysis was performed in order to estimate the source location. Depth and radius can be estimated when the source is modeled as a sudden pressure change in a sphere. The fourth frequency range lies between 0.1 and 1 Hz and is dominated by two spectral peaks which are due to marine microseism. The phase velocity and the direction of wave propagation of these signals could be determined using the tripartite-method.

  1. Growth History of Kaena Volcano, the Isolated, Dominantly Submarine, Precursor Volcano to Oahu, Hawaii

    Science.gov (United States)

    Sinton, J. M.; Eason, D. E.

    2014-12-01

    The construction of O'ahu began with the recently recognized, ~3.5-4.9 Ma Ka'ena Volcano, as an isolated edifice in the Kaua'i Channel. Ka'ena remained submarine until, near the end of its lifetime as magma supply waned and the volcano transitioned to a late-shield stage of activity, it emerged to reach a maximum elevation of ~1000 m above sea level. We estimate that Ka'ena was emergent only for the last 15-25% of its lifespan, and that subaerial lavas make up < 5% of the total volume (20-27 x 103 km3). O'ahu's other volcanoes, Wai'anae (~3.9-2.85 Ma) and Ko'olau (~3.0-1.9 Ma), were built at least partly on the flanks of earlier edifices and both were active subaerial volcanoes for at least 1 Ma. The constructional history of Ka'ena contrasts with that of Wai'anae, Ko'olau, and many other Hawaiian volcanoes, which likely emerge within a few hundred kyr after inception, and with subaerial lavas comprising up to 35 volume % of the volcano. These relations suggest that volcano growth history and morphology are critically dependent on whether volcanic initiation and growth occur in the deep ocean floor (isolated), or on the flanks of pre-existing edifices. Two other volcanoes that likely formed in isolation are West Moloka'i and Kohala, both of which have long submarine rift zones, and neither attained great heights above sea level despite having substantial volume. The partitioning of volcanism between submarine and subaerial volcanism depends on the distance between volcanic centers, whether new volcanoes initiate on the flanks of earlier ones, and the time over which neighboring volcanoes are concurrently active. Ka'ena might represent an end-member in this spectrum, having initiated far from its next oldest neighbor and completed much of its evolution in isolation.

  2. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    Science.gov (United States)

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds.

  3. Precursory geophysical, geodetic and geochemical signatures of a new 2012 submarine eruption off the northwestern coast of El Hierro, Canary Islands, Spain

    Science.gov (United States)

    Pérez, Nemesio M.; Somoza, Luis; González de Vallejo, Luis; Sagiya, Takeshi; León, Ricardo; Hernández, Pedro A.; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Gonzalez-Aller, Daniel; Sánchez de La Madrid, José Luis; Barrancos, José; Ibáñez, Jesús M.; Sumino, Hirochika

    2013-04-01

    Here we report precursory geophysical, geodetic, and geochemical signatures of a new submarine eruption off the northwestern coast of El Hierro, Canary Islands, which has been detected through acoustic imaging of submarine plumes on June 27, 2012, by the Spanish research vessel "Hespérides". Five distinct acoustic submarine plumes have been recognized in this area at water depths between 64 and 88 m along a submarine platform located in front of the Lomo Negro volcanic cone, northwestern of El Hierro. Submarine plums are characterized by vertical columns of high-amplitude values rising from seafloor. These acoustic imaging data clearly support a new submarine eruption in 2012 associated to the recent magmatic reactivation of El Hierro volcanic system. This new eruption event was preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥ 2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS permanent network (Nagoya University-ITER-GRAFCAN) at El Hierro with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity at HIE02, a geochemical station located in the northwestern of El Hierro, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) the highest observed corrected value of 3He/4He ratio in ground waters (8,5 Ra) from San Simón well at the northwestern of El Hierro on June 16, 2012. These precursory signals have revealed important to improve and optimize the detection of early warning signals of volcanic unrest episodes at El Hierro.

  4. Elemental characterization of Mt. Sinabung volcanic ash, Indonesia by Neutron Activation Analysis

    Science.gov (United States)

    Kusmartini, I.; Syahfitri, W. Y. N.; Kurniawati, S.; Lestiani, D. D.; Santoso, M.

    2017-06-01

    Mount Sinabung is a volcano located in North Sumatera, Indonesia which has been recorded not erupted since 1600. However in 2013 it has been erupted and cause of black thick smog, rain sand and volcanic ash. Volcanic ash containing trace elements material that can be utilized in various applications but still has potential danger of heavy metals. In order to obtain an elemental composition data of volcanic ash, the characterization of volcanic ash were carried out using Neutron Activation Analysis. The volcanic ash was taken from Mt. Sinabung eruption. Samples were irradiated at the rabbit system in the reactor G.A Siwabessy facilities with neutron flux ˜ 1013 n.cm-2.s-1 and then counted using HPGe detector. Method validation was carried out by SRM NIST Coal Fly Ash 1633b and NIST 2711a Montana II Soil with recovery values were in the range of 96-108% and 95-106% respectively. The results showed that major elements; Al, Na, Ca and Fe, concentrations were 8.7, 1.05, 2.98 and 7.44 %, respectively, minor elements K, Mg, Mn, Ti, V and Zn were 0.87%, 0.78%, 0.18%, 0.62%, 197.13 ppm and 109.35 ppm, respectively, heavy metals; As, Cr, Co and Sb, contents were 4.48, 11.75, 17.13 and 0.35 ppm, respectively while rare earth elements such as Ce, Eu, La, Nd, Sm, Yb were 45.33, 1.22, 19.63, 20.34, 3.86, and 2.57 ppm respectively. The results of the elemental contents of volcanic ash that has been obtained can be used as the scientific based data for volcanic material utilization by considering the economic potential of elements contained and also the danger of the heavy metals content.

  5. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C. [Univ. of Nevada, Reno, NV (United States)] [and others

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  6. Mount Kenya volcanic activity and the Late Cenozoic landscape reorganisation in the upper Tana fluvial system

    NARCIS (Netherlands)

    Veldkamp, A.; Schoorl, J.M.; Wijbrans, J.R.; Claessens, L.F.G.

    2012-01-01

    Volcanic–fluvial landscape interaction of the late Cenozoic Mt Kenya region in the upper Tana catchment has been reconstructed. The oldest newly dated phonolite flow is 5.78 Ma (40Ar/39Ar), placing the initiation of Mt Kenya volcanic activity within the Late Miocene, much earlier than reported

  7. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    Science.gov (United States)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of 50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  8. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    Science.gov (United States)

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Assessing the Altitude and Dispersion of Volcanic Plumes Using MISR Multi-angle Imaging from Space: Sixteen Years of Volcanic Activity in the Kamchatka Peninsula, Russia

    Science.gov (United States)

    Flower, Verity J. B.; Kahn, Ralph A.

    2017-01-01

    Volcanic eruptions represent a significant source of atmospheric aerosols and can display local, regional and global effects, impacting earth systems and human populations. In order to assess the relative impacts of these events, accurate plume injection altitude measurements are needed. In this work, volcanic plumes generated from seven Kamchatka Peninsula volcanoes (Shiveluch, Kliuchevskoi, Bezymianny, Tolbachik, Kizimen, Karymsky and Zhupanovsky), were identified using over 16 years of Multi-angle Imaging SpectroRadimeter (MISR) measurements. Eighty-eight volcanic plumes were observed by MISR, capturing 3-25% of reported events at individual volcanoes. Retrievals were most successful where high intensity events persisted over a period of weeks to months. Compared with existing ground and airborne observations, and alternative satellite-based reports compiled by the Global Volcanism Program (GVP), MISR plume height retrievals showed general consistency; the comparison reports appear to be skewed towards the region of highest concentration observed in MISR-constrained vertical plume extent. The report observations display less discrepancy with MISR toward the end of the analysis period, with improvements in the suborbital data likely the result of the deployment of new instrumentation. Conversely, the general consistency of MISR plume heights with conventionally reported observations supports the use of MISR in the ongoing assessment of volcanic activity globally, especially where other types of volcanic plume observations are unavailable. Differences between the northern (Shiveluch, Kliuchevskoi, Bezymianny and Tolbachik) and southern (Kizimen, Karymsky and Zhupanovsky) volcanoes broadly correspond to the Central Kamchatka Depression (CKD) and Eastern Volcanic Front (EVF), respectively, geological sub-regions of Kamchatka distinguished by varying magma composition. For example, by comparison with reanalysis-model simulations of local meteorological conditions

  10. Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains

    Science.gov (United States)

    Head, James W.; Murchie, Scott L.; Prockter, Louise M.; Solomon, Sean C.; Chapman, Clark R.; Strom, Robert G.; Watters, Thomas R.; Blewett, David T.; Gillis-Davis, Jeffrey J.; Fassett, Caleb I.; Dickson, James L.; Morgan, Gareth A.; Kerber, Laura

    2009-08-01

    The first MESSENGER flyby of Mercury obtained images of 21% of the surface not seen by Mariner 10, including the center and western half of the Caloris basin and regions near the terminator that show details of the nature of smooth and intercrater plains. These new data have helped to address and resolve a series of longstanding questions on the existence and nature of volcanism on Mercury and the distribution of volcanic materials. Data from the Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft have shown the following: (1) Numerous volcanic vents, in the form of irregularly shaped rimless depressions, are concentrated around the interior edge of the Caloris basin. (2) These vents appear to be sources for effusive volcanism that in one case built a shield in excess of 100 km in diameter and in some cases formed bright haloes around the vents that are interpreted to represent pyroclastic eruptions. (3) Lobate margins of plains units, seen previously in Mariner 10 data, are documented in MESSENGER images with more clarity and are often distinctive in morphology and color properties, supporting the interpretation that these features are the edges of lava flow units. (4) The interior of the Caloris basin is filled with plains units spectrally distinctive from the rim deposits, and comparison with the lunar Imbrium basin and superposed impact crater stratigraphy provide evidence that these units are volcanic in origin; detailed differences in the mineralogy of lava flow units, so prominent in Imbrium, are not seen in the Caloris interior. (5) Some of the smooth plains surrounding the exterior of the Caloris basin show distinct differences in color and morphological properties, supporting a volcanic origin. (6) Some smooth and intercrater plains units distant from the Caloris basin show evidence of flooding and embayment relations unrelated to Caloris ejecta emplacement; local and regional geological and color relationships support a volcanic origin for

  11. Study of Volcanic Activity at Different Time Scales Using Hypertemporal Land Surface Temperature Data

    Science.gov (United States)

    Pavlidou, Efthymia; Hecker, Christoph; van der Werff, Harald; van der Meijde, Mark

    2017-10-01

    We apply a method for detecting subtle spatiotemporal signal fluctuations to monitor volcanic activity. Whereas midwave infrared data are commonly used for volcanic hot spot detection, our approach utilizes hypertemporal longwave infrared-based land surface temperature (LST) data. Using LST data of the second-generation European Meteorological Satellites, we study (a) a paroxysmal, 1 day long eruption of Mount Etna (Italy); (b) a prolonged, 6 month period of effusive and lateral lava flows of the Nyamuragira volcano (Democratic Republic of Congo); and (c) intermittent activity in the permanent lava lake of Nyiragongo (Democratic Republic of Congo) over a period of 2 years (2011-2012). We compare our analysis with published ground-based observations and satellite-based alert systems; results agree on the periods of increased volcanic activity and quiescence. We further apply our analysis on mid-infrared and long-infrared brightness temperatures and compare the results. We conclude that our study enables the use of LST data for monitoring volcanic dynamics at different time scales, can complement existing methodologies, and allows for use of long time series from older sensors that do not provide midwave infrared data.

  12. Exploratory Data Analysis Using a Dedicated Visualization App: Looking for Patterns in Volcanic Activity

    Science.gov (United States)

    van Manen, S. M.; Chen, S.

    2015-12-01

    Here we present an App designed to visualize and identify patterns in volcanic activity during the last ten years. It visualizes VEI (volcanic explosivity index) levels, population size, frequency of activity, and geographic region, and is designed to address the issue of oversampling of data. Often times, it is difficult to access a large set of data that can be scattered at first glance and hard to digest without visual aid. This App serves as a model that solves this issue and can be applied to other data. To enable users to quickly assess the large data set it breaks down the apparently chaotic abundance of information into categories and graphic indicators: color is used to indicate the VEI level, size for population size within 5 km of a volcano, line thickness for frequency of activity, and a grid to pinpoint a volcano's latitude. The categories and layers within them can be turned on and off by the user, enabling them to scroll through and compare different layers of data. By visualising the data this way, patterns began to emerge. For example, certain geographic regions had more explosive eruptions than others. Another good example was that low frequency larger impact volcanic eruptions occurred more irregularly than smaller impact volcanic eruptions, which had a more stable frequencies. Although these findings are not unexpected, the easy to navigate App does showcase the potential of data visualization for the rapid appraisal of complex and abundant multi-dimensional geoscience data.

  13. Acoustic response of submarine volcanoes in the Tofua Arc and northern Lau Basin to two great earthquakes

    Science.gov (United States)

    Bohnenstiehl, DelWayne R.; Dziak, Robert P.; Matsumoto, Haru; Conder, James A.

    2014-03-01

    Using a short-baseline hydrophone array, persistent volcanoacoustic sources are identified within the ambient noise field of the Lau Basin during the period between 2009 January and 2010 April. The submarine volcano West Mata and adjacent volcanic terrains, including the northern Matas and Volcano O, are the most active acoustic sources during the 15-month period of observation. Other areas of long-term activity include the Niua hydrothermal field, the volcanic islands of Hunga Ha'apai, Founalei, Niuatoputapu and Niuafo'ou, two seamounts located along the southern Tofua Arc and at least three unknown sites within the northern Lau Basin. Following the great Samoan earthquake on 2009 September 29, seven of the volcanoacoustic sources identified exhibit increases in the rate of acoustic detection. These changes persist over timescales of days-to-months and are observed up to 900 km from the earthquake hypocentre. At least one of the volcanoacoustic sources that did not respond to the 2009 Samoan earthquake exhibits an increase in detection rate following the great Mw 8.8 Chile earthquake that occurred at a distance of ˜9500 km on 2010 February 27. These observations suggest that great earthquakes may have undocumented impacts on Earth's vast submarine volcanic systems, potentially increasing the short-term flux of magma and volcanic gas into the overlying ocean.

  14. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  15. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  16. Compilation of Disruptions to Airports by Volcanic Activity (Version 1.0, 1944-2006)

    Science.gov (United States)

    Guffanti, Marianne; Mayberry, Gari C.; Casadevall, Thomas J.; Wunderman, Richard

    2008-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. To more fully characterize the nature and scope of volcanic hazards to airports, we collected data on incidents of airports throughout the world that have been affected by volcanic activity, beginning in 1944 with the first documented instance of damage to modern aircraft and facilities in Naples, Italy, and extending through 2006. Information was gleaned from various sources, including news outlets, volcanological reports (particularly the Smithsonian Institution's Bulletin of the Global Volcanism Network), and previous publications on the topic. This report presents the full compilation of the data collected. For each incident, information about the affected airport and the volcanic source has been compiled as a record in a Microsoft Access database. The database is incomplete in so far as incidents may not have not been reported or documented, but it does present a good sample from diverse parts of the world. Not included are en-route diversions to avoid airborne ash clouds at cruise altitudes. The database has been converted to a Microsoft Excel spreadsheet. To make the PDF version of table 1 in this open-file report resemble the spreadsheet, order the PDF pages as 12, 17, 22; 13, 18, 23; 14, 19, 24; 15, 20, 25; and 16, 21, 26. Analysis of the database reveals that, at a minimum, 101 airports in 28 countries were impacted on 171 occasions from 1944 through 2006 by eruptions at 46 volcanoes. The number of affected airports (101) probably is better constrained than the number of incidents (171) because recurring disruptions at a given airport may have been lumped together or not reported by news agencies, whereas the initial disruption likely is noticed and reported and thus the airport correctly counted.

  17. Assessing the altitude and dispersion of volcanic plumes using MISR multi-angle imaging from space: Sixteen years of volcanic activity in the Kamchatka Peninsula, Russia

    Science.gov (United States)

    Flower, Verity J. B.; Kahn, Ralph A.

    2017-05-01

    Volcanic eruptions represent a significant source of atmospheric aerosols and can display local, regional and global effects, impacting earth systems and human populations. In order to assess the relative impacts of these events, accurate plume injection altitude measurements are needed. In this work, volcanic plumes generated from seven Kamchatka Peninsula volcanoes (Shiveluch, Kliuchevskoi, Bezymianny, Tolbachik, Kizimen, Karymsky and Zhupanovsky), were identified using over 16 years of Multi-angle Imaging SpectroRadiometer (MISR) measurements. Eighty-eight volcanic plumes were observed by MISR, capturing 3-25% of reported events at individual volcanoes. Retrievals were most successful where eruptive events persisted over a period of weeks to months. Compared with existing ground and airborne observations, and alternative satellite-based reports compiled by the Global Volcanism Program (GVP), MISR plume height retrievals show general consistency; the comparison reports appear to be skewed towards the region of highest concentration observed in MISR-constrained plume vertical extent. The report observations display less discrepancy with MISR toward the end of the analysis period (2013-2016), with improvements in the suborbital data likely the result of the deployment of new instrumentation. Conversely, the general consistency of MISR plume heights with conventionally reported observations supports the use of MISR in the ongoing assessment of volcanic activity globally, especially where ground-based observations are unavailable. Differences between the northern (Shiveluch, Kliuchevskoi, Bezymianny and Tolbachik) and southern (Kizimen, Karymsky and Zhupanovsky) volcanoes broadly corresponding to the Central Kamchatka Depression (CKD) and Eastern Volcanic Front (EVF) geological sub-regions of Kamchatka, respectively, are distinguished by varying magma composition. For example, by comparison with reanalysis-model simulations of local meteorological conditions, CKD

  18. Influence of rifting episodes on seismic and volcanic activity in the southern Red Sea region

    Science.gov (United States)

    Viltres, Renier; Ruch, Joël; Doubre, Cécile; Reilinger, Rob; Ogubazghi, Ghebrebrhan; Jónsson, Sigurjón

    2017-04-01

    Rifting episodes cause large changes to the state of stress in the surrounding crust, both instantaneously (elastic stress transfer) and in the years following the episodes (viscoelastic stress transfer), and can significantly influence occurrence of future earthquakes and volcanic eruptions. Here we report on a new project that aims at studying the stress impact of rifting episodes and focuses on the southern Red Sea, Afar and Gulf of Aden region, which has seen a significant increase in rifting activity during the past decade. The Afar rift system experienced a major rifting episode (Dabbahu segment) in 2005-2010 and the southern Red Sea also appears to have had one, indicated by three volcanic eruptions in 2007, 2011-12, and 2013 (the first in the area in over a century), accompanied by several seismic swarms. In addition, Gulf of Aden had an exceptionally strong seismic swarm activity starting in late 2010 that was associated with intrusion of magma in a separate rifting episode. To explore the influence of these recent rifting episodes in the region we will use new geodetic observations, seismicity analysis and modeling. We have analyzed new GPS data collected in Eritrea, in Afar, and in southern Saudi Arabia. Comparisons with older surveys has not only resulted in better GPS velocities for the observed sites, but also revealed changes to velocities at some sites influenced by the rifting activity. We use the results along with seismic data to better constrain the timing, magnitude and duration of the rifting activity in the region. We will then apply elastic and visco-elastic stress transfer modeling to assess the associated stress changes, in particular at locations where volcanic eruptions or intrusions have occurred or where significant seismicity has been detected. The project should provide new information about the impact rifting events and episodes can have on regional volcanic and earthquake activity and how rifting episodes may influence one another.

  19. Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea

    Science.gov (United States)

    Swanson, Donald A.

    2008-01-01

    Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.

  20. Dissolved Nutrients from Submarine Groundwater in Flic en Flac ...

    African Journals Online (AJOL)

    Abstract—The aim of this study was to investigate dissolved nutrients in a submarine groundwater discharge (SGD) in Flic en Flac lagoon on the west coast of the volcanic island of Mauritius. The SGD enters Flic en Flac lagoon through a thin blanket of unconsolidated sediment through a fracture system and is concentrated ...

  1. Dissolved Nutrients from Submarine Groundwater in Flic en Flac ...

    African Journals Online (AJOL)

    The aim of this study was to investigate dissolved nutrients in a submarine groundwater discharge (SGD) in Flic en Flac lagoon on the west coast of the volcanic island of Mauritius. The SGD enters Flic en Flac lagoon through a thin blanket of unconsolidated sediment through a fracture system and is concentrated along the ...

  2. Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars

    Science.gov (United States)

    Martínez-Alonso, Sara; Mellon, Michael T.; Banks, Maria E.; Keszthelyi, Laszlo P.; McEwen, Alfred S.; HiRISE Team

    2011-04-01

    Chryse and Acidalia Planitiae show numerous examples of enigmatic landforms previously interpreted to have been influenced by a water/ice-rich geologic history. These landforms include giant polygons bounded by kilometer-scale arcuate troughs, bright pitted mounds, and mesa-like features. To investigate the significance of the last we have analyzed in detail the region between 60°N, 290°E and 10°N, 360°E utilizing HiRISE (High Resolution Imaging Science Experiment) images as well as regional-scale data for context. The mesas may be analogous to terrestrial tuyas (emergent sub-ice volcanoes), although definitive proof has not been identified. We also report on a blocky unit and associated landforms (drumlins, eskers, inverted valleys, kettle holes) consistent with ice-emplaced volcanic or volcano-sedimentary flows. The spatial association between tuya-like mesas, ice-emplaced flows, and further possible evidence of volcanism (deflated flow fronts, volcanic vents, columnar jointing, rootless cones), and an extensive fluid-rich substratum (giant polygons, bright mounds, rampart craters), allows for the possibility of glaciovolcanic activity in the region. Landforms indicative of glacial activity on Chryse/Acidalia suggest a paleoclimatic environment remarkably different from today's. Climate changes on Mars (driven by orbital/obliquity changes) or giant outflow channel activity could have resulted in ice-sheet-related landforms far from the current polar caps.

  3. MIGRATION OF SEISMIC AND VOLCANIC ACTIVITY AS DISPLAY OF WAVE GEODYNAMIC PROCESS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2012-01-01

    Full Text Available Publications about the earthquake foci migration have been reviewed. An important result of such studies is establishment of wave nature of seismic activity migration that is manifested by two types of rotational waves; such waves are responsible for interaction between earthquakes foci and propagate with different velocities. Waves determining long-range interaction of earthquake foci are classified as Type 1; their limiting velocities range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks and aftershocks of individual earthquakes are classified as Type 2; their velocities range from 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two types of migration waves correspond to slow and fast tectonic waves. The most complete data on earthquakes (for a period over 4.1 million of years and volcanic eruptions (for 12 thousand years of the planet are consolidated in a unified systematic format and analyzed by methods developed by the authors. For the Pacific margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three most active zones of the Earth, new patterns of spatial and temporal distribution of seismic and volcanic activity are revealed; they correspond to Type 1 of rotational waves. The wave nature of the migration of seismic and volcanic activity is confirmed. A new approach to solving problems of geodynamics is proposed with application of the data on migration of seismic and volcanic activity, which are consolidated in this study, in combination with data on velocities of movement of tectonic plate boundaries. This approach is based on the concept of integration of seismic, volcanic and tectonic processes that develop in the block geomedium and interact with each other through rotating waves with a symmetric stress tensor. The data obtained in this study give grounds to suggest that a geodynamic value, that is mechanically analogous to an impulse

  4. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  5. Low cost submarine robot

    OpenAIRE

    Ponlachart Chotikarn; Werapong Koedsin; Boonlua Phongdara; Pattara Aiyarak

    2010-01-01

    A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-rin...

  6. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  7. Noble gas systematics of submarine alkalic lavas near the Hawaiian hotspot

    NARCIS (Netherlands)

    Hanyu, T.; Clague, D.A.; Kaneoka, I.; Dunai, T.J.; Davies, G.R.

    2005-01-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism and hence understand the details of mantle upwelling beneath Hawaii. Samples were collected by dredging or using submersibles from

  8. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)

    Science.gov (United States)

    Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.

    2017-06-01

    Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major

  9. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach.

    Science.gov (United States)

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Birth of two volcanic islands in the southern Red Sea

    KAUST Repository

    Xu, Wenbin

    2015-05-26

    Submarine eruptions that lead to the formation of new volcanic islands are rare and far from being fully understood; only a few such eruptions have been witnessed since Surtsey Island emerged to the south of Iceland in the 1960s. Here we report on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011–2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal erosion significantly modified their shapes within months. Satellite radar data indicate that two north–south-oriented dykes, much longer than the small islands might suggest, fed the eruptions. These events occurred contemporaneously with several local earthquake swarms of the type that typically accompany magma intrusions. Earthquake activity has been affecting the southern Red Sea for decades, suggesting the presence of a magmatically active zone that has previously escaped notice.

  11. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  12. Scaling and extended scaling in sediment registers of a paleolake perturbed by volcanic activity

    Science.gov (United States)

    Ugalde, Edgardo; Martínez-Mekler, Gustavo; Vilaclara, Gloria

    2006-07-01

    We analyze a sequence of density variations of sedimentary material from an extinct paleolake of the state of Tlaxcala, Mexico, which we previously obtained by means of computer-aided tomography [J. Miranda, A. Oliver, G. Vilaclara, R. Rico-Montiel, V.M. Macias, J.L. Ruvalcava, M.A. Zenteno, Nucl. Instrum. Methods Phys. Res. B 85 (1994) 886]. In the stratified blocks chiselled out of mines at the lake bed, low-density sediments have a high concentration of diatomite, while high-density strata show a considerable amount of material external to the lake, mostly of volcanic origin. Two regions can be distinguished by visual inspection: a darker and older one which we attribute to a strongly externally perturbed regime, and a whiter more recent one which appears to have been subjected to less frequent volcanic perturbations. By means of a scaling analysis of the distribution function of density fluctuations, we show that for the most recent region there is a range of scales where these fluctuations present a self-similar behavior. We attribute this observation to a rare event response, namely, the onset of correlations in the lake relaxation processes to steady-state conditions following intense volcanic disturbances. Based on scaling properties of the structure function, we also show that the complete data series presents extended self-similarity as encountered in turbulence studies [R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massoli, S. Succi, Phys. Rev. E 48 (1993) R29]. Our characterization of the statistical behavior of the density fluctuations contributes to our knowledge of the volcanic activity over a period of thousands of years, as well as aspects of ecological interest of the lake's response to these disturbances [G. Vilaclara, E. Ugalde, E. Cuna, G. Martinez-Mekler, Complex dynamics of the evolution of a Paleolake subjected to volcanic activity: geology meets ecology, submitted for publication]. Our approach can be implemented in general to other

  13. Geochemical and geophysical monitoring activities in Campo de Calatrava Volcanic Field (Spain)

    Science.gov (United States)

    Luengo-Oroz, Natividad; Villasante-Marcos, Víctor; López-Díaz, Rubén; Calvo, Marta; Albert, Helena; Domínguez Cerdeña, Itahiza

    2017-04-01

    The Campo de Calatrava Volcanic Field (CCVF) or Spanish Central Volcanic Zone is located in central continental Spain (Ciudad Real province) and covers about 5000 km2. It includes around 240 eruptive centers, mainly monogenetic basaltic cones but also explosive maar structures. According to K-Ar geochronology, its main activity phase occurred during Pliocene and Pleistocene epochs (between 5 and 1.7 Ma) and involved alkaline to ultraalkaline magmas, although an older ultrapotassic phase is dated around 8.7-6.4 Ma. However, some recent works have proposed Holocene ages for some of the volcanic products, opening the possibility of considering the CCVF "active" according to international standards. Responding to this situation, the Instituto Geográfico Nacional (IGN) has initiated geochemical and geophysical monitoring activities in the CCVF. Here, we describe these ongoing efforts and we report results about groundwater geochemistry at several natural highly-gaseous springs in the area (hervideros), as well as soil temperature, CO2 diffuse flux from the soil and electrical self-potential data mapped on a small degassing structure called La Sima. In order to analyze microseismicity or any seismic anomaly in the CCVF, a seismic station has also been installed close to this degassing structure. Physicochemical parameters (temperature, pH, Eh and electric conductivity) were measured in situ in four springs and samples were taken in order to analyze major ions and trace elements. Total composition of dissolved gases and helium isotopic ratios were also determined. To complete soil temperature, self-potential and gas prospections performed in La Sima, soil gases were sampled at the bottom of the structure at a depth of 20 cm. Analysis of the total gas composition found 957400 ppm of CO2. Low values of O2 and N2 were also detected (5600 and 24800 ppm respectively).

  14. Variety and sustainability of volcanic lakes: Response to subaqueous thermal activity predicted by a numerical model

    Science.gov (United States)

    Terada, Akihiko; Hashimoto, Takeshi

    2017-08-01

    We use a numerical model to investigate the factors that control the presence or absence of a hot crater lake at an active volcano. We find that given a suitable pair of parameters (e.g., the enthalpy of subaqueous fumaroles and the ratio of mass flux of the fluid input at the lake bottom to lake surface area), hot crater lakes can be sustained on relatively long timescales. Neither a high rate of precipitation nor an impermeable layer beneath the lake bottom are always necessary for long-term sustainability. The two controlling parameters affect various hydrological properties of crater lakes, including temperature, chemical concentrations, and temporal variations in water levels. In the case of low-temperature crater lakes, increases in flux and enthalpy, which are a common precursor to phreatic or phreatomagmatic eruptions, result in an increase in both temperature and water level. In contrast, a decrease in water level accompanied by a rise in temperature occurs at high-temperature lakes. Furthermore, our model suggests that crater geometry is a key control on water temperature. For lakes with a conical topography, a perturbation in the water level due to trivial nonvolcanic activity, such as low levels of precipitation, can cause persistent increases in water temperature and chemical concentrations, and a decrease in the water level, even though subaqueous fumarolic activity does not change. Such changes in hot crater lakes which are not caused by changes in volcanic activity resemble the volcanic unrest that precedes eruptions.

  15. Self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas

    Directory of Open Access Journals (Sweden)

    A. Siniscalchi

    1997-06-01

    Full Text Available We present the results of self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas as essential contributions both to structural modeling and to hazard evaluation. On Mt. Etna and Mt. Somma-Vesuvius complexes structural modeling was emphasized due to a lack of global information involving the whole apparatuses, at least from the electrical point of view. Hazard investigation was, instead, investigated with high resolution techniques on the island of Vulcano, where intense unrest phenomena have long been recorded.

  16. Local influences of geothermal anomalies on permafrost distribution in an active volcanic island (Deception Island, Antarctica)

    OpenAIRE

    Goyanes, G.; Vieira, G.; Caselli, A.; Cardoso, M.; Marmy, Antoine; Santos, F.; Bernardo, I.; Hauck, Christian

    2014-01-01

    This study aims at understanding the spatial distribution and characteristics of the frozen and unfrozen terrain in an alluvial fan on Deception Island, which is an active strato-volcano located in the Bransfield Strait (South Shetland Islands) with recent eruptions in 1967, 1969 and 1970. The alluvial fan is dominated by debris-flow, run-off and rock fall processes and permafrost occurs in several parts in the vicinity of anomalous geothermal heat flux. The aim is to assess the ways volcanic...

  17. The acoustic response of submarine volcanoes in the Tofua Arc and northern Lau Basin following two great earthquakes in Samoa and Chile

    Science.gov (United States)

    Bohnenstiehl, D. R.; Dziak, R. P.; Matsumoto, H.; Conder, J. A.

    2013-12-01

    Using a correlation-based detector operating on data from a short-baseline hydrophone array, persistent volcano-acoustic sources are identified within the ambient noise field of the Lau Basin during the period between January 2009 and April 2010. The submarine volcano West Mata and adjacent volcanic terrains, including the northern Matas and Volcano O, are the most active acoustic sources during the 15-month period of observation. Other areas of long-term activity include the Niua hydrothermal field, the volcanic islands of Hunga-Ha'apai, Founalei, Niuatoputapu and Niuafo'ou, two unnamed seamounts located along the southern Tofua Arc, and at least three unknown sites within the northern Lau Basin. Following the great Samoan earthquake on 29 September of 2009, seven of the volcano-acoustic sources identified exhibit increases in the rate of acoustic detection. These changes persist over time scales of days-to-months and are observed up to 900 km from the earthquake hypocenter. At least one of the volcano-acoustic sources that did not respond to the 2009 Samoan earthquake exhibits an increase in detection rate following the great Mw 8.8 Chile earthquake that occurred at a distance of ~9,500 km on 27 February 2010. These observations suggest that great earthquakes may have undocumented impacts on Earth's vast submarine volcanic systems, potentially increasing the short-term flux of magma and volcanic gas into the overlying ocean.

  18. The Effect of Recent Volcanic Activity on the Seismic Structure of Madagascar

    Science.gov (United States)

    Wysession, M. E.; Aleqabi, G. I.; Pratt, M. J.; Shore, P.; Wiens, D. A.; Nyblade, A.; Rambolamanana, G.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.

    2014-12-01

    The seismic structure of Madagascar is determined using ambient-noise and two-plane-wave earthquake surface waves analyses. A deep low-velocity anomaly is seen in regions of recent volcanic activity in the central and northern regions of the island. The primary data used are from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the PASSCAL program of IRIS (Incorporated Research Institutions for Seismology), funded by the NSF. Additional data came from the RHUM-RUM project (led by G. Barruol and K. Sigloch), the Madagascar Seismic Profile (led by F. Tilmann), and the GSN. For the ambient-noise study, Rayleigh wave green's functions for all interstation paths are extracted from the broadband seismic data recorded from August 2011 until October 2013. Rayleigh wave group and phase velocity dispersion curves are extracted in the 8 - 50 s period range, identifying shallow crustal structure. For deeper structure, the two-plane-wave method is used on teleseismic earthquake data to obtain surface wave phase velocities in the 20 - 182 s period range. In the inversion, a finite-frequency kernel is used for each period, and a 1-D shear velocity structure is determined at each location. A three-dimensional S-wave velocity model of the crust and upper mantle is obtained from assembling the 1-D models. Preliminary results show a good correlation between the Rayleigh wave velocities and the geology of Madagascar, which includes areas of ancient Archaean craton. The slowest seismic velocities are associated with known volcanic regions in both the central and northern regions, which have experienced volcanic activity within the past million years.

  19. Multiteide Project: Multiparametric characterization of the activity of Teide-Pico Viejo volcanic system

    Science.gov (United States)

    Domínguez Cerdeña, Itahiza; Villasante-Marcos, Victor; Meletlidis, Stavros; Sainz-Maza, Sergio; Abella, Rafael; Torres, Pedro A.; Sánchez, Nieves; Luengo-Oroz, Natividad; José Blanco, María; García-Cañada, Laura; Pereda de Pablo, Jorge; Lamolda, Héctor; Moure, David; Del Fresno, Carmen; Finizola, Anthony; Felepto, Alicia

    2017-04-01

    Teide-Pico Viejo complex stands for one of the major natural volcanic hazards in the Canary Islands, due to the expected types of eruptions in the area and the high number of inhabitants in Tenerife Island. Therefore, it is necessary to have a volcanic alert system able to afford a precise assessment of the current state of the complex. For this purpose, the knowledge of the expected signals at each volcanic activity level is required. Moreover, the external effects that can affect the measurements shall be distinguished, external influences as the atmosphere are qualitatively known but have not been quantified yet. The objective of the project is to collect, analyze and jointly and continuously evaluate over time geophysical, geodetic, geochemical and meteorological data from the Teide-Pico Viejo complex and its surroundings. A continuous multiparametric network have been deployed in the area, which, together with the data provided by the Volcano Monitoring Network of the Instituto Geográfico Nacional (IGN) and data from other institutions will provide a comprehensive set of data with high resolution in both space and time. This multiparametric network includes a seismic array, two self-potential lines for continuous measurements, five magnetometers and two weather stations. The network will be complemented with 8 CGPS stations, one tiltmeter, 10 seismic stations, and four thermometric stations on the fumaroles of Teide volcano that IGN already manage in Tenerife. The data will be completed with the results from different repeated surveys of self potential, soil temperature and CO2 diffuse flux in several pre-established areas on top of Teide throughout the entire duration of project. During the project, new computation tools will be developed to study the correlation between the different parameters analyzed. The results obtained will characterize the possible seasonal fluctuations of each parameter and the variations related to meteorological phenomena. In

  20. Surface deformation of active volcanic areas retrieved with the SBAS-DInSAR technique: an overview

    Directory of Open Access Journals (Sweden)

    G. Zeni

    2008-06-01

    Full Text Available This paper presents a comprehensive overview of the surface deformation retrieval capability of the Differential Synthetic Aperture Radar Interferometry (DInSAR algorithm, referred to as Small BAseline Subset (SBAS technique, in the context of active volcanic areas. In particular, after a brief description of the algorithm some experiments relevant to three selected case-study areas are presented. First, we concentrate on the application of the SBAS algorithm to a single-orbit scenario, thus considering a set of SAR data composed by images acquired on descending orbits by the European Remote Sensing (ERS radar sensors and relevant to the Long Valley caldera (eastern California area. Subsequently, we address the capability of the SBAS technique in a multipleorbit context by referring to Mt. Etna volcano (southern Italy test site, with respect to which two different ERS data set, composed by images acquired both on ascending and descending orbits, are available. Finally, we take advantage of the capability of the algorithm to work in a multi-platform scenario by jointly exploiting two different sets of SAR images collected by the ERS and the Environment Satellite (ENVISAT radar sensors in the Campi Flegrei caldera (southern Italy area. The presented results demonstrate the effectiveness of the algorithm to investigate the deformation field in active volcanic areas and the potential of the DInSAR methodologies within routine surveillance scenario.

  1. The search for active volcanism on Venus with Venus Express/VIRTIS data

    Science.gov (United States)

    Tsang, C. C. C.; Virtis Team

    The composition of the lower atmosphere of Venus is of primary importance in understanding the past and indeed current evolution of climatology on this most enigmatic of planets In discovering the near infrared windows centered at 2 3 1 7 and 1 18 microns Allen and Crawford 1 in 1983 paved the way for the lower 40km of the atmosphere to be probed remotely from space This has led Venus Express to carry imaging spectrometers such as VIRTIS to make full use of this phenomenon Some fundamental questions concerning the exact makeup of the atmosphere will be answered by analyzing VIRTIS data Data collected from past observations indicate the possibility of current volcanic activity on the surface of Venus The monitoring of SO 2 at the cloud tops indicate a steady drop in concentration suggesting a possible source of SO 2 is due to volcanism 2 whilst deep atmospheric values below the clouds suggest a uniform mixing ratio 3 The analysis VIRTIS data at 2 48 micron window will no doubt shed light on this matter Analysis of the micro-window complex at 1 18 microns shows that we can image the surface of the planet in the infrared whilst negating most of the effects of the atmosphere 4 We can monitor the surface brightness temperatures to look for hot spots indicative of volcanic plumes another key goal of Venus Express and VIRTIS We have developed a radiative transfer model to analyse Venus Express VIRTIS data in the near infrared windows The retrieval model uses the correlated-k distribution method which incorporates the use

  2. Soil radon measurements as potential tracer of seismic and volcanic activity at Etna

    Science.gov (United States)

    Neri, Marco; Giammanco, Salvatore; Galli, Gianfranco; Ferrera, Elisabetta

    2014-05-01

    Radon is a radioactive noble gas present in all rocks of the Earth. It's used by the scientific community as a tracer of natural phenomena related to outgassing from the soil along faults, fractures and crustal discontinuity. Recently, radon has also been used on active volcanoes such as Etna, both as a precursor of volcanic phenomena as well as in the study of the dynamics of faults. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) performs discrete and continuous measurements of radon from soil at Etna since 2002. First studies concerned measurements of radon and thoron emissions from soil carried out on the E and SW flanks of Etna, in zones characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds, producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. These studies confirmed that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover. INGV permanent radon monitoring network was installed in July 2005. First results were obtained during the July 2006 eruption. The radon signal recorded at Torre del Filosofo (TdF, ~2950 m asl) was compared with volcanic tremor and thermal radiance data. The onset of explosive activity and a lava fountaining episode were preceded by some hours with increases in radon activity and more gradual increases in volcanic tremor. After 2006, Etna produced dozens of paroxysmal episodes from a new vent opened on the eastern flank of the Southeast Crater (summit area), that have built up a new, huge pyroclastic cone. In many cases we observed increase in radon activity some hours before the eruptive events. These observations suggest that radon emissions from the TdF zone are sensitive to the local geodynamic pressure induced by magma dynamics in the conduit systems. Other promising results were

  3. Submarine Landslides at Santa Catalina Island, California

    Science.gov (United States)

    Legg, M. R.; Francis, R. D.

    2011-12-01

    Santa Catalina Island is an active tectonic block of volcanic and metamorphic rocks originally exposed during middle Miocene transtension along the evolving Pacific-North America transform plate boundary. Post-Miocene transpression created the existing large pop-up structure along the major strike-slip restraining bend of the Catalina fault that forms the southwest flank of the uplift. Prominent submerged marine terraces apparent in high-resolution bathymetric maps interrupt the steep submarine slopes in the upper ~400 meters subsea depths. Steep subaerial slopes of the island are covered by Quaternary landslides, especially at the sea cliffs and in the blueschist metamorphic rocks. The submarine slopes also show numerous landslides that range in area from a few hectares to more than three sq-km (300 hectares). Three or more landslides of recent origin exist between the nearshore and first submerged terrace along the north-facing shelf of the island's West End. One of these slides occurred during September 2005 when divers observed a remarkable change in the seafloor configuration after previous dives in the area. Near a sunken yacht at about 45-ft depth where the bottom had sloped gently into deeper water, a "sinkhole" had formed that dropped steeply to 100-ft or greater depths. Some bubbling sand was observed in the shallow water areas that may be related to the landslide process. High-resolution multibeam bathymetry acquired in 2008 by CSU Monterey Bay show this "fresh" slide and at least two other slides of varying age along the West End. The slides are each roughly 2 hectares in area and their debris aprons are spread across the first terrace at about 85-m water depth that is likely associated with the Last Glacial Maximum sealevel lowstand. Larger submarine slides exist along the steep Catalina and Catalina Ridge escarpments along the southwest flank of the island platform. A prominent slide block, exceeding 3 sq-km in area, appears to have slipped more than

  4. Chlorine isotope fractionation associated with volcanic activity at the Kusatsu-Bandaiko hot spring in Japan.

    Science.gov (United States)

    Musashi, Masaaki; Oi, Takao; Eggenkamp, Hans G M; Matsuo, Motoyuki

    2008-09-01

    Stable chlorine isotope compositions (delta(37)Cl, per-mil: per thousand, vs. a standard sample of sea water) of Kusatsu-bandaiko hot water samples, taken regularly in the years between 1974 and 1995 in the Kusatsu-Shirane volcanic region, Japan, were measured mass-spectrometrically. The results show that the delta(37)Cl values of the waters taken before 1984 were at around-0.12 per thousand, whereas those after 1984 were at around+0.18 per thousand. The delta(37)Cl values are thus distinct across 1984, which is consistent with the classification by the Cl to S molar ratio (Cl/S): the higher the Cl/S ratio, the larger the delta(37)Cl value. The delta(37)Cl value increased as much as 0.30 per thousand during 5 years between 1980 and 1984. This isotopic enrichment is likely correlated with increasing Cl/S ratios, suggesting that the heavier isotope ((37)Cl) may have preferentially increased in the original Cl source of the hot spring across 1984 when volcanic activity likely increased at Mt Kusatsu-Shirane.

  5. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  6. Submarine mass wasting processes along slopes influenced by long-term tectonic erosion: The Middle America Trench

    Science.gov (United States)

    Harders, R.; Ranero, C. R.; Weinrebe, W.

    2011-12-01

    We have studied submarine land-sliding using a seafloor topography and side-scan sonar data along the continental slope of the Middle America Trench. This subduction zone is dominated by tectonic erosion. Studies during the last few decades have shown mass wasting structures at submarine slopes around the world's continental margins, hot-spot volcanic islands, and volcanic island arcs. At Atlantic margins slides initiate at low slope angles and appear triggered by high sediment accumulation rates. At volcanic islands large-scale land-sliding is caused by volcano sector collapse. At subduction zones with accretionary prisms, land-sliding seems associated to contractional tectonics and fluid seepage. Submarine mass movements at subduction zones dominated by tectonic erosion are comparatively limited. However, tectonic erosion is active in about 50% of the world subduction zones. Distinct failures have been studied at slopes in Peru, Costa Rica, Nicaragua and New Zealand but extensive surveys have not been obtained. We present a comprehensive data sets on seafloor mapping on a subduction zone dominated by tectonic erosion. The data covers much of the Middle America Trench (MAT) from the Mexico-Guatemala border to Costa Rica - Panama border. The goal of this contribution is to evaluate how long-term tectonics caused by subduction erosion preconditions the continental slope structure to modulate the generation of land-sliding. We show that changes in subduction erosion processes, interacting with the local topography of the subducting plate correlate to variations in the type and distribution of failures along the slope of the region.

  7. Use of Logistic Regression for Forecasting Short-Term Volcanic Activity

    Directory of Open Access Journals (Sweden)

    Mark T. Woods

    2012-08-01

    Full Text Available An algorithm that forecasts volcanic activity using an event tree decision making framework and logistic regression has been developed, characterized, and validated. The suite of empirical models that drive the system were derived from a sparse and geographically diverse dataset comprised of source modeling results, volcano monitoring data, and historic information from analog volcanoes. Bootstrapping techniques were applied to the training dataset to allow for the estimation of robust logistic model coefficients. Probabilities generated from the logistic models increase with positive modeling results, escalating seismicity, and rising eruption frequency. Cross validation yielded a series of receiver operating characteristic curves with areas ranging between 0.78 and 0.81, indicating that the algorithm has good forecasting capabilities. Our results suggest that the logistic models are highly transportable and can compete with, and in some cases outperform, non-transportable empirical models trained with site specific information.

  8. ASI-Volcanic Risk System (SRV): a pilot project to develop EO data processing modules and products for volcanic activity monitoring, first results.

    Science.gov (United States)

    Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Dini, L.

    2009-04-01

    The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools geophysical parameters suitable for volcanic risk management. The ASI-SRV is devoted to the development of an integrated system based on Earth Observation (EO) data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes during all the risk phases (Pre Crisis, Crisis and Post Crisis). The ASI-SRV system provides support to risk managers during the different volcanic activity phases and its results are addressed to the Italian Civil Protection Department (DPC). SRV provides the capability to manage the import many different EO data into the system, it maintains a repository where the acquired data have to be stored and generates selected volcanic products. The processing modules for EO Optical sensors data are based on procedures jointly developed by INGV and University of Modena. This procedures allow to estimate a number of parameters such as: surface thermal proprieties, gas, aerosol and ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information during the prevention phase and during the Warning and Crisis phase. In the prevention phase the thermal analysis is directed to the identification of temperature variation on volcanic structure which may indicate a change in the volcanic activity state. At the moment the only sensor that

  9. Iron Speciation in Proximity to an Active Volcanic Hotspot, Kerguelen Plateau, Southern Ocean

    Science.gov (United States)

    Holmes, T.; Wuttig, K.; Chase, Z.; van der Merwe, P.; Townsend, A.; Bowie, A. R.

    2016-12-01

    Low iron (Fe) concentrations limit biological productivity in over a third of the world's oceans. The Southern Ocean (SO) is the largest of these regions of Fe deficiency. However, within the Indian sector of the SO lays an oasis of relatively Fe rich waters overlaying the Kerguelen Plateau. At the southern part of the central Kerguelen plateau is an active volcanic hotspot, hosting two volcanically active islands, Heard and MacDonald (HIMI), the former of which is largely covered by glaciers. Waters in the region are subject to an intense mixing regime, caused by shallow bathymetry and the location of the plateau in the path of strong currents associated with the polar front. Fed by the Fe rich waters formed on the plateau, a plankton bloom on the order of thousands of square kilometres forms in the lee of the plateau annually each summer. Here we present dissolved iron (dFe), dissolved iron(II) (dFe(II)) and hydrogen peroxide (H2O2) data from waters surrounding HIMI on the central Kerguelen Plateau collected on RV Investigator voyage IN2016_V01 in early 2016. Analysis was performed at sea using three separate flow injection - chemiluminescence instruments. Two broadly zonal transects revealed that dFe was present in limiting concentrations (island and accounted for up to 30% of the total dFe. We also observed an intense mixing regime homogenising short-lived Fe(II) and H2O2 species throughout the water column in shallow areas of the plateau. Our results revealed varying Fe speciation patterns between the islands indicating multiple Fe sources around HIMI, including reducing hydrothermal, sedimentary and glacial sources.

  10. Geomorphic process fingerprints in submarine canyons

    Science.gov (United States)

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  11. Chemical evolution at the coasts of active volcanic islands in a primordial salty ocean

    Science.gov (United States)

    Strasdeit, H.; Fox, S.

    2008-09-01

    The Prebiotic Hot-Volcanic-Coast Scenario It has been suggested that in the Hadean eon (4.5-3.8 Ga before present) no permanent continents but volcanic islands and short-lived protocontinents protruded from the first ocean [1, 2]. As the geothermal heat production was considerably higher than today, it is reasonable to assume that hot volcanic coasts were much more abundant. The salinity of the ocean was probably up to two times higher than the modern value [3]. Under these conditions, the evaporation of seawater at active volcanic coasts must have produced sea salt crusts - a process that can still be observed today [4]. On the hot lava rock, the salt crusts can subsequently experience temperatures up to some hundred degrees Celsius. The seawater probably contained abiotically formed organic molecules such as amino acids, which were inevitably embedded into the sea salt crusts. Different prebiotic sources of amino acids have been discussed: (i) comets and meteorites [5], electrical discharges in the atmosphere [6, 7], and deep-sea hydrothermal vents [8]. We undertook a systematic study of solid salt-amino acid mixtures, especially of their formation and thermal behavior under simulated conditions of the hotvolcanic- coast scenario. Laboratory Experiments Amino acids@salts Artificial Hadean seawater was prepared by dissolving NaCl (705 mmol), MgCl2 (80 mmol), KCl (15 mmol), CaCl2 (15 mmol), and an α-amino acid (5-10 mmol) or a mixture of α-amino acids. In order to model the first step of the hot-volcanic-coast scenario, the solutions were evaporated to dryness. Vibrational spectroscopy (IR, Raman) and X-ray powder diffraction showed that the resulting solid residues were not heterogeneous mixtures of salt and amino acid crystals. Instead the amino acid molecules were coordinated in calcium or magnesium complexes. We have studied the rac-alanine ( + H3NCH(CH3)COO -, Hala) system in more detail and found that the complex that is present in the mixture has the

  12. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  13. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Steven, Thomas A.

    1984-01-01

    PART A: Igneous activity in the Marysvale volcanic field of western Utah can be separated into many episodes of extrusion, intrusion, and hydrothermal activity. The rocks of the western Tushar Mountains, near the western part of the volcanic field, include intermediate-composition, calc-alkalic volcanic rocks erupted from scattered volcanoes in Oligocene through earliest Miocene time and related monzonitic intrusions emplaced 24-23 m.y. ago. Beginning 22-21 m.y. ago and extending through much of the later Cenozoic, a bimodal basalt-rhyolite assemblage was erupted widely throughout the volcanic field. Only volcanic and intrusive rocks belonging to the rhyolitic end member of this bimodal assemblage are present in the western Tushar Mountains; most of these rocks either fill the Mount Belknap caldera (19 m.y. old) or are part of the rhyolite of Gillies Hill (9---8 m.y. old). Episodic hydrothermal activity altered and mineralized rocks at many places in the western Tushar Mountains during Miocene time. The earliest activity took place in and adjacent to monzonitic calcalkalic intrusions emplaced in the vicinity of Indian Creek and Cork Ridge. These rocks were widely propylitized, and gold-bearing quartz-pyrite-carbonate veins formed in local fractures. Hydrothermal activity associated with the Mount Belknap caldera mobilized and redeposited uranium contained in the caldera-fill rocks and formed primary concentrations of lithophile elements (including molybdenum and uranium) in the vicinity of intrusive bodies. Hydrothermal activity associated with the rhyolite of Gillies Hill altered and mineralized rocks at several places along the fault zone that marks the western margin of the Tushar Mountains; the zoned alunite and gold deposits at Sheep Rock, the gold deposit at the Sunday Mine, and an alunite deposit near Indian Creek were thus produced. Resetting of isotopic ages suggests that another center of hydrothermally altered rocks associated with a buried pluton about

  14. An Original Approach for an Automatic Bulletin of Volcanic Activity in Indonesia : the First Results of Infrasound Array in Kalimantan

    Science.gov (United States)

    Guilbert, J.; Harjadi, P.; Purbawinata, M.; James, S.; Le Pichon, A.

    2005-12-01

    The infrasound technology has already shown a unique low-level detectability for the detection of volcanic activity as ash clouds or explosions. This kind of detection and characterization of the volcanic activity is very important for a country like Indonesia where the volcanoes are aligned along more than 5000km of the arc of subduction. Due to the mutual experience and knowledge on meteorological observations, infrasound observation and modelling, the BMG (Indonesia), VSI (Indonesia) and the CEA (France) have decided to cooperate to validate this technology. The central position the Kalimantan Island (Borneo) was identified as the best area to monitor with a good resolution in azimuth all the Indonesian volcanoes. The PMCC bulletins of detection will be presented. These detections are crossed with the available reports of volcanic activity of Indonesia and Philippines. The high sensibility of the infrasound technology is clearly proved. To validate this bulletin, we cross these detections with the detections obtained using the IMS stations around Indonesia to localize the sources. This comparison proves that the Kalimantan infrasound array is ideally situated to survey an important part of the volcanic activity along the Indonesia-Philippines arc. In parallel, we use these infrasonic observations to improve the atmospheric models of wind.

  15. Understanding Hydrological and Climate Conditions on Early Mars Through Sulfate Cycling and Microbial Activity in Terrestrial Volcanic Systems

    Science.gov (United States)

    Szynkiewicz, A.; Mikucki, J.; Vaniman, D.

    2017-10-01

    Our study is a type of Earth-based investigation in a Mars-analog environment that allows for determination of how changing wet and dry conditions in active volcanic/hydrothermal system affect sulfate fluxes into surface water and groundwater.

  16. Impacts of forest harvest on active carbon and microbial properties of a volcanic ash cap soil in northern Idaho

    Science.gov (United States)

    Deborah S. Page-Dumroese; Matt D. Busse; Steven T. Overby; Brian D. Gardner; Joanne M. Tirocke

    2015-01-01

    Soil quality assessments are essential for determining impacts on belowground microbial community structure and function. We evaluated the suitability of active carbon (C), a rapid field test, as an indicator of soil biological quality in five paired forest stands (clear cut harvested 40 years prior and unharvested) growing on volcanic ash-cap soils in northern Idaho....

  17. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2017-11-25

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  18. Impact of the Popocatepetl's volcanic activity on the air quality of Puebla City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, A. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico); Gay, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico); Flores, Y. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico)

    2005-01-01

    In this work we report measurements of atmospheric pollutants in Puebla City, including those registered during the period characterized by intense volcanic activity from Popocatepetl volcano between December 2000 and January 2001. We used a gaussian air dispersion model to calculate the impact of sulfur compounds from volcanic emissions on the measurements of these compounds in the stations belonging to Puebla City Atmospheric Monitoring Network. The data show that during the analyzed period, this volcanic emissions affected the air quality, increasing the indexes of PM{sub 1}0, CO and sulfur compounds. Also, the results of applying a Gaussian air dispersion model to these sulfur compounds explains the measurements from Tecnologico station for days with intense volcanic activity and wind coming from the volcano to Puebla City. [Spanish] En este trabajo se reportan mediciones de contaminantes atmosfericos en la ciudad de Puebla, incluyendo las registradas durante el periodo caracterizado por una intensa actividad del volcan Popocatepetl, entre diciembre de 200 y enero de 2001. Aplicamos un modelo de dispersion gaussiano para calcular el impacto de las emisiones volcanicas de compuestos de azufre en las mediciones de estos compuestos en las estaciones de la Red de Monitoreo Atmosferico de la ciudad de Puebla. Los datos muestran que durante el periodo analizado, las emisiones volcanicas afectaron la calidad del aire incrementando los indices de PM{sub 1}0, CO y compuestos de azufre. Ademas, los resultados del modelo gaussiano de dispersion del aire para los compuestos de azufre, explican las mediciones de la estacion Tecnologico para los dias con intensa actividad volcanica y viento viniendo del volcan hacia la ciudad de Puebla.

  19. Unraveling the Lipolytic Activity of Thermophilic Bacteria Isolated from a Volcanic Environment

    Directory of Open Access Journals (Sweden)

    Panagiota M. Stathopoulou

    2013-01-01

    Full Text Available In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity with Geobacillus species and related genera, whilst one of them was identified as Aneurinibacillus sp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70–80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern.

  20. Water-quality effects on Baker Lake of recent volcanic activity at Mount Baker, Washington

    Science.gov (United States)

    Bortleson, Gilbert Carl; Wilson, Reed T.; Foxworthy, B.L.

    1976-01-01

    Increased volcanic activity on Mount Baker, which began in March 1975, represents the greatest known activity of a Cascade Range volcano since eruptions at Lassen Peak, Calif. during 1914-17. Emissions of dust and increased emanations of steam, other gases, and heat from the Sherman Crater area of the mountain focused attention on the possibility of hazardous events, including lava flows, pyroclastic eruptions, avalanches, and mudflows. However, the greatest undesirable natural results that have been observed after one year of the increased activity are an increase in local atmospheric pollution and a decrease in the quality of some local water resources, including Baker Lake. Baker Lake, a hydropower reservoir behind Upper Baker Dam, supports a valuable fishery resource and also is used for recreation. The lake's feedwater is from Baker River and many smaller streams, some of which, like Boulder Creek, drain parts of Mount Baker. Boulder Creek receives water from Sherman Crater, and its channel is a likely route for avalanches or mudflows that might originate in the crater area. Boulder Creek drains only about 5 percent of the total drainage area of Baker Lake, but during 1975 carried sizeable but variable loads of acid and dissolved minerals into the lake. Sulfurous gases and the fumarole dust from Sherman Crater are the main sources for these materials, which are brought into upper Boulder Creek by meltwater from the crater. In September 1973, before the increased volcanic activity, Boulder Creek near the lake had a pH of 6.0-6.6; after the increase the pH ranged as low as about 3.5. Most nearby streams had pH values near 7. On April 29, in Boulder Creek the dissolved sulfate concentration was 6 to 29 times greater than in nearby creeks or in Baker River; total iron was 18-53 times greater than in nearby creeks; and other major dissolved constituents generally 2 to 7 times greater than in the other streams. The short-term effects on Baker Lake of the acidic

  1. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran

    Science.gov (United States)

    Azizi, Hossein; Moinevaziri, Hossein

    2009-04-01

    There are three parallel magmatic arcs in the northwest of Iran, of Cretaceous and Eocene-Miocene to Quaternary ages, trending in a NW-SE direction between the Main Zagros Thrust (MZT) in the southwest and the Tabriz Fault in the northeast. In this study, these volcanic belts are referred to as the Sanandaj Cretaceous volcanic (SCV), Sonqor-Baneh volcanic (SBV), and Hamedan-Tabriz volcanic (HTV) belts, respectively. The SCV belt consists mainly of mafic to intermediate submarine rocks with calc-alkaline affinity, and the SBV belt is composed of basalt, gabbro to dioritic bodies, with extrusive to subvolcanic magmatic textures and tholeiitic to alkaline affinity. These extend along the MZT between the Zagros ophiolite in the west and the SCV belt in the east. The HTV belt is part of the Urmieh-Dokhtar Magmatic Arc belt that extends across the Hamedan to Tabriz, and was active in the Miocene to Quaternary. The petrology and geochemistry of the northwestern Iranian volcanic zones indicate that they were generated at an active continental margin. In addition to the volcanic belts, there is a dismembered ophiolite along the MZT from Kermanshah to Turkey, in a NW-SE direction. These ophiolites are remnants of Neo-Tethyan oceanic crust which was obducted over the Arabian passive margin in the late Cretaceous. In this study, we propose that a collision between the Arabian and Iranian plates may have occurred in the middle to late Miocene, and that the Neo-Tethyan oceanic subduction beneath northwestern Iran ceased for a while. As a result, a gap in volcanic activity occurred between the Cretaceous and the Middle Miocene-Quaternary volcanism events. This gap in activity is not observed in southwestern Iran.

  2. Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy)

    Science.gov (United States)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-04-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 t a-1. Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 950 ng g-1 dry soil h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer but values > 100 ng g-1 h-1 were maintained up to a depth of 15 cm. The highest consumption rate was measured at 37 °C, but a still recognizable consumption at 80 °C (> 20 ng g-1 h-1) was recorded. In order to estimate the bacterial diversity, total soil DNA was extracted from Favara Grande and analysed using a Temporal Temperature Gradient gel Electrophoresis (TTGE) analysis of the amplified bacterial 16S rRNA gene. The three soil samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs

  3. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008.

    Science.gov (United States)

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L

    2010-01-01

    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide.

  4. Relation of compositions of deep fluids in geothermal activity of Pleistocene-Holocene volcanic fields of Lesser Caucasus

    Science.gov (United States)

    Meliksetian, Khachatur; Lavrushin, Vassily; Shahinyan, Hrach; Aidarkozhina, Altin; Navasardyan, Gevorg; Ermakov, Alexander; Zakaryan, Shushan; Prasolov, Edward; Manucharyan, Davit; Gyulnazaryan, Shushan; Grigoryan, Edmond

    2017-04-01

    It is widely accepted, that geothermal activity in the conductive heat flow processes, such as volcanism and hydrothermal activity, is manifestation of the thermal mass transfer process in the Earth's crust, where geothermal and geochemical processes are closely connected. Therefore, geochemistry and isotope compositions of thermal mineral waters within and on periphery of volcanic clusters may represent key indicators for better understanding of geothermal activity in geodynamically active zones. Geochemical features of heat and mass transport in hydrothermal systems related to active volcanic and fault systems in continental collision related orogenic elevated plateaus such as Anatolian-Armenian-Iranian highlands are still poorly understood. In this contribution we attempt to fill these gaps in our knowledge of relations of geochemical and geothermal processes in collision zones. We present new data on chemical compositions, trace element geochemistry of thermal waters of Lesser Caucasus, (Armenia) as well as isotope analysis of free gases such as {}3He/{}4He, {}40Ar/{}36Ar, δ{}13?(CO{}2), nitrogen δ{}15N(N{}2) and oxygen and hydrogen isotopes in water phases (δD, δ{}18O). To reveal some specific features of formation of fluid systems related to thermal activity in the areas of collision related active volcanism and active geodynamics a complex geochemical (SiO{}2, K-Na, Na-Li, Li-Mg) and isotope geothermometers (δ{}18O(CaCO{}3) - δ{}18O(H{}2O)) were applied. The distribution of δ{}13?(??{}2) values in free gases of mineral waters of Armenia demonstrates that gases related to Quaternary volcanic fields are characterized by relatively light δ{}13?(CO{}2) values close to mantle derived gases, while on periphery of volcanic systems relatively heavy values of δ{}13?(CO{}2) indicate strong influence of metamorphic and sedimentary derived carbon dioxide. Distribution of nitrogen isotopes δ{}15N(N{}2) demonstrate an inverse correlation with δ{}13?(CO{}2

  5. Monitoring of the nuclear submarine Komsomolets

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, Hilde E.; Flo, Janita K.; Liebig, Penny L. [Institute of Marine Research, P. O. Box 1870 Nordnes, N-5817 Bergen (Norway); Gaefvert, Torbjoern; Rudjord, Anne Liv [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Gwynn, Justin P. [Norwegian Radiation Protection Authority, The Fram Centre, N-9296 Tromsoe (Norway)

    2014-07-01

    The Soviet nuclear submarine Komsomolets sank on the 7 April 1989, 180 km southwest of Bear Island in the Norwegian Sea to a depth of about 1655 m. The submarine contains one nuclear reactor containing long-lived radionuclides such as cesium-137 ({sup 137}Cs) along with other fission and activation products, in addition to 2 mixed uranium/plutonium nuclear warheads containing weapons grade plutonium. Although several model studies have shown that a radioactive leakage from Komsomolets will have insignificant impact on fish and other marine organisms, there are still public concerns about the condition of the submarine and the potential for radioactive leakage. In order to document the contamination levels and to meet public concerns, monitoring of radioactive contamination in the area adjacent to the submarine has been ongoing since 1993. Samples of bottom seawater and sediments have been collected annually by the Institute of Marine Research (IMR) and have been analysed for {sup 137}Cs and plutonium-239,240 ({sup 239,240}Pu). So far, activity concentrations in the samples have been comparable to levels found in other samples from the Norwegian and Barents Seas. During sampling from R/V 'G. O. Sars' in April 2013, an area of about 1 km{sup 2} of the seabed around Komsomolets was mapped to precisely locate the submarine using a Kongsberg EM302 multibeam echo sounder, a Simrad EK60 single beam echo sounder and an Olex 3D bottom-mapping system. For sediment sampling, a Simrad MST342 mini-transponder was attached to a Smoegen box corer to allow for precise positioning of the corer. With the aid of the Kongsberg HiPAP (High Precision Acoustic Positioning) system, 4 box cores were collected around the submarine at a distance of 10 to 20 m. In addition, one box core was collected from a reference station about 100 m upstream of the submarine. Surface sediments and sediment cores were collected from the box cores taken at each sampling location. Sediment cores

  6. Evidence for sub-lacustrine volcanic activity in Lake Bolsena (central Italy) revealed by high resolution seismic data sets

    Science.gov (United States)

    Lindhorst, Katja; Krastel, Sebastian; Wagner, Bernd; Schuerer, Anke

    2017-06-01

    The Bolsena caldera that formed between 0.6 and 0.2 Ma has a well preserved structural rim, which makes it an ideal site to study the tectonic and volcanic evolution of calderas. However, the main area is covered by a 150 m deep lake which makes it rather difficult to investigate the subsurface structure directly. To overcome this problem new high resolution hydro-acoustic surveys using a multichannel reflection seismic system and a sediment echo-sounder system were conducted in September 2012. As space was limited we used a rowing boat towed by a rubber boat to handle a 36 m long and 24 channel streamer to receive seismic reflections produced using a Mini GI-Gun (0.25 l). The subsurface structure of Lake Bolsena was imaged up to a sediment depth of 190 m, which is estimated to have filled over a period of 333 kyrs. However, massive pyroclastic flow deposits found in the deeper parts of the basin indicate an initial infill of volcanic deposits from two adjacent younger calderas, the Latera (W) and Montefiascone (SE) calderas. Our data suggest that the caldera has a long history of active volcanism, because the lacustrine sediments show post-sedimentary influences of geothermal fluids. We mapped several mound structures at various stratigraphic depths. Two volcanic structures outcrop at the modern lake surface implying recent activity. One of these structures is hardly covered by sediments and has a crater-like feature in its summit. The other structure shows a pockmark-like depression on top. Another observable feature is a partially sediment filled crater located in the western part of the lake which further implies the existence of a magma chamber located beneath the Bolsena caldera. Since the late Pleistocene and Holocene, the sedimentation was mainly hemipelagic evidenced by a sediment drape of up to 10 m thick sediment drape on the uppermost sediments. Beneath the drape we found evidence for a distal tephra layer likely related to an explosive eruption from

  7. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    Science.gov (United States)

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds. © 2011 Acoustical Society of America

  8. Intumescence and pore structure of alkali-activated volcanic glasses upon exposure to high temperatures

    Science.gov (United States)

    Erdogan, S. T.

    2015-12-01

    Structures formed with ground perlite, a natural volcanic glass, activated with NaOH solutions, are shown to possess the ability to expand up to ~225 % of their original volumes upon exposure to temperatures in the 200-600 °C range. Porous solid with 3-7 MPa compressive strength and ˜450 kg/m3 or higher density are obtained. The observed expansion is believed to occur due to a loss of silanol condensation water, as vapor and is accompanied by an up to ~20 % loss in mass. A drop in pH to near-neutral values supports this idea. The size and total amount of pores in the final solid are controlled by concentration of the NaOH solution and thermal processing conditions. The pores formed are observed to be ~1-10 μm to mm-sized. The ability of perlite-based solids to intumesce over specific temperature ranges could be beneficial in applications where absorption of thermal energy is necessary, such as passive fire protection.

  9. High-spatial-resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data

    Science.gov (United States)

    Flynn, Luke P.; Harris, Andrew J. L.; Rothery, David A.; Oppenheimer, Clive

    After the initial observation in 1987 that high spatial resolution data could be used to acquire thermal information for active volcanoes, satellite technology and its applications have leapt forward in possibilities and complexity. Since 1972, the Landsat series of satellites has provided the longest continuous high spatial resolution (Landsat 4 and 5 (launched in 1982 and 1984, respectively) featuring the Thematic Mapper system have made it possible to detect, map, and model high temperature features such as lava bodies and fires. Landsat 7 was launched in April, 1999, carrying an enhanced instrument package that includes a higher spatial resolution thermal band and a 15-m panchromatic band that will greatly aid detailed mapping of volcanic features. Current planning for the future Landsat 8 instrument includes a fundamental shift towards a lighter, more energy efficient instrument having a greater number of spectral bands. Hyperspectral sensors, such as that of Earth Orbiter-1, that have been planned for launch as part of the New Millennium Program, are being considered as Landsat 8 prototypes. Initial studies of lava flows and lava lakes using field spectrometers afford a glimpse of the capabilities offered by the next generation of satellites to model lava flow temperatures. Hyperspectral measurements of lava flows allow for the solution of numerous thermal components, which can then be used for much more detailed modeling than can be supported by broad band radiometry.

  10. Volcanic activity monitoring in Mt. Baekdu using SAR and LAHARZ model

    Science.gov (United States)

    Lee, Changwook; Lee, Moungjin

    2017-04-01

    Mt. Baekdu is located on the border between China and North Korea with high risk to large explosive eruptions with not available efficient field work because of rugged mountain terrain. A multi-band SAR interferometry was applied to a time-series processing from 1992 to now in this study. First of all, Japanese Earth Resources Satellites (JERS-1) L-band SAR data is useful to measure surface deformation with time-series method in heavily vegetation area such as mountain and forest regions. We make multiple-interferogram to measure surface deformation with time-series in Mt. Baekdu area and successfully generate time-series rate map from 1992 to 1998 using JERS-1 SAR data at previous work. We also used ALOS-PALSAR data for making time-series surface deformation map from 2006 to 2011. Radarsat-2 C-band SAR data is not proper to make interferogram in this area because of relatively short wavelength from 2010 to 2012. Moreover, TerraSAR-X X-band SAR data is not easily make interferograms with time-series continuously from 2012 to 2015. We also generate inundation area map from simulation of Laharz model for volcanic hazards risk estimation in Mt. Baekdu area. This study can help to monitor of active volcano with a dangerous and thick forest area covered by snow mostly half of the year.

  11. Depth profiles of resistivity and spectral IP for active modern submarine hydrothermal deposits: a case study from the Iheya North Knoll and the Iheya Minor Ridge in Okinawa Trough, Japan

    Science.gov (United States)

    Komori, Shogo; Masaki, Yuka; Tanikawa, Wataru; Torimoto, Junji; Ohta, Yusuke; Makio, Masato; Maeda, Lena; Ishibashi, Jun-ichiro; Nozaki, Tatsuo; Tadai, Osamu; Kumagai, Hidenori

    2017-08-01

    Submarine hydrothermal deposits are one of the promising seafloor mineral resources, because they can store a large amount of metallic minerals as sulfides. The present study focuses on the electrical properties of active modern submarine hydrothermal deposits, in order to provide constraints on the interpretation of electrical structures obtained from marine electromagnetic surveys. Measurements of resistivity and spectral induced polarization (IP) were made using drillcore samples taken from the Iheya North Knoll and the Iheya Minor Ridge in Okinawa Trough, Japan. These hydrothermal sediments are dominantly composed of disseminated sulfides, with minor amounts of massive sulfide rocks. The depth profiles of resistivity and spectral IP properties were successfully revealed to correspond well to layer-by-layer lithological features. Comparison with other physical properties and occurrence of constituent minerals showed that resistivity is essentially sensitive to the connectivity of interstitial fluids, rather than by sulfide and clay content. This suggests that, in active modern submarine hydrothermal systems, not only typical massive sulfide rocks but also high-temperature hydrothermal fluids could be imaged as low-resistivity anomalies in seabed surveys. The spectral IP signature was shown to be sensitive to the presence or absence of sulfide minerals, and total chargeability is positively correlated with sulfide mineral abundance. In addition, the massive sulfide rock exhibits the distinctive IP feature that the phase steadily increases with a decrease of frequency. These results show the effective usage of IP for developing and improving marine IP exploration techniques.[Figure not available: see fulltext.

  12. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    volcanism on humankind in the North Pacific, where Holocene time saw many caldera-forming eruptions in an area of comparatively intense human activity.

  13. Exercise Aboard Attack Submarines: Rationale and New Options

    Science.gov (United States)

    2004-08-18

    experience loss of physical fitness while underway. Bennett and co-workers (2) noted a 7% reduction of maximal oxygen consumption in non-exercising...Inc. designed and built a comprehensive resistance exercise device to help counteract muscle deconditioning during long term space flights (the SX... Physical activity aboard nuclear submarines as measured by pedometry. Groton: Naval Submarine Medical Research Laboratory, Report 1053, 1985, p. 12

  14. Can we detect, monitor, and characterize volcanic activity using 'off the shelf' webcams and low-light cameras?

    Science.gov (United States)

    Harrild, M.; Webley, P. W.; Dehn, J.

    2015-12-01

    The ability to detect and monitor precursory events, thermal signatures, and ongoing volcanic activity in near-realtime is an invaluable tool. Volcanic hazards often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash to aircraft cruise altitudes. Using ground based remote sensing to detect and monitor this activity is essential, but the required equipment is often expensive and difficult to maintain, which increases the risk to public safety and the likelihood of financial impact. Our investigation explores the use of 'off the shelf' cameras, ranging from computer webcams to low-light security cameras, to monitor volcanic incandescent activity in near-realtime. These cameras are ideal as they operate in the visible and near-infrared (NIR) portions of the electromagnetic spectrum, are relatively cheap to purchase, consume little power, are easily replaced, and can provide telemetered, near-realtime data. We focus on the early detection of volcanic activity, using automated scripts that capture streaming online webcam imagery and evaluate each image according to pixel brightness, in order to automatically detect and identify increases in potentially hazardous activity. The cameras used here range in price from 0 to 1,000 and the script is written in Python, an open source programming language, to reduce the overall cost to potential users and increase the accessibility of these tools, particularly in developing nations. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures to be correlated to pixel brightness. Data collected from several volcanoes; (1) Stromboli, Italy (2) Shiveluch, Russia (3) Fuego, Guatemala (4) Popcatépetl, México, along with campaign data from Stromboli (June, 2013), and laboratory tests are presented here.

  15. Possible Influence of Volcanic Activity on the Decadal Potential Predictability of the Natural Variability in Near-Term Climate Predictions

    Directory of Open Access Journals (Sweden)

    Hideo Shiogama

    2010-01-01

    Full Text Available Initialization based on data assimilations using historical observations possibly improves near-term climate predictions. Significant volcanic activity in the future is unpredictable and not assumed in future climate predictions. To examine the possible influence of unpredictable future volcanic activity on the decadal potential predictability of the natural variability, we performed a 2006–2035 climate prediction experiment with the assumption that the 1991  Mt. Pinatubo eruption would take place again in 2010. The Pinatubo forcing induced not only significant cooling responses but also considerable noises in the natural variability. The errors due to the Pinatubo forcing grew faster than that arising from imperfect knowledge of the observed state, leading to a rapid reduction of the decadal potential predictability of the natural variability.

  16. Geochemical stratigraphy of submarine lavas (3-5 Ma) from the Flamengos Valley, Santiago, Cape Verde

    DEFF Research Database (Denmark)

    Barker, Abigail K; Holm, Paul Martin; Peate, David W.

    2009-01-01

    New high-precision Pb-Sr-Nd isotope, major and trace element and mineral chemistry data are presented for the submarine stage of ocean island volcanism on Santiago, one of the southern islands of the Cape Verde archipelago. Pillow basalts and hyaloclastites in the Flamengos Valley are divided...

  17. New inferences from spectral seismic energy measurement of a link between regional seismicity and volcanic activity at Mt. Etna, Italy

    Science.gov (United States)

    Ortiz, R.; Falsaperla, S.; Marrero, J. M.; Messina, A.

    2009-04-01

    The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity - with the onset of ash emission and Strombolian explosions - was observed a couple of hours before the occurrence of the regional

  18. [Medical-physiological characteristics of combat training of nuclear-power submarine crews].

    Science.gov (United States)

    Dovgusha, V V; Myznikov, I L; Shalabodov, S A; Bumaĭ, O K

    2009-10-01

    The article presents an observe of general questions of peculiarities of military-professional activity of submarine staff These questions are defining value in ideology of medical supply of submarine troops of NAVY in now-days conditions. The article also presents the statistics of morbidity in long termed sails for last forty years, it's dynamics by different categories of sail staff, on different stages of combat training activity in dependence of perioditation of work cycle of submarine staff The authors have examined modern condition of medical supply of submarines; have presented statistics of quality indexes of health of submarine staff The authors have formed main problems of medical supply of submarines and have proposed ways of their solving on modern stage.

  19. Integration of geophysical datasets by a conjoint probability tomography approach: application to Italian active volcanic areas

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available We expand the theory of probability tomography to the integration of different geophysical datasets. The aim of the new method is to improve the information quality using a conjoint occurrence probability function addressed to highlight the existence of common sources of anomalies. The new method is tested on gravity, magnetic and self-potential datasets collected in the volcanic area of Mt. Vesuvius (Naples, and on gravity and dipole geoelectrical datasets collected in the volcanic area of Mt. Etna (Sicily. The application demonstrates that, from a probabilistic point of view, the integrated analysis can delineate the signature of some important volcanic targets better than the analysis of the tomographic image of each dataset considered separately.

  20. ALS surveys to monitor an active volcanic area: the case of Stromboli Island (Italy)

    Science.gov (United States)

    Nardinocchi, C.; Idda, B.; Marsella, M.

    2009-04-01

    Airborne laser scanning is today the most effective data acquisition technology for the production of high resolution, high quality DTMs (Digital Terrain Models). The only competing technique might be aerial photogrammetry with direct camera orientation by GPS/INS (Inertial Navigation Systems) and DTM generation by digital image correlation; with aerial digital cameras the automation of the workflow should not be far from that of the laser scanner. Nevertheless, the preference for the laser scanner is clear and unlikely to be reversed. Because of its characteristics (first and last pulse, penetration rate in forested areas, narrow field angles, independence on shadows and object textur), laser scanning is indeed better suited and more versatile than photogrammetry for DTM production in urban areas as well as in forested areas. Focused on the Island of Stromboli this work investigates whether airborne laser scanner systems can be effectively adopted to survey and monitor active volcanic areas. We present the results obtained from the analysis of ALS data collected on Stromboli Island before and after the last eruption at Stromboli occurred in February-April 2007. The analysis allowed to obtain quantitative data to identify the geometry of deformation features and evaluate the volumes of the displaced (failures and landslides) and emplaced (lava flows) mass along the of the Sciara del Fuoco slope. We focused on the capability of extracting accurate topographic data from ALS range measurements, despite the rough morphology, the presence of vegetation and the steepness of the island slopes. Beam intensity values were processed in order to identify different surface features related to lithology and roughness and to evidence changes induced by erosion and the lava effusion processes.

  1. Late Pleistocene-Holocene volcanic activity in northern Victoria Land recorded in Ross Sea (Antarctica) marine sediments

    Science.gov (United States)

    Del Carlo, P.; Di Roberto, A.; Di Vincenzo, G.; Bertagnini, A.; Landi, P.; Pompilio, M.; Colizza, E.; Giordano, G.

    2015-05-01

    Eight pyroclastic fall deposits have been identified in cores of Late Pleistocene-Holocene marine sediments from the Ross Sea (Antarctica), and their components, granulometry and clast morphologies were analysed. Sedimentological, petrographic and geochemical analysis of clasts, with 40Ar-39Ar dating of alkali feldspar grains, indicate that during this period at least five explosive eruptions of mid to high intensity (plinian to subplinian) occurred, and that three of these eruptions took place from Mount Melbourne volcanic complex, between 137.1 ± 3.4 and 12 ka. Geochemical comparison of the studied tephra with micro- and crypto-tephra recovered from deep Antarctic ice cores and from nearby englacial tephra at Frontier Mountain indicates that eruptive activity in the Melbourne Volcanic Province of northern Victoria Land was intense during the Late Pleistocene-Holocene, but only a general area of provenance for the majority of the identified tephra can be identified.

  2. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  3. The submarine eruption of La Restinga (El Hierro, Canary Islands): October 2011-March 2012; La erupcion submarina de La Restinga en la isla de El Hierro, Canarias: Octubre 2011-Marzo 2012

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Torrado, F. J.; Carracedo, J. C.; Rodriguez-Gonzalez, A.; Soler, V.; Troll, V. R.; Wiesmaier, S.

    2012-11-01

    The first signs of renewed volcanic activity at El Hierro began in July 2011 with the occurrence of abundant, low-magnitude earthquakes. The increasing seismicity culminated on October 10, 2011, with the onset of a submarine eruption about 2 km offshore from La Restinga, the southernmost village on El Hierro. The analysis of seismic and deformation records prior to, and throughout, the eruption allowed the reconstruction of its main phases: 1) ascent of magma and migration of hypo centres from beneath the northern coast (El Golfo) towards the south rift zone, close to La Restinga, probably marking the hydraulic fracturing and the opening of the eruptive conduit; and 2) onset and development of a volcanic eruption indicated by sustained and prolonged harmonic tremor whose intensity varied with time. The features monitored during the eruption include location, depth and morphological evolution of the eruptive source and emission of floating volcanic bombs. These bombs initially showed white, vesiculated cores (originated by partial melting of underlying pre-volcanic sediments upon which the island of El Hierro was constructed) and black basanite rims, and later exclusively hollow basanitic lava balloons. The eruptive products have been matched with a fissural submarine eruption without ever having attained surtseyan explosiveness. The eruption has been active for about five months and ended in March 2012, thus becoming the second longest reported historical eruption in the Canary Islands after the Timanfaya eruption in Lanzarote (1730-1736). This eruption provided the first opportunity in 40 years to manage a volcanic crisis in the Canary Islands and to assess the interpretations and decisions taken, thereby gaining experience for improved management of future volcanic activity. Seismicity and deformation during the eruption were recorded and analysed by the Instituto Geografico Nacional (IGN). Unfortunately, a lack of systematic sampling of erupted pyroclasts and

  4. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    Science.gov (United States)

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  5. Eruptions in space and time: durations, intervals, and comparison of world's active volcanic belts

    Energy Technology Data Exchange (ETDEWEB)

    Simkin, T.; McClelland, L.

    1986-07-01

    A computerized data bank, compiled over the last 12 years at the Smithsonian Institution, allows summaries to be made of Holocene volcanism. The Scientific Event Alert Network tracks current volcanic activity. However, the record of most volcanoes is poor before the last 100 years, and some eruptions still pass unreported. The time interval since the previous eruption can be calculated for 4835 of the 5564 compiled eruptions. The median interval is 5.0 years, but much longer intervals commonly precede unusually violent eruptions. For the 25 most violent eruptions in the file (with known preceding interval), the medium interval is 865 years. Of the historic eruptions in this group, 50% resulted in fatalities. The interval between an eruption's start and its most violent paroxysm may be measured in months or years, but it is usually short. Of the 205 larger eruptions for which data are available, 92 had the paroxysmal event within the first day of the eruption, allowing little time for emergency preparations after the eruption's opening phase. To compare the recent vigor of different volcanic belts, they calculated the number of years in which each volcano was active in the last 100 years, summed these for each belt, and divided by belt length. Another index of recent vigor is the number of recognized Holocene volcanoes divided by belt length. A third index is the number of large explosive eruptions (volcanic explosive index greater than or equal to 3) of the last 100 years, again normalized by belt length. These three measures correlate reasonably well, serving to contrast vigorous belts such as Kamchatka, Central America, and Java with relatively quiet belts such as the Cascades, South Sandwich Islands, Greece, and southern Chile.

  6. Volcanism, Iron, and Phytoplankton in the Heard and McDonald Islands Region, Southern Indian Ocean

    Science.gov (United States)

    Coffin, M. F.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Trull, T. W.; Heobi in2016 v01 Shipboard Party, T.

    2016-12-01

    Phytoplankton supply approximately half of the oxygen in Earth's atmosphere, and iron supply limits the growth of phytoplankton in the anemic Southern Ocean. Situated entirely within the Indian Ocean sector of the Southern Ocean are Australia's only active subaerial volcanoes, Heard and McDonald islands (HIMI) on the central Kerguelen Plateau, a large igneous province. Widespread fields of submarine volcanoes, some of which may be active, extend for distances of up to several hundred kilometers from the islands. The predominantly eastward-flowing Antarctic Circumpolar Current sweeps across the central Kerguelen Plateau, and extensive blooms of phytoplankton are observed on the Plateau down-current of HIMI. The goal of RV Investigator voyage IN2016_V01, conducted in January/February 2016, is to test the hypothesis that hydrothermal fluids, which cool active submarine volcanoes in the HIMI region, ascend from the seafloor and fertilise surface waters with iron, thereby enhancing biological productivity beginning with phytoplankton. Significant initial shipboard results include: Documentation, for the first time, of the role of active HIMI and nearby submarine volcanoes in supplying iron to the Southern Ocean. Nearshore waters had elevated dissolved iron levels. Although biomass was not correspondingly elevated, fluorescence induction data indicated highly productive resident phytoplankton. Discovery of >200 acoustic plumes emanating from the seafloor and ascending up to tens of meters into the water column near HIMI. Deep tow camera footage shows bubbles rising from the seafloor in an acoustic plume field north of Heard Island. Mapping 1,000 km2 of uncharted seafloor around HIMI. Submarine volcanic edifices punctuate the adjacent seafloor, and yielded iron-rich rocks similar to those found on HIMI, respectively. Acoustic plumes emanating from some of these features suggest active seafloor hydrothermal systems.

  7. Mercury as a proxy for volcanic activity during extreme environmental turnover

    DEFF Research Database (Denmark)

    Sial, A.N.; Lacerda, L.D.; Ferreira, V.P.

    2013-01-01

    The usually low geological background concentrations of Hg makes this trace element suitable for identifying accumulation pulses in sediments that can be tentatively related to weathering processes and thus to climatic changes. Intense volcanism has witnessed the Cretaceous–Paleogene transition (...

  8. United States-Chile binational exchange for volcanic risk reduction, 2015—Activities and benefits

    Science.gov (United States)

    Pierson, Thomas C.; Mangan, Margaret T.; Lara Pulgar, Luis E.; Ramos Amigo, Álvaro

    2017-07-25

    In 2015, representatives from the United States and Chile exchanged visits to discuss and share their expertise and experiences dealing with volcano hazards. Communities in both countries are at risk from various volcano hazards. Risks to lives and property posed by these hazards are a function not only of the type and size of future eruptions but also of distances from volcanoes, structural integrity of volcanic edifices, landscape changes imposed by recent past eruptions, exposure of people and resources to harm, and any mitigative measures taken (or not taken) to reduce risk. Thus, effective risk-reduction efforts require the knowledge and consideration of many factors, and firsthand experience with past volcano crises provides a tremendous advantage for this work. However, most scientists monitoring volcanoes and most officials delegated with the responsibility for emergency response and management in volcanic areas have little or no firsthand experience with eruptions or volcano hazards. The reality is that eruptions are infrequent in most regions, and individual volcanoes may have dormant periods lasting hundreds to thousands of years. Knowledge may be lacking about how to best plan for and manage future volcanic crises, and much can be learned from the sharing of insights and experiences among counterpart specialists who have had direct, recent, or different experiences in dealing with restless volcanoes and threatened populations. The sharing of information and best practices can help all volcano scientists and officials to better prepare for future eruptions or noneruptive volcano hazards, such as large volcanic mudflows (lahars), which could affect their communities.

  9. Cardiometabolic Health in Submariners Returning from a 3-Month Patrol

    Directory of Open Access Journals (Sweden)

    Heath G. Gasier

    2016-02-01

    Full Text Available Confined space, limited exercise equipment, rotating shift work and reduced sleep may affect cardiometabolic health in submariners. To test this hypothesis, 53 male U.S. Submariners (20–39 years were studied before and after a 3-month routine submarine patrol. Measures included anthropometrics, dietary and physical activity, biomarkers of cardiometabolic health, energy and appetite regulation, and inflammation. Before deployment, 62% of submariners had a body fat % (BF% ≥ 25% (obesity, and of this group, 30% met the criteria for metabolic syndrome. In obese volunteers, insulin, the homeostatic model assessment of insulin resistance (HOMA-IR, leptin, the leptin/adiponectin ratio, and pro-inflammatory chemokines growth-related oncogene and macrophage-derived chemokine were significantly higher compared to non-obese submariners. Following the patrol, a significant mean reduction in body mass (5% and fat-mass (11% occurred in the obese group as a result of reduced energy intake (~2000 kJ during the patrol; and, independent of group, modest improvements in serum lipids and a mean reduction in interferon γ-induced protein 10 and monocyte chemotactic protein 1 were observed. Since 43% of the submariners remained obese, and 18% continued to meet the criteria for metabolic syndrome following the patrol, the magnitude of weight loss was insufficient to completely abolish metabolic dysfunction. Submergence up to 3-months, however, does not appear to be the cause of obesity, which is similar to that of the general population.

  10. Diffraction-limited Mid-infrared Integral Field Spectroscopy of Io's Volcanic Activity with ALES on the Large Binocular Telescope

    Science.gov (United States)

    Skrutskie, Michael F.; de Kleer, Katherine R.; Stone, Jordan; Conrad, Al; Davies, Ashley; de Pater, Imke; Leisenring, Jarron; Hinz, Philip; Skemer, Andrew; Veillet, Christian; Woodward, Charles E.; Ertel, Steve; Spalding, Eckhart

    2017-10-01

    The Arizona Lenslet for Exoplanet Spectroscopy (ALES) is an enhancement to the Large Binocular Telescope's mid-infrared imager, LMIRcam, that permits low-resolution (R~20) spectroscopy between 2.8 and 4.2 μm of every diffraction-limited resolution element in a 2.5"x2.5" field-of-view on a 2048x2048 HAWAII-2RG 5.2 μm-cutoff array. The 1" disk of Io, dotted with powerful self-luminous volcanic eruptions, provides an ideal target for ALES, where the single 8.4-meter aperture diffraction-limited scale for Io at opposition ranges from 240 kilometers (80 milliarcseconds) at 2.8 μm to 360 kilometers (120 milliarcseconds) at 4.2 μm. ALES provides the capability to assess the color temperature of each volcanic thermal emission site as well as map broadband absorbers such as SO2 frost. A monitoring campaign in the Spring 2017 semester provided two global snapshots of Io's volcanic activity with ALES as well as characterization of a new brightening episode at Loki Patera over four epochs between January and May 2017.

  11. Volcanic Gas

    Science.gov (United States)

    ... often escape continuously into the atmosphere from the soil, volcanic vents , fumaroles , and hydrothermal systems. By far the ... after falling into a snow depression surrounding a volcanic fumarole and filled ... of CO 2 gas in soils can also damage or destroy vegetation, as is ...

  12. Submarine terrace limestones from the continental slope off Saurashtra-Bombay: Evidence of Late Quaternary neotectonic activity

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Veerayya, M.

    m depth terrace was at intertidal depths at about 12,000 years BP. The eustatic sea-level, however, was at - 90 m at 12,000 years BP. This disparity suggests neotectonic activity and subsidence by about 40 m on the Saurashtra-Bombay region some time...

  13. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  14. The Submarine, 1776-1918

    National Research Council Canada - National Science Library

    Uhlig, Frank

    2004-01-01

    When, on 11 April 1900, the U.S. Navy thought the Holland, named for its designer, that little submarine joined a fleet consisting of two armored cruisers, six monitors, seven first and second-class battleships, and seventeen each...

  15. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    Science.gov (United States)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  16. Introduction to the special issue on submarine geohazard records and potential seafloor instability

    Directory of Open Access Journals (Sweden)

    Song-Chuen Chen Jia-Jyun Dong

    2018-01-01

    Full Text Available Submarine landslides frequently occur in passive continental margins or active margins (Hampton et al. 1996; Wynn et al. 2000; Mienert et al. 2002; Korup et al. 2007; Twichell et al. 2009; Cukur et al. 2016. Submarine landslides have been studied extensively not only for scientific research but also for submarine geohazards. Submarine landslides could jeopardize marine infrastructures, such as offshore drilling platforms or submarine telecommunication cables, and could even trigger disastrous tsunamis (Bondevik et al. 2005; Harbitz et al. 2006; Hornbach et al. 2007, 2008; Hsu et al. 2008; Su et al. 2012; Tappin et al. 2014; Li et al. 2015. For instance, one disastrous tsunami hitting the coastal area of southwestern Taiwan in 1781 or 1782 was reported (Chen 1830; Hsu 1983; the tsunami event was probably generated by submarine landslides in the offshore area of southwestern Taiwan (Li et al. 2015. Moreover, several submarine landslides triggered by the 2006 Pingtung earthquake have induced turbidity currents off southwest Taiwan and destroyed about 14 submarine telecommunication cables off SW Taiwan (Hsu et al. 2008. The area of southwest Taiwan currently has a dense population (more than 3 million people in total, one deep-water Kaohsiung Port, several tanks of liquefied natural gas and a nuclear power plant on the coast (Fig. 1. Numerous submarine telecommunication cables exist off SW Taiwan. If a considerable tsunami event would hit again the costal area of SW Taiwan, the damage could very serious. Likewise, there are two nuclear power plants on the coast of northern Taiwan (Fig. 2, and the population in northern Taiwan has more than 10 million people. Submarine telecommunication cables also exist off northern Taiwan. In any case, it is important to understand the status of seafloor stability in the offshore areas of SW and NE Taiwan. For that, this special issue of submarine geohazard records and potential seafloor instability is aimed to

  17. The First-ever Detection and Tracking of a Mid-Ocean Ridge Volcanic Eruption Using the Recently Completed, NSF-Funded, Submarine Fiber-Optic Network in the Juan de Fuca Region.

    Science.gov (United States)

    Delaney, J. R.

    2015-12-01

    The most scientifically diverse and technologically advanced component of the Ocean Observatories Initiative involves 900 km of electro-optical fiber, extending from Pacific City, OR, across active portions of the JDF tectonic plate, and upward into the overlying ocean. Completed in 2014, on time and under budget, this network enables real-time, high-bandwidth, 2-way communication with seafloor/water-column sensor arrays across: 1. the Cascadia accretionary prism, 2. the JdF spreading center, and, 3. portions of the overlying NE Pacific. Oceanographic processes in coastal environments, the California Current, and 400 km offshore, are captured by six remote-controlled, profiling moorings covering full-ocean depths. In August, 2015, all sections of cable, all six operational primary nodes, all 17 junction boxes, and 97% of all 146 instruments are transmitting data ashore to the Internet via the Pacific Northwest Gigapop (http://www.pnwgp.net/). All data are archived at the U of Washington, pending completion of the OOI CyberInfrastructure System in October 2015. In 2014, community requests to access seismic and seafloor deformational information for assessment of progressive inflation at Axial Seamount (Chadwick et al, 2012), resulted in NSF releasing, through IRIS (http://www.iris.edu/hq/), real-time data from 7 seismometers and 3 pressure sensors. At a community-initiated meeting on April 20-22, 90 participants covering the spectrum of Ocean Sciences, met in Seattle to explore scientific responses in the event Axial actually erupted (http://novae.ocean.washington.edu). On April 24, Axial did erupt; seismic event counts rose dramatically to many hundreds/hour (Wilcock, AGU-2015), the Axial caldera floor dropped 2.2 m in ~20 hours (Nooner et al, AGU-2015), and water temperatures in the caldera rose slowly by ~0.7°C, then declined in 3 weeks to normal values. Unusual water-bourn acoustic signals indicated ongoing seafloor activity along the rift zone extending north

  18. Sabang Submarine Volcano Aceh, Indonesia: Review of Some Trace and Rare Earth Elements Abundances Produced by Seafloor Fumarole Activities

    Directory of Open Access Journals (Sweden)

    Hananto kurnio

    2016-11-01

    Full Text Available DOI:10.17014/ijog.3.3.173-182Geochemical analyses of selected coastal and seafloor samples from Sabang Area revealed abundances of trace and rare earth elements. The selected samples of element abundances were mostly taken from seafloor in the vicinities of active fumaroles either by grab sampler operated from survey boat above fumarole point or by diver directly took the samples on the seafloor especially at Serui - Sabang Bay. Results show that samples closed to seafloor fumaroles demonstrate plenty of trace and rare earth elements. The trace and rare earth elements mean values (n=10 are: Nb (4.33 ppm, La (16.52 ppm, Ce (38.82 ppm, Nd (19.15 ppm, Ce (38.82 ppm, Pr (4.907 ppm, Nd (19.15 ppm, Sm (4.04 ppm, Gd (3.95 ppm, Dy (3.38 ppm, Th (6.432 ppm, and U (4.335 ppm. Negatively, statistical correlations between Fe, Zn, and Ni as the main sulphide elements with sulphur is interpreted that sulphide minerals do not form in the Sabang Sea. Sea water influence in the mineralization process was shown by the good correlations between Fe, Zn, Pb, Ni, and Ba.

  19. Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data

    Science.gov (United States)

    Favallim, Massimiliano; Karátson, Dávid; Mazzuoli, Roberto; Pareschi, Maria Teresa; Ventura, Guido

    2005-12-01

    The geomorphological and morphometric analysis of the sea floor topography surrounding the Aeolian Islands, South Tyrrhenian Sea, Italy, provides insights into the relationships between the volcanological evolution of the islands and their tectonic features. We constructed geomorphological maps of the submarine portions of the seven large edifices constituting the islands on the basis of a DEM with a 5 m resolution step. These maps include constructional and destructional landforms such as submarine volcanic vents located west of Lipari and north of Alicudi, and hummocky surfaces recognised north of Lipari and Salina. The latter landforms, together with the occurrence of large scars affecting the main edifices on land, suggest that sector collapses affected some islands. Geomorphological data indicate that the location of subaerial and submarine vents is strongly controlled by local tectonic structures striking WNW-ESE (Alicudi-Filicudi sector), NNW-SSE (Salina-Lipari-Vulcano sector) and NE-SW (Panarea-Stromboli sector). The islands can be divided into two groups on the basis of some morphometric parameters: a first group with a pancake-like shape, Dp/D (abrasion platform diameter/basal diameter) higher than 0.40 and H/D (total height/basal diameter) lower than 0.13, and a second group with a conical shape, characterised by Dp/D lower than 0.34 and H/D higher than 0.14. These ratios and other morphometric parameters reflect the different volcanological and structural evolution of the Aeolian Islands. The pancake-like shaped complexes have been created, in addition to their submarine stage, by extrusive and highly explosive activity, whereas the cone-shaped edifices have been characterised by effusive or moderate explosive activity.

  20. Toward a pro-active scientific advice on global volcanic activity within the multi-hazard framework of the EU Aristotle project

    Science.gov (United States)

    Barsotti, Sara; Duncan, Melanie; Loughlin, Susan; Gísladóttir, Bryndis; Roberts, Matthew; Karlsdóttir, Sigrún; Scollo, Simona; Salerno, Giuseppe; Corsaro, Rosa Anna; Charalampakis, Marinos; Papadopoulos, Gerassimos

    2017-04-01

    The demand for timely analysis and advice on global volcanic activity from scientists is growing. At the same time, decision-makers require more than an understanding of hazards; they need to know what impacts to expect from ongoing and future events. ARISTOTLE (All Risk Integrated System TOwards Trans-boundary hoListic Early-warning) is a two-year EC funded pilot project designed to do just that. The Emergency Response Coordination Centre (ERCC) works to support and coordinate response to disasters both inside and outside Europe using resources from the countries participating in the European Union Civil Protection Mechanism. Led by INGV and ZAMG, the ARISTOTLE consortium comprises 15 institutions across Europe and aims to deliver multi-hazard advice on natural events, including their potential interactions and impact, both inside and outside of Europe to the ERCC. Where possible, the ERCC would like a pro-active provision of scientific advice by the scientific group. Iceland Met Office leads the volcanic hazards work, with BGS, INGV and NOA comprising the volcano observatory team. At this stage, the volcanology component of the project comprises mainly volcanic ash and gas dispersal and potential impact on population and ground-based critical infrastructures. We approach it by relying upon available and official volcano monitoring institutions' reporting of activity, existing assessments and global databases of past events, modelling tools, remote-sensing observational systems and official VAAC advisories. We also make use of global assessments of volcanic hazards, country profiles, exposure and proxy indicators of threat to livelihoods, infrastructure and economic assets (e.g. Global Volcano Model outputs). Volcanic ash fall remains the only hazard modelled at the global scale. Volcanic risk assessments remain in their infancy, owing to challenges related to the multitude of hazards, data availability and model representation. We therefore face a number of

  1. Seismicity and volcanic activity in Japan based on crustal thermal activity. 1; Chikaku no netsukatsudo ni motozuku Nippon no jishin kazan katsudo. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M. [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about correlation between seismic and volcanic activities and thermal energy. Investigations on the status of seismic and volcanic activities in the Japanese archipelago during about 400 years in the past reveals the following matters: noticing earthquakes with magnitudes of upper M6 to about M7, flows of energy going outward from deep crust of the earth repeat ups and downs, whereas several prominent rising periods having certain time widths can be seen; volcanic activities are included in the rising period at the same rank as seismic activities; with regard to years 1900 and on, the similar fact can be seen if the Japanese archipelago is divided into a north portion, a south portion, and an extremely south portion southern than the Hiuga area; and the present time is going toward a period of rise in energy flows. In other words, it is thought that the crust and the uppermost portion of the mantle form one body like an organic body, making an action like a geyser releasing the energy outward. 3 refs., 2 figs., 1 tab.

  2. Cyclic eruptions and sector collapses at Monowai submarine volcano, Kermadec arc: 1998-2007

    Science.gov (United States)

    Chadwick, W. W.; Wright, I. C.; Schwarz-Schampera, U.; Hyvernaud, O.; Reymond, D.; de Ronde, C. E. J.

    2008-10-01

    Repeated multibeam bathymetric surveys at Monowai Cone, a shallow submarine basaltic volcano and part of the Monowai Volcanic Center in the northern Kermadec arc, were conducted in 1998, 2004, and 2007. These surveys document dramatic depth changes at the volcano including negative changes up to -176 m from two sector collapses and positive changes up to +138 m from volcanic reconstruction near the summit and debris avalanche deposits downslope of the slide scars. One sector collapse occurred on the SE slope between 1998 and 2004 with a volume of ˜0.09 km3, and another occurred on the SW slope between 2004 and 2007 with a volume of ˜0.04 km3. The volume of positive depth change due to addition of volcanic material by eruption is of the same order: ˜0.05 km3 between 1998 and 2004 and ˜0.06 km3 between 2004 and 2007. During these time intervals, monitoring by the Polynesian Seismic Network detected frequent T wave swarms at Monowai, indicative of explosive eruptive activity every few months. An unusual T wave swarm on 24 May 2002 was previously interpreted as the collapse event between the 1998 and 2004 surveys, but no similarly anomalous T waves were detected between 2004 and 2007, probably because the Polynesian Seismic Network stations were acoustically shadowed from the second slide event. We interpret that the sector collapses on Monowai are caused by the unstable loading of fragmental erupted material on the summit and steep upper slopes of the volcano (>20°). Moreover, there appears to be a cyclic pattern in which recurrent eruptions oversteepen the cone and periodically lead to collapse events that transport volcaniclastic material downslope to the lower apron of the volcano. Volumetric rate calculations suggest that these two processes may be more or less in equilibrium. The repeated collapses at Monowai are relatively modest in volume (involving only 0.1-0.5% of the edifice volume), have occurred much more frequently than is estimated for larger debris

  3. Assessing submarine gas hydrate at active seeps on the Hikurangi Margin, New Zealand, using controlled source electromagnetic data with constraints from seismic, geochemistry, and heatflow data

    Science.gov (United States)

    Schwalenberg, K.; Haeckel, M.; Pecher, I. A.; Toulmin, S. J.; Hamdan, L. J.; Netzeband, G.; Wood, W.; Poort, J.; Jegen, M. D.; Coffin, R. B.

    2009-12-01

    Electrical resistivity is one of the key properties useful for evaluating submarine gas hydrate deposits. Gas hydrates are electrically insulating in contrast to the conductive pore fluid. Where they form in sufficient quantities the bulk resistivity of the sub-seafloor is elevated. CSEM data were collected in 2007 as part of the German - International “New Vents” project on R/V Sonne, cruise SO191, at three target areas on the Hikurangi subduction margin, New Zealand. The margin is characterized by widespread bottom simulating reflectors (BSR), seep structures, and active methane and fluid venting indicating the potential for gas hydrate formation. Opouawe Bank is one of the ridge and basin systems on the accretionary wedge and is located off the Wairarapa coast at water depths of 1000-1100 m. The first observed seep sites (North Tower, South Tower, Pukeko, Takahe, and Tui) were identified from individual gas flares in hydro-acoustic data and video observations during voyages on R/V Tangaroa. Seismic reflection data collected during SO191 subsequently identified more than 25 new seep structures. Two intersecting CSEM profiles have been surveyed across North Tower, South Tower, and Takahe. 1-D inversion of the data reveals anomalously high resistivities at North Tower and South Tower, moderately elevated resistivities at Takahe, and normal background resistivities away from the seeps. The high resistivities are attributed to gas hydrate layers at intermediate depths beneath the seeps. At South Tower the hydrate concentration could be possibly as much as 25% of the total sediment volume within a 50m thick layer. This conforms with geochemical pore water analyses which show a trend of increased methane flux towards South Tower. At Takahe, gas pockets and patchy gas hydrate, as well as sediment heterogeneities and carbonates, or temperature driven upward fluid flow indicated by the observed higher heat flow at this site may explain the resistivity pattern

  4. Submarine Information Organization and Prioritization and Submarine Officer of the Deck Experience

    Science.gov (United States)

    2004-07-12

    The Submarine Review, 58-64. Shobe, K. (2002, May). Information organization and modeling of the submarine officer of the deck and sonar operator...Technical Report 01Oct00 - 31Sep02 SUBMARINE INFORMATION ORGANIZATION AND PRIORITIZATION AND SUBMARINE OFFICER OF THE DECK EXPERIENCE 51001 1) Katharine K

  5. Enhancing Submarine Operational Relevance: A Leadership Challenge

    National Research Council Canada - National Science Library

    Daigle, Jr, Michael J

    2008-01-01

    .... This vision of submarine operations must change. As the military continues to shift to operations focused on joint capabilities, the submarine force must break from the closed, protective, and risk averse culture of its past and push forward...

  6. Secondary fractionation processes of dissolved inorganic carbon and CO2 in thermal waters from active and quiescent volcanic systems

    Science.gov (United States)

    Tassi, F.; Venturi, S.; Vaselli, O.; Cabassi, J.; Capecchiacci, F.

    2015-12-01

    Carbon dioxide is the main component of the dry gas phase in hydrothermal and volcanic fluids, being mainly produced by mantle degassing and thermometamorphic reactions on limestone at which a shallow contribution from microbial activity is commonly added. These three different sources can be recognized on the basis of the d13C values, since biogenic CO2 typically shows an isotopic signature significantly more negative (-7‰ V-PDB). Intermediate d13C values are commonly interpreted as due to mixing processes between deep and shallow sources. In this study, the d13C values of CO2 and total dissolved inorganic carbon (TDIC) in thermal waters from distinct hydrothermal/volcanic systems, located in Italy (Campi Flegrei and Vulcano Island) and Chilean Andes (El Tatio), are reported. This dataset includes several carbon isotopic ratios that are not consistent with a pure shallow or deep CO2 origin. Nevertheless the relatively high CO2 concentrations and the water chemistry of these samples clearly indicate that they are not resulting by mixing between the deep and shallow end-members. Calcite deposition, which produces a strong isotopic fractionation on the pristine CO2, seems to represent a reliable alternative explanation for the observed data. It is worth noting that these peculiar isotopic and chemical features have recurrently been recognized in thermal water discharges from different volcanic areas. These results demonstrate that the release of CO2 from primary sources is strongly affected by secondary processes since they act as sinks of CO2. As a consequence, they play an important role for the evaluation of the global budget of CO2 discharged from these natural systems.

  7. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica.

    Directory of Open Access Journals (Sweden)

    Jacopo Cabassi

    Full Text Available Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun

  8. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  9. Volcanism in Eastern Africa

    Science.gov (United States)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  10. 3D-Reconstruction of recent volcanic activity from ROV-video, Charles Darwin Seamounts, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Hansteen, T. H.; Kutterolf, S.; Freundt, A.; Devey, C. W.

    2011-12-01

    As well as providing well-localized samples, Remotely Operated Vehicles (ROVs) produce huge quantities of visual data whose potential for geological data mining has seldom if ever been fully realized. We present a new workflow to derive essential results of field geology such as quantitative stratigraphy and tectonic surveying from ROV-based photo and video material. We demonstrate the procedure on the Charles Darwin Seamounts, a field of small hot spot volcanoes recently identified at a depth of ca. 3500m southwest of the island of Santo Antao in the Cape Verdes. The Charles Darwin Seamounts feature a wide spectrum of volcanic edifices with forms suggestive of scoria cones, lava domes, tuff rings and maar-type depressions, all of comparable dimensions. These forms, coupled with the highly fragmented volcaniclastic samples recovered by dredging, motivated surveying parts of some edifices down to centimeter scale. ROV-based surveys yielded volcaniclastic samples of key structures linked by extensive coverage of stereoscopic photographs and high-resolution video. Based upon the latter, we present our workflow to derive three-dimensional models of outcrops from a single-camera video sequence, allowing quantitative measurements of fault orientation, bedding structure, grain size distribution and photo mosaicking within a geo-referenced framework. With this information we can identify episodes of repetitive eruptive activity at individual volcanic centers and see changes in eruptive style over time, which, despite their proximity to each other, is highly variable.

  11. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition.

    Science.gov (United States)

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F

    2015-01-01

    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Morphometry of the epidermis of an invasive megascoelecid earthworm (Amynthas gracilis, Kinberg 1867) inhabiting actively volcanic soils in the Azores archipelago.

    Science.gov (United States)

    Cunha, Luis; Campos, Itxaso; Montiel, Rafael; Rodrigues, Armindo; Morgan, Andrew J

    2011-01-01

    For the first time, the structure, dimensions, and composition of the epidermis of an invasive earthworm species that has successfully colonized hostile conditions in actively volcanic soil on São Miguel (Azores) have been measured. Metal concentrations in actively volcanic (Furnas) and volcanically inactive (Fajã) soils were similar; however, Furnas soil was characterised by elevated temperature (10°C differential), relative hypoxia, extremely high CO(2) tension, and accompanying acidity. The epidermis of earthworm's resident at Fajã was approximately twice the thickness of the epidermis of conspecifics resident in Furnas soil. Reference worms transferred to Furnas soil for 14 days experienced an epidermal thinning of approximately 51%. In comparison, when Furnas earthworms were transferred to mesocosms at the relatively benign Fajã site, their epidermal thickness increased by approximately 21% over 14 days. Earthworms resident in Furnas soil had higher goblet cell counts than the residents of volcanically inactive soil on a neighbouring island (S. Maria). Transferring worms from S. Maria to mesocosms at Furnas induced a significant increase in goblet cell counts. Clearly, the active volcanic environment at Furnas poses a multifactorial stress challenge to the epigeic A. gracilis colonizer. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Geodetic monitoring challenges using GPS for the active volcanic systems in the Azores: Overview and recent results from S. Miguel Island

    Science.gov (United States)

    Trota, A.; Rodrigues, R.; Okada, J.; Amaral, P.; Gaspar, J. L.; Ferreira, T.; Mendes, V.

    2009-04-01

    The Azores archipelago is located at the triple junction between the Nubian, North American, and Eurasian plates and has many active volcanic systems. Among them, the Congro area, located in the central part of S. Miguel Island, provides a good research field for understanding physical volcanic processes, focusing on close relations between seismic and ground deformation activities. This area has repeatedly suffered from significant earthquake swarms such as in 1989 and in 2005. The former event was observed seismometrically, but not geodetically. There is still room for argument if magma movement at depth was true. For answering this question, it is essential to execute ground deformation measurements besides seismic monitoring at this area (Tryggvason et al., 1989). The latter event was successfully observed both seismometrically and geodetically with permanent GPS stations operated by CVARG (Center of Volcanology, University of Azores). Presently 6 permanent stations are operating in the island. Since 2000 campaign GPS surveys have also been executed every year by CVARG. GPS data processing from Dec. 1999 to Jul. 2007 revealed that episodic magma injections from shallow magma chamber were evident during the 2005 earthquake swarm activity (Trota, 2008; submitted). Considering the strong similarities between 1989 and 2005 seismic activities (locations of epicenters and magnitudes), it is quite likely that a similar magma feeding system had activated at the shallow crust during the 1989 swarm activities (Trota et al., 2008). It is a very interesting theme to study how the shallow volcanic system sustains and how it develops toward future eruptions. Smaller earthquake swarms are still ongoing in S. Miguel Island mostly concentrating on the Congro region and its vicinity. The most recent GPS data sets have been analyzed up to present (from 2007 to 2008) to evaluate the evolution of the volcanic system if the similar volcanic process is still visible or not. Geodetic

  14. Did volcanic activity of the Emeishan large igneous province expand in Wuchiapingian times?

    Science.gov (United States)

    Bagherpour, Borhan; Bucher, Hugo; Yuan, Dong-Xun; Shen, Shu-zhong; Leu, Marc; Zhang, Chao

    2017-04-01

    Emplacement of the Emeishan Large Igneous Province (ELIP) in the Capitanian (Middle Permian) is associated with several environmental changes (e.g. facies change, carbon cycle perturbation and temperature rise) across the Guadalupian-Lopingian (G-L) interval in South China. However, most of the reported changes are within the Capitanian stage or close to the G-L boundary. Here, we report an episode of drastic environmental changes from the Pingtang syncline (S. Guizhou) that is similar with the previously known ones but which is significantly younger. The studied section represents a protracted and stepwise facies change from a benthos rich, thick-bedded and light grey shallow water limestone (Unit A) to a 30 m-thick unit with thin-bedded dark (OM-rich) radiolarian-spiculitic facies (Unit B). The latter is overlain by an 8 m-thick unit of volcaniclastic sandstone and silts defining a succession of decimetric, cyclic and thinning upward layers (Unit C). The base of the overlying medium-bedded limestone unit (Unit D) contain radiolarian and sponge spicules whose abundance progressively decrease up section with a progressive replacement by abundant benthic faunas concomitant with the transition to thick bedded limestone. A total of five conodont index species (assigned to Clarkina) of early Wuchiapingian age were recognized from Unit A and Unit B. The observed facies transition from Unit A to Unit B indicates a drastic drowning event. Unit C represents a distal turbiditic succession and the overlying Unit D shows an upward shallowing trend back to the initial shallow marine condition. Compilation of sedimentary records across G-L in South China reveals that such drowning events tend to cluster within three discrete time intervals. The drowning events may or may not end with deposition of either volcanics or volcaniclastics. Two first clusters display drowning events overlain by ELIP volcanic rocks or volcaniclastics of ELIP origin and are of Capitanian age. Only the

  15. North American Submarine Cable Association (NASCA) Submarine Cables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data show the locations of in-service and out-of-service submarine cables that are owned by members of NASCA and located in U.S. territorial waters. More...

  16. Swath sonar mapping of Earth's submarine plate boundaries

    Science.gov (United States)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  17. Widespread Neogene and Quaternary Volcanism on Central Kerguelen Plateau, Southern Indian Ocean

    Science.gov (United States)

    Duncan, R. A.; Falloon, T.; Quilty, P. G.; Coffin, M. F.

    2016-12-01

    We report new age determinations and compositions for rocks from 18 dredge hauls collected from eight submarine areas across Central Kerguelen Plateau (CKP). Sea knolls and volcanic fields with multiple small cones were targeted over a 125,000 km2 region that includes Heard and McDonald islands. Large early Miocene (16-22 Ma) sea knolls rise from the western margin of the CKP and are part of a NNW-SSE line of volcanic centers that lie between Îles Kerguelen and Heard and McDonald islands. A second group of large sea knolls is aligned E-W across the center of this region. We see evidence of much younger activity (5 Ma to present) in volcanic fields to the north of, and up to 300 km NE of Heard Island. Compositions include basanite, basalt, and trachybasalt, that are broadly similar to plateau lava flows from nearby Ocean Drilling Program (ODP) Site 1138, lower Miocene lavas at Îles Kerguelen, dredged rocks from the early Miocene sea knolls, and Big Ben lavas from Heard Island. Geochemical data indicate decreasing fractions of mantle source melting with time. The western line of sea knolls has been related to hotspot activity now underlying the Heard Island area. In view of the now recognized much larger area of young volcanic activity, we propose that a broad region of CKP became volcanically active in Neogene time due to incubation of plume material at the base of the relatively stationary overlying plateau. The presence of pre-existing crustal faults promotes access for melts from the Heard mantle plume to rise to the surface.

  18. Groundwater flow in a relatively old oceanic volcanic island: The Betancuria area, Fuerteventura Island, Canary Islands, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Christian, E-mail: cherrera@ucn.cl [Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Custodio, Emilio [Department of Geo-Engineering, Technical University of Catalonia (UPC), Barcelona (Spain)

    2014-10-15

    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 g m{sup −2} year{sup −1} of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may

  19. Study on the locational criteria for submarine rock repositories of low and medium level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G. H.; Kang, W. J.; Kim, T. J. and others [Chungnam National Univ., Taejon (Korea, Republic of)

    1992-01-15

    Submarine repositories have significant advantages over their land counterparts locating close to the areas of daily human activities. Consequently, the construction of submarine repositories on the vast continental shelves around Korean seas is considered to be highly positive. In this context, the development of locational criteria primarily targeting the safety of submarine rock repositories is very important.The contents of the present study are: analyzing characteristics of marine environment: Search of potential hazards to, and environmental impact by, the submarine repositories; Investigation of the oceanographic, geochemical, ecological and sedimentological characteristics of estuaries and coastal seas. Locating potential hazards to submarine repositories by: Bibliographical search of accidents leading to the destruction of submarine structures by turbidity currents and other potentials; Review of turbidity currents. Consideration of environmental impact caused by submarine repositories: Logistics to minimize the environmental impacts in site selection; Removal and dispersion processes of radionuclides in sea water. Analyses of oceanographical characteristics of, and hazard potentials in, the Korean seas. Evaluation of the MOST 91-7 criteria for applicability to submarine repositories and the subsequent proposition of additional criteria.

  20. Different deformation patterns using GPS in the volcanic process of El Hierro (Canary Island) 2011-2013

    Science.gov (United States)

    García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen

    2014-05-01

    Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.

  1. Diffuse degassing He/CO2 ratio before and during the 2011-12 El Hierro submarine eruption, Canary Islands

    Science.gov (United States)

    Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Padilla, Germán; Pérez, Nemesio M.; Dionis, Samara; Rodríguez, Fátima; Asensio-Ramos, María; Calvo, David

    2015-04-01

    El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island, culminating with the eruption onset in October 12. Since at El Hierro Islands there are not any surface geothermal manifestation (fumaroles, etc), we have focused our studies on soil degassing surveys. Between July 2011 to March 2012, seventeen diffuse CO2 and He emissions soil gas surveys were undertaken at El Hierro volcanic system (600 observation sites) with the aim to investigate the relationship between their temporal variations and the volcanic activity (Padrón et al., 2013; Melián et al., 2014). Based on the diffuse He/CO2 emission ratio, a sharp increase before the eruption onset was observed, reaching the maximum value on September 26 (6.8×10-5), sixteen days before the occurrence of the eruption. This increase coincided with an increase in seismic energy release during the volcanic unrest and occurred together with an increase on the 3He/4He isotopic ratio in groundwaters from a well in El Hierro Island (Padrón et al., 2013; from 2-3 RA to 7.2 RA where RA = 3He/4He ratio in air), one month prior to the eruption onset. Early degassing of new gas-rich magma batch at depth could explain the observed increase on the He/CO2 ratio, causing a preferential partitioning of CO2 in the gas phase with respect to the He, due to the lower solubility of CO2 than that of He in basaltic magmas. During the eruptive period (October 2011-March 2012) the prevalence of a magmatic CO2-dominated component is evident, as indicated by the generally lower He/CO2 ratios and high 3He/4He values (Padrón et al., 2013). The onset of the submarine eruption might have produced a sudden release of volcanic gases, and consequently, a decrease in the volcanic gas pressure of the magma bodies moving beneath the island, reflected by a drastic decrease in

  2. Submarine canyons off Madras Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Submarine canyons off the coast of Madras, Tamil Nadu, India were studied during cruise of @iINS Kistna@@ as part of the IIOE programme They consist of hill-like projections and V-shaped valleys Their other features are also reported...

  3. Exploration and monitoring geothermal activity using Landsat ETM + images. A case study at Aso volcanic area in Japan

    Science.gov (United States)

    Mia, Md. Bodruddoza; Nishijima, Jun; Fujimitsu, Yasuhiro

    2014-04-01

    Thermal activity monitoring in and around active volcanic areas using remote sensing is an essential part of volcanology nowadays. Three identical approaches were used for thermal activity exploration at Aso volcanic area in Japan using Landsat ETM + images. First, the conventional methods for hydrothermal alteration mapping were applied to find the most active thermal region after exploring geothermal indicator minerals. Second, we found some thermally highly anomalous regions around Nakadake crater using land surface temperature estimation. Then, the Stefan-Boltzmann equation was used for estimating and also monitoring radiative heat flux (RHF) from the most active region of about 8 km2 in and around Nakadake crater in the central part of the Aso volcano. To fulfill the required parameter in the Stefan-Boltzmann equation for radiative heat flux, the NDVI (Normalized differential vegetation index) method was used for spectral emissivity, and the mono-window algorithm was used for land surface temperature of this study area. The NDVI value was used to divide land-cover in the study area into four types: water, bare ground, mixed and vegetated land. The bare land was found within the most active region. Vegetation coverage area showed an inverse relationship with total RHF in this study as health of thermally stressed vegetation supports this relationship. The spatial distribution of spectral emissivity ranged from 0.94 to 0.99 in our study. Land surface temperature was estimated using a mono-window algorithm and was highest LST in 2008 and lowest in 2011. The results of RHF showed that the highest pixel RHF was found to be about 296 W/m2 in 2008. Total RHF was obtained of about 607 MW in 2002 and the lowest was about 354 MW in 2008. The RHF anomaly area was found the highest in 2002 and was lowest in 2011. The highest total heat discharge rate (HDR) obtained about 3918 MW in 2002 and lowest total HDR about 2289 MW in 2008 from this study area. But in the case of

  4. Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas

    Directory of Open Access Journals (Sweden)

    G. Florio

    2002-06-01

    Full Text Available Geopotential data may be interpreted by many different techniques, depending on the nature of the mathematical equations correlating specific unknown ground parameters to the measured data set. The investigation based on the study of the gravity and magnetic anomaly fields represents one of the most important geophysical approaches in the earth sciences. It has now evolved aimed both at improving of known methods and testing other new and reliable techniques. This paper outlines a general framework for several applications of recent techniques in the study of the potential methods for the earth sciences. Most of them are here described and significant case histories are shown to illustrate their reliability on active seismic and volcanic areas.

  5. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    Science.gov (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  6. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  7. Precambrian Lunar Volcanic Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2009-06-01

    Full Text Available Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.

  8. Recent Seismic Activity at the Western end of the Central Mexican Volcanic Belt

    Science.gov (United States)

    Yamamoto, J.; Jimenez, Z.; Espindola, V. H.

    2008-12-01

    Beginning 31 July through 13 August 2006 a series of earthquakes (Mc 3.5-5.9) hit the western end of the Central Mexican Volcanic Belt. The most prominent earthquake (Mc 5.9) occurred on 11 August 2006 at 14:30 local time (19:30 UTC) approximately at 18.32° N, 101°W and 51 km depth. The epicenter was less than 40 km from Huetamo, Michoacan a 41,250 inhabitants city and 60 km from the Infiernillo dam the third largest hydroelectric plant in Mexico. This earthquake was widely felt trough out the region with minor to moderate reported damage. In Mexico City 240 km away from the epicenter the earthquake produced alarm among the population and several buildings were evacuated. First-motion data and regional and teleseismic waveform modeling indicate that the rupture occurred as normal faulting along a fault plane striking roughly east-west. In the present paper a global analysis of the earthquake series is made in an effort to correlate with the known geotectonic features of the region.

  9. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    Science.gov (United States)

    Beaulieu, S.; Hanson, M.; Tunnicliffe, V.; Chadwick, W. W., Jr.; Breuer, E. R.

    2016-02-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 and 2010 and ceased as of 2014. NW Rota-1 experienced a massive landslide in late 2009, decimating the habitat on the southern side of the volcano. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching for larvae which have the potential to recolonize the sea floor after such a major disturbance. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument may act as sources for these larvae, but connectivity in this region of complex topography is unknown. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both the zooplankton and benthic community composition in this area of the Monument.

  10. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island.

    Science.gov (United States)

    Santana-Casiano, J M; Fraile-Nuez, E; González-Dávila, M; Baker, E T; Resing, J A; Walker, S L

    2016-05-09

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 10(5) ± 1.1 10(5 )kg d(-1) which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  11. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    Science.gov (United States)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-05-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  12. Characterization of the volcanic eruption emissions using neutron activation analysis; Caracterizacion de las emisiones de una erupcion volcanica mediante analisis por activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Rita R. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Radioquimica, Tecnicas Analiticas Nucleares; Tafuri, Victoria V. [Servicio Meteorologico Nacional, Buenos Aires (Argentina). Centro de Contaminacion del Aire

    1997-10-01

    Characterization of the volcanic particulate material has been performed by analyzing aerosols and ashes with instrumental neutron activation analysis. Crustal enrichment factors were calculated using the elemental concentration and clustering techniques, and multivariate analysis were done. The analytical and data treatment methodologies allowed the sample differentiation from their geographical origin viewpoint, based on their chemical composition patterns, which are related to the deposit formation processes, which consist of direct deposition from the volcanic cloud, and removal by wind action after the end of the eruption, and and finally the deposition. (author). 8 refs., 5 figs.

  13. Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands)

    Science.gov (United States)

    Sainz-Maza Aparicio, S.; Arnoso Sampedro, J.; Gonzalez Montesinos, F.; Martí Molist, J.

    2014-06-01

    Gravity changes occurring during the initial stage of the 2011-2012 El Hierro submarine eruption are interpreted in terms of the preeruptive signatures during the episode of unrest. Continuous gravity measurements were made at two sites on the island using the relative spring gravimeter LaCoste and Romberg gPhone-054. On 15 September 2011, an observed gravity decrease of 45 μGal, associated with the southward migration of seismic epicenters, is consistent with a lateral magma migration that occurred beneath the volcanic edifice, an apparently clear precursor of the eruption that took place 25 days later on 10 October 2011. High-frequency gravity signals also appeared on 6-11 October 2011, pointing to an occurring interaction between a magmatic intrusion and the ocean floor. These important gravity changes, with amplitudes varying from 10 to -90 μGal, during the first 3 days following the onset of the eruption are consistent with the northward migration of the eruptive focus along an active eruptive fissure. An apparent correlation of gravity variations with body tide vertical strain was also noted, which could indicate that concurrent tidal triggering occurred during the initial stage of the eruption.

  14. Magmatic sill intrusions beneath El Hierro Island following the 2011-2012 submarine eruption

    Science.gov (United States)

    Benito-Saz, María Á.; Sigmundsson, Freysteinn; Parks, Michelle M.; García-Cañada, Laura; Domínguez Cerdeña, Itahiza

    2016-04-01

    El Hierro, the most southwestern island of Canary Islands, Spain, is a volcano rising from around 3600 m above the ocean floor and up to of 1500 m above sea level. A submarine eruption occurred off the coast of El Hierro in 2011-2012, which was the only confirmed eruption in the last ~ 600 years. Activity continued after the end of the eruption with six magmatic intrusions occurring between 2012-2014. Each of these intrusions was characterized by hundreds of earthquakes and 3-19 centimeters of observed ground deformation. Ground displacements at ten continuous GPS sites were initially inverted to determine the optimal source parameters (location, geometry, volume/pressure change) that best define these intrusions from a geodetic point of view. Each intrusive period appears to be associated with the formation of a separate sill, with inferred volumes between 0.02 - 0.3 km3. SAR images from the Canadian RADARSAT-2 satellite and the Italian Space Agency COSMO-SkyMed constellation have been used to produce high-resolution detailed maps of line-of-sight displacements for each of these intrusions. These data have been combined with the continuous GPS observations and a joint inversion undertaken to gain further constraints on the optimal source parameters for each of these separate intrusive events. The recorded activity helps to understand how an oceanic intraplate volcanic island grows through repeated sill intrusions; well documented by seismic, GPS and InSAR observations in the case of the El Hierro activity.

  15. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas

    Science.gov (United States)

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-03-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2-3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.

  16. Simulation of tsunamis induced by volcanic activity in the Gulf of Naples (Italy

    Directory of Open Access Journals (Sweden)

    S. Tinti

    2003-01-01

    Full Text Available The paper explores the potential of tsunami generation by pyroclastic flows travelling down the flank of the volcano Vesuvius that is found south of Naples in Italy. The eruption history of Vesuvius shows that it is characterised by large explosive eruptions of plinian or subplinian type during which large volume of pyroclastic flows can be produced. The most remarkable examples of such eruptions occurred in 79 AD and in 1631 and were catastrophic. Presently Vesuvius is in a repose time that, according to volcanologists, could be interrupted by a large eruption, and consequently proper plans of preparedness and emergency management have been devised by civil authorities based on a scenario envisaging a large eruption. Recently, numerical models of magma ascent and of eruptive column formation and collapse have been published for the Vesuvius volcano, and propagation of pyroclastic flows down the slope of the volcanic edifice up to the close shoreline have been computed. These flows can reach the sea in the Gulf of Naples: the denser slow part will enter the waters, while the lighter and faster part of the flow can travel on the water surface exerting a pressure on it. This paper studies the tsunami produced by the pressure pulse associated with the transit of the low-density phase of the pyroclastic flow on the sea surface by means of numerical simulations. The study is divided into two parts. First the hydrodynamic characteristics of the Gulf of Naples as regards the propagation of long waves are analysed by studying the waves radiating from a source that is a static initial depression of the sea level localised within the gulf. Then the tsunami produced by a pressure pulse moving from the Vesuvius toward the open sea is simulated: the forcing pulse features are derived from the recent studies on Vesuvian pyroclastic flows in the literature. The tsunami resulting from the computations is a perturbation involving the whole Gulf of Naples, but it

  17. Potential volcanic impacts on future climate variability

    Science.gov (United States)

    Bethke, Ingo; Outten, Stephen; Otterå, Odd Helge; Hawkins, Ed; Wagner, Sebastian; Sigl, Michael; Thorne, Peter

    2017-11-01

    Volcanic activity plays a strong role in modulating climate variability. Most model projections of the twenty-first century, however, under-sample future volcanic effects by not representing the range of plausible eruption scenarios. Here, we explore how sixty possible volcanic futures, consistent with ice-core records, impact climate variability projections of the Norwegian Earth System Model (NorESM) under RCP4.5 (ref. ). The inclusion of volcanic forcing enhances climate variability on annual-to-decadal timescales. Although decades with negative global temperature trends become ~50% more commonplace with volcanic activity, these are unlikely to be able to mitigate long-term anthropogenic warming. Volcanic activity also impacts probabilistic projections of global radiation, sea level, ocean circulation, and sea-ice variability, the local-scale effects of which are detectable when quantifying the time of emergence. These results highlight the importance and feasibility of representing volcanic uncertainty in future climate assessments.

  18. Subaerial records of large-scale explosive volcanism and tsunami along an oceanic arc, Tonga, SW Pacific

    Science.gov (United States)

    Cronin, S. J.; Smith, I. E.

    2015-12-01

    We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of <6500 cal. years B.P., including several very large and regionally significant tephras. Erupted compositions range from basaltic to dacitic, with some showing compositional change during eruption. In addition, some large eruptions appear to have generated regionally significant tsunami, represented by characteristically mixed sandy layers with lithologies including shell fragment, foraminifera and volcanic particles.

  19. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    Science.gov (United States)

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  20. SCICEX: Submarine Arctic Science Program, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  1. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    Science.gov (United States)

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  2. Submarine thermal springs on the Galapagos Rift

    Science.gov (United States)

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.

    1979-01-01

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  3. Examples of Models Fit to Magnetic Anomalies Observed Over Subaerial, Submarine, and Subglacial Volcanoes in the West Antarctic Rift System

    Science.gov (United States)

    Behrendt, J. C.; Finn, C. A.; Blankenship, D. D.

    2006-12-01

    Aeromagnetic and marine magnetic surveys over the volcanically active West Antarctic rift system, constrained by seismic reflection profiles over the Ross Sea continual shelf, and radar ice sounding surveys over the West Antarctic Ice Sheet (WAIS) allowed calculation of models fit to very high-amplitude anomalies. We present several examples: exposed 2700-m high, subaerial erupted volcano Mt Melbourne; the 750-m high source of anomaly D (Hamilton submarine volcano) in the Ross sea; and the 600-m high edifice of Mt. CASERTZ beneath the WAIS. The character of these anomalies and their sources varies greatly, and is inferred to be the result of subaerial, submarine and subglacial emplacement respectively. Mt. Melbourne erupted through the WAIS at a time when it was grounded over the Ross Sea continental shelf. Highly magnetic volcanic flows inferred to have high remanent (normal) magnetization in the present field direction produce the 600-nT positive anomaly. The flows protected the edifice above the ice from erosion. Negligible amounts of probably subglacially erupted, apparently non-magnetic hyaloclastite exist in association with Mt. Melbourne. Mt. CASERTZ is nonmagnetic and the edifice is interpreted as consisting of a transient mound of unconsolidated hyaloclastite injected into the WAIS. However Mt. CASERTZ, about 8-km diameter, overlies a 200-m high, 40-km wide highly magnetic residual edifice modeled as the top of the source (an active subglacial volcano) of a 400-nT high positive anomaly. Any former edifices comprising hyaloclastite, pillow breccia or other volcanic debris injected into the moving WAIS apparently have been removed. About 400 other high- amplitude anomalies associated with low relief (80 percent less than 200 m) edifices at the base of the ice (the tops of the sources of these steep gradient anomalies) beneath the WAIS defined by radar ice sounding have been interpreted as having former hyaloclastite edifices, which were removed by the moving

  4. The relative influences of climate and volcanic activity on Holocene lake development inferred from a mountain lake in central Kamchatka

    Science.gov (United States)

    Self, A. E.; Klimaschewski, A.; Solovieva, N.; Jones, V. J.; Andrén, E.; Andreev, A. A.; Hammarlund, D.; Brooks, S. J.

    2015-11-01

    A sediment sequence was taken from a closed, high altitude lake (informal name Olive-backed Lake) in the central mountain range of Kamchatka, in the Russian Far East. The sequence was dated by radiocarbon and tephrochronology and used for multi-proxy analyses (chironomids, pollen, diatoms). Although the evolution of Beringian climate through the Holocene is primarily driven by global forcing mechanisms, regional controls, such as volcanic activity or vegetation dynamics, lead to a spatial heterogeneous response. This study aims to reconstruct past changes in the aquatic and terrestrial ecosystems and to separate the climate-driven response from a response to regional or localised environmental change. Radiocarbon dates from plant macrophytes gave a basal date of 7800 cal yr BP. Coring terminated in a tephra layer, so sedimentation at the lake started prior to this date, possibly in the early Holocene following local glacier retreat. Initially the catchment vegetation was dominated by Betula and Alnus woodland with a mosaic of open, wet, aquatic and semi-aquatic habitats. Between 7800 and 6000 cal yr BP the diatom-inferred lake water was pH 4.4-5.3 and chironomid and diatom assemblages in the lake were initially dominated by a small number of acidophilic/acid tolerant taxa. The frequency of Pinus pumila (Siberian dwarf pine) pollen increased from 5000 cal yr BP and threshold analysis indicates that P. pumila arrived in the catchment between 4200 and 3000 cal yr BP. Its range expansion was probably mediated by strengthening of the Aleutian Low pressure system and increased winter snowfall. The diatom-inferred pH reconstructions show that after an initial period of low pH, pH gradually increased from 5500 cal yr BP to pH 5.8 at 1500 cal yr BP. This trend of increasing pH through the Holocene is unusual in lake records, but the initially low pH may have resulted directly or indirectly from intense regional volcanic activity during the mid-Holocene. The chironomid

  5. Disruptive event analysis: volcanism and igneous intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  6. An ongoing large submarine landslide at the Japan trench

    Science.gov (United States)

    Nitta, S.; Kasaya, T.; Miura, S.; Kawamura, K.

    2013-12-01

    This paper deals with an active submarine landslide on a landward trench slope in the Japan trench. Studied area is located on the upper terrace ranging from 400 to 1200 m in water depth, off Sendai, northeast Japan. We have surveyed in detail the seabed topography using a multi narrow beam (hereafter MBES) and a subbottom profiler (hereafter SBP) during the cruise MR12-E02 of R/V Mirai. The survey lines were 12 lines in N-S, and 3 lines in E-W, and situated in the region from 141°45'E, 37°40'N to 142°33'E, 38°32'N. Moreover, we used multi-channel seismic profile by the cruise KR04-10 of R/V Kairei in the interpretation of the SBP results. In general, horseshoe-shaped depressions of about 100 km wide along the trench slope are arrayed along the Japan trench. It has thought that they were formed by large submarine landslides, but we could not understand critically the relationship between the depressions and the submarine landslides. Based on the survey results, we found signals of an active submarine landslide in the depression as follows. 1) We observed arcuate-shaped lineaments, which are sub-parallel to a horseshoe-shaped depression. The lineaments concentrate in the south region from 38°N at about 20 km wide. These lineaments are formed by deformation structures as anticlines, synclines and normal fault sense displacements. 2) Most of the synclines and anticlines are not buried to form the lineaments. 3) Normal faults cutting about 1 km deep are observed in a multi-channel seismic profile. The normal faults are located just below the arcuate-shaped lineaments, and are tilted eastward being the downslope direction. It indicates a large submarine landslide. We concluded that the arcuate-shaped lineaments were generated by surface sediment movement with the submarine landsliding. We think that the submarine landslide of about 20 km wide and about 1 km thick move continuously down the landward trench slope. This would be the formation process of the horseshoe

  7. Environmental assessment of submarine power cables

    Energy Technology Data Exchange (ETDEWEB)

    Isus, Daniel; Martinez, Juan D. [Grupo General Cable Sistemas, S.A., 08560-Manlleu, Barcelona (Spain); Arteche, Amaya; Del Rio, Carmen; Madina, Virginia [Tecnalia Research and Innovation, 20009 San Sebastian (Spain)

    2011-03-15

    Extensive analyses conducted by the European Community revealed that offshore wind energy have relatively benign effects on the marine environment by comparison to other forms of electric power generation [1]. However, the materials employed in offshore wind power farms suffer major changes to be confined to the marine environment at extreme conditions: saline medium, hydrostatic pressure... which can produce an important corrosion effect. This phenomenon can affect on the one hand, to the material from the structural viewpoint and on the other hand, to the marine environment. In this sense, to better understand the environmental impacts of generating electricity from offshore wind energy, this study evaluated the life cycle assessment for some new designs of submarine power cables developed by General Cable. To achieve this goal, three approaches have been carried out: leaching tests, eco-toxicity tests and Life Cycle Assessment (LCA) methodologies. All of them are aimed to obtaining quantitative data for environmental assessment of selected submarine cables. LCA is a method used to assess environmental aspects and potential impacts of a product or activity. LCA does not include financial and social factors, which means that the results of an LCA cannot exclusively form the basis for assessment of a product's sustainability. Leaching tests results allowed to conclude that pH of seawater did not significantly changed by the presence of submarine three-core cables. Although, it was slightly higher in case of broken cable, pH values were nearly equals. Concerning to the heavy metals which could migrate to the aquatic medium, there were significant differences in both scenarios. The leaching of zinc is the major environmental concern during undersea operation of undamaged cables whereas the fully sectioned three-core cable produced the migration of significant quantities of copper and iron apart from the zinc migrated from the galvanized steel. Thus, the tar

  8. Deformation microstructures and timing of a large submarine landslide drilled offshore Martinique (IODP Exp. 340)

    Science.gov (United States)

    Guyard, H.; Le Friant, A.; Brunet, M.; Boudon, G.; Emmanuel, L.; Caron, B.; Villemant, B.; Feuillet, N.

    2015-12-01

    Flank-instabilities constitute a recurrent process in the long-term evolution of many volcanoes. A very large submarine landslide deposit (~2100 km2, ~300 km3) drilled southwest Martinique island during the IODP Exp. 340 in 2012 is likely associated with one (or more) major volcanic flank collapse of Mount Pelée during the Late Pleistocene. A recent study revealed that this D1/D2 deposit is emergent in its central part, frontally confined, and mainly comprises remobilized seafloor sediments rather than debris avalanche material from the volcanic edifice (Brunet et al., subm). Here, we investigate the sedimentary microstructures and timing of deformation from the central (Hole 1400B, ~37 km from the coastline) and distal (Hole 1399A, ~70 km from the coastline) units of the D1/D2 deposit, in order to better understand the emplacement dynamics of such potentially tsunamigenic submarine landslides. High resolution CT-Scan analyses were continuously performed on more than 300 m of sediment cores, in order to characterize and distinguish the internal architecture and the complex deformation features of the sediments at each drilling site. The establishment of the stratigraphy, based on δ18O measurements and AMS 14C dating, is still in progress and may confirm the possible link between the submarine landslide deposits and the flank collapse scars observed on the subaerial part of Martinique. These new insights into the timing and emplacement processes of this large submarine landslide will have important implications for tsunami hazards. ReferenceBrunet, M., Le Friant, A., Boudon, G., Lafuerza, S., Talling, P., Hornbach, M., Lebas, E., Guyard, H., and IODP Expedition 340 science party, submitted. Composition, geometry and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochemistry, Geophysics, Geosystems.

  9. Seismicity and volcanic activity in Japan based on crustal thermal activity . 2; Chikaku no netsukatsudo ni motozuku Nippon no Jishin kazan katsudo. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M. [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about seismic and volcanic activities in Japan. The previous paper has reported a view that energy is transported from deep portions of the earth`s crust toward outer portions, and the stored energy thrusts up collectively in a certain time period (a rising period). A fact may be accounted for as one of the endorsements thereof that earthquakes and volcanic eruptions take place successively over a wide area from Okinawa to Hokkaido in a short period of time (included in the rising period). When viewed by limiting the time period and areas, a great earthquake would not occur suddenly, but stored energy is released wholly at a certain time while it has been released little by little. Referring to the Kanto Great Earthquake (1923) and the Tokai and Nankai Earthquakes (1944 and 1946), it is found that earthquakes had been occurring successively in the surrounding areas since about 20 years before the occurrence of these great earthquakes. Similar phenomena may be seen in the great earthquakes of Ansei (1854) and An-ei (1707). 5 figs.

  10. Psychological aspects in a volcanic crisis: El Hierro Island eruption (October, 2011).

    Science.gov (United States)

    Lopez, P.; Llinares, A.; Garcia, A.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The recent eruption on the El Hierro Island (Canary Islands, Spain) has shown that Psychology plays an important role in the emergence management of a natural phenomenon. However, Psychology continues to have no social coverage it deserves in the mitigation of the effects before, during and after the occurrence of a natural phenomenon. Keep in mind that an unresolved psychological problem involves an individual and collective mismatch may become unrecoverable. The population of El Hierro has been under a state of alert since July 2011, when seismic activity begins, until the occurrence of submarine eruption in October 2011 that is held for more than three months. During this period the inhabitants of the small island have gone through different emotional states ranging from confusion to disappointment. A volcanic eruption occurs not unexpectedly, allowing to have a time of preparation / action before the disaster. From the psychological point of view people from El Hierro Island have responded to different stages of the same natural process. Although the island of El Hierro is of volcanic origin, the population has no historical memory since the last eruption occurred in 1793. Therefore, the educational system does not adequately address the formation in volcanic risk. As a result people feel embarrassment when the seismovolcanic crisis begins, although no earthquakes felt. As an intermediate stage, when the earthquakes are felt by the population, scientists and operational Emergency Plan care to inform and prepare actions in case of a possible eruption. The population feel safe despite the concerns expressed by not knowing where, how and when the eruption will occur. Once started the submarine eruption, taking into account that all the actions (evacuation, relocation, etc.) have worked well and that both their basic needs and security are covered there are new states of mind. These new emotional states ranging from disenchantment with the phenomenology of the

  11. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    Science.gov (United States)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the

  12. Late Quaternary Explosive Volcanic Activities of the Mindanao-Molucca Sea Collision Zone in the Western Pacific as Inferred from Marine Tephrostratigraphy in the Celebes Sea

    Directory of Open Access Journals (Sweden)

    Yueh-Ping Ku

    2009-01-01

    Full Text Available The giant piston core MD01-2387 taken from the eastern Celebes Sea basin provides a marine tephrostratigraphy with higher solution for inferring explosive volcanism in the area surrounding the basin for the past 350 kyr. The sequence contains 65 tephra layers com posed of volcanic minerals and glassy particles. The compositional characteristics of crystal enriched tephra layers and the 87Sr/86Sr of the glass particles (0.7039 to 0.7042 suggest that these ashes were re leased by the volcanoes in the Mindanao-Molucca Sea collision zone, including the south Philippine Arc system, the Sangehi Arc and the Halmahera Arc. The up ward decrease of tephra layers in this core indicates a declining trend of explosive volcanic activity of this collision zone, particularly, after ca. 180 ka in the late Middle Pleistocene. This record also suggests that the shoshonitic volcanism in Central Mindanao be came extinct at ca. 151 ka, which is much younger than what reported previously by onland investigations

  13. Post-eruptive Submarine Terrace Development of Capelinhos, Azores

    Science.gov (United States)

    Zhongwei Zhao, Will; Mitchell, Neil; Quartau, Rui; Tempera, Fernando; Bricheno, Lucy

    2017-04-01

    Erosion of the coasts of volcanic islands by waves creates shallow banks, but how erosion proceeds with time to create them and how it relates to wave climate is unclear. In this study, historical and recent marine geophysical data collected around the Capelinhos promontory (western Faial Island, Azores) offer an unusual opportunity to characterize how a submarine terrace developed after the eruption. The promontory was formed in 1957/58 during a Surtseyan eruption that terminated with extensive lava forming new rocky coastal cliffs. Historical measurements of coastline position are supplemented here with coastlines measured from 2004 and 2014 Google Earth images in order to characterize coastline retreat rate and distance for lava- and tephra-dominated cliffs. Swath mapping sonars were used to characterize the submarine geometry of the resulting terrace (terrace edge position, gradient and morphology). Limited photographs are available from a SCUBA dive and drop-down camera deployments to ground truth the submarine geomorphology. The results reveal that coastal retreat rates have decreased rapidly with the time after the eruption, possibly explained by the evolving resistance to erosion of cliff base materials. Surprisingly, coastline retreat rate decreases with terrace width in a simple inverse power law with terrace width. We suspect this is only a fortuitous result as wave attenuation over the terrace will not obviously produce the variation, but nevertheless it shows how rapidly the retreat rate declines. Understanding the relationship between terrace widening shelf and coastal cliff retreat rate may be more widely interesting if they can be used to understand how islands evolve over time into abrasional banks and guyots.

  14. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011-2015: Insight into the continuous nature of volcanic activity over multi-year timescales

    Science.gov (United States)

    Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John J.; Kelly, Peter J.; Wallace, Kristi L.; Schneider, David J.; Wessels, Rick L.

    2017-05-01

    Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d- 1 and CO2/SO2 ratios were budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth and explosive activity are somewhat unpredictable and likely result from plugs that are related to the dome obtaining a critical dimension, or from small variations in the magma ascent rate that lead to crystallization-induced blockages in the upper conduit, thereby reducing the ability of magma to degas. We suggest the small magma volumes, slow ascent rates, and low magma viscosity lead to the overall lack of anomalous geophysical signals prior to eruptions, and that more continuous volcanic degassing measurements might lead to more successful eruption forecasting at this continuously-active open-vent volcano.

  15. New insights into volcanism and tectonics in the Red Sea Rift

    Science.gov (United States)

    van der Zwan, Froukje M.; Augustin, Nico; Devey, Colin W.; Bantan, Rashad; Kwasnitschka, Tom

    2013-04-01

    The Red Sea is one of the few places on Earth where rifting and splitting of a continent by the formation of an ocean basin is presently occurring. Continental rifting takes place in the northernmost Red Sea and ocean floor is continuously created from at least 23°N to the vicinity of the strait of Bab al-Mandab in the south. Here we present a unique collection of recent continuous multibeam bathymetric datasets with a spatial acoustic resolution of 15-30 m from the Thetis Deep at 23°N to the RSR at 16.5°N together with new volcanic sampling over the Red Sea Rift (RSR). This enables us to study in detail the bathymetry of volcanic structures formed during the creation of this young ocean and the relationship between extension and volcanism allows us to make an extensive interpretation of the structural, tectonic, magmatic and sedimentary evolution of the RSR. Even though the central graben of the RSR is widely covered by sediments and Miocene evaporites north of 20°N (Augustin et al. 2012), the open parts of the rift valley show a wide range of volcanic activity and tectonic features over 700 km of mapped ridge axis. Numerous volcanoes (flat top volcanoes, submarine equivalents of Venusian pancake domes and lava shields) and ridges of hummocky volcanics are scattered all along the RSR. In addition the Red Sea Rift displays typical features of a slow spreading ridge where the slowest spreading, northern section of the Red Sea is strongly tectonically dominated with distinct basins and a strong horst and graben structure with locally very large volcanic edifices. The largest submarine volcano yet observed in the RSR is the Hatiba Mons volcano, previously not recognized as a volcanic edifice. In the south, where the spreading rates are greatest, large basins are not present and instead axial highs are observed as the result of higher recent volcanic activity. The geochemistry of basalts from sampled volcanoes display MORB signatures with no sign of continental

  16. The unzipping of Africa and South America; New insights from the Etendeka and younger volcanic events along the Angola/Namibia margin.

    Science.gov (United States)

    Jerram, D. A.

    2015-12-01

    The volcanic margin along Angola is relatively poorly constrained. This study uses new petrographic, geochronological and geochemical observations on a new sample set collected along the margin to help understand the various types and relative timings of volcanic events along the margin. This new study has identified 3 main volcanic events that occur at ~100Ma (Sumbe event 1), 90-92Ma (Serra de Neve (SDN)-Elefantes event 2) and 80-81Ma (Namibe event 3), with the oldest event in the north of the margin and younging southwards. This is contrasting with the main Etendeka pulse in Namibia at around 130 Ma. There is a marked variety of igneous rocks along the margin with a grouping of evolved alkaline rocks in the central SDN-Elefantes section, basic submarine volcanics in the north, and basanite eruptions in the southern section. There is some overlap with geochemical types along the margin. The Sumbe event contains predominantly submarine volcanics and shallow Intrusions. SDN-Elefantes rocks have a mixed type but with a distinctive feldspar rich evolved alkali suite of rocks (nepheline syenites and variations around this composition) which occur as lava flows and shallow intrusions as well as making up the core of the SDN complex. The SDN complex itself is analogous in size to the main volcanic centres in Namibia (such as Messum, Brandberg etc.) and suggests that large volcanic feeding centres are still active along the margin as young as 90ma. These in turn will form large volcano-topographic features. In the south the Ponta Negra and Canico sites mainly contain basanites in the form of lava flows, invasive flows and shallow intrusions. At Canico one intrusive plug was sampled with a similar composition to the evolved SDN-Elefantes suite. In all three events it is clear that the volcanic systems have interacted with the sedimentary systems, in some cases dynamically, in others with regional implications for volcano-tectonic uplift. Specific thanks is given for

  17. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  18. A submarine fan in the Mesa Central, Mexico

    Science.gov (United States)

    Silva-Romo, G.; Arellano-Gil, J.; Mendoza-Rosales, C.; Nieto-Obregón, J.

    2000-10-01

    The contact between the Guerrero and Sierra Madre tectonostratigraphic terranes has been proposed to lie in the Mesa Central, east of the city of Zacatecas. Marine Triassic units have been assigned to the Guerrero Terrane. It is here proposed that this contact occurs to the west of the city of Zacatecas and the Triassic marine sequence assigned to the Sierra Madre Terrane. We analyzed the stratigraphic record and structural features of pre-Late Jurassic sequences at four localities in the Mesa Central. They contain a marine turbiditic Triassic unit, which includes La Bellena, Taray, and Zacatecas Formations, and a continental unit of probable Middle Jurassic age. Triassic sandstones were derived from a cratonic area, without the influence of arc volcanism. The sequences were affected by two phases of deformation. The Triassic formations are unconformably overlain by a continental volcano-sedimentary sequence that contains fragments of sandstones derived from the underlying unit. Sedimentologic characteristics of the Triassic unit fit a submarine fan model. The submarine fan developed at the continental margin of Pangaea during Triassic times. Turbidite associations in the San Rafael Area indicate a middle fan depositional environment, while in the Real de Catorce Area, they correspond to the distal part (basin plain facies). At La Ballena and Zacatecas the turbidite associations occur in the middle part and perhaps the external part of the fan.

  19. Geothermal surveys in the oceanic volcanic island of Mauritius

    Science.gov (United States)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked

  20. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Cook, A. F.; Hansen, C.

    1981-09-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  1. Combination of SAR remote sensing and GIS for monitoring subglacial volcanic activity – recent results from Vatnajökull ice cap (Iceland

    Directory of Open Access Journals (Sweden)

    U. Münzer

    2007-11-01

    Full Text Available This paper presents latest results from the combined use of SAR (Synthetic Aperture Radar remote sensing and GIS providing detailed insights into recent volcanic activity under Vatnajökull ice cap (Iceland. Glaciers atop active volcanoes pose a constant potential danger to adjacent inhabited regions and infrastructure. Besides the usual volcanic hazards (lava flows, pyroclastic clouds, tephra falls, etc., the volcano-ice interaction leads to enormous meltwater torrents (icelandic: jökulhlaup, devastating large areas in the surroundings of the affected glacier. The presented monitoring strategy addresses the three crucial questions: When will an eruption occur, where is the eruption site and which area is endangered by the accompanying jökulhlaup. Therefore, sufficient early-warning and hazard zonation for future subglacial volcanic eruptions becomes possible, as demonstrated for the Bardárbunga volcano under the northern parts of Vatnajökull. Seismic activity revealed unrest at the northern flanks of Bardárbunga caldera at the end of September 2006. The exact location of the corresponding active vent and therefore a potentially eruptive area could be detected by continuous ENVISAT-ASAR monitoring. With this knowledge a precise prediction of peri-glacial regions prone to a devastating outburst flood accompanying a possible future eruption is possible.

  2. The largest deep-ocean silicic volcanic eruption of the past century.

    Science.gov (United States)

    Carey, Rebecca; Soule, S Adam; Manga, Michael; White, James; McPhie, Jocelyn; Wysoczanski, Richard; Jutzeler, Martin; Tani, Kenichiro; Yoerger, Dana; Fornari, Daniel; Caratori-Tontini, Fabio; Houghton, Bruce; Mitchell, Samuel; Ikegami, Fumihiko; Conway, Chris; Murch, Arran; Fauria, Kristen; Jones, Meghan; Cahalan, Ryan; McKenzie, Warren

    2018-01-01

    The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km 2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.

  3. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    Science.gov (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  4. Chemical and mineralogical characterization of Etnean volcanic emissions using active biomonitoring technique (moss-bags)

    OpenAIRE

    Calabrese, S.; D'Alessandro, W.; Bellomo, S.; Brusca, L.; Parello, F.

    2011-01-01

    Biomonitoring may be defined as the use of organisms and biomaterials (biomonitors) to obtain informations on certain characteristics of a particular medium (atmosphere, hydrosphere etc.). In particular, mosses accumulate large amounts of trace metals, making them good bioaccumulators to estimate atmospheric pollution. The moss-bags technique, introduced in the early 1970’, has become very popular. Such active biomonitoring technique is particularly useful in highly polluted areas and has bee...

  5. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  6. Persistent volcanic signature observed around Barren Island, Andaman Sea, India

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Balachandran, K.K.; Sabu, P.S.; Panampunnayil, U.

    the Great Sumatran Earthquake of December 2004. Our observations require further corroboration to relate how submarine earthquakes activate volcanoes and how far these thermal emissions influence climate changes. Because it links global warming and climate...

  7. Signs of Recent Volcanism and Hydrothermal Activity Along the Eastern Segment of the Galapagos Spreading Center

    Science.gov (United States)

    Raineault, N.; Smart, C.; Mayer, L. A.; Ballard, R. D.; Fisher, C. R.; Marsh, L.; Shank, T. M.

    2016-12-01

    Since the initial discovery of the Galápagos Spreading Center (GSC) vents in 1977, large-scale disturbances resulting from eruptive and tectonic activity have both destroyed and created vent habitats along the GSC. In 2015, the E/V Nautilus returned to the GSC with remotely operated vehicles (ROVs) to explore 17 kilometers of the rift valley from the Rosebud site in the west, to a previously unexplored temperature anomaly east of the Tempus Fugit vent site. In the years to over a decade since scientists last visited the Rosebud, Rose Garden, and Tempus Fugit sites, there were many changes. Most notably, the Rosebud site, where scientists found a nascent vent community and left site markers in 2002, was apparently covered with glassy basaltic sheet flows. In addition to visual exploration, oceanographic sensor measurements and direct sampling, we used the ROV Hercules imaging suite, comprised of stereo cameras and a structured light laser sensor to map an area of diffuse flow in the Tempus Fugit field (100 m x 150 m). The centimeter-level photographic and bathymetric maps created with this system, along with ROV HD video, samples, and environmental sensors, documented hydrothermal activity and changes in biological community structure (e.g., Riftia tubeworms observed in nascent stages of community development in 2011 were now, in 2015, in greater abundance (with tubes almost 4 m in length). The detection of active venting and associated faunal assemblages will provide insight into the temporal and spatial variability of venting activity at the Tempus Fugit site. On a visual survey of the Rift east of the Tempus Fugit site, extinct sulfide chimney structures were discovered and sampled. There were several chimneys and sulfide deposits in a span of over 8 km that ranged in height from over a half meter to 1.5 m tall. Diffuse flow hosting white and blue bacterial mats was observed near the chimneys complexes. The base of a large chimney structure, venting white fluids

  8. SUBMARINE VOLCANO CHARACTERISTICS IN SABANG WATERS

    Directory of Open Access Journals (Sweden)

    Hananto Kurnio

    2017-07-01

    Full Text Available The aim of the study is to understand the characteristics of a volcano occurred in marine environment, as Weh Island where Sabang City located is still demonstrated its volcanic cone morphology either through satellite imagery or bathymetric map. Methods used were marine geology, marine geophysics and oceanography. Results show that surface volcanism (sea depth less than 50 m take place as fumaroles, solfataras, hot ground, hot spring, hot mud pool and alteration in the vicinities of seafloor and coastal area vents. Seismic records also showed acoustic turbidity in the sea water column due to gas bubblings produced by seafloor fumaroles. Geochemical analyses show that seafloor samples in the vicinities of active and non-active fumarole vent are abundances with rare earth elements (REE. These were interpreted that the fumarole bring along REE through its gases and deposited on the surrounding seafloor surface. Co-existence between active fault of Sumatra and current volcanism produce hydrothermal mineralization in fault zone as observed in Serui and Pria Laot-middle of Weh Island which both are controlled by normal faults and graben.

  9. Seismic activity and thermal regime of low temperature fumaroles at Mt. Vesuvius in 2004-2011: distinguishing among seismic, volcanic and hydrological signals

    Directory of Open Access Journals (Sweden)

    Paola Cusano

    2013-11-01

    Full Text Available Seismological, soil temperature and hydrological data from Mt. Vesuvius are collected to characterize the present-day activity of the volcanic/hydrothermal system and to detect possible unrest-related phenomena. We present patterns of seismicity and soil temperature in the crater area during the period February 2004-December 2011. The temporal distribution of number and depth of Volcano-Tectonic earthquakes and the energy release are considered. Hourly data of soil temperature have been acquired since January 2004 in different locations along the rim and within the crater. The observed changes of temperature are studied to establish a temporal-based correlation with the volcanic activity and/or with external forcing, as variations of the regional and local stress field acting on the volcano or meteorological phenomena. The comparison between seismic activity and temperature data highlights significant variations possibly related to changes in fluid circulation in the hydrothermal system of the volcano. The common continuous observations start just before a very shallow earthquake occurred in August 2005, which was preceded by a thermal anomaly. This coincidence has been interpreted as related to fluid-driven rock fracturing, as observed in other volcanoes. For the successive temporal patterns, the seismicity rate and energy release are characterized by slight variations accompanied by changes in temperature. This evidence of reactivity of the fumarole thermal field to seismic strain can be used to discriminate between tectonic and volcanic signals at Mt. Vesuvius.

  10. Volcanic Versus Anthropogenic CO2: An Example of the Importance of Geoscience Evidence

    Science.gov (United States)

    Gerlach, T.

    2011-12-01

    The climate change debate has revived the belief, widespread among climate change skeptics, that volcanoes emit more CO2 than the 35 billion metric tons per year (Gt/y) from human activities. In fact, anthropogenic CO2 emissions dwarf all global estimates of the annual present-day volcanic CO2 emission rate [Gerlach, Eos, 14 June 2011]. These estimates of CO2 output at divergent plate, intraplate, and convergent plate subaerial and submarine volcanoes range from 0.13 to 0.44 Gt/y, with preferred estimates falling between 0.15 and 0.26 Gt/y. Volcanoes emit significantly less CO2 than cars and pickup trucks, land use changes, or cement production; their output is comparable to that of about 2 dozen 1000-megawatt coal-fired power stations or of nations like Pakistan, Poland, and South Africa. The ratio of the anthropogenic CO2 emission rate to the 0.26-Gt/y maximum preferred estimate for volcanoes rises from about 18 in 1900 to approximately 135 by 2010, reflecting a 650% growth in anthropogenic emissions. Infrequent large paroxysmal volcanic explosions can cause significant increases above the 0.26-Gt/y preferred volcanic CO2 estimate. But contemporary paroxysms are unlikely to have caused breaching of the 0.44-Gt/y upper limit for global volcanic CO2 emissions; that would take more than 3 times the 0.05-Gt CO2 output of the 1991 Pinatubo paroxysm. Prorated over a 100-year recurrence interval, the 1991 Pinatubo paroxysm adds only 0.0005 Gt/y to the global volcanic CO2 emission rate. On average, humanity's ceaseless emissions release an amount of CO2 comparable to that of the 1980 Mount St. Helens paroxysm (0.01 Gt) every 2.5 hours, the 1991 Mount Pinatubo paroxysm (0.05 Gt) every 12.5 hours, and the 0.26-Gt maximum preferred estimate for annual global volcanic CO2 every 2.7 days. A global volcanic CO2 output exceeding the 35-Gt/y anthropogenic output would imply an annual mass of volcanic CO2 emissions more than 3 times the likely annual mass of erupted magma. The

  11. Spatial distribution of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015

    Science.gov (United States)

    de Kleer, Katherine; de Pater, Imke

    2016-12-01

    The extreme and time-variable volcanic activity on Jupiter's moon Io is the result of periodic tidal forcing. The spatial distribution of Io's surface heat flux provides an important constraint on models for tidal heat dissipation, yielding information on interior properties and on the depth at which the tidal heat is primarily dissipated. We analyze the spatial distribution of 48 hot spots based on more than 400 total hot spot detections in adaptive optics images taken on 100 nights in 2013-2015 (data presented in de Kleer and de Pater [2016] Time variability of Io's volcanic activity from near-IR adaptive optics 13 observations on 100 nights in 2013-2015). We present full surface maps of Io at multiple near-infrared wavelengths for three epochs during this time period, and show that the longitudinal distribution of hot spots has not changed significantly since the Galileo mission. We find that hot spots that are persistently active at moderate intensities tend to occur at different latitudes/longitudes than those that exhibit sudden brightening events characterized by high peak intensities and subsequent decay phases. While persistent hot spots are located primarily between ± 30°N, hot spots exhibiting bright eruption events occur primarily between 40° and 65° in both the northern and southern hemispheres. In addition, while persistent hot spots occur preferentially on the leading hemisphere, all bright eruptions were detected on the trailing hemisphere, despite the comparable longitudinal coverage of our observations to both hemispheres. A subset of the bright hot spots which are not intense enough to qualify as outburst eruptions resemble outbursts in terms of temporal evolution and spatial distribution, and may be outbursts whose peak emission went unobserved, or else scaled-down versions of the same phenomenon. A statistical analysis finds that large eruptions are more spatially clustered and occur at higher latitudes than 95% of simulated datasets that

  12. Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard

    Science.gov (United States)

    Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.

    2017-07-01

    Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.

  13. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission

    Science.gov (United States)

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,

    2001-01-01

    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  14. Regional Tectonic Framework and Human Activities on the North Central Part of The Mexican Volcanic Belt.

    Science.gov (United States)

    Nieto-Obregon, J.

    2001-12-01

    Faults and fractures northeasterly oriented dipping NW and SE, with slips mainly normal with a slight left lateral component, affect a suite of rocks of Mesozoic to Pleistocene age, in the area of El Bajio, in the states of Queretaro, Guanajuato, Michoacan, and Aguascalientes. The faults and fractures have affected the infrastructure of the cities and surroundings of Queretaro, Celaya, Salamanca, Irapuato, Silao, Leon and Aguascalientes. In the city of Queretaro, the Tlacote-Balvanera active fault has developed a scarp and its motion may potentially affect life lines of great importance. In Celaya City a N-S trending fault traverses the city and has produced a step wise scarp more than 1.80 m high, damaging houses, streets and life lines. In Salamanca, a fault trending N 60oE, dipping to the SE extends from Cerro Gordo to the SW traversing the city and affecting with a varying degree its infrastructure. Displacements observed within the urban area reach as much as 50 cm. Close to Irapuato City, in a quarry near La Valencianita village, a N 45oE trending fault dipping to the NW affects a lacustrine sequence bearing calcareous horizons. The fault exhibits a throw of 10 m and passes north of the urban area. A similarly oriented fault traverses the city of Irapuato, and near the Traffic Circle of Puente de Guadalupe, changes its strike to the SE and continues to the city limits. In the city of Silao, a fault oriented N 60oE, traverses the city and continues to the SW up to the localities of Venta de Ramales and La Aldea. Important displacements in urban and rural areas reach more than 60 cm. Outside the city of Leon in the junction of the highways to Aguascalientes and Guadalajara a normal fault plane NE oriented and dipping SE shows striations compatible with a normal left lateral motion. Faulting is associated with old buried scarps controlled by pre existing faults, and over exploited aquifers. Some of these faults however are considered potentially active based on

  15. Backprojection of volcanic tremor

    Science.gov (United States)

    Haney, Matthew M.

    2014-01-01

    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  16. Survey and assessment of post volcanic activities of a young caldera lake, Lake Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2009-05-01

    Full Text Available Cuicocha is a young volcano adjacent to the inactive Pleistocene Cotacachi volcano complex, located in the western cordilleras of the Ecuadorian Andes. A series of eruptions with intensive ash emission and collapse of the caldera occurred around 4500–3000 y BP. A crater 3.2 km in diameter and a maximum depth of 450 m was formed. Further eruptions of the volcano occurred 1300 y BP and formed four smaller domes within the caldera. Over the last few hundred years, a caldera lake has developed, with a maximum depth of 148 m. The lake water is characterized by sodium carbonate with elevated concentrations of manganese, calcium and chloride. Nowadays, an emission of gases, mainly CO2, and an input of warm spring water occur in Lake Cuicocha. The zone of high activity is in the western basin of the lake at a depth of 78 m, and continuous gas emissions with sediment resuspension were observed using sonar. In the hypolimnion of the lake, CO2 accumulation occurs up to 0.2% saturation, but the risk of a limnic eruption can be excluded at present. The lake possesses monomictic stratification behaviour, and during overturn an intensive gas exchange with the atmosphere occurs. Investigations concerning the sedimentation processes of the lake suggest only a thin sediment layer of up to 10–20 cm in the deeper lake basin; in the western bay, in the area of gas emissions, the lake bottom is partly depleted of sediment in the form of holes, and no lake colmation exists. Decreases in the lake water level of about 30 cm y−1 indicate a percolation of water into fractures and fissures of the volcano, triggered by a nearby earthquake in 1987.

  17. Geochemical evaluation of observed changes in volcanic activity during the 2007 eruption at Stromboli (Italy)

    Science.gov (United States)

    Rizzo, A.; Grassa, F.; Inguaggiato, S.; Liotta, M.; Longo, M.; Madonia, P.; Brusca, L.; Capasso, G.; Morici, S.; Rouwet, D.; Vita, F.

    2009-05-01

    On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO 2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m - 2 d - 1 ) a few days before the paroxysm. Almost contemporarily, the δ13C CO 2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion ( δ13C CO 2 ~ - 1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO 2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/ 4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002-2003 eruption indicated that the 2007 eruption was less energetic.

  18. The crustal thickness and lithospheric structure of active and inactive volcanic arc terrains in Fiji and Tonga

    Science.gov (United States)

    Chen, J.; Wiens, D.; Wei, S. S.; Zha, Y.; Julià, J.; Cai, C.; Chen, Y. J.

    2015-12-01

    In order to investigate the crustal thickness and lithospheric structure beneath active and inactive volcanic arcs in Fiji and Tonga, we analyzed receiver functions from teleseismic P waves as well as Rayleigh waves from teleseismic earthquakes and ambient noise. The data were recorded by stations from three previous temporary seismic arrays deployed on the islands during 1993-1995, 2001-2002, and 2009-2010. Receiver functions were calculated with an iterative deconvolution in the time domain. We used an H-k stacking method to get preliminary Moho depth estimates under the island arcs, after assuming constant seismic average crustal P velocity. We also determined the shear wave velocity structure beneath each station from a 1-D combined inversion of receiver functions and Rayleigh wave phase velocity dispersion curves from ambient noise cross correlation at 8s - 20s and teleseismic surface waves at 20s-90s. The joint inversion models reveal that the Moho beneath the main islands of the Fiji plateau is 26-31 km deep, whereas the crust under the outer islands - including the Lau Ridge - is generally thinner, with Moho depths of 21-23.5 km. The thinnest crust (16 km) is found beneath Moala Island located between the Fiji Platform and the Lau Ridge. Crustal thickness beneath several Tonga islands is about 18-20 km. A relatively high velocity lithosphere (Vs of 4.4 - 4.5 km/s) extends to only about 60 km depth beneath the outer Fiji Islands and Lau Ridge, but to depths of 90 km underneath the main islands of the Fiji Plateau. The much thicker crust and lithosphere of the Fiji plateau relative to the Lau Ridge and Tonga Arc reflects its much longer geological history of arc crust building, going back to the early Miocene.

  19. Active fault systems of the Kivu rift and Virunga volcanic province, and implications for geohazards

    Science.gov (United States)

    Zal, H. J.; Ebinger, C. J.; Wood, D. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2013-12-01

    H Zal, C Ebinger, D. Wood, C. Scholz, N. d'Oreye, S. Carn, U. Rutagarama The weakly magmatic Western rift system, East Africa, is marked by fault-bounded basins filled by freshwater lakes that record tectonic and climatic signals. One of the smallest of the African Great Lakes, Lake Kivu, represents a unique geohazard owing to the warm, saline bottom waters that are saturated in methane, as well as two of the most active volcanoes in Africa that effectively dam the northern end of the lake. Yet, the dynamics of the basin system and the role of magmatism were only loosely constrained prior to new field and laboratory studies in Rwanda. In this work, we curated, merged, and analyzed historical and digital data sets, including spectral analyses of merged Shuttle Radar Topography Mission topography and high resolution CHIRP bathymetry calibrated by previously mapped fault locations along the margins and beneath the lake. We quantitatively compare these fault maps with the time-space distribution of earthquakes located using data from a temporary array along the northern sector of Lake Kivu, as well as space-based geodetic data. During 2012, seismicity rates were highest beneath Nyiragongo volcano, where a range of low frequency (1-3 s peak frequency) to tectonic earthquakes were located. Swarms of low-frequency earthquakes correspond to periods of elevated gas emissions, as detected by Ozone Monitoring Instrument (OMI). Earthquake swarms also occur beneath Karisimbi and Nyamuragira volcanoes. A migrating swarm of earthquakes in May 2012 suggests a sill intrusion at the DR Congo-Rwanda border. We delineate two fault sets: SW-NE, and sub-N-S. Excluding the volcano-tectonic earthquakes, most of the earthquakes are located along subsurface projections of steep border faults, and intrabasinal faults calibrated by seismic reflection data. Small magnitude earthquakes also occur beneath the uplifted rift flanks. Time-space variations in seismicity patterns provide a baseline

  20. Similarities between rivers and submarine channels

    Science.gov (United States)

    Balcerak, Ernie

    2013-02-01

    Scientists have long known that the width and depth of rivers follows a power law relationship with discharge. They have also noticed that submarine channels appear to be similar to terrestrial rivers, but there have not been many systematic comparisons of the relationships between submarine channel morphology and discharge. Konsoer et al. compared the width, depth, and slope of 177 submarine channels to those of 231 river cross sections. They found that submarine channels are up to an order of magnitude wider and deeper than the largest terrestrial rivers, but they exhibit a similar power law relationship between width and depth. For submarine channels that were similar in size to rivers, the authors found that submarine channels tend to be 1 to 2 orders of magnitude steeper than rivers. The authors also inferred values for sediment concentration in the turbidity currents in the channels and combined this with estimated mean flow velocities to look for a relationship between discharge and morphology in the channels. They found that like rivers, the width and depth of the submarine channels follow a power law scaling with discharge. (Journal of Geophysical Research-Earth Surface, doi:10.1029/2012JF002422, 2013)

  1. Multidisciplinary exploratory study of a geothermal resource in the active volcanic arc of Basse-Terre (Guadeloupe, Lesser Antilles)

    Science.gov (United States)

    Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (geothermal gradient of 70 ˚ C/km.

  2. Mechanical interaction between volcanic systems in Libya

    Science.gov (United States)

    Elshaafi, Abdelsalam; Gudmundsson, Agust

    2018-01-01

    The spatial distributions of monogenetic volcanoes, primarily volcanic craters, within the four principal volcanic provinces of Libya are examined and presented on a volcano-density map. Six main volcanic clusters have been identified, referred to as volcanic systems. Remarkably, the Al Haruj (AHVP) and Nuqay (NVP) volcanic provinces have double-peak volcano-density distributions, while the Gharyan (GVP) and As Sawda (SVP) volcanic provinces have single-peak volcano-density distributions. We interpret each volcano-density peak as corresponding to a separate volcanic system, so that there is a total of six systems in these four provinces. There was an overlap in volcanic activity in these provinces with at least three simultaneously active. We propose that each of the 6 volcanic systems was/is supplied with magma from a large sill-like reservoir - similar in lateral dimensions to the systems/clusters themselves. Numerical results show zones of high tensile and shear stresses between the reservoirs that coincide roughly with the main swarms of extension (dykes and volcanic fissures) and shear (faults) fractures in the areas. The most recent volcanic eruptions in Libya fall within the modelled high-stress concentration zones, primarily eruptions in the volcano Waw an Namus and the Holocene Al Mashaqaq lava flow. There are no known eruptions in Libya in historical time, but some or all the volcanic systems may have had one or more arrested historical dyke injections. In particular, part of the recurrent seismic events in the Hun Graben in the northwest Libya may be related to dyke propagation and arrest. If some of the inferred magma reservoirs are still fluid, as is likely, they pose earthquake and volcanic hazards to parts of Libya, particularly to the city of Gharyan and Zallah town, as well as to many oil-field operations.

  3. Monogenetic volcanic hazards and assessment

    Science.gov (United States)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  4. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (volcano risk in the Andean region. But much remains to be done.

  5. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea: A Potential Offshore Geothermal Resource

    Directory of Open Access Journals (Sweden)

    Francesco Italiano

    2014-06-01

    Full Text Available Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4, 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT. The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.

  6. Calciclastic submarine fans: An integrated overview

    Science.gov (United States)

    Payros, Aitor; Pujalte, Victoriano

    2008-01-01

    Calciclastic submarine fans are rare in the stratigraphic record and no bona fide present-day analogue has been described to date. Possibly because of that, and although calciclastic submarine fans have long intrigued deep-water carbonate sedimentologists, they have largely been overlooked by the academic and industrial communities. To fill this gap we have compiled and critically reviewed the existing sedimentological literature on calciclastic submarine fans, thus offering an updated view of this type of carbonate slope sedimentary system. Calciclastic submarine fans range in length from just a few to more than 100 km. Three different types can be distinguished: (1) Coarse-grained, small-sized (depression associated with tectonic structures, an inherited topography, or large-scale mass failures.

  7. Aspects of Propeller Developements for a Submarine

    DEFF Research Database (Denmark)

    Andersen, Poul; kappel, Jens Julius; Spangenberg, Eugen

    2009-01-01

    Design and development of propellers for submarines are in some ways different from propellers for surface vessels. The most important demand is low acoustic signature that has priority over propeller efficiency, and the submarine propeller must be optimized with respect to acoustics rather than...... efficiency. Moreover the operating conditions of a submarine propeller are quite different. These aspects are discussed as well as the weighing of the various propeller parameters against the design objectives. The noise generated by the propeller can be characterized as thrust noise due to the inhomogeneous...... wake field of the submarine, trailing-edge noise and noise caused by turbulence in the inflow. The items discussed are demonstrated in a case study where a propeller of the Kappel type was developed. Three stages of the development are presented, including a design of an 8-bladed propeller where...

  8. Russia's Submarine Force: Determinants and Prospects

    National Research Council Canada - National Science Library

    Tully, John

    2001-01-01

    ... the determinants of these events, The Russian Federation inherited a huge submarine fleet from the Soviet Union, Due to the changing conditions in the world and in Russia, its future status is in doubt...

  9. Shallow crustal velocities and volcanism suggested from ambient noise studies using a dense broadband seismic network in the Tatun Volcano Group of Taiwan

    Science.gov (United States)

    Huang, Yu-Chih; Lin, Cheng-Horng; Kagiyama, Tsuneomi

    2017-07-01

    The Tatun Volcano Group (TVG) is situated adjacent to the Taipei metropolis and was active predominantly around 0.8-0.2 Ma (Pleistocene). Various recent lines of evidence suggest that the TVG is a potentially active volcano and that future volcanic eruptions cannot be ruled out. Geothermal activities are largely constrained to faults, but the relationship between volcanism and detailed velocity structures is not well understood. We analyzed ambient seismic noise of daily vertical components from 2014 using a dense seismic network of 40 broadband stations. We selected a 0.02° grid spacing to construct 2D and 3D shallow crustal phase velocity maps in the 0.5-3 s period band. Two S-wave velocity profiles transect Chishingshan (Mt. CS) in the shallow 3 km crust are further derived. The footwall of the Shanchiao Fault is dominated by low velocity, which may relate to Tertiary bedrock buried under andesitic lava flows dozens to hundreds of meters thick. The hanging wall of the Shanchiao Fault is the location of recent major volcanic activities. Low velocity zones in the southeast of Dayoukeng (DYK) may be interpreted as hydrothermal reservoirs or water-saturated Tertiary bedrock related to Cenozoic structures in the shallow crust. High velocities conspicuously dominate the east of the TVG, where the earliest stages of volcanism in the TVG are located, but where surface hydro-geothermal activities were absent in recent times. Between the Shanchiao Fault and Kanchiao Fault high velocities were detected, which converge below Mt. CS and may be related to early stages of magma conduits that gradually consolidated. These two faults may play a significant role with the TVG. The submarine volcanism adjacent to the Keelung coastline also requires further attention.

  10. SSN 774 Virginia Class Submarine (SSN 774)

    Science.gov (United States)

    2015-12-01

    Report: The VIRGINIA Class Submarine Program continues to deliver submarines within cost, ahead of schedule , with improved quality and with...baseline schedule threshold set ten years earlier, in 1994. June 20, 2006: USS TEXAS, which was essentially the second lead ship of the class , is the first...factored for the VIRGINIA Class based on weight. Public and private shipyard data was used, as well as the maintenance schedule provided in the CARD, Rev E

  11. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011–2015: Insight into the continuous nature of volcanic activity over multi-year timescales

    Science.gov (United States)

    Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John; Kelly, Peter; Wallace, Kristi; Schneider, David; Wessels, Rick

    2017-01-01

    Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d− 1 and CO2/SO2 ratios were volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s− 1, and the total volume extruded from 2011 to 2015 was 1.9–5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth and explosive activity are somewhat unpredictable and likely result from plugs that are related to the dome obtaining a critical dimension, or from small variations in the magma ascent rate that lead to crystallization-induced blockages in the upper conduit, thereby reducing

  12. ROV Tiburon Investigation of Hawaiian Submarine Canyons

    Science.gov (United States)

    Paull, C. K.; Greene, H. G.; Caress, D. W.; Clague, D. A.; Ussler, W.; Maher, N. M.

    2001-12-01

    MBARI conducted ROV dives around the Hawaiian Islands during an expedition of the R/V Western Flyer and Tiburon in the spring of 2001. Eight ROV dives were made to investigate five major submarine canyons offshore of Oahu, Molokai, and Hawaii in up to 3,434 m water depths. Four of these canyons are located off the windward (northern) side of these islands where onshore canyons are also well developed. Those canyons located offshore of Molokai and Oahu incise the head scars of the giant Nuuanu and Wailai submarine landslides. ROV observations and sediment and rock outcrop sampling were made in these canyons to determine their origin and present-day activity. The fifth canyon investigated is located on the leeward (southern) side of Molokai. The canyons along the windward side expose extensive stratigraphic sections that reveal the history of the islands' formation. In composite, these sections contain marine pillow basalt overlain by a substantial sequence of alternating subaerial lava flows, rounded boulder conglomerates, shallow water carbonates, and hyaloclastites that indicate coastal and marine deposition. These sequences illustrate the accretion and subsequent subsidence of the islands' flanks. These canyons also have morphologically distinct upper and lower sections. The upper reaches of the canyons are incised into the shallow water marine facies and contain broad axial channels through which active sediment transport is occurring. In contrast, the morphology of the lower canyons are strongly influenced by the giant landslides that massively altered the northern flanks of the Hawaiian chain. The lower canyons contain plunge pools and steep headwall scarps that are generally comprised of mechanically competent subaerial lava flows. The presence of multiple plunge pools with differentially eroded head scarps suggests retrogressive erosion (bottom-up process) with headward advancement of the various heads. Undercutting of the headwalls also produce periodic

  13. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Jr., Mac Roy [Univ. of Nevada, Reno, NV (United States)

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  14. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  15. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands)

    Science.gov (United States)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust

    2015-04-01

    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related

  16. Pockmark morphology and turbulent buoyant plumes at a submarine spring

    Science.gov (United States)

    Buongiorno Nardelli, B.; Budillon, F.; Watteaux, R.; Ciccone, F.; Conforti, A.; De Falco, G.; Di Martino, G.; Innangi, S.; Tonielli, R.; Iudicone, D.

    2017-09-01

    The input flow of groundwater from the seabed to the coastal ocean, known as Submarine Groundwater Discharge (SGD), has been only recently recognized as an important component of continental margin systems. It potentially impacts physical, chemical and biological marine dynamics. Independently of its specific nature (seepage, submarine springs, etc.) or fluid chemical composition, a SGD is generally characterized by low flow rates, hence making its detection and quantification very difficult, and explaining why it has been somewhat neglected by the scientific community for a long time. Along with the growing interest for SGDs emerged the need for in-situ observations in order to characterize in details how these SGDs behave. In this work, we describe the morphology of a pockmark field, detected in the Southern Tyrrhenian Sea (Mediterranean Sea), and provide observational evidences of the presence of active submarine springs over the coastal shelf area. We describe the effect of the fluid seeps on the water column stratification close to the main plumes and in the neighbouring areas, providing quantitative estimates of the intensity of the turbulent mixing and discussing their potential impact on the seabed morphology and pockmark formation in the context of turbulent buoyant plumes analytical modelling.

  17. Seismic reflection data processing in active volcanic areas: an application to Campi Flegrei and Somma Vesuvius offshore (Southern Italy

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2002-06-01

    Full Text Available The Campanian volcanism develops near the sea. Therefore, the geophysical study of the marine environment is a key to a better understanding of the tectonic evolution and the origin of volcanism in the area. An abundance of high quality seismic data in the marine sector, where little direct information is available, is critical to the study of Campanian volcanism. This paper concerns the reprocessing of a seismic reflection dataset acquired in Naples Bay and processed during 1973. Even though the overall data quality was high for that time, of course their acquisition technological limits have been overcome by the new processing. Our reprocessing aimed at: 1 reduction of random noise in the data; 2 removal of unwanted coherent events; 3 reduction of spatial aliasing by means of trace interpolation on Commod Shot Point (CSP gathering; 4 improvement of resolution of the seismic wavelet with spiking deconvolution algorithms and finally 5 reposition of reflectors in their correct locations in the space-TWT domain by means of dip moveout and post-stack time migration. A comparison between the new and old data shows that the new sections are characterized by a much higher S/N ratio. Diffraction hyperbole has been collapsed. Reverberations, ghosts and multiples have been removed or greatly attenuated, especially between the reflectors of interest, allowing us to follow them with more detail and with greater continuity. Furthermore, data resolution has been boosted by the reprocessing, allowing the interpreter to evaluate reflector position and continuity in greater detail. The reinterpretation phase of such lines, that is already in an advanced stage, will therefore allow us to gain new insights into the structural setting of the bay, with the aim of exploring the connection between tectonics and volcanism.

  18. Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation

    Science.gov (United States)

    Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.

    2017-08-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.

  19. Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical probabilities of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake

    Directory of Open Access Journals (Sweden)

    Y. Dzierma

    2010-10-01

    Full Text Available A probabilistic eruption forecast is provided for ten volcanoes of the Chilean Southern Volcanic Zone (SVZ. Since 70% of the Chilean population lives in this area, the estimation of future eruption likelihood is an important part of hazard assessment. After investigating the completeness and stationarity of the historical eruption time series, the exponential, Weibull, and log-logistic distribution functions are fit to the repose time distributions for the individual volcanoes and the models are evaluated. This procedure has been implemented in two different ways to methodologically compare details in the fitting process. With regard to the probability of at least one VEI ≥ 2 eruption in the next decade, Llaima, Villarrica and Nevados de Chillán are most likely to erupt, while Osorno shows the lowest eruption probability among the volcanoes analysed. In addition to giving a compilation of the statistical eruption forecasts along the historically most active volcanoes of the SVZ, this paper aims to give "typical" eruption probabilities, which may in the future permit to distinguish possibly enhanced activity in the aftermath of the large 2010 Concepción earthquake.

  20. Comments on ;Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new Cadomian arc magmatism in the Hormuz Formationˮ by N. S. Faramarzi, S. Amini, A. K. Schmitt, J. Hassanzadeh, G. Borg, K. McKeegan, S. M. H. Razavi, S. M. Mortazavi, Lithos, Sep. 2015, V.236-237, P.203-211: A missing link of Ediacaran A-type rhyolitic volcanism associated with glaciogenic banded iron salt formation (BISF)

    Science.gov (United States)

    Atapour, Habibeh; Aftabi, Alijan

    2017-07-01

    A critical overview on the petrogeochemistry of Hormuz Island highlights that the Ediacaran Hormuz Complex includes synchronous felsic submarine volcanism associated with diamictite and dropstone-bearing banded iron salt (anhydrite, halite, sylvite) formation (BISF) that formed 558-541 Ma in the Late Neoproterozoic. Our field observations disagree with Faramarzi et al. (2015) on the geological map of the Hormuz Island, in particular on the occurrence of the ferruginous agglomerates in the Hormuz Island, thus the geological data do not provide a robust geological mapping. The agglomerates are commonly related to the strombolian peralkaline basaltic eruptions rather than the submarine felsic volcanism. Based on the tectonogeochemical diagrams extracted from the geochemical data of the authors, the Hormuz rhyolites show an affinity to the A-type or A2-type submarine riftogenic and or intra-plate rhyolites of Eby (1992). However, the authors admitted two sides of the debate and proposed an extensional back arc or rift-related magmatic activity as well as continental arc margin setting. The rhyolites are also similar to the Ediacaran Arabian-Nubian A-type alkaline rhyolites that formed by intra-plate rifting during the Pan-African orogen in the proto-Tethys shallow grabens of the Gondwana supercontinent. The most exceptional feature of the Hormuz rhyolites is related to their co-occurrence with the Ediacaran salt rocks, glaciogenic diamictites and jaspillitic banded iron formations, which have never ever been reported previously.

  1. Westward advance of the deformation front and evolution of submarine canyons offshore of southwestern Taiwan

    Science.gov (United States)

    Han, Wei-Chung; Liu, Char-Shine; Chi, Wu-Cheng; Chen, Liwen; Lin, Che-Chuan; Chen, Song-Chuen

    2017-11-01

    This study analyzes both 2D and 3D seismic images around the Palm Ridge area offshore of southwestern Taiwan to understand how the deformation front shifted westward and how tectonic activities interact with submarine canyon paths in the transition area between the active and passive margins. Palm Ridge is a submarine ridge that developed on the passive China continental margin by down-dip erosion of several tributaries of Penghu Canyon; it extends eastward across the deformation front into the submarine Taiwan accretionary wedge. The presence of proto-thrusts that are located west of the frontal thrust implies that the compressional stress field has advanced westward due to the convergence of the Philippine Sea Plate and Eurasian Plate. Since the deformation front is defined as the location of the most frontal contractional structure, no significant contractional structure should appear west of it. We thus suggest moving the location of the previously mapped deformation front farther west to where the westernmost proto-thrust lies. High-resolution seismic and bathymetric data reveal that the directions of the paleo-submarine canyons run transverse to the present slope dip, while the present submarine canyons head down slope in the study area. We propose that this might be the result of the westward migration of the deformation front that changed the paleo-bathymetry and thus the canyon path directions. The interactions of down-slope processes and active tectonics control the canyon paths in our study area.

  2. New Mapping of Mariana Submarine Volcanoes with Sidescan and Multibeam Sonars

    Science.gov (United States)

    Embley, R. W.; Chadwick, W. W.; Baker, E. T.; Johnson, P. D.; Merle, S. G.; Ristau, S.

    2003-12-01

    An expedition in February/March 2003 on the R/V Thomas G. Thompson mapped more than 18,000 km2 with the towed MR1 sidescan sonar and almost 28,000 km2 with an EM300 hull-mounted multibeam system along the Mariana volcanic arc. The expedition was funded by NOAA's Office of Ocean Exploration (more on the expedition can be found at: http://oceanexplorer.noaa.gov/explorations/03fire/welcome.html). The MR1 sidescan surveys began at the northern end of a 2001 R/V Melville MR1 survey at 16§ N and extended to Nikko Volcano at 23\\deg 05'N. A portion of the southern back-arc spreading center and the arc volcanoes south of 16\\deg N were mapped using the EM300 system. Of 43 submarine arc volcanoes surveyed that have basal diameters of 10 km or greater, 17 have summit calderas or craters. Of these, however, only 5 have diameters more than 2 km. In an accompanying survey of hydrothermal activity along the arc, CTD casts and/or tows were conducted over more than 50 individual volcanoes. The 11 volcanoes with active hydrothermal systems found in the course of these surveys appear to be about equally divided between those with and without summit calderas or craters (for additional information, see Baker et al., Resing et al., and Lupton et al., this session). The flanks of the submarine volcanoes and islands of the central and northern Mariana Arc consist largely of volcaniclastic flows. Most of the larger edifices have high-backscatter spoke-like patterns that probably represent coarser and/or younger flows from the summits. Higher relief high-backscatter areas, also commonly exhibiting a radial pattern, are found on many of the volcanoes' flanks. These are probably lava flows erupted along radial fissures. The Mariana Arc volcanoes are shedding large volumes of volcaniclastic material westward into the back-arc basin through a series of deep-sea channels oriented transverse to the arc that are in many places fed by flows from several volcanoes. On many of the volcaniclastic

  3. Submarine landslides of the Southern California Borderland

    Science.gov (United States)

    Lee, H.J.; Greene, H. Gary; Edwards, B.D.; Fisher, M.A.; Normark, W.R.

    2009-01-01

    Conventional bathymetry, sidescan-sonar and seismic-reflection data, and recent, multibeam surveys of large parts of the Southern California Borderland disclose the presence of numerous submarine landslides. Most of these features are fairly small, with lateral dimensions less than ??2 km. In areas where multibeam surveys are available, only two large landslide complexes were identified on the mainland slope- Goleta slide in Santa Barbara Channel and Palos Verdes debris avalanche on the San Pedro Escarpment south of Palos Verdes Peninsula. Both of these complexes indicate repeated recurrences of catastrophic slope failure. Recurrence intervals are not well constrained but appear to be in the range of 7500 years for the Goleta slide. The most recent major activity of the Palos Verdes debris avalanche occurred roughly 7500 years ago. A small failure deposit in Santa Barbara Channel, the Gaviota mudflow, was perhaps caused by an 1812 earthquake. Most landslides in this region are probably triggered by earthquakes, although the larger failures were likely conditioned by other factors, such as oversteepening, development of shelf-edge deltas, and high fluid pressures. If a subsequent future landslide were to occur in the area of these large landslide complexes, a tsunami would probably result. Runup distances of 10 m over a 30-km-long stretch of the Santa Barbara coastline are predicted for a recurrence of the Goleta slide, and a runup of 3 m over a comparable stretch of the Los Angeles coastline is modeled for the Palos Verdes debris avalanche. ?? 2009 The Geological Society of America.

  4. Pore Fluid Evolution Influenced by Volcanic Activities and Related Diagenetic Processes in a Rift Basin: Evidence from the Paleogene Medium-Deep Reservoirs of Huanghekou Sag, Bohai Bay Basin, China

    Directory of Open Access Journals (Sweden)

    Zhongheng Sun

    2017-01-01

    Full Text Available Volcanic activities exert a significant influence on pore fluid property and related diagenetic processes that substantially controlled reservoirs quality. Analysis of Paleogene medium-deep sandstones on the Huanghekou Sag provides insight into relating the diagenetic processes to pore fluid property evolution influenced by volcanic activities. Three distinct types of pore fluids were identified on the basis of an integrated and systematic analysis including core and thin section observation, XRD, SEM, CL, and trace element. Alkaline aqueous medium environment occurred in E2s1+2 where volcanic activities have insignificant influence on pore fluids, evidenced by typical alkaline diagenetic events such as K-feldspar albitization, quartz dissolution, feldspar dissolution, and carbonate cementation. During the deposition of E3d3, influx of terrestrial freshwater and alteration of ferromagnesian-rich pore water result in the formation of mixing aqueous medium environment through volcanic eruption dormancy causing zeolite dissolution, clay mineral transformation, and K-feldspar albitization. Ferromagnesian-rich aqueous medium environment developed resulting from the intensive hydrolysis of the unstable ferromagnesian minerals formed due to intense volcanic activities during E3d1+2 and corresponding predominant diagenetic processes were characterized by the precipitation and dissolution of low-silica zeolites. Therefore, the differential properties of pore fluids caused various diagenetic processes controlling reservoir quality.

  5. The submarine hydrothermal system of Panarea (Southern Italy: biogeochemical processes at the thermal fluids - sea bottom interface

    Directory of Open Access Journals (Sweden)

    T. Maugeri

    2006-06-01

    Full Text Available Among the submarine hydrothermal systems located offshore the volcanic archipelago of the Aeolian Islands (Southern Italy, the most active is located off the coasts of Panarea island. Thermal waters, gases and sulfur deposits coexist at the sea bottom where hydrothermal fluids are released from both shallow and deep vents. The chemical and isotopic composition of the fluid phase shows the presence of a significant magmatic component and the physico-chemical conditions of the geothermal reservoir allow the release of reduced chemical species that are microbially mediated towards the production of organic carbon as a form of biochemical energy. Microorganisms inhabiting this environment possess nutritional requirements and overall metabolic pathways ideally suited to such ecosystem that represents a clear example of the close connection between geosphere and biosphere. Microscopic examination of the white mat attached to rock surfaces showed the presence of Thiothrix-like filamentous bacteria. Moderately thermophilic heterotrophic isolates were identified as strains of the genus Bacillus. Although the hydrothermal system of Panarea has to be considered a “shallow” system, it shows many characteristics that make it similar to the “deep” oceanic systems, giving a unique opportunity for improving our knowledge on such an unexplored world by working at this easily accessible site.

  6. The emergence of volcanic oceanic islands on a slow-moving plate: The example of Madeira Island, NE Atlantic

    Science.gov (United States)

    Ramalho, Ricardo; da Silveira, António Brum; Fonseca, Paulo; Madeira, Jose; Cosca, Michael A.; Cachão, Mário; Fonseca, Maria M.; Prada, Susana

    2015-01-01

    The transition from seamount to oceanic island typically involves surtseyan volcanism. However, the geological record at many islands in the NE Atlantic—all located within the slow-moving Nubian plate—does not exhibit evidence for an emergent surtseyan phase but rather an erosive unconformity between the submarine basement and the overlying subaerial shield sequences. This suggests that the transition between seamount and island may frequently occur by a relative fall of sea level through uplift, eustatic changes, or a combination of both, and may not involve summit volcanism. In this study, we explore the consequences for island evolutionary models using Madeira Island (Portugal) as a case study. We have examined the geologic record at Madeira using a combination of detailed fieldwork, biostratigraphy, and 40Ar/39Ar geochronology in order to document the mode, timing, and duration of edifice emergence above sea level. Our study confirms that Madeira's subaerial shield volcano was built upon the eroded remains of an uplifted seamount, with shallow marine sediments found between the two eruptive sequences and presently located at 320–430 m above sea level. This study reveals that Madeira emerged around 7.0–5.6 Ma essentially through an uplift process and before volcanic activity resumed to form the subaerial shield volcano. Basal intrusions are a likely uplift mechanism, and their emplacement is possibly enhanced by the slow motion of the Nubian plate relative to the source of partial melting. Alternating uplift and subsidence episodes suggest that island edifice growth may be governed by competing dominantly volcanic and dominantly intrusive processes.

  7. Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: An example from the Cretaceous Beolgeumri Formation, Wido Volcanics, Korea

    Science.gov (United States)

    Ko, Kyoungtae; Kim, Sung Won; Lee, Hong-Jin; Hwang, In Gul; Kim, Bok Chul; Kee, Won-Seo; Kim, Young-Seog; Gihm, Yong Sik

    2017-08-01

    The Cretaceous Beolgeumri Formation is composed of laminated mudstones intercalated with sandstones, chert, and a bed of lapilli tuff that were deposited in a lacustrine environment at the terminal part of a regional strike-slip fault systems on the southwestern Korean Peninsula. The Beolgeumri Formation contains various types of soft sediment deformation (SSD) structures that are characterized by a wide extent (morphological features and deformation styles: 1) fold structures, 2) load structures, 3) water-escape structures, 4) rip-down structures, 5) boudin structures, and 6) synsedimentary fault structures. Field examination of SSD structures together with an analysis of the sedimentological records of the Beolgeumri Formation indicate that the SSD structures formed largely by liquefaction and/or fluidization triggered by ground shaking during earthquakes. To constrain the timing of the development of SSD structures in the Beolgeumri Formation, we conducted sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age dating of block sized lithic clasts bearing volcaniclastic deposits that conformably underlie (the Mangryeongbong Tuff) and overlie (the Ttandallae Tuff) the Beolgeumri Formation. The Mangryeongbong and Ttandallae Tuffs have ages of 86.63 ± 0.83 Ma and 87.24 ± 0.36 Ma, respectively, indicating that the Beolgeumri Formation was deposited during a short interval between major volcanic eruptions. The large lithic clasts of volcaniclastic deposits suggest that the Beolgeumri Formation was deposited adjacent to an active volcanic edifice(s). Syndepositional magmatic activities are suggested by the occurrence of a lapilli tuff bed in the Beolgeumri Formation and an igneous intrusion (intermediate sill) that is crosscut by a sand dike, as well as the similar age results of the underlying and overlying volcaniclastic deposits. Thus, we infer that the earthquakes that caused the development of SSD structures in the study area were closely related to

  8. Submarine Ground Water Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Hawai'i:Part 2, Spatial and Temporal Variations in Salinity, Radium-Isotope Activity, and Nutrient Concentrations in Coastal Waters, December 2003-April 2006

    Science.gov (United States)

    Knee, Karen; Street, Joseph; Grossman, Eric E.; Paytan, Adina

    2008-01-01

    The aquatic resources of Kaloko-Honokohau National Historical Park, including rocky shoreline, fishponds, and anchialine pools, provide habitat to numerous plant and animal species and offer recreational opportunities to local residents and tourists. A considerable amount of submarine groundwater discharge was known to occur in the park, and this discharge was suspected to influence the park's water quality. Thus, the goal of this study was to characterize spatial and temporal variations in the quality and quantity of groundwater discharge in the park. Samples were collected in December 2003, November 2005, and April 2006 from the coastal ocean, beach pits, three park observation wells, anchialine pools, fishponds, and Honokohau Harbor. The activities of two Ra isotopes commonly used as natural ground-water tracers (223Ra and 224Ra), salinity, and nutrient concentrations were measured. Fresh ground water composed a significant proportion (8-47 volume percent) of coastal-ocean water. This percentage varied widely between study sites, indicating significant spatial variation in submarine groundwater discharge at small (meter to kilometer) scales. Nitrate + nitrite, phosphate, and silica concentrations were significantly higher in nearshore coastal-ocean samples relative to samples collected 1 km or more offshore, and linear regression showed that most of this difference was due to fresh ground-water discharge. High-Ra-isotope-activity, higher-salinity springs were a secondary source of nutrients, particularly phosphate, at Honokohau Harbor and Aiopio Fishtrap. Salinity, Ra-isotope activity, and nutrient concentrations appeared to vary in response to the daily tidal cycle, although little seasonal variation was observed, indicating that submarine ground-water discharge may buffer the park's water quality against the severe seasonal changes that would occur in a system where freshwater inputs were dominated by rivers and runoff. Ra-isotope-activity ratios indicated

  9. Chemical Fluxes from a Recently Erupted Submarine Volcano on the Mariana Arc

    Science.gov (United States)

    Buck, N. J.; Resing, J. A.; Lupton, J. E.; Larson, B. I.; Walker, S. L.; Baker, E. T.

    2016-12-01

    While hydrothermal circulation is paramount to the geochemical budget for a wide array of elements, relatively few flux estimates exist in the literature. To date most studies have concentrated on constraining global and vent-field scale inputs originating from ocean spreading ridges. The goal of this study is to directly measure the chemical flux from an active submarine volcano injecting hydrothermal fluids into the surface ocean. Ahyi Seamount, a submarine intraoceanic arc volcano located in the Northern Mariana Islands, has a summit depth TSM and total and dissolved Fe and Mn. Laboratory analyses found enriched concentrations of H2, 3He, CO2 and Fe, consistent with a recent eruption. Preliminary flux calculations estimate a Fe input of 16 mmol s-1. This indicates shallow submarine arc volcanoes are capable of supplying appreciable quantities of Fe into the surface ocean. Further laboratory analyses and calculations to characterize and constrain the fluxes of other chemical constituents are underway.

  10. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile

    Science.gov (United States)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.

    2014-12-01

    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest

  11. Comment on "Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores" by Sibrant et al. (2014) and proposal of a new model for Graciosa's geological evolution

    Science.gov (United States)

    Quartau, R.; Hipólito, A.; Mitchell, N. C.; Gaspar, J. L.; Brandão, F.

    2015-09-01

    Volcanoes rising above sea level within extensional oceanic plate boundaries provide accessible locations with which to study the effects of plate tectonic and volcanic processes of such areas. However, relying solely on subaerial observations can lead to biased interpretations. Reconciling the information provided by multibeam echo sounders on the submarine parts of volcanic islands with geology and geomorphology observable above sea level can potentially provide more robust interpretations. In this comment of the study of Sibrant et al. (2014), which is based almost solely on subaerial observations, we show how the published multibeam sonar data around Graciosa reveals that their proposed successive phases of destruction of the volcanic edifices composing the island by massive landslides is incompatible with the high-resolution bathymetry. The data reveal no large-scale debris avalanche deposits or characteristic flank collapse scars where Sibrant et al. (2014) propose these landslides to have occurred. Instead, the data show volcanic constructional areas, some of which have simply been eroded by wave abrasion. The interpretation of collapse structures appears to have originated partly from a misreading of the volcano-stratigraphy and tectonic structures. Overall, wave erosion coupled with subaerial erosion and tectonic activity can more easily explain the onshore observations of Sibrant et al. (2014), providing a less catastrophic explanation for the evolution of Graciosa Island.

  12. Monogenetic volcanism in the Cordillera Central of Colombia: unknown volcanic fields associated with the northernmost Andes' volcanic chain related subduction

    Science.gov (United States)

    Murcia, Hugo; Borrero, Carlos; Németh, Károly

    2017-04-01

    Monogenetic volcanic fields are commonly related to rifts and/or intraplate tectonic settings. However, although less common, they appear also associated with subduction zones, including both front and back-arc volcanoes. To nourish this uncommon tectonic location, it is shown here that monogenetic volcanic fields, in addition to polygenetic volcanoes, also appear at the northernmost part of the Andes Northern Volcanic Zone (NVZ) (2° S to 4°30´N). These fields are associated with the main axe of the Quaternary active volcanic structures; they are linked to the polygenetic Cerro Bravo - Cerro Machín Volcanic Chain ( 80 km long; CBCMVC) in Colombia, the chain that hosts the iconic Nevado del Ruiz volcano. To the present, three monogenetic volcanic fields, with a typical calc-alkaline signature, have been identified in both sides of this chain: 1) Villamaría - Termales Monogenetic Volcanic Field (VTMVF) located to the northwestern part (>5 km) of the CBCMVC. This field is made up of at least 14 volcanoes aligned with the Villamaría - Termales fault zone. The volcanism has been mainly effusive, represented by lava domes and some lava flows. The volcanoes are andesitic to dacitic in composition. It is inferred that the magmatic source is a magma chamber close to Nevado del Ruiz volcano. Based on stratigraphic relationships, it is assumed that the last eruption occurred 10 wt.%) in the whole CBCMVC. Its source is related to the same magmas that feed the volcanoes in the CBCMVC. Stratigraphic relationships show that the volcanoes are younger than the underlying alluvial and volcaniclastic Ibagué fan (<1 Ma). Overall, it is clear that monogenetic volcanic fields are not atypical in the area, although their relationship with the magmatism feeding the polygenetic arc of the Andes' volcanic chain related subduction, is still unknown.

  13. Evidence for different processes of magma evolution in El Tatio volcanic region (22°16' to 22°30' S, Central Volcanic Zones, Andes)

    OpenAIRE

    De Astis, G.; Lucchi, F.; Tranne, C. A.; Rossi, P. L.

    2009-01-01

    We report new petrographic and geochemical data on volcanic rocks erupted over the last 9 Ma ca. within El Tatio volcanic region (Western Cordillera – CVZ). They originated from compound volcanism alternating composite volcano activities, lava domes formation and minor low-mild explosive eruptions, whereas ignimbrite-like deposits outcropping in the region originated from external caldera system (Altiplano Puna Volcanic Complex). The volcanics – mostly erupted in the last 1 Ma - have composit...

  14. Late Cretaceous Sub-Marine Fan System in Batain Mélange Zone, the Fayah Formation in Northeastern Oman

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmed Abbasi

    2014-06-01

    , possibly as olistostrome formed due to submarine slumping and sliding. The turbidite lithofacies association is comprised of monotonous grayish-green to brown coloured clays tens of meters thick interbedded with thin, clean, well-sorted sandstone. The Interbedded sandstone and shale lithofacies association is comprised of a half to one meter thick cross-bedded, burrowed arkosic sandstone and plane laminated shale. The sandstone constitutes about 25% of the association with ripple lamination in the upper part of the unit indicating a fining-upward trend. Dewatering structures are common. This association constitutes the upper 100m of the formation. These sediments were deposited in shallow water conditions by channelized flows. Based on the lithofacies associations described above, especially the dominance of debris-flow units and turbidites, the greater part of the Fayah Formation are interpreted as having been deposited under a sub-marine fan setting. Only the upper part of the formation was deposited in a shallow water setting before the onset of overlying carbonate deposits. The sub-marine fan system was active during the last stages of the Tethys Ocean closure at the time of onset of the Batain nappe.

  15. Silicate volcanism on Io

    Science.gov (United States)

    Carr, M. H.

    1986-03-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  16. MVAC Submarine cable, impedance measurements and analysis

    DEFF Research Database (Denmark)

    Arentsen, Martin Trolle; Pedersen, Morten Virklund; Expethit, Adrian

    2017-01-01

    Due to environmental concerns an increase in off-shore windfarms has been observed in recent years, leading to an increased demand for three-core-wire-armoured submarine cables. However, the IEC Standard 60287 used to calculate the ampacity of these cables is widely recognized as being not accurate...

  17. German Submarine Offensives and South African Countermeasures

    African Journals Online (AJOL)

    Evert

    'Good Hunting': German Submarine Offensives and South African. Countermeasures off the South African Coast during the Second World. War, 1942-1945. Evert Kleynhans. •. Abstract .... wolf packs south, Dönitz had hoped to cause a diversionary effect whereby the Allies would be forced to split their defensive forces ...

  18. Submarine Telecommunication Cables in Disputed Maritime Areas

    NARCIS (Netherlands)

    van Logchem, Youri

    2014-01-01

    There are a considerable number of maritime areas where no boundary exists, or where a boundary is delimited only in part. This article deals with the issue of submarine telecommunication cables, which are sometimes placed on the seabed or buried in the subsoil of areas that are claimed by multiple

  19. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  20. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  1. Phase 1 Final Report: Titan Submarine

    Science.gov (United States)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of

  2. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  3. Elastic plate flexure above mantle plumes explains the upstream offset of volcanic activity at la Réunion and Hawaii

    Science.gov (United States)

    Gerbault, Muriel; Fontaine, Fabrice; Rabinowicz, Michel; Bystricky, Micha

    2017-04-01

    Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis, 20 km thick and 150 km in radius, at 50-70 km depth where the temperature varies from 600°C to 750°C. It lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, a timing that is controlled by the visco-elastic relaxation time at 50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively, thus rendering this basal compression a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., 150 km away from the plume head. There, melts propagate through dikes upwards to 35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host magmatic reservoirs where melts pond, until further differentiation can relaunch ascension up to the surface and form a volcanic edifice. In a second stage, as the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards, inducing extra tensile stress at 30-35 km depth and compression at 15 km depth. It implies that now the melts pond at 15 km and form another magmatic reservoir lying just

  4. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  5. Health and environmental risk assessment associated with a potential recovery of the Russian submarine K-27

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.; Amundsen, I.; Brown, J.E.; Dowdall, M.; Standring, W. [Norwegian Radiation Protection Authority/CERAD CoE (Norway); Bartnicki, J. [Norwegian Meteorological Institute/CERAD CoE (Norway); Karcher, M. [O.A.Sys - Ocean Atmosphere Systems GmbH (Germany); Lind, O.C.; Salbu, B. [Norwegian University of Life Sciences/CERAD CoE (Norway)

    2014-07-01

    The nuclear submarine K-27 is one of several objects with spent nuclear fuel (SNF) which has been dumped in the Arctic. It contained two liquid metal reactors (LMRs) of 70 MW maximum thermal power each and used Pb-Bi as the coolant. The reactors were loaded with 180 kg of U-235 at an enrichment of 90 %. In September 1981, the submarine was sunk in the shallow waters of Stepovoy Fjord at an estimated depth of 30 m. Concerns have been expressed by various parties regarding the issue of dumped nuclear waste in the Kara Sea and in particular the submarine K-27. To address these concerns and to provide a better basis for evaluating possible radiological impact (especially as a consequence of a potential recovery of the submarine), an environmental impact assessment has been undertaken. The study is based on construction of different hypothetical accident scenarios and evaluating possible associated consequences for human and the environment. In general, three main scenarios seem probable and thus appropriate for consideration. One is the 'zero- alternative', i.e. investigate the current and future impact assuming no interventions. The second considers an accidental scenario involving the raising of the submarine and the third an accidental scenario related to the transportation of the submarine to shore for defueling. With regards to the accidental scenarios related to raising and transportation of the submarine, two alternatives can be considered depending on where and how a hypothetical accident will take place and whether the subsequent releases occur under water or at the water surface. The issue of an uncontrolled chain reaction occurring as a result of a potential recovery of the submarine will be included in the assessment. The work includes application of state of the art 3D hydrodynamic and atmospheric dispersion models to investigate the transport, distribution and fate of relevant radionuclides following a hypothetical accident in aquatic and

  6. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco

    2017-04-01

    Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial

  7. Possible Effects on the Stability of the West Antarctic Ice Sheet (WAIS) and Associated Sea-level Rise From Active-Recent Subglacial Volcanism Interpreted from Aeromagnetic and Radar Ice-sounding Observations

    Science.gov (United States)

    Behrendt, J. C.

    2009-12-01

    Aeromagnetic profiles (>10,000 km) acquired in the early 1960s over the West Antarctic Ice Sheet (WAIS) combined with coincident aeromagnetic and radar ice sounding in 1978-79 indicated numerous high-amplitude, shallow-source, magnetic anomalies over a very extensive area of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. These early aerogeophysical surveys defined this area as >500,000 km2. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice. Behrendt et al, (2005, 2008) interpreted these anomalies as indicating >1000 "volcanic centers". requiring high remanent normal (and at least 10% reversed) magnetizations in the present field direction. These data have shown that >80% of the anomaly sources at the bed of the WAIS, have been modified by the moving ice into which they were injected, requiring a younger age than the WAIS (about 25 Ma). Behrendt et al., (1994; 2007) conservatively estimated >1 x 106 km3 volume of volcanic sources to account for the area of the "volcanic center" anomalies. Although exposed volcanoes surrounding the WAIS extend in age to ~34 m.y., Mt Erebus, (Melbourne, (1000 volcanic, magnetic-anomaly sources are active today, or in the recent past, in the drainage area of the WAIS, subglacial volcanism may still have a significant effect on the dynamics of the WAIS. Interpreted active subglacial volcanism is revealed by aerogeophysical data reported by Blankenship et al., (1993, Mt. Casertz), and Corr and Vaughan, (2008, near Hudson Mts.), who raised the question of possible volcanic effects on the regime of the WAIS. Wingham et al. (2009) reported an average rate of volume loss from 2.6 to 10.1 km3/yr from 1995 to 2006 for the Pine

  8. Submarine glaciated landscapes of central and northern British Columbia, Canada

    Science.gov (United States)

    Shaw, John; Lintern, Gwyn

    2015-04-01

    Recent systematic multibeam sonar mapping and ground-truthing surveys in the fjords and coastal waters of central and northern British Columbia, Canada, provide information on glacial processes associated with the Cordilleran Ice Sheet, and also on postglacial processes that have strongly modified the glacial terrain. During the last glacial maximum, ice covered the Coast Range, except for nunataks. Convergent streamlined glacial landforms in the Strait of Georgia testify to a strong flow of ice towards the southeast, between Vancouver Island and the mainland. During ice retreat, thick deposits of acoustically stratified glaciomarine mud were deposited in glacially over deepened basins. Retreat through the Douglas Channel fjord system was punctuated by still stands, resulting in a series of submarine moraines. Postglacial processes have created a suite of landforms that mask the primary glacial terrain: 1) Fjord floors host thick deposits of acoustically transparent postglacial mud with highly variable distribution: banks up to 80-m thick are commonly adjacent to erosional zones with glaciomarine mud exposed at the seafloor; 2) In this region of high precipitation and snowpack melt, numerous cone-shaped Holocene fan deltas developed on the fjord sidewalls transport coarse sediment to the fjord floors. Larger deltas are developed at fjord heads, notably at Kitimat and Kildala; 3) Submarine slope failures in this tectonically active area have resulted in a suite of mass transport deposits on sidewalls and fjord floors. The very large submarine slope failures at Camano Sound and KitKat Inlet occurred on the steep, rear facets of large transverse moraines, and involved the failure of glaciomarine sediment that moved into deeper basins, perhaps as a retrogressive failure. The ages of these events are unknown, although the presence of postglacial mud in the slide scar at Caamano suggests that the event at that location occurred in the late glacial or early Holocene. Also

  9. Petrological and geochemical Highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes

    Science.gov (United States)

    Rodriguez-Losada, Jose A.; Eff-Darwich, Antonio; Hernandez, Luis E.; Viñas, Ronaldo; Pérez, Nemesio; Hernandez, Pedro; Melián, Gladys; Martinez-Frías, Jesús; Romero-Ruiz, M. Carmen; Coello-Bravo, Juan Jesús

    2015-02-01

    This paper describes the main physical, petrological and geochemical features of the floating fragments that were emitted in the initial stages of the 2011-2012 submarine eruption off the coast of the Canarian island of El Hierro, located 380 km from the Northwest African Coast. It attempts to assess the potential of radiometric analyses to discern the intriguing origin of the floating fragments and the differences between their constituent parts. In this regard, the material that conforms the core of the fragments contains the largest concentration of uranium (U) ever found in volcanic rocks of the Canary Islands. This enrichment in U is not found in the content of thorium (Th), hence the floating fragments have an unusual U/Th ratio, namely equal to or larger than 3. Although the origin of this material is under discussion, it is proposed that the enrichment in U is the result of hydrothermal processes.

  10. Impact of Submarine Geohazards on Organic Carbon Burial Offshore Southwestern Taiwan

    Science.gov (United States)

    Su, C. C.; Tsai, P. H.; Liu, J. T.; Hsu, S. K.; Chiu, S. D.

    2015-12-01

    The tectonically active setting and climatic conditions give Taiwan a high exposure to severe natural hazards. After the Pingtung Earthquake and Morakot Typhoon which occurred in 2006 and 2009, the turbidity currents caused a series of submarine cable breaks along the Gaoping and Fangliao Submarine Canyons off SW Taiwan. Large amounts of terrestrial sediments were fast transported bypass the narrow continental shelf and rapidly moved southward through submarine canyons to the deep sea. Two piston cores which were taken from the Tsangyao Ridge and its adjacent area (OR5-1302-2-MT7 and MT6) might shed light on understanding the export of terrestrial organic carbon to the abyss by submarine geo-hazards. The 210Pb profile of MT7 in conjunction with the grain size data indicates the existence of the Pingtung Earthquake and Morakot Typhoon related deposits. The sedimentation rate of these two cores which derived from 210Pb is approximately 0.05 cm/yr. The cores collected from the Gaoping Submarine Canyon, Gaoping Slope and Fangliao Submarine Canyon are used for analyzing TOC, organic C/N and δ13C ratios. The concentrations of total organic carbon are ~0.5%, and C/N rations almost remain between 4 and 8. The high TOC (~1%) and C/N ratio (>10) are observed in the samples with plant debris. The fluctuation of TOC and C/N ratios in near-shore samples is higher than deep sea. In terms of δ13C-values, it progressively decreases with distances from coastal zone to the deep sea. Due to the larger proportions of land-derived organic carbon, the δ13C-values in the surface sediment of upper Gaoping Submarine Canyon, Gaoping Slope, and the turbidite layers at the head of Fangliao Submarine Canyon are lighter. Furthermore, we use the TOC concentrations and δ13C-values to estimate the fractional contributions of terrestrial organic carbon by a simple two component mixing model, and integrate with the 210Pb-derived sediment accumulation rates to evaluate the organic carbon burial

  11. Seismic tomography model reveals mantle magma sources of recent volcanic activity at El Hierro Island (Canary Islands, Spain)

    Science.gov (United States)

    García-Yeguas, Araceli; Ibáñez, Jesús M.; Koulakov, Ivan; Jakovlev, Andrey; Romero-Ruiz, M. Carmen; Prudencio, Janire

    2014-12-01

    We present a 3-D model of P and S velocities beneath El Hierro Island, constructed using the traveltime data of more than 13 000 local earthquakes recorded by the Instituto Geográfico Nacional (IGN, Spain) in the period from 2011 July to 2012 September. The velocity models were performed using the LOTOS code for iterative passive source tomography. The results of inversion were thoroughly verified using different resolution and robustness tests. The results reveal that the majority of the onshore area of El Hierro is associated with a high-velocity anomaly observed down to 10-12-km depth. This anomaly is interpreted as the accumulation of solid igneous rocks erupted during the last 1 Myr and intrusive magmatic bodies. Below this high-velocity pattern, we observe a low-velocity anomaly, interpreted as a batch of magma coming from the mantle located beneath El Hierro. The boundary between the low- and high-velocity anomalies is marked by a prominent seismicity cluster, thought to represent anomalous stresses due to the interaction of the batch of magma with crust material. The areas of recent eruptions, Orchilla and La Restinga, are associated with low-velocity anomalies surrounding the main high-velocity block. These eruptions took place around the island where the crust is much weaker than the onshore area and where the melted material cannot penetrate. These results put constraints on the geological model that could explain the origin of the volcanism in oceanic islands, such as in the Canaries, which is not yet clearly understood.

  12. A volcanic activity alert-level system for aviation: review of its development and application in Alaska

    Science.gov (United States)

    Guffanti, Marianne; Miller, Thomas P.

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  13. Monitoring Of Volcanic Processes Through Analysis Of Hydroacoustic Signals Originating From Monowai Seamount

    Science.gov (United States)

    Cook, K. E.; Bohnenstiehl, D. R.; Dziak, R. P.; Matsumoto, H.; Fowler, M. J.; Conder, J. A.; Wiens, D. A.

    2010-12-01

    Monowai seamount, located at 25.9S, 177.2E, is an extremely active subduction zone submarine volcanic center located on the southern end of the Kermadec arc. Between January 2009 and April 2010, underwater acoustic signals generated at Monowai were recorded by an array of autonomous moored hydrophones deployed within the Lau Basin, approximately 650 km to the north. The instruments sampled continuously at a rate of 250 Hz and were located at a depth of 1000 m below the sea surface, near the axis of the SOund Fixing And Ranging (SOFAR) channel. Nine distinct episodes of volcanic swarm activity were detected with up to hundreds of events per day during the periods between February 28-March 23, May 2-May 6, July 5-July 10, September 13-September 18, October 15-October 31, November 10-November 13, November 27-December 3, December 14-December 17, and April 10-April 15. To locate the source of the signals, hydroacoustic arrivals were combined with T-wave detections on seismic stations RAR (Rarotonga, Cook Islands) and PPTF (Papeete, Tahiti Island). The peak energy of the signals at each station was used as the arrival time to iterate a source location based on average acoustic velocities in the area. More than three stations were used to locate all selected signals within the periods of high activity. Signals originating from Monowai exhibit spectral energy of up to 60 Hz, with the dominant energy in the 1-10 Hz band. Signal durations extend for several minutes and commonly exhibit multiple peaks in the signal record, with the largest amplitudes often observed within the first 30%-40% of the signal. Waveform envelopes show a coherent pattern of arrivals across the array, which is used to further refine the source location coordinates. High correlation coefficients also are observed between events and provide evidence of repeatable eruptive processes occurring at Monowai.

  14. Shape measurements of volcanic particles by CAMSIZER

    OpenAIRE

    Lo Castro, Maria Deborah; Andronico, Daniele; Nunnari, Giuseppe; Spata, Alessandro; Torrisi, Alessio

    2009-01-01

    The shape of volcanic particles is an important parameter holding information related to physical and geochemical processes. The study of particle shape may help improving knowledge on the main eruptive processes (fragmentation, transport and sedimentation) during explosive activity. In general, volcanic ash is formed by different components, namely juvenile, lithic and crystal particles, each one characterized by peculiar morphology. Moreover, quantifying the shape of pyroclasts is needed by...

  15. Explosive and Phreatomagmatic Activity from San Salvador Volcanic Complex (El Salvador) and Their Effects on El Cambio Archaeological Site: a Review of the Last 3000 yrs. Based on Volcanic Stratigraphy Data

    Science.gov (United States)

    Ferrés, D.; Delgado, H.; Pullinger, C.; Castillo, R.; Chávez, H. I.

    2007-05-01

    El Cambio archeological site (ECAS; Zapotitán Valley), 4 km NW from the San Salvador Volcanic Complex comprises 3000 yrs. of pyroclastic record. Sheets (1983) identified different levels rich in cultural remains intercalated within the volcanic deposits, indicating that different prehistoric settings were affected by San Salvador volcano eruptions, and giving information on the reoccupation frequency in the area. Accordingly, ECAS was occupied since the Late Pre-Classic period until before the last plinian eruption of Ilopango Caldera (425AD) reference, that originated the Tierra Blanca Joven (TBJ), pyroclastic deposits generally used as key-layer in stratigraphic reconstructions. Within the next two centuries, there is no evidence of human occupation at ECAS until the end of Late Classic which was a period of maximum splendor in the valley. During this time the area was affected by at least 3 eruptions from the San Salvador volcanic complex that produced the: Laguna Caldera volcanic fall deposits (which affected Joya de Cerén archeological site in 625AD), "Talpetate" surge deposits or Toba de San Andrés (600-900AD), and fall deposits of El Playón volcano (1658). We report new data on volcanic stratigraphy and archeological history including the following: a) the phreatomagmatic nature of eruptions that affected the area, the new excavations allowed the detailed study of surge deposits indicating magma-water interaction at Laguna Caldera and El Playón, previously considered strombolian eruptions; b)document the occupation of ECAS during Middle Pre-Classic period, new surge deposits below TBJ have been identified (with Middle Pre-Classic artifacts and pottery), that had not been documented before, extending the historic record up to 3000 yrs. BP. and c) detailed study of the "Talpetate" deposits, this sequence consists of fall, pyroclastic flow and surge deposits, present in the rim and slopes of San Salvador Volcano, which can be correlated with surge deposits

  16. Seismicity and sedimentation rate effects on submarine slope stability

    Science.gov (United States)

    Ten Brink, U. S.; Andrews, B. D.; Miller, N. C.

    2016-12-01

    Large submarine mass-transport scars are commonly observed on continental margins, but are noticeably less abundant on margins that experience frequent earthquakes than on those that seldom experience them. This is a surprising observation, given that horizontal acceleration from earthquakes and associated strength loss from cyclic loading and liquefaction are commonly thought to provide the primary triggers for inducing failures and subsequent mass movements. Mapping submarine failure scars in ten margins worldwide, we find decreasing scar abundance with both increasing frequency of earthquakes and decreasing sedimentation rate. The decrease in scar abundance is interpreted to represent increasing slope stability. The increase in stability is non linear (power law with btectonic activity (salt diapirs, seamount subduction, etc.) leads to relatively rapid oversteepening of the slope, implying that the morphology of most margins is in fact, stable over many earthquake cycles. Note that the above correlation averages scar area and sedimentation rate over entire margin areas. Variations in sedimentation rate with time, such as over glacial-interglacial cycles, and intra-margin variations in seismic attenuation, sedimentation rate, composition, and pore pressure, have likely affected the abundance of slope failures in time and space.

  17. Insights for the melt migration, the volcanic activity and the ultrafast lithosphere delamination related to the Yellowstone plume (Western USA)

    Science.gov (United States)

    Rigo, A.; Adam, C.; Grégoire, M.; Gerbault, M.; Meyer, R.; Rabinowicz, M.; Fontaine, F.; Bonvalot, S.

    2015-11-01

    The Yellowstone-East Snake River Plain hotspot track has been intensely studied since several decades and is widely considered to result from the interaction of a mantle plume with the North American plate. An integrated conclusive geodynamic interpretation of this extensive data set is however presently still lacking, and our knowledge of the dynamical processes beneath Yellowstone is patchy. It has been argued that the Yellowstone plume has delaminated the lower part of the thick Wyoming cratonic lithosphere. We derive an original dynamic model to quantify delamination processes related to mantle plume-lithosphere interactions. We show that fast (˜300 ka) lithospheric delamination is consistent with the observed timing of formation of successive volcanic centres along the Yellowstone hotspot track and requires (i) a tensile stress regime within the whole lithosphere exceeding its failure threshold, (ii) a purely plastic rheology in the lithosphere when stresses reach this yield limit, (iii) a dense lower part of the 200 km thick Wyoming lithosphere and (iv) a decoupling melt horizon inside the median part of the lithosphere. We demonstrate that all these conditions are verified and that ˜150 km large and ˜100 km thick lithospheric blocks delaminate within 300 ka when the Yellowstone plume ponded below the 200 km thick Wyoming cratonic lithosphere. Furthermore, we take advantage of the available extensive regional geophysical and geological observation data sets to design a numerical 3-D upper-mantle convective model. We propose a map of the ascending convective sheets contouring the Yellowstone plume. The model further evidences the development of a counter-flow within the lower part of the lithosphere centred just above the Yellowstone mantle plume axis. This counter-flow controls the local lithospheric stress field, and as a result the trajectories of feeder dykes linking the partial melting source within the core of the mantle plume with the crust by

  18. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  19. Psychological Implications for Submarine Display Design

    Science.gov (United States)

    2005-08-01

    This paper addresses a number of psychological issues pertaining to display design . We review the literature comparing 3-D and 2-D displays and...perceptual, cognitive and ecological factors that are relevant to display design for submarine environments. The Generative Transformational approach...to visual perception is outlined and the relevance of transformational theory to display design is discussed. The paper also discusses a number of

  20. Topology Model of the Flow around a Submarine Hull Form

    Science.gov (United States)

    2015-12-01

    resistance and flow noise arising from flow-structure interaction, it is necessary to test the shape of the submarine , which includes the length-to...UNCLASSIFIED Topology Model of the Flow around a Submarine Hull Form S.-K. Lee Maritime Division Defence Science and Technology Group DST-Group–TR...3177 ABSTRACT A topology model constructed from surface-streamer visualisation describes the flow around a generic conventional submarine hull form at

  1. A Lanchester model of submarine attack on a carrier battlegroup

    OpenAIRE

    Eagle, James N.

    1987-01-01

    A Lanchester model is developed for a battlegroup ASW engagement. Two variations are included. In the first, long-range missile firing submarines, short-range missile or torpedo firing submarines, and submarines firing only torpedoes distribute their attack uniformly over battlegroup escort ships and carriers. In the second variation, the attack is concentrated on the carriers. supported by the Naval War College http://archive.org/details/lanchestermodelo00eagl NA

  2. Dynamic of the volcanic activity of La Soufrière volcano (Guadeloupe, Lesser Antillles): Evidence for shallow fluid seismic sources

    Science.gov (United States)

    Ucciani, G.; Beauducel, F.; Bouin, M. P.; Nercessian, A.

    2015-12-01

    La Soufrière is one of the many hazardous volcanoes in the inner arc of Lesser Antilles. Located South of Basse-Terre island, it is the only active volcano of the Guadeloupe archipelago. Since the last significant magmatic eruption in 1535 AD, the activity has been exculsively phreatic. Since 1992 and the abrupt renewal of seismic and fumarollic activities, the Guadeloupe Volcanological and Seismological Observatory (OVSG-IPGP) has recorded a progressive increasing of seismicity and degassing that led scientists and authorities to set the alert level ``Vigilance'' and hold it until today. According to the recent geophysical, geochemical and geological studies, the current volcanic activity of la Soufrière volcano seems to be exclusively associated to the hydrothermal system, while the link with seismic activity is still poorly studied. In this context of possible pre-eruptive unrest, we investigated the spatial and temporal variations of the seismicity recorded between 1981 and 2013. From a consistent seismological framework coupling spectral, statistical, signal processing, clustering, and inverse problems methods, we demonstrate that this seismicity is largely generated by shallow hydrothermal fluid sources located in a complex plumbing system. Spatial variations of Vp/Vs ratio and B-value in seismogenic structures allow us to document three main seismic zones associated to : (1) migration of magmatic gas, (2) the storage and mixing of underground water and gas and (3) the shallow migration of hydrothermal fluids in high fractured and heterogeneous system. Waveform analysis revealed a low number of significant families consistent with fracturing process, and the temporal evolution of multiplet activities highlighted several variations associated with surface manifestations and brutal dynamic changes after major local tectonic earthquakes of Les Saintes (21 November 2004, Mw=6.3), its main aftershock (14 February 2005, Mw=5.7) and the last major earthquake of la

  3. Searching for structural medium changes during the 2011 El Hierro (Spain) submarine eruption

    Science.gov (United States)

    Sánchez-Pastor, Pilar S.; Schimmel, Martin; López, Carmen

    2017-04-01

    Submarine volcanic eruptions are often difficult to study due to their restricted access that usually inhibits direct observations. That happened with the 2011 El Hierro eruption, which is the first eruption that has been tracked in real time in Canary Islands. For instance, despite the real-time tracking it was not possible to determine the exact end of the eruption. Besides, volcanic eruptions involve many dynamic (physical and chemical) processes, which cause structural changes in the surrounding medium that we expect to observe and monitor through passive seismic approaches. The purpose of this study is to detect and analyse these changes as well as to search for precursory signals to the eruption itself using ambient noise auto and cross-correlations. We employ different correlation strategies (classical and phase cross-correlation) and apply them to field data recorded by the IGN network during 2011 and 2012. The different preprocessing and processing steps are tested and compared to better understand the data, to find the robust signatures, and to define a routine work procedure. One of the problems we face is the presence of volcanic tremors, which cause a varying seismic response that we can not attribute to structural changes. So far, structural changes could not be detected unambiguously and we present our ongoing research in this field.

  4. The pace of arc volcanism

    Science.gov (United States)

    Palmer, M. R.; Fraass, A. J.; Hatfield, R. G.; McCanta, M. C.

    2016-12-01

    Being able to reconstruct the long-term history of activity at an island arc volcanic centre has important implications for a wide variety of geologic processes. On-land records are frequently incomplete and radiometric dating is complicated in many systems. Here, we describe the application of rapid and non-destructive measurements of sediment physical properties (colour reflectance, gamma ray attenuation and magnetic susceptibility) from marine sediments recovered from IODP site U1396 to produce a tephra index (TI). This approach is combined with palaeomagnetic and foram isotope stratigraphy to yield a 4.5 Myr record of volcanic activity in the northern Lesser Antilles. Pb isotope data on visible tephra layers and volcanological models suggest the tephra is predominantly derived from the nearby island of Montserrat. When examined over a range of time-averaged intervals, the TI record shows long term (order 106 year) cycles of relative quiescence and heightened activity. In accordance with the model of Hall & Kincaid (2001, Science, 292, 2472), this record suggests that the long-term pace of volcanic activity in the northern Lesser Antilles is established by diapirs rising from deep within the mantle wedge. The diapirs do not themselves act as the major source of melt, but rather they create a conduit network that facilitates the rapid rise of melt to the surface. Within the order 106 year cycles, there are shorter-term fluctuations (order 104 years) that may reflect cycles of edifice growth and destruction, and/or pulses of melt rising through conduit networks established by the rising diapirs. The U1396 TI record provides the most complete and non-aliased long-term record of activity at an island arc volcanic center yet determined. It thus provides the first field evidence that can be used to test models of the deep mantle processes that control the pace of arc volcanism. Importantly, the approach presented here is readily applicable to other arc and island

  5. Why does the Size of the Laacher See Magma Chamber and its Caldera Size not go together? - New Findings with regard to Active Tectonics in the East Eifel Volcanic Field

    Science.gov (United States)

    Schreiber, Ulrich; Berberich, Gabriele

    2013-04-01

    The East Eifel's early Cenozoic tectonic development is characterized by a main stress field trending in NW-SE direction, causing a re-organisation of postvariscan dextral strike-slip faults in approximately 105° direction, the formation of the tectonic depression of the Neuwieder Basin and small-scale transtension zones. The 105° trending strike-slip faults are staggered in equidistant intervals of several kilometers. This system continues from the Eifel to the North into the Ruhr Carboniferous, where it has been recognized due to the extensive underground coal mining first (Loos et al. 1999). Our recent research on analyses of tectonics in quarries, quartz/ore-dykes, mapping of minerals springs and gas analyses, has revealed a prominent 105° trending strike-slip fault cutting the South of Laacher See ("Laacher See Strike-slip Fault"). Within the Laacher See caldera, the "Laacher See Strike-slip Fault" can be tracked by a wide mofette zone that was mapped with a self-propelled submarine. At present, the "Laacher See Strike-slip Fault" can be tracked from Holzmühlheim in the West, Spessart, Wehrer Kessel, Laacher See, Plaidt to Bad Ems and furthermore to the South-East. Along this direction five intersections points of the "Laacher See Strike-slip Fault" with the Lahn River are documented, creating small-scale mofette fields in the Lahn River. In the Neuwied Basin, near Plaidt, the "Laacher See Strike-slip Fault" is intersected by the NW-SE-trending Ochtendung Fault. Regional strike-slip faults in combination with block rotation and uplift could have provided the voids for the magma chambers of the Wehrer Kessel and the Laacher See Caldera. Holohan et al. (2005) showed in analogue models that regional strike-slip regimes (including Riedel shears, chamber-localised graben fault, and a partial Y-shear) play a decisive role for caldera formation. In the East Eifel tectonic movement rates of active faults are approx. 1 mm/year (Meyer & Stets 2002, Cambell et al

  6. Geological implications of the 0212 earthquake in 2014 at the Tatun Volcano Group of Taiwan: Synergistic effects of volcanic and faulting activities

    Science.gov (United States)

    Pu, Hsin-Chieh; Lin, Cheng-Horng; Chang, Li-Chin; Kan, Chih-Wen; Lin, Che-Min; Li, Yi-Heng; Lai, Ya-Chuan; Shih, Min-Hung

    2017-11-01

    On February 12, 2014, an ML 4.2 earthquake (named 0212 EQ) occurred at the Tatun Volcano Group (TVG) in northern Taiwan. Seismic data from both the regional broadband array in Taiwan and a local dense seismic network in the TVG indicate that the 0212 EQ was located at a depth of 4.3 km near Shamoshan, one of the latest eruptive units in the TVG. Referring to the aftershocks surrounding the 0212 EQ, we further found that (1) they formed a linear seismic zone dipping ∼50° towards the southeast to reach the Shanchiao Fault that cuts through the TVG, (2) focal mechanism of more than half of the larger aftershocks (MD ≥ 1.5) matched this linear seismic zone for a normal faulting, and (3) the seismic b-value was calculated to be 3.55. They are used to delineate the geometry of the Shanchiao Fault at the upper crust and to infer that localized geothermal fluid might have affected the activity of aftershocks as manifested by the very high seismic b-value. The strongly compensated linear vector dipole of the centroid moment tensor suggests the 0212 EQ had a non-double-couple source resulted from the gravitational collapse. Thus, we conclude that the 0212 EQ was a combined synergistic effect of a collapsed reservoir filled with volcanic fluids and faulting activities along the Shanchiao Fault.

  7. [Effects of volcanic eruptions on human health in Iceland. Review].

    Science.gov (United States)

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  8. Possible climate preconditioning on submarine landslides along a convergent margin, Nankai Trough (NE Pacific)

    Science.gov (United States)

    Kremer, Katrina; Usman, Muhammed O.; Satoguchi, Yasufumi; Nagahashi, Yoshitaka; Vadakkepuliyambatta, Sunil; Panieri, Giuliana; Strasser, Michael

    2017-12-01

    Submarine landslides are major agents of sediment mass transfer from the shallow to deep sea. Due to their rapid emplacement and tsunamigenic potential, such landslides are significant geohazards for society and off- and on-shore infrastructure. The relationship between climate change and the occurrence of submarine landslides is widely debated. However, there is a lack of continuous long-term submarine landslide records with which to comprehensively understand the relationship between climate-driven forces and submarine landslide occurrence. Here, using oxygen isotope stratigraphy in combination with tephrochronology, we date a 1 Myr continuous record of six landslide deposits (at 13.0-14.2, 323-339, 372-384, 394-413, 508-521, and 857-867 ka) recorded in a slope basin of the Nankai Trough subduction zone, off-shore Japan, which represents the major outcome of this study. The ages of the six landslides coincide mostly with interglacial periods. Thus, we propose that climate forcing might act as a preconditioning factor for slope instability in this active tectonic region.[Figure not available: see fulltext.

  9. Interplay Between Tectonics And Volcanic Processes Active In The Yellowstone Caldera Detected Via DInSAR And GPS Time-Series

    Science.gov (United States)

    Tizzani, Pietro; Battaglia, Maurizio; Castaldo, Raffaele; Pepe, Antonio; Zeni, Giovanni; Lanari, Riccardo

    2014-05-01

    We discriminate and quantify the effects of different stress sources that are active in the Yellowstone volcanic region. In particular, the use of long-term deformation time series allows us to separate the spatial and temporal contributions of the regional tectonic field due to North American (NA) plate motion from the dynamic of magmatic/hydrothermal sources beneath the caldera area. Yellowstone volcano was formed by three major caldera forming eruptions that occurred around 2.0, 1.3 and 0.64 Ma, the most recent one responsible for the 60 km-wide and 40 km-long Yellowstone caldera. Two structural resurgent domes emerged after the last caldera forming eruption: the Mallard Lake (ML) resurgent dome in the southwestern region of Yellowstone caldera, and the Sour Creek (SC) resurgent dome in the northeast part of the caldera. In this work, we extensively exploit DInSAR and GPS measurements to investigate surface deformation at Yellowstone caldera over the last 18 years. We start by analyzing the 1992-2010 deformation time series retrieved by applying the Small BAseline Subset (SBAS) DInSAR technique. This allows us identifying three macro-areas: i) Norris Geyser Basin (NGB), ii) ML and SC resurgent domes and iii) Snake River Plain (SRP), characterized by unique deformation behaviors. In particular, SRP shows a signal related to tectonic deformation, while the other two regions are influenced by the caldera unrest. To isolate the deformation signals related to different stress sources in the Yellowstone caldera, we also remove from the retrieved mean deformation velocity maps the mean displacement rate associated to the northern sector of the Snake River Plain. This latter is the result of tectonic processes controlled by complex interactions between the NA plate, moving in the ENE - WSW direction with a rate of about 2 cm/yr, and the flow of the asthenosphere plume beneath the Yellowstone volcanic region. These de-trended data allow recognizing four major deformation

  10. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  11. Meta-Analysis of Data from the Submarine Ventilation Doctrine Test Program

    National Research Council Canada - National Science Library

    Hoover, J

    1998-01-01

    .... The Submarine Ventilation Doctrine Test Program was developed to address submarine-specific issues regarding the use of ventilation systems to control smoke and heat movement, maintain habitability...

  12. Languages of volcanic landscapes

    Science.gov (United States)

    Frederick J. Swanson

    2008-01-01

    As a young geologist in 1980, I felt a powerful attraction to volcanoes, and I thought I knew volcanoes rather well. I had studied volcanology. I had climbed volcanic peaks in the Cascades. And I had tried to be an attentive citizen of my volcanic region, the Pacific Northwest. But when I had a chance to go with other scientists to Mount St. Helens within days of its...

  13. Origin of the Easter Submarine Alignment: morphology and structural lineaments

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available The Easter submarine alignment corresponds to a sequence of seamounts and oceanic islands which runs from the Ahu-Umu volcanic fields in the west to its intersection with the Nazca Ridge in the east, with a total length of about 2.900 km and a strike of N85°E. Recent bathymetric compilations that include combined satellite derived and shipboard data (Global Topography and multibeam bathymetric data (from NGDC-NOAA are interpreted both qualitatively and quantitatively by using a morphological analysis, which was comprised of the determination of bathymetric patterns, trends in lineations and structures; height measurements, computation of basal areas and volumes of seamounts, in order to establish clues on the origin of this seamount chain and to establish relationships with the regional tectonics. In the study region 514 seamounts were counted, of which 334 had a basal area less than the reference seamount (Moai. In general, the largest seamounts (>1000 m in height tend to align and to have a larger volume, with an elongation of their bases along the seamount chain. On the other hand, smaller seamounts tend to be distributed more randomly with more circular bases. As a consequence of the morphological analysis, the best possible mechanism that explains the origin of the seamount chain is the existence of a localized hotspot to the west of the Salas y Gómez Island. The corresponding plume would contribute additional magmatic material towards the East Pacific Rise through canalizations, whose secondary branches would feed intermediate volcanoes. It is possible that within the Easter Island region there would be another minor contribution through fractures in the crust, due to the crustal weakening that was produced by the Easter Fracture Zone.

  14. A Holocene lacustrine record in the central North Atlantic: proxies for volcanic activity, short-term NAO mode variability, and long-term precipitation changes

    Science.gov (United States)

    Björck, Svante; Rittenour, Tammy; Rosén, Peter; França, Zilda; Möller, Per; Snowball, Ian; Wastegård, Stefan; Bennike, Ole; Kromer, Bernd

    2006-01-01

    Lake and peat corings on three Azores islands in the central North Atlantic, resulted in the discovery of a 6000 year long lacustrine sequence in a small crater lake, Lake Caveiro, on the island of Pico. This island is dominated by Pico mountain (2351 m), Portugal's highest mountain, and the lake site is situated at 903 m asl. Two sediment profiles, one central and one littoral, were sampled. Due to large facial shifts and disconformities in the littoral cores the analyses were concentrated on the central core; only the earliest 1000 years of the littoral core were studied to complement the central profile. We used sedimentology, geochemistry, diatom analyses, magnetic properties, and multivariate statistics, together with 14C and 210Pb dating techniques, to analyse the environmental history of the lake. Volcanic activity seems to have had a dominating impact on sediment changes and partly also on the diatom assemblages; a large number of tephras are found and seem to be connected with large (diatom) inferred pH variations. However, by a combination of methods, including multivariate techniques, we infer that precipitation changes can be detected through the volcanic noise. In the youngest part of the record (AD 1600-2000), with its decadal resolution, these humidity variations seem partly related to shifts in dominating NAO mode. The more long-term precipitation changes further back in time (350-5100 cal yr BP) roughly correspond to the well-known North Atlantic drift-ice variations as well as other North Atlantic records; low precipitation during drift-ice periods. We think these alterations were driven by changes in the thermohaline circulation as large-scale equivalences to the Great Salt Anomaly; low sea surface temperatures and changes in circulation patterns of the central North Atlantic decreased the regional precipitation. Cooler/drier periods occurred 400-800, 1300-1800, 2600-3000, 3300-3400 and possibly also 4400-4600 cal yr BP, while 300-400, 900

  15. A multi-temporal AVHRR satellite records analysis for volcanic activity monitoring: Recent Results achieved during the last Mt. Etna's eruptive events

    Science.gov (United States)

    Pergola, N.; Lacava, T.; Marchese, F.; Scaffidi, I.; Tramutoli, V.

    2003-04-01

    In the recent years satellite remote sensing has become an indispensable tool for monitoring volcanic activity at global scale, both in terms of ash clouds recognition and tracking and of hotspots or lava flows detection and mapping. In spite of the lack of a specific satellite mission, expressly devoted to volcanological applications, several techniques and methodologies have been developed up to now, by exploiting the capabilities of the present operational meteorological platforms. Among the others, a robust approach, based on the analysis of multi-temporal, historical satellite records, has been formerly proposed and its application to volcanological purposes, suggested. The proposed method try to overcome some of the problems related to a class of traditional techniques, as the high false alarms rate and/or the poor detection sensitivity and, being exclusively based on satellite data, it shows a native independency on the observational conditions as well as on the specific geographic areas. In this work some recent results, obtained during the two recent Etna's eruptions, occurred on July--August 2001 and on October--November 2002, are presented. Both the issues of thermal anomalies and hotspots detection and of ash plumes recognition and discrimination will be addressed and the results achieved will be discussed together with the possible future improvements, up to an operational level, expected by the use of the new generation of satellite sensors (like SEVIRI, flying on Meteosat Second Generation platform).

  16. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    Science.gov (United States)

    Nordstrom, D. Kirk; Guo, Qinghai; McCleskey, R. Blaine

    2014-01-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1–2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  17. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2009-12-01

    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  18. Submarine Channel Association with Seamount Chain Alignment on the Ontong Java Plateau

    Science.gov (United States)

    Meyers, H. G., IV; Sautter, L.

    2016-02-01

    The Ontong Java Plateau (OJP), north of the Solomon Islands, Indonesia, is a submerged seafloor platform, larger than Alaska and full of intricate systems of channels, atolls and seamounts. This area has remained relatively unstudied because of both the area's remote location and low number of ships carrying advanced sonar systems. The OJP is believed to have been formed by one of the largest volcanic eruptions in Earth's history. This study uses EM302 multibeam sonar data collected on the R/V Falkor in 2014 by the University of Tasmania's Institute for Marine and Antarctic Studies to better understand relationships between the seafloor geomorphology and tectonic processes that formed numerous unexplored seamounts. The area surveyed is situated along the OJP's central northeast margin, and includes a small chain of six seamounts that range from 300 to 700 m in vertical relief. These seamounts are situated within the axis of a major 14 km wide submarine channel that was likely formed by a sequence of turbidity currents. Using CARIS HIPS and SIPS 9.0 post-processing software, seamount and channel morphology were characterized with 2 dimensional profiles and 3 dimensional images. Backscatter intensity was used to identify relative substrate hardness of the seamounts and surrounding seafloor areas. Scour and depositional features from the turbidity flows are evident at the base of several seamounts, indicating that the submarine channel bifurcated when turbidity flows encountered the seamount chain.

  19. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter

    2010-11-01

    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  20. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R. [WRH Associates, Salt Lake City, UT (United States); Smith, R.P. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  1. A submarine landslide source for the devastating 1964 Chenega tsunami, southern Alaska

    Science.gov (United States)

    Brothers, Daniel; Haeussler, Peter J.; Lee Liberty,; David Finlayson,; Geist, Eric L.; Labay, Keith A.; Michael Byerly,

    2016-01-01

    During the 1964 Great Alaska earthquake (Mw 9.2), several fjords, straits, and bays throughout southern Alaska experienced significant tsunami runup of localized, but unexplained origin. Dangerous Passage is a glacimarine fjord in western Prince William Sound, which experienced a tsunami that devastated the village of Chenega where 23 of 75 inhabitants were lost – the highest relative loss of any community during the earthquake. Previous studies suggested the source of the devastating tsunami was either from a local submarine landslide of unknown origin or from coseismic tectonic displacement. Here we present new observations from high-resolution multibeam bathymetry and seismic reflection surveys conducted in the waters adjacent to the village of Chenega. The seabed morphology and substrate architecture reveal a large submarine landslide complex in water depths of 120–360 m. Analysis of bathymetric change between 1957 and 2014 indicates the upper 20–50 m (∼0.7 km3) of glacimarine sediment was destabilized and evacuated from the steep face of a submerged moraine and an adjacent ∼21 km2 perched sedimentary basin. Once mobilized, landslide debris poured over the steep, 130 m-high face of a deeper moraine and then blanketed the terminal basin (∼465 m water depth) in 11 ± 5 m of sediment. These results, combined with inverse tsunami travel-time modeling, suggest that earthquake- triggered submarine landslides generated the tsunami that struck the village of Chenega roughly 4 min after shaking began. Unlike other tsunamigenic landslides observed in and around Prince William Sound in 1964, the failures in Dangerous Passage are not linked to an active submarine delta. The requisite environmental conditions needed to generate large submarine landslides in glacimarine fjords around the world may be more common than previously thought. 

  2. Australia’s Submarine Design Capabilities and Capacities: Challenges and Options for the Future Submarine

    Science.gov (United States)

    2011-01-01

    General Dynamics Electric Boat Corporation EMC electromagnetic compatibility EMF electromagnetic field EMI electromagnetic interference EPCM engineering...to-diagnose flow-induced radiated noise Own-sensor performance degradation Note: Risks can be reduced for given designs using scale models...Acoustic analysis Addresses the total radiated noise signature of submarine designs Radiated noise that an enemy might detect Self-noise that that

  3. Submarine geology of Hana Ridge and Haleakala Volcano's northeast flank, Maui

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.

    2006-01-01

    We present a morphostructural analysis of the submarine portions of Haleakala Volcano and environs, based upon a 4-year program of geophysical surveys and submersible explorations of the underwater flanks of Hawaiian volcanoes that was conducted by numerous academic and governmental research organizations in Japan and the U.S. and funded primarily by the Japan Agency for Marine–Earth Science and Technology. A resulting reconnaissance geologic map features the 135-km-long Hana Ridge, the 3000 km2 Hana slump on the volcano's northeast flank, and island-surrounding terraces that are the submerged parts of volcanic shields. Hana Ridge below 2000 m water depth exhibits the lobate morphology typical of the subaqueously erupted parts of Hawaiian rift zones, with some important distinctions: namely, subparallel crestlines, which we propose result from the down-rift migration of offsets in the dike intrusion zone, and an amphitheater at its distal toe, where a submarine landslide has embayed the ridge tip. Deformation of Haleakala's northeast flank is limited to that part identified as the Hana slump, which lies downslope from the volcano's submerged shield, indicating that flank mobility is also limited in plan, inconsistent with hypothesized volcanic spreading driven by rift-zone dilation. The leading edge of the slump has transverse basins and ridges that resemble the thrust ramps of accretionary prisms, and we present a model to describe the slump's development that emphasizes the role of coastally generated fragmental basalt on gravitational instability of Haleakala's northeast flank and that may be broadly applicable to other ocean-island slumps.

  4. Geo-hazard by sediment mass movements in submarine canyons

    Science.gov (United States)

    Ghaith, Afif; Fakhri, Milad; Ivaldi, Roberta; Ciavola, Paolo

    2017-04-01

    Submarine mass movements and their consequences are of major concern for coastal communities and infrastructures but also for the exploitation and the development of seafloor resources. Elevated awareness of the need for better understanding of the underwater mass movement is coupled with great advances in underwater mapping technologies over the past two decades. The seafloor in the Nahr Ibrahim and Saida regions (Lebanon) is characterized by deep canyons, reaching one thousand meters depths in proximity of the coast. Signs of submarine mass movement instability related to these canyons create a connection between shallow and deep water. The presence of these canyons in a tectonically active area generates a particular drained mechanism to the sediment in form of mass movement and slumping. Identification of potential areas where slope movements could be triggered requires data with high spatial resolution. Since this area is poorly explored, in the framework of an international project between Lebanese Navy, Lebanese National Center for Marine Sciences, University of Ferrara and Italian Hydrographic Institute, we analyse the morpho-bathymetric and sedimentological characters of the coastal and shelf sectors. Multibeam echosounder and sub-bottom profiler acoustic systems calibrated with ground truths (sediment grab and core samples) allow us to characterize the nature of seafloor and sub-seafloor with particular detail to the geotechnical properties of sediments and high resolution seismic stratigraphy of the shallow layers. The detection of particular undersea features provides detail maps which are in support to littoral morpho-dynamics, coastal transport and sediment budget. Multilayer hydro-oceanographic map, referring to the seafloor dynamics in connection with deep water environment and drainage system, in accordance to the International Hydrographic Standards and nautical supports, are produced. This high resolution multibeam bathymetry dataset, integrated

  5. The 1929 Grand Banks submarine landslide revisited

    Science.gov (United States)

    Schulten, Irena; Mosher, David C.; Krastel, Sebastian; Piper, David J. W.; Kienast, Markus

    2017-04-01

    On November 18th, 1929 a large submarine landslide occurred along the St. Pierre Slope of the southwestern Grand Banks of Newfoundland, as a result of a Mw 7.2 earthquake. This submarine landslide led to the first recognition of naturally-occurring submarine turbidity currents and is one of the few landslides known to have generated a tsunami. The event caused 28 causalities in Newfoundland and severe infrastructural damage. Earlier investigations of the area identified widely distributed shallow mass failures (15 - 20 m high escarpments), but no evidence of a larger headscarp. It is difficult to conceive, therefore, how this distributed shallow failure that rapidly evolved into a turbidity current would have generated a tsunami. It is hypothesised in this study that a deeper rooted sediment failure ( 500 m), involving faulting and mass-rotation, was involved in the sediment failure and this displacement generated the tsunami. In order to test this hypothesis, the volume and kinematics of the 1929 slope failure are analysed by means of recently acquired high resolution seismic reflection and multibeam swath bathymetry data, in addition to a significant volume of legacy data. The data allow determination of: 1) the dimension of the failure area, 2) the thickness and volume of failed sediment on St. Pierre Slope, 3) fault patterns and displacements, and 4) styles of sediment failure involved. Shallow (20 m high) sinuous escarpments and a number of faults are observed along the upper St. Pierre Slope (500 - 2 500 m water depth). The uppermost and largest of these escarpments shows association with a fault system. Preliminary results, therefore, indicate a complex sediment failure pattern along the St. Pierre Slope, possibly involving a deep-seated decollement and mobilization of a large volume of surficial sediment through retrogressive failure. Causes for the tsunami are yet to be determined.

  6. Deep Explosive Volcanism on the Gakkel Ridge and Seismological Constraints on Shallow Recharge at TAG Active Mound

    Science.gov (United States)

    2013-02-01

    individual volcaniclastic eruption product, in particular, may add needed information on the formation and dispersal of clasts . 1.2 The TAG active...dipping (20°) dome- shaped detachment fault [Tivey et al., 2003; Canales et al., 2007; deMartin et al., 2007] hosting the TAG hydrothermal field, a zone of...energy released during explosive discharge, combined with the buoyant rise of hot fluid, lofted fragmented clasts of rapidly cooling magma into the

  7. Marine litter in submarine canyons of the Bay of Biscay

    Science.gov (United States)

    van den Beld, Inge M. J.; Guillaumont, Brigitte; Menot, Lénaïck; Bayle, Christophe; Arnaud-Haond, Sophie; Bourillet, Jean-François

    2017-11-01

    Marine litter is a matter of increasing concern worldwide, from shallow seas to the open ocean and from beaches to the deep-seafloor. Indeed, the deep sea may be the ultimate repository of a large proportion of litter in the ocean. We used footage acquired with a Remotely Operated Vehicle (ROV) and a towed camera to investigate the distribution and composition of litter in the submarine canyons of the Bay of Biscay. This bay contains many submarine canyons housing Vulnerable Marine Ecosystems (VMEs) such as scleractinian coral habitats. VMEs are considered to be important for fish and they increase the local biodiversity. The objectives of the study were to investigate and discuss: (i) litter density, (ii) the principal sources of litter, (iii) the influence of environmental factors on the distribution of litter, and (iv) the impact of litter on benthic communities. Litter was found in all 15 canyons and at three sites on the edge of the continental shelf/canyon, in 25 of 29 dives. The Belle-île and Arcachon Canyons contained the largest amounts of litter, up to 12.6 and 9.5 items per 100 images respectively. Plastic items were the most abundant (42%), followed by fishing-related items (16%). The litter had both a maritime and a terrestrial origin. The main sources could be linked to fishing activities, major shipping lanes and river discharges. Litter appeared to accumulate at water depths of 801-1100 m and 1401-1700 m. In the deeper of these two depth ranges, litter accumulated on a geologically structured area, accounting for its high frequency at this depth. A larger number of images taken in areas of coral in the shallower of these two depth ranges may account for the high frequency of litter detection at this depth. A larger number of litter items, including plastic objects in particular, were observed on geological structures and in coral areas than on areas of bare substratum. The distribution of fishing-related items was similar for the various types of

  8. Newly recognized submarine slide complexes in the southern California Bight

    Science.gov (United States)

    Conrad, J. E.; Lee, H. J.; Edwards, B. D.; McGann, M.; Sliter, R. W.

    2012-12-01

    New high-resolution bathymetric and seismic-reflection surveys have imaged large (7) individual overlapping slides along the western margin of Santa Cruz Basin (SCB slide); 2) a series of slumps and slide scars on the slope south of San Pedro shelf (SPS slide); and 3) a slope failure along the shelf edge in northern San Diego County, termed the Del Mar slide. The SCB slide complex extends for 30 km along the western slope of Santa Cruz Basin, with debris lobes extending 5-8 km into the basin. Head scarps of some of these slides are 50-75 m high. The SPS slide complex also appears to consist of multiple slides, which roughly parallel the Palos Verdes Fault and the San Gabriel Canyon submarine channel on the shelf edge and slope south of San Pedro shelf. Slide deposits associated with this complex are only partially mapped due to limited high-resolution bathymetric coverage, but extend to the south in the area SW of Lasuen Knoll. Seismic-reflection profiles show that some of these deposits are up to 20 m thick. The Del Mar slide is located about 10 km north of La Jolla Canyon and extends about 6 km along the shelf edge. The head scarp lies along the trend of a branch of the Rose Canyon Fault Zone. Radiocarbon ages of sediment overlying this slide indicate the Del Mar slide is approximately 12-16 ka. These large slide complexes have several characteristics in common. Nearly all occur in areas of tectonic uplift. All of the complexes show evidence of recurrent slide activity, exhibiting multiple headwall scarps and debris lobes, and where available, high-resolution seismic-reflection profiles of these slide areas provide evidence of older, buried mass transport deposits. Assuming typical sedimentation rates, the recurrence interval of major slide events appears to be on the order of tens of thousands of years. Most of the slide complexes do not appear to be located in areas of high sediment input. The SCB and Del Mar slides are in areas receiving relatively small

  9. Multivariable Control System Design for a Submarine,

    Science.gov (United States)

    1984-05-01

    perturbations applied to the nominal point were identical in all cases (see table 2.3). The comparisons show excellent correlation between the...Open Loop Singular Values for the 5 and 1S Knot Linear Modelo *~~* b % % V’ , * % ~ .%~ C 9 ~ V. --.- V. V.-.--.--46..- S. 77’ Model S20R5 20- 10- -0...without imparting a pitch angle to the submarine and provides an excellent example of both the usefulness of w(t) as a state variable and the

  10. Hydrogen isotope systematics of submarine basalts

    Science.gov (United States)

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  11. Contribution to the public information on seismic and volcanic hazard in the Azores region

    Science.gov (United States)

    Medeiros, Ana; Ferreira, Teresa; Gaspar, João. Luis; Queiroz, Maria Gabriela

    2010-05-01

    Natural disasters such as tsunamis, earthquakes, volcanic eruptions and landslides are major phenomena that witness the power of our planet and are a signal of its constant evolution. Their occurrence is well documented in the evolution of the Azores archipelago and is well recorded in the last hundreds and thousands of years, not only in the islands geological history but also in the submarine environment. So this region has unique characteristics regarding volcanism, seismicity and other geological risks allowing it to be a natural laboratory for the advance of the scientific knowledge in these domains. And the main achievements should be disseminated to the public, using the recent world wide web tools. The Azores archipelago is located in the North Atlantic in a region dominated by the triple junction between North American, Eurasian, Nubian lithospheric plates, whose boundaries are the Mid-Atlantic Ridge, the Terceira Rift and the Gloria Fault. Besides and is the site of important magmatic processes. This region is also the place where importante magmatic processes are going on. Due to its geodynamic setting the Azores archipelago has been affected in the past at least by 28 volcanic eruptions and 25 destructive earthquakes. The main objective of this work is to inform and help the Azorean population to understand their vulnerability to some geological hazards based in what happened in the past and what might happen in the future, providing them the proper awareness about the existing risk in the region. For this proposal all available information about historic earthquakes and volcanic eruptions was selected and summarized considering its relevance for thematic contents preparation. Predefined templates and content homogeneity were taken into account as well as the use of a rigorous and accessible scientific language for the promotion of a scientific culture and knowledge dissemination. For destructive earthquakes a database was prepared, containing the

  12. The May 2010 submarine eruption from South Sarigan seamount, Northern Mariana Islands

    Science.gov (United States)

    McGimsey, R. G.; Neal, C. A.; Searcy, C. K.; Camacho, J. T.; Aydlett, W. B.; Embley, R. W.; Trusdell, F.; Paskievitch, J. F.; Schneider, D. J.

    2010-12-01

    A sudden submarine explosive eruption occurred on May 29, 2010, from a seamount south of Sarigan Island in the Northern Mariana Islands, propelling a diffuse steam and ash cloud to high altitude. Pre-eruptive seismicity was recorded in early April by stations located on Sarigan and Anatahan Island, 42 km to the south, and indicated a source ~12-16 km south of Sarigan. On May 27-28, a change in seismicity—the appearance of tremor-like waveforms—may have marked the onset of volcanic activity. Also on May 27, an elongate patch of discolored ocean water and possible light-colored floating debris about 8-11 km south of Sarigan was observed from a helicopter. This material was likely produced during low-intensity eruptive activity, and an Information Statement from the Commonwealth of the Northern Mariana Islands (CNMI) Emergency Management Office (EMO) and USGS issued at 2353 UTC May 28 described the observation. The Guam Weather Forecast Office of the National Weather Service reported that the area of discoloration, visible on satellite images at 2313 and 2330 UTC on May 28, was about 10 km2, about twice the size of Sarigan Island. Pulses of tremor merged into a nearly continuous signal by 0305 UTC on May 29, lasting for ~4.5 hours followed by nearly 4.5 hours of quiescence. The EMO issued a declaration closing the region south of Sarigan to all local boating traffic and issued an advisory to aircraft. The explosive onset of the main plume-producing event occurred at ~1148 UTC as confirmed by seismic records on Anatahan Island, with the strongest phase ending ~1200 UTC. Soon after, the Washington Volcanic Ash Advisory Center reported an eruption cloud reaching an estimated 40,000 feet (12 km) ASL that diminished rapidly on satellite imagery suggesting it was water-vapor dominated. Winds carried the cloud southwest over Guam, and although no ash fall was reported, the cloud was visible and was detected in Aura/OMI aerosol index imagery. Biologists on Sarigan Island

  13. Volcanic Supersites as cross-disciplinary laboratories

    Science.gov (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe

    2017-04-01

    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, http://www.ecopotential-project.eu/) contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  14. Tephra layers from Holocene lake sediments of the Sulmona Basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area

    Science.gov (United States)

    Giaccio, B.; Messina, P.; Sposato, A.; Voltaggio, M.; Zanchetta, G.; Galadini, F.; Gori, S.; Santacroce, R.

    2009-12-01

    We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between Somma-Vesuvius Holocene volcanic activity, and one to the Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600-3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the "Pomici di Avellino" eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the products from the so-called "Protohistoric" or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600-4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between

  15. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    Science.gov (United States)

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  16. A 100 yr Ice Core Record of Anthropogenic Activity, Volcanic Eruptions, and Biomass Burning From the Siberian Altai

    Science.gov (United States)

    Joswiak, D. R.; Aizen, E.; Aizen, V.; Takeuchi, N.; Sneed, S.

    2007-12-01

    The 50m upper part from 170m of total deep ice core was retrieved from the Belukha snow-ice plateau (49°48°N, 86°32°E, 4110m.a.s.l.) in the summer of 2003 representing the time series since the beginning of the 20th Century. Data on high-resolution physical stratigraphy and density, as well as geochemical data including major ions, stable (δ18O) and radiogenic (δ3H) isotopes were developed for ice-core dating, climatic and environmental analysis. A clear tritium isotope ratio peak associated with the global maximum nuclear testing of the early 1960's, and a soluble major ion peak coincident with the eruption of Mt. Katmai in 1912 reveals a linear depth-age scale for the upper 50m and indicates an average accumulation rate of 376m.w.e. Major soluble ions sulfate and nitrate showed the greatest increase subsequent to the 1950's, and provides evidence for direct effects associated with increased atmospheric aerosol loading from industrialized activity in central Asia. Extremely low sulfate and nitrate concentrations (Soviet Union. Ammonium concentrations reveal an association with documented periods of extended boreal forest fires during the 1960's and 1970's. Elevated calcium concentrations during the 1950's and 1960's correspond to the reported period of maximum dust activity in China since 1950.

  17. Studies of Arc Volcanism in the Southern Mariana Arc from Pagan to Tracey: Preliminary results from ROV Hyper-Dolphin Dives

    Science.gov (United States)

    Shukuno, H.; Tamura, Y.; Stern, R. J.; Ishizuka, O.; Bloomer, S. H.; Hein, J. R.; Leybourne, M. I.; Jordan, E.; Wada, I.; Nichols, A. R.; Hirahara, Y.; Senda, R.; Nunokawa, A.

    2010-12-01

    ROV Hyper-Dolphin dives in the Southern Mariana region were carried out during NT10-12 cruise (R/V Natsushima) in July 2010. We focused on the submarine volcanoes within the Pagan-Daon cross-arc chain, and at East Diamante, NW Rota-1, West Rota and Tracey. The newly obtained petrologic and geologic data, together with data from previous studies on the IBM arc, will provide insights into understanding processes occurring in the subduction factory. Here we will present preliminary results of our recent cruises in the Mariana arc. Pagan volcano, the top of which is subaerial, and Daon Seamount form a WSW-ENE cross-arc chain, with Pagan volcano on the volcanic front side. On the NE submarine slopes of Pagan, in water depths of 2000-1500 m, there are many SW-NE trending ridges, which were found to mainly consist of basaltic pillow lavas. Daon seamount, located on the rear-arc side of the cross-chain, has an unusual morphology with many ridges radiating from it. Basaltic lavas were recovered from the ridges on the lower SE flanks of Daon at depths of 2600-2360 m. Basalts from the Pagan-Daon cross-chain are mostly undifferentiated olivine-bearing basalts. The samples collected from Pagan-Daon cross-arc chain will be compared with primitive lavas from NW Rota-1, where two primary magma types have been found. East Diamante caldera is located on the volcanic front side of the Diamante cross-arc chain and has a complex volcanic history. East Diamante is characterized by the existence of a large field of hydrothermal mounds and active chimneys in its summit caldera. Post-caldera collapse intrusions of dacite are believed to provide the heat source for the production and circulation of the hydrothermal fluids that generate the field. During this cruise the chimneys and mounds were sampled from depths of 350-380 m. West Rota volcano is the largest submarine caldera in the Mariana arc. The eastern caldera wall preserves much of the stratigraphic and intrusive relationships. West

  18. ASSESSING LANDSLIDE-TSUNAMI HAZARD IN SUBMARINE CANYONS, USING THE COOK STRAIT CANYON SYSTEM AS AN EXAMPLE

    Directory of Open Access Journals (Sweden)

    William Power

    2016-11-01

    Full Text Available Tsunami generated by submarine landslides are now recognised as an important hazard, following several historical events. Submarine landslides can occur in a variety of settings such as on continental slopes, volcanic slopes, and submerged canyons and fjords. While significant progress has been made in understanding tsunami generation processes on open slopes, the problem of tsunami generation by landslides within submarine canyons has received less attention. In this paper we examine the tsunami hazard posed by submarine landslides in the Cook Strait canyon system, near Wellington, New Zealand. Understanding of the hazard posed by this tsunami source has practical value because of its proximity to a populated coast. Our studies also provide general results highlighting the differences between tsunami generation on open coasts and tsunami generation within canyons. Geotechnical and geological studies of the Cook Strait region reveal evidence for many large landslide scars in the canyon walls, these are interpreted to be failures of consolidated material which descend the slopes on the sides of the canyon. Scouring of the base of the canyon slopes by strong tidal currents is believed to be an important process in bringing slopes to the point of failure, with most large failures expected to occur during earthquake shaking. We present the results of computer simulations of landslide failures using simplified canyon geometries represented in either 2D (vertical slice or 3D. These simulations were made using Gerris, an adaptive-grid fluid dynamics solver. A key finding is that the sudden deceleration of the landslide material after reaching the canyon floor, leads to larger amplitude waves in the back-propagation direction (i.e. in the opposite direction to the initial landslide motion.

  19. Hydrothermal fluids vented at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.

    Science.gov (United States)

    Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio

    2010-05-01

    Scuba diving investigations carried out over the last two decades at the Aeolian islands revealed the existence of submarine magmatic and late-magmatic hydrothermalism at all the islands, despite the absence of on-shore activity at some of the islands. The results gained by diving activities provided useful information to evaluate the volcanic and geothermal activity and to manage the volcanic crisis occurred on November 2002 off the island of Panarea. Scuba diving investigations carried out from middle 80's, had shown that despite the absence of on shore volcanic manifestations, submarine hydrothermal activity is recognizable at shallow depth around all the Aeolian islands related either to volcanic and geothermal activity. The sampled gases are CO2-dominated with low amounts of oxygen and reactive gases (H2, CO, CH4 and H2S) with concentrations ranging from a few ppm to some mole percent. Sometimes significant N2 amount are detectable together with high helium contents. Samples having low CO2 content, besides relevant N2 and He amounts, are the consequence of CO2 dissolution in sea-water due to gas-water interactions (GWI) occurred before the sample collection. The high CO2 solubility (878 ml/l, T=20°C, P=1bar) may, in fact, decrease the CO2 content in the venting gases thus increasing the concentrations of the less soluble species (e.g. He 8 ml/l, CO 23 ml/l and CH4 33.8 ml/l) in the gas mixture. Such a process might occur at any level, however, because of the slow water circulation in deep sediments, CO2 is able to saturate the circulating sea-water. The isotopic composition of carbon displays a small range of values while helium isotopes are in the range of 4.1chemical composition is similar. Contrastingly the isotope composition of helium shows a large heterogeneity with the highest isotopic ratios surprisingly measured at the extinct volcanic islands in the western sector, and much lower values detected in venting gases from active volcanoes (e.g. Vulcano

  20. Risk assessment in submarine outfall projects: the case of Portugal.

    Science.gov (United States)

    Mendonça, Ana; Losada, Miguel Ángel; Reis, Maria Teresa; Neves, Maria Graça

    2013-02-15

    Submarine outfalls need to be evaluated as part of an integrated environmental protection system for coastal areas. Although outfalls are tight with the diversity of economic activities along a densely populated coastline being effluent treatment and effluent reuse a sign of economic prosperity, precautions must be taken in the construction of these structures. They must be designed so as to have the least possible impact on the environment and at the same time be economically viable. This paper outlines the initial phases of a risk assessment procedure for submarine outfall projects. This approach includes a cost-benefit analysis in which risks are systematically minimized or eliminated. The methods used in this study also allow for randomness and uncertainty. The input for the analysis is a wide range of information and data concerning the failure probability of outfalls and the consequences of an operational stoppage or failure. As part of this risk assessment, target design levels of reliability, functionality, and operationality were defined for the outfalls. These levels were based on an inventory of risks associated with such construction projects, and thus afforded the possibility of identifying possible failure modes. This assessment procedure was then applied to four case studies in Portugal. The results obtained were the values concerning the useful life of the outfalls at the four sites and their joint probability of failure against the principal failure modes assigned to ultimate and serviceability limit states. Also defined were the minimum operationality of these outfalls, the average number of admissible technical breakdowns, and the maximum allowed duration of a stoppage mode. It was found that these values were in consonance with the nature of the effluent (tourist-related, industrial, or mixed) as well as its importance for the local economy. Even more important, this risk assessment procedure was able to measure the impact of the outfalls on

  1. Discerning Primary and Secondary Processes in the Volatile Geochemistry of Submarine Basalts

    Science.gov (United States)

    Hauri, E. H.

    2012-12-01

    Defining the primary volatile composition of submarine basalts from mid-ocean ridges, back-arc basins and arc-front volcanoes is key to understanding volatile cycling and the influence of volatiles on melting in the upper mantle. The volatile and halogen geochemistry of submarine volcanic glasses and melt inclusions has been the subject of an increasing number of studies that have made progress in distinguishing between secondary seawater contamination of magmas, and true melting and mantle-source variations, thus enabling observed magma compositions to be used to study the time-integrated cycling of volatiles through the upper mantle. But fewer studies have examined in detail the local-and segment-scale variations of volatiles together with trace elements and radiogenic isotopes, so that it can be understood how and where in the oceanic crust submarine magmas are contaminated by seawater-derived components. Mid-ocean ridge basalts (MORB) are significantly affected by secondary seawater assimilation processes due to their low volatile contents. From combined CO2-H2O-Cl systematics, it is apparent that addition of seawater-derived components is enhanced in magmas that ascend more slowly through the crust, and/or erupt away from the ridge axis. Highly depleted magmas that erupt in extensional zones within transform faults (e.g. Siqueiros) show little evidence for seawater addition, due to the near absence of thick crust and hydrothermal systems in such environments. At the same time, there also exists a second tier of more subtle seawater addition that is evident as a function of the extent of differentiation in MORB, pointing to combined assimilation and fractional crystallization as an important process operating in MORB petrogeneis. In detail the geochemistry of the assimilants can vary substantially from simple seawater compositions. Discerning seawater contamination in arc and back-arc magmas is more difficult, not only because of higher volatile concentrations

  2. Flow dynamics around downwelling submarine canyons

    Directory of Open Access Journals (Sweden)

    J. M. Spurgin

    2014-10-01

    Full Text Available Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively and their impacts on flow dynamics. A new non-dimensional parameter (χ was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m. Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate, as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  3. Submarine Tailings Disposal (STD—A Review

    Directory of Open Access Journals (Sweden)

    Bernhard Dold

    2014-07-01

    Full Text Available The mining industry is a fundamental industry involved in the development of modern society, but is also the world’s largest waste producer. This role will be enhanced in the future, because ore grades are generally decreasing, thus leading to increases in the waste/metal production ratio. Mine wastes deposited on-land in so-called tailings dams, impoundments or waste-dumps have several associated environmental issues that need to be addressed (e.g., acid mine drainage formation due to sulphide oxidation, geotechnical stability, among others, and social concerns due to land use during mining. The mining industry recognizes these concerns and is searching for waste management alternatives for the future. One option used in the past was the marine shore or shallow submarine deposition of this waste material in some parts of the world. After the occurrence of some severe environmental pollution, today the deposition in the deep sea (under constant reducing conditions is seen as a new, more secure option, due to the general thought that sulphide minerals are geochemically stable under the reduced conditions prevailing in the deep marine environment. This review highlights the mineralogical and geochemical issues (e.g., solubility of sulphides in seawater; reductive dissolution of oxide minerals under reducing conditions, which have to be considered when evaluating whether submarine tailings disposal is a suitable alternative for mine waste.

  4. Submarine melt rates under Greenland's ice tongues

    Science.gov (United States)

    Wilson, Nat; Straneo, Fiametta; Heimbach, Patrick; Cenedese, Claudia

    2017-04-01

    The few remaining ice tongues (ice-shelf like extensions) of Greenland's glaciers are undergoing rapid changes with potential implications for the stability of the ice sheet. Submarine melting is recognized as a major contributor to mass loss, yet the magnitude and spatial distribution of melt are poorly known or understood. Here, we use high resolution satellite imagery to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues: Ryder Glacier, Petermann Glacier and Nioghalvfjerdsbræ (79 North Glacier). We find that submarine plus aerial melt approximately balance the ice flux from the grounded ice sheet for the first two while at Nioghalvfjerdsbræ the total melt flux exceeds the inflow of ice indicating thinning of the ice tongue. We also show that melt rates under the ice tongues vary considerably, exceeding 60 m yr-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. Using derived melt rates, we test simplified melt parameterizations appropriate for ice sheet models and find the best agreement with those that incorporate ice tongue geometry in the form of depth and slope.

  5. 3D image of Brittle/Ductile transition in active volcanic area and its implication on seismicity: The Campi Flegrei caldera case study

    Science.gov (United States)

    Castaldo, Raffaele; Luca, D'auria; Susi, Pepe; Giuseppe, Solaro; Pietro, Tizzani

    2015-04-01

    The thermo-rheology of the rocks is a crucial aspect to understand the mechanical behavior of the crust in young and tectonically active area. As a consequence, several studies have been performed since last decades in order to understand the role of thermic state in the evolution of volcanic environments. In this context, we analyze the upper crust rheology of the Campi Flegrei active caldera (Southern Italy). Our target is the evaluation of the 3D geometry of the Brittle-Ductile transition beneath the resurgent caldera, by integrating the available geological, geochemical, and geophysical data. We first performed a numerical thermal model by using the a priori geological and geophysical information; than we employ the retrieved isothermal distribution to image the rheological stratification of the shallow crust beneath caldera. In particular, considering both the thermal proprieties and the mechanical heterogeneities of the upper crust, we performed, in a Finite Element environment, a 3D conductive time dependent thermal model through an numerical of solution of the Fourier equation. The dataset consist in temperature measurements recorded in several deep wells. More specifically, the geothermal gradients were measured in seven deep geothermal boreholes, located in three main distinct areas: Mofete, Licola, and San Vito. In addition, we take into account also the heat flow density map at the caldera surface calculated by considering the thermal measurements carried out in 30 shallow water wells. We estimate the isothermal distribution of the crust calibrating two model parameters: the heat production [W], associated to the magma injection episodes in the last 60 kyears within the magma chamber and the heat flow coefficient [W/m2*K] at the external surface. In particular, the optimization procedure has been performed using an exhaustive grid search, to minimize the differences between model and experimental measurements. The achieved results allowed us to

  6. Monitoring gas emissions can help forecast volcanic eruptions

    Science.gov (United States)

    Kern, Christoph; Maarten de Moor,; Bo Galle,

    2015-01-01

    As magma ascends in active volcanoes, dissolved volatiles partition from melt into a gas phase, rise, and are released into the atmosphere from volcanic vents. The major components of high-temperature volcanic gas are typically water vapor, carbon dioxide, and sulfur dioxide. 

  7. What threat do turbidity currents and submarine landslides pose to submarine telecommunications cable infrastructure?

    Science.gov (United States)

    Clare, Michael; Pope, Edward; Talling, Peter; Hunt, James; Carter, Lionel

    2016-04-01

    The global economy relies on uninterrupted usage of a network of telecommunication cables on the seafloor. These submarine cables carry ~99% of all trans-oceanic digital data and voice communications traffic worldwide, as they have far greater bandwidth than satellites. Over 9 million SWIFT banks transfers alone were made using these cables in 2004, totalling 7.4 trillion of transactions per day between 208 countries, which grew to 15 million SWIFT bank transactions last year. We outline the challenge of why, how often, and where seafloor cables are broken by natural causes; primarily subsea landslides and sediment flows (turbidity currents and also debris flows and hyperpycnal flows). These slides and flows can be very destructive. As an example, a sediment flow in 1929 travelled up to 19 m/s and broke 11 cables in the NE Atlantic, running out for ~800 km to the abyssal ocean. The 2006 Pingtung earthquake triggered a sediment flow that broke 22 cables offshore Taiwan over a distance of 450 km. Here, we present initial results from the first statistical analysis of a global database of cable breaks and causes. We first investigate the controls on frequency of submarine cable breaks in different environmental and geological settings worldwide. We assess which types of earthquake pose a significant threat to submarine cable networks. Meteorological events, such as hurricanes and typhoons, pose a significant threat to submarine cable networks, so we also discuss the potential impacts of future climate change on the frequency of such hazards. We then go on to ask what are the physical impacts of submarine sediment flows on submerged cables? A striking observation from past cable breaks is sometimes cables remain unbroken, whilst adjacent cables are severed (and record powerful flows travelling at up to 6 m/s). Why are some cables broken, but neighbouring cables remain intact? We provide some explanations for this question, and outline the need for future in

  8. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island: Implication for Mars

    Directory of Open Access Journals (Sweden)

    E.A. Lalla

    2016-07-01

    Full Text Available A detailed vibrational Raman-IR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island: (1 the Arenas Negras volcano which belongs to the historical eruption not showing visible alteration and (2 Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction caused by submarine alteration. These places have been extensively studied due to its similarity with the surface of Mars. The analysis is based on the mineral detection of selected samples by a Micro-Raman study of the materials. The complementary techniques have confirmed the mineralogy detected by the Raman measurement. The results show a volcanic environment behavior with primary phases like olivine, pyroxene, and feldspar/plagioclase. Moreover, the presence of accessory minerals or secondary mineralization like phosphate, iron oxides, zeolite or carbonates shows the alteration processes on each outcrop. The variation in the crystallinity and amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes and external weathering processes, which shows several analogies with the ancient volcanic activity from Mars.

  9. Sequence stratigraphy of carbonate buildups developed in an active tectonic/volcanic setting: Triassic (Late Ladinian and Carnian) of the Dolomites, northern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Yose, L.A. (Johns Hopkins Univ., Baltimore, MD (United States)); Littmann, P. (Univ. of Tubingen (Germany))

    1991-03-01

    Late Ladinian and Carnian deposits of the Dolomites record the evolution of carbonate buildups developed during the waning phases of a major period of volcanism and strike-slip tectonics. Each separate buildup provides an independent record of eustasy, tectonism, and competing carbonate and volcaniclastic sedimentation. Palynomorphs, calibrated with ammonites, are used to correlate between buildups and provide a means for distinguishing local variations in buildup histories from regional, synchronous trends in sedimentation which may record third-order eustasy. Although individual buildup histories vary dramatically, two depositional sequences may be recorded at a regional scale: one of late Ladinian age (early to late Longobardian) and another of late Ladinian to middle Carnian age (late Longobardian to Cordevolian). A relative sea-level fall in the late Ladinian resulted in an increased supply of volcaniclastics that onlap the flanks of many buildups and/or downslope shifts in carbonate production. Buildups of the second sequence developed in response to a relative sea-level rise and are similar in diversity to those of the first sequence. Extensive buildup progradation and accretion during this phase, concomitant with mixed-carbonate/volcaniclastic basin filling and diminished tectonic activity, result in a regional suturing of the complex paleogeography developed during the middle Ladinian. Local paleogeography, determined by the distribution of earlier platforms in addition to tectonic and volcanogenic processes, is interpreted as the primary control over buildup geometries and the variability of buildups within sequences. However, the regional extent and synchroneity of the sequences described above many record third-order eustasy.

  10. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  11. Self-potential chenges associated with volcanic activity: Short-term signals associated with March 9, 1998 eruption on La Fournaise volcano (Reunion Island

    Directory of Open Access Journals (Sweden)

    P. Yvetot

    2001-06-01

    Full Text Available After six years of quietness La Fournaise volcano entered into activity on March 9, 1998. Fissures opened gradually downwards on the northern flank of the cone. Two cones, Kapor and Krafft built, from which lava poured until September 1998. Several other vents opened during this eruption. Mappings, surveys, and continuous recordings of the Self-Potential have been performed on the volcano for twenty years. SP mappings disclose the variability of large scale SP anomalies due to the modification of the hydrothermal system over some ten years. Most of the eruptions take place along a Main Fracture Zone (MFZ in which ground water flows prevail. SP measurements have also regularly been made on the northern flank of the cone, on a west-east profile crossing the MFZ. Between 1981 and 1992 an enlargement and a shift of the MFZ to the east are evidenced. In particular, the eastern fissural axis trending N35°E could be related to the possible collapse of the east flank of the volcano. After a decrease between 1992 and 1997, the SP anomaly was enhanced again by the 1998 eruption. Short scale, about 250 m wide, 750 mV amplitude anomalies were superimposed on a large scale one, 2500 m wide, and about 250 mV in amplitude. For several years, continuous stations have been measuring the electric field along two directions, with a 20 s sampling, in order to record the genesis of SP signals associated with the volcanic activity. Oscillations belonging to the ULF band were evidenced several days before the 1988 eruption, some of them at 9 km from the summit. Their amplitude reached several tens mV/km. These oscillations sometimes present a phase lag from one station to another; they progressively shift towards the location of the future effusive vents. The polarisation of the oscillations is similar to the polarisation of longer SP variations (1 h period or more and are correlated with the structural anisotropy. Finally, during the last hours preceding the

  12. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    Science.gov (United States)

    2015-12-17

    propulsion technology first occurred many years ago: To help jumpstart the UK’s nuclear - powered submarine program, the United States transferred to the UK a... nuclear - powered attack submarines (SSNs), nuclear - powered cruise missile submarines (SSGNs), and nuclear - powered ballistic missile submarines (SSBNs). 2...2 In the designations SSN, SSGN, SSBN, and SSBN(X), the SS stands for submarine, N stands for nuclear - powered (meaning the ship is

  13. Sulfide and silicate melt inclusions in the D. João de Castro Volcanic Seamount, a hydrothermally active area on the Terceira Rift, Azores

    Science.gov (United States)

    Marques, A. F. A.; Scott, S. D.; Madureira, P.; Rosa, C. J. P.; Lourenço, N.; Conceição, P.; TerRiftic Team

    2012-04-01

    phases that suggest exsolution from a higher temperature solid solution phase (Fe-Ni-Cu-S). Oxides rim some of the globules. Samples with no visible sulfide globules in the groundmass contain, apart from Fe-Ti oxides, coarse-grained Fe-oxides. Preliminary observations indicate that immiscible sulfide phases were present at different stages of magma evolution. This may have implications for metal mobility during pre- syn and post eruptive degassing (e.g., DJC and HIR), or even active hydrothermalism (DJC). Moreover, geochemical and textural similarities found between samples from the DJC volcanic high and HIR deep basin have implications for the understanding of the TR melting processes. [1] Lourenço, N et al, (1998) Mar.Geophys.Res. 20:141-56 [2] Vogt PR and Jung WY (2004) EPSL 218:77-90 Acknowledgments The authors thank Y. Liu, M. Gorton, C. Bray and G. Kretschmann (U of Toronto) for the technical and analytical support. EMAM (Estrutura de Missão para os Assuntos do Mar) the ROV Luso team and all the crew that participated in the cruises are gratefully acknowledged. A.F.A. Marques' research is funded by the PTDC/MAR/111306/2009 TerRiftic Project (funded by the FCT), and CREMINER/LA UI101-POSC (Co-financiado FEDER). Steve's Scott's research is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

  14. Possible Late Pleistocene volcanic activity on Nightingale Island, South Atlantic Ocean, based on geoelectrical resistivity measurements, sediment corings and 14C dating

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker; Björck, Svante; Cronholm, Anders

    2011-01-01

    Tristan da Cunha is a volcanic island group situated in the central South Atlantic. The oldest of these islands, Nightingale Island, has an age of about 18Ma. In the interior of the island, there are several wetlands situated in topographic depressions. The ages of these basins have been unknown,...

  15. Submarine landside in the Bussol Graben: Structural and formation features

    Science.gov (United States)

    Baranov, B. V.; Lobkovsky, L. I.; Dozorova, K. A.; Rukavishnikova, D. D.

    2017-05-01

    Analysis of geophysical data obtained during a study of the insular slope in the central Kuril‒Kamchatka Trench during projects Kuriles-2005 and Kuriles-2006 promoted by the Presidium of the Russian Academy of Sciences revealed a large submarine landslide in this area. The landslide, located at the bottom of the transverse valley confined to the Bussol l Graben, resulted from the failure of the northeastern wall of a graben composed of sedimentary material. It exceeds 35 km3 in size, representing one of the large submarine landslides discovered to date on the slope of the Kuril‒Kamchatka Trench in submarine canyonfan environments.

  16. Management of demand based inventory aboard submarine tenders servicing attack (SSN) submarines

    OpenAIRE

    Ross, Timothy Joseph

    1990-01-01

    Approved for public release; distribution is unlimited. This thesis examines the computation of inventory levels based on demand history aboard Submarine Tenders that use the Shipboard Automated Data Processing System (SUADPS) for inventory control. The focus of the thesis was the workload and supply effectiveness issues associated with the processing of the SUADPS levels setting program. The objective of the thesis was to determine the effect on supply effectiveness and stock churn if the...

  17. Miocene to quaternary volcanism in eastern Kenya: Sequence and geochronology

    Science.gov (United States)

    Brotzu, P.; Morbidelli, L.; Nicoletti, M.; Piccirillo, E. M.; Traversa, G.

    1984-01-01

    This paper presents the results of the first systematic geochronological study of widespread volcanic sequences in the region east of the Kenya Rift Valley between the Nyambeni Hills near the equator and the Hurri Hills-Dukana area close to the Ethiopian border. Volcanic activity in this area developed from Upper Miocene to Quaternary. Miocene activity (12-5 m.y.) was of fissure-type while the Plio-Quaternary volcanism was mainly of central type. This last volcanism occurred from early Pliocene (4.5 m.y.) to Recent (0.5 m.y.). The products of the two volcanic phases can be distinguished also from a compositional point of view. Previous stratigraphical interpretations are discussed on the basis of field and laboratory evidence.

  18. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  19. Representing distributed cognition in complex systems: how a submarine returns to periscope depth.

    Science.gov (United States)

    Stanton, Neville A

    2014-01-01

    This paper presents the Event Analysis of Systemic Teamwork (EAST) method as a means of modelling distributed cognition in systems. The method comprises three network models (i.e. task, social and information) and their combination. This method was applied to the interactions between the sound room and control room in a submarine, following the activities of returning the submarine to periscope depth. This paper demonstrates three main developments in EAST. First, building the network models directly, without reference to the intervening methods. Second, the application of analysis metrics to all three networks. Third, the combination of the aforementioned networks in different ways to gain a broader understanding of the distributed cognition. Analyses have shown that EAST can be used to gain both qualitative and quantitative insights into distributed cognition. Future research should focus on the analyses of network resilience and modelling alternative versions of a system.

  20. Volcanic hazards and public response

    Science.gov (United States)

    Peterson, Donald W.

    1988-05-01

    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  1. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  2. Gravity inversion for modelling of subsurface structures associated to the volcanic evolution of La Gomera island (Canarian Archipelago, Spain)

    Science.gov (United States)

    Montesinos, F. G.; Arnoso, J.; Luque, T.; Benavent, T.; Vieira, R.

    2009-04-01

    It is firmly established that, of all the geodetic or geophysical techniques available, gravity modelling plays an important role in helping us to understand volcanic structures. We present here a study of the structural setting of the volcanic island of La Gomera by the analysis and interpretation of high-resolution gravity data obtained over the island. The gravity data allow us to model the main subsurface anomaly sources of the island, which are related with its volcanic evolution. Our outcome is consistent with the results of previous geophysical and volcanological studies. La Gomera island occupies a central position in the Canarian archipelago. This archipelago is the result of construction and destruction of successive large edifices covering a time span of several million years. Intrusion of magma has caused the development of an enormous amount of dikes that constituted step by step the main framework of the hypabyssal roots of these edifices. La Gomera has a surface about 372 km2 with a roughly circular contour and it is characterised by its central massif of 1487 meters height, dropping steeply to the sea. This island is the only one on the archipelago with no signs of Pleistocene volcanic activity. Its distinctive morphological feature is the intense degree of erosion in all formations, with deep, vertical-walled valleys that cut the island radially and in which the tabular successions of basalts can be seen. The most complex and interesting unit of La Gomera is its Basal Complex, which crops out in a restricted area located at the North and it is formed of plutonic volcanic and sedimentary rocks cut by an extremely dense dyke network. According to several authors, the characteristics of this complex seem to support the hypothesis that these rocks were formed by processes of magmatic sedimentation in a fairly turbulent medium. These conditions could correspond, for instance, to the ones in a reservoir beneath a volcano. Another possibility is that this

  3. Natural radionuclides in volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Jun E-mail: jsato@isc.meiji.ac.jp

    2003-03-01

    Natural radionuclides of {sup 222}Ra, {sup 210}Pb and {sup 212}Pb present in the magma are emitted during the eruption of volcanoes. Depletion of {sup 222}Rn in pumices and in lava showed that significant amounts of {sup 222}Rn were released from erupting magmas. Atmospheric {sup 210}Pb originating from the 1991 eruption of Mt. Pinatubo was detected in Japan and in Korea as a temporal increase in the atmospheric concentration after the eruption. Atmospheric {sup 212}Pb originating from the 2000 eruption of Mt. Miyake-jima was also detected as an abrupt rise in atmospheric concentration after the event.

  4. Lidar Observations of Aerosol Disturbances of the Stratosphere over Tomsk (56.5∘N; 85.0∘E in Volcanic Activity Period 2006–2011

    Directory of Open Access Journals (Sweden)

    Oleg E. Bazhenov

    2012-01-01

    Full Text Available The lidar measurements (Tomsk: 56.5∘N; 85.0∘E of the optical characteristics of the stratospheric aerosol layer (SAL in the volcanic activity period 2006–2011 are summarized and analyzed. The background SAL state with minimum aerosol content, observed since 1997 under the conditions of long-term volcanically quiet period, was interrupted in October 2006 by series of explosive eruptions of volcanoes of Pacific Ring of Fire: Rabaul (October 2006, New Guinea; Okmok and Kasatochi (July-August 2008, Aleutian Islands; Redoubt (March-April 2009, Alaska; Sarychev Peak (June 2009, Kuril Islands; Grimsvötn (May 2011, Iceland. A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions. Trends of variations in the total ozone content are also considered.

  5. Amazonian volcanism inside Valles Marineris on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Wray, J. J.; Michael, G.

    2017-01-01

    Roč. 473, September (2017), s. 122-130 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * Valles Marineris * volcanism * scoria cone * hydrothermal activity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.409, year: 2016

  6. Improved OTEC System for a Submarine Robot

    Science.gov (United States)

    Chao, Yi; Jones, Jack; Valdez, Thomas

    2010-01-01

    An ocean thermal energy conversion (OTEC), now undergoing development, is a less-massive, more-efficient means of exploiting the same basic principle as that of the proposed system described in "Alternative OTEC Scheme for a Submarine Robot" (NPO-43500), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 50. The proposed system as described previously would be based on the thawing-expansion/freezing-contraction behavior of a wax or perhaps another suitable phase-change material (PCM). The power generated by the system would be used to recharge the batteries in a battery- powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. At one phase of its operational cycle, the previously proposed system would utilize the surface ocean temperature (which lies between 15 and 30 C over most of the Earth) to melt a PCM that has a melting/freezing temperature of about 10 C. At the opposite phase of its operational cycle, the system would utilize the lower ocean temperature at depth (e.g., between 4 and 7 C at a depth of 300 m) to freeze the PCM. The melting or freezing would cause the PCM to expand or contract, respectively, by about 9 volume percent. The PCM would be contained in tubes that would be capable of expanding and contracting with the PCM. The PCM-containing tubes would be immersed in a hydraulic fluid. The expansion and contraction would drive a flow of the hydraulic fluid against a piston that, in turn, would push a rack-and-pinion gear system to spin a generator to charge a battery.

  7. A model for tidewater glacier undercutting by submarine melting

    Science.gov (United States)

    Slater, D. A.; Nienow, P. W.; Goldberg, D. N.; Cowton, T. R.; Sole, A. J.

    2017-03-01

    Dynamic change at the marine-terminating margins of the Greenland Ice Sheet may be initiated by the ocean, particularly where subglacial runoff drives vigorous ice-marginal plumes and rapid submarine melting. Here we model submarine melt-driven undercutting of tidewater glacier termini, simulating a process which is key to understanding ice-ocean coupling. Where runoff emerges from broad subglacial channels we find that undercutting has only a weak impact on local submarine melt rate but increases total ablation by submarine melting due to the larger submerged ice surface area. Thus, the impact of melting is determined not only by the melt rate magnitude but also by the slope of the ice-ocean interface. We suggest that the most severe undercutting occurs at the maximum height in the fjord reached by the plume, likely promoting calving of ice above. It remains unclear, however, whether undercutting proceeds sufficiently rapidly to influence calving at Greenland's fastest-flowing glaciers.

  8. Submarine Upward Looking Sonar Ice Draft Profile Data and Statistics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of upward looking sonar draft data collected by submarines in the Arctic Ocean. It includes data from both U.S. Navy and Royal Navy...

  9. Virtual Reality Training System for a Submarine Command Center

    National Research Council Canada - National Science Library

    Maxwell, Douglas B

    2008-01-01

    The invention as disclosed is a system that uses a combined real and virtual display interaction methodology to generate the visual appearance of submarine combat control rooms and allow interaction...

  10. Studies on submarine control for periscope depth operations

    OpenAIRE

    Tolliver, John V.

    1996-01-01

    Approved for public release; distribution in unlimited. Requirements for submarine periscope depth operations have been increased by integration with carrier battle groups, littoral operations, and contributions to joint surveillance. Improved periscope depth performance is therefore imperative. Submarine control personnel rely on a large number of analog gauges and indications. An integrated digital display system could enhance the ergonomics of the human control interface and display add...

  11. Are tilt measurements useful in detecting tsunamigenic submarine landslides?

    OpenAIRE

    Sascha Brune; Andrey Babeyko; Stephan V. Sobolev

    2009-01-01

    Large submarine landslides can generate dangerous tsunamis. Because of their long-period signal, detection of landslides by common seismological methods is difficult. Here we suggest a method of detecting submarine landslides by using an array of land-based tiltmeters. The displacement of a large volume of sediments during landsliding produces a detectable elastic response of the lithosphere. We propose a technique to calculate this response and to invert for tsunami relevant parameters like ...

  12. The development of permafrost bacterial communities under submarine conditions

    Science.gov (United States)

    Mitzscherling, Julia; Winkel, Matthias; Winterfeld, Maria; Horn, Fabian; Yang, Sizhong; Grigoriev, Mikhail N.; Wagner, Dirk; Overduin, Pier P.; Liebner, Susanne

    2017-07-01

    Submarine permafrost is more vulnerable to thawing than permafrost on land. Besides increased heat transfer from the ocean water, the penetration of salt lowers the freezing temperature and accelerates permafrost degradation. Microbial communities in thawing permafrost are expected to be stimulated by warming, but how they develop under submarine conditions is completely unknown. We used the unique records of two submarine permafrost cores from the Laptev Sea on the East Siberian Arctic Shelf, inundated about 540 and 2500 years ago, to trace how bacterial communities develop depending on duration of the marine influence and pore water chemistry. Combined with geochemical analysis, we quantified total cell numbers and bacterial gene copies and determined the community structure of bacteria using deep sequencing of the bacterial 16S rRNA gene. We show that submarine permafrost is an extreme habitat for microbial life deep below the seafloor with changing thermal and chemical conditions. Pore water chemistry revealed different pore water units reflecting the degree of marine influence and stages of permafrost thaw. Millennia after inundation by seawater, bacteria stratify into communities in permafrost, marine-affected permafrost, and seabed sediments. In contrast to pore water chemistry, the development of bacterial community structure, diversity, and abundance in submarine permafrost appears site specific, showing that both sedimentation and permafrost thaw histories strongly affect bacteria. Finally, highest microbial abundance was observed in the ice-bonded seawater unaffected but warmed permafrost of the longer inundated core, suggesting that permafrost bacterial communities exposed to submarine conditions start to proliferate millennia after warming.

  13. Solution of Supplee's submarine paradox through special and general relativity

    CERN Document Server

    Vieira, R S

    2016-01-01

    In 1989 Supplee described an apparent relativistic paradox on which a submarine seems to sink in a given frame while floating in another one. If the submarine density is adjusted to be the same as the water density (when both of them are at rest) and then it is put to move, the density of the submarine will become higher than that of the water, thanks to Lorentz contraction, and hence it sinks. However, in the submarine proper frame, is the water that becomes denser, so the submarine supposedly should float and we get a paradox situation. In this paper we analyze the submarine paradox in both a flat and a curved spacetime. In the case of a flat spacetime, we first show that any relativistic force field in special relativity can be written in the Lorentz form, so that it can always be decomposed into a static (electric-like) and a dynamic (magnetic-like) part. Taking into account the gravitomagnetic effects between the Earth and the water, a relativistic formulation of Archimedes principle can be established, ...

  14. Distinguishing high surf from volcanic long-period earthquakes

    Science.gov (United States)

    Lyons, John; Haney, Matt; Fee, David; Paskievitch, John F.

    2014-01-01

    Repeating long-period (LP) earthquakes are observed at active volcanoes worldwide and are typically attributed to unsteady pressure fluctuations associated with fluid migration through the volcanic plumbing system. Nonvolcanic sources of LP signals include ice movement and glacial outburst floods, and the waveform characteristics and frequency content of these events often make them difficult to distinguish from volcanic LP events. We analyze seismic and infrasound data from an LP swarm recorded at Pagan volcano on 12–14 October 2013 and compare the results to ocean wave data from a nearby buoy. We demonstrate that although the events show strong similarity to volcanic LP signals, the events are not volcanic but due to intense surf generated by a passing typhoon. Seismo-acoustic methods allow for rapid distinction of volcanic LP signals from those generated by large surf and other sources, a critical task for volcano monitoring.

  15. Radon levels in the volcanic region of La Garrotxa, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Baixeras, C. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)]. E-mail: carmen.baixeras@uab.es; Bach, J. [Unitat de Geodinamica Externa. Departament de Geologia. Edifici Cs, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Amgarou, K. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Moreno, V. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Font, Ll. [Grup de Fisica de les Radiacions. Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)

    2005-11-15

    A preliminary survey in the city of Olot, the main town of the volcanic region of La Garrotxa, showed that dwellings built on volcanic formations present higher indoor radon levels than dwellings on non-volcanic materials. The soil of the area is not especially rich in radium. However, some of the volcanic materials present very high permeability and therefore radon entering the houses might have travelled over long distances. In this paper we present indoor radon values measured in a larger survey carried out during April-July 2004. The influence of the volcanic materials found in the preliminary survey has been confirmed. The results obtained suggest the possibility that radon comes from the degassification of mantle through active faults. The values obtained in working places do not constitute a relevant radiological risk for workers.

  16. Quaternary volcanism in the Acambay graben, Mexican Volcanic Belt: Re-evaluation for potential volcanic danger in central Mexico

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Pedrazzi, D.; Lacan, P.; Roldan-Quintana, J.; Ortuňo, M.; Zuniga, R. R.; Laurence, A.

    2015-12-01

    The Mexican Volcanic Belt (MVB) is best known for the major active stratovolcanoes, such as Popocatépetl, Citlaltépetl and Colima. The most common stratovolcanoes in this province are modest-size cones with heights of 800 to 1000 m. Examples are Tequila, Sangangüey, Las Navajas, Culiacán, La Joya, El Zamorano, Temascalcingo and Altamirano; these last two were formed within the Acambay Graben in central MVB. The Acambay graben (20 x 70 km) is 100 km to the NW of Mexico City, with E-W trending seismically active normal faults; in particular the Acambay-Tixmadejé fault related to a mB =7 earthquake in 1912. Within the graben there are many volcanic structures, including calderas, domes, cinder cones and stratovolcanoes; Temascalcingo and Altamirano are the largest, with about 800 and 900 m heights, respectively. Temascalcingo is mostly composed of dacitic lavas and block and ash flow deposits. Includes a 3 x 2.5 km summit caldera and a magmatic sector collapse event with the associated debris avalanche deposit. 14C ages of 37-12 ka correspond to the volcano's latest phases that produced pyroclastic deposits. A major plinian eruption formed the San Mateo Pumice with an age of deposits, and pumice fallouts. Morphologically is better preserved than Temascalcingo, and it should be younger. 14C ages of 4.0-2.5 ka were performed in charcoal within pyroclastic flow deposits that apparently were erupted from Altamirano. An undated 3 m thick pumice fallout on the flanks of Altamirano volcano could be also Holocene. It represents a major explosive event. The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally thought as an inactive volcanic zone. The two major volcanoes, Temascalcingo and Altamirano, should be considered as dormant volcanoes that could restart activity at any time. We thanks grant DGAPA-UNAM-PAPIIT IN-104615.

  17. Using Google Earth for Submarine Operations at Pavilion Lake

    Science.gov (United States)

    Deans, M. C.; Lees, D. S.; Fong, T.; Lim, D. S.

    2009-12-01

    During the July 2009 Pavilion Lake field test, we supported submarine "flight" operations using Google Earth. The Intelligent Robotics Group at NASA Ames has experience with ground data systems for NASA missions, earth analog field tests, disaster response, and the Gigapan camera system. Leveraging this expertise and existing software, we put together a set of tools to support sub tracking and mapping, called the "Surface Data System." This system supports flight planning, real time flight operations, and post-flight analysis. For planning, we make overlays of the regional bedrock geology, sonar bathymetry, and sonar backscatter maps that show geology, depth, and structure of the bottom. Placemarks show the mooring locations for start and end points. Flight plans are shown as polylines with icons for waypoints. Flight tracks and imagery from previous field seasons are embedded in the map for planning follow-on activities. These data provide context for flight planning. During flights, sub position is updated every 5 seconds from the nav computer on the chase boat. We periodically update tracking KML files and refresh them with network links. A sub icon shows current location of the sub. A compass rose shows bearings to indicate heading to the next waypoint. A "Science Stenographer" listens on the voice loop and transcribes significant observations in real time. Observations called up to the surface immediately appear on the map as icons with date, time, position, and what was said. After each flight, the science back room immediately has the flight track and georeferenced notes from the pilots. We add additional information in post-processing. The submarines record video continuously, with "event" timestamps marked by the pilot. We cross-correlate the event timestamps with position logs to geolocate events and put a preview image and compressed video clip into the map. Animated flight tracks are also generated, showing timestamped position and providing timelapse

  18. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    International Civil Aviation Organization’s (ICAO) International Airways Volcano Watch. This plan defines agency responsibilities, provides a comprehensive description of an interagency standard for volcanic ash products and their formats, describes the agency backup procedures for operational products, and outlines the actions to be taken by each agency following an occurrence of a volcanic eruption that subsequently affects and impacts aviation services. Since our most recent International Conference on Volcanic Ash and Aviation Safety, volcanic ash-related product and service activities have grown considerably along with partnerships and alliances throughout the aviation community. In January 2005, the National Oceanic and Atmospheric Administration’s National Centers for Environment Prediction began running the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in place of the Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model, upgrading support to the volcanic ash advisory community. Today, improvements to the HYSPLIT model are ongoing based on recommendations by the OFCM-sponsored Joint Action Group for the Selection and Evaluation of Atmospheric Transport and Diffusion Models and the Joint Action Group for Atmospheric Transport and Diffusion Modeling (Research and Development Plan). Two international workshops on volcanic ash have already taken place, noticeable improvements and innovations in education, training, and outreach have been made, and federal and public education and training programs on volcanic ash-related products, services, and procedures iv continue to evolve. For example, in partnership with Embry-Riddle Aeronautical University and other academic institutions, volcanic ash hazard and mitigation training has been incorporated into aviation meteorology courses. As an essential next step, our volcanic ash-related efforts in the near term will be centered on the development of an interagency implementation plan to

  19. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  20. AVAL - The ASTER Volcanic Ash Library

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2016-12-01

    . These results provide particle size distributions within actively-erupting volcanic plumes for the first time in high resolution, and the petrologic information is being studied to understand the underlying eruptive processes observed.

  1. Geology of the Ivanhoe Hg-Au district, northern Nevada: Influence of Miocene volcanism, lakes, and active faulting on epithermal mineralization

    Science.gov (United States)

    Wallace, A.R.

    2003-01-01

    The mercury-gold deposits of the Ivanhoe mining district in northern Nevada formed when middle Miocene rhyolitic volcanism and high-angle faulting disrupted a shallow lacustrine environment. Sinter and replacement mercury deposits formed at and near the paleosurface, and disseminated gold deposits and high-grade gold-silver veins formed beneath the hot spring deposits. The lacustrine environment provided abundant meteoric water; the rhyolites heated the water; and the faults, flow units, and lakebeds provided fluid pathways for the hydrothermal fluids. A shallow lake began to develop in the Ivanhoe area about 16.5 Ma. The lake progressively expanded and covered the entire area with fine-grained lacustrine sediments. Lacustrine sedimentation continued to at least 14.4 Ma, and periodic fluctuations in the size and extent of the lake may have been responses to both climate and nearby volcanism. The eruption of rhyolite and andesite flows and domes periodically disrupted the lacustrine environment and produced interfingered flows and lake sediments. The major pulse of rhyolitic volcanism took place between 15.16 ± 0.05 and 14.92 ± 0.05 Ma. High-angle faulting began in the basement about 15.2 Ma, penetrated to and disrupted the paleosurface after 15.10 ± 0.06 Ma, and largely ceased by 14.92 ± 0.05 Ma. Ground motion related to both faulting and volcanism created debris flows and soft-sediment deformation in the lakebeds. Mercury-gold mineralization was coeval with rhyolite volcanism and high-angle faulting, and it took place about 15.2 to 14.9 Ma. At and near the paleosurface, hydrothermal fluids migrated through tuffaceous sediments above relatively impermeable volcanic and Paleozoic units, creating chalcedonic, cinnabar-bearing replacement bodies and sinters. Disseminated gold was deposited in sedimentary and volcanic rocks beneath the mercury deposits, although the hydrologic path between the two ore types is unclear. Higher-grade gold-silver deposits formed in

  2. Paleoseismicity on the Dense Network of Holocene Submarine Faults in Beppu Bay, Southwest Japan

    Science.gov (United States)

    Shimazaki, K.; Matsuoka, H.; Okamura, M.; Chida, N.

    2003-12-01

    Beppu Bay, approximately 30 km by 15 km in size, contains a complex network of Holocene submarine faults whose total length amounts to 230km. They are normal dip-slip fault with left-lateral strike-slip component. The maximum vertical offset accumulated in the past 7,300 years exceeds 20 m. A detailed study on paleoseismicity on one of the faults shows a feature of the time-predictable recurrence, i.e., the larger the vertical offset, the longer the following inter-event time. Branching features can be often recognized near the end of fault and the consistency in branching direction of neighboring faults suggest repeated rupture propagation in the same direction. A detailed examination of high-resolution seismic profiling of branch indicates a repeat of branching and a slow transition of rupture from an old branch to a new one. The central Beppu-Bay fault running WNW to ESE in the center of the bay forms the northern boundary of the major graben structure of the bay. The Asamigawa fault in the west of the bay, running parallel to the central Beppu-Bay fault, has been considered as the southern boundary, but its eastern continuation was not clear. Recent seismic profiling carried out by Chida et al. (2003) showed an existence of Holocene normal fault beneath the city of Oita whose population is 440,000 and interpreted it as a part of the southern boundary. Our high-resolution shallow-water profiling survey revealed the submarine portion of the southern boundary fault, filling a gap between two subaerial faults. We continuously sample marine sediments down to a subbottom depth of 20m by piston coring and correlate specific features of sediment, 20 volcanic ash layers, a few features of magnetic susceptibility and coarse fraction together with C-14 ages of echinoids, pelecypods, and plant remains on the both sides of a targe fault to estimate the date and vertical offset of paleoearthquakes.

  3. Sediments of Lake Van - a high-resolution archive of changing climate, volcanic events and seismic activity in Eastern Anatolia for the last 500'000 yrs

    Science.gov (United States)

    Stockhecke, M.; Anselmetti, F. S.; Sturm, M.; Paleovan Scientific Party

    2012-04-01

    Varved sedimentary records have shown their high potential to reconstruct abrupt and global climate change within the marine realm (e.g. Cariaco Basin, Santa Barbara Basin). Continental counterparts, consisting of long and varved lacustrine records can be found in the subsurface of some deep lakes, such as Lake Van. Lake Van is a 440 m deep closed soda lake situated in a climatically sensitive semiarid and tectonically active region in Eastern Anatolia, Turkey. The ICDP project Paleovan aims to reconstruct the climatic, tectonic and volcanic history of Lake Van. Driven by an international and interdisciplinary scientific team, two sites, Ahlat Ridge (AR) and Northern Basin (NB) were drilled in summer 2010 recovering sedimentary records of 220 and 140 m, respectively. A total of 800 m of sediment-cores were opened, described and photographed in spring 2011 at the IODP core repository in Bremen. Lithologies of up to five parallel cores (multiple coring) were correlated and a composite profile was defined giving priority to core quality and continuity. Preliminary Ar/Ar dates of the core catcher yielded a basal ages of ~500´000 years. Using this rough age model, geochemical measurements (every 20 cm) indicate that TOC is high in warmer periods (interglacials) and low in colder periods (glacials). These TOC fluctuations match marine isotope stages and extrapolated Holocene sedimentation rates. The 219 m long AR composite profile consists of ~80 % lacustrine sediments, ~10 % of volcaniclastic deposits and 10 % gaps interpreted to be coarse-grained volcaniclastic that are difficult to be recovered. The lacustrine mud, i.e., clayey silt composed of mainly clay minerals and carbonate. Based on major macroscopic sediment features eight major lacustrine sediment types (~900 layer) were differentiated and separated from the volcaniclastic deposits (300 layer). Impressive color transitions and a repetitive pattern of similar lithological successions occur throughout the

  4. Prevention of Catastrophic Volcanic Eruptions

    OpenAIRE

    Fujii, Yoshiaki; Kodama, Jun-ichi; Fukuda, Daisuke; Dassanayake, Abn

    2017-01-01

    Giant volcanic eruptions emit sulphate aerosols as well as volcanic ash. Needless to say that volcanic ash causes significant damage to the environment and human at large. However, the aerosols are even worse. They reach the Stratosphere and stay there for months to years reflecting insolation. As a result, air temperature at the Earth's surfaces drops. Even a slight temperature drop may cause severe food shortage. Yellowstone supervolcano, for example, can even make human in the Northern Hem...

  5. Relationship between work stress and health in submariners

    Directory of Open Access Journals (Sweden)

    Nan-nan JIANG

    2013-09-01

    Full Text Available Objective To explore the relationship between work stress and health in submariners. Methods In April 2008, 272 submariners trained in a navy base were selected as study subjects by random group sampling method, and tested by primary personal information questionnaire, self-rated health measurement scale (SRHMS, self-developed submariners' work stressors questionnaire, and work stress self-rated scale. Physical health, mental health and social health of submariners were analyzed, and scores were compared with the norm of reference scores. Correlations were analyzed respectively between 10 items of submariners' general information (including age, length of military service, education degree, years at the present post, times of receiving awards, on-duty hours, off-duty hours, hours of sleep, lost days of leave, positive attitude to work and their physical health score, mental health score, social health score, total health score, as well as between 15 submariners' work stressors (including workrelated risks, diet problems, high temperature, humidity and noise in workplace, shortage of clean clothes, illness, losing contact with outside, lack of information about the task, lacking supports from family members, relationship problems, lack of involvement in task decisions, boring and dull work, on duty, heavy work, high quality of work, coping with unexpected threat and their physical health score, mental health score, social health score and total health score. Results No significant difference was found between submariners' SRHMS total score and the normal referenced score (t=0.56, P>0.05, but the physical health score and mental health score were significantly lower than normal referenced scores respectively (t=–2.172, P<0.05; t=–3.299, P<0.01, and the social health score was significantly higher than normal referenced score (t=9.331, P<0.001. The age, length of military service, years at present post of submariners were related

  6. Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan

    Directory of Open Access Journals (Sweden)

    Md. Bodruddoza Mia

    2017-11-01

    Full Text Available Thermal remote sensing is currently an emerging technique for monitoring active volcanoes around the world. The study area, the Aso volcano, is currently the most active and has erupted almost every year since 2012. For the first time, Landsat 8 TIRS thermal data were used in this study area to evaluate and monitor the recent thermal status of this volcano, situated in Southwest Japan, from 2013 to 2016 using four sets of images. The total heat discharged rate (HDR, radiative heat flux (RHF, land surface temperature (LST, and land cover (LC were evaluated, and the relationship between them was determined, to understand the thermal status of the study area. We used the NDVI (normalized difference vegetation index for land cover, the NDVI-threshold method for emissivity, the split-window algorithm for LST, and the Stefan–Boltzmann equation for radiative heat flux estimation in this study. The total heat discharge rate was computed using a relationship coefficient of RHF and HDR here. The highest HDR was obtained in 2013, at about 4715 MW, and was the lowest in 2016, at about 3819 MW. The total heat loss showed a declining trend, overall, from 2013 to 2016. The highest pixel RHF was in 2013 and the lowest was in 2014; after that, it increased gradually until 2016, coinciding with the LST of this study area. LC showed that, with decreasing heat loss, the vegetated coverage increased and bare land or mixed land decreased, and vice versa. From the spatial distribution of RHF, we saw that, within the Nakadake craters of the Aso volcano, Crater 1 was the most active part of this volcano throughout the study period, and Crater 3 was the most active after 2014. We inferred that the applied methods using the continuous Landsat 8 TIRS data showed an effective and efficient method of monitoring the thermal status of this active volcano.

  7. Experimental modeling of gravity underflow in submarine channels

    Science.gov (United States)

    Islam, Mohammad Ashraful

    Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. Unlike natural rivers, few attempts have been made to explore the process of channel meandering in the submarine environment. This research focuses on resolving the flow field of submarine channels by conducting experiments in a large laboratory basin. Saline and particulate density flows were studied in a straight channel, a single bend sinuous channel with vertical sidewalls and a multiple-bend sinuous channel with sloping sidewalls. Instantaneous velocities in steady developed currents were measured using 3-component acoustic Doppler velocity probes. Excess fractional density was measured at selected locations by collecting water sample using a siphon rake. Turbulent kinetic energy and Reynolds stress components are derived from the instantaneous velocity data of the straight channel experiments. Structure functions for mean velocity, Reynolds stress and turbulent kinetic energy profiles are derived by fitting normalized data. The normalized Reynolds-averaged velocity shows excellent similarity collapse while the Reynolds-stress and the turbulent kinetic energy profiles display reasonable similarity. Vertical profiles of the turbulent kinetic energy display two peaks separated by a zone of low turbulence; the ratio of the maximum to the depth-averaged turbulent kinetic energy is approximately 1.5. Theoretical profile of turbulent kinetic energy is derived. Comparisons of experimentally and theoretically derived turbulent kinetic energy profiles show reasonable agreement except at the position of velocity maximum where the theoretical profile displays a very small value. Velocity profiles derived from the measurements with confined flow in the single bend channel reveal that channel curvature drives two helical flow cells, one

  8. Volcanic Ash Nephelometer Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  9. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?

    Science.gov (United States)

    Koppers, Anthony A. P.; Staudigel, Hubert; Pringle, Malcolm S.; Wijbrans, Jan R.

    2003-10-01

    South Pacific intraplate volcanoes have been active since the Early Cretaceous. Their HIMU-EMI-EMII mantle sources can be traced back into the West Pacific Seamount Province (WPSP) using plate tectonic reconstructions, implying that these distinctive components are enduring features within the Earth's mantle for, at least, the last 120 Myr. These correlations are eminent on the scale of the WPSP and the South Pacific Thermal and Isotopic Anomaly (SOPITA), but the evolution of single hot spots emerges notably more complicated. Hot spots in the WPSP and SOPITA mantle regions typically display intermittent volcanic activity, longevities shorter than 40 Myr, superposition of hot spot volcanism, and motion relative to other hot spots. In this review, we use 40Ar/39Ar seamount ages and Sr-Nd-Pb isotopic signatures to map out Cretaceous volcanism in the WPSP and to characterize its evolution with respect to the currently active hot spots in the SOPITA region. Our plate tectonic reconstructions indicate cessation of volcanism during the Cretaceous for the Typhoon and Japanese hot spots; whereas the currently active Samoan, Society, Pitcairn and Marquesas hot spots lack long-lived counterparts in the WPSP. These hot spots may have become active during the last 20 Myr only. The other WPSP seamount trails can be only "indirectly" reconciled with hot spots in the SOPITA region. Complex age distributions in the Magellan, Anewetak, Ralik and Ratak seamount trails would necessitate the superposition of multiple volcanic trails generated by the Macdonald, Rurutu and Rarotonga hot spots during the Cretaceous; whereas HIMU-type seamounts in the Southern Wake seamount trail would require 350-500 km of hot spot motion over the last 100 Myr following its origination along the Mangaia-Rurutu "hotline" in the Cook-Austral Islands. These observations, however, violate all assumptions of the classical Wilson-Morgan hot spot hypothesis, indicating that long-lived, deep and fixed mantle

  10. Seismic evidence of a second submarine eruption in the north of El Hierro Island

    Science.gov (United States)

    Ortiz, R.; Berrocoso, M.; de la Cruz-Reyna, S.; Marrero, J. M.; Garcia, A.

    2012-04-01

    From the July 19, 2011 an increase of seismicity, accompanied by a remarkable process of deformation, was detected on the island of El Hierro. This reactivation process, instrumental and scientifically monitored, culminates in the occurrence of a submarine eruption, with the emergence of a strong tremor signal, in the south of the island on October 10, 2011. Both processes (unrest and eruption) have different phases and behaviors clearly evidenced by the deformation and seismicity. This work is the result of an exhaustive analysis of seismic signals from three stations deployed on the island of El Hierro(CTAB and CTIG (IGN) and REST (CSIC)), in order to explain the behavior of the volcanic system responsible for the submarine eruption of Las Calmas sea and its evolution, as well as evidence of a second submarine eruption in the north of the island (ElGolfo). The spectral content of signals from the seismic stations in the north of the island (CTIG and CTAB) and the area around the eruption (REST) has the dominant peak at different frequencies. The amplitude modulations of the seismic noise evolved differently in CTAB and CTIG than REST being particularly significant changes in amplitude and frequency after the occurrence of events of magnitude greater than 4. The evolution of the volcano-tectonic cumulative seismic energy shows the occurrence of two similar eruptive episodes, in which two phases can be distinguished. The first phase of both cycles has a constant rate with seismic events of magnitude less than 3 to reach the energy of 10 ^ 11 Joule. From that moment the magnitude grows rapidly exceeding magnitude 4. In the second phase the seismic events are mainly located in the south of the island, before the onset of visual evidences of the eruption (October 11, 2011) and later (November 2011) the seismic events are mainly located in the north of the island, where no visible signs have been detected. In both cases the appearance or changes in the tremor signal

  11. From submarine to lacustrine groundwater discharge

    Science.gov (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Pöschke, Franziska; Nützmann, Gunnar; Rosenberry, Donald O.

    2017-01-01

    Submarine groundwater discharge (SGD) and its role in marine nutrient cycling are well known since the last decade. The freshwater equivalent, lacustrine groundwater discharge (LGD), is often still disregarded, although first reports of LGD are more than 50 years old. We identify nine different reasons why groundwater has long been disregarded in both freshwater and marine environments such as invisibility of groundwater discharge, the size of the interface and its difficult accessibility. Although there are some fundamental differences in the hydrology of SGD and LGD, caused primarily by seawater recirculation that occurs only in cases of SGD, there are also a lot of similarities such as a focusing of discharge to near-shore areas. Nutrient concentrations in groundwater near the groundwater–surface water interface might be anthropogenically enriched. Due to spatial heterogeneity of aquifer characteristics and biogeochemical processes, the quantification of groundwater-borne nutrient loads is challenging. Both nitrogen and phosphorus might be mobile in near-shore aquifers and in a lot of case studies large groundwater-borne nutrient loads have been reported.

  12. Design and analysis of submarine radome

    Science.gov (United States)

    Sandeep, C. Satya; Prasad, U. Shiva; Suresh, R.; Rathan, A.; Sravanthi, G.; Govardhan, D.

    2017-07-01

    Radomes are the electromagnetic windows that protect microwave sub-systems from the environmental effects. The major requirement of radome is its transparency to microwaves and for most of the cases mechanical properties are also equally important. Radome for underwater applications has to withstand high water pressure of the order of 45 bars. Composite materials owing to their high strength to weight ratio, high stiffness and better corrosion resistance are potential source for under water applications. The concept of 'tailoring' the material properties to suit the radome is obtained by selecting proper reinforcement, resin matrix and their compositions. The mechanical properties of composite material, evaluated by testing specimens as per ASTM standards, are utilized in designing the radome. The modulus properties calculated using classical theories of composite materials and compared with test results. ANSYS a Finite Element software package used to analyse the problem. As the cross sectional thickness of radome varies, the complexity in fabrication is overcome by adopting matched die techniques. The radome design and finite element analysis validation concluded by conducting the pressure test on radome. On the design a modal analysis is also carried to check for the natural frequency, So that resonance does not occur if the natural frequency of the radome coincides with the excitation frequency of the submarine Clinical information system (CIS) for UNRWA is a computerized distributed application that used in clinics which follows the United Nations Relief and Works Agency (UNRWA) to manage the clinical requirements and services.

  13. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  14. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  15. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  16. Using multiple geochemical tracers to characterize the hydrogeology of the submarine spring off Crescent Beach, Florida

    Science.gov (United States)

    Swarzenski, P.W.; Reich, C.D.; Spechler, R.M.; Kindinger, J.L.; Moore, W.S.

    2001-01-01

    A spectacular submarine spring is located about 4 km east of Crescent Beach, FL, in the Atlantic Ocean. The single vent feature of Crescent Beach Spring provides a unique