WorldWideScience

Sample records for submarine fan sedimentation

  1. Submarine fans: A critical retrospective (1950–2015

    Directory of Open Access Journals (Sweden)

    G. Shanmugam

    2016-04-01

    Full Text Available When we look back the contributions on submarine fans during the past 65 years (1950–2015, the empirical data on 21 modern submarine fans and 10 ancient deep-water systems, published by the results of the First COMFAN (Committee on FANs Meeting (Bouma et al., 1985a, have remained the single most significant compilation of data on submarine fans. The 1970s were the “heyday” of submarine fan models. In the 21st century, the general focus has shifted from submarine fans to submarine mass movements, internal waves and tides, and contourites. The purpose of this review is to illustrate the complexity of issues surrounding the origin and classification of submarine fans. The principal elements of submarine fans, composed of canyons, channels, and lobes, are discussed using nine modern case studies from the Mediterranean Sea, the Equatorial Atlantic, the Gulf of Mexico, the North Pacific, the NE Indian Ocean (Bay of Bengal, and the East Sea (Korea. The Annot Sandstone (Eocene–Oligocene, exposed at Peira-Cava area, SE France, which served as the type locality for the “Bouma Sequence”, was reexamined. The field details are documented in questioning the validity of the model, which was the basis for the turbidite-fan link. The 29 fan-related models that are of conceptual significance, developed during the period 1970–2015, are discussed using modern and ancient systems. They are: (1 the classic submarine fan model with attached lobes, (2 the detached-lobe model, (3 the channel-levee complex without lobes, (4 the delta-fed ramp model, (5 the gully-lobe model, (6 the suprafan lobe model, (7 the depositional lobe model, (8 the fan lobe model, (9 the ponded lobe model, (10 the nine models based on grain size and sediment source, (11 the four fan models based on tectonic settings, (12 the Jackfork debrite model, (13 the basin-floor fan model, (14 supercritical and subcritical fans, and (15 the three types of fan reservoirs. Each model is unique

  2. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    DEFF Research Database (Denmark)

    Stevens, Thomas; Paull, C.K.; Ussler, W., III

    2014-01-01

    luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry...... dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL......While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated...

  3. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    Science.gov (United States)

    Stevens, Thomas; Paull, Charles K.; Ussler, William III; McGann, Mary; Buylaert, Jan-Pieter; Lundsten, Eve M.

    2013-01-01

    While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry into the canyon head while the 14C ages of benthic foraminifera record the deposition of hemipelagic sediments that bound the sand horizons. We use both single-grain and small (∼2 mm area) single-aliquot regeneration approaches on vibracore samples from fining-upward sequences at various water depths to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand (from 14C ages of benthic foraminifera in bracketing hemipelagic sediments) are interpreted as indicating that the sand does not pass through the entire canyon instantly in large individual events, but rather moves multiple times before emerging onto the fan. The increased spread in single-grain OSL dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL ages that are consistent with a sub-decadal recurrence frequency while the fining-upward sand sequences on the fan indicate that the channel is still experiencing events with a 150

  4. Morphology and sedimentology of glacigenic submarine fans on the west Greenland continental margin

    Science.gov (United States)

    O'Cofaigh, Colm; Hogan, Kelly A.; Dowdeswell, Julian A.; Jennings, Anne E.; Noormets, Riko; Evans, Jeffrey

    2014-05-01

    Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross-shelf troughs. Two of these fans, the Uummannaq Fan and the Disko Fan are trough-mouth fans built largely of debris delivered from ice sheet outlets of the Greenland Ice Sheet during past glacial maxima. On the Uummannaq Fan glacigenic debris flow deposits occur on the upper slope and extend to at least 1800 m water depth in front of the trough-mouth. The debris flow deposits are related to the remobilisation of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterised by hemipelagic and ice-rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Further south along the Greenland continental margin the surface of the Disko Fan is prominently channelised and associated sediments are acoustically stratified. Although glacigenic debris flow deposits do occur on the upper Disko Fan, sediments recovered in cores from elsewhere on the fan record the influence of turbidity current and meltwater sedimentation. The channelised form of the Disko fan contrasts markedly with that of the Uummannaq Fan and, more widely, with trough mouth fans from the Polar North Atlantic. Collectively these data highlight the variability of glacimarine depositional processes operating on trough-mouth fans on high-latitude continental slopes and show that glacigenic debris flows are but one of a number of mechanisms by which such large glacially-influenced depocentres form.

  5. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  6. The role of meltwater in high-latitude trough-mouth fan development : the Disko Trough-Mouth Fan, West Greenland.

    OpenAIRE

    Cofaigh, Colm Ó.; Hogan, Kelly A.; Jennings, Anne E.; Callard, S. Louise; Dowdeswell, Julian A.; Noormets, Riko; Evans, Jeff

    2018-01-01

    The Disko Trough-Mouth Fan (TMF) is a major submarine sediment fan located along the central west Greenland continental margin offshore of Disko Trough. The location of the TMF at the mouth of a prominent cross-shelf trough indicates that it is a product of repeated glacigenic sediment delivery from former fast-flowing outlets of the Greenland Ice Sheet, including an ancestral Jakobshavn Isbrae, which expanded to the shelf edge during successive glacial cycles. This study focuses on the upper...

  7. Improved recovery from Gulf of Mexico reservoirs. Volume I (of 4): Task 1, conduct research on mud-rich submarine fans. Final report, February 14, 1995--October 13, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1997-01-13

    The objective for this portion of the research involved conducting field studies and laboratory investigations to develop and refine models for mud-rich submarine fan architectures used by seismic analysis and reservoir engineers. These research aspects have been presented in two papers as follows: (1) Bouma, A.H., {open_quotes}Review of Fine-Grained Submarine Fans and Turbidite Systems{close_quotes}; (2) Kirkova, J.T. and Lorenzo, J.M., {open_quotes}Synthetic Seismic Modeling of Measured Submarine Fans Sections, Case Study of the Tanqua Complex, Karoo, South Africa{close_quotes} The {open_quotes}Review of Fine-Grained Submarine Fans and Turbidite Systems{close_quotes} by Arnold Bouma discusses research targeted toward stimulating an increase in oil and gas recovery by developing new and improved geological understanding. The {open_quotes}Synthetic Seismic Modeling of Measured Submarine Fan Sections, Case Study of the Tanqua Complex, Karoo, South Africa{close_quotes} by J.T. Kirkova and J.M. Lorenso discusses the limitations of verticle resolution and how this affects the interpretation and characterization of submarine fan complexes.

  8. Unlocking the hydrocarbon potential of the eastern Black Sea basin. Prospectivity of middle Miocene submarine fan reservoirs by seismic sequence stratigraphy

    International Nuclear Information System (INIS)

    Gundogan, Coskun; Galip, Ozbek; Ali, Demirer

    2002-01-01

    Full text : The objective of this paper is to present present depositional characteristics and hydrocarbon prospectivity of the middle Miocene submarine basin floor fan deposits from the exploration stand point of view by using seismic data available in the offshore eastern Black Sea basin. This basin is a Tertiary trough formed as a continuation of the Mesozoic oceanic basin. The hydrocarbon potential of the basin is believed to be high in the Tertiary section because of the existence of the elements necessary for generation, migration and entrapment of hydrocarbon. A sequence stratigraphic study has been carried out by using 2-d seismic data in the Turkish portion of the eastern Black Sea basin. The objective of the study was to determine periods of major clastic sediment influxes which might lead to identify good reservoir intervals and their spatial distribution in this basin. All basic seismic sequence stratigraphic interpretation techniques and seismic facies analysis were used to identify times of these sand rich deposition periods. Sequence stratigraphy and seismic facies analysis indicate that the basinal areas of the middle Miocene sequences were dominated mainly by submarine fan complexes introduced in the lowstand stages and pelagic sediments deposited during the transgressive and highstand stages. It was proposed that Turkish portion of this basin which is one of the best frontier exploration area with its high potential left in the world, is glimpsing to those looking for good future exploration opportunities.

  9. Sediment failures within the Peach Slide (Barra Fan, NE Atlantic Ocean) and relation to the history of the British-Irish Ice Sheet

    Science.gov (United States)

    Owen, Matthew J.; Maslin, Mark A.; Day, Simon J.; Long, David

    2018-05-01

    The Peach Slide is the largest known submarine mass movement on the British continental margin and is situated on the northern flank of the glacigenic Barra Fan. The Barra Fan is located on the northwest British continental margin and is subject to cyclonic ocean circulation, with distinct differences between the circulation during stadial and inter-stadial periods. The fan has experienced growth since continental uplift during the mid-Pliocene, with the majority of sediments deposited during the Pleistocene when the fan was a major depocentre for the British-Irish Ice Sheet (BIIS). Surface and shallow sub-surface morphology of the fan has been mapped using newly digitised archival paper pinger and deep towed boomer sub-bottom profile records, side scan sonar and multibeam echosounder data. This process has allowed the interpretation and mapping of a number of different seismic facies, including: contourites, hemipelagites and debrites. Development of a radiocarbon based age model for the seismic stratigraphy constrains the occurrence of two periods of slope failure: the first at circa 21 ka cal BP, shortly after the BIIS's maximum advance during the deglaciation of the Hebrides Ice Stream; and the second between 12 and 11 ka cal BP at the termination of the Younger Dryas stadial. Comparison with other mass movement events, which have similar geological and oceanographic settings, suggests that important roles are played by contouritic and glacigenic sedimentation, deposited in inter-stadial and stadial periods respectively when different thermohaline regimes and sediment sources dominate. The effect of this switch in sedimentation is to rapidly deposit thick, low permeability, glacigenic layers above contourite and hemipelagite units. This process potentially produced excess pore pressure in the fan sediments and would have increased the likelihood of sediment failure via reduced shear strength and potential liquefaction.

  10. The development of a laterally confined laboratory fan delta under sediment supply reduction

    Science.gov (United States)

    Zhang, Xiaofeng; Wang, Siqiang; Wu, Xi; Xu, Shun; Li, Zhangyong

    2016-03-01

    In previous fan delta experiments, the effect of lateral confinement was generally ignored as these fans were usually unconfined with semiconical geometries. However, in gorge areas, fan development is usually laterally confined by valley walls. This study investigates autogenic processes of fan deltas in a laterally confined experimental tank. The experiment is divided into three phases. The sediment supply is held constant within each phase, so the autogenic processes of the fan are separated from the allogenic forcings. Results indicate that laterally confined fan deltas have higher progradation and aggradation potential, more regular channel braiding, and more even transverse sedimentation than unconfined fans. Besides, responses of fan deltas to sediment supply reduction are investigated in this research. At the initiation of the second and third phases, sediment feed rates are instantaneously reduced so that the allogenic forcings are predominant. Observations show that under sediment supply reduction, channelization on fan deltas are more pronounced and durations of the fluvial cycles are longer. The adjustment of fan morphology becomes slower as the self-regulation capacity of the fan decreases with reduced sediment supply.

  11. The modern Kaoping transient fan offshore SW Taiwan: Morphotectonics and development

    Science.gov (United States)

    Hsiung, Kan-Hsi; Yu, Ho-Shing; Chiang, Cheng-Shing

    2018-01-01

    Using bathymetry and seismic reflection profiles, this study examined and determined the transient nature of the Kaoping Fan located in the topographically complex slope offshore southwest Taiwan. Kaoping Fan is located west of the lower reach of the Kaoping Canyon at the lower Kaoping Slope, ranging from 2,200 to 3,000 m water depth, and has a relatively small areal extent restricted in the topographic lows confined by structural highs due to mud diapiric uplifting and thrust faulting. Kaoping Fan shows an asymmetrical triangular fan-shaped bathymetric feature elongated in an NW-SE direction but with a strong skew toward the east. The fan deposits consist of three main seismic facies: layered high-amplitude reflections in the upper section and stratified, parallel to sub-parallel low-amplitude reflections with variable continuity and channel fill facies in the lower section. In the absence of ground-truthing from core data, the seismic patterns suggest that the Kaoping Fan recorded the onset of channelized and over-bank deposits in the lower part and layered turbidite facies in the upper part subsequently. The development of the Kaoping Fan can be divided into three stages in terms of canyon activities and fan-feeding processes. Initially, Kaoping Fan was mainly fed by a point sediment source at the apex of the fan. Secondly, Kaoping Fan was maintained as a slope fan, mainly fed laterally by over-spilled sediments from the canyon. Finally, the Kaoping Canyon completely passes through the Kaoping Fan and supplies over-spilled sediments laterally, forming a transient fan with canyon incision and sediment by-passing. The accumulation of sediments and the growth of Kaoping Fan are primarily controlled by inherited complex paleo-topography and the evolution of Kaoping Canyon. The sediment delivery system of Kaoping Fan is characterized by lateral supply of over-spilling sediment flows and sediments bypassing to and beyond the base of slope. The Kaoping Fan together

  12. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  13. Growth, Failure, and Erosion of Submarine Channel Levees on the Upper Mississippi Fan, Gulf of Mexico

    Science.gov (United States)

    Sawyer, D. E.; Flemings, P. B.; Nikolinakou, M. A.

    2011-12-01

    Late Pleistocene channel levees on the Mississippi Fan failed repeatedly along deep-seated listric faults. These growth faults begin at the top of the levee, as much as a kilometer away from the channel axis. They plunge 150-200 meters downward reaching their deepest point halfway towards the channel axis (0.5 km) along the base of a regional sand unit. They then rise toward the channel axis where they emerge. The erosion of toe-thrust material coupled with levee growth, promoted a dynamic equilibrium: turbidity currents flushed the channel axis and deposited new levee on the margins, which induced further displacement into the channel. With a geomechanical model we show that deep-seated failure occurred by undrained loading of an underlying low permeability mudstone. Excess pore pressure formed a low-strength layer that localized the detachment at the base of a regional sand. Our results show that deep-seated failure is expected when levee systems form above regional sand bodies that were deposited rapidly above low permeability mudstone. Furthermore, the presence of this failure style in channel-levee systems is a strong indicator that overpressures and low effective stresses were present during formation and thus record paleo-pressures. Understanding these systems is critical for the design of safe well penetrations, predicting hydraulic connectivity of deepwater channel sands, and the growth of submarine channel-levee systems. This study illuminates the linkages between sedimentation, erosion, and the mechanical stability of levees in submarine channel systems.

  14. Miocene denudation history of Himalaya deduced from IODP Exp. 354 Bengal Fan

    Science.gov (United States)

    Kohki, Y.; Cruz, J. W.; Osaki, A.; Manoj, M. C.; Hatano, N.; France-Lanord, C.; Spiess, V.; Klaus, A.

    2017-12-01

    The submarine Bengal Fan is the largest submarine fan on Earth and covers the whole Bay of Bengal. The sediments are fed by the Ganges and Brahmaputra rivers reflecting India-Asia plate collision. The sediments recovered from IODP Expedition 354 Bengal Fan record the uplift history of the Himalayan orogenic system. We examined the chemical composition of detrital garnets in the Miocene deposits from Site U1451, where drilling reached to basal horizon of the fan deposits, in order to reveal the detailed denudation history of Himalayan metamorphic rocks. For this purpose, the comparison of chemical composition between detrital garnet in the Bengal Fan deposits and metamorphic garnet in Himalayan metamorphic rocks was carried out. The chemical composition of the metamorphic garnet from Higher Himalayan Crystalline (HHC) in Karnali and Kaligandaki areas, western Nepal, was examined for chemical reference to detrital garnets in Bengal Fan. The metamorphic garnets in "Formation I (Le Fort, 1975)" in HHC are characterized by almandine-rich garnet with high pyrope content. Also, the garnets in "Formation II" are remarked by two types of garnets, i.e., almandine-rich and grandite-rich garnets. Meanwhile, the composition of garnets in "Formation III" is almandine-rich garnet with low pyrope content. In the Bengal Fan deposits, the characteristic garnets, which show the similarity to the metamorphic garnet in HHC, is not found from the Lower Miocene (Burdigalian) deposits. In the Middle and Upper Miocene deposits, the almandine-rich garnets characteristic in Formation I, are normally included. At the basal part of the Middle Miocene (Langhian), almandine-rich garnets with low pyrope content, suggesting the derivation from Formation III, are remarkable. The grandite-rich garnets from Formation II are sporadically found In the Upper Miocene deposits (Tortonian-Messinian). Above chemical comparison between the detrital garnets in Bengal Fan and metamorphic garnets from HHC

  15. Source of marine turbidites on the Andaman-Nicobar Islands: Nicobar Fan, Bengal Fan or paleo-Irrawaddy?

    Science.gov (United States)

    Carter, A.

    2017-12-01

    Marine turbidites from an axially fed submarine fan are intermittently exposed across the entire chain of the Andaman-Nicobar Islands. Known as the Andaman Flysch (AF) and loosely assigned to the Paleogene, it has been proposed that these rocks are sourced from the Himalaya and thus provide a unique window into early stages of orogenesis. Where the turbidites came from has been subject to debate; they are either Bengal Fan or forearc deposits cut off from the Bengal Fan and possibly sourced from the Irrawaddy delta. Following recent IODP drilling in the eastern Indian Ocean (Expeditions 354 and 362) it is now possible resolve this by comparing the provenance of AF turbidites with the Bengal and Nicobar Fans. The Andaman Flysch can be traced as detached outcrops all along the western side of the main islands of Andaman over a strike length of more than 200 km. Exposures along the east coast are confined to South Andaman Island. Petrographic and geochemical data show a common continental crust signal with minor contributions from arc material. But, there are also differences whereby west coast sandstones show significantly higher quartz content and less feldspars and rock fragments. Staurolite is also present in all samples from the western side, but is absent from east coast samples. Both detrital zircon U-Pb and Bulk rock Nd data record the presence of arc material likely from Myanmar. Detrital zircon data from the Nicobar Fan match the Andaman turbidites and indicate sources from the Greater and Tethyan Himalaya mixed with sediment from the Burmese arc. Transfer of Irrawaddy derived sediment to the Nicobar Fan is ruled out as sediment transfer across the fore-arc to the west was restricted by the then exposed Yadana and M8 highs in the north and the Sewell and Alcock Rises to the south. Sediment isopachs of the Martaban back arc basin, the main north-south-oriented depocentre in the Andaman Sea related to the development of the Thanlwin -Irrawaddy delta system

  16. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    Science.gov (United States)

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  17. The down canyon evolution of submarine sediment density flows

    Science.gov (United States)

    Parsons, D. R.; Barry, J.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Maier, K. L.; McGann, M.; Paull, C. K.; O'Reilly, T. C.; Rosenberger, K. J.; Simmons, S.; Sumner, E. J.; Talling, P.; Xu, J.

    2017-12-01

    Submarine density flows, known as turbidity currents, transfer globally significant volumes of terrestrial and shelf sediments, organic carbon, nutrients and fresher-water into the deep ocean. Understanding such flows has wide implications for global organic carbon cycling, the functioning of deep-sea ecosystems, seabed infrastructure hazard assessments, and interpreting geological archives of Earth history. Only river systems transport comparable volumes of sediment over such large areas of the globe. Despite their clear importance, there are remarkably few direct measurements of these oceanic turbidity currents in action. Here we present results from the multi-institution Coordinated Canyon Experiment (CCE) which deployed multiple moorings along the axis of Monterey Canyon (offshore California). An array of six moorings, with downward looking acoustic Doppler current profilers (ADCP) were positioned along the canyon axis from 290 m to 1850 m water depth. The ADCPs reveal the internal flow structure of submarine density flows at each site. We use a novel inversion method to reconstruct the suspended sediment concentration and flow stratification field during each event. Together the six moorings provide the first ever views of the internal structural evolution of turbidity current events as they evolve down system. Across the total 18-month period of deployment at least 15 submarine sediment density flows were measured with velocities up to 8.1 m/sec, with three of these flows extending 50 kms down the canyon beyond the 1850 m water depth mooring. We use these novel data to highlight the controls on ignition, interval structure and collapse of individual events and discuss the implications for the functioning and deposits produced by these enigmatic flows.

  18. Late Cretaceous Sub-Marine Fan System in Batain Mélange Zone, the Fayah Formation in Northeastern Oman

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmed Abbasi

    2014-06-01

    , possibly as olistostrome formed due to submarine slumping and sliding. The turbidite lithofacies association is comprised of monotonous grayish-green to brown coloured clays tens of meters thick interbedded with thin, clean, well-sorted sandstone. The Interbedded sandstone and shale lithofacies association is comprised of a half to one meter thick cross-bedded, burrowed arkosic sandstone and plane laminated shale. The sandstone constitutes about 25% of the association with ripple lamination in the upper part of the unit indicating a fining-upward trend. Dewatering structures are common. This association constitutes the upper 100m of the formation. These sediments were deposited in shallow water conditions by channelized flows. Based on the lithofacies associations described above, especially the dominance of debris-flow units and turbidites, the greater part of the Fayah Formation are interpreted as having been deposited under a sub-marine fan setting. Only the upper part of the formation was deposited in a shallow water setting before the onset of overlying carbonate deposits. The sub-marine fan system was active during the last stages of the Tethys Ocean closure at the time of onset of the Batain nappe.

  19. Go big or die out: Bifurcation and bimodality in submarine sediment flow behaviour

    Science.gov (United States)

    Talling, P.; Paull, C. K.; Lintern, G.; Gwiazda, R.; Cartigny, M.; Hughes Clarke, J. E.; Xu, J.; Clare, M. A.; Parsons, D. R.; Simmons, S.; Maier, K. L.; Gales, J. A.; Hage, S.; McGann, M.; Pope, E.; Rosenberger, K. J.; Stacey, C.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Chapplow, N.; Vendettuoli, D.

    2017-12-01

    Submarine flows of sediment (turbidity currents) flush globally significant volumes of sediment and organic carbon into deep-sea basins. These flows create the largest sediment accumulations on Earth, which hold valuable oil and gas reserves. These flows affect global carbon burial, how deep-sea ecosystems function, and pose a hazard to offshore infrastructure. Only river systems transport such large amounts of sediment across such long distances. However, there are remarkably few direct measurements from active submarine flows, which is a stark contrast to >1 million direct observations from rivers. Here we present unusually detailed information on frequency, power and runout distance of multiple submarine flows at two contrasting locations. The first data set comes from Monterey Canyon, offshore California, which is fed by littoral cells. The second site is a river-fed delta in Bute Inlet, British Columbia. In both cases, the timing and runout distance of submarine flows was documented using instruments on multiple moorings placed along the 50-km long flow pathway. A striking observation is that flow behaviour and runout is strongly bimodal in both locations. Flows tend to either dissipate rapidly, or runout through the entire mooring arrays. We thus test whether i) the character of short or long runout flows can be distinguished at the first mooring and ii) whether long and short runout flows have different triggers. It has been proposed that submarine flows have two modes of behaviour; either eroding and accelerating, or depositing and dissipating. These field data support such a view of bifurcation and bimodality in flow behaviour. However, some short runout flows resemble their longer runout cousins at the first mooring, and there is no clear relationship between flow trigger and runout. Thus, some flows reach a point where their character is no longer dependent on their initial trigger or initial structure, but on factors acting along the flow pathway.

  20. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling

    NARCIS (Netherlands)

    Cartigny, M.; Postma, G.; Berg, J.H. van den; Mastbergen, D.R.

    2011-01-01

    Although sediment waves cover many levees and canyon floors of submarine fan systems, their relation to the turbidity currents that formed them is still poorly understood. Over the recent years some large erosional sediment waves have been interpreted as cyclic steps. Cyclic steps are a series of

  1. Quantifying relief on alluvial fans using airborne lidar to reveal patterns of sediment accumulation

    Science.gov (United States)

    Morelan, A. E., III; Oskin, M. E.

    2017-12-01

    We present a method of quantifying detailed surface relief on alluvial fans from high-resolution topography. Average slope and curvature of the fan are used together to empirically derive an idealized, radially symmetric fan surface, from which we compute residual topography. Maps produced using this technique highlight spatial patterns of fan deposition and avulsion. Regions of high residual topography reveal active and abandoned sediment lobes accumulated from recent depositional events, often with well-defined channels at their apex. Preliminary observations suggest that surface relief is uniform across a collection of fans in a given region and source lithology. Alluvial fans with granitic catchment lithologies in eastern California (n=12), each with varying source catchment size and mean fan slope, all show relief of around 4 meters. A collection of fans from the Carrizo Plain in central California (n=12), with source catchments set within Miocene marine and nonmarine sedimentary rocks, show significantly lower relief values around 2 meters. We hypothesize that particle grain size determines this contrasting relief through its control on the thickness of fan-building debris flows. In both settings we find that sediment lobes tend to extend toward the fan toe. This pattern supports a process, observed in analog experiments, of fan deposition dominated by back-filling and overtopping of distributary channels by debris-flows.

  2. A three-dimensional stratigraphic model for aggrading submarine channels based on laboratory experiments, numerical modeling, and sediment cores

    Science.gov (United States)

    Limaye, A. B.; Komatsu, Y.; Suzuki, K.; Paola, C.

    2017-12-01

    Turbidity currents deliver clastic sediment from continental margins to the deep ocean, and are the main driver of landscape and stratigraphic evolution in many low-relief, submarine environments. The sedimentary architecture of turbidites—including the spatial organization of coarse and fine sediments—is closely related to the aggradation, scour, and lateral shifting of channels. Seismic stratigraphy indicates that submarine, meandering channels often aggrade rapidly relative to lateral shifting, and develop channel sand bodies with high vertical connectivity. In comparison, the stratigraphic architecture developed by submarine, braided is relatively uncertain. We present a new stratigraphic model for submarine braided channels that integrates predictions from laboratory experiments and flow modeling with constraints from sediment cores. In the laboratory experiments, a saline density current developed subaqueous channels in plastic sediment. The channels aggraded to form a deposit with a vertical scale of approximately five channel depths. We collected topography data during aggradation to (1) establish relative stratigraphic age, and (2) estimate the sorting patterns of a hypothetical grain size distribution. We applied a numerical flow model to each topographic surface and used modeled flow depth as a proxy for relative grain size. We then conditioned the resulting stratigraphic model to observed grain size distributions using sediment core data from the Nankai Trough, offshore Japan. Using this stratigraphic model, we establish new, quantitative predictions for the two- and three-dimensional connectivity of coarse sediment as a function of fine-sediment fraction. Using this case study as an example, we will highlight outstanding challenges in relating the evolution of low-relief landscapes to the stratigraphic record.

  3. Controls on alluvial fans morphology

    Science.gov (United States)

    Delorme, P.; Devauchelle, O.; Lajeunesse, E.; Barrier, L.; Métivier, F.

    2017-12-01

    Using laboratory experiments, we investigate the influence of water and sediment discharges on the morphology of an alluvial fan. In our flume, a single-thread laminar river deposits corundum sand (0.4 mm) into a conical fan. We record the fan progradation with top-view images, and measure its shape using the deformation of a Moiré pattern. The fan remains virtually self-affine as it grows, with a nearly constant slope. We find that, when the sediment discharge is small, the longitudinal slope of the fan remains close to that of a river at the threshold for sediment transport. A higher sediment discharge causes the fan's slope to depart from the threshold value. Due to the downstream decrease of the sediment load, this slope gets shallower towards the fan's toe. This mechanism generates a slightly concave fan profile. This suggests that the proximal slope of an alluvial fan could be a proxy for the sediment flux that feeds the fan.Finally, we discuss the applicability of these results to natural systems.

  4. A Pleistocene coastal alluvial fan complex produced by Middle Pleistocene glacio-fluvial processes

    Science.gov (United States)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip; Giglio, Federico; Del Bianco, Fabrizio

    2014-05-01

    A coarse-grained alluvial fan sequence at Lipci, Kotor Bay, in western Montenegro, provides a sedimentary record of meltwater streams draining from the Orjen Massif (1,894 m a.s.l.) to the coastal zone. At Lipci sedimentary evidence and U-series ages have been used alongside offshore bathymetric imagery and seismic profiles to establish the size of the fan and constrain the nature and timing of its formation. Establishing the depositional history of such coastal fans is important for our understanding of cold stage sediment flux from glaciated uplands to the offshore zone, and for exploring the impact of sea level change on fan reworking. There is evidence of at least four phases of Pleistocene glaciation on the Orjen massif, which have been U-series dated and correlated to MIS 12, MIS 6, MIS 5d-2 and the Younger Dryas. A series of meltwater channels delivered large volumes of coarse- and fine-grained limestone sediment from the glaciated uplands into the Bay of Kotor. At the southern margin of the Orjen massif, a series of large (>700 m long) alluvial fans has developed. Some of these extend offshore for up to 600 m. Lipci fan lies downstream of end moraines in the valley immediately above, which were formed by an extensive outlet glacier of the Orjen ice cap during MIS 12. The terrestrial deposits are part of the fan apex (50 m a.s.l.) that lies at the foot of a steep bedrock channel, but the majority of the fan is now more than 25 m below sea level. The terrestrial fan sediments are strongly cemented by multiple generations of calcite precipitates: the oldest U-series ages are infinite indicating that the fan is >350 ka in age. These ages are in agreement with alluvial sedimentary evidence and U-series ages from other fluvial units on Mount Orjen. The terrestrial portion of the Lipci fan surface contains several channels. These are well preserved due to cementation with calcium carbonate. Submarine imagery indicates that the now submerged portion of the fan also

  5. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying Depression, Bohai Bay Basin, east China

    Science.gov (United States)

    Liu, Jianping; Xian, Benzhong; Wang, Junhui; Ji, Youliang; Lu, Zhiyong; Liu, Saijun

    2017-12-01

    The sedimentary architectures of submarine/sublacustrine fans are controlled by sedimentary processes, geomorphology and sediment composition in sediment gravity flows. To advance understanding of sedimentary architecture of debris fans formed predominantly by debris flows in deep-water environments, a sub-lacustrine fan (Y11 fan) within a lacustrine succession has been identified and studied through the integration of core data, well logging data and 3D seismic data in the Eocene Dongying Depression, Bohai Bay Basin, east China. Six types of resedimented lithofacies can be recognized, which are further grouped into five broad lithofacies associations. Quantification of gravity flow processes on the Y11 fan is suggested by quantitative lithofacies analysis, which demonstrates that the fan is dominated by debris flows, while turbidity currents and sandy slumps are less important. The distribution, geometry and sedimentary architecture are documented using well data and 3D seismic data. A well-developed depositional lobe with a high aspect ratio is identified based on a sandstone isopach map. Canyons and/or channels are absent, which is probably due to the unsteady sediment supply from delta-front collapse. Distributary tongue-shaped debris flow deposits can be observed at different stages of fan growth, suggesting a lobe constructed by debrite tongue complexes. Within each stage of the tongue complexes, architectural elements are interpreted by wireline log motifs showing amalgamated debrite tongues, which constitute the primary fan elements. Based on lateral lithofacies distribution and vertical sequence analysis, it is proposed that lakefloor erosion, entrainment and dilution in the flow direction lead to an organized distribution of sandy debrites, muddy debrites and turbidites on individual debrite tongues. Plastic rheology of debris flows combined with fault-related topography are considered the major factors that control sediment distribution and fan

  6. Geo-hazard by sediment mass movements in submarine canyons

    Science.gov (United States)

    Ghaith, Afif; Fakhri, Milad; Ivaldi, Roberta; Ciavola, Paolo

    2017-04-01

    Submarine mass movements and their consequences are of major concern for coastal communities and infrastructures but also for the exploitation and the development of seafloor resources. Elevated awareness of the need for better understanding of the underwater mass movement is coupled with great advances in underwater mapping technologies over the past two decades. The seafloor in the Nahr Ibrahim and Saida regions (Lebanon) is characterized by deep canyons, reaching one thousand meters depths in proximity of the coast. Signs of submarine mass movement instability related to these canyons create a connection between shallow and deep water. The presence of these canyons in a tectonically active area generates a particular drained mechanism to the sediment in form of mass movement and slumping. Identification of potential areas where slope movements could be triggered requires data with high spatial resolution. Since this area is poorly explored, in the framework of an international project between Lebanese Navy, Lebanese National Center for Marine Sciences, University of Ferrara and Italian Hydrographic Institute, we analyse the morpho-bathymetric and sedimentological characters of the coastal and shelf sectors. Multibeam echosounder and sub-bottom profiler acoustic systems calibrated with ground truths (sediment grab and core samples) allow us to characterize the nature of seafloor and sub-seafloor with particular detail to the geotechnical properties of sediments and high resolution seismic stratigraphy of the shallow layers. The detection of particular undersea features provides detail maps which are in support to littoral morpho-dynamics, coastal transport and sediment budget. Multilayer hydro-oceanographic map, referring to the seafloor dynamics in connection with deep water environment and drainage system, in accordance to the International Hydrographic Standards and nautical supports, are produced. This high resolution multibeam bathymetry dataset, integrated

  7. On the geotechnical characterisation of the polluted submarine sediments from Taranto.

    Science.gov (United States)

    Vitone, Claudia; Federico, Antonio; Puzrin, Alexander M; Ploetze, Michael; Carrassi, Elettra; Todaro, Francesco

    2016-07-01

    This paper reports the results of the first geomechanical laboratory experiments carried out on the polluted submarine clayey sediments of the Mar Piccolo in Taranto (South of Italy). The study had to face with extreme difficulties for the very soft consistency of the sediments and the contaminants. The mineralogy, composition and physical properties of the sediments were analysed, along with their compression and shearing behaviour. The investigation involved sediments up to about 20 m below the seafloor, along three vertical profiles in the most polluted area of the Mar Piccolo, facing the Italian Navy Arsenal. The experimental results were used to derive a preliminary geotechnical model of the site, necessary for the selection and design of the most sustainable in situ mitigation solutions. Moreover, the experimental data reveal that the clayey sediments of the most polluted top layer do not follow the classical geotechnical correlations for normally consolidated deposits. This seems to open interesting perspectives about the effects of pollutants on the geotechnical behaviour of the investigated sediments.

  8. Laboratory alluvial fans in one dimension.

    Science.gov (United States)

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported.

  9. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.

    Science.gov (United States)

    Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-03-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

  10. Geomorphic process fingerprints in submarine canyons

    Science.gov (United States)

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  11. Climate and sea level controlled sedimentation processes in two submarine canyons off NW-Africa

    OpenAIRE

    Pierau, Roberto

    2008-01-01

    This study focuses on the trigger mechanisms of gravity-driven sediment transport in two submarine canyons at the passive continental margin off NW-Africa during the past 240 kyr. The sedimentary records allow to determine the turbidite emplacement times based on high resolution age models. The sediment textures of the turbidites were studied by using X-ray radiographies. The sedimentary properties like the terrigenous silt size distribution and XRF-core scanning element data allow to identif...

  12. Morphodynamic Model of Submarine Canyon Incision by Sandblasting

    Science.gov (United States)

    Zhang, L.; Parker, G.; Izumi, N.; Cartigny, M.; Li, T.; Wang, G.

    2017-12-01

    Submarine canyons are carved by turbidity currents under the deep sea. As opposed to subaerial canyons, the relevant processes are not easy to observe directly. Turbidity currents are bottom-hugging sediment gravity flows of that can incise or deposit on the seafloor to create submarine canyons or fans. The triggers of turbidity currents can be storms, edge waves, internal waves, canyon wall sapping, delta failure, breaching and hyperpycnal flows. The formation and evolution mechanisms of submarine canyons are similar to those of subaerial canyons, but have substantial differences. For example, sandblasting, rather than wear due to colliding gravel clasts is more likely to be the mechanism of bedrock incision. Submarine canyons incise downward, and often develop meander bends and levees within the canyon, so defining "fairways". Here we propose a simple model for canyon incision. The starting point of our model is the Macro Roughness Saltation Abrasion Alluviation model of Zhang et al. [2015], designed for bedrock incision by gravel clasts in mixed bedrock-alluvial rivers. We adapt this formulation to consider sandblasting as a means of wear. We use a layer-averaged model for turbidity current dynamics. The current contains a mixture of mud, which helps drive the flow but which does not cause incision, and sand, which is the agent of incision. We show that the model can successfully model channel downcutting, and indeed illustrate the early formation of net incisional cyclic steps, i.e. upstream-migrating undulations on the bed associated with transcritical (in the Froude sense) flow. These steps can be expected to abet the process of incision.

  13. Lithogenic fluxes in the Bay of Bengal measured by sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; VijayKumar, B.; Parthiban, G.; Ittekkot, V.; Nair, R.R.

    -Sea Research I, Vol. 44, No. 5, pp. 793410, 1997 0 1997 Elsevier Science Ltd PII: S0967-0637(96)00117-3 All tights reserved. Printed in Great Britain 09674x37/97 917.00+0.00 Lithogenic fluxes in the Bay of Bengal measured by sediment traps V. RAMASWAMY,* B... of amorphous silica in marine sediments. Journal of Sedimentary Petrology, 50, 215-225. Emmel, F. J. and Curray, J. R. (1984) The Bengal submarine fan, northeastern Indian Ocean. Geo-Marine Letters, 3, 119-124. Goldberg, E. D. and Griffin, J. J. (1970...

  14. Assessment of Hg Pollution Released from a WWII Submarine Wreck (U-864) by Hg Isotopic Analysis of Sediments and Cancer pagurus Tissues.

    Science.gov (United States)

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Maage, Amund; Frantzen, Sylvia; Valdersnes, Stig; Vanhaecke, Frank

    2016-10-04

    Hg pollution released from the U-864 submarine sunk during WWII and potential introduction of that Hg into the marine food chain have been studied by a combination of quantitative Hg and MeHg determination and Hg isotopic analysis via cold vapor generation multicollector inductively coupled plasma-mass spectrometry (CVG-MC-ICP-MS) in sediment and Cancer pagurus samples. The sediment pollution could be unequivocally linked with the metallic Hg present in the wreck. Crabs were collected at the wreck location and 4 nmi north and south, and their brown and claw meat were analyzed separately. For brown meat, the δ 202 Hg values of the individuals from the wreck location were shifted toward the isotopic signature of the sediment and, thus, the submarine Hg. Such differences were not found for claw meat. The isotope ratio results suggest direct ingestion of metallic Hg by C. pagurus but do not offer any proof for any other introduction of the submarine Hg into the marine food chain.

  15. Sedimentary processes of the lower Monterey Fan channel and channel-mouth lobe

    Science.gov (United States)

    Klaucke, I.; Masson, D.G.; Kenyon, Neil H.; Gardner, J.V.

    2004-01-01

    The distribution of deposits, sediment transport pathways and processes on the lower Monterey Fan channel and channel-mouth lobe (CML) are studied through the integration of GLORIA and TOBI sidescan sonar data with 7-kHz subbottom profiler records and sediment cores for ground-truthing. The lower Monterey channel is characterised by an up to 30-m-deep channel with poorly developed levees and alternating muddy and silty muddy overbank deposits. The channel is discontinuous, disappearing where gradients are less than about 1:350. Ground-truthing of the large CML shows that the entire CML is characterised by widespread deposits of generally fine sand, with coarser sand at the base of turbidites. Sand is particularly concentrated in finger-like areas of low-backscatter intensity and is interpreted as the result of non-turbulent sediment-gravity flows depositing metres thick massive, fine sand. TOBI sidescan sonar data reveal recent erosional features in the form of scours, secondary channels, large flow slides, and trains of blocks at the distal end of the CML. Erosion is probably related to increasing gradient as the CML approaches Murray Fracture zone and to differential loading of sandy submarine fan deposits onto pelagic clays. Reworking of older flow slides by sediment transport processes on the lobe produces trains of blocks that are several metres in diameter and aligned parallel to the flow direction. ?? 2004 Elsevier B.V. All rights reserved.

  16. Anaerobic methanotrophic communities thrive in deep submarine permafrost.

    Science.gov (United States)

    Winkel, Matthias; Mitzscherling, Julia; Overduin, Pier P; Horn, Fabian; Winterfeld, Maria; Rijkers, Ruud; Grigoriev, Mikhail N; Knoblauch, Christian; Mangelsdorf, Kai; Wagner, Dirk; Liebner, Susanne

    2018-01-22

    Thawing submarine permafrost is a source of methane to the subsurface biosphere. Methane oxidation in submarine permafrost sediments has been proposed, but the responsible microorganisms remain uncharacterized. We analyzed archaeal communities and identified distinct anaerobic methanotrophic assemblages of marine and terrestrial origin (ANME-2a/b, ANME-2d) both in frozen and completely thawed submarine permafrost sediments. Besides archaea potentially involved in anaerobic oxidation of methane (AOM) we found a large diversity of archaea mainly belonging to Bathyarchaeota, Thaumarchaeota, and Euryarchaeota. Methane concentrations and δ 13 C-methane signatures distinguish horizons of potential AOM coupled either to sulfate reduction in a sulfate-methane transition zone (SMTZ) or to the reduction of other electron acceptors, such as iron, manganese or nitrate. Analysis of functional marker genes (mcrA) and fluorescence in situ hybridization (FISH) corroborate potential activity of AOM communities in submarine permafrost sediments at low temperatures. Modeled potential AOM consumes 72-100% of submarine permafrost methane and up to 1.2 Tg of carbon per year for the total expected area of submarine permafrost. This is comparable with AOM habitats such as cold seeps. We thus propose that AOM is active where submarine permafrost thaws, which should be included in global methane budgets.

  17. Insights from field observations into controls on flow front speed in submarine sediment flows

    Science.gov (United States)

    Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.

    2017-12-01

    Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.

  18. Undergraduate Collaborative Research: Distribution of Plant Wax Biomarkers in Miocene-age Sediments from the Bengal Fan (IODP Exp 354)

    Science.gov (United States)

    Cho, P. G.; Vidal, E.; Paek, J. H.; Borsook, A.; Lee, W.; Wu, M. S.; Ponton, C.; Galy, V.; Feakins, S. J.

    2017-12-01

    Our research aims to understand past climatic variability in the monsoon-influenced Ganges-Brahmaputra catchment as recorded by plant wax molecules exported and sequestered in the sediments of the Bengal Fan. Samples from the late Miocene were selected from cores retrieved by the IODP (International Ocean Discovery Program) Expedition 354 that recently drilled the central Bengal Fan along a transect at 8°N. Fan sedimentation includes sand, silt, and clay mostly derived from the Himalayan range via turbiditic transport within the Bengal fan. Sedimentation is highly episodic in the fan, but a transect of drilled sites provides a record of terrigenous sediment exported and buried over the last 20 million years. A team of researchers at the University of Southern California worked to collectively process 468 samples for compound specific biomarker identification and quantification. The samples derive from Site U1451 and U1455 ranging from 0 to 1097m depth (CSF-A). Total organic carbon ranges from 0.04-0.84%. To date, 300 samples have been solvent-extracted and prepared for plant wax analyses. Long chain n-alkanoic acids and n-alkanes were identified and quantified using GC-MS and GC-FID, respectively. In the samples quantified so far, we find ΣC24-34 n-alkanoic acid concentrations from 0.07-14.16 μg/g of dry sediment and ΣC25-35 n-alkanes from 0.04-4.61 μg/g. Concentrations of C30 n-alkanoic acid range from 0.01-1.92 μg/g of dry sediment and of C33 n-alkane from lipid extract was analyzed at the Woods Hole Oceanographic Institution using a GC-TOF-MS. Overall, these extracts are dominated by plant-wax compounds and other diagnostic terrestrial molecules (e.g. plant terpenoids and sterols). The results from this effort contribute to a larger mission to reconstruct vegetation and climate change, over the past 20 million years in the core of the monsoon-influenced region, through compound-specific isotope analyses of the plant waxes extracted from these samples.

  19. The Nicobar Fan and sediment provenance: preliminary results from IODP Expedition 362, NE Indian Ocean

    Science.gov (United States)

    Pickering, K. T.; Pouderoux, H.; Milliken, K. L.; Carter, A.; Chemale, F., Jr.; Kutterolf, S.; Mukoyoshi, H.; Backman, J.; McNeill, L. C.; Dugan, B.; Expedition 362 Scientists, I.

    2017-12-01

    IODP Expedition 362 (6 Aug-6 Oct 2016) was designed to drill the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction system and to understand the origin of the Mw 9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004 linked to unexpectedly shallow seismogenic slip and a distinctive forearc prism structure (1,2,3). Two sites, U1480 and U1481 on the Indian oceanic plate 250 km SW of the subduction zone on the eastern flank of the Ninetyeast Ridge, were drilled, cored, and logged to a maximum depth of 1500 m below seafloor. The input materials of the north Sumatran subduction zone are a thick (up to 4-5 km) succession mainly of Bengal-Nicobar Fan siliciclastic sediments overlying a mainly pelagic/hemipelagic succession, with igneous and volcaniclastic material above oceanic basement. At Sites U1480 and U1481, above the igneous basement ( 60-70 Ma), the sedimentary succession comprises deep-marine tuffaceous deposits with igneous intrusions, overlain by pelagic deposits, including chalk, and a thick Nicobar Fan succession of sediment gravity-flow (SGF) deposits, mainly turbidites and muddy debrites. The Nicobar Fan deposits (estimated total volume of 9.2 x 106 km3: 3) represent >90% of the input section at the drill sites and many of the beds are rich in plant material. These beds are intercalated with calcareous clays. Sediment accumulation rates reached 10-40 cm/kyr in the late Miocene to Pliocene, but were much reduced since 1.6 Ma. The onset of Nicobar Fan deposition at the drill sites ( 9.5 Ma; 2) is much younger than was anticipated precruise ( 30-40 Ma), based on previous regional analyses of Bengal-Nicobar Fan history and presumptions of gradual fan progradation. Our preliminary results suggest that the Nicobar Fan was active between 1.6 and 9.5 Ma, and possibly since 30 Ma (3). The observed mineralogical assemblage of the SGF deposits and zircon age dating are consistent with

  20. What threat do turbidity currents and submarine landslides pose to submarine telecommunications cable infrastructure?

    Science.gov (United States)

    Clare, Michael; Pope, Edward; Talling, Peter; Hunt, James; Carter, Lionel

    2016-04-01

    The global economy relies on uninterrupted usage of a network of telecommunication cables on the seafloor. These submarine cables carry ~99% of all trans-oceanic digital data and voice communications traffic worldwide, as they have far greater bandwidth than satellites. Over 9 million SWIFT banks transfers alone were made using these cables in 2004, totalling 7.4 trillion of transactions per day between 208 countries, which grew to 15 million SWIFT bank transactions last year. We outline the challenge of why, how often, and where seafloor cables are broken by natural causes; primarily subsea landslides and sediment flows (turbidity currents and also debris flows and hyperpycnal flows). These slides and flows can be very destructive. As an example, a sediment flow in 1929 travelled up to 19 m/s and broke 11 cables in the NE Atlantic, running out for ~800 km to the abyssal ocean. The 2006 Pingtung earthquake triggered a sediment flow that broke 22 cables offshore Taiwan over a distance of 450 km. Here, we present initial results from the first statistical analysis of a global database of cable breaks and causes. We first investigate the controls on frequency of submarine cable breaks in different environmental and geological settings worldwide. We assess which types of earthquake pose a significant threat to submarine cable networks. Meteorological events, such as hurricanes and typhoons, pose a significant threat to submarine cable networks, so we also discuss the potential impacts of future climate change on the frequency of such hazards. We then go on to ask what are the physical impacts of submarine sediment flows on submerged cables? A striking observation from past cable breaks is sometimes cables remain unbroken, whilst adjacent cables are severed (and record powerful flows travelling at up to 6 m/s). Why are some cables broken, but neighbouring cables remain intact? We provide some explanations for this question, and outline the need for future in

  1. Monitoring of the nuclear submarine Komsomolets

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, Hilde E.; Flo, Janita K.; Liebig, Penny L. [Institute of Marine Research, P. O. Box 1870 Nordnes, N-5817 Bergen (Norway); Gaefvert, Torbjoern; Rudjord, Anne Liv [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Gwynn, Justin P. [Norwegian Radiation Protection Authority, The Fram Centre, N-9296 Tromsoe (Norway)

    2014-07-01

    The Soviet nuclear submarine Komsomolets sank on the 7 April 1989, 180 km southwest of Bear Island in the Norwegian Sea to a depth of about 1655 m. The submarine contains one nuclear reactor containing long-lived radionuclides such as cesium-137 ({sup 137}Cs) along with other fission and activation products, in addition to 2 mixed uranium/plutonium nuclear warheads containing weapons grade plutonium. Although several model studies have shown that a radioactive leakage from Komsomolets will have insignificant impact on fish and other marine organisms, there are still public concerns about the condition of the submarine and the potential for radioactive leakage. In order to document the contamination levels and to meet public concerns, monitoring of radioactive contamination in the area adjacent to the submarine has been ongoing since 1993. Samples of bottom seawater and sediments have been collected annually by the Institute of Marine Research (IMR) and have been analysed for {sup 137}Cs and plutonium-239,240 ({sup 239,240}Pu). So far, activity concentrations in the samples have been comparable to levels found in other samples from the Norwegian and Barents Seas. During sampling from R/V 'G. O. Sars' in April 2013, an area of about 1 km{sup 2} of the seabed around Komsomolets was mapped to precisely locate the submarine using a Kongsberg EM302 multibeam echo sounder, a Simrad EK60 single beam echo sounder and an Olex 3D bottom-mapping system. For sediment sampling, a Simrad MST342 mini-transponder was attached to a Smoegen box corer to allow for precise positioning of the corer. With the aid of the Kongsberg HiPAP (High Precision Acoustic Positioning) system, 4 box cores were collected around the submarine at a distance of 10 to 20 m. In addition, one box core was collected from a reference station about 100 m upstream of the submarine. Surface sediments and sediment cores were collected from the box cores taken at each sampling location. Sediment cores

  2. Comparison of Soil Models in the Thermodynamic Analysis of a Submarine Pipeline Buried in Seabed Sediments

    Directory of Open Access Journals (Sweden)

    Magda Waldemar

    2017-12-01

    Full Text Available This paper deals with mathematical modelling of a seabed layer in the thermodynamic analysis of a submarine pipeline buried in seabed sediments. The existing seabed soil models: a “soil ring” and a semi-infinite soil layer are discussed in a comparative analysis of the shape factor of a surrounding soil layer. The meaning of differences in the heat transfer coefficient of a soil layer is illustrated based on a computational example of the longitudinal temperaturę profile of a -kilometer long crude oil pipeline buried in seabed sediments.

  3. Cascadia Onshore-Offshore Site Response, Submarine Sediment Mobilization, and Earthquake Recurrence

    Science.gov (United States)

    Gomberg, J.

    2018-02-01

    Local geologic structure and topography may modify arriving seismic waves. This inherent variation in shaking, or "site response," may affect the distribution of slope failures and redistribution of submarine sediments. I used seafloor seismic data from the 2011 to 2015 Cascadia Initiative and permanent onshore seismic networks to derive estimates of site response, denoted Sn, in low- and high-frequency (0.02-1 and 1-10 Hz) passbands. For three shaking metrics (peak velocity and acceleration and energy density) Sn varies similarly throughout Cascadia and changes primarily in the direction of convergence, roughly east-west. In the two passbands, Sn patterns offshore are nearly opposite and range over an order of magnitude or more across Cascadia. Sn patterns broadly may be attributed to sediment resonance and attenuation. This and an abrupt step in the east-west trend of Sn suggest that changes in topography and structure at the edge of the continental margin significantly impact shaking. These patterns also correlate with gravity lows diagnostic of marginal basins and methane plumes channeled within shelf-bounding faults. Offshore Sn exceeds that onshore in both passbands, and the steepest slopes and shelf coincide with the relatively greatest and smallest Sn estimates at low and high frequencies, respectively; these results should be considered in submarine shaking-triggered slope stability failure studies. Significant north-south Sn variations are not apparent, but sparse sampling does not permit rejection of the hypothesis that the southerly decrease in intervals between shaking-triggered turbidites and great earthquakes inferred by Goldfinger et al. (2012, 2013, 2016) and Priest et al. (2017) is due to inherently stronger shaking southward.

  4. Glacial and oceanic history of the polar North Atlantic margins: An overview

    DEFF Research Database (Denmark)

    Elverhøj, A.; Dowdeswell, J.; Funder, S.V.

    1998-01-01

    Greenland Icc Sheet, in thc Late Pliocene as compared with the t...liddlejLate Miocene. The Svalbard-Barents Sea margin is characterised by major prograding fans, built mainly of stacked debris flows. These fans are interpreted as products of rapid sediment delivery from fast-llowing ice streams reaching...... the shelf break during full glacial conditions. Such major submarine fans are not found north of the Scorcsby Suml Fan off East Greenland, where ice seldom reached the shelf break, sedimentation rates were relatively low and sediment transport appears to have becn localised in several major deep......-sca submarine channel systems. Fcw debris flows are present and more uniform, acoustically-stratified scdiments predominate. In general, the Greenland Ice Sheet has been more stable than those on the European North Atlantic margin, which rcflect greater variability in heat and moisture transfer at timescale...

  5. Landform evolution modeling of fine-grained sedimentation on alluvial fans on Mars and Earth

    Science.gov (United States)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.; Swander, Z. J.; Fink, D.; Korup, O.; Hesse, P. P.; Singh, T.; Srivastava, P.

    2017-12-01

    Reconstructing how rivers respond to changes in runoff or sediment supply by incising or aggrading has been pivotal in gauging the role of the Indian Summer Monsoon (ISM) as a geomorphic driver in the Himalayas. Here we present new data on how the fluvial systems of the Lesser Himalaya of India has responded to late Quaternary climate change. Our study is based on new chronological data for fluvial aggradation and incision from the Donga alluvial fan and several reaches of the upper Alaknanda River, as well as a meta-analysis of previous work. Fluvial sediments in the Himalayas in general, and quartz from the region in particular, have been previously noted for a number of unsuitable OSL properties including large recuperation and the existence of unremovable feldspar signals, leading to controversial discussions with regard to the reliability of existing OSL chronologies in this region. In order to improve the applicability and validity of OSL in the Lesser Himalaya, we have tested and applied pulsed OSL signals (POSL) to quartz grains from alluvial terrace and fan sediments, and propose a new chronology of regional fluvial aggradation. For previously dated terraces and alluvial fan sections, our POSL ages are systematically older than previously reported OSL ages. These results suggest periods of aggradation in the Alaknanda and Dehradun Valleys mainly between 20 and 50 ka. This most likely reflects decreased stream power during periods of weakened monsoon. The concentration of in-situ cosmogenic beryllium-10 from fluvial bedrock surfaces was also used to infer bedrock surface exposure ages, which should inform about episodes of active fluvial erosion. Resulting exposure ages span between 1.3 and 9.0 ka, suggesting that strath terraces were exposed relatively recently, and incision was dominant through most of the Holocene. In combination, our results support a precipitation-driven climatic control on fluvial dynamics, which regulates the balance between stream

  6. Assessment of submarine landslides hazard through geotechnical and rheological analysis of sediments on the French Atlantic continental slope

    Science.gov (United States)

    Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.

    2016-12-01

    In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.

  7. Sources and distributions of branched and isoprenoid tetraether lipids on the Amazon shelf and fan : Implications for the use of GDGT-based proxies in marine sediments

    NARCIS (Netherlands)

    Zell, Claudia; Kim, Jung-Hyun; Hollander, David; Lorenzoni, Laura; Baker, Paul; Silva, Cleverson Guizan; Nittrouer, Charles; Sinninghe Damsté, Jaap S.

    2014-01-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) in river fan sediments have been used successfully to reconstruct mean annual air temperature (MAAT) and soil pH of the Congo River drainage basin. However, in a previous study of Amazon deep-sea fan sediments the reconstructed MAATs were ca.

  8. Isotopic provenance analysis and terrane tectonics: a warning about sediment transport distances

    International Nuclear Information System (INIS)

    Bassett, K.N.

    1999-01-01

    Full text: In the last 10 years the field of provenance analysis has undergone a revolution with the development of single-crystal isotopic dating techniques, the most common being U/Pb zircon and 40Ar/39Ar techniques. These have allowed age determination of single crystals thus providing more detail about probable provenance of each individual grain rather than an averaged population of grains. The usefulness for resolving complex terrane accretion and translation histories was immediately obvious and there have been many studies in many different regions aimed at tracking terrane motions by provenance of individual grains upward through the stratigraphy of a basin. Recent research in the North American Cordilleran terranes and in the New Zealand Torlesse Superterrane show how widely used and powerful these provenance analysis techniques are. However, isotopic provenance analysis has often been presented as key information to resolve controversies around terrane translation histories with very little discussion of the context of sedimentary facies and sediment transport mechanisms. An example is the recent use of U/Pb detrital zircon ages as the supposedly controversy-ending evidence for the amount of lateral translation of the Insular Superterrane in British Columbia (Baja BC) (Mahoney et al., 1999). The zircon grains were separated from fine-grained turbidite deposits and could easily have been transported over very large distances by a variety of mechanisms; yet they were presented as definitively resolving the Baja BC controversy. Modern examples illustrate the problem of using the provenance of fine grained sediment to constrain terrane tectonics. Sediment in the tip of the Bengal submarine fan was transported ∼3000 km from source, first by fluvial processes then by sediment gravity flow in the submarine fan. The detrital isotopic ages of single grains are the same as the depositional ages indicating a very rapid unroofing and transport rate with minimal

  9. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.

  10. Shale tectonics and structural deformation on the Amazon submarine fan: preliminaries results; Processo de argilocinese e estruturacao do pacote sedimentar da regiao do leque submarino do Amazonas: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Valterlene de; Silva, Cleverson Guizan [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Geociencias. Lab. de Geologia Marinha (LAGEMAR); Reis, Antonio Tadeu dos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Oceanografia

    2004-07-01

    The Amazon Submarine Fan, part of the Amazon Mouth Basin, is strongly affected by shale tectonics. Preliminary analysis of about 9.000 Km of multichannel seismic lines allowed us to map three main structural domains: a proximal extensive province largely dominated by seaward-dipping listric normal faults soling into a decollement level (mobile shale, Neomiocene in age) and associated rollovers; an intermediate rigid gliding province, and a lowermost compressive front, dominated by thrust faults. An important point about gravity tectonics in this area is that the morphology of the base of the mobile level seems to have influenced the development of the structural styles. For instance, listric faults lying at the upslope limit of the extensional province are arranged along a step-like morphology of the decollement level. As well as that, we observed that the gradient of the decollement level is more important on the northwestern portion of the fan, where the distance between the extensive and the compressive province is larger (of about 40 Km) than on the southeastern portion of the fan (about 25 Km large). Then, on the basis of the basal level gradient and the structures disposition we can segment the fan area into two structural compartments: a northwest and a southeast compartment. (author)

  11. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  12. The morphology, processes, and evolution of Monterey Fan: a revisit

    Science.gov (United States)

    Gardner, James V.; Bohannon, Robert G.; Field, Michael E.; Masson, Douglas G.

    2010-01-01

    Long-range (GLORIA) and mid-range (TOBI) sidescan imagery and seismic-reflection profiles have revealed the surface morphology and architecture of the complete Monterey Fan. The fan has not developed a classic wedge shape because it has been blocked for much of its history by Morro Fracture Zone. The barrier has caused the fan to develop an upper-fan and lower-fan sequence that are distinctly different from one another. The upper-fan sequence is characterized by Monterey and Ascension Channels and associated Monterey Channel-levee system. The lower-fan sequence is characterized by depositional lobes of the Ascension, Monterey, and Sur-Parkington-Lucia systems, with the Monterey depositional lobe being the youngest. Presently, the Monterey depositional lobe is being downcut because the system has reached a new, lower base level in the Murray Fracture Zone. A five-step evolution of Monterey Fan is presented, starting with initial fan deposition in the Late Miocene, about 5.5 Ma. This first stage was one of filling bathymetric lows in the oceanic basement in what was to become the upper-fan segment. The second stage involved filling the bathymetric low on the north side of Morro Fracture Zone, and probably not much sediment was transported beyond the fracture zone. The third stage witnessed sediment being transported around both ends of Morro Fracture Zone and initial sedimentation on the lower-fan segment. During the fourth stage Ascension Channel was diverted into Monterey Channel, thereby cutting off sedimentation to the Ascension depositional lobe.

  13. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan - A Rock-Eval survey

    Science.gov (United States)

    Baudin, François; Stetten, Elsa; Schnyder, Johann; Charlier, Karine; Martinez, Philippe; Dennielou, Bernard; Droz, Laurence

    2017-08-01

    The Congo River, the second largest river in the world, is a major source of organic matter for the deep Atlantic Ocean because of the connection of its estuary to the deep offshore area by a submarine canyon which feeds a vast deep-sea fan. The lobe zone of this deep-sea fan is the final receptacle of the sedimentary inputs presently channelled by the canyon and covers an area of 2500 km². The quantity and the source of organic matter preserved in recent turbiditic sediments from the distal lobe of the Congo deep-sea fan were assessed using Rock-Eval pyrolysis analyses. Six sites, located at approximately 5000 m water-depth, were investigated. The mud-rich sediments of the distal lobe contain high amounts of organic matter ( 3.5 to 4% Corg), the origin of which is a mixture of terrestrial higher-plant debris, soil organic matter and deeply oxidized phytoplanktonic material. Although the respective contribution of terrestrial and marine sources of organic matter cannot be precisely quantified using Rock-Eval analyses, the terrestrial fraction is dominant according to similar hydrogen and oxygen indices of both suspended and bedload sediments from the Congo River and that deposited in the lobe complex. The Rock-Eval signature supports the 70% to 80% of the terrestrial fraction previously estimated using C/N and δ13Corg data. In the background sediment, the organic matter distribution is homogeneous at different scales, from a single turbiditic event to the entire lobe, and changes in accumulation rates only have a limited effect on the quantity and quality of the preserved organic matter. Peculiar areas with chemosynthetic bivalves and/or bacterial mats, explored using ROV Victor 6000, show a Rock-Eval signature similar to background sediment. This high organic carbon content associated to high sedimentation rates (> 2 to 20 mm.yr-1) in the Congo distal lobe complex implies a high burial rate for organic carbon. Consequently, the Congo deep-sea fan represents an

  14. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes

    Science.gov (United States)

    Prélat, A.; Covault, J. A.; Hodgson, D. M.; Fildani, A.; Flint, S. S.

    2010-12-01

    Submarine lobe dimensions from six different systems are compared: 1) the exhumed Permian Fan 3 lobe complex of the Tanqua Karoo, South Africa; 2) the modern Amazon fan channel-mouth lobe complex, offshore Brazil; 3) a portion of the modern distal Zaïre fan, offshore Angola/Congo; 4) a Pleistocene fan of the Kutai basin, subsurface offshore Indonesia; 5) the modern Golo system, offshore east Corsica, France; and 6) a shallow subsurface lobe complex , offshore Nigeria. These six systems have significantly different source-to-sink configurations (shelf dimension and slope topography), sediment supply characteristics (available grain size range and supply rate), tectonic settings, (palaeo) latitude, and delivery systems. Despite these differences, lobe deposits share similar geometric and dimensional characteristics. Lobes are grouped into two distinct populations of geometries that can be related to basin floor topography. The first population corresponds to areally extensive but thin lobes (average width 14 km × length 35 km × thickness 12 m) that were deposited onto low relief basin floor areas. Examples of such systems include the Tanqua Karoo, the Amazon, and the Zaïre systems. The second population corresponds to areally smaller but thicker lobes (average width 5 km × length 8 km × thickness 30 m) that were deposited into settings with higher amplitude of relief, like in the Corsican trough, the Kutai basin, and offshore Nigeria. The two populations of lobe types, however, share similar volumes (a narrow range around 1 or 2 km 3), which suggests that there is a control to the total volume of sediment that individual lobes can reach before they shift to a new locus of deposition. This indicates that the extrinsic processes control the number of lobes deposited per unit time rather than their dimensions. Two alternative hypotheses are presented to explain the similarities in lobe volumes calculated from the six very different systems. The first states that

  15. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan.

    NARCIS (Netherlands)

    Prins, M.A.; Postma, G.; Cleveringa, J.; Cramp, A.; Kenyon, N.H.

    2000-01-01

    A previous study on the basis of long-range side-scan sonar data (Kenyon et al., 1995. Geometry of the younger sediment bodies of the Indus Fan. In: Pickering, K.T., Hiscott, R.N., Kenyon, N.H., Ricci Lucchi, F., Smith, R.D.A. (Eds.), Atlas of deep water environments: architectural style in

  16. Geologic siting considerations for the disposal of radioactive waste into submarine geologic formations

    International Nuclear Information System (INIS)

    Hollister, C.D.

    1979-01-01

    The most desirable characteristics of the host medium are: (1) low permeability and high Kd; (2) ability to self heal, i.e., be visco-elastic in response to dynamic stress; (3) stability under predicted thermal loading; (4) a low content of organic matter, i.e., be well oxidized. The submarine geologic formation that appears to best satisfy the above criteria is abyssal red clay. Depending on organic interactions and permeability considerations, light brown deep-sea clays with 20 to 40% CaCO 3 also may be suitable. Increasingly organic-rich, more permeable biogenic oozes appear less suitable, with turbidite sands and silts least desirable of all. Ocean regions excluded at the present time are: (1) areas less than 4000 meters deep; (2) the continental margin including fans, deltas, aprons, cones; (3) proximal portions of abyssal plains; (4) all fracture zone abyssal plains; (5) all submarine canyon-levee systems; (6) areas covered with less than 50 meters of sediment; (7) areas greater than 100 nautical miles from plate boundaries; (8) areas with ice-rafted debris; (9) major shipping lanes, cable routes and defense installations; (10) seafloor regions below areas of high biological productivity; and (11) approximately one third of the world's ocean floor satisfy these criteria

  17. Distal alluvial fan sediments in early Proterozoic red beds of the Wilgerivier formation, Waterberg Group, South Africa

    Science.gov (United States)

    Van Der Neut, M.; Eriksson, P. G.; Callaghan, C. C.

    The 1900 - 1700 M.a. Waterberg Group belongs to a series of southern African cratonic cover sequences of roughly equivalent age. Red beds of the Wilgerivier Formation comprise sandstones, interbedded with subordinate conglomerates and minor mudrocks. These immature sedimentary rocks exhibit lenticular bedding, radial palaeocurrent patterns and features indicative of both streamflow and gravity-flow deposition. A distal wet alluvial fan palaeoenvironmental setting is envisaged, with fan-deltas forming where alluvial lobes prograded into a lacustrine basin. Intrastratal, diagenetic alteration of ferromagnesian detrital grains and ferruginous grain coatings led to the red colouration of the Wilgerivier sediments.

  18. Fe-C-S systematics in Bengal Fan sediments

    Science.gov (United States)

    Volvoikar, S. P.; Mazumdar, A.; Goswami, H.; Pujari, S.; Peketi, A.

    2017-12-01

    Global biogeochemical cycles of iron, carbon and sulfur (Fe-C-S) are interrelated. Sulfate reduction in marine sediments is the major factor controlling the cycling and burial of carbon, sulfur and iron. Organoclastic sulfate reduction and anaerobic oxidation of methane (AOM) are the two main processes responsible for sulfate reduction in marine sediments. The amount and reactivity of organic matter, iron minerals and concentrations of dissolved sulfide in pore water control the burial of iron sulfide and organic bound sulfur in marine sediments. Here we investigate the sulfidization process in a sediment core from the western part of upper Bay of Bengal fan characterized by efficient burial of organic matter with siliclastic load. A 30 m long sediment core (MD 161/29, Lat. 170 18.04' N, Long. 870 22.56' E, water depth: 2434m) was collected onboard Marion Dufresne (May, 2007) and studied for Fe-S speciation and organic matter characterization. Buffered dithionite extractable iron (FeD) varies from 0.71 to 1.43 wt % (Avg. 0.79 wt %). FeD represents Fe oxides and oxyhydroxides mainly, ferrihydrite, lepidocrocite, goethite and hematite. Acid volatile sulfur (AVS) varies from 0.0015 to 0.63 wt % (avg: 0.058 wt %), while chromium reducible sulfur (CRS) varies from 0.00047 to 0.29 wt % (avg. 0.054 wt %). Based on the vertical distribution patterns of FeD, AVS and CRS, the core is divided into three zones, the lower (3000 to 1833 cm), middle (1833 to 398 cm) and upper (398 cm to surface) zones. FeD shows higher concentration in the lower zone. FeTR (FeOx + FeD + FeCRS + FeAVS) also exhibit higher concentration in this zone, suggesting higher availability of reactive iron for iron sulfide precipitation. AVS, elemental sulfur, spikes of CRS and gradual enrichment of δ34SAVS and δ34SCRS with sharp peaks in-between is noted in the lower zone. The gradual enrichment of δ34SAVS and δ34SCRS is the outcome of late diagenetic pyritization with higher availability of sulfide

  19. Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand

    Science.gov (United States)

    Mountjoy, Joshu J.; Pecher, Ingo; Henrys, Stuart; Crutchley, Gareth; Barnes, Philip M.; Plaza-Faverola, Andreia

    2014-11-01

    Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow-like deformation within gas hydrate-bearing sediment. This "creeping" deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. (1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. (2) Overpressure below low-permeability gas hydrate-bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. (3) Gas hydrate-bearing sediment could exhibit time-dependent plastic deformation enabling glacial-style deformation. We favor the final hypothesis that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time-dependent deformation behavior of gas hydrate-bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and intersediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a reevaluation of slope stability following future climate-forced variation in bottom-water temperature.

  20. Sediment Buffering and Transport in the Holocene Indus River System

    Science.gov (United States)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  1. The importance of sand in the formation of avulsion channels within experimental fans that develop from sediment mixtures of mud and sand

    Science.gov (United States)

    Iscen, N.; Strom, K.

    2017-12-01

    Autogenic channel migration and avulsion has long been recognized as important drivers of alluvial fan dynamics. In the literature, several field studies have documented that the presence and the amount of sand transport through a channel is important for channel incision in alluvial fans and deltas. In our experiments, we present the general autogenic avulsion cycle of experimental alluvial fans with mixtures of cohesive sediment and sand with a range of boundary conditions, and we detail the importance of mobile sand fraction in the development of channels that lead to avulsion. Experimental observations demonstrate that new channels form at topographically low regions within the floodplain providing that sand is transported to these topographic lows due to overbank flow or levee breaching. In addition to the sediment transported from upstream, erosion of a previous deposit and an ongoing backfilling nearby are observed as the possible sources of sand getting into the ghost channels. We explore whether the presence of sand is important for channel development because it increases abrasion of the channel or because it changes the roughness characteristics of the flow. We also examine the affect of sediment and water supply change on the newly described channelization process and link distinctive channel morphologies to different stages of described channel development and the avulsion process.

  2. Seismic patterns and migration history of submarine fan channels in deep-water area, Niger Delta, West Africa

    Science.gov (United States)

    Zhang, Guotao; Zhang, Shangfeng; Li, Yuan

    2015-04-01

    The channels of deep-water submarine fan under Niger delta slope are characterized by large dimensions special deposition positions and complex formation processes, its geographical location and sedimentary environment also hinder the research and exploration development. According to the strata slicing, RMS amplitude attribute and other techniques, we exhibit the platforms patterns of channels at different period, and based on the analysis of internal architecture and deformation history of channel-leveed systems, migration and evolution process of channel systems could be understood accurately. A great quantity of isolated channels develop in middle Miocene and aggrading streams in late Miocene, which generating because of large scale of turbidity caused by the drop of second order sea-level, which characterized by vertical accretion at smooth channel, while vertical accretion and lateral migration at bend. Evolution of channel systems can be divided into three stages: the initial erosion, erosion and filling alternately, and abandoned stage. With these three stages, the sinuosity of channel change from moderate to high, then decrease. Incision and filling of channels, being during the three development phases, is the driving force of meander-loops migration, which promote three kinds of migration patterns: lateral, down-system and combination migration. The research provides theoretical basis for high-precision prediction and evaluation of deep-water reservoir.

  3. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    Science.gov (United States)

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.

  4. Are the dimensions of submarine lobe systems independent of allogenic factors?

    Science.gov (United States)

    Prélat, A.; Covault, J. A.; Hodgson, D. M.; Fildani, A.; Flint, S. S.

    2010-05-01

    Submarine lobe dimensions from six different systems are compared: 1) the exhumed Permian Fan 3 lobe complex of the Tanqua Karoo, South Africa; 2) the modern Amazon fan channel-mouth lobe complex, offshore Brazil; 3) a portion of the modern distal Zaïre fan, offshore Angola / Congo; 4) a Pleistocene fan of the Kutai Basin, subsurface offshore Indonesia; 5) the modern Golo system, offshore east Corsica, France; and 6) a lobe complex deposited in the shallow subsurface, offshore Nigeria. These six systems have significantly different source-to-sink configurations (shelf dimension and slope topography), sediment supply characteristics (calibre and rate), tectonic settings, (palaeo) latitude, and delivery systems. Despite these differences, the lobe deposits share similar geometric and dimensional characteristics. Lobes are grouped into two distinct populations of geometries that can be related to basin-floor topography. The first population corresponds to areally extensive but thin lobes (average width 14 km × length 35 km × thickness 12 m) that were deposited onto low relief basin floor areas, like the Tanqua Karoo, the Amazon and the Zaïre systems. The second population corresponds to areally smaller but thicker lobes (average width 5 km × length 8 km × thickness 30 m) that were deposited into settings with higher amplitude of relief, like in the Corsican trough, the Kutai basin, and offshore Nigeria. Basin floor topography confining the lobes can be very subtle, and only occur on one side of the system. The two populations of lobe types, however, share similar volumes, in the order of 1 or 2 km3. The largest lobes are observed in the Zaïre fan, where the average lobe volume reaches 3.3 km3 and the smallest lobes are observed in the Corsican trough where the average lobe volume is 0.4 km3. This variation in lobe volume is minor when compared to the variation observed in present-day up-dip drainage systems, which provide sediment to the deep-water depositional

  5. Submarine landslides on the north continental slope of the South China Sea

    Science.gov (United States)

    Wang, Weiwei; Wang, Dawei; Wu, Shiguo; Völker, David; Zeng, Hongliu; Cai, Guanqiang; Li, Qingping

    2018-02-01

    Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea (SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and over-pressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.

  6. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using 26Al and 10Be: Panamint Valley, California

    Science.gov (United States)

    Mason, Cody C.; Romans, Brian W.

    2018-06-01

    Environmental changes within erosional catchments of sediment routing systems are predicted to modulate sediment transfer dynamics. However, empirical and numerical models that predict such phenomena are difficult to test in natural systems over multi-millennial timescales. Tectonic boundary conditions and climate history in the Panamint Range, California, are relatively well-constrained by existing low-temperature thermochronology and regional multi-proxy paleoclimate studies, respectively. Catchment-fan systems present there minimize sediment storage and recycling, offering an excellent natural laboratory to test models of climate-sedimentary dynamics. We used stratigraphic characterization and cosmogenic radionuclides (CRNs; 26Al and 10Be) in the Pleasant Canyon complex (PCC), a linked catchment-fan system, to examine the effects of Pleistocene high-magnitude, high-frequency climate change on CRN-derived denudation rates and sediment flux in a high-relief, unglaciated catchment-fan system. Calculated 26Al/10Be burial ages from 13 samples collected in an ∼180 m thick outcropping stratigraphic succession range from ca. 1.55 ± 0.22 Ma in basal strata, to ca. 0.36 ± 0.18-0.52 ± 0.20 Ma within the uppermost part of the succession. The mean long-term CRN-derived paleodenudation rate, 36 ± 8 mm/kyr (1σ), is higher than the modern rate of 24 ± 0.6 mm/kyr from Pleasant Canyon, and paleodenudation rates during the middle Pleistocene display some high-frequency variability in the high end (up to 54 ± 10 mm/kyr). The highest CRN-derived denudation rates are associated with stratigraphic evidence for increased precipitation during glacial-pluvial events after the middle Pleistocene transition (post ca. 0.75 Ma), suggesting 100 kyr Milankovitch periodicity could drive the observed variability. We investigated the potential for non-equilibrium sedimentary processes, i.e. increased landslides or sediment storage/recycling, to influence apparent paleodenudation rates

  7. Submarine geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hollister, C.D.; Corliss, B.H.; Anderson, D.R.

    1980-01-01

    Site suitability characteristics of submarine geological formations for the disposal of radioactive wastes include the distribution coefficient of the host medium, permeability, viscoelastic nature of the sediments, influence of organic material on remobilization, and effects of thermal stress. The submarine geological formation that appears to best satisfy these criteria is abyssal ''red'' clay. Regions in the ocean that have coarse-grained deposits, high or variable thermal conductivity, high organic carbon content, and sediment thickness of less than 50 m are not being considered at this time. The optimum geological environment should be tranquil and have environmental predictability over a minimum of 10 5 years. Site selection activities for the North Atlantic and North Pacific are reviewed and future activities which include international cooperation are discussed. A paleoenvironmental model for Cenozoic sedimentation in the central North Pacific is presented based on studies of a long core from the Mid-Plate Gyre MPG-1 area, and is an example of the type of study that will be carried out in other seabed study areas. The data show that the MPG-1 region has been an area of slow, continuous accumulation during the past 65 million years. (author)

  8. Sedimentologic and volcanologic investigation of the deep tyrrhenian sea: preliminary result of cruise VST02

    Directory of Open Access Journals (Sweden)

    A. Bertagnini

    2006-06-01

    Full Text Available The VST02 cruise carried out in the summer of 2002 was focused at sedimentologic and volcanologic researches over selected areas of the deep portion of the Tyrrhenian sea. Chirp lines and seafloor samples were collected from the Calabrian slope surrounding Stromboli island, in the Marsili deep sea fan, in the Vavilov basin and in the Vavilov seamount. Submarine volcanic activity, both explosive and effusive, is occuring in the Stromboli edifice. Explosive submarine volcanism affects also the shallowest areas of the Vavilov seamount. Submarine carbonate lithification has been observed on the sediment-starved flanks of the Vavilov seamount. Acoustic transparent layers make up the recentmost infill of the Gortani basin, the easternmost portion of the Vavilov basin. Channels comprised of a variety of architectural elements and depositional lobes are the main elements of the Marsili deep-sea fan where, apparently, sedimentation occurs mainly through debris flow processes.

  9. Experimental Investigation of Terminal Fans Prograding on a Salt Substrate: 3-d Physical Experiments

    Science.gov (United States)

    Chatmas, E.; Kim, W.

    2015-12-01

    Interactions between geologic features and a mobile substrate layer are present in several passive margin locations throughout the world. Deformation of a substrate layer is primarily due to differential loading of sediment and results in complexities within the morphology and subsequently the stratigraphic record. By using simplified scaled tank experiments, we investigated the relationship between substrate deformation and fan evolution in a fluvial-dump-wind-redistribution setting. In this system, sediment is being eroded from a mountain range and creating terminal fans; fluvial channels form off of the fan body and the deposited fluvial sediment is the source for an aeolian dune field. Several past experimental studies have focused on how deltas and dunes are affected on when deposited on a salt substrate, however terminal fans and channel formation off of fans have not been thoroughly investigated. The current experiments focused on which variables are the most significant in controlling fan growth, channel initiation and channel behavior on the salt substrate. Our experimental basin is 120 cm long, 60 cm wide and 30 cm tall. The materials used for a suite of five experiments involved a polymer polydimethylsiloxane (PDMS) as the deformable substrate analog and 100-μm quartz sand. By isolating certain variables such as substrate thickness, basin slope and sediment discharge we are able to see how terminal fans and channels are affected in different settings. The experimental results show that 1) increase in substrate thickness increased the amount of subsidence around the fan body, limiting sediment transport to channels off of the toe of the fan, 2) a higher basin slope increased the number of channels formed and increased sinuosity and width variations of channels over distance, and 3) a higher sediment discharge rate on a thin substrate allowed for the farthest downstream fan deposits. Preliminary results show that channel behavior and fan morphology is

  10. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  11. Autogenic dynamics of debris-flow fans

    Science.gov (United States)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  12. An Alluvial Fan at Apollinaris Patera, Mars

    OpenAIRE

    Ghail, RC; Hutchison, JE

    2003-01-01

    Apollinaris Patera, Mars (7?S,173?E), is an intermediate sized volcano (~6 km high, 150 km diameter) with a large (200-km long) fan-like deposit on its southern flank. This fan is deeply incised and originates from a single breach in the rim of the summit caldera. New topographic and multispectral image data reveal that this fan is alluvial, implying a long-lived source of (volcaniclastic) sediment and water (probably from a caldera lake).

  13. Depositional environment of a fan delta in a Vistulian proglacial lake (Skaliska Basin, north-eastern Poland

    Directory of Open Access Journals (Sweden)

    Woronko Barbara

    2013-06-01

    Full Text Available The study reconstructed the environment of a fan delta filling the vast end depression of the Skaliska Basin, and its overlying aeolian deposits. The formation of the large fan delta is associated with the presence of an ice-dammed lake functioning during the retreat of the Vistulian Glaciation (MIS 2. The examined material was collected from five boreholes. Sediments were analysed for their granulometric composition and subjected to analyses of frosting and rounding of quartz grains. Grain size analysis showed that the fan delta deposits are built of sand sediments of very low lateral and vertical variability. The fan delta was supplied with fluvioglacial sediments. Accumulation of sediments occurred in shallow water with a very low-gradient slope. The exposed fan delta became a site conducive to aeolian processes after the lake waters fell and the Skaliska Basin depression dried. Dune deposits overlying the fan were affected by short-distance transport so they did not acquire features typical for aeolian deposits.

  14. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples

  15. Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments

    Science.gov (United States)

    Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine

    2017-05-01

    The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon

  16. The Lower Cretaceous Way Group of northern Chile: An alluvial fan-fan delta complex

    Science.gov (United States)

    Flint, S.; Clemmey, H.; Turner, P.

    1986-01-01

    Alluvial fan sediments of the Lower Cretaceous Coloso Basin in northern Chile were deposited in a half-graben and derived from andesitic volcanics of a former island arc. Transport directions were towards the east, away from the present-day Peru-Chile trench. Grain flow, density modified grain flow and sheetflow processes were responsible for most of the sediment deposition with cohesive debris flows playing only a minor part. An early phase of conglomerate deposition (Coloso Formation) into a restricted basin records the transition from proximal fan facies with abundant grain flows and remobilized screes to mid-fan facies dominated by sheetflows. Stratiform copper mineralization near the top of the lower conglomerates is related to the unroofing of the Jurassic island arc. This mineralization comprises copper sulphide-cemented sands and gravels and formed by the reaction of mineralized detritus with diagenetic and hydrothermal solutions. A later phase of deposition (Lombriz Formation) includes sandstones, siltstones and conglomerates with a source area different from the Coloso Formation. This change in source may be related to strike-slip tectonics as the basin extended. The Lombriz conglomerates pass distally (eastwards) into red sandstones and purple siltstones with thin limestones deposited under marine conditions. This sequence is interpreted as a major fan delta complex. It passes conformably into marine carbonates of the Tableado Formation signifying the complete drowning of the basin in lower Cretaceous times.

  17. Stability of submarine slopes in the northern South China Sea: a numerical approach

    Science.gov (United States)

    Zhang, Liang; Luan, Xiwu

    2013-01-01

    Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained ( Φ=0) cases. Results show that submarine slopes are stable when the slope is 13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes >10°, and >3° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.

  18. The sedimentary record of submarine channel morphodynamics

    NARCIS (Netherlands)

    de Leeuw, J.

    2017-01-01

    Submarine channels are ubiquitous on the ocean floor and are considered to be the equivalent of rivers on land. These channels are created by turbidity currents, which originate from the continental margins and which can transport sediment for thousands of kilometres into the oceans. The aim of this

  19. Research on the hydrogeological and geochemical conditions at the coastal area and submarine formations

    International Nuclear Information System (INIS)

    Tokunaga, Tomochika; Taniguchi, Makoto; Goto, Junji

    2003-05-01

    One of the major concerns for the high-level radioactive waste disposal is the possibility of the radionuclides to reach biosphere by groundwater flow. Recent research results have shown that the fresh groundwater discharge from subsea formations are widespread phenomena, thus, it is necessary to evaluate the submarine groundwater discharge as possible pathways of contaminant discharge towards the biosphere. It is also important to unravel the groundwater flow and associated material transport at the coastal area and subsea formations. To better understand the groundwater flow processes and the submarine groundwater discharge, we have conducted the hydrological, hydrogeological, geochemical, and numerical modeling studies at the Kurobe alluvial fan and its offshore, Toyama Prefecture, Japan. In this report, the results of the following research activities are presented: 1) Development and application of a method to detect the locations of the submarine groundwater discharge. 2) Development and application of a method to collect uncontaminated groundwater samples from subsea formations. 3) Measurements of submarine groundwater discharge fluxes by automated seepage meter. 4) Hydrological and geochemical studies for groundwater flow at the coastal area. 5) Geochemical studies to understand sources of fresh submarine groundwater discharge. 6) Examination of groundwater flow and submarine groundwater discharge using methane concentration and carbon isotope ratio. 7) Numerical modeling studies for coastal groundwater flow system. (author)

  20. High- and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan

    NARCIS (Netherlands)

    Blanchet, C.; Tjallingii, R.; Frank, M.; Lorenzen, J.; Reitz, A.; Brown, K.; Feseker, T.; Brückmann, W.

    2013-01-01

    Sediments deposited on deep-sea fans are an excellent geological archive to reconstruct past changes in fluvial discharge. Here we present a reconstruction of changes in the regime of the Nile River during the Holocene obtained using bulk elemental composition, grain-size analyses and radiogenic

  1. Large Fluvial Fans: Aspects of the Attribute Array

    Science.gov (United States)

    Wilkinson, Justin M.

    2015-01-01

    In arguing for a strict definition of the alluvial fan (coarse-grained with radii less than10 km, in mountain-front settings), Blair and McPherson (1994) proposed that there is no meaningful difference between large fluvial fans (LFF) and floodplains, because the building blocks of both are channel-levee-overbank deposits. Sediment bodies at the LFF scale (greater than 100 km long, fan-shaped in planform), are relatively unstudied although greater than 160 are now identified globally. The following perspectives suggest that the significance of LFF needs to be reconsidered.

  2. 3D stratigraphic modeling of the Congo turbidite system since 210 ka: an investigation of factors controlling sedimentation

    Science.gov (United States)

    Laurent, Dimitri; Picot, Marie; Marsset, Tania; Droz, Laurence; Rabineau, Marina; Granjeon, Didier; Molliex, Stéphane

    2017-04-01

    intensity. These external forcing factors are responsible for the evolution of the capacity of turbidity currents by directly acting on the river runoff magnitude and the sediment budget according to the balance between mechanical and chemical erosion. If the sediment supply is the key parameter for the large scale sedimentary cycles, a steep increase of the sand/mud ratio leads to the development of sub-cycles characterized by middle fan avulsions. We identified these events as related to abrupt destabilizations of river mouth bars linked to periodic Congo River floods. Finally, the local slope gradient only plays a role in the maximal length of the turbidity currents and deposition in the most distal part of the basin. To conclude, the stratigraphic modeling allows us to propose an evolutionary "source to sink" model of the Quaternary Congo Fan, emphasizing the interconnection through time between drainage basin responses to climate change and sedimentary transfers in the deep-water environment. Picot, M. et al., 2016. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan). Marine and Petroleum Geology, 72, 423-446. Keywords: Congo, sedimentary basin, Quaternary, turbidite system, sedimentary cycles, geophysical data, stratigraphic modeling, DionisosFlow

  3. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    Science.gov (United States)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  4. Bedforms, Channel Formation, and Flow Stripping in the Navy Fan, Offshore Baja California

    Science.gov (United States)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Fildani, A.; Lundsten, E. M.; Anderson, K.; Maier, K. L.; McGann, M.; Gwiazda, R.; Herguera, J. C.

    2017-12-01

    Deep-sea fans store some of the largest volumes of siliciclastic sediment in marine basins. These sandy accumulations record the history of sediment transfer from land to sea, serving as direct records of the geologic history of the continents. Despite their importance, deep-sea fans are difficult to study due to their remote locations in thousands of meters of water depth. In addition, deep-sea fans have a low relief, and geomorphological changes important for the evolution of the fan are often too subtle to be adequately resolved by 3D seismic data or surface-ship bathymetry. To improve our understanding of deep-sea fans, an autonomous underwater vehicle (AUV) was used to acquire high-resolution bathymetry and sub-bottom CHIRP profiles in the proximal sectors of the Navy Fan, offshore Baja California. A remotely operated vehicle was also used to acquire vibracores. The 1-m grid resolution bathymetry shows the seafloor geomorphology in extreme detail revealing different kinds of bedforms, which in combination with the vibracores help to interpret the sedimentary processes active during the Holocene. Morphological elements in the survey area include a main channel, numerous scours, an incipient channel, sediment waves, and a fault escarpment. Several of the scours are interpreted to result from flow stripping at a bend in the main channel. Along high gradient sectors (e.g. > 1o), the scours form bedforms with an erosionally truncated headwall immediately followed down-dip by an upflow accreting sedimentary bulge. These bedforms, the presence of clean sands in the scours and the high gradients suggest that these scours are net-erosional cyclic steps. Scours seem to coalesce along the sediment transport direction to form an incipient channel with abundant rip-up clast gravels. Elsewhere in the survey area, scours are elongated and intimately associated with sediment waves. The acquired dataset illustrates that deep-sea fans may show a variety of processes and

  5. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part II - Iron-sulfur coupling

    Science.gov (United States)

    Taillefert, Martial; Beckler, Jordon S.; Cathalot, Cécile; Michalopoulos, Panagiotis; Corvaisier, Rudolph; Kiriazis, Nicole; Caprais, Jean-Claude; Pastor, Lucie; Rabouille, Christophe

    2017-08-01

    Deep-sea fans are well known depot centers for organic carbon that should promote sulfate reduction. At the same time, the high rates of deposition of unconsolidated metal oxides from terrigenous origin may also promote metal-reducing microbial activity. To investigate the eventual coupling between the iron and sulfur cycles in these environments, shallow sediment cores (Congo River deep-sea fan ( 5000 m) were profiled using a combination of geochemical methods. Interestingly, metal reduction dominated suboxic carbon remineralization processes in most of these sediments, while dissolved sulfide was absent. In some 'hotspot' patches, however, sulfate reduction produced large sulfide concentrations which supported chemosynthetic-based benthic megafauna. These environments were characterized by sharp geochemical boundaries compared to the iron-rich background environment, suggesting that FeS precipitation efficiently titrated iron and sulfide from the pore waters. A companion study demonstrated that methanogenesis was active in the deep sediment layers of these patchy ecosystems, suggesting that sulfate reduction was promoted by alternative anaerobic processes. These highly reduced habitats could be fueled by discrete, excess inputs of highly labile natural organic matter from Congo River turbidites or by exhumation of buried sulfide during channel flank erosion and slumping. Sulfidic conditions may be maintained by the mineralization of decomposition products from local benthic macrofauna or bacterial symbionts or by the production of more crystalline Fe(III) oxide phases that are less thermodynamically favorable than sulfate reduction in these bioturbated sediments. Overall, the iron and sulfur biogeochemical cycling in this environment is unique and much more similar to a coastal ecosystem than a deep-sea environment.

  6. The Thermal Regime Around Buried Submarine High-Voltage Cables

    Science.gov (United States)

    Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.

    2015-12-01

    The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.

  7. Channel Extension in Deep-Water Distributive Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    The cyclic nature of channel and lobe formation in submarine fans is the result of the unstable and ephemeral nature of newly formed distributary channels. Avulsion cycles are initiated as unconfined sheet flow immediately following avulsion followed by stages of channel incision and extension, deposition of channel mouth deposits, and often channel backfilling. In contrast with those in alluvial and deltaic environments, avulsion cycles in submarine fans are relatively poorly understood due to the difficulty of observing deep ocean processes, either over short timescales needed to measure the hydrodynamics of active turbidity currents, or over longer timescales needed for the morphodynamic evolution of individual distributary channels and avulsion events. Here we report the results of over 80 experiments in a 5m x 3m x1m deep tank using saline (NaCl) density flows carrying low-density plastic sediment (SG 1.5) flowing down an inclined ramp. These experiments were designed to investigate trends observed in earlier self-organized experimental submarine fans with well-developed avulsion cycles, in which distributive lobes were observed to form on relatively high slopes. In particular, we were interested in investigating the relationship between channel extension length (distance from the inlet to the point where the flow becomes de-channelized, transitioning into a mouth-bar/lobe) and slope. The results of the experiments are clear but counter-intuitive. Channels appear to extend in discrete segments and channel extension length is inversely related to slope over a wide range of slopes (5-17 degrees). In addition, channel extension seems largely independent of inlet flow density (salt concentration) over the experimental range (10-24 g/cc). Measurements of densimetric Froude number (Fr') indicate Fr' increases downstream to near critical conditions at the channel lobe transition. Our preliminary interpretation is that distributary channels become unstable due to

  8. Submarine Landslides: What we Know and Where we are Going!

    Science.gov (United States)

    Moscardelli, L. G.; Mountjoy, J. J.; Micallef, A.; Strasser, M.; Vanneste, M.; Chaytor, J. D.; Mosher, D.; Krastel, S.; Lo Iacono, C.; Yamada, Y.

    2015-12-01

    Submarine landslides and other gravity-induced movements can disrupt very large areas of continental margins resulting in long-term seafloor morphologic change and multi-scale mass transport deposits (MTDs). Potential consequences of submarine landslides include damage to seabed infrastructure, offshore facilities, as well as generation or enhancement of tsunamis. MTDs are common on the modern seafloor and within the stratigraphic record. Slides, slumps and debris flows can be constituents of MTDs and can co-occur in the same event or depositional unit. Recent research indicates that relationships exist between MTD geological setting, causal mechanisms, and geometries. Quantitative data analysis suggests that MTD morphometric parameters can be used to link these three parameters. Despite many advances in this field, it still remains unclear how to definitively identify pre-conditioning factors and triggers of submarine landslides in modern slopes, and how submarine landslides evolve after initiation. In addition, new questions regarding the interaction between submarine landslides and active marine processes, such as bottom currents and fluid flow, have emerged.One of the mandates of the S4SLIDE (IGCP-640) project, a joint endeavor of UNESCO and IGCP that represents the broad field of submarine landslide research, is to facilitate interactions at an international level among scientists, industry and government representatives to advance our knowledge on a number of outstanding science questions: (i) What is the nature of the interaction between current-controlled sedimentation and submarine landslides? (ii) What role do transient turbulent-laminar flows play in the formation of submarine landslides? (iii) Do climatic variations control the occurrence of submarine landslides? (iv) What is the economic significance of submarine landslides? (v) Do we understand the hazards that submarine landslides pose to the environment and to humans? This presentation will cover

  9. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  10. Submarine landslides: advances and challenges

    Science.gov (United States)

    Locat, Jacques; Lee, Homa J.

    2002-01-01

    Due to the recent development of well-integrated surveying techniques of the sea floor, significant improvements were achieved in mapping and describing the morphology and architecture of submarine mass movements. Except for the occurrence of turbidity currents, the aquatic environment (marine and fresh water) experiences the same type of mass failure as that found on land. Submarine mass movements, however, can have run-out distances in excess of 100 km, so their impact on any offshore activity needs to be integrated over a wide area. This great mobility of submarinemass movements is still not very well understood, particularly for cases like the far-reaching debris flows mapped on the Mississippi Fan and the large submarine rock avalanches found around many volcanic islands. A major challenge ahead is the integration of mass movement mechanics in an appropriate evaluation of the hazard so that proper risk assessment methodologies can be developed and implemented for various human activities offshore, including the development of natural resources and the establishment of reliable communication corridors. Key words : submarine slides, hazards, risk assessment, morphology, mobility, tsunami. Le dveloppement rcent de techniques de levs hydrograhiques pour les fonds marins nous a permis d'atteindre une qualit ingale dans la cartographie et la description des glissements sous marins. l'exception des courants de turbidit, on retrouve dans le domaine aquatique les mmes types de mouvements de terrain que sur terre. Par contre, les glissements sous-marins peuvent atteindre des distances excdant 100 km de telle sorte que leur impact sur les activits offshore doit tre pris en compte sur degrandes tendues. La grande mobilit des glissements sous-marins n'est pas encore bien comprise, comme pour le cas des coules dedbris cartographies sur le cne du Mississippi ainsi que pour les grandes avalanches rocheuses sous-marines retrouves au pourtour des les volcaniques. Un dfi majeur

  11. Coarse-grained sediment delivery and distribution in the Holocene Santa Monica Basin, California: Implications for evaluating source-to-sink flux at millennial time scales

    Science.gov (United States)

    Romans, B.W.; Normark, W.R.; McGann, M.M.; Covault, J.A.; Graham, S.A.

    2009-01-01

    Utilizing accumulations of coarse-grained terrigenous sediment from deep-marine basins to evaluate the relative contributions of and history of controls on sediment flux through a source-to-sink system has been difficult as a result of limited knowledge of event timing. In this study, six new radiocarbon (14C) dates are integrated with five previously published dates that have been recalibrated from a 12.5-m-thick turbidite section from Ocean Drilling Program (ODP) Site 1015 in Santa Monica Basin, offshore California. This borehole is tied to high-resolution seismic-reflection profiles that cover an 1100 km2 area of the middle and lower Hueneme submarine fan and most of the basin plain. The resulting stratigraphic framework provides the highest temporal resolution for a thick-bedded Holocene turbidite succession to date, permitting an evaluation of source-to-sink controls at millennial (1000 yr) scales. The depositional history from 7 ka to present indicates that the recurrence interval for large turbidity-current events is relatively constant (300-360 yr), but the volume of sediment deposited on the fan and in the basin plain has increased by a factor of 2 over this period. Moreover, the amount of sand per event on the basin plain during the same interval has increased by a factor of 7. Maps of sediment distribution derived from correlation of seismic-reflection profiles indicate that this trend cannot be attributed exclusively to autogenic processes (e.g., progradation of depocenters). The observed variability in sediment accumulation rates is thus largely controlled by allogenic factors, including: (1) increased discharge of Santa Clara River as a result of increased magnitude and frequency of El Ni??o-Southern Oscillation (ENSO) events from ca. 2 ka to present, (2) an apparent change in routing of coarse-grained sediment within the staging area at ca. 3 ka (i.e., from direct river input to indirect, littoral cell input into Hueneme submarine canyon), and (3

  12. Pleistocene lake outburst floods and fan formation along the eastern Sierra Nevada, California: implications for the interpretation of intermontane lacustrine records

    Science.gov (United States)

    Benn, Douglas I.; Owen, Lewis A.; Finkel, Robert C.; Clemmens, Samuel

    2006-11-01

    Variations in the rock flour fraction in intermontane lacustrine sediments have the potential to provide more complete records of glacier fluctuations than moraine sequences, which are subject to erosional censoring. Construction of glacial chronologies from such records relies on the assumption that rock flour concentration is a simple function of glacier extent. However, other factors may influence the delivery of glacigenic sediments to intermontane lakes, including paraglacial adjustment of slope and fluvial systems to deglaciation, variations in precipitation and snowmelt, and lake outburst floods. We have investigated the processes and chronology of sediment transport on the Tuttle and Lone Pine alluvial fans in the eastern Sierra Nevada, California, USA, to elucidate the links between former glacier systems located upstream and the long sedimentary record from Owens Lake located downstream. Aggradation of both fans reflects sedimentation by three contrasting process regimes: (1) high magnitude, catastrophic floods, (2) fluvial or glacifluvial river systems, and (3) debris flows and other slope processes. Flood deposits are represented by multiple boulder beds exposed in section, and extensive networks of large palaeochannels and boulder deposits on both fan surfaces. Palaeohydrological analysis implies peak discharges in the order of 10 3-10 4 m 3 s -1, most probably as the result of catastrophic drainage of ice-, moraine-, and landslide-dammed lakes. Cosmogenic radionuclide surface exposure dating shows that at least three flood events are represented on each fan, at 9-13, 16-18 and 32-44 ka (Tuttle Fan); and at ˜23-32, ˜80-86 ka, and a poorly constrained older event (Lone Pine Fan). Gravels and sands exposed in both fans represent fluvial and/or glacifluvial sediment transport from the Sierra Nevada into Owens Valley, and show that river systems incised and reworked older sediment stored in the fans. We argue that millennial-scale peaks in rock flour

  13. Sedimentation of Jurassic fan-delta wedges in the Xiahuayuan basin reflecting thrust-fault movements of the western Yanshan fold-and-thrust belt, China

    Science.gov (United States)

    Lin, Chengfa; Liu, Shaofeng; Zhuang, Qitian; Steel, Ronald J.

    2018-06-01

    Mesozoic thrusting within the Yanshan fold-and-thrust belt of North China resulted in a series of fault-bounded intramontane basins whose infill and evolution remain poorly understood. In particular, the bounding faults and adjacent sediment accumulations along the western segments of the belt are almost unstudied. A sedimentological and provenance analysis of the Lower Jurassic Xiahuayuan Formation and the Upper Jurassic Jiulongshan Formation have been mapped to show two distinctive clastic wedges: an early Jurassic wedge representing a mass-flow-dominated, Gilbert-type fan delta with a classic tripartite architecture, and an late Jurassic shoal-water fan delta without steeply inclined strata. The basinward migration of the fan-delta wedges, together with the analysis of their conglomerate clast compositions, paleocurrent data and detrital zircon U-Pb age spectra, strongly suggest that the northern-bounding Xuanhuan thrust fault controlled their growth during accumulation of the Jiulongshan Formation. Previous studies have suggested that the fan-delta wedge of the Xiahuayuan Formation was also syntectonic, related to movement on the Xuanhua thrust fault. Two stages of thrusting therefore exerted an influence on the formation and evolution of the Xiahuayuan basin during the early-late Jurassic.

  14. Gravitational, erosional and depositional processes on volcanic ocean islands: Insights from the submarine morphology of Madeira Archipelago

    Science.gov (United States)

    Quartau, Rui; Ramalho, Ricardo S.; Madeira, José; Santos, Rúben; Rodrigues, Aurora; Roque, Cristina; Carrara, Gabriela; Brum da Silveira, António

    2018-01-01

    The submarine flanks of volcanic ocean islands are shaped by a variety of physical processes. Whilst volcanic constructional processes are relatively well understood, the gravitational, erosional and depositional processes that lead to the establishment of large submarine tributary systems are still poorly comprehended. Until recently, few studies have offered a comprehensive source-to-sink approach, linking subaerial morphology with near-shore shelf, slope and far-field abyssal features. In particular, few studies have addressed how different aspects of the subaerial part of the system (island height, climate, volcanic activity, wave regime, etc.) may influence submarine flank morphologies. We use multibeam bathymetric and backscatter mosaics of an entire archipelago - Madeira - to investigate the development of their submarine flanks. Crucially, this dataset extends from the nearshore to the deep sea, allowing a solid correlation between submarine morphologies with the physical and geological setting of the islands. In this study we also established a comparison with other island settings, which allowed us to further explore the wider implications of the observations. The submarine flanks of the Madeira Archipelago are deeply dissected by large landslides, most of which also affected the subaerial edifices. Below the shelf break, landslide chutes extend downslope forming poorly defined depositional lobes. Around the islands, a large tributary system composed of gullies and channels has formed where no significant rocky/ridge outcrops are present. In Madeira Island these were likely generated by turbidity currents that originated as hyperpycnal flows, whilst on Porto Santo and Desertas their origin is attributed to storm-induced offshore sediment transport. At the lower part of the flanks (-3000 to -4300 m), where seafloor gradients decrease to 0.5°-3°, several scour and sediment wave fields are present, with the former normally occurring upslope of the latter

  15. Characterization of sea floor in Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, B.A.; Kenyon, N.H.; Schlee, J.S.; Mattick, R.e.; Twichell, D.C.

    1986-05-01

    In 1985, the US Geological Survey (USGS) conducted a mapping program in the Gulf of Mexico. Using the GLORIA (Geologic Long-Range Inclined Asdic) side-scan sonar system of the Institute of Oceanographic Sciences, USGS mapped approximately 90,000 nmi/sup 2/ of sea floor in the central and western Gulf of Mexico, seaward of the shelf edge. The Sigsbee Escarpment, the seaward edge of a salt front that extends from the western gulf to just west of the Mississippi Canyon, is marked by piles of debris along its base, and is breached by several submarine channels. One such meandering channel can be traced from the shelf edge, through the maze of diapirs on the slope, and out across the Sigsbee Abyssal Plain. This continuous transport pathway indicates the interaction of salt tectonics on sediment pathways and distribution. Numerous bed forms seaward of the Sigsbee Escarpment suggest that strong bottom currents are present. The northern gulf has three major submarine fans, each with different surface morphologies. The Rio Grande Fan has a braided channel system. The Mississippi Fan has a main channel that can be traced for approximately 100 km across the midfan, but most of the surface of the upper and midfan as well as the channel are buried by submarine slides or debris flows. Desoto Canyon Fan also has a continuous channel that has been filled or overrun in places by massive debris flows. Based on the sonographs, mass wasting appears to be an important process in distributing sediments in the deep water of the central gulf.

  16. Submarine Landslides and Mass-Transport Deposition in the Nankai fore-arc

    Science.gov (United States)

    Strasser, M.; Henry, P.; Kanamatsu, T.; Moe, K.; Moore, G. F.; IODP Expedition 333 Scientists

    2011-12-01

    Multiple lines of evidence exist for a range of sediment mass movement processes within the shallow megasplay fault zone (MSFZ) area and the adjacent slope basin in the outer fore-arc of the Nankai subduction zone, Japan. Diagnostic features observed in 3-D reflection seismic data and in cores from Integrated Ocean Drilling Program (IODP) Expedition 316 document a complex mass movement history spanning at least ˜2.87 million years. Various modes and scales of sediment remobilization can be related to the different morphotectonic settings in which they occurred and allow integration of knowledge on the spatial and temporal distribution of submarine landslides into a holistic reconstruction of the tectonostratigraphic evolution. New data from the most-recent Nankai IODP Expedition 333, which drilled and cored a Pleistocene-to-Holocene succession of the slope-basin seaward of the MSFZ, provides unprecedented details on submarine landslide processes occurring over the last Million year. The slope-basin represents the depocentre for downslope sediment transport and is characterized in 3-D reflection seismic data by several mass-transport deposits (MTDs), including an up to 180 m thick MTD. Here we present D/V Chikyu shipboard results and first post cruise results from Site C0018, including litho- bio- magneto- tephra- and stable isotope-stratigraphy, X-ray computed tomography analysis and physical properties data. Six MTDs were identified from visual core description and X-ray CT-scans. The thickest MTD is also the oldest (emplaced between 0.85 and 1.05 Ma) and it coincides with a lithological transition between a sandy turbidite sequence below, and ash-bearing hemipelagites comprising several MTDs above. Deformation styles within the MTD are heterogeneous: intervals of disturbed sediments are interbedded within intervals inferred to retain original, coherent bedding. In three occurrences the base of the MTD is defined by a shear zone within fine-grained sediments

  17. Submarine paleoseismology based on turbidite records.

    Science.gov (United States)

    Goldfinger, Chris

    2011-01-01

    Many of the largest earthquakes are generated at subduction zones or other plate boundary fault systems near enough to the coast that marine environments may record evidence of them. During and shortly after large earthquakes in the coastal and marine environments, a spectrum of evidence may be left behind, mirroring onshore paleoseismic evidence. Shaking or displacement of the seafloor can trigger processes such as turbidity currents, submarine landslides, tsunami (which may be recorded both onshore and offshore), and soft-sediment deformation. Marine sites may also share evidence of fault scarps, colluvial wedges, offset features, and liquefaction or fluid expulsion with their onshore counterparts. This article reviews the use of submarine turbidite deposits for paleoseismology, focuses on the dating and correlation techniques used to establish stratigraphic continuity of marine deposits, and outlines criteria for distinguishing earthquake deposits and the strategies used to acquire suitable samples and data for marine paleoseismology.

  18. A real two-phase submarine debris flow and tsunami

    International Nuclear Information System (INIS)

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-01-01

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  19. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  20. Can sea level rise cause large submarine landslides on continental slopes?

    Science.gov (United States)

    Urlaub, Morelia

    2014-05-01

    Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.

  1. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    Science.gov (United States)

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  2. Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements

    Science.gov (United States)

    Huh, C.-A.; Liu, J.T.; Lin, H.-L.; Xu, J. P.

    2009-01-01

    Sediment transport and sedimentation processes in the Gaoping submarine canyon were studied using sediment trap and current meter moorings deployed at a location during the winter (January-March) and the summer (July-September) months in 2008. At the end of each deployment, sediment cores were also collected from the canyon floor at the mooring site. Samples from sediment traps and sediment cores were analyzed for 210Pb and 234Th by gamma spectrometry. In conjunction with particle size and flow measurements, the datasets suggest that sediment transport in the canyon is tidally-modulated in the drier winter season and flood (river)-dominated in the wetter summer season. From the magnitude and temporal variation of sediment flux in the canyon with respect to the burial flux and sediment budget on the open shelf and slope region, we reaffirm that, on annual or longer timescales, the Gaoping submarine canyon is an effective conduit transporting sediments from the Gaoping River's drainage basin (the source) to the deep South China Sea (the ultimate sink). ?? 2009 Elsevier B.V.

  3. Geomorphological and cryostratigraphical analyses of the Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans

    Science.gov (United States)

    Cable, Stefanie; Christiansen, Hanne H.; Westergaard-Nielsen, Andreas; Kroon, Aart; Elberling, Bo

    2018-02-01

    In High Arctic northern Greenland, future responses to climatic changes are poorly understood on a landscape scale. Here, we present a study of the geomorphology and cryostratigraphy in the Zackenberg Valley in NE Greenland (74°N) containing a geomorphological map and a simplified geocryological map, combined with analyses of 13 permafrost cores and two exposures. Cores from a solifluction sheet, alluvial fans, and an emerged delta were studied with regards to cryostructures, ice and total carbon contents, grain size distribution, and pore water electrical conductivity; and the samples were AMS 14C dated. The near-surface permafrost on slopes and alluvial fans is ice rich, as opposed to the ice-poor epigenetic permafrost in the emerged delta. Ground ice and carbon distribution are closely linked to sediment transport processes, which largely depend on lithology and topography. Holocene alluvial fans on the lowermost hillslopes, covering 12% of the study area, represent paleoenvironmental archives. During the contrasting climates of the Holocene, the alluvial fans continued to aggrade - through the warmer early Holocene Optimum, the colder late Holocene, and the following climate warming - and by 0.45 mm a- 1, on average. This is caused by three factors: sedimentation, ground ice aggradation, and vegetation growth and is reflected by AMS 14C dating and continuously alternating cryostructures. Highly variable sedimentation rates in space and time at the alluvial fans have been detected. This is also reflected by alternating lenticular and microlenticular cryostructures indicating syngenetic permafrost aggradation during sedimentation with suspended and organic-matrix cryostructures indicating quasi-syngenetic permafrost aggradation in response to vegetation growth in periods with reduced or no sedimentation. Over time, this causes organic matter to become buried, indicating that alluvial fans represent effective carbon sinks that have previously been overlooked.

  4. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images

    Science.gov (United States)

    Twichell, David C.; Schwab, William C.; Nelson, C. Hans; Kenyon, Neil H.; Lee, Homa J.

    1992-01-01

    SeaMARC IA sidescan sonar images of the distal reaches of a depositional lobe on the Mississippi Fan show that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. Overbank sheet flow of sands was not an important process in the transport and deposition of the sandy and silty sediment found on this fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse-grained deposits on this fan are laterally discontinuous.

  5. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    Science.gov (United States)

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms. © 2010 Blackwell Publishing Ltd.

  6. A submarine landslide source for the devastating 1964 Chenega tsunami, southern Alaska

    Science.gov (United States)

    Brothers, Daniel; Haeussler, Peter J.; Lee Liberty,; David Finlayson,; Geist, Eric L.; Labay, Keith A.; Michael Byerly,

    2016-01-01

    During the 1964 Great Alaska earthquake (Mw 9.2), several fjords, straits, and bays throughout southern Alaska experienced significant tsunami runup of localized, but unexplained origin. Dangerous Passage is a glacimarine fjord in western Prince William Sound, which experienced a tsunami that devastated the village of Chenega where 23 of 75 inhabitants were lost – the highest relative loss of any community during the earthquake. Previous studies suggested the source of the devastating tsunami was either from a local submarine landslide of unknown origin or from coseismic tectonic displacement. Here we present new observations from high-resolution multibeam bathymetry and seismic reflection surveys conducted in the waters adjacent to the village of Chenega. The seabed morphology and substrate architecture reveal a large submarine landslide complex in water depths of 120–360 m. Analysis of bathymetric change between 1957 and 2014 indicates the upper 20–50 m (∼0.7 km3) of glacimarine sediment was destabilized and evacuated from the steep face of a submerged moraine and an adjacent ∼21 km2 perched sedimentary basin. Once mobilized, landslide debris poured over the steep, 130 m-high face of a deeper moraine and then blanketed the terminal basin (∼465 m water depth) in 11 ± 5 m of sediment. These results, combined with inverse tsunami travel-time modeling, suggest that earthquake- triggered submarine landslides generated the tsunami that struck the village of Chenega roughly 4 min after shaking began. Unlike other tsunamigenic landslides observed in and around Prince William Sound in 1964, the failures in Dangerous Passage are not linked to an active submarine delta. The requisite environmental conditions needed to generate large submarine landslides in glacimarine fjords around the world may be more common than previously thought. 

  7. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  8. Aliphatic hydrocarbons and triterpenes of the Congo deep-sea fan

    Science.gov (United States)

    Méjanelle, Laurence; Rivière, Béatrice; Pinturier, Laurence; Khripounoff, Alexis; Baudin, François; Dachs, Jordi

    2017-08-01

    Hydrocarbons were analyzed in sediments from the Congo River deep-sea fan, from the Congo River, and in sinking particles collected by sediment traps 40 m above the sediment. Studied sites encompassed three lobes of decreasing age of formation along the canyon: sites A, F and C and a another lobe system, disconnected from the active channel since 4 ka, Site E. Terrestrial long-chain odd n-alkanes were dominant in all sediments of the lobe system. Unsaturated terpenoids sourced by higher plants, such as gammacerene, lupene, ursene and oleanene, were also detected. At site C, characterized by high accumulation rates (10-20 cm yr-1), the organic matter spends less time in the oxic layer than at other sites and high phytadiene concentrations 10-17 μg gOC-1) evidenced recent terrestrial and phytoplanktonic remains reworked in anaerobic conditions. In these sediments, organic carbon-normalized concentrations of terrestrial alkanes and terpenoids were several fold higher than in the lobe sediments with lower accumulation rates (sites A and F), arguing for a more rapid degradation of terrestrial hydrocarbons than bulk organic carbon in the first steps of pre-diagenesis. Ample variations in the contributions of biomarkers from higher plants, ferns, bacteria and angiosperms, indicate an heterogeneous contribution of the soil and vegetation detritus delivered to the Congo lobe sediments. Lower concentrations in terrestrial hydrocarbons at site E, 45 km away from the active canyon, indicated that river particles are still admixed to the dominant marine organic matter. Diploptene and hop-7(21)-ene have a dual origin, from terrestrial and marine microorganisms. Scatter in their relationship to gammacerene argues for a contribution of marine microorganisms, in addition to soils-sourced microorganisms. The close distribution patterns of diploptene, hop-21-ene, hop-7(21)ene and neohop-13(18)-ene is in line with the hypothesis of sequential clay-catalyzed isomerisation of bacterial

  9. Appendix Q: siting considerations for submarine geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hollister, C.D.; Corliss, B.H.

    1981-01-01

    Site suitability characteristics of submarine geological formations for the disposal of radioactive wastes include the distribution coefficient of the host medium, permeability, viscoelastic nature of the sediments, influence of organic material on remobilization, and effects of thermal stress. The submarine geological formation that appears to best satisfy these criteria is abyssal red clay. Regions in the ocean that have coarse grained deposits, high or variable thermal conductivity, high organic carbon content, and sediment thickness of less than 50 m are not being considered at this time. The optimum geological environment should be tranquil and have environmental predictability over a minimum of 10 5 years. A paleoenvironmental model of Cenozoic sedimentation in the central North Pacific has been constructed from sedimentological, geotechnical and stratigraphic data derived from a single giant piston core collected in the central North Pacific (GPC-3: 30 0 N, 157 0 W; 5705 m). This core represents a record of nearly continuous sedimentation for nearly 70 million years. The core was taken from a region of abyssal hill topography located beneath the present-day carbonate compensation depth. It contains 24.5 meters of undisturbed sediment composed of oxidized brown clay with altered ash layers. Paleomagnetic stratigraphy for the upper 4.5 meters indicates sedimentation rates are 2.5 mm/1000 years for the last 2 m.y. and 1.1 mm/1000 years before that to 2.4 Ma. Ichthyolith stratigraphy shows sedimentation rates of 0.2 to 0.3 mm/1000 years from 65 to 5 Ma. The observed sedimentological variations can be explained in terms of present sedimentation patterns in the central North Pacific and by the NNW motion of the Pacific plate during the Cenozoic

  10. Nuclear-powered submarines

    International Nuclear Information System (INIS)

    Curren, T.

    1989-01-01

    The proposed acquisition of nuclear-powered submarines by the Canadian Armed Forces raises a number of legitimate concerns, including that of their potential impact on the environment. The use of nuclear reactors as the propulsion units in these submarines merits special consideration. Radioactivity, as an environmental pollutant, has unique qualities and engenders particular fears among the general population. The effects of nuclear submarines on the environment fall into two distinct categories: those deriving from normal operations of the submarine (the chief concern of this paper), and those deriving from a reactor accident. An enormous body of data must exist to support the safe operation of nuclear submarines; however, little information on this aspect of the proposed submarine program has been made available to the Canadian public. (5 refs.)

  11. The End of Monterey Submarine Canyon Incision and Potential River Source Areas-Os, Nd, and Pb Isotope Constraints from Hydrogenetic Fe-Mn Crusts

    Science.gov (United States)

    Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.

    2015-12-01

    The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon

  12. New insights into the timing, triggers and emplacement processes of prodigious submarine landslides in the Nordic Seas

    Science.gov (United States)

    Talling, Peter; Pope, Ed; Hunt, James; Allin, Joshua; Cartigny, Matthieu; Long, David; Mozzato, Alessandro; Stanford, Jennifer; Tappin, David; Watts, Camilla

    2015-04-01

    Submarine landslides can generate tsunamis with the potential to cause severe damage. This is illustrated by the huge (> 3,000 cubic km) Storegga landslide offshore Norway that occurred 8,200 years ago, and which produced a tsunami that ran up surrounding coastlines for up to 20m. Here we report on a 1 month research cruise on the RV Pelagia in July 2014 to the Nordic Seas, which collected 88 sediment cores totalling more than 500m, together with over 7,000 square km of swath bathymetry. The overall aim of this research expedition was to better understand the tsunami risk from large submarine landslides in the Nordic Seas. This includes a better understanding of the timing and frequency of submarine landslides, factors that potentially trigger or precondition slope failure, and the manner in which landslides are emplaced. Much of the expedition was then devoted to understanding the age and emplacement mechanism of the ~900 cubic km Traenadjupet landslide, located to the north of the Storegga Slide. This included sampling and mapping of the main Traenadjupet Slide, four lobes froming the distal Traenadjupet Slide deposit. A newly discovered debris flow deposit with large blocks was found to continue from the most westerly of these lobes, and it was mapped to its termination. If the previously established age of ~4ka for the Traenadjupet Slide is correct, then it does not appear to produced a major tsunami (unlike the Storegga Slide). Indeed, the morphology of the Traenadjupet Slide suggests much slower emplacement than the Storegga Slide, which would be consistent with such a lack of major tsunami. Turbidites in cores from the deep-water Lofoten Basin will help to understand the frequency and character of faster moving slope failures around the basin margin. Cores were collected from the Lofoten Contourite Drift located next to the Traenadjupet Slide, and these contouritic sediment may provide a paleoceanographic record that can be compared to slide timing, in order

  13. Sunken nuclear submarines

    International Nuclear Information System (INIS)

    Eriksen, V.O.

    1990-01-01

    The increasing number of accidents with nuclear submarines is a worriment to the general public. Five nuclear submarines are resting on the bottom of the North Atlantic. Design information on nuclear propulsion plants for submarines is classified. The author describes a potential generic nuclear submarine propulsion plant. Design information from the civilian nuclear industry, nuclear power plants, research reactors, nuclear cargo vessels and nuclear propelled icebreakers are used for illustration of relevant problems. A survey is given of nuclear submarines. Factors influencing the accident risks and safety characteristics of nuclear submarines are considered, and potential accident scenarios are described. The fission product content of the nuclear plant can be estimated, '' source terms'' can be guessed and potential release rates can be judged. The mechanisms of dispersion in the oceans is reviewed and compared with the dumping of radioactive waste in the Atlantic and other known releases. 46 refs., 49 figs., 14 tabs

  14. Phase 1 Final Report: Titan Submarine

    Science.gov (United States)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of

  15. Velocity and Attenuation Profiles in the Monterey Deep-Sea Fan

    Science.gov (United States)

    1987-12-01

    a. 11 o n i n and depth. Sol ’^ a 11 e i"i u a 11 o >) a i::> 1 n Ci sediment for each of the f i...i. n c t ion o f f r e q u e n c; y...estimate of sea floor depth was obtained from an oceano - graphic map of the Monterey fan (’Oceanographic Data of the Monterey Deep Sea Fan’, 1st

  16. Hard substrate in the deep ocean: How sediment features influence epibenthic megafauna on the eastern Canadian margin

    Science.gov (United States)

    Lacharité, Myriam; Metaxas, Anna

    2017-08-01

    Benthic habitats on deep continental margins (> 1000 m) are now considered heterogeneous - in particular because of the occasional presence of hard substrate in a matrix of sand and mud - influencing the distribution of megafauna which can thrive on both sedimented and rocky substrates. At these depths, optical imagery captured with high-definition cameras to describe megafauna can also describe effectively the fine-scale sediment properties in the immediate vicinity of the fauna. In this study, we determined the relationship between local heterogeneity (10-100 sm) in fine-scale sediment properties and the abundance, composition, and diversity of megafauna along a large depth gradient (1000-3000 m) in a previously-unexplored habitat: the Northeast Fan, which lies downslope of submarine canyons off the Gulf of Maine (northwest Atlantic). Substrate heterogeneity was quantified using a novel approach based on principles of computer vision. This approach proved powerful in detecting gradients in sediment, and sporadic complex features (i.e. large boulders) in an otherwise homogeneous environment because it characterizes sediment properties on a continuous scale. Sediment heterogeneity influenced megafaunal diversity (morphospecies richness and Shannon-Wiener Index) and community composition, with areas of higher substrate complexity generally supported higher diversity. However, patterns in abundance were not influenced by sediment properties, and may be best explained by gradients in food supply. Our study provides a new approach to quantify fine-scale sediment properties and assess their role in shaping megafaunal communities in the deep sea, which should be included into habitat studies given their potential ecological importance.

  17. Mars analogue alluvial fans along the Hilina Pali fault system, Island of Hawaíi

    Science.gov (United States)

    Morgan, A. M.; Craddock, R. A.

    2016-12-01

    Alluvial fans across the martian surface act as a testament to the planet's wetter past, but the magnitude and duration of runoff events and their formative environment remain poorly constrained. Here we describe the geomorphology and interpreted formative sedimentary processes of a series of coarse grained alluvial fans along the Hilina Pali fault system at the south end of the Island of Hawaíi. The Hilina Pali is a 500m fault scarp similar in slope to the interior of a crater rim, the preferential location for fan formation on Mars. Channels feeding the fans drain the Káū Desert on the leeward side of the Kilauea volcano. These channels take advantage of lava tubes and depressions in lava flows, and subsequent lava flows preferentially flow within channels. This creates a complicated stratigraphy that is difficult to interpret solely from remote sensing data. From measured channel cross sections and woody debris we calculate feeder channel discharges of 1.6-11.4 m3/s, implying runoff production rates of up to 4cm/hour. This value is in the range of rainfall that can be delivered during large cold core winter cyclones, locally known as `Kona storms', which can generate precipitation in excess of 1m/24h. While fluid is sourced from a broad area throughout the southern Káū Desert, interpolation-derived volumes of the fans and eroded alcoves above the fans suggest that fan sediment primarily is sourced directly from edge of the pali itself. We find that similar to fans on Mars, the Hilina Pali fans are relatively large relative to their contributing basin areas. However, the Hawaiian fans vary widely in their individual relations between area, slope, and grain size. We hypothesize this is due to variations in fine grained sediment supply. The fines required for increased suspension during debris flows are sourced from sand dunes and sand sheets consisting of volcanic tephra located several hundred meters north of the pali, and these dunes are unevenly

  18. Centrifugal fans: Similarity, scaling laws, and fan performance

    Science.gov (United States)

    Sardar, Asad Mohammad

    Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC

  19. Cold-water coral banks and submarine landslides: a review

    Science.gov (United States)

    de Mol, Ben; Huvenne, Veerle; Canals, Miquel

    2009-06-01

    This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

  20. Detecting frontal ablation processes from direct observations of submarine terminus morphology

    Science.gov (United States)

    Fried, M.; Carroll, D.; Catania, G. A.; Sutherland, D. A.; Stearns, L. A.; Bartholomaus, T. C.; Shroyer, E.; Nash, J. D.

    2017-12-01

    Tidewater glacier termini couple glacier and ocean systems. Subglacial discharge emerging from the terminus produces buoyant plumes that modulate submarine melting, calving, fjord circulation and, in turn, changes in ice dynamics from back-stress perturbations. However, the absence of critical observational data at the ice-ocean interface limits plume and, by extension, melt models from incorporating realistic submarine terminus face morphologies and assessing their impact on terminus behavior at tidewater glaciers. Here we present a comprehensive inventory and characterization of submarine terminus face shapes from a side-looking, multibeam echo sounding campaign across Kangerdlugssuaq Sermerssua glacier, central-west Greenland. We combine these observations with in-situ measurements of ocean stratification and remotely sensed subglacial discharge, terminus positions, ice velocity, and ice surface datasets to infer the spectrum of processes sculpting the submarine terminus face. Subglacial discharge outlet locations are confirmed through observations of sediment plumes, localized melt-driven undercutting of the terminus face, and bathymetry of the adjacent seafloor. From our analysis, we differentiate terminus morphologies resulting from submarine melt and calving and assess the contribution of each process to the net frontal ablation budget. Finally, we constrain a plume model using direct observations of the submarine terminus face and conduit geometry. Plume model simulations demonstrate that the majority of discharge outlets are fed by small discharge fluxes, suggestive of a distributed subglacial hydrologic system. Outlets with the largest, concentrated discharge fluxes are morphologically unique and strongly control seasonal terminus position. At these locations, we show that the spatiotemporal pattern of terminus retreat is well correlated with time periods when local melt rate exceeds ice velocity.

  1. Quaternary alluvial fans of Ciudad Juárez, Chihuahua, northern México: OSL ages and implications for climatic history of the region

    Science.gov (United States)

    Zúñiga de León, David; Kershaw, Stephen; Mahan, Shannon

    2016-01-01

    Alluvial fans formed from sediments derived from erosion of the Juárez Mountains in northernmost México have a significant flood impact on the Ciudad Juárez, which is built on the fan system. The northern part of Ciudad Juárez is the most active; further south, older parts of the fan, upon which the rest of the city is built, were largely eroded by natural processes prior to human habitation and subsequently modified only recently by human construction. Three aeolian sand samples, collected from the uppermost (youngest) parts of the fan system in the city area, in places where human intervention has not disturbed the sediment, and constrain the latest dates of fan building. Depositional ages of the Quaternary alluvial fans were measured using Optically Stimulated Luminescence (OSL) on aeolian sands that have inter-fingered with alluvial fan material. These dates are: a) sample P1, 31 ka; b) sample P2, 41 ka; c) sample P3, 74 ka, between Oxygen Isotope Stages (OIS) 3 to 5. They demonstrate that fan development, in the area now occupied by the city, terminated in the Late Pleistocene, immediately after what we interpret to have been an extended period of erosion without further deposition, lasting from the Late Pleistocene to Holocene. The three dates broadly correspond to global glacial periods, implying that the cool, dry periods may reflect periods of aeolian transport in northern México in between phases that were wetter to form the alluvial fans. Alluvial fan margins inter-finger with fluvial terrace sediments derived from the Río Bravo, indicating an additional component of fan dissection by Río Bravo lateral erosion, presumed to be active during earlier times than our OSL ages, but these are not yet dated. Further dating is required to ascertain the controls on the fan and fluvial system.

  2. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    Science.gov (United States)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  3. Carbon transport in Monterey Submarine Canyon

    Science.gov (United States)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  4. Submarine slope failures due to pipe structure formation.

    Science.gov (United States)

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  5. Seasonal pathways of organic matter within the Avilés submarine canyon: Foodweb implications

    NARCIS (Netherlands)

    Romero-Romero, S.; Molina-Ramírez, A.; Höfer, J.; Duineveld, G.C.A.; Rumín-Caparrós, A.; Sanchez-Vidal, A.; Canals, M.; Acuña, J.L.

    2016-01-01

    The transport and fate of organic matter (OM) sources within the Avilés submarine canyon (Cantabrian Sea, Southern Bay of Biscay) were studied using carbon and nitrogen stable isotope ratios. The isotopic composition of settling particles and deep bottom sediments closely resembled that of surface

  6. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    Science.gov (United States)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    The 2004 Sumatra-Andaman Mw9.3 and the 2011 Tohoku (Japan) Mw9.0 earthquakes and tsunamis were huge geological events with major societal consequences. Both were along subduction boundaries and ruptured portions of these boundaries that had been deemed incapable of such events. Submarine strike-slip earthquakes, such as the 2010 Mw7.0 in Haiti, are smaller but may be closer to population centers and can be similarly catastrophic. Both classes of earthquakes remobilize sediment and leave distinct signatures in the geologic record by a wide range of processes that depends on both environment and earthquake characteristics. Understanding them has the potential of greatly expanding the record of past earthquakes, which is critical for geohazard analysis. Recent events offer precious ground truth about the earthquakes and short-lived radioisotopes offer invaluable tools to identify sediments they remobilized. In the 2011 Mw9 Japan earthquake they document the spatial extent of remobilized sediment from water depths of 626m in the forearc slope to trench depths of 8000m. Subbottom profiles, multibeam bathymetry and 40 piston cores collected by the R/V Natsushima and R/V Sonne expeditions to the Japan Trench document multiple turbidites and high-density flows. Core tops enriched in xs210Pb,137Cs and 134Cs reveal sediment deposited by the 2011 Tohoku earthquake and tsunami. The thickest deposits (2m) were documented on a mid-slope terrace and trench (4000-8000m). Sediment was deposited on some terraces (600-3000m), but shed from the steep forearc slope (3000-4000m). The 2010 Haiti mainshock ruptured along the southern flank of Canal du Sud and triggered multiple nearshore sediment failures, generated turbidity currents and stirred fine sediment into suspension throughout this basin. A tsunami was modeled to stem from both sediment failures and tectonics. Remobilized sediment was tracked with short-lived radioisotopes from the nearshore, slope, in fault basins including the

  7. Submarine Medicine Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Submarine Medicine Team conducts basic and applied research on biomedical aspects of submarine and diving environments. It focuses on ways to optimize the health...

  8. Changing sedimentary environment during the late Quaternary: Sedimentological and isotopic evidence from the distal Bengal Fan

    Digital Repository Service at National Institute of Oceanography (India)

    Kessarkar, P.M.; Rao, V.P.; Ahmad, S.M.; Patil, S.K.; AnilKumar, A.; AnilBabu, G.; Chakraborty, S.; SounderRajan, R

    The sediments recovered from two gravity cores of the lower and distal Bengal Fan were investigated for sedimentological properties and Sr -Nd isotopes.Each core exhibits two distinct units, the lower unit 2 and upper unit 1 sediments. The unit 2...

  9. Near-bottom particulate matter dynamics in the Nazare submarine canyon under calm and stormy conditions

    NARCIS (Netherlands)

    Martín, J.; Palanques, A.; Vitorino, J.; Oliveira, A.; de Stigter, H.C.

    2011-01-01

    Two mooring lines equipped with near-bottom sediment traps were deployed in the axis of the Nazare submarine canyon at similar to 1600 and similar to 3300 m depth, respectively. We studied time-series of particle flux, composition (biogenic silica, carbonates, organic matter and lithogenic

  10. Late Pleistocene dune-sourced alluvial fans in coastal settings: Sedimentary facies and related processes (Mallorca, Western Mediterranean)

    Science.gov (United States)

    Pomar, F.; del Valle, L.; Fornós, J. J.; Gómez-Pujol, L.

    2018-05-01

    Aeolian-alluvial sedimentary interaction results in the formation of deposits characterized by typical alluvial sedimentary structures, but is composed of conspicuous amounts of aeolian sediments. The literature on this topic is limited and most works relate more with continental aeolian dunes or fluvial dune interference with fan bodies. Furthermore, there is a lack of examples of aeolian-alluvial sedimentary interference in coastal settings. In the western Mediterranean, there are many Pleistocene alluvial fan deposits built up partly by sediment originating from coastal dunes dismantled by alluvial streams. Very often, these deposits show a continuous sedimentary sequence through which we can derive the contribution and predominance of coastal, alluvial-colluvial and aeolian processes and their controls on landscape formation. This is an outstanding feature within coastal systems since it shows marine sediments reworked and integrated within coastal dune fields by aeolian transport, and the latter built up into alluvial fan bodies. In this sense, aeolian-alluvial interaction is the geomorphic-sedimentary expression of the coexistence and overlapping of alluvial and aeolian environments resulting in deposits sharing sedimentary features from both environments. The aim of this paper is to unravel the contribution of coastal dunes in the construction of alluvial fans bodies and identify the main sedimentary facies that constitute these deposits, as well as their climatic controls. For this reason, Es Caló fan (northern Mallorca) has been selected due to its well-exposed deposits exhibiting the alternation of aeolian, alluvial and colluvial deposits. Sedimentological and stratigraphic analyses based on 33 logs and complementary analyses demonstrate that most of the facies constituting the fan body are made up completely of marine bioclastic sands. These deposits record an alluvial fan sedimentary environment characterized by sediments inputs that do not proceed

  11. Sediment Transport Capacity of Turbidity Currents: from Microscale to Geological Scale.

    Science.gov (United States)

    Eggenhuisen, J. T.; Tilston, M.; Cartigny, M.; Pohl, F.; de Leeuw, J.; van der Grind, G. J.

    2016-12-01

    architectural information. These predictions are tied to existing S2S analyses to constrain submarine channel and fan dimensions in ancient and subsurface systems. Predictions of sediment budgets in deep marine systems rely on integration of fundamental issues in turbulent particle suspension into geological models of turbidite systems.

  12. Palynofacies reveal fresh terrestrial organic matter inputs in the terminal lobes of the Congo deep-sea fan

    Science.gov (United States)

    Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe

    2017-08-01

    The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.

  13. Quantifying sediment connectivity in an actively eroding gully complex, Waipaoa catchment, New Zealand

    Science.gov (United States)

    Taylor, Richard J.; Massey, Chris; Fuller, Ian C.; Marden, Mike; Archibald, Garth; Ries, William

    2018-04-01

    Using a combination of airborne LiDAR (2005) and terrestrial laser scanning (2007, 2008, 2010, 2011), sediment delivery processes and sediment connectivity in an 20-ha gully complex, which significantly contributes to the Waipaoa sediment cascade, are quantified over a 6-year period. The acquisition of terrain data from high-resolution surveys of the whole gully-fan system provides new insights into slope processes and slope-channel linkages operating in the complex. Raw terrain data from the airborne and ground-based laser scans were converted into raster DEMs with a vertical accuracy between surveys of models of change across the gully and fan complex. In these models deposition equates to positive and erosion to negative vertical change. Debris flows, slumping, and erosion by surface runoff (gullying in the conventional sense) generated on average 95,232 m3 of sediment annually, with a standard deviation of ± 20,806 m3. The volumes of debris eroded from those areas dominated by surface erosion processes were higher than in areas dominated by landslide processes. Over the six-year study period, sediment delivery from the source zones to the fan was a factor of 1.4 times larger than the volume of debris exported from the fan into Te Weraroa Stream. The average annual volume of sediment exported to Te Weraroa Stream varies widely from 23,195 to 102,796 m3. Fluctuations in the volume of stored sediment within the fan, rather than external forcing by rainstorms or earthquakes, account for this annual variation. No large rainfall events occurred during the monitoring period; therefore, sediment volumes and transfer processes captured by this study are representative of the background conditions that operate in this geomorphic system.

  14. Coastal submarine hydrothermal activity off northern Baja California

    International Nuclear Information System (INIS)

    Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D.; Young, D.R.

    1978-01-01

    In situ observations of submarine hydrothermal activity have been conducted in Punta Banda. Baja Califronia, Mexico, approximately 400 m from the coast and at a seawater depth of 30 m. The hydrothermal activity occurs within the Agua Blanca Fault, a major transverse structure of Northern Baja California. Hot springwater samples have been collected and analyzed. Marked differences exist between the submarine hot springwater, local land hot springwaters, groundwater, and local seawater. SiO 2 , HCO 3 , Ca, K, Li, B, Ba, Rb, Fe, Mn, As, and Zn are enriched in the submarine hot springwater, while Cl, Na, So 4 2 , Mg, Cu, Ni, Cd, Cr, and perhaps Pb are depleted in relation to average and local seawater values. Very high temperatures, at the hydrothermal vents, have been recorded (102 0 C at 4-atm pressure). Visible gaseous emanations rich in CH 4 and N 2 coexist with the hydrothermal solutions. Metalliferous deposits, pyrite, have been encountered with high concentrations of Fe, S, Si, Al, Mn, Ca, and the volatile elements As, Hg, Sb, and Tl, X ray dispersive spectrometry (1500-ppm detection limit). X ray diffraction, and scanning electron microscopy of the isolated metalliferous precipitates indicate that the principal products of precipitation are pyrite and gypsum accompanied by minor amounts of amorphous material containing Si and Al. Chemical analyses and XRD of the reference control rocks of the locality (volcanics) versus the hydrothermally altered rocks indicate that high-temperature and high-pressure water-rock interactions can in part explain the water chemistry characteristics of the submarine hydrothermal waters. Their long residence time, the occurrence of an extensive marine sedimentary formation, their association with CH 4 and their similarities with connate waters of oil and gas fields suggest that another component of their genesis could be in cation exchange reactions within deeply buried sediments of marine origin

  15. Core-Log-Seismic investigations of the Surveyor Fan and Channel system during the Pleistocene; IODP Exp. 341

    Science.gov (United States)

    Somchat, K.; Reece, R.; Gulick, S. P. S.

    2017-12-01

    The Chugach-St. Elias mountain range is the product of the ongoing subduction and collision of the Yakutat microplate with the North America Plate. The presence of this high topography close to the shoreline creates a unique source-to-sink system in which glacial eroded sediment is transported directly to the sea and preserved offshore in a deep sea fan without intervening storage. Surveyor Fan and Channel system is the product of this system. In this study we will focus on the four tributary channels that form at the head of the Surveyor Channel complex and merge into the main channel trunk 200 km from the shelf edge. We integrated drill core and 2D seismic reflection data to study the evolution of these tributaries in order to decipher glacial history along the southern Alaskan margin since the mid-Pleistocene (1.2 Ma). An age model from Integrated Ocean Drilling Program Expedition 341 Site U1418 provides a higher resolution chronology of sediment delivery to the Surveyor Fan than previous studies. We regionally mapped the seismic subunits previously identified by Exp. 341 scientists starting from Site U1418 and analyzed regional patterns of sediment deposition. Channel migrations are observable between 1.2-0.5 Ma which could be the result of increasing glacial ice volume onshore due to onset of the MPT. Two-way travel time (isopach) maps of the three subunits show that sediment depocenter began to move eastward since 1.2 Ma with a trend of overall sediment flux increase in all tributary channels. Changes in sediment flux in each system represent the changes in volume of glacial ice over successive glacial intervals. Additionally, seismic analysis of channel geomorphology shows that each system contains distinct geomorphological evolutions that respond to the glacially eroded sediment flux at different times. Since glacial erosional processes is the driver of this source-to-sink system, a history of glacial ice onshore since the Pleistocene can be inferred from

  16. Direct Measurements of the Evolution and Impact of Sediment Density Flows as they Pass Through Monterey Submarine Canyon, Offshore California

    Science.gov (United States)

    Paull, C. K.; Talling, P.; Maier, K. L.; Parsons, D. R.; Xu, J.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Barry, J.; Chaffey, M. R.; O'Reilly, T. C.; Rosenberger, K. J.; Gales, J. A.; McGann, M.; McCann, M. P.; Simmons, S.; Sumner, E.

    2017-12-01

    Sediment density flows flushing through submarine canyons carry globally significant amounts of material into the deep sea to form many of the largest sediment accumulations on Earth. Despite their global significance, these flows remain poorly understood because they have rarely been directly measured. Here we provide an initial overview of the recently completed Coordinated Canyon Experiment (CCE), which was undertaken specifically to provide detailed measurements of sediment density flows and their impact on seafloor morphology and sedimentology. No previous study has deployed as extensive an array of monitoring sensors along a turbidity current pathway. During the 18 months of the CCE, at least 15 sediment density flows were recorded within the axis of Monterey Canyon. Because no external triggers (i.e., earthquakes or floods) correlate with these flows, they must have originated as failures in the canyon floor or canyon flanks. Three flows ignited and ran out for > 50 km from water depths of 1,860 m, reaching velocities up to 8.1 m/s. The rest of the flows died out within the array. During these events, large objects on or in the canyon floor were displaced substantial distances downslope, including a 7.1 km downslope movement of an entire mooring; a 4.6 km displacement of an 860 kg instrument frame followed by repeated down canyon displacements of this same frame after it was entombed in sediment; and multiple depth changes of man-made boulders containing acceleration and pressure sensors. During this same time interval the canyon floor was mapped six times with autonomous underwater vehicles covering the canyon thalweg at the upper and lower end of the instrument array (200-540 and 1350-1880 m water depths). The repeated mapping surveys reveal that flows caused +3 to -3 m bathymetric changes within a continuous clearly defined 200 m wide swath running along the canyon axis in 540 m water depth. This study shows that sediment density flows caused massive

  17. Norwegian monitoring (1990-2015) of the marine environment around the sunken nuclear submarine Komsomolets.

    Science.gov (United States)

    Gwynn, Justin P; Heldal, Hilde Elise; Flo, Janita K; Sværen, Ingrid; Gäfvert, Torbjörn; Haanes, Hallvard; Føyn, Lars; Rudjord, Anne Liv

    2018-02-01

    Norway has monitored the marine environment around the sunken Russian nuclear submarine Komsomolets since 1990. This study presents an overview of 25 years of Norwegian monitoring data (1990-2015). Komsomolets sank in 1989 at a depth of 1680 m in the Norwegian Sea while carrying two nuclear torpedoes in its armament. Subsequent Soviet and Russian expeditions to Komsomolets have shown that releases from the reactor have occurred and that the submarine has suffered considerable damage to its hulls. Norwegian monitoring detected 134 Cs in surface sediments around Komsomolets in 1993 and 1994 and elevated activity concentrations of 137 Cs in bottom seawater between 1991 and 1993. Since then and up to 2015, no increased activity concentrations of radionuclides above values typical for the Norwegian Sea have been observed in any environmental sample collected by Norwegian monitoring. In 2013 and 2015, Norwegian monitoring was carried out using an acoustic transponder on the sampling gear that allowed samples to be collected at precise locations, ∼20 m from the hull of Komsomolets. The observed 238 Pu/ 239,240 Pu activity ratios and 240 Pu/ 239 Pu atom ratios in surface sediments sampled close to Komsomolets in 2013 did not indicate any releases of Pu isotopes from reactor or the torpedo warheads. Rather, these values probably reflect the overprinting of global fallout ratios with fluxes of these Pu isotopes from long-range transport of authorised discharges from nuclear reprocessing facilities in Northern Europe. However, due to the depth at which Komsomolets lies, the collection of seawater and sediment samples in the immediate area around the submarine using traditional sampling techniques from surface vessels is not possible, even with the use of acoustic transponders. Further monitoring is required in order to have a clear understanding of the current status of Komsomolets as a potential source of radioactive contamination to the Norwegian marine environment

  18. Sorting of Terrestrial and Marine Organic Matter along a Marginal Submarine Canyon: Radiocarbon and Biomarker Signatures of Surface Sediments

    Science.gov (United States)

    Close, H. G.; Doherty, S.; Campbell, P.; McCarthy, M. D.; Prouty, N.

    2016-02-01

    Submarine canyons are incised features of many continental margins that can have significant influence on the hydrodynamic distribution of sediments and organic matter (OM) eroded and deposited from the continents. Baltimore Canyon, on the U.S. mid-Atlantic margin, contains a complex set of sedimentary processes that simultaneously create unique benthic habitats and control the deposition of OM. Along the canyon axis, loci of net erosion, net deposition, and intense winnowing each host diverse faunal assemblages and varying mixtures of sedimentary OM derived both from production in the overlying water column and from mobilized sediments. Bioavailable components of this deposited OM sustain benthic communities, while recalcitrant components can contribute to long-term carbon burial in the deep sea. Here we probe in detail the terrestrial versus marine origins of OM along a transect of Baltimore Canyon, as well as its bioavailability for benthic fauna, in order to explore how canyon-specific sediment dynamics might emplace a functional sorting of OM from shelf to open ocean. Determining the provenance of sedimentary OM is a continual challenge: commonly-measured bulk geochemical properties often provide insufficient information to distinguish end-member sources. We present a novel approach to separate functional classes of OM and investigate sources and degradative pathways of OM in Baltimore Canyon. In combination with bulk geochemical characteristics, surface sediments from water depths of 200-1200 meters were sequentially extracted (solvent-extracted, acid-hydrolyzed, and demineralized) to separate pools containing different prevalence of terrigenous, marine, and recalcitrant OM. Each class was analyzed for biomarker distributions; amino acid content, 13C signatures, and degradation indicators; bulk carbon and nitrogen isotopes; and radiocarbon content in order to characterize potential end-member sources within the mixture, as well as their age profiles. These

  19. Allogenic and Autogenic Signals in the Detrital Zircon U-Pb Record of the Deep-Sea Bengal Fan

    Science.gov (United States)

    Blum, M. D.; Rogers, K. G.; Gleason, J. D.; Najman, Y.

    2017-12-01

    The Himalayan-sourced Ganges-Brahmaputra river system and the deep-sea Bengal Fan represent Earth's largest sediment-dispersal system. This presentation summarizes a new detrital zircon U-Pb (DZ) provenance record from the Bengal Fan from cores collected during IODP Expedition 354, with coring sites located 1350 km downdip from the shelf margin. Each of our 15 samples were collected from medium- to fine-grained turbidite sand and, based on shipboard biostratigraphic analyses, our samples are late Miocene to late Pleistocene in age. Each sample was analyzed by LA-ICPMS at the Arizona Laserchron facility, with an average of n=270 concordant U-Pb ages per sample. Our goals are to use these data to evaluate the influence of allogenic controls vs. autogenic processes on signal propagation from source-to-sink. At the first order, large-scale sediment transfer to the Bengal Fan clearly records the strong tectonic and climatic forcing associated with the Himalayas and Ganges-Brahmaputra system: after up to 2500 km of river transport, and 1350 km of transport in turbidity currents, the DZ record faithfully represents Himalayan source terrains. The sand-rich turbidite part of the record is nevertheless biased towards glacial periods when rivers extended across the shelf in response to climate-forced sea-level fall, and discharged directly to slope canyons. However, only part of the Bengal Fan DZ record represents either the Ganges or the Brahmaputra, with most samples representing varying degrees of mixing of sediments from the two systems: this mixing, or the lack thereof, represents the signal of autogenic avulsions on the delta plain that result in the two river systems delivering sediment separately to the shelf margin, or together as they do today. Within the allogenic framework established by tectonic processes, the climatic system, and global climate-forced sea-level change, the DZ U-Pb record of sediment mixing or the lack thereof provides a fingerprint of autogenic

  20. Rapid subsidence and stacked Gilbert-type fan deltas, Pliocene Loreto basin, Baja California Sur, Mexico

    Science.gov (United States)

    Dorsey, Rebecca J.; Umhoefer, Paul J.; Renne, Paul R.

    1995-08-01

    Pliocene nonmarine to marine sedimentary rocks exposed in the Loreto basin, Baja California Sur, provide a record of syntectonic subsidence and sedimentation in a transform-rift basin that developed along the western margin of the Gulf of California. A thick sequence of twelve Gilbert-type fan deltas, having a total measured thickness of about 615 m, accumulated near the fault-bounded southwestern margin of this basin. Based on stratal geometries and lithofacies associations, sedimentary rocks are divided into Gilbert-delta topset, foreset and bottomset strata, shell beds and background shallow-marine shelf deposits. Topset strata of each Gilbert-type delta cycle are capped by laterally persistent molluscan shell beds containing diverse assemblages of bivalves, pectens, oysters, gastropods and echinoids. These shell beds are interpreted to be condensed intervals that record sediment starvation during abandonment of the fan-delta plain. Delta abandonment may have been caused by large episodic faulting events, which submerged each pre-existing fan-delta plain, substantially slowed detrital input by drowning of alluvial feeder channels, and created new accommodation space for each new Gilbert-type fan delta. Alternatively, it is possible that delta-plain abandonment was caused by upstream avulsions and autocyclic lateral switching of fan-delta lobes during relatively uniform rates of slip along the basin-bounding fault. Two contrasting, plausible basin models are proposed for the Loreto basin: (1) asymmetric subsidence along a high-angle oblique-slip normal fault, producing a classic half-graben basin geometry with vertically stacked Gilbert-type fan deltas; or (2) lateral stacking and horizontal displacement of strata away from a relatively fixed depocenter due to fault movement in the releasing bend of a listric strike-slip fault. We favor the first model because field relations and simple geometric constraints suggest that most of the total measured section

  1. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan

    Science.gov (United States)

    Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.

    2017-08-01

    Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical

  2. Earth's portfolio of extreme sediment transport events

    Science.gov (United States)

    Korup, Oliver

    2012-05-01

    Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are ~ 104 t km- 2 yr- 1 if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 102-103 yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of ~ 10% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage

  3. Submarine hydrodynamics

    CERN Document Server

    Renilson, Martin

    2015-01-01

    This book adopts a practical approach and presents recent research together with applications in real submarine design and operation. Topics covered include hydrostatics, manoeuvring, resistance and propulsion of submarines. The author briefly reviews basic concepts in ship hydrodynamics and goes on to show how they are applied to submarines, including a look at the use of physical model experiments. The issues associated with manoeuvring in both the horizontal and vertical planes are explained, and readers will discover suggested criteria for stability, along with rudder and hydroplane effectiveness. The book includes a section on appendage design which includes information on sail design, different arrangements of bow planes and alternative stern configurations. Other themes explored in this book include hydro-acoustic performance, the components of resistance and the effect of hull shape. Readers will value the author’s applied experience as well as the empirical expressions that are presented for use a...

  4. Hydrate-bearing Submarine Landslides in the Orca Basin, Gulf of Mexico

    Science.gov (United States)

    Sawyer, D.; Mason, A.; Cook, A.; Portnov, A.; Hillman, J.

    2017-12-01

    The co-occurrence of submarine landslides and hydrate-bearing sediment suggests that hydrates may play a role in landslide triggering and/or the mobility and dynamic characteristics of the submarine landslide. In turn, the removal of large sections of seafloor perturbs the hydrate stability field by removing overburden pressure and disturbing the temperature field. These potential hydrate-landslide feedbacks are not well understood. Here we combine three-dimensional seismic and petrophysical logs to characterize the deposits of submarine landslides that failed from hydrate-bearing sediments in the Orca Basin in the northern Gulf of Mexico. The Orca Basin contains a regionally mappable bottom simulating reflector, hydrate saturations within sands and muds, as well as numerous landslides. In addition, the Orca Basin features a well-known 123 km2 anoxic hypersaline brine pool that is actively being fed by outcropping salt. Lying at the bottom of the brine pool are deposits of submarine landslides. Slope instability in the Orca Basin is likely associated with near-seafloor salt tectonics. The most prominent landslide scar observable on the seafloor has a correlative deposit that now lies at the bottom of the brine pool 11.6 km away. The headwall is amphitheater-shaped with an average height of 80 meters and with only a minor amount of rubble remaining near the headwall. A total of 8.7 km3 of material was removed and deposited between the lower slopes of the basin and the base of the brine pool. Around the perimeter of the landslide headwall, two industry wells were drilled and well logs show elevated resistivity that are likely caused by gas hydrate. The slide deposits have a chaotic seismic facies with large entrained blocks and the headwall area does not retain much original material, which together suggests a relatively mobile style of landslide and therefore may have generated a wave upon impacting the brine pool. Such a slide-induced wave may have sloshed

  5. Submarine geothermal resources

    Science.gov (United States)

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (characteristics of these systems before they can be considered a viable resource. Until several of the most promising areas are carefully defined and drilled, the problem will remain unresolved. ?? 1976.

  6. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    Science.gov (United States)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the

  7. To the problem of utilization of nuclear submarines

    International Nuclear Information System (INIS)

    Tarakanov, E.; Larin, V.

    1999-01-01

    Paper discusses a concept of step-by-step utilization of nuclear submarines in Russia. By the late 2000 minimum 160 nuclear submarines with over 300 nuclear reactors should be removed. Unloading of spent nuclear fuel from reactors, dismounting of nuclear submarines, efforts to arrange storage facilities for liquid and solid radioactive waste are the main steps of nuclear submarine utilization. Under the rates of nuclear submarine utilization being as they are, the utilization of 160 nuclear submarines will take about 30 years. Paper analyzes the alternative variants of nuclear submarine utilization and discusses the social and ecological aspects of utilization of nuclear submarines [ru

  8. Changes in body composition of submarine crew during prolonged submarine deployment

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2015-01-01

    Discussion: Increased body fat along with lack of physical activity can lead to development of lifestyle disorders in submarine crew. These crew members need to be actively encouraged to participate in physical activity when in harbour. In addition dieting program specifically to encourage reduced fat consumption needs to be instituted in submarines during sorties at sea.

  9. Characterising weak layers that accommodate submarine landslides on the Northwest African continental slope

    Science.gov (United States)

    Urlaub, M.; Krastel, S.; Geersen, J.; Schwenk, T.

    2017-12-01

    Numerous studies invoke weak layers to explain the occurrence of large submarine landslides (>100 km³), in particular those on very gentle slopes (translational, such that failure takes place along bedding-parallel surfaces at different stratigraphic depths. This suggests that failure occurs along weak layers, which are deposited repeatedly over time. Using high resolution seismic reflection data we trace several failure surfaces of the Cap Blanc Slide complex offshore Northwest Africa to ODP-Site 658. Core-seismic integration shows that the failure surfaces coincide with diatom oozes that are topped by clay. Along Northwest Africa diatom-rich sediments are typically deposited at the end of glacial periods. In the seismic data these oozes show up as distinct high amplitude reflectors due to their characteristic low densities. Similar high-amplitude reflectors embedded into low-reflective seismic units are commonly observed in shallow sediments (<100 m below seafloor) along the entire Northwest African continental slope. The failure surfaces of at least three large landslides coincide with such reflectors. As the most recent Pleistocene glacial periods likely influenced sediment deposition along the entire Northwest African margin in a similar manner we hypothesize that diatom oozes play a critical role for the generation of submarine landslides off Northwest Africa as well as globally within subtropical regions. An initiative to drill the Northwest African continental slope with IODP is ongoing, within which this hypothesis shall be tested.

  10. Depositional patterns of the Mississippi Fan surface: Evidence from GLORIA II and high-resolution seismic profiles

    Science.gov (United States)

    Twichell, David C.; Kenyon, Neil H.; Parson, Lindsay M.; McGregor, Bonnie A.

    1991-01-01

    GLORIA long-range side-scan sonar imagery and 3.5-kHz seismic-reflection profiles depict a series of nine elongate deposits with generally high-backscatter surfaces covering most of the latest fanlobe sequence of the Mississippi Fan in the eastern Gulf of Mexico. The youngest deposit is a “slump” that covers a 250 by 100 km area of the middle and upper fan. The remaining mapped deposits, termed depositional lobes, are long (as much as 200 km) and relatively thin (less than 35 m thick) bodies. Small channels and lineations on the surface of many of these depositional lobes radiate from a single, larger main channel that is the conduit through which sediment has been supplied to these surficial deposits on the fan. The 3.5-kHz profiles show that adjacent depositional lobes overlap one another rather than interfingering, indicating that only one lobe was an active site of deposition at a time. Shifting of the depositional sites appears to be caused by both aggradation and avulsion. The chronology developed from the overlapping relations indicates the oldest of the mapped depositional lobes are on the lowermost fan, and the youngest are further up the fan. Depositional lobes on the lower fan consist of a series of smaller, elongate features with high-backscatter surfaces (540 km in length) located at the ends of previously unrecognized small channels (turbidity currents and/or debris flows, sand flows, or mud flows appear to be the dominant transport process constructing these depositional lobes. Channelized flow is an important mechanism for transporting sediment away from the main channel on this fan and the resulting facies created by these small flows are laterally discontinuous.

  11. Submarine geology and geomorphology of active Sub-Antarctic volcanoes: Heard and McDonald Islands

    Science.gov (United States)

    Watson, S. J.; Coffin, M. F.; Whittaker, J. M.; Lucieer, V.; Fox, J. M.; Carey, R.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Martin, T.; Cooke, F.

    2016-12-01

    Heard and McDonald Islands (HIMI) are World Heritage listed sub-Antarctic active volcanic islands in the Southern Indian Ocean. Built atop the Kerguelen Plateau by Neogene-Quaternary volcanism, HIMI represent subaerial exposures of the second largest submarine Large Igneous Province globally. Onshore, processes influencing island evolution include glaciers, weathering, volcanism, vertical tectonics and mass-wasting (Duncan et al. 2016). Waters surrounding HIMI are largely uncharted, due to their remote location. Hence, the extent to which these same processes shape the submarine environment around HIMI has not been investigated. In early 2016, we conducted marine geophysical and geologic surveys around HIMI aboard RV Investigator (IN2016_V01). Results show that volcanic and sedimentary features prominently trend east-west, likely a result of erosion by the eastward flowing Antarctic Circumpolar Current and tidal currents. However, spatial patterns of submarine volcanism and sediment distribution differ substantially between the islands. >70 sea knolls surround McDonald Island suggesting substantial submarine volcanism. Geophysical data reveals hard volcanic seafloor around McDonald Island, whereas Heard Island is characterised by sedimentary sequences tens of meters or more thick and iceberg scours - indicative of glacial processes. Differences in submarine geomorphology are likely due to the active glaciation of Heard Island and differing rock types (Heard: alkali basalt, McDonald: phonolite), and dominant products (clastics vs. lava). Variations may also reflect different magmatic plumbing systems beneath the two active volcanoes (Heard produces larger volumes of more focused lava, whilst McDonald extrudes smaller volumes of more evolved lavas from multiple vents across the edifice). Using geophysical data, corroborated with new and existing geologic data, we present the first geomorphic map revealing the processes that shape the submarine environment around HIMI.

  12. Russian nuclear-powered submarine decommissioning

    International Nuclear Information System (INIS)

    Bukharin, O.; Handler, J.

    1995-01-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems

  13. What the submarine is

    Energy Technology Data Exchange (ETDEWEB)

    Liuzzi, A

    1972-03-01

    A short review of submarine problems and design is presented. Included are trim and stability concepts; propulsion and steering gears (surface and submerged); batteries on a conventional (diesel) submarine; optical and electronic sensing equipments; and an outline of new hull designs and shipbuilding methods.

  14. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  15. Analysis of SSN 688 Class Submarine Maintenance Delays

    Science.gov (United States)

    2017-06-01

    Simplified Notional Submarine FRP (Independent Deployer) ..................11  Figure 8.  Evolution of Los Angeles Class Submarine Notional...Number TFP Technical Foundation Paper URO Unrestricted Operations xv ACKNOWLEDGMENTS I would like to thank my lead advisor, Professor Nick Dew...only on Los Angeles (SSN 688)-class submarines. Being the higher quantity and older generation submarine hull type, the Los Angeles class submarine

  16. Turbidity current hydraulics and sediment deposition in erodible sinuous channels: Laboratory experiments and numerical simulations

    NARCIS (Netherlands)

    Janocko, M.; Cartigny, M.J.B.; Nemec, W.; Hansen, E.W.M.

    2013-01-01

    This study explores the relationship between the hydraulics of turbidity currents in erodible sinuous channels and the resulting intra-channel sediment depocentres (channel bars). Four factors are considered to exert critical control on sedimentation in sinuous submarine channels: (1) the

  17. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    Science.gov (United States)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  18. Erosion and deposition on a debris-flow fan

    Science.gov (United States)

    Densmore, A. L.; Schuerch, P.; Rosser, N. J.; McArdell, B. W.

    2011-12-01

    The ability of a debris flow to entrain or deposit sediment controls the downstream evolution of flow volume, and ultimately dictates both the geomorphic impact of the flow and the potential hazard that it represents. Our understanding of the patterns of, and controls on, such flow volume changes remains extremely limited, however, partly due to a poor mechanistic grasp of the interactions between debris flows and their bed and banks. In addition, we lack a good understanding of the cumulative long-term effects of sequences of flows in a single catchment-fan system. Here we begin to address these issues by using repeated terrestrial laser scanning (TLS) to characterize the detailed surface change associated with the passage of multiple debris flows on the Illgraben fan, Switzerland. We calculate surface elevation change along a 300 m study reach, and from this derive the downfan rate of flow volume change, or lag rate; for comparison, we also derive the spatially-averaged lag rate over the entire ~2 km length of the fan. Lag rates are broadly comparable over both length scales, indicating that flow behavior does not vary significantly across the fan for most flows, but importantly we find that flow volume at the fan head is a poor predictor of volume at the fan toe. The sign and magnitude of bed elevation change scale with local flow depth; at flow depths 2 m. On the Illgraben fan, this depth corresponds to a basal shear stress of 3-4 kPa. Because flow depth is in part a function of channel cross-sectional topography, which varies strongly both within and between flows, this result indicates that erosion and deposition are likely to be highly dynamic. The dependence of flow volume change on both the channel topography and the flow history may thus complicate efforts to predict debris-flow inundation areas by simple flow routing. We then apply a 2d numerical model of debris-flow fan evolution to explore the key controls on debris-flow routing and topographic

  19. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  20. The Congolobe project, a multidisciplinary study of Congo deep-sea fan lobe complex: Overview of methods, strategies, observations and sampling

    Science.gov (United States)

    Rabouille, C.; Olu, K.; Baudin, F.; Khripounoff, A.; Dennielou, B.; Arnaud-Haond, S.; Babonneau, N.; Bayle, C.; Beckler, J.; Bessette, S.; Bombled, B.; Bourgeois, S.; Brandily, C.; Caprais, J. C.; Cathalot, C.; Charlier, K.; Corvaisier, R.; Croguennec, C.; Cruaud, P.; Decker, C.; Droz, L.; Gayet, N.; Godfroy, A.; Hourdez, S.; Le Bruchec, J.; Saout, J.; Le Saout, M.; Lesongeur, F.; Martinez, P.; Mejanelle, L.; Michalopoulos, P.; Mouchel, O.; Noel, P.; Pastor, L.; Picot, M.; Pignet, P.; Pozzato, L.; Pruski, A. M.; Rabiller, M.; Raimonet, M.; Ragueneau, O.; Reyss, J. L.; Rodier, P.; Ruesch, B.; Ruffine, L.; Savignac, F.; Senyarich, C.; Schnyder, J.; Sen, A.; Stetten, E.; Sun, Ming Yi; Taillefert, M.; Teixeira, S.; Tisnerat-Laborde, N.; Toffin, L.; Tourolle, J.; Toussaint, F.; Vétion, G.; Jouanneau, J. M.; Bez, M.; Congolobe Group:

    2017-08-01

    The presently active region of the Congo deep-sea fan (around 330,000 km2), called the terminal lobes or lobe complex, covers an area of 2500 km2 at 4700-5100 m water depth and 750-800 km offshore. It is a unique sedimentary area in the world ocean fed by a submarine canyon and a channel-levee system which presently deliver large amounts of organic carbon originating from the Congo River by turbidity currents. This particularity is due to the deep incision of the shelf by the Congo canyon, up to 30 km into the estuary, which funnels the Congo River sediments into the deep-sea. The connection between the river and the canyon is unique for major world rivers. In 2011, two cruises (WACS leg 2 and Congolobe) were conducted to simultaneously investigate the geology, organic and inorganic geochemistry, and micro- and macro-biology of the terminal lobes of the Congo deep-sea fan. Using this multidisciplinary approach, the morpho-sedimentary features of the lobes were characterized along with the origin and reactivity of organic matter, the recycling and burial of biogenic compounds, the diversity and function of bacterial and archaeal communities within the sediment, and the biodiversity and functioning of the faunal assemblages on the seafloor. Six different sites were selected for this study: Four distributed along the active channel from the lobe complex entrance to the outer rim of the sediment deposition zone, and two positioned cross-axis and at increasing distance from the active channel, thus providing a gradient in turbidite particle delivery and sediment age. This paper aims to provide the general context of this multidisciplinary study. It describes the general features of the site and the overall sampling strategy and provides the initial habitat observations to guide the other in-depth investigations presented in this special issue. Detailed bathymetry of each sampling site using 0.1-1 m resolution multibeam obtained with a remotely operated vehicle (ROV

  1. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    Science.gov (United States)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  2. Competition between uplift and transverse sedimentation in an experimental delta

    Science.gov (United States)

    Grimaud, Jean-Louis; Paola, Chris; Ellis, Chris

    2017-07-01

    Mass is commonly injected into alluvial systems either laterally by transport from source regions or vertically from below via local uplift. We report results on the competition between these two fundamental processes, using an experimental basin with a deformable substrate. The lateral supply is via two alluvial fans on orthogonal walls of the basin; the uplifting region is downstream of one of the fans (axial) and opposite to the other (transverse). We show that the presence of a transverse sediment input increases the erosion rate of the uplifting region by pushing the mixing zone between the two alluvial sources against the uplifting mass. However, increase in sediment delivery to the transverse fan does not cause a proportional increase in erosion rate of the uplifting region. Instead, the system reaches a steady state balance between uplift and erosion induced by the transverse fan, such that there is no change in the total mass above the active alluvial surface—a lateral analog of the classical steady state between vertical erosion and uplift. We also show that the mixing zone is instrumental in limiting upstream aggradation and funneling sediments to the shore, resulting in limited river lateral mobility and increased shoreline progradation. Hence, the interaction between alluvial sources buffers river erosion and leads to consistent deviations from predictions of the area of influence of each fan based on simple mass-balance arguments. In the Ganges-Brahmaputra-Meghna delta, we suggest that similar dynamics help stabilize the Brahmaputra River course in the Jamuna Valley during Holocene time.

  3. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    Science.gov (United States)

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic

  4. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III - Sulfate- and methane- based microbial processes

    Science.gov (United States)

    Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.

    2017-08-01

    Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.

  5. Sneaky Submarine Landslides, and how to Quantify them: A Case Study from the Mississippi River Delta Front Contrasting Geophysical and Machine Learning Techniques

    Science.gov (United States)

    Obelcz, J.; Xu, K.; Bentley, S. J.; Wood, W. T.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.

    2017-12-01

    The highly publicized subsidence and decline of the Mississippi River Delta Front's (MRDF) subaerial section has recently precipitated studies of the subaqueous MRDF to assess whether it too is subsiding and regressing landward. These studies have largely focused on the area offshore the most active current distributary of the Mississippi River, Southwest Pass, during a decade (post-Hurricane Rita 2005-2014) of relatively quiescent Gulf of Mexico hurricane activity. Utilizing repeat swath bathymetric surveys, it was determined that submarine landslides not associated with major (category ≥ 3) passage are important drivers of downslope sediment transport on the MRDF. Volumetrically, sediment flux downslope without major hurricane influence is approximately half that during a given hurricane-influenced year (5.5 x 105 and 1.1 x 106 m3, respectively). This finding is notable and warrants comparison with other settings to assess the global impact on the source-to-sink budget of small but frequent landslides, but the resource-intensive repeat geophysical surveys required make it a prohibitive option at the margin and global scale. One option to quantify small-scale submarine slope failures while reducing required data acquisition is to utilize machine learning algorithms (MLAs) to intelligently estimate the occurrence and magnitude of submarine landslides based on correlated physical and geological parameters. Here, the MRDF volumetric changes described above are parsed into training and validation data, and physical and geological parameters associated with slope failure (such as porosity, steep slopes, high rates of sedimentation, and presence of gas in pore water) known from prior coring and seafloor mapping expeditions serve as potential predictive variables. The resulting submarine landslide spatial distribution and magnitude maps output by the MLAs are compared to those obtained through geophysical surveys, providing a proof of concept that machine learning can

  6. Characteristics of a sandy depositional lobe on the outerMississippi Fan from Sea MARC 1A sidescan sonar images

    Science.gov (United States)

    Twichell, D.C.; Schwab, W.C.; Nelson, C.H.; Kenyon, Neil H.; Lee, H.J.

    1992-01-01

    Shows that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse- grained deposits on this fan are laterally discontinuous. -from Authors

  7. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    Science.gov (United States)

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  8. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    Science.gov (United States)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  9. Size distributions and failure initiation of submarine and subaerial landslides

    Science.gov (United States)

    ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  10. What Controls Submarine Groundwater Discharge?

    Science.gov (United States)

    Martin, J. B.; Cable, J. E.; Cherrier, J.; Roy, M.; Smith, C. G.; Dorsett, A.

    2008-05-01

    Numerous processes have been implicated in controlling submarine groundwater discharge (SGD) to coastal zones since Ghyben, Herzberg and Dupuit developed models of fresh water discharge from coastal aquifers at the turn of the 19th century. Multiple empirical and modeling techniques have also been applied to these environments to measure the flow. By the mid-1950's, Cooper had demonstrated that dispersion across the fresh water-salt water boundary required salt water entrained into fresh water flow be balanced by recharge of salt water across the sediment-water interface seaward of the outflow face. Percolation of water into the beach face from wind and tidal wave run up and changes in pressure at the sediment-water interface with fluctuating tides have now been recognized, and observed, as processes driving seawater into the sediments. Within the past few years, variations in water table levels and the 1:40 amplification from density difference in fresh water and seawater have been implicated to pump salt water seasonally across the sediment- water interface. Salt water driven by waves, tides and seasonal water table fluctuations is now recognized as a component of SGD when it flows back to overlying surface waters. None of these processes are sufficiently large to provide measured volumes of SGD in Indian River Lagoon, Florida, however, because minimal tides and waves exist, flat topography and transmissive aquifers minimize fluctuations of the water table, and little water is entrained across the salt water-fresh water boundary. Nonetheless, the saline fraction of SGD represents more than 99% of the volume of total SGD in the Indian River Lagoon. This volume of saline SGD can be driven by the abundance of burrowing organisms in the lagoon, which pump sufficient amounts of water through the sediment- water interface. These bioirrigating organisms are ubiquitous at all water depths in sandy sediment and thus may provide one of the major sources of SGD world wide

  11. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  12. Antecedent topography and morphological controls on sediment accumulation and slope stability of the U.S. Atlantic margin

    Science.gov (United States)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.

    2017-12-01

    The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role

  13. A combined morphometric, sedimentary, GIS and modelling analysis of flooding and debris flow hazard on a composite alluvial fan, Caveside, Tasmania

    Science.gov (United States)

    Kain, Claire L.; Rigby, Edward H.; Mazengarb, Colin

    2018-02-01

    Two episodes of intense flooding and sediment movement occurred in the Westmorland Stream alluvial system near Caveside, Australia in January 2011 and June 2016. The events were investigated in order to better understand the drivers and functioning of this composite alluvial system on a larger scale, so as to provide awareness of the potential hazard from future flood and debris flow events. A novel combination of methods was employed, including field surveys, catchment morphometry, GIS mapping from LiDAR and aerial imagery, and hydraulic modelling using RiverFlow-2D software. Both events were initiated by extreme rainfall events (events on the farmland appeared similar; however, there were differences in sediment source and transport processes that have implications for understanding recurrence probabilities. A debris flow was a key driver in the 2011 event, by eroding the stream channel in the forested watershed and delivering a large volume of sediment downstream to the alluvial fan. In contrast, modelled flooding velocities suggest the impacts of the 2016 event were the result of an extended period of extreme stream flooding and consequent erosion of alluvium directly above the current fan apex. The morphometry of the catchment is better aligned with values from fluvially dominated fans found elsewhere, which suggests that flooding represents a more frequent future risk than debris flows. These findings have wider implications for the estimation of debris flow and flood hazard on alluvial fans in Tasmania and elsewhere, as well as further demonstrating the capacity of combined hydraulic modelling and geomorphologic investigation as a predictive tool to inform hazard management practices in environments affected by flooding and sediment movement.

  14. Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body

    Science.gov (United States)

    Steel, Elisabeth; Simms, Alexander R.; Warrick, Jonathan; Yokoyama, Yusuke

    2016-01-01

    Although sea-level highstands are typically associated with sediment-starved continental shelves, high sea level does not hinder major river floods. Turbidity currents generated by plunging of sediment-laden rivers at the fluvial-marine interface, known as hyperpycnal flows, allow for cross-shelf transport of suspended sand beyond the coastline. Hyperpycnal flows in southern California have deposited six subaqueous fans on the shelf of the northern Santa Barbara Channel in the Holocene. Using eight cores and nine grab samples, we describe the deposits, age, and stratigraphic architecture of two fans in the Santa Barbara Channel. Fan lobes have up to 3 m of relief and are composed of multiple hyperpycnite beds ∼5 cm to 40 cm thick. Deposit architecture and geometry suggest the hyperpycnal flows became positively buoyant and lifted off the seabed, resulting in well-sorted, structureless, elongate sand lobes. Contrary to conventional sequence stratigraphic models, the presence of these features on the continental shelf suggests that active-margin shelves may locally develop high-quality reservoir sand bodies during sea-level highstands, and that such shelves need not be solely the site of sediment bypass. These deposits may provide a Quaternary analogue to many well-sorted sand bodies in the rock record that are interpreted as turbidites but lack typical Bouma-type features.

  15. Two novel genes, fanA and fanB, involved in the biogenesis of K99 fimbriae.

    Science.gov (United States)

    Roosendaal, E; Boots, M; de Graaf, F K

    1987-08-11

    The nucleotide sequence of the region located transcriptionally upstream of the K99 fimbrial subunit gene (fanC) was determined. Several putative transcription signals and two open reading frames, designated fanA and fanB, became apparent. Frameshift mutations in fanA and fanB reduced K99 fimbriae expression 8-fold and 16-fold, respectively. Complementation of the mutants in trans restored the K99 expression to about 75% of the wild type level, indicating that fanA and fanB code for transacting polypeptides involved in the biogenesis of K99 fimbriae. The fanA and fanB gene products FanA and FanB were not detectable in minicell preparations, indicating that both polypeptides are synthesized in very small amounts. However, in an in vitro DNA directed translation system FanA and FanB could be identified. The deduced amino acid sequences of FanA and FanB showed that both polypeptides contain no signal peptides, indicating a cytoplasmic location. Furthermore, the polypeptides are very hydrophilic, mainly basic, and exhibit remarkable homology to each other and to a regulatory protein (papB) encoded by the pap-operon (1). Some of these features are characteristics of nucleic acid binding proteins, which suggests that FanA and FanB have a regulatory function in the synthesis of FanC and the auxiliary polypeptides FanD-H.

  16. WHO ARE FANS OF FACEBOOK FAN PAGES? AN ELECTRONIC WORD-OF-MOUTH COMMUNICATION PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    2014-12-01

    Full Text Available Given its great business value and popularity, Facebook fan pages have attracted more and more attention in both industry and academia. Fans of Facebook fan pages play an important role in electronic word-of-mouth (eWOM communication. This study focused on the population of fans on Facebook fan pages and examined the differences between fans and non-fans in terms of demographics, social network sites (SNS use, Internet use, and online shopping behaviors. The results indicated that fans used SNS more frequently than non-fans. Additionally, from the eWOM perspective, the researchers moderated product types in the model of people’s word-of-mouth (WOM preferences and found that people had different preferences for eWOM and traditional WOM for different products. Traditional WOM is still the most important source of information for people when shopping online.

  17. Submarine groundwater discharge into the coast revealed by water chemistry of man-made undersea liquefied petroleum gas cavern

    Science.gov (United States)

    Lee, Jin-Yong; Cho, Byung Wook

    2008-10-01

    SummaryThe occurrence of submarine groundwater discharge (SGD) as well as its supply of many nutrients and metals to coastal seawaters is now generally known. However, previous studies have focused on the chemical and radiological analysis of groundwater, surface seawater, shallow marine sediments and their pore waters, as well as the measurement of upward flow through the marine sediments, as end members of the discharge process. In this study, chemical and isotopic analysis results of marine subsurface waters are reported. These were obtained from deep boreholes of an undersea liquefied petroleum gas (LPG) storage cavern, located about 8 km off the western coast of Korea. The cavern is about 130-150 m below the sea bottom, which is covered by a 4.8-19.5 m silty clay stratum. An isotopic composition (δ 2H and δ 18O) of the marine subsurface waters falls on a mixing line between terrestrial groundwater and seawater. Vertical EC profiling at the cavern boreholes revealed the existence of a fresh water zone. An increase in the contents of ferrous iron and manganese and a decrease in levels of nitrate, bicarbonate and cavern seepage were recorded in August 2006, indicating a decreased submarine groundwater flux originating from land, mainly caused by an elevated cavern gas pressure. It is suggested in this study that the main source of fresh waters in the man-made undersea cavern is the submarine groundwater discharge mainly originating from the land.

  18. Deciphering Depositional Signals in the Bed-Scale Stratigraphic Record of Submarine Channels

    Science.gov (United States)

    Sylvester, Z.; Covault, J. A.

    2017-12-01

    Submarine channels are important conduits of sediment transfer from rivers and shallow-marine settings into the deep sea. As such, the stratigraphic record of submarine-channel systems can store signals of past climate- and other environmental changes in their upstream sediment-source areas. This record is highly fragmented as channels are primarily locations of sediment bypass; channelized turbidity currents are likely to leave a more complete record in areas away from and above the thalweg. However, the link between the thick-bedded axial channel deposits that record a small number of flows and the much larger number of thin-bedded turbidites forming terrace- and levee deposits is poorly understood. We have developed a relatively simple two-dimensional model that, given a number of input flow parameters (mean velocity, grain size, duration of deposition, flow thickness), predicts the thickness and composition of the turbidite that is left behind in the channel and in the overbank areas. The model is based on a Rouse-type suspended sediment concentration profile and the Garcia-Parker entrainment function. In the vertical direction, turbidites tend to rapidly become thinner and finer-grained with height above thalweg, due to decreasing concentration. High near-thalweg concentrations result in thick axial beds. However, an increase in flow velocity can result in high entrainment and no deposition at the bottom of the channel, yet a thin layer of sand and mud is still deposited higher up on the channel bank. If channel thalwegs are largely in a bypass condition, relatively minor velocity fluctuations result in a few occasionally preserved thick beds in the axis, and numerous thin turbidites - and a more complete record - on the channel banks. We use near-seafloor data from the Niger Delta slope and an optimization algorithm to show how our model can be used to invert for likely flow parameters and match the bed thickness and grain size of 100 turbidites observed in a

  19. Contrasting morphodynamics in alluvial fans and fan deltas: effect of the downstream boundary

    NARCIS (Netherlands)

    Dijk, M. van; Kleinhans, M.G.; Postma, G.; Kraal, E.

    2012-01-01

    Alluvial fans and fan deltas can, in principle, have exactly the same upstream conditions, but fan deltas by definition have ponding water at their downstream boundary. This ponding creates effects on the autogenic behaviour of fan deltas, such as backwater adaptation, mouth bars and backward

  20. The role of large woody debris in modulating the dispersal of a post-fire sediment pulse

    Science.gov (United States)

    Short, Lauren E.; Gabet, Emmanuel J.; Hoffman, Daniel F.

    2015-10-01

    In 2001, a series of post-fire debris flows brought 30,000 m3 of sediment, deposited as fans, to the narrow valley floor of Sleeping Child Creek in western Montana (USA). In 2005, pebble-counts and surveys of the channel in proximity to six of the debris flow fans documented a regular sequence of fine-grained aggradation upstream of the fans, incision through the fans, and coarse-grained aggradation downstream of the fans. These measurements were repeated in 2012. We found that the delivery of large woody debris (LWD) over the intervening 7 years has been a dominant factor in the disposition of the debris-flow material. The amount of LWD in the study reach has increased by as much as 50% in the areas with a high burn severity, leading to the formation of large logjams that interrupt the flow of sediment along the streambed. Nearly all of the surveyed reaches have aggraded since 2005, including those that had initially begun incising through the debris flow deposits, and the streambed has become generally finer. We hypothesize that, over the next few decades, debris flow sediment not colonized and anchored by riparian vegetation will trickle out of the affected reaches as the logjams slowly degrade.

  1. Back analysis of an earthquake-triggered submarine landslide near the SW of Xiaoliuqiu

    Directory of Open Access Journals (Sweden)

    Huai-Houh Hsu

    2018-01-01

    Full Text Available Occurred in the offshore of SW Taiwan on 26 December 2006 with a magnitude of 7, the Pingtung earthquake had triggered numbers of submarine landslides. This event provides an excellent opportunity to incorporate the back analysis approach to evaluate the in situ shear strength parameters. According to the chirp sonar images of the seabed near the SW Xiaoliuqiu obtained before and after the earthquake were adopted to establish the slope profile and identified the location of a circular sliding surface. Consequently, the in situ, effective strength parameters under the critical condition can be calculated by back slope stability analysis. Submarine sediment sampler was obtained via gravity sampling method and the laboratory tests were performed to determine the index properties and strength parameters. Test results indicate the cored sediment has the characteristics of normally consolidated (NC clay. The effective friction angle (φ’ is 15.3° with cohesion (c’ of 19.4 kPa. The effective and total stress methods were used to perform the back analysis. The strength parameters derived from back analysis of effective and total stress methods all indicate values approach the CIU triaxial tests results. Consequently, the representativeness of the marine sediment characteristics obtained from laboratory tests is identified. The total stress approach yields an undrained strength ratio cu/σ'vo of 0.26 which well fit the ratio used in geotechnical practice for estimating NC clay. According to the analytical approach, the landslide was applied seismic forces (seismic coefficient kh = 0.14 and generated excess pore pressure of 31 kPa at the sliding surface.

  2. Internal tides affect benthic community structure in an energetic submarine canyon off SW Taiwan

    Science.gov (United States)

    Liao, Jian-Xiang; Chen, Guan-Ming; Chiou, Ming-Da; Jan, Sen; Wei, Chih-Lin

    2017-07-01

    Submarine canyons are major conduits of terrestrial and shelf organic matter, potentially benefiting the seafloor communities in the food-deprived deep sea; however, strong bottom currents driven by internal tides and the potentially frequent turbidity currents triggered by storm surges, river flooding, and earthquakes may negatively impact the benthos. In this study, we investigated the upper Gaoping Submarine Canyon (GPSC), a high-sediment-yield canyon connected to a small mountain river (SMR) off southwest (SW) Taiwan. By contrasting the benthic meiofaunal and macrofaunal communities within and outside the GPSC, we examined how food supplies and disturbance influenced the benthic community assemblages. The benthic communities in the upper GPSC were mainly a nested subset of the adjacent slope assemblages. Several meiofaunal (e.g. ostracods) and macrofaunal taxa (e.g. peracarid crustaceans and mollusks) that typically occurred on the slope were lost from the canyon. The polychaete families switched from diverse feeding guilds on the slope to motile subsurface deposit feeders dominant in the canyon. The diminishing of epibenthic peracarids and proliferation of deep burrowing polychaetes in the GPSC resulted in macrofauna occurring largely within deeper sediment horizons in the canyon than on the slope. The densities and numbers of taxa were depressed with distinct and more variable composition in the canyon than on the adjacent slope. Both the densities and numbers of taxa were negatively influenced by internal tide flushing and positively influenced by food availability; however, the internal tides also negatively influenced the food supplies. While the meiofauna and macrofauna densities were both depressed by the extreme physical conditions in the GPSC, only the macrofaunal densities increased with depth in the canyon, presumably related to increased frequency and intensity of disturbance toward the canyon head. The population densities of meiofauna, on the

  3. Natural 222Rn and 220Rn indicate the impact of the Water–Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River estuary, China

    International Nuclear Information System (INIS)

    Xu, Bochao; Xia, Dong; Burnett, William C.; Dimova, Natasha T.; Wang, Houjie; Zhang, Longjun; Gao, Maosheng; Jiang, Xueyan; Yu, Zhigang

    2014-01-01

    Highlights: • 220 Rn and 222 Rn were combined to locate intensive SGD sites. • Influence of WSRS to SGD was found for the first time. • SGD was a dominant nutrient pathway in the Yellow River estuary. - Abstract: Submarine groundwater discharge (SGD) in estuaries brings important influences to coastal ecosystems. In this study, we observed significant SGD in the Yellow River estuary, including a fresh component, during the Water–Sediment Regulation Scheme (WSRS) period. We used the 222 Rn and 220 Rn isotope pair to locate sites of significant SGD within the study area. Three apparent SGD locations were found during a non-WSRS period, one of which became much more pronounced, according to the remarkably elevated radon levels, during the WSRS. Increased river discharge (from 245 m 3 s −1 to 3560 m 3 s −1 ) and the elevated river water level (from 11 m to 13 m) during the WSRS led to a higher hydraulic head, enhancing groundwater discharge in the estuary. Our results suggest that high river discharge (>3000 m 3 s −1 ) might be necessary for elevated fresh submarine groundwater discharging (FSGD). Vertical profiles of salinity, DO and turbidity anomalies along the benthic boundary layer also indicated significant FSGD in the estuary during the WSRS. Nutrient concentrations had positive correlations with 222 Rn during a 24-h observation, which indicates that SGD is a dominant nutrient pathway in this area

  4. 75 FR 79952 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    Science.gov (United States)

    2010-12-21

    ... Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON.... (1) DASSAULT AVIATION Model Falcon 10 airplanes, Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E... airplanes Inspection threshold (whichever occurs later) Inspection interval Model FAN JET FALCON, FAN JET...

  5. A non-regular Groebner fan

    OpenAIRE

    Jensen, Anders N.

    2005-01-01

    The Groebner fan of an ideal $I\\subset k[x_1,...,x_n]$, defined by Mora and Robbiano, is a complex of polyhedral cones in $R^n$. The maximal cones of the fan are in bijection with the distinct monomial initial ideals of $I$ as the term order varies. If $I$ is homogeneous the Groebner fan is complete and is the normal fan of the state polytope of $I$. In general the Groebner fan is not complete and therefore not the normal fan of a polytope. We may ask if the restricted Groebner fan, a subdivi...

  6. Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea

    Science.gov (United States)

    Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji

    2017-05-01

    Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.

  7. Transformation of PBDE mixtures during sediment transport and resuspension in marine environments (Gulf of Lion, NW Mediterranean Sea)

    International Nuclear Information System (INIS)

    Salvadó, Joan A.; Grimalt, Joan O.; López, Jordi F.; Durrieu de Madron, Xavier; Heussner, Serge; Canals, Miquel

    2012-01-01

    Polybromodiphenyl ethers (PBDEs) in superficial sediments from the Gulf of Lion were studied. They were largely predominated by BDE 209 (98.7% of all PBDEs) indicating that the main source of these pollutants was the commercial mixture deca-BDE. This compound and the less brominated BDE exhibited a southwestward decreasing concentration gradient following the dominant marine currents and bottom relief, e.g. the Mud Belt, the submarine canyons and the Open Continental Slope. All PBDEs exhibited statistically significant correlations confirming the common origin. However, a progressive transformation of the dumped BDE 209 was identified showing a depletion paralleled by increases of the less brominated BDEs (from 8.6% to 22%). These less brominated compounds were accumulated at about 100–140 km away from the Rhone prodelta, e.g. at the end of the submarine canyons, evidencing that these transformation compounds can be accumulated at long distances from the dumping sites in the marine system. Highlights: ► Polybromodiphenyl ethers are associated to organic carbon in marine sediments. ► PBDEs in marine sediments can accumulate further away than 140 km from the spill site. ► BDE-209 in marine sediments generate congeners found in banned commercial mixtures. ► BDE-209 in marine sediments generates new congeners not found in commercial mixtures. ► Submarine canyons channel PBDEs from the continental platform to the deep shelf. - Decomposition of decabromodiphenyl ether in marine sediments generates congeners found in banned mixtures in areas located far away from the discharge sites.

  8. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  9. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies

    Science.gov (United States)

    Handwerger, Alexander L.; Rempel, Alan W.; Skarbek, Rob M.

    2017-07-01

    Submarine landslides occur along continental margins at depths that often intersect the gas hydrate stability zone, prompting suggestions that slope stability may be affected by perturbations that arise from changes in hydrate stability. Here we develop a numerical model to identify the conditions under which the destabilization of hydrates results in slope failure. Specifically, we focus on high-saturation hydrate anomalies at fine-grained to coarse-grained stratigraphic boundaries that can transmit bridging stresses that decrease the effective stress at sediment contacts and disrupt normal sediment consolidation. We evaluate slope stability before and after hydrate destabilization. Hydrate anomalies act to significantly increase the overall slope stability due to large increases in effective cohesion. However, when hydrate anomalies destabilize there is a loss of cohesion and increase in effective stress that causes the sediment grains to rapidly consolidate and generate pore pressures that can either trigger immediate slope failure or weaken the surrounding sediment until the pore pressure diffuses away. In cases where failure does not occur, the sediment can remain weakened for months. In cases where failure does occur, we quantify landslide dynamics using a rate and state frictional model and find that landslides can display either slow or dynamic (i.e., catastrophic) motion depending on the rate-dependent properties, size of the stress perturbation, and the size of the slip patch relative to a critical nucleation length scale. Our results illustrate the fundamental mechanisms through which the destabilization of gas hydrates can pose a significant geohazard.

  10. First Survey For Submarine Hydrothermal Vents In NE Sulawesi, Indonesia

    Science.gov (United States)

    McConachy, T.; Binns, R.; Permana, H.

    2001-12-01

    The IASSHA-2001 cruise (Indonesia-Australia Survey for Submarine Hydrothermal Activity) was successfully conducted from June 1 to June 29 on board Baruna Jaya VIII. Preliminary results are reported of the first expedition to locate and study submarine hydrothermal activity in north east Sulawesi. Leg A focussed on Tomini Bay, a virtually unexplored Neogene sedimentary basin. Its objective was to test whether modern sediment-hosted hydrothermal activity occurred on the sea floor. The results of new bathymetric mapping, sediment coring and CTD/transmissometer hydrocasts negate the likely presence in central Tomini Bay of large-scale modern analogues of hydrothermal massive sulfide environments involving hydrothermal venting of basinal or magma-derived fluids into reduced sediments. It is possible that the "heat engine" required to drive circulation of basinal and hydrothermal fluids is today too weak. Surveys around Colo volcano indicate that it may be in its final stage of evolution. Leg B studied the arc and behind-arc sectors of the Sangihe volcanic island chain extending northwards from Quaternary volcanoes on the northeastern tip of Sulawesi's North Arm, near Manado. West of the main active chain and extending northwards from Manado there is a subparallel ridge surmounted by a number of high (>2000 m) seamounts of uncertain age. Fifteen relatively high-standing submarine edifices were crossed during this leg, of which nine were tested for hydrothermal activity by hydrocast and dredging. Eight sites were known from previous bathymetric surveys, and seven are new discoveries made by narrow-beam or multibeam echo sounding. Two submarine edifices at least 1000 m high were discovered in the strait immediately north of Awu volcano on Sangihe Island. One, with crest at 206 m, is surrounded by a circular platform 300m deep which we infer to be a foundered fringing reef to a formerly emergent island. The other, lacking such a platform, appears relatively young and may be

  11. Submarine fans and associated deposits in the Lower Tertiary of Guipuzcoa (Northern Spain)

    NARCIS (Netherlands)

    Vliet, van A.

    1982-01-01

    The Lower Tertiary outcrop along the coast of Guipuzcoa, northern Spain, consists exclusively of deep-marine sediments, deposited in a narrow elongated (ESE-WNW) basin. The early Tertiary sedimentary history of this basin can be described in terms of three main phases:

    - a phase of

  12. Sediment isotope tomography (SIT) model version 1

    International Nuclear Information System (INIS)

    Carroll, J.; Abraham, J.D.

    1996-01-01

    Geochronology using 210 Pb is the principal method used to quantify sediment accumulation in rapidly depositing aquatic environments such as lakes, estuaries, continental shelves, and submarine canyons. This method is based on the radioactive decay of 210 Pb with depth in a column of sediment. The decay through time of 210 Pb P(t) is governed by the exponential law P(t) = P 0 exp( -λt) where P 0 is the surficial concentration at time t = 0, and λ is the decay constant (3.114 sm-bullet 10 -2 year [yr] -1 for 210 Pb). If the sedimentation rate is constant, then elapsed time t is connected to burial depth x, through x = Vt where V is the sedimentation velocity. Accordingly, P(x) = P 0 exp( -λx/V). The sedimentation velocity is obtained from an exponential fit to the measured 210 Pb data P(x), with depth x

  13. “Hello, HELLO! Anyone there? - on the need to assess the tsunami risk to global submarine telecommunications infrastructure

    Science.gov (United States)

    Dominey-Howes, D.; Goff, J. R.

    2009-12-01

    National economies are increasingly dependent on the global telecommunications system - and in particular, its submarine cable infrastructure. Submarine cable traffic represents about 30% of global GDP so the cost of losing, or even simply slowing, communications traffic is high. Many natural hazards are capable of damaging and destroying this infrastructure but tsunamis are the most significant threat, particularly in waters >1000 m deep. Submarine cables and their shore-based infrastructure (the anchor points), are at risk from direct and indirect tsunami-related effects. During the 2004 Indian Ocean Tsunami in India and Indonesia, cables were broken (direct effect) as the tsunami eroded supporting sediments, and were further damaged by floating/submerged objects and intense nearshore currents. Shore-based infrastructure was also directly damaged in India, Indonesia, and the Maldives. The 1929 Grand Banks earthquake generated a submarine landslide and tsunami off Newfoundland which broke 12 submarine telegraph cables. In 2006, an earthquake in Taiwan generated submarine landslides and a tsunami. These landslides caused one of the largest disruptions of modern telecommunications history when nine cables in the Strait of Luzon were broken disabling vital connections between SE Asia and the rest of the world. Although electronic traffic in and out of Australia was slowed, it did not cease because >70% of our traffic is routed via cables that pass through Hawaii. This is extremely significant because Hawaii is an internationally recognised bottleneck or “choke point” in the global telecommunications network. The fact that Hawaii is a choke point is important because it is regularly affected by numerous large magnitude natural hazards. Any damage to the submarine telecommunications infrastructure routed through Hawaii could result in significant impacts on the electronic flow of data and voice traffic, negatively affecting dependent economies such as Australia

  14. Geomorphic Thresholds of Submarine Canyons Along the U.S. Atlantic Continental Margin

    Science.gov (United States)

    Brothers, D. S.; ten Brink, U. S.; Andrews, B. D.; Chaytor, J. D.

    2011-12-01

    Vast networks of submarine canyons and associated channels are incised into the U.S. Atlantic continental slope and rise. Submarine canyons form by differential erosion and deposition, primarily from sedimentary turbidity flows. Theoretical and laboratory studies have investigated the initiation of turbidity flows and their capacity to erode and entrain sedimentary material at distances far from the shelf edge. The results have helped understand the nature of turbidite deposits on the continental slope and rise. Nevertheless, few studies have examined the linkages between down-canyon sediment transport and the morphology of canyon/channel networks using mesoscale analyses of swath bathymetry data. We present quantitative analysis of 100-m resolution multibeam bathymetry data spanning ~616,000 km2 of the slope and rise between Georges Banks and the Blake Plateau (New England to North Carolina). Canyons are categorized as shelf-indenting or slope-confined based on spatial scale, vertical relief and connection with terrestrial river systems during sea level low stands. Shelf-indenting canyons usually represent the trunk-canyon of submerged channel networks. On the rise, shelf-indenting canyons have relatively well-developed channel-levees and sharp inner-thalwag incision suggesting much higher frequency and volume of turbidity flows. Because of the similarities between submarine canyon networks and terrestrial river systems, we apply methods originally developed to study fluvial morphology. Along-canyon profiles are extracted from the bathymetry data and the power-law relationship between thalwag gradient and drainage area is examined for more than 180 canyons along an ~1200 km stretch of the US Atlantic margin. We observe distinct thresholds in the power-law relationship between drainage area and gradient. Almost all canyons with heads on the upper slope contain at least two linear segments when plotted in log-log form. The first segment along the upper slope is flat

  15. Processes influencing differences in Arctic and Antarctic Trough Mouth Fan sedimentology

    OpenAIRE

    Gales, J; Hillenbrand, C-D; Larter, R; Laberg, J-S; Melles, M; Benetti, S; Passchier, S

    2018-01-01

    Trough Mouth Fans (TMFs) are sediment depocentres that form along high-latitude continental margins at the mouths of some cross-shelf troughs. They reflect the dynamics of past ice sheets over multiple glacial cycles and processes operating on (formerly) glaciated continental shelves and slopes, such as erosion, reworking, transport and deposition. The similarities and differences in TMF morphology and formation processes of the Arctic and Antarctic regions remain poorly constrained. Here, we...

  16. Benthic Foraminifers identify the source of displaced sediment from a sediment density flow at 1840 m near the Seafloor Instrument Node of the Monterey Coordinated Canyon Experiment

    Science.gov (United States)

    McGann, M.; Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Barry, J.; Carvajal, C.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Parsons, D. R.; O'Reilly, T. C.; Rosenberger, K. J.; Wolfson-Schwehr, M.; Simmons, S.; Sumner, E.; Talling, P.; Xu, J.

    2017-12-01

    Submarine canyons are found along the slopes of most continental margins and turbidity currents are thought to be the primary mechanism responsible for transporting sediment through them to deep-sea fans. The initiation sites of these flows are difficult to locate with any degree of precision from lithology alone. Fortunately, the presence of allochthonous microscopic remains, such as benthic foraminifers, can aid in the identification of the source of the displaced sediments. In Monterey Canyon, offshore California, a Seafloor Instrument Node (SIN) and adjacent mooring in the Coordinated Canyon Experiment indicate that a February 2017 turbidity current reached 1840 m water depth. In April 2017, one push core was obtained on each of four sides of the SIN just outside its frame and six others from 30-100 m away. Each was cut into 1 cm slices, stained with rose Bengal, washed, and analyzed for their microscopic constituents. Material recovered included terrestrial debris (wood, leaves, seeds, highway safety spheres, and volcanic glass) as well as foraminiferal tests. Dead benthic foraminifers from the estuarine (0-10 m), inner shelf (0-50 m), outer shelf (50-150 m), slope break (150 m), upper bathyal (150-500 m), and middle bathyal (500-2000 m) biofacies were present, suggesting a staged progression of sediment downslope from the continental shelf and slope. Living (rose Bengal stained) foraminifers recovered represent estuarine (Ammonia tepida, Elphidium excavatum), inner shelf (Buccella frigida, B. tenerrima, Buliminella elegantissima, Cibicides fletcheri, Nonionella spp., Rotorbinella turbinata), and upper bathyal (Bolivina pacifica, B. spissa, Epistominella exigua, Uvigerina peregrina) species as well as an in-situ middle bathyal biofacies (Bolivina argentea, B. spissa, Buliminella tenuata, Epistominella pacifica, Globobulimina spp., Uvigerina peregrina, U. hispida). The presence of living allochthonous benthic foraminifers from these shallower biofacies suggests

  17. Surface sediment remobilization triggered by earthquakes in the Nankai forearc region

    Science.gov (United States)

    Okutsu, N.; Ashi, J.; Yamaguchi, A.; Irino, T.; Ikehara, K.; Kanamatsu, T.; Suganuma, Y.; Murayama, M.

    2017-12-01

    Submarine landslides triggered by earthquakes generate turbidity currents (e.g. Piper et al., 1988; 1999). Recently several studies report that the remobilization of the surface sediment triggered by earthquakes can also generate turbidity currents. However, studies that proposed such process are still limited (e.g. Ikehara et al., 2016; Mchugh et al., 2016; Moernaut et al., 2017). The purpose of this study is to examine those sedimentary processes in the Nankai forearc region, SW Japan using sedimentary records. We collected 46 cm-long multiple core (MC01) and a 6.7 m-long piston core (PC03) from the small basin during the R/V Shinsei Maru KS-14-8 cruise. The small confined basin, which is our study site, block the paths of direct sediment supply from river-submarine canyon system. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without direct sediment supply from river-submarine canyon system. The basin exhibits a confined basin that captures almost of sediments supplied from outside. Core samples are mainly composed of silty clay or very fine sand. Cs-137 measurement conducted on a MC01 core shows constantly high value at the upper 17 cm section and no detection below it. Moreover, the sedimentary structure is similar to fine-grained turbidite described by Stow and Shanmgam (1980), we interpret the upper 17 cm of MC01 as muddy turbidite. Grain size distribution and magnetic susceptibility also agree to this interpretation. Rapid sediment deposition after 1950 is assumed and the most likely event is the 2004 off Kii peninsula earthquakes (Mw=6.6-7.4). By calculation from extent of provenance area, which are estimated by paleocurrent analysis and bathymetric map, and thickness of turbidite layer we conclude that surface 1 cm of slope sediments may be remobilized by the 2004 earthquakes. Muddy turbidites are also identified in a PC03 core. The radiocarbon age gap of 170 years obtained

  18. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

    Science.gov (United States)

    Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

    2010-01-01

    The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

  19. A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels

    Science.gov (United States)

    Bolla Pittaluga, M.; Frascati, A.; Falivene, O.

    2018-01-01

    We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.

  20. Monitoring of radioactivity at the Russian nuclear submarine Kursk

    International Nuclear Information System (INIS)

    Amundsen, I.; Lind, B.

    2002-01-01

    In the morning of August 12th 2000, a Russian submarine accident occurred in international waters east of Rybatschi Peninsula in the Barents Sea about 250 km from Norway. The submarine, a Russian Oscar class II attack submarine, sunk to 116 meters depth at the position 69 deg. 36,99N, 37 deg. 34,50E. The submarine 'Kursk' is 154 meters long, equipped with two pressurised water reactors and the submerged displacement is 24000 tons. Each reactor has a thermal effect or 190 megawatt, or less than 10% of a typical nuclear power plant reactor. The submarines in Oscar-II class is one of the largest and most capable in the Russian Northern Fleet. No indications of leakage from the submarine have so far been observed during the monitoring expeditions. Elevated levels of radioactivity have note been detected in any dose-rate readings or at any of the measurements of environmental samples taken close to Kursk. Furthermore, no increased levels were measured on bits and pieces from the submarine or from water sampled inside the submarine. A more comprehensive report covering experience and monitoring results from the two expeditions term and impact assessments of possible future releases from Kursk. (LN)

  1. Coastal submarine hydrothermal activity off northern Baja California: 2. Evolutionary history and isotope geochemistry

    Science.gov (United States)

    Vidal, Victor M. V.; Vidal, Francisco V.; Isaacs, John D.

    1981-10-01

    A geochemical model of the Punta Banda submarine hydrothermal system (PBSHS) and Ensenada quadrangle subaerial hot springs is developed using 18O/16O, D/H, 34S/32S, 3H, water and gas chemistry. The PBSHS water is a primary high temperature, acid, reducing fluid of old seawater origin which has been titrated by cold, alkaline groundwater of meteoric origin. The final exiting solutions represent a 1 : 1 mixture of the two primary mixing components. In contrast, the subaerial hot spring waters are of unmixed meteoric origin. The subaerial hot spring gas is predominantly atmospheric N2, while the PBSHS contains large amounts of CH4 and N2 derived from trapped marine sediments of Cretaceous age; δS34 values of sampled hydrothermal waters are similar to Cretaceous marine sulfate values and suggest that the waters contacted Cretaceous marine sedimentary strata. The presence of the Alisitos and Rosario marine sedimentary formations of Cretaceous age within the Ensenada-Punta Banda quadrangle renders support to the above hypothesis. The data also demonstrate that pyrite mineralization and deposition in submarine hydrothermal environments result from the complexing of ferrous iron with elemental sulfur and sulfide and that submarine hydrothermal activity acts as a major source of silica, Ca2+, and trace metals and as a major sink for seawater Mg2+ and SO42-.

  2. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  3. Online Fan Practices and CALL

    Science.gov (United States)

    Sauro, Shannon

    2017-01-01

    This article provides a narrative overview of research on online fan practices for language and literacy learning, use, and identity work. I begin with an introduction to online fan communities and common fan practices found in these online affinity spaces, the best known of which is fan fiction, fictional writing that reinterprets and remixes the…

  4. 75 FR 43878 - Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN...

    Science.gov (United States)

    2010-07-27

    ... Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G Airplanes.... Since that NPRM was issued, we have determined that Model FAN JET FALCON SERIES C, D, E, F, and G..., Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G airplanes, and Model MYSTERE-FALCON 20-C5...

  5. First direct observations linking confined supercritical turbidity currents to their depositional architecture and facies characteristics

    Science.gov (United States)

    Hage, S.; Cartigny, M.; Hughes Clarke, J. E.; Clare, M. A.; Sumner, E.; Hubbard, S. M.; Talling, P.; Lintern, G.; Stacey, C.; Vardy, M. E.; Hunt, J.; Vendettuoli, D.; Yokokawa, M.; Hizzett, J. L.; Vellinga, A. J.; Azpiroz, M.

    2017-12-01

    Turbidity currents transfer globally significant amounts of sediment via submarine channels from the continental margin to deep submarine fans. Submarine channel inception is thought to result from erosive, supercritical turbidity currents that are common in proximal settings of the marine realm. Recent monitoring of submarine processes have provided the first measurements of supercritical turbidity currents (Hughes Clarke, 2016), demonstrating that they drive the upstream migration of crescentic bedforms in confined submarine channels. Although upstream-migrating bedforms are common in confined channels across the world's oceans, there is considerable debate over the type of deposits that they produce. It is important to understand what types of deposit record these supercritical bedforms to potentially identify them from geological archives. For the first time, we combine direct measurements from supercritical field-scale turbidity currents with the facies and depositional architecture resulting from such flows. We show how the subsurface architecture evolves in a highly active channel at Squamish submarine delta, British Columbia, Canada. Repeated upstream migration of bedforms is found to create two main deposit geometries. First, regular back-stepping beds result from flow deceleration on the slightly-inclined sides of the bedforms. Second, lens-shaped scour fills composed of massive deposits result from erosion of the back-stepping beds by subsequent turbidity currents. We relate our findings to a range of ancient outcrop studies to demonstrate that supercritical flows are common in proximal settings through the geological record. This study provides the first direct observation-based model to identify confined supercritical turbidity currents and their associated upslope-migrating bedforms in the sedimentary record. This is important for correctly identifying the proximal sites of ancient submarine channels that served as past conduits for globally

  6. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  7. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  8. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Science.gov (United States)

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  9. Sediment characteristics of the 2800 meter Atlantic nuclear waste disposal site: Radionuclide retention potential

    Energy Technology Data Exchange (ETDEWEB)

    Neiheisel, James

    1979-09-01

    coast funnel sediment into the Hudson Canyon and turbidity currents transport sediment down the submarine canyon; some of this sediment is advected in a southwesterly direction from the submarine canyon by contour currents for deposition along the continental rise. The net deposition at the waste site thus consists of the 'rain' of biogenous microorganisms, the transport of sediment from the coastal and continental shelf area by turbidity currents via submarine canyons, and transport of sediment along the continental rise by prevailing contour currents. The effectiveness of the sediment barrier relates to timely burial of the waste drum prior to leachate release from ruptured or corroded drums as well as freedom from 'short circuiting' effects such as bioturbation or other mechanisms capable of providing migration pathways for the radionuclides. (author)

  10. The Whittard Canyon - A case study of submarine canyon processes

    Science.gov (United States)

    Amaro, T.; Huvenne, V. A. I.; Allcock, A. L.; Aslam, T.; Davies, J. S.; Danovaro, R.; De Stigter, H. C.; Duineveld, G. C. A.; Gambi, C.; Gooday, A. J.; Gunton, L. M.; Hall, R.; Howell, K. L.; Ingels, J.; Kiriakoulakis, K.; Kershaw, C. E.; Lavaleye, M. S. S.; Robert, K.; Stewart, H.; Van Rooij, D.; White, M.; Wilson, A. M.

    2016-08-01

    Submarine canyons are large geomorphological features that incise continental shelves and slopes around the world. They are often suggested to be biodiversity and biomass hotspots, although there is no consensus about this in the literature. Nevertheless, many canyons do host diverse faunal communities but owing to our lack of understanding of the processes shaping and driving this diversity, appropriate management strategies have yet to be developed. Here, we integrate all the current knowledge of one single system, the Whittard Canyon (Celtic Margin, NE Atlantic), including the latest research on its geology, sedimentology, geomorphology, oceanography, ecology, and biodiversity in order to address this issue. The Whittard Canyon is an active system in terms of sediment transport. The net suspended sediment transport is mainly up-canyon causing sedimentary overflow in some upper canyon areas. Occasionally sediment gravity flow events do occur, some possibly the result of anthropogenic activity. However, the role of these intermittent gravity flows in transferring labile organic matter to the deeper regions of the canyon appears to be limited. More likely, any labile organic matter flushed downslope in this way becomes strongly diluted with bulk material and is therefore of little food value for benthic fauna. Instead, the fresh organic matter found in the Whittard Channel mainly arrives through vertical deposition and lateral transport of phytoplankton blooms that occur in the area during spring and summer. The response of the Whittard Canyon fauna to these processes is different in different groups. Foraminiferal abundances are higher in the upper parts of the canyon and on the slope than in the lower canyon. Meiofaunal abundances in the upper and middle part of the canyon are higher than on adjacent slopes, but lower in the deepest part. Mega- and macrofauna abundances are higher in the canyon compared with the adjacent slope and are higher in the eastern than

  11. The influence of Congo River discharges in the surface and deep layers of the Gulf of Guinea

    OpenAIRE

    Vangriesheim, A.; Pierre, C.; Aminot, A.; Metzl, N.; Baurand, François; Caprais, J. C.

    2009-01-01

    The main feature of the Congo-Angola margin in the Gulf of Guinea is the Congo (ex-Zaire) deep-sea fan composed of a submarine canyon directly connected to the Congo River, a channel and a [sediment] lobe area. During the multi-disciplinary programme called BIOZAIRE conducted by Ifremer from 2000 to 2005, two CTD-O2 sections with discrete water column samples were performed (BIOZAIRE3 cruise: 2003-2004) to study the influence of the Congo River discharges, both in the surface layer and in the...

  12. Recent sediment transport and deposition in the Nazaré Canyon, Portuguese continental margin.

    NARCIS (Netherlands)

    de Stigter, H.C.; Boer, W.; de Jesus Mendes, P.A.; Jesus, C.C.; Thomsen, L.; van den Bergh, G.D.; van Weering, T.C.E.

    2007-01-01

    Processes, pathways and fluxes of sediment transport and deposition in the Nazaré submarine canyon, Portuguese continental margin, were investigated by water column profiling of suspended particulate matter, recording of near-bottom currents and suspended particulate matter fluxes with benthic

  13. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    Directory of Open Access Journals (Sweden)

    Yuan Zhuang

    Full Text Available Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  14. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system.

    Science.gov (United States)

    Lin, Bing-Sian; Lee, Chon-Lin; Brimblecombe, Peter; Liu, James T

    2016-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Enhancing Submarine Operational Relevance: A Leadership Challenge

    National Research Council Canada - National Science Library

    Daigle, Jr, Michael J

    2008-01-01

    .... This vision of submarine operations must change. As the military continues to shift to operations focused on joint capabilities, the submarine force must break from the closed, protective, and risk averse culture of its past and push forward...

  16. Climate and Provenance Evolution Recorded in the Sub-aqueous Indus Delta since the Last Glacial Maximum

    Science.gov (United States)

    Limmer, D. R.; Clift, P. D.; Koehler, C.; Giosan, L.; Ponton, C.; Henstock, T.; Tabrez, A.

    2010-12-01

    Source to sink processes in large fluvial systems are complicated by large transport distances and the potential to store and rework material on route to the submarine fan. We target the Indus river system and assess how climate change since the Last Glacial Maximum (LGM) may have affected the storage and deposition of sediment in the nearshore shelf setting. While sediment reworking within the floodplain appears to have been strong during the Holocene, it is unclear whether this can be observed in the deep sea or in the submarine delta. We present a multi-proxy record of mineralogical and geochemical change from two cores obtained from the Indus Shelf during Winter 2008/9, one located close to the modern river and one located in the north-west shelf. Results show a strong contrast in the geochemistry, reflectance spectroscopy and clay mineralogy between Holocene sediments from the two cores. We propose that these differences are caused by both local variations in sediment source and transport mechanisms. Trends common in both cores could be related to climatic processes, such as low values in the chemical alteration index (CIA) and low 87Sr/86Sr that rise between 11 and 8ka suggests more intense chemical weathering at that time. This period coincides with presumed warmer, wet conditions and a stronger summer monsoon. A small decline in chemical weathering after 8ka could be caused by an apparent weakening of the monsoon since that time. These data suggest that sediment weathered in the floodplains is transported quickly to the submarine delta during the Holocene, but that this material has not yet been re-deposited into the deep water via the Indus Canyon.

  17. Comparison of BacT/Alert FAN and FAN Plus Bottles with Conventional Medium for Culturing Cerebrospinal Fluid.

    Science.gov (United States)

    Yoo, In Young; Chun, Sejong; Song, Dong Joon; Huh, Hee Jae; Lee, Nam Yong

    2016-11-01

    We compared the BacT/Alert system FAN and FAN Plus media to conventional media for culturing cerebrospinal fluid (CSF) with 2,545 samples. FAN/FAN Plus bottles showed better performance for isolating microorganisms in CSF than conventional media (positive rate, 7.2% [182/2,545] versus 3.1% [80/2,545]). The incremental recovery rate of Cryptococcus neoformans from FAN Plus bottles was higher than that from FAN bottles. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Industrial fans used in nuclear facilities

    International Nuclear Information System (INIS)

    Carlson, J.A.

    1987-01-01

    Industrial fans are widely used in nuclear facilities, and their most common use is in building ventilation. To control the spread of contamination, airflows are maintained at high levels. Therefore, the selection of the fan and fan control are important to the safety of people, equipment and the environment. As a result, 80% of all energy used in nuclear facilities is fan energy. Safety evolves from the durability, control and redundancy in the system. In new or retrofit installations, testing and qualification of fans and systems are completed prior to start-up. Less important but necessary is the energy conservation aspect of fan selection and installations. Fan efficiency, type of control and system installation are evaluated for energy use

  19. Characteristics and frequency of large submarine landslides at the western tip of the Gulf of Corinth

    Science.gov (United States)

    Beckers, Arnaud; Hubert-Ferrari, Aurelia; Beck, Christian; Papatheodorou, George; de Batist, Marc; Sakellariou, Dimitris; Tripsanas, Efthymios; Demoulin, Alain

    2018-05-01

    Coastal and submarine landslides are frequent at the western tip of the Gulf of Corinth, where small to medium failure events (106-107 m3) occur on average every 30-50 years. These landslides trigger tsunamis and consequently represent a significant hazard. We use here a dense grid of high-resolution seismic profiles to realize an inventory of the large mass transport deposits (MTDs) that result from these submarine landslides. Six large mass wasting events are identified, and their associated deposits locally represent 30 % of the sedimentation since 130 ka in the main western basin. In the case of a large MTD of ˜ 1 km3 volume, the simultaneous occurrence of different slope failures is inferred and suggests an earthquake triggering. However, the overall temporal distribution of MTDs would result from the time-dependent evolution of pre-conditioning factors rather than from the recurrence of external triggers. Two likely main pre-conditioning factors are (1) the reloading time of slopes, which varied with the sedimentation rate, and (2) dramatic changes in water depth and water circulation that occurred 10-12 ka ago during the last post-glacial transgression. Such sliding events likely generated large tsunami waves in the whole Gulf of Corinth, possibly larger than those reported in historical sources considering the observed volume of the MTDs.

  20. Evidence for submarine landslides and continental slope erosion related to fault reactivation during the last glaciation offshore eastern Canada

    Science.gov (United States)

    Saint-Ange, F.; Campbell, C.; MacKillop, K.; Mosher, D. C.; Piper, D. J.; Roger, J.

    2012-12-01

    Many studies have proposed that reactivation of dormant faults during deglaciation is a source of neotectonic activity in glaciated regions, but few have demonstrated the relationship to submarine landslides. In this study, seabed morphology and shallow geology of the outer continental margin adjacent to the Charlie Gibbs Fracture Zone off Newfoundland, Canada was investigated for evidence of this relationship. The glacial history and morphology of the margin suggest that the entire continental shelf in the area, coincident with major continental crustal lineaments, was ice-covered during the Last glacial cycle, and transverse troughs delineate the paleo-icestream drainage patterns. A recent investigation of Notre Dame Trough revealed the existence of large sediment failures on the shelf. The current study investigates complex seafloor erosion and widespread mass transport deposition (MTD) on the continental slope seaward of Notre Dame Trough, using recently-acquired high resolution seismic reflection data and piston cores. The new data reveal that a trough mouth fan (TMF) is present on the slope seaward of Notre Dame Trough. The Notre Dame TMF is characterized by a succession of stacked debris flows, but does not show a lobate shape in plan view like other classic TMFs. Instead, the Notre Dame TMF has abruptly-truncated margins suggesting post-depositional failure and erosion of the fan deposits. Seismic reflection data show that the locations of the failures along the TMF margin are coincident with a set of shallow faults; however the current dataset does not image the deeper portion of the faults. On the upper slope immediately south of the TMF, a narrow and deeply incised canyon is located along-trend with the Notre Dame Trough. The location of this canyon appears to be controlled by a fault. Downslope from this canyon, along the southern margin of the TMF, a 25 km wide, flat-floored, U-shaped valley was eroded into a succession of stacked MTD-filled channels

  1. Relationship between work stress and health in submariners

    Directory of Open Access Journals (Sweden)

    Nan-nan JIANG

    2013-09-01

    Full Text Available Objective To explore the relationship between work stress and health in submariners. Methods In April 2008, 272 submariners trained in a navy base were selected as study subjects by random group sampling method, and tested by primary personal information questionnaire, self-rated health measurement scale (SRHMS, self-developed submariners' work stressors questionnaire, and work stress self-rated scale. Physical health, mental health and social health of submariners were analyzed, and scores were compared with the norm of reference scores. Correlations were analyzed respectively between 10 items of submariners' general information (including age, length of military service, education degree, years at the present post, times of receiving awards, on-duty hours, off-duty hours, hours of sleep, lost days of leave, positive attitude to work and their physical health score, mental health score, social health score, total health score, as well as between 15 submariners' work stressors (including workrelated risks, diet problems, high temperature, humidity and noise in workplace, shortage of clean clothes, illness, losing contact with outside, lack of information about the task, lacking supports from family members, relationship problems, lack of involvement in task decisions, boring and dull work, on duty, heavy work, high quality of work, coping with unexpected threat and their physical health score, mental health score, social health score and total health score. Results No significant difference was found between submariners' SRHMS total score and the normal referenced score (t=0.56, P>0.05, but the physical health score and mental health score were significantly lower than normal referenced scores respectively (t=–2.172, P<0.05; t=–3.299, P<0.01, and the social health score was significantly higher than normal referenced score (t=9.331, P<0.001. The age, length of military service, years at present post of submariners were related

  2. Late Archaean tectonics and sedimentation of the South Rand area, Witwatersrand basin

    International Nuclear Information System (INIS)

    Spencer, R.M.

    1992-01-01

    The sedimentary fill of the southern part of the northeastern Witwatersrand basin consists of four unconformity bounded mega sequences. Early sedimentation took place in a stable, epi continental basin characterized by amphidromic flow. Gradual transgression to distal shelf facies was followed by gradual emergence to intertidal facies. Unconformity Bounded Mega sequence 2 shows that the basin underwent regression, in which discrete uplifts provided a source of granite-greenstone-derived sediment to associated braid plain aprons. Thereafter the basin subsided into a system almost identical to that in which Unconformity Bounded Mega sequence 1 developed. Unconformity Bounded Mega sequence 3 was deposited in a similar marine environment, on an angular unconformity in the east. Regional uplift occurred to the northwest of the basin. Unconformity Bounded Mega sequence 4 records progradation of a perennial braid plain controlled by uplift in the east, and by the minor influence of an uplift to the northwest. Rapid transgression resulted in submarine fan facies development, after which rapid emergence was controlled by uplift in the east, and to a lesser extent, the north. The braid plain was the site of extrusion of komatiitic lavas of the lower Ventersdorp Supergroup and was subsequently smothered by the sustained outpouring of a two kilometer-thick pile of basalts. Crustal extension climaxed after extrusion of felsic volcanics. This extension is antithetic to regional down-to-the-northwest, lower Ventersdorp Supergroup rifting. The last conspicuous phase of Precambrian tectonics is the superposition of a right-lateral wrench system on the early structural framework, after deposition of the lower Transvaal Sequence. Analysis of the samples was carried out by X-ray fluorescence spectrometry. 243 refs., 119 figs., 8 tabs

  3. Observational Analysis of Coronal Fans

    Science.gov (United States)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  4. The Fan Effect Co-production, Communication & Dispute Between Digital Game Fans, Developers and Publishers

    OpenAIRE

    Jalamo, Tuomas

    2016-01-01

    This study analyses the relationship between video game fans, developers and publishers. The topic is approached via a case study that explores online fan reviews of the video game Mass Effect 3 at the Metacritic website. The game had a controversial ending, which was posthumously altered due to negative feedback from the fans. The study seeks to understand the ways in which the case study reflects the issues between the fans and the industry and how these themes are related to the wider disc...

  5. Depositional evolution of the Melville Bay trough-mouth fan, NW Greenland

    Science.gov (United States)

    Knutz, Paul; Gregersen, Ulrik

    2015-04-01

    The continental margin of NW Greenland bordering northern Baffin Bay is characterized by major sediment accumulations, known as Trough-Mouth Fans (TMF). The fan depocentres represent intense sediment dispersal at the terminus of ice streams that during cold climate periods provided major drainage routes of the northern Greenland Ice Sheet into Baffin Bay. The imprint of paleo-icestreams is seen by erosional troughs crossing a >250 km broad shelf region, which caps a series of sedimentary basins containing thick Mesozoic-Tertiary strata packages. This presentation provides an overview of the seismic stratigraphic division, depositional architecture and examples of seismic facies of the Melville Bay TMF using a 5-10 km grid of industry-quality 2D seismic data (TGS). The focus will primarily be on the inception and early stage of glacial fan development. Comparing the present-day topography with the regional geology shows that the paleo-icestreams exploited the Cenozoic infill of former rift basins that are more conducive to erosion than the adjoining ridges and structural highs. The TMF sequence is constructed by a series of progradational seismic units that represent successive steps in location of ice stream terminus and associated depocenters. The slope fronts of the prograding units show abundant signatures of sediment instability and mass-wasting but evidence of along-slope current-driven processes is also recognized presumably linked to interglacial sea level high-stands. The topset of each unit is characterized by planar erosion that merges landward into hummocky positive geometries with low internal reflectivity. These features are generally interpreted as subglacial landforms, e.g. terminal moraines and ice-contact deposits, associated with grounding zone wedges. Unlike the most recent TMF units deposited in front of the present trough, the oldest glacigenic units have built out from a Neogene sediment prism that forms the core of modern shallow-water banks

  6. 30 CFR 57.4504 - Fan installations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fan installations. 57.4504 Section 57.4504... Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads... of combustible materials, except installed wiring, ground and track support, headframes, and direct...

  7. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  8. The role of episodic fire-related debris flows on long-term (103-104) sediment yields in the Middle Fork Salmon River Watershed, in central Idaho

    Science.gov (United States)

    Riley, K. E.; Pierce, J. L.; Hopkins, A.

    2010-12-01

    Episodic fire-related debris flows contribute large amounts of sediment and large woody debris to streams. This study evaluates fire-related sedimentation from small steep tributaries of the Middle Fork Salmon River (MFSR) in central Idaho to evaluate the timing, frequency, and magnitude of episodic fire-related sedimentation on long-term (10 3-10 4) sediment yields. The MFSR lies within the Northern Rocky Mountains and encompasses a range of ecosystems including high elevation (~3,000 -1,700 m) subalpine pine and spruce forests, mid-elevation (2650 - 1130 m) montane Douglas-fir and ponderosa pine-dominated forests and low elevation (~ 1,800 - 900 m) sagebrush steppe. Recent debris flow events in tributaries of the MFSR appear to primarily result from increased surface runoff, rilling, and progressive sediment bulking following high severity fires. This study estimates: 1) the volume of sediment delivered by four recent (1997-2008) fire-related debris flow events using real time kinematic GPS surveys, and 2) the timing of Holocene fire-related debris flow events determined by 14C dating charcoal fragments preserved in buried burned soils and within fire-related deposits. Our measured volumes of the four recent debris flow events are compared to two empirically derived volume estimates based on remotely sensed spatial data (burn severity and slope), measured geometric data (longitudinal profile, cross sectional area, flow banking angle), and precipitation records. Preliminary stratigraphic profiles in incised alluvial fans suggest that a large percentage of alluvial fan thickness is composed of fire-related deposits suggesting fire-related hillslope erosion is a major process delivering sediment to alluvial fans and to the MFSR. Fire-related deposits from upper basins compose ~71% of total alluvial fan thickness, while fire-related deposits from lower basins make up 36% of alluvial fan thickness. However, lower basins are less densely vegetated with small diameter

  9. RUO-FAN QIU

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. RUO-FAN QIU. Articles written in Pramana – Journal of Physics. Volume 89 Issue 6 December 2017 pp 81 Research Article. Three-dimensional coupled double-distribution-function lattice Boltzmann models for compressible Navier–Stokes equations · RUO-FAN QIU ...

  10. Low Noise Research Fan Stage Design

    Science.gov (United States)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  11. Deep-water turbidity systems: a review of their elements, sedimentary processes and depositional models. Their characteristics on the Iberian margins; Sistemas turbiditicos de aguas profundas: revision de sus elementos, procesos sedimentarios y modelos deposicionales. Sus caracteristicas en los margenes Ibericos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Ercilla, G.; Alonso, B.; Estrada, F.; Jane, G.; Mena, A.; Alves, T.; Juan, C.

    2015-07-01

    Turbidity systems or submarine fans are considered the most important clastic accumulations in the deep sea and represent the sediment-transfer system between the hinterland source area and the deep-sea depositional sink. Their deposits contain information about global factors and local factors. Different scales and varying observational methods have contributed to the lack of a unifying terminology. In order to solve this problem several authors have proposed an elemental approach. The main architectural elements defining a turbidity sys- tem are: large-scale erosive features (mass-movements and canyons), channels and channel-fill deposits, over- bank deposits and lobes. The sediment making up these elements is principally from gravity flow deposits, the most widely recognised being the turbidity, and other submarine mass movements. The genesis and character of these elements, as well as the overall geometry of the systems, indicate they are formed by a complex inter- action between global and local factors. Various turbidity-system classifications are found in the literature, the most widely-used being based on grain size and feeder systems. Besides the scientific importance of turbiditic systems, they are predominantly studied because of the economic interest in them, as turbidite sandstones con- stitute important gas and oil reservoirs. Turbidite systems shape the sea floor of the Iberian continental margins and contribute in a large part to their outbuilding and basin in filling. They are hugely variable in size, location within the physiographic domains, style and overall geometry of the architectural elements, as well as sediment composition. The most studied Iberian turbidity fans are in the Mediterranean Sea whereas those of the Atlantic Ocean remain poorly known. (Author)

  12. Relative Abundance and Diversity of Bacterial Methanotrophs at the Oxic?Anoxic Interface of the Congo Deep-Sea Fan

    OpenAIRE

    Bessette, Sandrine; Moalic, Yann; Gautey, S?bastien; Lesongeur, Fran?oise; Godfroy, Anne; Toffin, Laurent

    2017-01-01

    Sitting at ∼5,000 m water depth on the Congo-Angola margin and ∼760 km offshore of the West African coast, the recent lobe complex of the Congo deep-sea fan receives large amounts of fluvial sediments (3–5% organic carbon). This organic-rich sedimentation area harbors habitats with chemosynthetic communities similar to those of cold seeps. In this study, we investigated relative abundance, diversity and distribution of aerobic methane-oxidizing bacteria (MOB) communities at the oxic–anoxic in...

  13. 14 CFR 29.908 - Cooling fans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans installed...

  14. Coastal currents and mass transport of surface sediments over the shelf regions of Monterey Bay, California

    Science.gov (United States)

    Wolf, S.C.

    1970-01-01

    In Monterey Bay, the highest concentrations of medium and fine sands occur nearshore between ten and thirty fathoms. Silt and clay accumulate in greater depths. Contours of median diameter roughly parallel the isobaths. Fine-grained materials are supplied to the bay region from erosion of cliffs which partly surround Monterey Bay, from sediment laden river discharge, and from continual reworking of widespread Pleistocene and Recent sea floor sediments. These sediments in turn are picked up by coastal currents and distributed over the shelf regions by present day current regimes. Studies of bottom currents over the shelf regions and in Monterey Canyon have revealed patterns which vary with seasonal changes. Current patterns during August and September exhibit remarkable symmetry about the axis of Monterey Submarine Canyon. Central Shelf currents north and south of Monterey Canyon flowed northwest at an average rate of 0.2 knots and south at 0.3 knots respectively. On the North Shelf between January and March currents flowed east to southeast at 0.3-0.5 knots with mirror image patterns above the South Shelf during the same period. Irregular current flow in the canyon indicates a complex current structure with frequent shifts in counterclockwise and clockwise direction over very short periods of time. Bottom topography of the canyon complex often causes localization of canyon currents. One particular observation at a depth of 51 fathoms indicated up-canyon flow at a rate of 0.2 knots. Most of the observed currents are related to seasonal variations, upwelling, ocean swell patterns, and to changes in the California and Davidson currents. Changes in current regimes are reflected in the patterns of sediment distribution and transport. Sediment transport is chiefly parallel to the isobaths, particularly on the North and South Shelf regions. Complex dispersal patterns are observed near Monterey Canyon and Moss Landing Harbor jetties. Longshore currents move sediments

  15. Stranger than fiction: Fan identity in cosplay

    Directory of Open Access Journals (Sweden)

    Nicolle Lamerichs

    2011-09-01

    Full Text Available Academic accounts of fan cultures usually focus on creative practices such as fan fiction, fan videos, and fan art. Through these practices, fans, as an active audience, closely interpret existing texts and rework them with texts of their own. A practice scarcely examined is cosplay ("costume play", in which fans produce their own costumes inspired by fictional characters. Cosplay is a form of appropriation that transforms and actualizes an existing story in close connection to the fan community and the fan's own identity. I provide analytical insights into this fan practice, focusing on how it influences the subject. Cosplay is understood as a performative activity and analyzed through Judith Butler's concept of performativity. I specifically focus on boundaries between the body and dress, and on those between reality and fiction. I aim to show that cosplay emphasizes the personal enactment of a narrative, thereby offering new perspectives on fan identity.

  16. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

    Science.gov (United States)

    Azpiroz-Zabala, Maria; Cartigny, Matthieu J B; Talling, Peter J; Parsons, Daniel R; Sumner, Esther J; Clare, Michael A; Simmons, Stephen M; Cooper, Cortis; Pope, Ed L

    2017-10-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can explain why these are far more prolonged than all previously monitored oceanic turbidity currents, which lasted for only hours or minutes at other locations. The observed Congo Canyon flows consist of a short-lived zone of fast and dense fluid at their front, which outruns the slower moving body of the flow. We propose that the sustained duration of these turbidity currents results from flow stretching and that this stretching is characteristic of mud-rich turbidity current systems. The lack of stretching in previously monitored flows is attributed to coarser sediment that settles out from the body more rapidly. These prolonged seafloor flows rival the discharge of the Congo River and carry ~2% of the terrestrial organic carbon buried globally in the oceans each year through a single submarine canyon. Thus, this new structure explains sustained flushing of globally important amounts of sediment, organic carbon, nutrients, and fresh water into the deep ocean.

  17. PBDE and PCB accumulation in benthos near marine wastewater outfalls: The role of sediment organic carbon

    International Nuclear Information System (INIS)

    Dinn, Pamela M.; Johannessen, Sophia C.; Ross, Peter S.; Macdonald, Robie W.; Whiticar, Michael J.; Lowe, Christopher J.; Roodselaar, Albert van

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation. - Highlights: ► Physical receiving environment affects PBDE bioaccumulation by benthic invertebrates. ► PBDE uptake is correlated with organic-carbon normalized sediment concentrations. ► PBDE and PCB congener uptake are governed by different properties. ► PBDE sediment quality guidelines may benefit by using organic carbon-normalized data. ► Enhanced wastewater treatment may mean increased benthic invertebrate PBDE bioaccumulation. - The physical receiving environment affects the accumulation of PBDEs by benthic invertebrates near submarine municipal outfalls, and uptake of PBDE congeners is governed by different properties than for PCB congeners.

  18. Mineralogy of Nicobar Fan turbidites (IODP Leg 362): Himalayan provenance and diagenetic control.

    Science.gov (United States)

    Limonta, M.; Garzanti, E.; Ando, S.; Carter, A.; Milliken, K. L.; Pickering, K. T.

    2017-12-01

    In this study we use quantitative petrographic and heavy-mineral data on silt-sized and sand-sized sediments from the Nicobar Fan turbiditic depositional system to unravel their provenance and discriminate between pre-depositional and post-depositional processes controlling sediment mineralogy. Eighteen samples from the two drill sites U1480 e U1481, collected down to a depth of 1400 m during International Ocean Discovery Expedition 362, were selected for analysis. A complete section of the sedimentary section overlying oceanic basaltic basement was recovered at the U1480 drill site, whereas the U1481 drill site, located 35 km to the southeast, focused on the deeper interval of the sedimentary section overlying oceanic basement. Here we illustrate the compositional trends observed throughout the recovered succession, and compare heavy-mineral suites characterizing sediments drilled at the two U1480 and U1481 sites to check for potential differences in sediment provenance over a relatively short distance in trench settings. Diagenetic control with increasing burial depth was also specifically investigated. In Pleistocene sediments at depths of a few tens of meters only, rich heavy-mineral assemblages include mainly hornblende, epidote, and garnet, associated with apatite, clinopyroxene, tourmaline, sillimanite, kyanite, zircon, titanite, and rare staurolite and rutile, testifying to long-distance provenance from the Himalayan range via the Ganga-Brahmaputra fluvio-deltaic-turbiditic system. Heavy-mineral concentration shows a progressive decrease with burial depth, pointing to selective diagenetic dissolution of less durable detrital minerals. Clinopyroxene becomes rare below 400 m depth and was not recorded below 500 m depth, where amphibole decreases notably in relative abundance. More durable heavy minerals, including zircon, tourmaline, apatite, garnet and epidote, consequently tend to be relatively enriched with increasing age and burial depth. Petrographic and

  19. Assessment of Submarine Slope Stability on the Continental Margin off SW Taiwan

    Science.gov (United States)

    Hsu, Huai-Houh; Dong, Jia-Jyun; Cheng, Win-Bin; Su, Chih-Chieh

    2017-04-01

    The abundant gas hydrate reservoirs are distributed in the southwest (SW) off Taiwan. To explore this new energy, geological methods were systematically used and mainly emphasized on the storage potential evaluation. On the other hand, the correlation between gas hydrate dissociation and submarine slope stability is also an important issue. In this study, three submarine profiles on the active and passive continental margin were selected and assessed their slope stabilities by considering two influence factors (seismic forces and number of sedimentary layers). The gravity corers obtained from these three sites (Xiaoliuqiu, Yuan-An Ridge, and Pointer Ridge) to conduct soil laboratory tests. The physical property tests and isotropically consolidated undrained (CIU) triaxial tests were carried out to establish reference properties and shear strength parameters. Before the stability analysis is performed, it is also necessary to construct the seabed profile. For each submarine profile, data from P-waves and from S-waves generated by P-S conversion on reflection from airgun shots recorded along one line of ocean bottom seismometers were used to construct 2-D velocity sections. The seabed strata could be simplified to be only one sedimentary layer or to be multilayer in accordance with the velocity structure profile. Results show the safety factors (FS) of stability analysis are obviously different in considering the number of sedimentary layers, especially for a very thin layer of sediments on a steep slope. The simplified strata condition which treated all seabed strata as only one sedimentary layer might result in the FS lower than 1 and the slope was in an unstable state. On the contrary, the FS could be higher than 10 in a multilayer condition.

  20. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  1. yi fan zheng

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YI FAN ZHENG. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1329-1333. Synthesis and enhanced photocatalytic activity of g-C 3 N 4 hybridized CdS nanoparticles · QING YING LIU YI LING QI YI FAN ZHENG XU CHUN SONG.

  2. Design features of fans, blowers, and compressors

    Science.gov (United States)

    Cheremisinoff, N. P.; Cheremisinoff, P. N.

    Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.

  3. Analysis of impact resistance of composite fan blade. Fukugozai fan blade no taishogekisei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, T; Okumura, H; Otake, K; Sofue, Y [Japan Society for Aeronautical and Space Sciences, Tokyo (Japan)

    1992-01-05

    Numerical analysis of impact response was carried out when a bird strike was simulated to study the applicability of fiber reinforced composite material to fan blades for turbo-fan engines. The validity of the numerical analysis was verified by comparing the analyzed results with impact tested results of a fan-blade model of Ti-alloy. The impact resistance was studied by applying this method to fan blades of composite materials such as carbon fiber, epoxy resin and carbon-silicate fiber reinforced Ti-alloy. The finite element method was used for the analysis by dividing the model into triangular flat elements. The relation between the impact load, the deformation of blade and the strain, the natural frequency characteristics, the elastic modulus and hetrogeneity of blade were considered to analyze the impact response. The impact load by the strike of 1.5 lbs bird is very severe to the fan blades for turbo-fan engines having the thrust of 5 ton class. 23 refs., 23 figs., 3 tabs.

  4. Early diagenesis in the Congo deep-sea fan sediments dominated by massive terrigenous deposits: Part I - Oxygen consumption and organic carbon mineralization using a micro-electrode approach

    Science.gov (United States)

    Pozzato, Lara; Cathalot, Cécile; Berrached, Chabha; Toussaint, Flora; Stetten, Elsa; Caprais, Jean-Claude; Pastor, Lucie; Olu, Karine; Rabouille, Christophe

    2017-08-01

    Organic matter (OM) transfer from the continent to the ocean occurs across margins which constitute a major area of OM recycling and burial. The lobe complex of the Congo deep-sea fan is connected to the river mouth by a canyon and alimented by recurrent turbidity currents, containing a large proportion of labile terrigenous OM and producing high sedimentation rates. These inputs support the development of ecosystems harboring rich assemblages of vesicomyid bivalves and bacterial mats, called Habitats. Here, we present O2 microprofiles and diffusive oxygen uptake rates (DOUs) obtained during the CONGOLOBE project at six sites of this active lobe complex by in situ and on-board methods based on micro-electrode profiling. The dataset is used to determine remineralization rates and study the biogeochemical dynamics of different ecosystems of the lobe area, in order to compare levee and background sediments to the Habitats developed on the flanks of the main turbiditic channel. Levee and background sediments are characterized by significantly higher DOUs than abyssal sediments at 5000 m meters depth (2-5 mmol O2 m-2 d-1versus 1.5-2.5 mmol O2 m-2 d-1) and the Habitats are hotspots of OM remineralization with DOU values ranging between 8 and 40 mmol O2 m-2 d-1. By comparing sites near the active channel to a site located 50 km away, we show that the lobe connection to the main turbiditic channel is vital to the dense benthic communities.

  5. Improved Submariner Eyewear for Routine Wear and Emergency Equipment Use Underway

    Science.gov (United States)

    2010-01-15

    information. 2.0 DESCRIPTION Naval Submarine Medical Research Laboratory (NSMRL) is seeking information from the eyewear industry that will provide...Improved Submariner Eyewear for Routine Wear and Emergency Equipment Use Underway by Alison America, MA Wayne G. Horn, MD...Submariner Eyewear for Routine Wear and Emergency Equipment Use Underway 50818 Alison America, MA Wayne G. Horn, MD Naval Submarine Medical Research

  6. ENERGY STAR Certified Ceiling Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=ceiling_fans.pr_crit_ceiling_fans

  7. ENERGY STAR Certified Ventilating Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  8. VICTORIA Class Submarine Human-in-the-Loop Experimentation Plan

    Science.gov (United States)

    2014-06-01

    1472G. VICTORIA Class Submarine Human-in-the-Loop Experimentation Plan and Preliminary Results © Her Majesty the Queen in Right of...19 th International Command and Control Research and Technology Symposium Title: VICTORIA Class Submarine Human-in-the-Loop...TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE VICTORIA Class Submarine Human-in-the-Loop Experimentation Plan 5a. CONTRACT

  9. Index of Submarine Medical Officer’s Qualification Theses 1944-1974

    Science.gov (United States)

    1976-04-01

    USING HYPOTHERMIA AND HYPERBARIC CXYGENATI 1972-3011 0 A CASE REPO+ HYPOBARIC HYPOXIA ABOARD A SUBMERGED SUBMARINE 1972-0014 THE EFFECTS OF ACUTE HYPOXIA...G009 LEVEL. VENTILATORY DYNAMICS UNDER HYPERBARIC STATES.= SUBMARINE MEDICAL QUALIFICATION THESES U. So NAVAL SJBMARINE MEDICAL CENTER SUBMARINE BASE...CONNECTICUT. 23 OCT 62 StJRL ____________ 1962-0019 WOO3D W.- - ____ VENTILATORY DYNAMICS UNDER HYPERBARIC STATES.= SUBMARINE MEDICAL QUALIFICATION THESES

  10. Stratigraphy of Eocene Sediments in the Soutwest Thrace

    Directory of Open Access Journals (Sweden)

    Muhsin SÜMENGEN

    1991-06-01

    siltstone, mudstone, and conglomerate, which become thick bedded and coarser upward (Korudağ formation and fining upward sequences (Keşan formation. These are submarine fan deposits of turbiditic origin. The basin became shallower again towards the end of Upper Eocene. During this period, rock units made up of mudstone, siltstone, sandstone, and conglomerate were deposited. This sequence deposited in a deltaic environment has been named differently, the Kanlıbent formation in the Gelibolu peninsula and the Yenimuhacir formation between Keşan and Tekirdağ, due to its diverse local features. The basin as a whole became a continent during the Oligocene (? and alluvial deposits that consist of mudstone, sandstone, and conglomerate formed (Armuttepe formation.

  11. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to a...

  12. Characteristics and frequency of large submarine landslides at the western tip of the Gulf of Corinth

    Directory of Open Access Journals (Sweden)

    A. Beckers

    2018-05-01

    Full Text Available Coastal and submarine landslides are frequent at the western tip of the Gulf of Corinth, where small to medium failure events (106–107 m3 occur on average every 30–50 years. These landslides trigger tsunamis and consequently represent a significant hazard. We use here a dense grid of high-resolution seismic profiles to realize an inventory of the large mass transport deposits (MTDs that result from these submarine landslides. Six large mass wasting events are identified, and their associated deposits locally represent 30 % of the sedimentation since 130 ka in the main western basin. In the case of a large MTD of  ∼  1 km3 volume, the simultaneous occurrence of different slope failures is inferred and suggests an earthquake triggering. However, the overall temporal distribution of MTDs would result from the time-dependent evolution of pre-conditioning factors rather than from the recurrence of external triggers. Two likely main pre-conditioning factors are (1 the reloading time of slopes, which varied with the sedimentation rate, and (2 dramatic changes in water depth and water circulation that occurred 10–12 ka ago during the last post-glacial transgression. Such sliding events likely generated large tsunami waves in the whole Gulf of Corinth, possibly larger than those reported in historical sources considering the observed volume of the MTDs.

  13. Isotopes of carbon, nitrogen and oxygen reveal contributions of submarine groundwater and septic systems discharges to algal bloom in Boracay Island

    International Nuclear Information System (INIS)

    Sucgang, Raymond; Pabroa, Preciosa Corazon; Mendoza, Norman; Racho, Joseph Michael; Bautista, Angel; Morco, Ryan; Petrache, Christina; Castaneda, Soledad; Dela Rosa, Alumanda

    2014-01-01

    The study showed that critical areas in Boracay island were contaminated by coliform bacteria and blue green algae (cyanobacteria). The distribution of tritium, 18 O, 15 N and 13 C in seawater, biota and sediments in the inter tidal zone, helped to identify sites with septic sewage outflows and submarine groundwater discharge, SGD. Nitrates (from 0.0 to 2.3 parts per million, ppm) and nutrients were discovered in seawater, particularly in four identified sites in the bathing zone. Point sources of infiltrating plumes were exposed by anomalies in tritium and 18 O in sea water. Septic and canal outflows as well as land based run-offs and submarine groundwater discharge were the identified causes of nutrient enrichments in sites with eminent algal bloom. The isotope composition implied that algae acquire nutrients from septic contamination, while a number of corals assimilate inorganic fertilizer nutrients from land-based plumes and SGD. The elements identified in sediments and corals were related to the natural mineral matrix of calcareous beach zone materials, however, sporadic spikes of lead, chromium and zinc were detected in particular sites at certain depths. These element spikes proxy processes linked to anthropogenic pollution and or organic matter decomposition in the sediment-water interfaces. The practicality of applying isotope-based techniques in conjunction with other chemical methods for the tracking down of the sources of nutrient contamination in polluted systems in demonstrated by the study.(author)

  14. New Evidence For A Late Miocene Onset Of The Amazon River Following Andean Tectonics And Quaternary Climate Change

    Science.gov (United States)

    Hoorn, M. C.; Bogota-Angel, G.; Romero-Baez, M.; Lammertsma, E.; Flantua, S. G. A.; Dantas, E. L.; Dino, R.; do Carmo, D.; Chemale, F., Jr.

    2017-12-01

    The Amazon River influenced biotic evolution on land and at sea, but its onset and development are still debated. Terrestrial sedimentary records are sparse, far apart, and do not present a continuous stratigraphy and thus greatly complicate the reconstruction of the history of this river system. At sea the stratigraphic record is better known thanks to hydrocarbon exploration efforts, but these data are not in the public domain. Renewed exploration in the Amazon submarine fan (Brazilian Equatorial Margin) has provided novel data and materials from wells drilled along the slope of the Amazon submarine fan, that are now partially available for scientific research. Here we report on the results of a geochemical and palynological study of `Well 2' based on which we determined the age and provenance of early Miocene to Pleistocene sediments. The palynological data were also used to reconstruct past biomes on land, which ranged from mangrove and lowland forest to alpine vegetation. A distinct change in provenance was observed between 9.4 Ma and 9 Ma, which represented a change from Amazonian to Andean sediment source. This signal is replicated in the palynological record, which shows a shift from lowland to high-mountain taxa. Furthermore, we observed a very large increase of grass pollen from the Pliocene onwards with a further rise in the Pleistocene. These changes coincide with a rise in sedimentation rates. We interpret these results as following: a) the arrival of Andean sediments is related to the onset of the transcontinental river, b) the two-step rise of grass pollen and manifold increase in sediment discharge are related to Quaternary climatic change. These results agree with earlier and recent findings on the Ceara Rise and firmly place the birth of this river in the late Miocene. This study exemplifies the continental scale of tectonic changes on fluvial environments and biota across a W-E transect of South America. The study of this well is continued and we

  15. Computing Gröbner fans

    DEFF Research Database (Denmark)

    Fukuda, K.; Jensen, Anders Nedergaard; Thomas, R.R.

    2005-01-01

    This paper presents algorithms for computing the Gröbner fan of an arbitrary polynomial ideal. The computation involves enumeration of all reduced Gröbner bases of the ideal. Our algorithms are based on a uniform definition of the Gröbner fan that applies to both homogeneous and non......-homogeneous ideals and a proof that this object is a polyhedral complex. We show that the cells of a Gröbner fan can easily be oriented acyclically and with a unique sink, allowing their enumeration by the memory-less reverse search procedure. The significance of this follows from the fact that Gröbner fans...... are not always normal fans of polyhedra in which case reverse search applies automatically. Computational results using our implementation of these algorithms in the software package Gfan are included....

  16. Two-Stage Centrifugal Fan

    Science.gov (United States)

    Converse, David

    2011-01-01

    Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.

  17. Expedition 354 on the Bengal fan: a Neogene record of Himalayan erosion

    Science.gov (United States)

    France-Lanord, C.; Spiess, V.; Schwenk, T.; Klaus, A.; Galy, A.

    2017-12-01

    Drilling in the Bengal fan generated a comprehensive record of Himalayan erosion over the Neogene and Quaternary. It documents the interplay between Himalayan tectonic and the monsoon. The fan is predominantly composed of detrital turbiditic sediments originating from Himalayan rivers, and transported through the delta and shelf canyon, supplying turbidity currents loaded with a wide spectrum of grain sizes. Turbiditic deposition makes that record at a given site is discontinuous which was the reason for an E-W transect approach. Exp. 354 drilled seven sites along a 320 km E-W transect at 8°N allowing the restitution of an almost complete record of Himalayan erosion at the scale of the Neogene. In spite of the transect's extension, a long absence of deposition was observed between 0.6 to 1.2 Ma indicating that turbiditic depocenter was derived more to the West for ca. 600 kyr. Turbidites have clear Himalayan origin with close mineralogical and isotopic analogy with those of the modern Ganga-Brahmaputra river sediments. Geochemistry shows relatively stable compositions throughout the Neogene and Quaternary and reveal a very weak regime of chemical weathering with no significant variation through time. Concentrations in mobile elements such as Na and K relative to Al are significantly higher than in modern sediments suggesting that weathering is amplified in the modern time. Low weathering of the sediments at 8°N indicates that erosion was dominated by physical processes and that transport is rapid enough to prevent evolution of particles in the floodplain. In the modern Himalaya, low weathering is achieved primarily by landslides and rapid transfer through the floodplain, i.e. limited recycling of sediment deposited in the floodplain. Both processes are favoured by the seasonality and the intensity of the monsoon. Although relatively stable, source tracers such as Sr-Nd isotopic compositions, and detrital carbonate compositions show organised variations with time

  18. New imaging of submarine landslides from the 1964 earthquake near Whittier, Alaska, and a comparison to failures in other Alaskan fjords

    Science.gov (United States)

    Haeussler, Peter J.; Parsons, Thomas E.; Finlayson, David P.; Hart, Patrick J.; Chaytor, Jason D.; Ryan, Holly F; Lee, Homa J.; Labay, Keith A.; Peterson, Andrew; Liberty, Lee

    2014-01-01

    The 1964 Alaska M w 9.2 earthquake triggered numerous submarine slope failures in fjords of southern Alaska. These failures generated local tsunamis, such as at Whittier, where they inundated the town within 4 min of the beginning of shaking. Run-up was up to 32 m, with 13 casualties. We collected new multibeam bathymetry and high-resolution sparker seismic data in Passage Canal, and we examined bathymetry changes before and after the earthquake. The data reveal the debris flow deposit from the 1964 landslides, which covers the western 5 km of the fjord bottom. Individual blocks in the flow are up to 145-m wide and 25-m tall. Bathymetry changes show the mass transfer deposits originated from the fjord head and Whittier Creek deltas and had a volume of about 42 million m3. The 1964 deposit has an average thickness of ∼5.4 m. Beyond the debris flow, the failures likely deposited a ∼4.6-m thick megaturbidite in a distal basin. We have studied the 1964 submarine landslides in three fjords. All involved failure of the fjord-head delta. All failures eroded basin-floor sediments and incorporated them as they travelled. All the failures deposited blocks, but their size and travel distances varied greatly. We find a correlation between maximum block size and maximum tsunami run-up regardless of the volume of the slides. Lastly, the fjord’s margins were influenced by increased supply of glacial sediments during the little ice age, which along with a long interseismic interval (∼900 years) may have caused the 1964 earthquake to produce particularly numerous and large submarine landslides.

  19. PICNIC - FANS, ULTRAS AND HOOLIGANS - INTERNAL DIFFERENTIATE OF SUBCULTURE GROUP FOOTBALL FANS IN POLAND

    Directory of Open Access Journals (Sweden)

    Maciej Solinski

    2006-01-01

    Full Text Available This article is a main part of "Internal differentiate of subculture group of football fans in Poland" project. Author has tried to show how the subculture of football fans can be differentiate. Author ha presented three different subgroups of Polish fans. It is very important to divide this subculture, because each subgroup has different mentality and style. That is why I have paid the most attention on this element.

  20. Advanced Low-Noise Research Fan Stage Design

    Science.gov (United States)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  1. Submarine films as narratives of masculinity

    OpenAIRE

    MacDonald, Alex

    2002-01-01

    The research for this thesis is on representations of masculinity in Anglo-American submarine films since 1943. The discussion will draw on relevant work on the representation of masculinity and popular cinema in film and cultural studies. In particular, the thesis will account for the notion of hegemony in relation to masculinity in the submarine film. Further, the notion of hegemonic masculinity will be addressed in terms of four key claims. These are as follows: that relations between grou...

  2. Fans af Bruce

    DEFF Research Database (Denmark)

    Vaaben, Nana Katrine

    2007-01-01

    Analysen viser, hvordan det samme ritual under en koncert forener og opdeler de fans, der orienterer sig mod Bruce Springsteen. På den ene side forener ritualet hele publikum i en stor fælles "Intimitet for mange" og på den anden side splitter det dem, fordi det bliver tydeligt, hvem der er de...... rigtige fans, og hvem der tilhører "pøbelen"....

  3. The Ministry of Dilemmas [decommissioning nuclear submarines

    International Nuclear Information System (INIS)

    Peden, W.

    1995-01-01

    A consultant for Greenpeace, the anti-nuclear campaigners, looks at the United Kingdom Government's problems with decommissioning of its nuclear submarine fleet as the vessels become obsolete, and at the transport and storage of spent fuels from the submarine's propulsion reactors. It is argued that no proper plans exist to decommission the vessels safely. The Ministry of Defence sites such as Rosyth and Devonport are immune from inspection by regulatory bodies, so there is no public knowledge of any potential radioactive hazards from the stored out-of-service carcasses, floating in dock, awaiting more active strategies. The author questions the wisdom of building new nuclear submarines, when no proper program exists to decommission existing vessels and their operational waste. (U.K.)

  4. Modeling Submarine Lava Flow with ASPECT

    Science.gov (United States)

    Storvick, E. R.; Lu, H.; Choi, E.

    2017-12-01

    Submarine lava flow is not easily observed and experimented on due to limited accessibility and challenges posed by the fast solidification of lava and the associated drastic changes in rheology. However, recent advances in numerical modeling techniques might address some of these challenges and provide unprecedented insight into the mechanics of submarine lava flow and conditions determining its wide-ranging morphologies. In this study, we explore the applicability ASPECT, Advanced Solver for Problems in Earth's ConvecTion, to submarine lava flow. ASPECT is a parallel finite element code that solves problems of thermal convection in the Earth's mantle. We will assess ASPECT's capability to model submarine lava flow by observing models of lava flow morphology simulated with GALE, a long-term tectonics finite element analysis code, with models created using comparable settings and parameters in ASPECT. From these observations we will contrast the differing models in order to identify the benefits of each code. While doing so, we anticipate we will learn about the conditions required for end-members of lava flow morphology, for example, pillows and sheet flows. With ASPECT specifically we focus on 1) whether the lava rheology can be implemented; 2) how effective the AMR is in resolving morphologies of the solidified crust; 3) whether and under what conditions the end-members of the lava flow morphologies, pillows and sheets, can be reproduced.

  5. Intrinsic stream-capture control of stepped fan pediments in the High Atlas piedmont of Ouarzazate (Morocco)

    Science.gov (United States)

    Pastor, A.; Babault, J.; Teixell, A.; Arboleya, M. L.

    2012-11-01

    The Ouarzazate basin is a Cenozoic foreland basin located to the south of the High Atlas Mountains. The basin has been externally drained during the Quaternary, with fluvial dynamics dominated by erosive processes from a progressive base level drop. The current drainage network is composed of rivers draining the mountain and carrying large amounts of coarse sediments and by piedmont streams with smaller catchments eroding the soft Cenozoic rocks of the Ouarzazate basin. The coarse-grained sediments covering the channel beds of main rivers cause the steepening of the channel gradient and act as a shield inhibiting bedrock incision. Under such circumstances, piedmont streams that incise to lower gradients evolve to large, depressed pediments at lower elevations and threaten to capture rivers originating in the mountain. Much of the current surface of the Ouarzazate basin is covered by coarse sediments forming large systems of stepped fan pediments that developed by the filling of low elevation pediments after a capture event. We identified 14 capture events, and previously published geochronology support an ~ 100 ka frequency for fan pediment formation. Our study indicates that the reorganization of the fluvial network in the Ouarzazate basin during the late Pleistocene and Holocene has been controlled by the piedmont-stream piracy process, a process ultimately controlled by the cover effect. The stream capture is influenced by erosion, sediment supply and transport, and therefore may not be entirely decoupled from tectonic and climatic forcing. Indeed, we show that at least two capture events may have occurred during climate changes, and local tectonic structures control at most the spatial localization of capture events.

  6. Experiencing fan activism: Understanding the power of fan activist organizations through members' narratives

    Directory of Open Access Journals (Sweden)

    Neta Kligler-Vilenchik

    2012-06-01

    Full Text Available Fan activism, forms of civic engagement and political participation growing out of experiences of fandom, is a powerful mode of mobilization, particularly for young people. Building on 40 interviews with members of two organizations representing different configurations of fan activism, this article discusses three emerging elements that are key to the experience of membership in such groups. We suggest that the strength of fan activist groups builds on successfully combining these elements: two that are common to fandom, shared media experiences and a sense of community, and one that is traditionally ascribed to volunteerism and activism, the wish to help.

  7. The creation of football slash fan fiction

    Directory of Open Access Journals (Sweden)

    Abby Waysdorf

    2015-06-01

    Full Text Available Although sports fandom and fan fiction are often thought of as different worlds, in the contemporary media environment, this is not the case. Sport is a popular source text for fan fiction, and high-level European football, one of the world's most watched sports, has long had an online fan fiction presence. In a study of the LiveJournal community Footballslash over the 2011–12 European football season, I investigate what makes football a suitable source text for fan fiction, especially slash fan fiction; what fan fiction authors are doing with football; and what this suggests about how football and fan fiction are used in the present day. I present a new understanding of football as a media text to be transformed as well as provide an in-depth look into how this type of real person slash is developed and thought of by its practitioners. In doing so, I show what happens when fandoms and fan practices converge in the 21st century.

  8. The effect of sediments on turbulent plume dynamics in a stratified fluid

    Science.gov (United States)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  9. Hillslope failure and paraglacial reworking of sediments in response to glacier retreat, Fox Valley, New Zealand.

    Science.gov (United States)

    McColl, Samuel T.; Fuller, Ian C.; Anderson, Brian; Tate, Rosie

    2017-04-01

    Climate and glacier fluctuations influence sediment supply to glacier forelands, which in turn influences down-valley hazards to infrastructure and tourism within glacier forelands. At Fox Glacier, one of New Zealand's most iconic and popular glaciers, rapid retreat has initiated a range of hillslope and valley floor responses, that present a cascade of hazards and changes that need to be carefully managed. Fox Glacier has retreated many kilometres historically, with 2.6 km of retreat since the mid-20th century, and a phase of rapid retreat of 50-340 m per year since 2009. To study the system response to past and ongoing glacial retreat at the Fox valley, morphological changes are being observed using time-lapse photography and the annual collection of high-resolution digital elevation models (DEMs) and orthophoto mosaics. The DEMs are being produced using Structure from Motion photogrammetry from UAV/RPAS and helicopter platforms, and are being used, along with manual ground surveying, to produce ground surface change models (DoDs; DEMs of Difference) and sediment budgets for the valley. Results from time-lapse photography and DoDs show that glacial retreat has initiated destabilisation and (mostly chronic) mass movement of surficial glacial sediments on the valley slopes near the glacier terminus. Alluvial fans farther down valley are actively growing, reworking glacial and landslide sediments from tributary catchments. These paraglacial sediments being delivered to the proglacial river from the glacier terminus and alluvial fans are driving aggradation of the valley floor of decimetres to metres per year and maintaining a highly dynamic braid plain. Valley floor changes also include the melting of buried dead ice, which are causing localised subsidence at the carpark and one of the alluvial fans. The unstable slopes and active debris fans, aggrading and highly active river channel, ground subsidence, add to the spectacle but also the hazards of the Fox valley

  10. 30 CFR 75.302 - Main mine fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fans. 75.302 Section 75.302 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.302 Main mine fans. Each coal mine shall be ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine...

  11. Enhanced Fan Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Krejsa, Eugene A.; Stone, James R.

    2014-01-01

    This report describes work by consultants to Diversitech Inc. for the NASA Glenn Research Center (GRC) to revise the fan noise prediction procedure based on fan noise data obtained in the 9- by 15 Foot Low-Speed Wind Tunnel at GRC. The purpose of this task is to begin development of an enhanced, analytical, more physics-based, fan noise prediction method applicable to commercial turbofan propulsion systems. The method is to be suitable for programming into a computational model for eventual incorporation into NASA's current aircraft system noise prediction computer codes. The scope of this task is in alignment with the mission of the Propulsion 21 research effort conducted by the coalition of NASA, state government, industry, and academia to develop aeropropulsion technologies. A model for fan noise prediction was developed based on measured noise levels for the R4 rotor with several outlet guide vane variations and three fan exhaust areas. The model predicts the complete fan noise spectrum, including broadband noise, tones, and for supersonic tip speeds, combination tones. Both spectra and directivity are predicted. Good agreement with data was achieved for all fan geometries. Comparisons with data from a second fan, the ADP fan, also showed good agreement.

  12. 30 CFR 57.8518 - Main and booster fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality is...

  13. Being of service: "X-Files" fans and social engagement

    Directory of Open Access Journals (Sweden)

    Bethan Jones

    2012-06-01

    Full Text Available I explore the ways in which celebrity charity and fan activism can lead to civic engagement and social change. Fan studies has moved away from the traditional view of fans as psychologically deficient and has begun to examine resistance within the cultural productions of fandom—fan fiction, for example, addressing gender imbalances in popular TV shows. However, scholarship on celebrity-focused fans still retains much of the stigmatizing language that mars early writing about fans. I examine the relationship between celebrity and fan; examine the role celebrity plays in framing fan charity; assess how fan investment affects celebrity charity work; and argue that fans are active participants in encouraging social awareness and charitable giving.

  14. 'Good Hunting': German submarine offensives and South African ...

    African Journals Online (AJOL)

    By the latter half of 1942, the High Command of the German U-boats (BdU) realised that the 'sinking results' of the North Atlantic had decreased immensely. The successes of the Allied anti-submarine operations in the North Atlantic precluded the successful employment of the German submarines in said waters.

  15. Radon reduction using sub floor fans

    International Nuclear Information System (INIS)

    Harley, N.H.; Chittaporn, P.

    1996-01-01

    The basement and second floor 222 Rn concentrations in an energy efficient home were measured hourly for 6 y using continuous monitors of our design. The home had a subslab pipe network installed during construction, and for the past 2 y a 150 cfm fan was operative venting air via ductwork inside the chimney exiting on the roof. During this measurement interval, experiments were conducted with the fan in 3 modes: (1) with the subslab fan off, (2) in the conventional direction auctioning air from beneath the slab to outside, and (3) reversed, blowing outdoor air into the network under the slab. We have a large data base to show that the indoor 222 R n concentration varies inversely with the indoor/outdoor temperature difference. In order to compare the 3 fan modes directly, we selected 50 to 90 d periods when the outdoor temperature was essentially the same. For the 3 modes, the fan off, blowing upward, and blowing downward, the basement concentration averaged 80, 38, and 34 Bq m -3 , respectively. Radon peaks or surges occur over a period of about 1 d during falling barometric pressure. With the fan blowing downward, these 222 Rn peaks tend to be smaller but only marginally so. We conclude that in this home the reduction in 222 Rn with the fan and subslab pipe network operating was essentially the same regardless of the direction of flow from the fan

  16. Submarine tectonic relief off Enshunada. Enshunadaoki no hendo chikei

    Energy Technology Data Exchange (ETDEWEB)

    Iwabuchi, Y; Sasahara, N; Hamamoto, F [Maritime Safety Agency, Tokyo (Japan); Yoshioka, S [10th Resional Maritime Safety Headquarters, Kagoshima (Japan); Kondo, T [Maritime Safety School, Kyoto (Japan)

    1991-08-15

    This paper reports on the results of investigations on the submarine relief structure off the Enshunada (a sea area which is on the south of the Tenryu River mouth and has about 50km east and west and about 100km north and south) using a bathymetric surveying ship equipped with a narrow multibeam echo sounder. The submarine relief structure of this sea area is clarified into the following topographical districts arranged north to south (each extends roughly in the northeast-southwest direction): the Enshu trough and Tenryu submarine canyon upper valley located in the center thereof, ridges represented by No.l and No.2 Tenryu knolls, the ridge and trough zone where minor ridges and troughes appear complicatedly and repeatedly, and the Nankai trough. The paper contains causes of formation of the Tenryu submarine canyon, the Ryuyo submarine canyon which is located in the northwestern slope of No.2 Tenryu knoll and has a distinct shape, oval-shaped domes scattered in the bottom of Nankai trough, etc. and also opinions on landslide topography seen in the ridge and trough zone. 13 refs., 5 figs., 1 tab.

  17. Novel Crosstalk Measurement Method for Multi-Core Fiber Fan-In/Fan-Out Devices

    DEFF Research Database (Denmark)

    Ye, Feihong; Ono, Hirotaka; Abe, Yoshiteru

    2016-01-01

    We propose a new crosstalk measurement method for multi-core fiber fan-in/fan-out devices utilizing the Fresnel reflection. Compared with the traditional method using core-to-core coupling between a multi-core fiber and a single-mode fiber, the proposed method has the advantages of high reliability...

  18. The application of isotope and geochemical techniques to reveal contributions of submarine groundwater and septic systems discharges to algal bloom in Boracay Island

    International Nuclear Information System (INIS)

    Sucgang, Raymond J.; Pabroa, Preciosa Corazon C.; Mendoza, Norman DS.; Racho, Joseph Michael D.; Bautista VII, Angel P.; Jimenez, Gloria R.; Cuyco, Danilo A.; Dawal, Carla S.; Petrache, Christina A.; Castaneda, Soledad S.; Dela Rosa, Alumanda M.

    2014-01-01

    The study shows that critical areas in Boracay island are contaminated by coliform bacteria and blue green algae (cyanobacteria). The distribution of tritium, 18 O, 15 N, and 13 C in seawater, biota and sediments in the intertidal zone, helped to identify sites with specific sewage outflows and submarine groundwater discharge, SGD, Nitrates (from, 0.0 to 2.3 parts per million, ppm) and nutrients were discovered in seawater, particularly in four identified sites in the bathing zone. Point sources of infiltrating plumes were exposed by anomalies in tritium and 18 O in sea water. Septic and canal outflows as well as land based run-offs and submarine groundwater discharge were the identified causes of nutrient enrichments in sites with eminent algal bloom. The isotope composition implied that algae acquire nutrients from septic contamination, while a number of corals assimilate inorganic fertilizer nutrients from land-based plumes and SGD. The elements identified in sediments and corals were related to the natural mineral matrix of calcareous beach zone materials; however, sporadic spikes of lead, chromium and zinc were detected in particular sites at certain depths. These element spikes proxy processes linked to anthropogenic pollution and or organic matter decomposition in the sediment-water interfaces. The practicality of applying isotope-based techniques in conjunction with other chemical methods for the tracking down of the sources of nutrient contamination in polluted systems is demonstrated by the study.

  19. Dynamic response of Hovercraft lift fans

    Science.gov (United States)

    Moran, D. D.

    1981-08-01

    Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.

  20. Acceptance test report MICON software exhaust fan control

    International Nuclear Information System (INIS)

    Keck, R.D.

    1998-01-01

    This test procedure specifies instructions for acceptance testing of software for exhaust fan control under Project ESPT (Energy Savings Performance Contract). The software controls the operation of two emergency exhaust fans when there is a power failure. This report details the results of acceptance testing for the MICON software upgrades. One of the modifications is that only one of the emergency fans will operate at all times. If the operating fan shuts off or fails, the other fan will start and the operating fan will be stopped

  1. Introduction of a Cooling-Fan Efficiency Index

    DEFF Research Database (Denmark)

    Schiavon, S.; Melikov, Arsen Krikor

    2009-01-01

    In a warm environment, air movement with elevated velocity is a well-known cooling strategy. The local air movement is typically generated by cooling fans (e.g., ceiling fan, table fans, etc.). Appearance, power input, and price are the main parameters considered today when purchasing cooling fans...... in practice the recommended elevated velocities in warm environments presented in the present standards. The standards need to be revised....

  2. Tune-Up Your Fan Systems for Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-03

    Fans are used extensively in commercial buildings and represent approximately 6% of total energy consumed by commercial buildings. The U.S. Department of Energy (DOE) estimates that fans in commercial buildings consume 158 billion kWh of electricity annually. Maintaining fan systems in proper condition provides energy savings and ensures a comfortable and healthy environment. While many fan systems have significant energy savings opportunities available through improvements in fan selection, system design, and operational practices, it is not always apparent when a fan system needs maintenance or what opportunities are available for improvements. This resource is designed for facility managers and maintenance staff to provide easy-to-implement actionable guidance on fan efficiency measures for existing ducted air systems.

  3. Investigating for failure of central ventilation fan blade

    International Nuclear Information System (INIS)

    Koo, Jae Raeyang; Ko Woo Sig; Kim, Yeon Hwan; Park, Kwang Ha

    2002-01-01

    During the operation, central ventilation fan stopped when switch 'on' condition. When central ventilation fan disassemble, ten blades of fan fractured. We have searched cause of failure. We had modeling one of the fan blades and analysis with computer programs. Thus we have find that fracture of central ventilation fan blades is alternative stress and vibration at hub. In this paper, we have described cause of failure

  4. PFP supply fan motor starters

    International Nuclear Information System (INIS)

    Keck, R.D.

    1995-01-01

    The Plutonium Finishing Plant (PFP) is currently stabilizing about 25 kg of Pu sludge; upon completion of this task, PFP will be maintained in a safe standby condition to await decision from the PFP NEPA review. It can take about 10 years to initiate and complete terminal cleanout after this; the facility will then be decommissioned and decontaminated. The 234-5Z ventilation system must continue to operate until terminal cleanout. Part of the ventilation system is the seismic fan shutdown system which shuts down the ventilation supply fans in case of strong earthquake. This document presents criteria for installing solid state, reduced voltage motor starters and isolation contactors for the 8 main ventilation supply fans. The isolation contactors will shutdown the supply fans in event of earthquake

  5. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change

    Science.gov (United States)

    Hunter, S. J.; Goldobin, D. S.; Haywood, A. M.; Ridgwell, A.; Rees, J. G.

    2013-04-01

    The global submarine inventory of methane hydrate is thought to be considerable. The stability of marine hydrates is sensitive to changes in temperature and pressure and once destabilised, hydrates release methane into sediments and ocean and potentially into the atmosphere, creating a positive feedback with climate change. Here we present results from a multi-model study investigating how the methane hydrate inventory dynamically responds to different scenarios of future climate and sea level change. The results indicate that a warming-induced reduction is dominant even when assuming rather extreme rates of sea level rise (up to 20 mm yr-1) under moderate warming scenarios (RCP 4.5). Over the next century modelled hydrate dissociation is focussed in the top ˜100m of Arctic and Subarctic sediments beneath business-as-usual scenario (RCP 8.5), upper estimates of resulting global sea-floor methane fluxes could exceed estimates of natural global fluxes by 2100 (>30-50TgCH4yr-1), although subsequent oxidation in the water column could reduce peak atmospheric release rates to 0.75-1.4 Tg CH4 yr-1.

  6. Computer fan performance enhancement via acoustic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, David, E-mail: davidg@technion.ac.il [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel); Avraham, Tzahi; Golan, Maayan [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Computer fan effectiveness was increased by introducing acoustic perturbations. Black-Right-Pointing-Pointer Acoustic perturbations controlled blade boundary layer separation. Black-Right-Pointing-Pointer Optimum frequencies corresponded with airfoils studies. Black-Right-Pointing-Pointer Exploitation of flow instabilities was responsible for performance improvements. Black-Right-Pointing-Pointer Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin-Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.

  7. Computer fan performance enhancement via acoustic perturbations

    International Nuclear Information System (INIS)

    Greenblatt, David; Avraham, Tzahi; Golan, Maayan

    2012-01-01

    Highlights: ► Computer fan effectiveness was increased by introducing acoustic perturbations. ► Acoustic perturbations controlled blade boundary layer separation. ► Optimum frequencies corresponded with airfoils studies. ► Exploitation of flow instabilities was responsible for performance improvements. ► Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin–Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.

  8. Acoustic Power Transmission Through a Ducted Fan

    Science.gov (United States)

    Envia, Ed

    2016-01-01

    For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.

  9. Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea

    Science.gov (United States)

    Durán, Ruth; Canals, Miquel; Sanz, José Luis; Lastras, Galderic; Amblas, David; Micallef, Aaron

    2014-01-01

    The northern Catalan continental shelf, in the northwestern Mediterranean Sea, extends along 200 km from the Cap de Creus submarine canyon to the Llobregat Delta, in the vicinity of the city of Barcelona. In this paper we present the results of a systematic investigation of this area by means of very high-resolution multibeam bathymetry to fully assess its morphological variability. The causative factors and processes determining such variability are subsequently interpreted. The shelf is divided in three segments by two prominent submarine canyons: the northernmost Roses Shelf is separated from the intermediate La Planassa Shelf by the La Fonera Canyon, while the boundary between the La Planassa Shelf and the southernmost Barcelona Shelf is marked by the Blanes Canyon. These two canyons are deeply incised in the continental margin, with their heads located at only 0.8 and 5 km from the shore, respectively. The seafloor character reflects the influence of external controlling factors on the geomorphology and sediment dynamics of the northern continental shelf of Catalonia. These factors are the geological setting, the volume and nature of sediment input, and the type and characteristics of processes leading to sediment redistribution, such as dense shelf water cascading (DSWC) and eastern storms. The interaction of all these factors determines sediment dynamics and allows subdividing the northern Catalan continental shelf into three segments: the erosional-depositional Roses Shelf to the north, the non-depositional La Planassa Shelf in the middle, and the depositional Barcelona Shelf to the south. Erosional features off the Cap de Creus Peninsula and an along-shelf subdued channel in the outer shelf illustrate prevailing sediment dynamics in the Roses segment, which is dominated by erosional processes, local sediment accumulations and the southward bypass of sediment. The rocky character of the seafloor immediately north of the Blanes Canyon head demonstrates that

  10. Glacial and tectonic influence on terrestrial organic carbon delivery to high latitude deep marine systems: IODP Site U1417, Surveyor Fan, Gulf of Alaska

    Science.gov (United States)

    Childress, L. B.; Ridgway, K. D.

    2014-12-01

    Glacial and tectonic processes on active margins are intrinsically coupled to the transport of sediment and associated organic carbon (OC). Glaciation/deglaciation and the formation of ice sheets can alter the quantity and composition of OC delivered to the marine environment. Over geologic time scales (>1 Ma), exhumation and mass wasting of sedimentary rock from uplifted accretionary wedges inject recycled OC (e.g. kerogen), along with modern OC into the marine environment. The sedimentary record of glacial and tectonic processes along the southern Alaska margin is particularly well preserved at Integrated Ocean Drilling Program (IODP) Site U1417. Lithofacies of Site U1417 can be divided into 3 sedimentary packages that we interpret as linked to the onset of tidewater glaciation along, and tectonic convergence of the Yakutat Terrane with, the continental margin of northwestern Canada and southern Alaska. Based on previous studies linking the development of the Cordilleran Ice Sheet and the movement of the Yakutat Terrane to the development of the Surveyor Fan System, we hypothesize biogeochemical variations in the deposited sediments as a result of changing provenance. Preservation of terrestrial OC that has been documented in sediments of the Alaskan continental shelf margin and sediment routing through the deep-sea Surveyor Channel from the Pleistocene to modern time implies a long-term conduit for this OC to reach the distal portion of the Surveyor Fan system. To correlate marine deposits with terrestrial formations, bulk geochemical and detailed biomarker analyses are used to delineate source material. Preliminary bulk OC content and stable carbon isotope analyses of the Yakataga, Poul Creek, and Kultheith Fms. reveal notable differences. Detailed biomarker analysis by pyrolysis-gas chromatograph-mass spectrometry has revealed further differences between the three primary formations. Using the biogeochemical fingerprints of the Yakataga, Poul Creek, and coal

  11. Introduction to the special issue on submarine geohazard records and potential seafloor instability

    Directory of Open Access Journals (Sweden)

    Song-Chuen Chen Jia-Jyun Dong

    2018-01-01

    Full Text Available Submarine landslides frequently occur in passive continental margins or active margins (Hampton et al. 1996; Wynn et al. 2000; Mienert et al. 2002; Korup et al. 2007; Twichell et al. 2009; Cukur et al. 2016. Submarine landslides have been studied extensively not only for scientific research but also for submarine geohazards. Submarine landslides could jeopardize marine infrastructures, such as offshore drilling platforms or submarine telecommunication cables, and could even trigger disastrous tsunamis (Bondevik et al. 2005; Harbitz et al. 2006; Hornbach et al. 2007, 2008; Hsu et al. 2008; Su et al. 2012; Tappin et al. 2014; Li et al. 2015. For instance, one disastrous tsunami hitting the coastal area of southwestern Taiwan in 1781 or 1782 was reported (Chen 1830; Hsu 1983; the tsunami event was probably generated by submarine landslides in the offshore area of southwestern Taiwan (Li et al. 2015. Moreover, several submarine landslides triggered by the 2006 Pingtung earthquake have induced turbidity currents off southwest Taiwan and destroyed about 14 submarine telecommunication cables off SW Taiwan (Hsu et al. 2008. The area of southwest Taiwan currently has a dense population (more than 3 million people in total, one deep-water Kaohsiung Port, several tanks of liquefied natural gas and a nuclear power plant on the coast (Fig. 1. Numerous submarine telecommunication cables exist off SW Taiwan. If a considerable tsunami event would hit again the costal area of SW Taiwan, the damage could very serious. Likewise, there are two nuclear power plants on the coast of northern Taiwan (Fig. 2, and the population in northern Taiwan has more than 10 million people. Submarine telecommunication cables also exist off northern Taiwan. In any case, it is important to understand the status of seafloor stability in the offshore areas of SW and NE Taiwan. For that, this special issue of submarine geohazard records and potential seafloor instability is aimed to

  12. Operational Planning for Theater Anti-Submarine Warfare

    Science.gov (United States)

    2017-03-01

    or P-8 as a supplementary platform to a ship or sub and never assigned to search alone . This thesis allows the MPRA to search alone and has 10 a...Marina, I will truly miss sitting in class with you guys wondering what a basis is. Finally, to my dog, Dougie: thank you for not eating my homework...can have trouble searching and tracking one submarine, let alone multiple submarines in different regions or mission areas. B. LITERATURE REVIEW

  13. Improving the energy efficiency of mine fan assemblages

    International Nuclear Information System (INIS)

    De Souza, Euler

    2015-01-01

    Energy associated with ventilating an underground operation comprises a significant portion of a mine operation's base energy demand and is consequently responsible for a large percentage of the total operating costs. Ventilation systems may account from 25 to 40% of the total energy costs and 40–50% of the energy consumption of a mine operation. Fans are the most important mechanical devices used to ventilate underground mines and the total fan power installed in a single mine operation can easily exceed 10,000 kW. Investigations of a number of mine main fan installations have determined their assemblage to be, in general, very energy inefficient. The author has found that 40–80% of the energy consumed by a main fan is used to overcome the resistance of fan assemblage components. This paper presents how engineering design principles can be applied to improve the performance and efficiency of fan installations, resulting in substantial reductions in power consumption, operating cost and greenhouse gas emissions. A detailed case study is presented to demonstrate that, by designing fan assemblages using proper engineering concepts of fluid physics and industrial ventilation design, main fan systems will operate at efficiencies well above 80–90% (compared to common operating efficiencies of between 20 and 65%), resulting in a drastic reduction in a mine's overall costs and base electrical and energy loads. - Highlights: • Increases in fan assemblage efficiencies with minimum capital investment. • Improved designs for substantial fan power and operating cost savings. • General solutions and tactics for improving existing main fan installations. • Case study presented to demonstrate proper design of fan assemblages.

  14. Fracture propagation in gas pipelines - relevance to submarine lines

    Energy Technology Data Exchange (ETDEWEB)

    Fearnehough, G D [British Gas Corp., Newcastle upon Tyne. Engineering Research Station

    1976-09-01

    This paper reviews the factors which control fracture propagation in pipes and suggests how they are influenced by submarine environments. If fracture arrest capability is required then these factors should be considered in terms of the design philosophy and the maximum tolerable length of fracture which can be repaired. The paper shows that brittle fracture characteristics of submarine pipelines are probably similar to land based lines and fracture arrest can only be guaranteed by appropriate material toughness specification. Resistance to ductile fracture propagation in submarine lines is enhanced by lower design stresses, thicker pipe, concrete coating and the effect of hydrostatic head on gas dynamics. However, additional factors due to submarine design can be deleterious viz: uncertainty about backfill integrity and a tendency of thicker steels to low fracture resistance arising from 'separation' formation. Attention is drawn to problems which may arise with transportation of gases rich in hydrocarbons and the use of mechanical methods of fracture arrest.

  15. Anatomy of La Jolla submarine canyon system; offshore southern California

    Science.gov (United States)

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  16. Sediment storage and transport in Pancho Rico Valley during and after the Pleistocene-Holocene transition, Coast Ranges of central California (Monterey County)

    Science.gov (United States)

    Garcia, A.F.; Mahan, S.A.

    2009-01-01

    Factors influencing sediment transport and storage within the 156??6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a 'quaternary terrace a (Qta)' PRC terrace/PRC-tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene-Holocene transition caused intense debris-flow erosion of PRC- tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary-valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene-Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene-Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene-Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream-capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley-Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly

  17. 30 CFR 75.331 - Auxiliary fans and tubing.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be— (1...

  18. 30 CFR 57.8519 - Underground main fan controls.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the surface...

  19. Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes.

    Science.gov (United States)

    Hoshino, Tatsuhiko; Toki, Tomohiro; Ijiri, Akira; Morono, Yuki; Machiyama, Hideaki; Ashi, Juichiro; Okamura, Kei; Inagaki, Fumio

    2017-01-01

    Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth's surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria , heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 10 4 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as "deep-biosphere seeds" into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.

  20. Ferromanganese micronodules from Bengal Fan

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Gujar, A.R.; Rao, Ch.M.

    The occurrence of ferromanganese micronodules, hitherto unreported from any fan-valley system of the world, has been recorded from over 0.22 million km sup(2) area located in the middle fan region of the Bay of Bengal. Their abundance is higher...

  1. The last glacial cycle documented on the Lower Bengal Fan - chronological and paleoclimate implications

    Science.gov (United States)

    Weber, M. E.; Dekens, P.; Reilly, B.; Lantzsch, H.; Selkin, P. A.; Das, S. K.; Williams, T.; Martos, Y. M.; Adhikari, R. R.; Gyawali, B. R.; Jia, G.; Fox, L. R.; Ge, J.; Manoj, M. C.; Savian, J. F.; Meynadier, L.; Spiess, V.; France-Lanord, C.; Klaus, A.

    2016-12-01

    IODP Expedition 354 set out in February to March 2015 to drill seven sites along an east west oriented core transect of 320 km length at 8°N in the Bengal Fan (France-Lanord et al., 2015). Sediments show complex intercalation of turbiditic and hemipelagic deposits, documenting the interaction of fan evolution and paleoceanographic history. Hemipelagic sequences represent a several meter thick top layer of Late Quaternary sediment. Deposits are either rich in biogenic opal/clay or in carbonate. We studied physical, optical, geochemical, grain-size, and stable isotopic properties of this top layer to establish a time frame, estimate sedimentary properties, and assess the development of the region during the last glacial cycle. For this purpose, we sampled Site U1452C-1H continuously for the uppermost 480 cm in 2-cm increments. Preliminary results indicate the Toba Ash 1 (74 ka) is a distinct time marker in most physical property data sets. Records of wet-bulk density as well as color reflectance b* (the red-green component) and L* (the lightness) show a dominant precession cyclicity. Hence, we are able to provide an insolation-tuned chronology for the last 200 ka (MIS1 - 7). These records agree well with d18O records retrieved from Chinese caves. An independent age model is derived from records of relative paleointensity (RPI), including the assessment of the Laschamp Event ( 40 ka), and on RPI tuning to global templates. We will compare both chronologies and evaluate their chronological and paleoclimatic implications. We will also present preliminary grain-size and paleoceanographic proxy data (sea-surface temperature, sea-surface salinity, and Mg/Ca) as well as color endmember modeling to reconstruct ice volume, marine biological productivity, nutrient supply, and deep-water circulation. The sedimentologic, oceanographic and climatic conditions are linked to changes in monsoonal strength and terrestrial input, which will also be studied using sedimentary proxies

  2. School spirits: alcohol and collegiate sports fans.

    Science.gov (United States)

    Nelson, Toben F; Wechsler, Henry

    2003-01-01

    While studies have addressed alcohol use and related problems among college athletes, little is known about the drinking patterns of non-athletes who are sports fans. This study examines the relationship between alcohol use and interest in collegiate sports on two levels. First, do sports fans in college binge drink more and exhibit more negative alcohol-related outcomes than other students? Second, do colleges with large numbers of sports fans have higher rates of heavy drinking and accompanying secondhand effects affecting other students? The study analyzed the responses of a nationally representative sample of students who completed questionnaires in the spring of 1999 regarding their extracurricular activities and substance use. The responses of 3445 student sports fans were compared to those of 8405 students who were not sports fans. More sports fans drank alcohol, engaged in binge drinking, had a heavy drinking style and reported alcohol-related problems than nonfans. The percentage of sports fans at a school was associated with binge drinking rates and the secondhand effects. The implications for those working with college athletics and for alcohol prevention personnel are discussed. Copyright 2002 Elsevier Science Ltd.

  3. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan

    Science.gov (United States)

    Baudin, François; Martinez, Philippe; Dennielou, Bernard; Charlier, Karine; Marsset, Tania; Droz, Laurence; Rabouille, Christophe

    2017-08-01

    Geochemical data (total organic carbon-TOC content, δ13Corg, C:N, Rock-Eval analyses) were obtained on 150 core tops from the Angola basin, with a special focus on the Congo deep-sea fan. Combined with the previously published data, the resulting dataset (322 stations) shows a good spatial and bathymetric representativeness. TOC content and δ13Corg maps of the Angola basin were generated using this enhanced dataset. The main difference in our map with previously published ones is the high terrestrial organic matter content observed downslope along the active turbidite channel of the Congo deep-sea fan till the distal lobe complex near 5000 m of water-depth. Interpretation of downslope trends in TOC content and organic matter composition indicates that lateral particle transport by turbidity currents is the primary mechanism controlling supply and burial of organic matter in the bathypelagic depths.

  4. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  5. Facies-controlled reservoir properties in ramp-fan and slope-apron deposits, Miocene Puente Formation, Los Angeles basin

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, K.T.; Geving, R.L.; Suchecki, R.K.

    1989-03-01

    The Miocene Puente Formation in outcrops of the eastern Los Angeles basin is interpreted as a succession of slope-apron and ramp-fan deposits that accumulated in a prism-rise wedge. The principal depositional components of this dominantly base-of-slope and ramp system are ramp-fan channels and lobes, and slope-channel and slope-apron channel/interchannel deposits. Facies-specific textural, compositional, and diagenetic attributes observed in thin section assist in the classification of depositional facies. Specifically, occurrence of carbonate cement, clay mineralogy, and abundance of organic material vary as a function of component facies architecture of the depositional system. Slope and ramp-fan channel-fill sandstones are characterized by pervasive carbonate cements, including poikilotopic and fine-grained calcite, fine-grained and baroque dolomite, and minor siderite. Diagenetic clays predate carbonate cements, and dolomite predates coarser, void-filling calcite. Ramp-fan lobe and interchannel deposits are carbonate free but are rich in detrital clay and organic matter. Diagenetic clays include mixed-layer illite/smectite and kaolinite. Sediments deposited in slope-apron channel fill are virtually cement free except for small amounts of authigenic illite/smectite. Slope-apron interchannel deposits are characterized by high content of organic matter and clay-rich matrix. Potential reservoir characteristics, such as grain size, sorting, and abundance of depositional clay matrix, are related to the primary sedimentary properties of depositional architectural components in the ramp-fan and slope-apron system. Additional diagenetic modifications, without consideration of compaction, were controlled by precipitation reactions associated with fluid flow along pathways related to the depositional architectural framework.

  6. Major turbidity flows in the Western Indus Fan between 290 and 360 kyr

    Digital Repository Service at National Institute of Oceanography (India)

    Govil, P.; Naidu, P.D.; Radhika, T.K.

    controlled by the surface - water biological production, rate of dissolution du r- ing its journey through the water column as well as on the sea floor and dilution by the non - carbonate fraction and terr i- genous matter 7 . The ODP Site 720A... sediment a- tion of a few centimetres thickness within the main feeder channel and Indus Canyon. This kind o f turbidite sedime n- tation was noticed on the eastern part of the Indus Fan du r- ing the Last Glacial Maximum when the sea level was low 10...

  7. Bydrage ta de kennis fan it libben, de persoan en it wurk fan Dr. Eeltsje Halbersma 1797-1858

    NARCIS (Netherlands)

    1946-01-01

    It doel fan dizze dissertaesje is yn 'e earste pleats nij materiael to bringen oer Dr. Eeltsje. De wichtichste boarnen foar syn libben en syn wurk binne syn brieven oan Ds, Joast. Oant nou ta wie fan dy brieven mar in lyts bytsje bikend wurden, Dêrneist binne fansels ek de brieven fan Ds. Joast en

  8. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  9. Meta-Analysis of Data from the Submarine Ventilation Doctrine Test Program

    National Research Council Canada - National Science Library

    Hoover, J

    1998-01-01

    .... The Submarine Ventilation Doctrine Test Program was developed to address submarine-specific issues regarding the use of ventilation systems to control smoke and heat movement, maintain habitability...

  10. Truncated Groebner fans and lattice ideals

    OpenAIRE

    Lauritzen, Niels

    2005-01-01

    We outline a generalization of the Groebner fan of a homogeneous ideal with maximal cells parametrizing truncated Groebner bases. This "truncated" Groebner fan is usually much smaller than the full Groebner fan and offers the natural framework for conversion between truncated Groebner bases. The generic Groebner walk generalizes naturally to this setting by using the Buchberger algorithm with truncation on facets. We specialize to the setting of lattice ideals. Here facets along the generic w...

  11. Main results of the 2012 joint Norwegian-Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya.

    Science.gov (United States)

    Gwynn, Justin P; Nikitin, Aleksander; Shershakov, Viacheslav; Heldal, Hilde Elise; Lind, Bjørn; Teien, Hans-Christian; Lind, Ole Christian; Sidhu, Rajdeep Singh; Bakke, Gunnar; Kazennov, Alexey; Grishin, Denis; Fedorova, Anastasia; Blinova, Oxana; Sværen, Ingrid; Lee Liebig, Penny; Salbu, Brit; Wendell, Cato Christian; Strålberg, Elisabeth; Valetova, Nailja; Petrenko, Galina; Katrich, Ivan; Logoyda, Igor; Osvath, Iolanda; Levy, Isabelle; Bartocci, Jean; Pham, Mai Khanh; Sam, Adam; Nies, Hartmut; Rudjord, Anne Liv

    2016-01-01

    This paper reports the main results of the 2012 joint Norwegian-Russian expedition to investigate the radioecological situation of the Stepovogo Fjord on the eastern coast of Novaya Zemlya, where the nuclear submarine K-27 and solid radioactive waste was dumped. Based on in situ gamma measurements and the analysis of seawater and sediment samples taken around the submarine, there was no indication of any leakage from the reactor units of K-27. With regard to the radioecological status of Stepovogo Fjord, activity concentrations of all radionuclides in seawater, sediment and biota in 2012 were in general lower than reported from the previous investigations in the 1990s. However in 2012, the activity concentrations of (137)Cs and, to a lesser extent, those of (90)Sr remained elevated in bottom water from the inner part of Stepovogo Fjord compared with surface water and the outer part of Stepovogo Fjord. Deviations from expected (238)Pu/(239,240)Pu activity ratios and (240)Pu/(239)Pu atom ratios in some sediment samples from the inner part of Stepovogo Fjord observed in this study and earlier studies may indicate the possibility of leakages from dumped waste from different nuclear sources. Although the current environmental levels of radionuclides in Stepovogo Fjord are not of immediate cause for concern, further monitoring of the situation is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Displaying Uncertainty: A Comparison Between Submarine Subject Matter Experts

    Science.gov (United States)

    2007-03-01

    known as the “submarine capital of the world” and is the home for many of the schools relating to the submarine service. The administering officer for...and Woods, D. D. (1988). Aiding Human Performance: I. Cognitive Analysis, Le Travail Humain 51(1), 39-64. Roth, E. M., Patterson, E. S., and Mumaw

  13. Influence of the submarine orography on the distribution of long-lived radionuclides in the Palomares marine ecosystem

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1997-01-01

    To trace the consequences of the Palomares accident which occurred in southeastern Spain in 1966, a number of studies were performed upon sediments collected in the adjacent marine ecosystem in 1985. The research revealed a land-to-sea transport of part of the transuranics residual contamination still remaining in the affected area after the clean-up operations. The transfer routes to the Mediterranean sea (via river flooding and airborne relocation) were elucidated through the reconstruction of the sediment cores' depositional history. Present investigations focus on the distribution of Pu, Am and Cs along the complex system of submarine canyons shaping the orography of the Palomares marine environment. Marine samples were collected in 1991 to evaluate the possible removal of the radionuclides deposited in the continental shelf towards the deep sea, favoured by the strong turbidity currents and/or the topography of the canyon itself. (Author)

  14. History of Military Psychology at the U. S. Naval Submarine Medical Research Laboratory

    Science.gov (United States)

    1979-10-23

    the first nuclear submarine, were gigantic increases in the environmental demands imposed upon the submarine crewmembers. Some of these changes had to...urgency for an empirical determination of the maximum duration a submarine could remain submerged before debilitative symptoms appeared in significant

  15. 30 CFR 57.8529 - Auxiliary fan systems

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fan systems 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems When auxiliary fan systems are used, such systems shall...

  16. 30 CFR 57.8525 - Main fan maintenance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan maintenance. 57.8525 Section 57.8525 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8525 Main fan maintenance. Main fans shall be maintained according to either the...

  17. Large bedrock slope failures in a British Columbia, Canada fjord: first documented submarine sackungen

    Science.gov (United States)

    Conway, Kim W.; Vaughn Barrie, J.

    2018-01-01

    Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.

  18. Turbofan gas turbine engine with variable fan outlet guide vanes

    Science.gov (United States)

    Wood, Peter John (Inventor); LaChapelle, Donald George (Inventor); Grant, Carl (Inventor); Zenon, Ruby Lasandra (Inventor); Mielke, Mark Joseph (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  19. Online Fan Fiction and Critical Media Literacy

    Science.gov (United States)

    Black, Rebecca W.

    2010-01-01

    This article explores English-language-learning (ELL) youths' engagement with popular media through composing and publicly posting stories in an online fan fiction writing space. Fan fiction is a genre that lends itself to critical engagement with media texts as fans repurpose popular media to design their own narratives. Analyses describe how…

  20. Digital single-channel seismic-reflection data from western Santa Monica basin

    Science.gov (United States)

    Normark, William R.; Piper, David J.W.; Sliter, Ray W.; Triezenberg, Peter; Gutmacher, Christina E.

    2006-01-01

    During a collaborative project in 1992, Geological Survey of Canada and United States Geological Survey scientists obtained about 850 line-km of high-quality single-channel boomer and sleeve-gun seismic-reflection profiles across Hueneme, Mugu and Dume submarine fans, Santa Monica Basin, off southern California. The goals of this work were to better understand the processes that lead to the formation of sandy submarine fans and the role of sea-level changes in controlling fan development. This report includes a trackline map of the area surveyed, as well as images of the sleeve-gun profiles and the opportunity to download both images and digital data files (SEG-Y) of all the sleeve-gun profiles.

  1. Motivational variables that influence fan attendance in domestic ...

    African Journals Online (AJOL)

    A convenience sample of 180 fans was surveyed from a Gauteng based team. A factor analytical approach revealed seven dimensions of fan motivation, namely, ... marketing communication strategies in various aspects of fan attendance.

  2. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    Science.gov (United States)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  3. Situation awareness measures for simulated submarine track management.

    Science.gov (United States)

    Loft, Shayne; Bowden, Vanessa; Braithwaite, Janelle; Morrell, Daniel B; Huf, Samuel; Durso, Francis T

    2015-03-01

    The aim of this study was to examine whether the Situation Present Assessment Method (SPAM) and the Situation Awareness Global Assessment Technique (SAGAT) predict incremental variance in performance on a simulated submarine track management task and to measure the potential disruptive effect of these situation awareness (SA) measures. Submarine track managers use various displays to localize and track contacts detected by own-ship sensors. The measurement of SA is crucial for designing effective submarine display interfaces and training programs. Participants monitored a tactical display and sonar bearing-history display to track the cumulative behaviors of contacts in relationship to own-ship position and landmarks. SPAM (or SAGAT) and the Air Traffic Workload Input Technique (ATWIT) were administered during each scenario, and the NASA Task Load Index (NASA-TLX) and Situation Awareness Rating Technique were administered postscenario. SPAM and SAGAT predicted variance in performance after controlling for subjective measures of SA and workload, and SA for past information was a stronger predictor than SA for current/future information. The NASA-TLX predicted performance on some tasks. Only SAGAT predicted variance in performance on all three tasks but marginally increased subjective workload. SPAM, SAGAT, and the NASA-TLX can predict unique variance in submarine track management performance. SAGAT marginally increased subjective workload, but this increase did not lead to any performance decrement. Defense researchers have identified SPAM as an alternative to SAGAT because it would not require field exercises involving submarines to be paused. SPAM was not disruptive, but it is potentially problematic that SPAM did not predict variance in all three performance tasks. © 2014, Human Factors and Ergonomics Society.

  4. Risk factors for dermatitis in submariners during a submerged patrol: an observational cohort study.

    Science.gov (United States)

    Flaxman, Amy; Allen, Elizabeth; Lindemann, Claudia; Yamaguchi, Yuko; O'Shea, Matthew K; Fallowfield, Joanne L; Lindsay, Michael; Gunner, Frances; Knox, Kyle; Wyllie, David H

    2016-06-02

    The aim of this pilot study was to determine risk factors, including Staphylococcus aureus nasal carriage, for dermatitis in submariners during a submarine patrol. 36 submariners undertaking a submerged 6-week patrol participated in the study. Severity of dermatitis and its impact was assessed using visual analogue scales and questionnaires at baseline and weekly throughout the patrol. S. aureus carriage levels in submariners were determined by nasal swabbing at baseline and shortly before disembarking the submarine. Occurrence of any skin or soft tissue infections (SSTI) were reported to the medical officer and swabs of the area were taken for subsequent analysis. S. aureus carriers were significantly more likely than non-carriers to have previously received treatment for a cutaneous abscess (39% vs 5%, OR=13 (95% CI 1.3 to 130)) with a trend to being submariners longer (p=0.051). Skin scores at baseline and on patrol were not significantly associated with carriage status. Higher dermatitis scores were observed in those who had been submariners longer (p=0.045). Smoking and allergies were not found to be linked to carriage status or skin health score in this cohort. This small pilot study investigates S. aureus carriage status and skin health in submariners. Length of submarine service but not S. aureus carriage was identified as a risk factor for worsening skin health in this small cohort during a 6-week patrol. This does not support S. aureus decolonisation to improve skin health in this population. Further investigation into causes of dermatitis in submariners is required. This data supports a better understanding of the potential impact of exposure to environmental factors that could affect skin health in submariners. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Fan Cart: The Next Generation

    Science.gov (United States)

    Lamore, Brian

    2016-01-01

    For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. "The Physics Teacher" has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested…

  6. Organic matter and the geotechnical properties of submarine sediments

    Science.gov (United States)

    Keller, George H.

    1982-09-01

    Continental slope deposits off Peru and Oregon where coastal upwelling is a pronounced oceanographic process possess significant concentrations of organic carbon. Geotechnical properties are altered to varying degrees by the organic matter. Organic matter absorbs water and causes clay-size particles to aggregate forming an open fabric. This causes unusually high water contents and plasticity and exceptionally low wet bulk densities. Some of these deposits show notable increases in shear strength, sensitivity and degree of apparent overconsolidation. Owing to the unique geotechnical properties, sediment stability characteristics are considered to be poor in situations of excess pore pressures. Failure appears to take the form of a fluidized flow somewhat similar to the quick clays of Scandinavia.

  7. Fan edits and the legacy of The Phantom Edit

    Directory of Open Access Journals (Sweden)

    Joshua Wille

    2014-09-01

    Full Text Available A fan edit can generally be defined as an alternative version of a film or television text created by a fan. It offers a different viewing experience, much as a song remix offers a different listening experience. The contemporary wave of fan edits has emerged during the remix zeitgeist of digital media and at a time when digital video editing technology has become more affordable and popular. The increasing number of alternative versions of films and the works of revisionist Hollywood filmmakers such as George Lucas have contributed to a greater public understanding of cinema as a fluid medium instead of one that exists in a fixed form. The Phantom Edit (2000, a seminal fan edit based on Lucas's Star Wars Episode I: The Phantom Menace (1999, inspired new ranks of fan editors. However, critics have misunderstood fan edits as merely the work of disgruntled fans. In order to provide a critical and historical basis for studies in fan editing as a creative practice, I examine previous interpretations of fan edits in the context of relevant contemporary works, and I use an annotated chronology of The Phantom Edit to trace its influence on subsequent fan editing communities and uncover their relationship with intellectual property disputes.

  8. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  9. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  10. An Air Quality Assessment Onboard an Oberon Class Submarine: HMCS Okanagan

    National Research Council Canada - National Science Library

    Severs, Y

    2000-01-01

    ... submarine to determine if the atmosphere complied with Air Purification Standard BR 1326. The objective of the study was to obtain information to assist in developing plans for future submarine air quality management...

  11. FANS-3D Users Guide (ESTEP Project ER 201031)

    Science.gov (United States)

    2016-08-01

    TECHNICAL DOCUMENT 3293 August 2016 FANS -3D User’s Guide (ESTEP Project ER-201031) Pei-Fang Wang SSC Pacific Hamn-Ching...1.1 THEORY AND NUMERICAL ALGORITHM OF FANS CODE ............................................. 1 2. FANS -3D SOFTWARE DOCUMENTATION AND EXECUTION...5 3. FANS -3D CODE PARALLELIZATION

  12. An air quality assessment onboard an Oberon class submarine : HMCS Okanagan

    International Nuclear Information System (INIS)

    Severs, Y.D.; Sabiston, B.H.

    2000-09-01

    The Defence and Civil Institute of Environmental Medicine (DCIEM) re-examined the air quality on an Oberon class submarine, the HMCS Okanagan, to determine if the atmosphere complied with Air Purification Standard BR 1326. The main objective of the assessment was to help in the development of future submarine air quality management. The information obtained from the Oberon class submarine could be readily applied to the Victoria class submarines. The assessment involved a trial aboard an Oberon under patrol conditions. The functional and detection capabilities of analytical air monitoring instruments were assessed for a 24-hour period to obtain data regarding the contaminants onboard the submarine. A profile of carbon dioxide accumulation and oxygen consumption was determined. This was followed by an assessment of the effectiveness of air purification such as carbon dioxide scrubbing, oxygen generation and snorting. Carbon monoxide was also monitored and carboxyhemoglobin was measured in both smokers and non-smokers. In order to determine if the sanitary or electrical systems, or engine exhaust posed any danger, ammonia, ozone and nitrous compounds were also measured. In addition, hydrogen, arsine and stibene were monitored to determine any possible danger from charging batteries. The health risks associated with aerosolized particles from cooking, smoking and exhaust gases were also measured. Results showed that all contaminants were within allowable limits. However, the study also confirmed that air purification measures on diesel submarines are minimal and poorly placed and that there is a lack of exhaust ventilation. Poor air exchange was worsened by compartmentalization and blackout curtains. Several recommendations were proposed to improve the management of air quality in Victoria class submarines. 18 refs., 2 tabs., 5 figs

  13. An air quality assessment onboard an Oberon class submarine : HMCS Okanagan

    Energy Technology Data Exchange (ETDEWEB)

    Severs, Y.D.; Sabiston, B.H.

    2000-09-01

    The Defence and Civil Institute of Environmental Medicine (DCIEM) re-examined the air quality on an Oberon class submarine, the HMCS Okanagan, to determine if the atmosphere complied with Air Purification Standard BR 1326. The main objective of the assessment was to help in the development of future submarine air quality management. The information obtained from the Oberon class submarine could be readily applied to the Victoria class submarines. The assessment involved a trial aboard an Oberon under patrol conditions. The functional and detection capabilities of analytical air monitoring instruments were assessed for a 24-hour period to obtain data regarding the contaminants onboard the submarine. A profile of carbon dioxide accumulation and oxygen consumption was determined. This was followed by an assessment of the effectiveness of air purification such as carbon dioxide scrubbing, oxygen generation and snorting. Carbon monoxide was also monitored and carboxyhemoglobin was measured in both smokers and non-smokers. In order to determine if the sanitary or electrical systems, or engine exhaust posed any danger, ammonia, ozone and nitrous compounds were also measured. In addition, hydrogen, arsine and stibene were monitored to determine any possible danger from charging batteries. The health risks associated with aerosolized particles from cooking, smoking and exhaust gases were also measured. Results showed that all contaminants were within allowable limits. However, the study also confirmed that air purification measures on diesel submarines are minimal and poorly placed and that there is a lack of exhaust ventilation. Poor air exchange was worsened by compartmentalization and blackout curtains. Several recommendations were proposed to improve the management of air quality in Victoria class submarines. 18 refs., 2 tabs., 5 figs.

  14. Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments

    Science.gov (United States)

    Abessa, D.M.S.; Carr, R.S.; Rachid, B.R.F.; Sousa, E.C.P.M.; Hortelani, M.A.; Sarkis, J.E.

    2005-01-01

    The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the “Threshold Effect Level” values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted.

  15. Welded slump-graded sand couplets: evidence for slide generated turbidity currents

    Science.gov (United States)

    Stanley, Daniel Jean

    1982-09-01

    Some massive channelized strata preserved in the rock record are characterized by a lower slump member which evolves upward to a turbidite. This merging is indicative of probable generation of sediment gravity flows from submarine sliding. Conditions essential for deposition of such sequences are short transport distance between point of failure and depositional site, and an environment likely to retain both facies. Fan valleys are a likely setting for welded couplets: flowing sand, initiated by the sliding event, comes to rest at nearly the same time and position as the slump mass deposited near the base of the valley wall and in the axis proper.

  16. Exploration of submarine wake and powering performance using CFD method

    International Nuclear Information System (INIS)

    Huizhi, Y.; Hongcui, S.; Nan, Z.; Renyou, Y.; Liangmei, Y.

    2005-01-01

    In response to the needs of better design and less time, Computational Fluid Dynamic(CFD) methods have become an impartible part in the ship design, especially in the earlier design phases. In this paper FLUENT software was used to predict the wake character and powering performance of submarine at model scale. By an effective combination of the block topology, grid, turbulence model and validation, the simulation scheme was developed and applied to the predictions of multiple designs and optimizations of the earlier submarine design iterations. The incompressible RANS equations with different turbulence models were solved. To handle the block interface between the propeller and submarine stern, sliding girds in multiple blocks were employed, unstructural grids were used in the block around the propeller. Submarine with/without stator and/or propeller were studied. The flow feature, forces and powering performance at various conditions were calculated. The results were compared with experimental data, and a good agreement was obtained. (author)

  17. Procedure for Balancing an Air Distribution System with Decentralised Fans

    DEFF Research Database (Denmark)

    Gunner, Amalie; Hultmark, Göran; Vorre, Anders

    2015-01-01

    flawed. This paper presents a new procedure for balancing of CAV systems in combination with decentralised fans. The new system was based on replacing the balancing dampers with decentralised fans. By replacing the balancing dampers with decentralised fans, airflows can be balanced by adjusting the speed...... of the fans. In conventional air distribution systems the fan provides the necessary pressure to overcome the resistance in the branch with the highest pressure resistance. This gives an unnecessary overpressure in the remaining branches that does not provide any useful purpose. In order to decrease the fan...... pressure requirements the fan was dimensioned for the branch with the least pressure resistance. The decentralised fans then provided sufficient pressure to overcome the exact resistance in the corresponding branch. The results show that by using decentralised fans in duct systems instead of dampers...

  18. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the applicable...

  19. Fuel-cell-propelled submarine-tanker-system study

    International Nuclear Information System (INIS)

    Court, K.E.; Kumm, W.H.; O'Callaghan, J.E.

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars

  20. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    creating pathways for free gas to migrate from a shallow reservoir within the gas hydrate stability zone into the water column. Our results imply that free hydrocarbon gas trapped beneath a local gas hydrate seal was mobilized through earthquake-induced mechanical failure and in that way circumvented carbon sequestration within the sediment. These findings lead to conclude that hydrocarbon seepage triggered by earthquakes can play a role for carbon budgets at other seismically active continental margins. The newly identified process presented in our study is conceivable to help interpret data from similar sites. Reference: Fischer, D., Mogollon, J.M., Strasser, M., Pape, T., Bohrmann, G., Fekete, N., Spieß, V. and Kasten, S., 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience 6: 647-651.

  1. Image reconstruction from multiple fan-beam projections

    International Nuclear Information System (INIS)

    Jelinek, J.; Overton, T.R.

    1984-01-01

    Special-purpose third-generation fan-beam CT systems can be greatly simplified by limiting the number of detectors, but this requires a different mode of data collection to provide a set of projections appropriate to the required spatial resolution in the reconstructed image. Repeated rotation of the source-detector fan, combined with shift of the detector array and perhaps offset of the source with respect to the fan's axis after each 360 0 rotation(cycle), provides a fairly general pattern of projection space filling. The authors' investigated the problem of optimal data-collection geometry for a multiple-rotation fan-beam scanner and of corresponding reconstruction algorithm

  2. NASA ISS Portable Fan Assembly Acoustics

    Science.gov (United States)

    Boone, Andrew; Allen, Christopher S.; Hess, Linda F.

    2018-01-01

    The Portable Fan Assembly (PFA) is a variable speed fan that can be used to provide additional ventilation inside International Space Station (ISS) modules as needed for crew comfort or for enhanced mixing of the ISS atmosphere. This fan can also be configured with a Shuttle era lithium hydroxide (LiOH) canister for CO2 removal in confined areas partially of fully isolated from the primary Environmental Control and Life Support System (ECLSS) on ISS which is responsible for CO2 removal. This report documents noise emission levels of the PFA at various speed settings and configurations. It also documents the acoustic attenuation effects realized when circulating air through the PFA inlet and outlet mufflers and when operating in its CO2 removal configuration (CRK) with a LiOH canister (sorbent bed) installed over the fan outlet.

  3. Sediment Dynamics and Geohazards offshore Uruguay and Northern Argentina: First Results from the multi-disciplinary Meteor-Cruise M78-3

    Science.gov (United States)

    Krastel, Sebastian; Freudenthal, Tim; Hanebuth, Till; Preu, Benedict; Schwenck, Tilmann; Strasser, Michael; Violante, Roberto; Wefer, Gerold; Winkelmann, Daniel

    2010-05-01

    About 90% of the sediments generated by weathering and erosion on land get finally deposited at the ocean margins. The sediment distribution processes and landscape evolution on land are relatively well understood, but comparably little is known about the role and relative importance of marine sediment dynamics in controlling the architectural evolution of ocean margins. Important players include hemi-pelagic settling, down-slope and current-controlled along-slope sediment transport, depositional and post-depositional sedimentary processes (e.g. consolidation and diagenesis), as well as the destabilization of sediment bodies and their erosion. Submarine landslides in this context thus may represent an important sediment transport process, but also a major geo-hazard due to the increasing number of offshore constructions as well as their potential to instantaneously displace large water masses triggering waves in densely populated coastal areas. Here we present first results from a seagoing expedition that aimed at investigating the interaction processes of sediment redistribution, partitioning, deposition and diagenesis from the coast to the deep-sea along the western South-Atlantic passive continental margin. During RV Meteor Cruise M78/3 in May-July 2009 the shelf, slope and rise offshore Argentina and Uruguay have been investigated by means of hydroacoustic and seismic mapping as well as geological sampling with conventional coring tools as well as the new MARUM seafloor drill rig (MeBo) that revealed recovery of geological strata sampled from up to 50m below seafloor. The working area is characterized by a high amount of fluvial input by the Rio de la Plata river. The continental slope is relatively wide and shows average slope gradients between 1 and 2.5 but locally higher slope gradients may occur (>5). The transition for the continental rise with low slope gradients is found in ~ 3000m water depth. The working area is located in a highly dynamic

  4. Fan relationship management in football - going beyond traditional product offerings to win the hearts of fans

    DEFF Research Database (Denmark)

    Cortsen, Kenneth

    2015-01-01

    The management and control of fan relations should go beyond a football club’s traditional product and service offerings and touch the important experiential side of the football economy. This will create a stronger platform to optimize ROI, ROE and ROO relating to different fan segments....

  5. Dynamic and Implications of Football Fans' Club and Fans ...

    African Journals Online (AJOL)

    DrNneka

    As spectator in football game for example, human beings are known to fragment into fans groups. ..... since respondents identified performance as the main motivating factor in their selection of supporting teams ... directional. They are supports ...

  6. Investigation of the shelf break and continental slope in the Western part of the Black Sea using acoustic methods

    Science.gov (United States)

    Dutu, F.; Ion, G.; Jugaru Tiron, L.

    2009-04-01

    The Black Sea is a large marginal sea surrounded by a system of Alpine orogenic chains, including the Balkanides-Pontides, Caucasus, Crimea and North Dobrogea located to the south, northeast, north and northwest, respectively (Dinu et al., 2005). The north-western part of the Black Sea is the main depocentre for sediment supply from Central Europe via the Danube River, but also from Eastern Europe through the Ukrainian rivers Dniepr, Dniestr and Southern Bug (Popescu et al., 2004). The shelfbreak is located at water depths of 120-140 m southward of the Danube Canyon, and up to 170 m northward of the canyon possibly due to recent faulting which is very common in this area. The continental slope is dissected by numerous canyons, each of which is fed by several tributaries. The Danube Canyon (also known as Viteaz Canyon) is a large shelf-indenting canyon located in the north-western Black Sea and connected to the youngest channel-levee system of the Danube Fan (Popescu et al., 2004). The acoustic methods are a useful way for investigate the shelf break and the continental slope giving us information about landslides on the continental slope, the topography of the investigated area, the sedimentary zones affected by instability and to quantify the geometry of the underwater landslides. The measurements made on the continental slope from north-western part of the Black Sea gave us the possibility to make a digital terrain model. After processing the data the model offer information about the main access ways of the sediments through gravitational slide on the submarines canyons, with forming of turbidity currents, debris flows and also other transport/transformation phenomena of the sediments on the continental slope like submarine landslides and submarine collapse. References Dinu, C., Wong, H.K., Tambrea, D., Matenco, L., 2005. Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics 410, 417-435. Popescu, I., Lericolais, G., Panin

  7. Unraveling the channel–lobe transition zone with high-resolution AUV bathymetry: Navy Fan, offshore Baja California, Mexico

    Science.gov (United States)

    Carvajal, Cristian; Paull, Charles K.; Caress, David W.; Fildani, Andrea; Lundsten, Eve M.; Anderson, Krystle; Maier, Katherine L.; McGann, Mary; Gwiazda, Roberto; Herguera, Juan Carlos

    2017-01-01

    Ultra-high-resolution (1 m * 1 m * 0.25 m) bathymetry was acquired with an autonomous underwater vehicle (AUV) over a sector of the Navy Fan offshore Baja California. The survey specifically targeted an area where the former interpretation of the fan showed a channel–lobe transition; however, the lobe and the transition were not recognized. Instead, the newly acquired bathymetry shows that the previously identified channel continues basinward changing its overall morphology and stratigraphic architecture, becoming gradually but significantly wider (650–1000 m) and of lower relief (3–4 m). Cores from the channel thalweg recovered mud-poor (< 5%) well-sorted sands, interpreted as deposited by fully turbulent flows. The cores also show several mud-rich (9–18%) poorly sorted sands, probably indicating deposition from more cohesive flows.The high-resolution bathymetry shows large sectors of the seafloor sculpted by elaborate bedforms and scours. The overbank area north of the channel exhibits the most numerous and prominent scours, interpreted to have been largely generated by flow stripping at a bend in the channel. Along high-gradient sectors (more than approximately 1¯) of this area, the scours are largest and deepest. Some of these scours show an erosional headwall and a distal upflow-dipping depositional bulge, forming repetitive bedforms interpreted as erosional cyclic steps associated with locked-in-place trains of hydraulic jumps. The scours seem to coalesce to form an incipient channel, which would likely drive the avulsion of the main channel. Further basinward, average gradients decrease (< 0.6¯ ) and scours become smaller and less deep suggesting a gradient control on erosion. The southern channel margin and adjacent overbank area exhibit a trend of scours that are elongated transverse to flow, that successively repeat themselves basinwards, and that at times merge with sediment waves. Probably these scours are genetically linked to sediment waves

  8. Submarine canyons off Madras Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Submarine canyons off the coast of Madras, Tamil Nadu, India were studied during cruise of @iINS Kistna@@ as part of the IIOE programme They consist of hill-like projections and V-shaped valleys Their other features are also reported...

  9. Review: Bettina Fritzsche (2003. Pop-Fans. Studie einer Mädchenkultur [Pop-Fans: Study of a Girl Culture

    Directory of Open Access Journals (Sweden)

    Lothar Mikos

    2006-05-01

    Full Text Available This study focuses on the "girl culture" created by fans of boy groups and girl groups. The central case study is used to examine fan practices as cultural practices using reconstructive and documentary methodologies, and to assess the normative demands placed on young people. The study centers on the question of gender socialization by mediated symbolic resources, and shows that fan culture is a self-determined space in which girls can negotiate normative demands and engage with questions of gender, sexuality and the body, testing conformity and obstinacy. Fan activities are presented as part of the self-empowerment of girls. The study makes an important contribution to the research of a specific girl culture. It shows in a brilliant way how media representations are used as symbolic material in everyday cultural practices. URN: urn:nbn:de:0114-fqs0603187

  10. 30 CFR 75.310 - Installation of main mine fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of main mine fans. 75.310 Section... mine fans. (a) Each main mine fan shall be— (1) Installed on the surface in an incombustible housing... that gives a signal at the mine when the fan either slows or stops. A responsible person designated by...

  11. K-pop Reception and Participatory Fan Culture in Austria

    Directory of Open Access Journals (Sweden)

    Sang-Yeon Sung

    2013-12-01

    Full Text Available K-pop’s popularity and its participatory fan culture have expanded beyond Asia and become significant in Europe in the past few years. After South Korean pop singer Psy’s “Gangnam Style” music video topped the Austrian chart in October 2012, the number and size of K-pop events in Austria sharply increased, with fans organizing various participatory events, including K-pop auditions, dance festivals, club meetings, quiz competitions, dance workshops, and smaller fan-culture gatherings. In the private sector, longtime fans have transitioned from participants to providers, and in the public sector, from observers to sponsors. Through in-depth interviews with event organizers, sponsors, and fans, this article offers an ethnographic study of the reception of K-pop in Europe that takes into consideration local interactions between fans and Korean sponsors, perspectives on the genre, patterns of social integration, and histories. As a case study, this research stresses the local situatedness of K-pop fan culture by arguing that local private and public sponsors and fans make the reception of K-pop different in each locality. By exploring local scenes of K-pop reception and fan culture, the article demonstrates the rapidly growing consumption of K-pop among Europeans and stresses multidirectional understandings of globalization.

  12. Plate-fin array cooling using a finger-like piezoelectric fan

    International Nuclear Information System (INIS)

    Shyu, Jin-Cherng; Syu, Jhih-Zong

    2014-01-01

    In this study, the heat transfer of a plate-fin array cooled by a vibrating finger-like piezoelectric fan comprising four flexible rectangular blades was investigated. The results indicated that the heat transfer enhancement of the fin array cooled by a vibrating piezoelectric fan at x/L = 0.5 and H = 5 mm ranged between 1.5 and 3.3, regardless of the fin array orientation. However, the heat transfer enhancement caused by a fan being placed at either edge of the fin array yielded a dissimilar result between both of the fin array orientations because of the superimposed effects of the boundary layer development and the air flow induced by the fan. This dissimilarity was especially noticeable when the piezoelectric fan was composed of aluminum blades to accommodate the moderate Reynolds number. In addition to the Reynolds number, the ratio of the fan blade vibration envelope to the source area determined the Nu number of the piezoelectric fan-cooled fin array. This design enhanced the fin array heat transfer and reduced cooler volume by embedding multiple vibrating beams into the fin array. -- Highlights: • Heat transfer of a piezoelectric fan-cooled plate-fin array was investigated. • Effects of fan position, fan height and fan material on heat transfer were examined. • Similar heat transfer enhancement range was shown for both fin array orientations. • Fin heat transfer with a running Al fan at x = 0 was higher than that at x = 0.25L. • Besides fan Reynolds number, the area ratio also determined Nu of the fin array

  13. "Emotions-Only" versus "Special People": Genre in fan discourse

    Directory of Open Access Journals (Sweden)

    Louisa Ellen Stein

    2008-09-01

    Full Text Available This essay looks at genre as a complex set of discursive threads running unevenly through production, TV text, and fan reception. Through a case study of the reception of fan favorite Roswell, this essay interrogates the role of genre in spectatorship. In its mixing of teen and science fiction elements, Roswell trod upon contested generic spaces, eliciting strong reaction from its viewers. Connections between genre and gender came to the fore, as producer commentary linked science fiction with male audiences and teen romance with female audiences. Fans responded with analyses that greatly complicated and at times overtly rejected industrial suppositions regarding the gendered work of genre. Through these fan conversations, we can witness the complexity of genre as discursive thread moving through not only TV texts but also multivariant fan responses. I intend this essay to work at two levels. My analysis of fan responses to Roswell models the possibilities of a close study of genre discourse. At the same time, my case study probes the nature of genre in fan engagement, as genre discourses intersect with other fan concerns such as character identification, perceptions of textual quality, and questions of gender representation. While we cannot necessarily look to fan accounts for proof of how viewers engage with genre, they do tell us how fans frame their engagement with genre, how they incorporate genre into their performance of fannishness, and how they perform and thus enact genre itself as a shared cultural process.

  14. Fan filmmaking and copyright in a global world: Warhammer 40,000 fan films and the case of Damnatus

    Directory of Open Access Journals (Sweden)

    John Walliss

    2010-09-01

    Full Text Available The last decade has witnessed a proliferation, both online and off-line, of films produced by amateurs inspired by mainstream films, TV shows, and novels. As with much other fan production, fan films exist in, at best, a legally gray area since they are produced by amateurs, rather than by the media companies that own the copyrights to the films and novels that provide both their inspiration and settings. I examine the phenomenon of fan filmmaking, focusing on films produced by fans of the Warhammer 40,000 (W40K tabletop battle game. In particular, I examine the case of Damnatus: The Enemy Within (Damnatus: Feind Im Innern, 2005, a German-made fan film set in the W40K universe, which was banned from release by the game's rights holder, the UK company Games Workshop, in 2007. Damnatus offers an interesting case study in both the ongoing struggle between rights holders and textual poachers and the tensions that can exist between different legal understandings of copyright in an increasingly globalized world.

  15. Rating behavior of football fans by Internet

    Directory of Open Access Journals (Sweden)

    Dawid Szczygielski

    2017-02-01

    Full Text Available The aim of this article was to present the opinion of Internet users for football fans and their behavior. The research method was used diagnostic survey research in the form of a survey computer. 102 people were tested mostly in the age of 21-25 years. The research can draw the following conclusions: (1 Football stadiums should be better secured and protected by the relevant departments, (2 The colors and club merchandise is not a reliable indicator of fan devotion of his team, (3 These are the fans, the fans are cheering for is a sacred thing, (4 All acts of devastation to property and vandalism in football stadiums should be severely punished.

  16. c-fans and Newton polyhedra of algebraic varieties

    International Nuclear Information System (INIS)

    Kazarnovskii, B Ya

    2003-01-01

    To every algebraic subvariety of a complex torus there corresponds a Euclidean geometric object called a c-fan. This correspondence determines an intersection theory for algebraic varieties. c-fans form a graded commutative algebra with visually defined operations. The c-fans of algebraic varieties lie in the subring of rational c-fans. It seems that other subrings may be used to construct an intersection theory for other categories of analytic varieties. We discover a relation between an old problem in the theory of convex bodies (the so-called Minkowski problem) and the ring of c-fans. This enables us to define a correspondence that sends any algebraic curve to a convex polyhedron in the space of characters of the torus

  17. Airborne Radar Search for Diesel Submarines

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  18. Health Assessment of Cooling Fan Bearings Using Wavelet-Based Filtering

    Directory of Open Access Journals (Sweden)

    Qiang Miao

    2012-12-01

    Full Text Available As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis.

  19. Sediment sources and transport in Kings Bay and vicinity, Georgia and Florida, July 8-16, 1982

    Science.gov (United States)

    Radtke, D.B.

    1985-01-01

    Water quality, bottom-material, suspended-sediment, and current velocity data were collected during July 1982 in Kings Bay and vicinity to provide information on the source and transport of estuarine sediments. Kings Bay and Cumberland Sound, the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest sediment transported from lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal march drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hr ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)

  20. Groundwater flow in a coastal peatland and its influence on submarine groundwater discharge

    Science.gov (United States)

    Ptak, T.; Ibenthal, M.; Janssen, M.; Massmann, G.; Lenartz, B.

    2017-12-01

    Coastal peatlands are characterized by intense interactions between land and sea, comprising both a submarine discharge of fresh groundwater and inundations of the peatland with seawater. Nutrients and salts can influence the biogeochemical processes both in the shallow marine sediments and in the peatland. The determination of flow direction and quantity of groundwater flow are therefore elementary. Submarine groundwater discharge (SGD) has been reported from several locations in the Baltic. The objective of this study is to quantify the exchange of fresh and brackish water across the shoreline in a coastal peatland in Northeastern Germany, and to assess the influence of a peat layer extending into the Baltic Sea. Below the peatland, a shallow fine sand aquifer differs in depth and is limited downwards by glacial till. Water level and electrical conductivity (EC) are permanently measured in different depths at eight locations in the peatland. First results indicate a general groundwater flow direction towards the sea. Electrical conductivity measurements suggest different permeabilities within the peat layer, depending on its thickness and degradation. Near the beach, EC fluctuates partially during storm events due to seawater intrusion and reverse discharge afterwards. The groundwater flow will be verified with a 3D model considering varying thicknesses of the aquifer. Permanent water level and electrical conductivity readings, meteorological data and hydraulic conductivity from slug tests and grain size analysis are the base for the calibration of the numerical model.

  1. Numerical Aerodynamic Evaluation and Noise Investigation of a Bladeless Fan

    OpenAIRE

    mohammad jafari; Hossein Afshin; Bijan Farhanieh; Hamidreza bozorgasareh

    2015-01-01

    Bladeless fan is a novel fan type that has no observable impeller, usually used for domestic applications. Numerical investigation of a Bladeless fan via Finite Volume Method was carried out in this study. The fan was placed in center of a 4×2×2m room and 473 Eppler airfoil profile was used as cross section of the fan. Performance and noise level of the fan by solving continuity and momentum equations as well as noise equations of Broadband Noise Source (BNS) and Ffowcs Williams a...

  2. Advanced Subsonic Technology (AST) 22-Inch Low Noise Research Fan Rig Preliminary Design of ADP-Type Fan 3

    Science.gov (United States)

    Jeracki, Robert J. (Technical Monitor); Topol, David A.; Ingram, Clint L.; Larkin, Michael J.; Roche, Charles H.; Thulin, Robert D.

    2004-01-01

    This report presents results of the work completed on the preliminary design of Fan 3 of NASA s 22-inch Fan Low Noise Research project. Fan 3 was intended to build on the experience gained from Fans 1 and 2 by demonstrating noise reduction technology that surpasses 1992 levels by 6 dB. The work was performed as part of NASA s Advanced Subsonic Technology (AST) program. Work on this task was conducted in the areas of CFD code validation, acoustic prediction and validation, rotor parametric studies, and fan exit guide vane (FEGV) studies up to the time when a NASA decision was made to cancel the design, fabrication and testing phases of the work. The scope of the program changed accordingly to concentrate on two subtasks: (1) Rig data analysis and CFD code validation and (2) Fan and FEGV optimization studies. The results of the CFD code validation work showed that this tool predicts 3D flowfield features well from the blade trailing edge to about a chord downstream. The CFD tool loses accuracy as the distance from the trailing edge increases beyond a blade chord. The comparisons of noise predictions to rig test data showed that both the tone noise tool and the broadband noise tool demonstrated reasonable agreement with the data to the degree that these tools can reliably be used for design work. The section on rig airflow and inlet separation analysis describes the method used to determine total fan airflow, shows the good agreement of predicted boundary layer profiles to measured profiles, and shows separation angles of attack ranging from 29.5 to 27deg for the range of airflows tested. The results of the rotor parametric studies were significant in leading to the decision not to pursue a new rotor design for Fan 3 and resulted in recommendations to concentrate efforts on FEGV stator designs. The ensuing parametric study on FEGV designs showed the potential for 8 to 10 EPNdB noise reduction relative to the baseline.

  3. 14 CFR 33.27 - Turbine, compressor, fan, and turbosupercharger rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine, compressor, fan, and... Turbine, compressor, fan, and turbosupercharger rotors. (a) Turbine, compressor, fan, and... affect turbine, compressor, fan, and turbosupercharger rotor structural integrity will not be exceeded in...

  4. More air performance, enhanced energy efficiency. Plug Fans fit for the future; Mehr Luftleistung, hohe Energieeffizienz. Plug Fans fit fuer die Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Sigloch, Uwe; Muehleck, Ralf [ebm-papst, Mulfingen (Germany); Reiff, Ellen-Christine [Redaktionsbuero, Stutensee (Germany)

    2011-08-15

    The ErP directive 2009/125/EC demands a design of products for the European market according to pre-defined performance criteria. All fans with a performance between 125 W and 500 kW are affected by this directive. Ebm-papst Mulfingen GmbH and Co. KG (Mulfingen, Federal Republic of Germany) has developed and expanded the fan series Plug fans with Greentech EC technology in order to cover even higher air output ranges. Straight in the air technology and air conditioning systems a great potential of energy saving can be deduced with these fans. It is precisely in this area, the fans are operated with a long duty cycle.

  5. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  6. Tracing submarine groundwater discharge in the NE Gulf of Mexico by 222Rn

    International Nuclear Information System (INIS)

    Young, J.E.; Burnett, W.C.; Chanton, J.P.; Cable, P.H.; Corbett, D.R.

    1993-01-01

    Inputs of freshwater and dissolved components to the ocean by submarine groundwater discharge (SGD) have been largely neglected as source functions for biogeochemical budgets. In order to locate and quantify groundwater inputs, a tracing technique has been developed using 222 Rn, a member of the natural 238 U decay-series. Because 222 Rn has a short half-life (t 1/2 = 3.84 days), is an inert gas, is relatively easy to measure at low concentrations, and has concentrations in groundwater several orders of magnitude greater than seawater, it should make an excellent tracer. Excess 222 Rn concentrations far above ''normal'' ocean values were found in the bottom waters of the northeastern Gulf of Mexico, which suggests this region has significant groundwater discharge. After measuring high water column inventories of excess 222 Rn in this region, an advection/diffusion model was applied to evaluate potential benthic sources of radon. The model is designed to account for sediment diffusion of radon and includes a groundwater term for advective flow into the overlying water. Flow rates and concentrations are adjusted in the model to balance the large difference in the measured water column inventories and the inventory predicted by sediment diffusion alone. The vertical diffusive/advective transport determines the shape of the concentration gradient and fluxes at the sediment-water interface are calculate based on these terms. The authors work shows that SGD could account for as much as 95% of the radon inventory in these offshore waters

  7. 16 CFR 305.13 - Labeling for ceiling fans.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labeling for ceiling fans. 305.13 Section... Disclosures § 305.13 Labeling for ceiling fans. (a) Ceiling fans—(1) Content. Any covered product that is a ceiling fan shall be labeled clearly and conspicuously on the principal display panel with the following...

  8. 76 FR 50739 - Hung Ta Fan: Debarment Order

    Science.gov (United States)

    2011-08-16

    ...] Hung Ta Fan: Debarment Order AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The... (the FD&C Act) debarring Hung Ta Fan for a period of 5 years from importing articles of food or.... Fan was convicted of a felony under Federal law for conduct relating to the importation into the...

  9. 30 CFR 75.311 - Main mine fan operation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan operation. 75.311 Section 75.311... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.311 Main mine fan operation. (a) Main mine fans shall be continuously operated, except as otherwise approved in the ventilation plan, or when...

  10. Study on the locational criteria for submarine rock repositories of low and medium level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G H; Kang, W J; Kim, T J. and others [Chungnam National Univ., Taejon (Korea, Republic of)

    1992-01-15

    Submarine repositories have significant advantages over their land counterparts locating close to the areas of daily human activities. Consequently, the construction of submarine repositories on the vast continental shelves around Korean seas is considered to be highly positive. In this context, the development of locational criteria primarily targeting the safety of submarine rock repositories is very important.The contents of the present study are: analyzing characteristics of marine environment: Search of potential hazards to, and environmental impact by, the submarine repositories; Investigation of the oceanographic, geochemical, ecological and sedimentological characteristics of estuaries and coastal seas. Locating potential hazards to submarine repositories by: Bibliographical search of accidents leading to the destruction of submarine structures by turbidity currents and other potentials; Review of turbidity currents. Consideration of environmental impact caused by submarine repositories: Logistics to minimize the environmental impacts in site selection; Removal and dispersion processes of radionuclides in sea water. Analyses of oceanographical characteristics of, and hazard potentials in, the Korean seas. Evaluation of the MOST 91-7 criteria for applicability to submarine repositories and the subsequent proposition of additional criteria.

  11. Study on the locational criteria for submarine rock repositories of low and medium level radioactive wastes

    International Nuclear Information System (INIS)

    Kim, G. H.; Kang, W. J.; Kim, T. J. and others

    1992-01-01

    Submarine repositories have significant advantages over their land counterparts locating close to the areas of daily human activities. Consequently, the construction of submarine repositories on the vast continental shelves around Korean seas is considered to be highly positive. In this context, the development of locational criteria primarily targeting the safety of submarine rock repositories is very important.The contents of the present study are: analyzing characteristics of marine environment: Search of potential hazards to, and environmental impact by, the submarine repositories; Investigation of the oceanographic, geochemical, ecological and sedimentological characteristics of estuaries and coastal seas. Locating potential hazards to submarine repositories by: Bibliographical search of accidents leading to the destruction of submarine structures by turbidity currents and other potentials; Review of turbidity currents. Consideration of environmental impact caused by submarine repositories: Logistics to minimize the environmental impacts in site selection; Removal and dispersion processes of radionuclides in sea water. Analyses of oceanographical characteristics of, and hazard potentials in, the Korean seas. Evaluation of the MOST 91-7 criteria for applicability to submarine repositories and the subsequent proposition of additional criteria

  12. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii

    Science.gov (United States)

    Swarzenski, Peter W.; Dulai, H.; Kroeger, K.D.; Smith, C.G.; Dimova, N.; Storlazzi, C. D.; Prouty, N.G.; Gingerich, S.B.; Glenn, C. R.

    2016-01-01

    Study regionThe study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef.Study focusCoastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii.New hydrological insights for the regionEstimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn,t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  13. Indian, Japanese, And U.S. Responses To Chinese Submarine Modernization

    Science.gov (United States)

    2016-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited INDIAN, JAPANESE ...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE INDIAN, JAPANESE , AND U.S. RESPONSES TO CHINESE SUBMARINE MODERNIZATION 5. FUNDING NUMBERS 6...is unlimited INDIAN, JAPANESE , AND U.S. RESPONSES TO CHINESE SUBMARINE MODERNIZATION David E. Kiser Lieutenant Commander, United States

  14. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    Science.gov (United States)

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  15. PLSS 2.5 Fan Design and Development

    Science.gov (United States)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2015-01-01

    NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5.

  16. Exploring the submarine Graham Bank in the Sicily Channel

    Directory of Open Access Journals (Sweden)

    Mauro Coltelli

    2016-05-01

    Full Text Available In the Sicily Channel, volcanic activity has been concentrated mainly on the Pantelleria and Linosa islands, while minor submarine volcanism took place in the Adventure, Graham and Nameless banks. The volcanic activity spanned mostly during Plio-Pleistocene, however, historical submarine eruptions occurred in 1831 on the Graham Bank and in 1891 offshore Pantelleria Island. On the Graham Bank, 25 miles SW of Sciacca, the 1831 eruption formed the short-lived Ferdinandea Island that represents the only Italian volcano active in historical times currently almost completely unknown and not yet monitored. Moreover, most of the Sicily Channel seismicity is concentrated along a broad NS belt extending from the Graham Bank to Lampedusa Island. In 2012, the Istituto Nazionale di Geofisica e Vulcanologia (INGV carried out a multidisciplinary oceanographic cruise, named “Ferdinandea 2012”, the preliminary results of which represent the aim of this paper. The cruise goal was the mapping of the morpho-structural features of some submarine volcanic centres located in the northwestern side of the Sicily Channel and the temporary recording of their seismic and degassing activity. During the cruise, three OBS/Hs (ocean bottom seismometer with hydrophone were deployed near the Graham, Nerita and Terribile submarine banks. During the following 9 months they have recorded several seismo-acoustic signals produced by both tectonic and volcanic sources. A high-resolution bathymetric survey was achieved on the Graham Bank and on the surrounding submarine volcanic centres. A widespread and voluminous gas bubbles emission was observed by both multibeam sonar echoes and a ROV (remotely operated vehicle along the NW side of the Graham Bank, where gas and seafloor samples were also collected.

  17. On Some Generalized Ky Fan Minimax Inequalities

    Directory of Open Access Journals (Sweden)

    Xianqiang Luo

    2009-01-01

    Full Text Available Some generalized Ky Fan minimax inequalities for vector-valued mappings are established by applying the classical Browder fixed point theorem and the Kakutani-Fan-Glicksberg fixed point theorem.

  18. The analyzing stratum formation and sediment environment using TEM for finding sandstone type uranium deposits in Mahuangquan area

    International Nuclear Information System (INIS)

    Zhao Xigang; He Jianguo; Zhao Cuiping; Lou Hansheng

    2010-01-01

    Transient electromagnetic method (TEM) is used to detect deep geological information for insidious sandstone type uranium deposits in Mahuangquan area. TEM surveying data is processed to build the relation between resistance rate and different petrology, to ensure three large electronic strata, and to explain the space position of sediment center and alluvial fan. Combining with ore control factors of sandstone type uranium deposit, it can conclude that the slope area and the alluvial fan are the key areas for further exploration work. (authors)

  19. Anatomy of La Jolla submarine canyon system; offshore southern California

    Science.gov (United States)

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  20. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    Science.gov (United States)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  1. A preliminary appraisal of sediment sources and transport in Kings Bay and vicinity, Georgia and Florida

    Science.gov (United States)

    McConnell, J.B.; Radtke, D.B.; Hale, T.W.; Buell, G.R.

    1983-01-01

    Water-quality, bottom-material, suspended-sediment, and current-velocity data were collected during November 1981 in Kings Bay and vicinity to provide information on the sources and transport of estuarine sediments. Kings Bay and Cumberland Sound , the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest that the area in the vicinity of lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal marsh drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hour ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)

  2. PLSS 2.5 Fan Design and Development

    Science.gov (United States)

    Converse, David; Carra, Michael; Quinn, Gregory; Chullen, Cinda

    2015-01-01

    NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from over five years ago. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0. It uses the same basic non-metallic can around the motor, but with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 loop. This allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds. Development of the fan also considered a shrouded impeller design that allows larger clearances for greater oxygen safety and better performance.

  3. Development of a Fan for Future Space Suit Applications

    Science.gov (United States)

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  4. Sediment unmixing using detrital geochronology

    Science.gov (United States)

    Sharman, Glenn R.; Johnstone, Samuel A.

    2017-11-01

    Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the effect of environmental forcing (e.g., tectonism, climate) on the Earth's surface. Here, we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First, we summarize 'top-down' mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions ('parents') that characterize a derived sample or set of samples ('daughters'). Second, we propose the use of 'bottom-up' methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable that is well mixed over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has the potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.

  5. Quantification of Sediment Transport During Glacier Surges and its Impact on Landform Architecture

    DEFF Research Database (Denmark)

    Kjær, Kurt H.; Schomacker, Anders; Korsgaard, Niels Jákup

    ) for 1945, prior to the last surge in 1964, and for 2003 in order to assess the effect of the surge on the sediment architecture in the forefield. The pre- and post-surge DEMs allow direct quantification of the sediment volumes that were re-distributed in the forefield by the surging ice mass in 1964...... or glaciofluvial outwash fans. Mapping of the sediment thickness in the glacier forefield shows higher accumulation along ice marginal positions related to wedge formation during extremely rapid ice flow. Fast flow was sustained by overpressurized water causing sediment-bedrock decoupling beneath a thick sediment...... architecture occurs distal to the 1810 ice margin, where the 1890 surge advanced over hitherto undeformed sediments. Proximal to the 1810 ice margin, the landscape have been transgressed by either one or two glaciers (in 1890 and 1964). The most complex landscape architecture is found proximal to the 1964 ice...

  6. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  7. Aerodynamic modelling and optimization of axial fans

    Energy Technology Data Exchange (ETDEWEB)

    Noertoft Soerensen, Dan

    1998-01-01

    A numerically efficient mathematical model for the aerodynamics of low speed axial fans of the arbitrary vortex flow type has been developed. The model is based on a blade-element principle, whereby the rotor is divided into a number of annular stream tubes. For each of these stream tubes relations for velocity, pressure and radial position are derived from the conservation laws for mass, tangential momentum and energy. The equations are solved using the Newton-Raphson methods, and solutions converged to machine accuracy are found at small computing costs. The model has been validated against published measurements on various fan configurations, comprising two rotor-only fan stages, a counter-rotating fan unit and a stator-rotor stator stage. Comparisons of local and integrated properties show that the computed results agree well with the measurements. Optimizations have been performed to maximize the mean value of fan efficiency in a design interval of flow rates, thus designing a fan which operates well over a range of different flow conditions. The optimization scheme was used to investigate the dependence of maximum efficiency on 1: the number of blades, 2: the width of the design interval and 3: the hub radius. The degree of freedom in the choice of design variable and constraints, combined with the design interval concept, provides a valuable design-tool for axial fans. To further investigate the use of design optimization, a model for the vortex shedding noise from the trailing edge of the blades has been incorporated into the optimization scheme. The noise emission from the blades was minimized in a flow rate design point. Optimizations were performed to investigate the dependence of the noise on 1: the number of blades, 2: a constraint imposed on efficiency and 3: the hub radius. The investigations showed, that a significant reduction of noise could be achieved, at the expense of a small reduction in fan efficiency. (EG) 66 refs.

  8. Heavy sediment influx during early Holocene: Inference from clay mineral studies in a core from the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, K.M.

    is attributed to heavy sediment influx du r- ing Mid Termination (MT) (12,500 ? 10,000 years BP), due to i n creased precipitation and run - off resulting from high inte n sity monsoonal regime. C LAY minerals are a powerful source for the interpret a... to address to the prov e nance of the sediments in a sediment core from the western Bengal Fan. In this paper, we report clay mi n eralogy and provide an explanation for the heavy sed i ment deposition du r ing the Holocene. A sediment core of 650...

  9. Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin

    NARCIS (Netherlands)

    Mil-Holmens, M.; Blum, J.; Canário, J.; Caetano, M.; Costa, A.M.; Lebreiro, S.M.; Trancoso, M.; Richter, T.O.; de Stigter, H.; Johnson, M.; Branco, V.; Cesário, R.; Mouro, F.; Mateus, M.; Boer, W.; Melo, Z.

    2013-01-01

    Three short marine sediment cores from the Cascais Submarine Canyon (CSC; cores 252-32 and 252-35) and the Estremadura Spur (core 252-16) on the central Portuguese Margin were analysed for Hg, Pb, Al, and Mn concentrations, and both Pb and Hg stable isotope compositions, in order to reconstruct

  10. Influence of geologic structure on alluvial sedimentation in northwestern Yucca Flat, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1983-01-01

    Using downhole photography, alluvial sediments are described in 5 emplacement holes in northwestern Yucca Flat. The holes are located on or near the Grouse Canyon fan. The 3 most proximally located holes contain the coarsest sediments and display a general decrease in grain size in the downfan direction. The 2 most distally located holes contain fine-grained distal facies sediment in the upper parts of the holes and coarse-grained proximal facies gravels lower in the holes. The proximal gravels in the lower half of the sections were derived from the gravity high, a north-south-trending horst which was exposed early during the history of Yucca Flat basin. Alluvial sedimentation eventually exceeded uplift of the horst, which was buried by distal facies sediments, derived from the western basin margin

  11. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system— (1...

  12. 30 CFR 77.212 - Draw-off tunnel ventilation fans; installation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Draw-off tunnel ventilation fans; installation... UNDERGROUND COAL MINES Surface Installations § 77.212 Draw-off tunnel ventilation fans; installation. When fans are used to ventilate draw-off tunnels the fans shall be: (a) Installed on the surface; (b...

  13. High-Resolution Geologic Mapping of Martian Terraced Fan Deposits

    Science.gov (United States)

    Wolak, J. M.; Patterson, A. B.; Smith, S. D.; Robbins, N. N.

    2018-06-01

    This abstract documents our initial progress (year 1) mapping terraced fan features on Mars. Our objective is to investigate the role of fluids during fan formation and produce the first high-resolution geologic map (1:18k) of a terraced fan.

  14. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations......-Raphson method, andsolutions converged to machine accuracy are found at small computing costs.The model has been validated against published measurementson various fan configurations,comprising two rotor-only fan stages, a counter-rotatingfan unit and a stator-rotor-stator stage.Comparisons of local...... and integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...

  15. The Right to Be a Fan

    Science.gov (United States)

    Gutierrez, Peter

    2011-01-01

    Reading experts have consistently cited the importance of independent reading, reading for pleasure, and fostering "a love of reading." Unfortunately, fanning the fire of fan readership is not so easy in the service of our clear-cut and standards-aligned curricula, except perhaps in small, carefully channeled doses. Moreover, the impetus for such…

  16. Life, death and revival of debris-flow fans on Earth and Mars : fan dynamics and climatic inferences

    NARCIS (Netherlands)

    de Haas, T.|info:eu-repo/dai/nl/374023190

    2016-01-01

    Alluvial fans are ubiquitous landforms in high-relief regions on Earth and Mars. They have a semi-conical shape and are located at the transition between highlands and adjacent basins. Alluvial fans can form by a range of processes including debris flows, which are water-laden masses of soil and

  17. Fan-shaped antennas: Realization of wideband characteristics and generation of stop bands

    Science.gov (United States)

    Nakano, H.; Morishita, K.; Iitsuka, Y.; Mimaki, H.; Yoshida, T.; Yamauchi, J.

    2008-08-01

    This paper presents four fan-shaped antennas: U.S.-FAN, CROSS-FAN, CROSS-FAN-W, and CROSS-FAN-S. Each of these antennas stands upright above a ground plane, and has edges expressed by an exponential function and a circle function. The four antennas are investigated using frequencies from 1.5 GHz to 11 GHz. The CROSS-FAN is found to have a lower VSWR over a wide frequency band compared to the U.S.-FAN. The CROSS-FAN-W and CROSS-FAN-S are modified versions of the CROSS-FAN, each designed to have a stop band (a high VSWR frequency range) for interference cancellation. The stop band for the CROSS-FAN-W is controlled by a wire (total length 4Lwire) that connects the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a wire segment length Lwire of half the wavelength. It is also found that the stop band in the CROSS-FAN-S can be controlled by four slots, one cut into each of the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a slot length Lslot of one-quarter of the wavelength. Experimental work is performed to confirm the theoretical results, using the CROSS-FAN-S.

  18. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    Science.gov (United States)

    Lipman, P.W.; Coombs, M.L.

    2006-01-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000–4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan–USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700–4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hualālai. Relatively low sulfur (330–600 ppm) and water (0.18–0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500–1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100–190 ppm) indicate deeper equilibration, at or near sample sites at water depths of − 3900 to − 2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from

  19. Silent cooling system with a double suction type centrifugal fan with backward blades; Ryosuikomi turbo fan wo mochiita teisoon engine reikyaku system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Funabashi, S. [Hitachi, Ltd., Tokyo (Japan); Nakamura, K. [Hitachi Construction Machinery Co. Ltd., Tokyo (Japan)

    2000-04-25

    We have developed a new cooling system for the engine of construction machinery. This system produces two different air flow routes by a double suction type centrifugal fan with backward blades. We first measured aerodynamic performance and sound level of the double suction type fan, which consists of two single suction type fans of different design, and compared these measurements to those of single suction type fans. Next, we installed the fan in a scale model of the new cooling system. The performance of this double suction type fan was different to that of a single suction type. It is considered that the effect of interaction of the exit flows from the two different fans caused this performance change. The test model installed in an engine compartment showed that this cooling system reduced the area of air inlets and outlets around the engine and did not cause re-circulation of cooling air. (author)

  20. Sherlock (Holmes in Japanese (fan works [symposium

    Directory of Open Access Journals (Sweden)

    Lori Morimoto

    2017-03-01

    Full Text Available I explore the history of Japanese writing centered on Sherlock Holmes as a means of interrogating the 2014 BBC Sherlock pastiche John and Sherlock Casebook 1: Jon, zenchi renmei e iku (The stark naked league, written by Japanese Sherlockian Kitahara Naohiko for mainstream publication by the publishing house Hayakawa shobō. I argue that exploration of the Japanese (fan cultural contexts of Kitahara's book begins to reveal the limits of the Anglo-American-centered framework through which fan studies scholars explore fan/producer relationships.

  1. A local area network and information management system for a submarine overhaul facility

    OpenAIRE

    Bushmire, Jeffrey D

    1990-01-01

    A preliminary design of a local area network for a submarine overhaul facility is developed using System Engineering concepts. SOFLAN, the Submarine Overhaul Facility Local Area Network, is necessary to provide more timely and accurate information to submarine overhaul managers in order to decrease the overhaul time period and become more competitive. The network is a microcomputer based system following the Ethernet and IEEE 802.3 standards with a server .. client architecture. SOFLAN serves...

  2. weiqiang fan

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. WEIQIANG FAN. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 867-872 RESEARCH ARTICLE. A genetic variant in COL11A1 is functionally associated with lumbar disc herniation in Chinese population · WENJUN LIU GUISEN SUN LONGSHENG GUO ...

  3. A submarine volcanic eruption leads to a novel microbial habitat.

    Science.gov (United States)

    Danovaro, Roberto; Canals, Miquel; Tangherlini, Michael; Dell'Anno, Antonio; Gambi, Cristina; Lastras, Galderic; Amblas, David; Sanchez-Vidal, Anna; Frigola, Jaime; Calafat, Antoni M; Pedrosa-Pàmies, Rut; Rivera, Jesus; Rayo, Xavier; Corinaldesi, Cinzia

    2017-04-24

    Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus's hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus's hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus's hair can drive the restart of biological systems after submarine volcanic eruptions.

  4. Review of noise reduction methods for centrifugal fans

    Science.gov (United States)

    Neise, W.

    1981-11-01

    Several methods for the reduction of centrifugal fan noise are presented, the most of which are aimed at a lower blade passage frequency level. The methods are grouped into five categories: casing modifications to increase the distance between impeller and cutoff, the introduction of a phase shift of the source pressure fluctuations, impeller modifications, radial clearance between impeller eye and inlet nozzle, and acoustical measures. Resonators mounted at the cutoff of centrifugal fans appear to be a highly efficient and simple means of reducing the blade passage tone, and the method can be used for new fan construction and existing installations without affecting the aerodynamic performance of the fan.

  5. The performance of a centrifugal fan with enlarged impeller

    International Nuclear Information System (INIS)

    Li Chunxi; Song Lingwang; Jia Yakui

    2011-01-01

    Highlights: → The influence of impeller enlargement is evaluated numerically and experimentally. → Variation equations of the operation points for enlarged impellers are derived. → Impeller enlargement leads to louder fan noise due to reduced impeller-volute gap. - Abstract: The influence of enlarged impeller in unchanged volute on G4-73 type centrifugal fan performance is investigated in this paper. Comparisons are conducted between the fan with original impeller and two larger impellers with the increments in impeller outlet diameter of 5% and 10% respectively in the numerical and experimental investigations. The internal characteristics are obtained by the numerical simulation, which indicate there is more volute loss in the fan with larger impeller. Experiment results show that the flow rate, total pressure rise, shaft power and sound pressure level have increased, while the efficiency have decreased when the fan operates with larger impeller. Variation equations on the performance of the operation points for the fan with enlarged impellers are suggested. Comparisons between experiment results and the trimming laws show that the trimming laws for usual situation can predict the performance of the enlarged fan impeller with less error for higher flow rate, although the situation of application is not in agreement. The noise frequency analysis shows that higher noise level with the larger impeller fan is caused by the reduced impeller-volute gap.

  6. The performance of a centrifugal fan with enlarged impeller

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunxi, E-mail: leechunxi@163.com [School of Energy and Power Engineering, North China Electric Power University, 071003 Baoding, Hebei (China); Song Lingwang [School of Energy and Power Engineering, North China Electric Power University, 071003 Baoding, Hebei (China); Jia Yakui [Hebei Electric Power Design and Research Institute, 050031 Shijiazhuang, Hebei (China)

    2011-08-15

    Highlights: {yields} The influence of impeller enlargement is evaluated numerically and experimentally. {yields} Variation equations of the operation points for enlarged impellers are derived. {yields} Impeller enlargement leads to louder fan noise due to reduced impeller-volute gap. - Abstract: The influence of enlarged impeller in unchanged volute on G4-73 type centrifugal fan performance is investigated in this paper. Comparisons are conducted between the fan with original impeller and two larger impellers with the increments in impeller outlet diameter of 5% and 10% respectively in the numerical and experimental investigations. The internal characteristics are obtained by the numerical simulation, which indicate there is more volute loss in the fan with larger impeller. Experiment results show that the flow rate, total pressure rise, shaft power and sound pressure level have increased, while the efficiency have decreased when the fan operates with larger impeller. Variation equations on the performance of the operation points for the fan with enlarged impellers are suggested. Comparisons between experiment results and the trimming laws show that the trimming laws for usual situation can predict the performance of the enlarged fan impeller with less error for higher flow rate, although the situation of application is not in agreement. The noise frequency analysis shows that higher noise level with the larger impeller fan is caused by the reduced impeller-volute gap.

  7. Influence of sedimentation on enrichment of manganese and growth of ferromanganese micronodules, Bengal Fan, India

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Rao, Ch.M.

    of low sedimentation. But, in the upper surfaces increased enrichment of Mn was observed in core 1 located in the area of higher sediment accumulation. Rapid recycling of Mn (faster burial-transfer to Mn reduction zone-Mn dissolution and its upward...

  8. A history of RPGs: Made by fans; played by fans

    Directory of Open Access Journals (Sweden)

    Paul Mason

    2012-09-01

    Full Text Available I explore some aspects of the early history of tabletop role-playing games (RPGs that are perhaps not well known among media scholars, and which offer an alternative take on the idea of fan activity.

  9. Single photon emission computed tomography by using fan beam collimator

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa

    1992-01-01

    A multislice fan beam collimator which has parallel collimation along the cephalic-caudul axis of a patient and converging collimation within planes that are perpendicular to that axis was designed for a SPECT system with a rotating scintillation camera, and it was constructed by the lead casting method which was developed in recent years. A reconstruction algorithm for fan beam SPECT was formed originally by combining the reconstruction algorithm of the parallel beam SPECT with that of the fan beam X-ray CT. The algorithm for fan beam SPECT was confirmed by means of computer simulation and a head phantom filled with diluted radionuclide. Not only 99m Tc but also 123 I was used as a radionuclide. A SPECT image with the fan beam collimator was compared with that of a parallel hole, low energy, high resolution collimator which was routinely used for clinical and research SPECT studies. Both system resolution and sensitivity of the fan beam collimator were ∼20% better than those of the parallel hole collimator. Comparing SPECT images obtained from fan beam collimator with those of parallel hole collimator, the SPECT images using fan beam collimator had far better resolution. A fan beam collimator is a useful implement for the SPECT study. (author)

  10. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghui; Cheong, Cheolung [Pusan Nat’l Univ., Busan (Korea, Republic of); Heo Seung [Korea Aerospace Industries, Sacheon (Korea, Republic of); Kim, Tae-Hoon; Jung, Jiwon [LG Electronics, Seoul (Korea, Republic of)

    2017-03-15

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  11. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    International Nuclear Information System (INIS)

    Shin, Donghui; Cheong, Cheolung; Heo Seung; Kim, Tae-Hoon; Jung, Jiwon

    2017-01-01

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  12. Study on performance of centripetal fan, 1

    International Nuclear Information System (INIS)

    Ejiri, Eiji; Shirakura, Masaaki; Tagori, Tetsuo; Enomoto, Hisao.

    1984-01-01

    Centripetal fans are radial flow type fans which gather air from outer side into inner side. The construction is simple, and when heat exchangers are arranged around them, cooled air can be discharged upward only by connecting simple ducts, accordingly, centripetal fans are suitable to the ventilating fans for superlarge cooling towers of nuclear power plants. The static pressure rise is obtained only by the diffuser action of impellers, therefore, they are not suitable to pumps and compressors, and their use is limited only to fans. Centrifugal force exerts negative effect on static pressure rise, accordingly, the ratio of internal diameter/external diameter of impellers cannot be made very small. In this study, a small model with impeller diameter of 0.6 m was used, and its overall performance, the performance of moving blades in the range of stable operation, the rotating stall characteristics in the region of low flow rate, and the effect of side wind on the overall performance in outdoor use were examined. By changing the angle of inclination of entrance guide vanes, the range of stable operation was expanded, and the pressure coefficient and efficiency were increased. (Kako, I.)

  13. Fan action and political participation on "The Colbert Report"

    Directory of Open Access Journals (Sweden)

    Marcus Schulzke

    2012-06-01

    Full Text Available The Colbert Report merges the increasingly popular political satire genre with fan activism. The result is that the fan community helps to construct Colbert's malleable character and demonstrates symbolic power through its willingness to act. The fans are usually a nonpartisan force, acting to produce entertainment rather than substantive political change. However, this can be politically meaningful, as the fans' projects promote collective action, parallel political activities like voting and protesting, and encourage critical thinking about political information.

  14. The Conceptual Design of High Pressure Reversible Axial Tunnel Ventilation Fans

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available Tunnel ventilation fans, classically, must have the ability to both supply and extract air from a tunnel system, with the operator's choice dependent on the tunnel ventilation system's operating mode most appropriate at any given point in time. Consequently, tunnel ventilation fans must incorporate a reversible aerodynamic design which limits the maximum fan pressure rise. This paper presents three high pressure reversible fan concepts. These comprise a two-stage counter rotating fan, a single-stage high speed fan, and a two-stage fan with a single motor and impeller on each end of the motor shaft. The authors consider the relative merits of each concept. The third concept offers the most compact fan, transform, silencer, and damper package size. The authors discuss the mechanical design challenges that occur with a two-stage fan with a single motor and impeller on each end of the motor shaft. They present and consider a selected motor bearing arrangement and casing design for maintainability. Finally, the authors present both prototype fan and full-scale package aerodynamic and acoustic performance, before discussing the challenges presented by high temperature certification in accordance with the requirements of EN 12101-3: 2012.

  15. Hybrid Intelligent Control for Submarine Stabilization

    Directory of Open Access Journals (Sweden)

    Minghui Wang

    2013-05-01

    Full Text Available Abstract While sailing near the sea surface, submarines will often undergo rolling motion caused by wave disturbance. Fierce rolling motion seriously affects their normal operation and even threatens their security. We propose a new control method for roll stabilization. This paper studies hybrid intelligent control combining a fuzzy control, a neural network and extension control technology. Every control strategy can achieve the ideal control effect within the scope of its effective control. The neuro-fuzzy control strategy is used to improve the robustness of the controller. The speed control strategy and the course control strategy are conducted to extend the control range. The paper also proposes the design of the controller and carries out the simulation experiment in different sea conditions. The simulation results show that the control method proposed can indeed effectively improve the control performance of submarine stabilization.

  16. Aeromechanics Analysis of a Boundary Layer Ingesting Fan

    Science.gov (United States)

    Bakhle, Milind A.; Reddy, T. S. R.; Herrick, Gregory P.; Shabbir, Aamir; Florea, Razvan V.

    2013-01-01

    Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn but these systems must overcome the challe nges related to aeromechanics-fan flutter stability and forced response dynamic stresses. High-fidelity computational analysis of the fan a eromechanics is integral to the ongoing effort to design a boundary layer ingesting inlet and fan for fabrication and wind-tunnel test. A t hree-dimensional, time-accurate, Reynolds-averaged Navier Stokes computational fluid dynamics code is used to study aerothermodynamic and a eromechanical behavior of the fan in response to both clean and distorted inflows. The computational aeromechanics analyses performed in th is study show an intermediate design iteration of the fan to be flutter-free at the design conditions analyzed with both clean and distorte d in-flows. Dynamic stresses from forced response have been calculated for the design rotational speed. Additional work is ongoing to expan d the analyses to off-design conditions, and for on-resonance conditions.

  17. The use of nuclear powered submarines for oceanographic research in ICE covered regions

    International Nuclear Information System (INIS)

    Sambrotto, Raymond; Chayes, Dale

    2000-01-01

    Nuclear powered submarines offer a variety of advantages as platforms for oceanographic research. Their speed and ability to remain submerged for extended periods greatly extends their spatial coverage and isolates them from surface ocean conditions as compared to conventional ships. These advantages are particularly obvious in ice covered oceans that remain among the least explored regions on the globe. Scientific research in these regions has been limited to selected seasons and places where ice conditions are favorable for available observational platforms. However, much broader scientific observations are needed to assess such impacts as pollutants and possible climate variations on polar regions. To overcome some of the observational limitations of surface ships in the Arctic, the U.S. Navy made available nuclear powered submarines for civilian oceanographic research during the Scientific Ice Expedition (Scicex) program from 1993 to 1999. Together, these cruises sampled along more than 85,000 km of track throughout the international waters of the Arctic Ocean during selected periods from March to October. This sampling forms the basis of the present analysis of the limitations and capabilities of nuclear submarines as observational platforms for scientific research. Scientific observations were made in four general disciplines: ocean physics; biology and chemistry; sea ice; and marine geology and geophysics. Sampling of ocean biology and chemistry was most constrained because the water samples typically required in such studies were limited to the operating depths of the submarine. However, the surface 250 m contains all of the biological production, as well as informative chemical tracers for the flow of Atlantic and Pacific water masses. Measurements of ocean physics were less constrained because in addition to the on-board measurements, expendable probes are available to sample water depths inaccessible to the submarine. The submarine proved to be an

  18. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    Science.gov (United States)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    sediments without the presence of permafrost and gas hydrate, owing to the relative slope steepness compared to other submarine failures. Including the effects of the permafrost and gas hydrate in the sediments can result in an increase of the factor of safety under static conditions. However, modeling of the temporal effects of transgression of the Beaufort Shelf (considering change in pressure and temperature), indicates that, for a reasonable assumption of between 5-35% hydrate content, the factor of safety reduces to below unity and failure occurs.

  19. Observations of nearshore groundwater discharge: Kahekili Beach Park submarine springs, Maui, Hawaii

    Directory of Open Access Journals (Sweden)

    P.W. Swarzenski

    2017-06-01

    New hydrological insights for the region: Estimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d mass balance model. Such estimates were complemented with a novel thoron (220Rn, t1/2 = 56 s groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.

  20. Effect of Topography on Subglacial Discharge and Submarine Melting During Tidewater Glacier Retreat

    Science.gov (United States)

    Amundson, J. M.; Carroll, D.

    2018-01-01

    To first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6-17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.

  1. The Role of the Submarine Channel Pernambuco in the Brazilian Continental Margin East

    International Nuclear Information System (INIS)

    Torres, L.; Villena, H.

    2010-01-01

    The Brazilian Continental Margin, which coastline measures more than 8,500km gives to Brazil continental dimensions. This huge region is conditioned by the action of process such as, sedimentals, tectonics, geomorphological and climatical, as example, which direct or in conjunction with other ones, since of continental break up between South America and Africa are going on and may be responsible for the current morphology of the margin. In accordance with this point of view, the Oriental part of the Brazilian Continental Margin, presents characteristics of a passive margin and fisiographically ''starved'', in which the continental break occur no more than 100km from de coastline and the sedimentary coverage is mainly carbonatic. The continental slope does not present great extension if compared with other parts of the Brazilian Margin and sharp gradient. The remark presence of the continental plateaus (Rio Grande Plateau and Pernambuco Plateau), which link with the continental rise and additionally the Paraiba, Pernambuco e Bahia seamounts, are the majors features in the morphology of the region between the slope and the continental rise. This paper will concentrate its focus on Bahia Seamount, with emphasis in the mainly erosive feature which cut transversally the seamounts, named Pernambuco Submarine Channel. It will be employed bathymetric multibeam and seismic data carried out by the Brazilian Continental Shelf Project (LEPLAC) in the current year and pieces of information from bibliographic researches in order to present a discussion by the hole of the Pernambuco Submarine Channel in the Occidental region of the Brazilian Continental Margin

  2. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  3. Characterization of Composite Fan Case Resins

    Science.gov (United States)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  4. Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change - A reevaluation of the paleogeographical setting of Dali Man site

    Science.gov (United States)

    Rits, Daniël S.; van Balen, Ronald T.; Prins, Maarten A.; Zheng, Hongbo

    2017-06-01

    The Luo River is located in the southern part of the Chinese Loess Plateau and the northern part of the Weihe Basin, in Central China. In the basin it flows proximal to the site of the Luyang Wetland core, which is an important archive of climate change over the past 1 Myr in this region. In this paper, the contribution of the Luo River to the sedimentary record is analyzed by reconstructing the evolution of this river during the Middle to Late Pleistocene. It is argued that an alluvial fan of the Luo River has contributed to the sedimentary archive until approximately 200-240 ka. From this moment onwards, the fan became incised and terraces began to form. The formation of a new alluvial fan further downstream led to the disconnection of the Luo River from the Luyang Wetland core site. We propose that this series of events was caused by the displacement of an intra-basinal fault and the resultant faulting-forced folding, which caused increased relative subsidence, and thus increased sedimentation rates at the core site. Therefore, a complete sediment record in the 'Luyang Wetland' was preserved, despite the disconnection from the Luo River. The chronology of the fans and terraces was established using existing age control (U-series, ESR, OSL, pIRIR290 and magnetic susceptibility correlation), and through correlation of the loess-paleosol cover to marine isotope stages. Based on sedimentological characteristics of the fluvial sequence, we suggest that incision of the Luo River occurred in two steps. Small incisions took place at transitions to interglacials and the main incision phases occur at the transition from an interglacial to glacial climate. Due to the incision, basal parts of the oldest Luo River alluvial fan are exposed, and it is in one of these exposures that the famous Dali Man skull was retrieved. This study shows that the Dali Man did not live on a river terrace as previously thought, but on an aggrading alluvial fan, during wet, glacial conditions.

  5. CONSUMER BEHAVIOUR TOWARDS ELECTRIC FANS

    OpenAIRE

    Inderpreet Singh

    2017-01-01

    The study of consumer behaviour develops great interest for consumers, students, scientists, and marketers. As consumers, we need insights into our own consumption related decisions: what we buy, why we buy, and how we buy. The aim of the study is to cover entire research about consumer behaviour towards electric fans and different factors affecting their buying decision. A sample of 200 consumers of electric fans is taken. Questionnaire has been analysed with the help of pie diagram & bar ch...

  6. FACTORS INFLUENCING BRAND LOYALTY IN PROFESSIONAL SPORTS FANS

    OpenAIRE

    Yun-Tsan Lin; Chen-Hsien Lin

    2008-01-01

    Many researchers have provided comprehensive definitions for the term of brand loyalty and also examined the factors affecting brand loyalty with many empirical studies. But there is little research focusing on the brand loyalty of professional sports fans. The topic area about factors influencing brand loyalty in professional sports fans was identified because these fans bring significant financial benefits every year and stimulate economic growth in the United States. Although different con...

  7. Booster fans : some considerations for their usage in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, S.; Slaughter, C. [Missouri Univ. of Science and Technology, Rolla, MO (United States); Calizaya, F. [Utah Univ., Salt Lake City, UT (United States); Wu, H.W. [Gillies Wu Mining Technology Pty Ltd., Brisbane, QLD (Australia)

    2010-07-01

    This paper reported on a study that investigated the conditions under which booster fans can be used safely and efficiently in underground coal mines. Booster fans are installed in series with a main surface fan and are used to boost the air pressure of the ventilation air passing through it. Several coal mining countries use booster fans, but in the United States, they are only used in metal/non-metal mines due to concerns of uncontrolled recirculation. This study investigated installations of booster fans in non-US underground coal mines where safe and efficient atmospheric conditions are achieved. The purpose was to collect reliable information on airway resistances and flow requirements typical in large US coal mines. The study showed that safe booster fan installations are found in both high and low gas conditions, and sometimes where workings are located at great depths. The interlocking systems within the booster fan can control the underground fans and avoid recirculation when surface fans are unexpectedly turned off. Another purpose of the study was to determine when booster fans become a more viable solution in coal mines due to increases in air requirements at higher production rates. It was concluded that a new fan selection algorithm to produce recirculation-free ventilation designs will be developed to enable US coal mine operators to develop ventilation designs to extract coal seams from depths greater than 1000 m. 17 refs., 1 fig.

  8. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fans (I-C mines). 57.22209 Section 57... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22209 Auxiliary fans (I-C mines). Electric auxiliary fans shall be approved by MSHA under the applicable requirements of 30 CFR part 18...

  9. Airborne Radar Search for Diesel Submarines (ARSDS)

    National Research Council Canada - National Science Library

    Pilnick, Steven E; Landa, Jose

    2005-01-01

    .... In this research, a detection rate model is developed to analyze the effectiveness of an airborne radar search for a diesel submarine assumed to be intermittently operating with periscopes or masts...

  10. Design of a small nuclear reactor for extending the operational envelope of the Victoria Class Submarine

    International Nuclear Information System (INIS)

    Cole, C.J.P.

    2003-01-01

    The purpose of this research is to conceptually design a small, inherently safe, quasi-homogeneous nuclear reactor that will provide enough power to maintain the hotel load of the Victoria Class Submarine and extend her operational envelope. This research is in its early stages. The purpose of this paper is to outline the background of the research, present results found to date, and indicate the direction of the research over the next two years. The Canadian Forces has recently acquired four U.K. built Upholder Class submarines to replace the ageing Oberon Class submarines purchased in the early 1960's. The Upholders, like the Oberons, are diesel-electric powered. The Upholders were renamed the Victoria Class upon commissioning in Canada. Submarines are strategic military weapons that have several roles including: intelligence gathering, inflicting surprise attacks, controlling shipping lanes and covert operations. For each of these roles the submarine must remain undetected. To remain undetected, it is imperative that the submarine remains submerged. To remain submerged and continue to function, a submarine requires an air-independent power generation system, such as a nuclear reactor. (author)

  11. Architecture and development of a multi-stage Baiyun submarine slide complex in the Pearl River Canyon, northern South China Sea

    Science.gov (United States)

    Wang, Lei; Wu, Shi-Guo; Li, Qing-Ping; Wang, Da-Wei; Fu, Shao-Ying

    2014-08-01

    The Baiyun submarine slide complex (BSSC) along the Pearl River Canyon of the northern South China Sea has been imaged by multibeam bathymetry and 2D/3D seismic data. By means of maximum likelihood classification with slope aspect and gradient as inputs, the BSSC is subdivided into four domains, denoted as slide area I, II, III and IV. Slide area I is surrounded by cliffs on three sides and has been intensely reshaped by turbidity currents generated by other kinds of mass movement outside the area; slide area II incorporates a shield volcano with a diameter of approximately 10 km and unconfined slides possibly resulting from the toe collapse of inter-canyon ridges; slide area III is dominated by repeated slides that mainly originated from cliffs constituting the eastern boundary of the BSSC; slide area IV is distinguished by a conical seamount with a diameter of 6.5 km and a height of 375 m, and two slides probably having a common source that are separated from each other by a suite of residual strata. The BSSC is interpreted to be composed of numerous slide events, which occurred in the period from 10.5 to 5.5 Ma BP. Six specific factors may have contributed to the development of the BSSC, i.e., gas hydrate dissociation, gas-bearing sediments, submarine volcanic activity, seismicity, sedimentation rate and seafloor geomorphology. A 2D conceptual geological model combining these factors is proposed as a plausible mechanism explaining the formation of the BSSC. However, the BSSC may also have been affected by the Dongsha event (10 Ma BP) as an overriding factor.

  12. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    Science.gov (United States)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  13. PAUT-based defect detection method for submarine pressure hulls

    Directory of Open Access Journals (Sweden)

    Min-jae Jung

    2018-03-01

    Full Text Available A submarine has a pressure hull that can withstand high hydraulic pressure and therefore, requires the use of highly advanced shipbuilding technology. When producing a pressure hull, periodic inspection, repair, and maintenance are conducted to maintain its soundness. Of the maintenance methods, Non-Destructive Testing (NDT is the most effective, because it does not damage the target but sustains its original form and function while inspecting internal and external defects. The NDT process to detect defects in the welded parts of the submarine is applied through Magnetic particle Testing (MT to detect surface defects and Ultrasonic Testing (UT and Radiography Testing (RT to detect internal defects. In comparison with RT, UT encounters difficulties in distinguishing the types of defects, can yield different results depending on the skills of the inspector, and stores no inspection record. At the same time, the use of RT gives rise to issues related to worker safety due to radiation exposure. RT is also difficult to apply from the perspectives of the manufacturing of the submarine and economic feasibility. Therefore, in this study, the Phased Array Ultrasonic Testing (PAUT method was applied to propose an inspection method that can address the above disadvantages by designing a probe to enhance the precision of detection of hull defects and the reliability of calculations of defect size. Keywords: Submarine pressure hull, Non-destructive testing, Phased array ultrasonic testing

  14. Amateur mythographies: Fan fiction and the myth of myth

    Directory of Open Access Journals (Sweden)

    Ika Willis

    2016-03-01

    Full Text Available This paper draws on classical scholarship on myth in order to critically examine three ways in which scholars and fans have articulated a relationship between fan fiction and myth. These are (1 the notion of fan fiction as a form of folk culture, reclaiming popular story from corporate ownership; (2 the notion of myth as counterhegemonic, often feminist, discourse; (3 the notion of myth as a commons of story and a universal story world. I argue that the first notion depends on an implicit primitivizing of fan fiction and myth, which draws ultimately on the work of Gottfried von Herder in the 18th century and limits our ability to produce historically and politically nuanced understandings of fan fiction. The second notion, which is visible in the work of Henry Jenkins and Constance Penley, is more helpful because of its attention to the politics of narration. However, it is the third model of myth, as a universal story world, where we find the richest crossover between fan fiction's creative power and contemporary classical scholarship on myth, especially in relation to Sarah Iles Johnston's analysis of hyperserial narrative. I demonstrate this through some close readings of fan fiction from the Greek and Roman Mythology fandom on Archive of Our Own. I conclude the paper by extending Johnston's arguments to show that fan-fictional hyperseriality, specifically, can be seen as mythic because it intervenes not only in the narrative worlds of its source materials but also in the social world of its telling.

  15. Synchronous and Cogged Fan Belt Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Acosta, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  16. Case study of French and Spanish fan reception of Game of Thrones

    Directory of Open Access Journals (Sweden)

    Mélanie Bourdaa

    2015-06-01

    Full Text Available The reception of the American TV show Game of Thrones (2011– by French and Spanish fans and nonfans is addressed via a qualitative methodology, the goal of which is to understand how European viewers perceive themselves as fans and what it means for them to be fans. Analysis of characteristics of a specifically European reception helps us learn what fan studies tell us about fans and what fans really think about fandoms.

  17. Acute Exposure to Low-to-Moderate Carbon Dioxide Levels and Submariner Decision Making.

    Science.gov (United States)

    Rodeheffer, Christopher D; Chabal, Sarah; Clarke, John M; Fothergill, David M

    2018-06-01

    Submarines routinely operate with higher levels of ambient carbon dioxide (CO2) (i.e., 2000 - 5000 ppm) than what is typically considered normal (i.e., 400 - 600 ppm). Although significant cognitive impairments are rarely reported at these elevated CO2 levels, recent studies using the Strategic Management Simulation (SMS) test have found impairments in decision-making performance during acute CO2 exposure at levels as low as 1000 ppm. This is a potential concern for submarine operations, as personnel regularly make mission-critical decisions that affect the safety and efficiency of the vessel and its crew while exposed to similar levels of CO2. The objective of this study was to determine if submariner decision-making performance is impacted by acute exposure to levels of CO2 routinely present in the submarine atmosphere during sea patrols. Using a subject-blinded balanced design, 36 submarine-qualified sailors were randomly assigned to receive 1 of 3 CO2 exposure conditions (600, 2500, or 15,000 ppm). After a 45-min atmospheric acclimation period, participants completed an 80-min computer-administered SMS test as a measure of decision making. There were no significant differences for any of the nine SMS measures of decision making between the CO2 exposure conditions. In contrast to recent research demonstrating cognitive deficits on the SMS test in students and professional-grade office workers, we were unable to replicate this effect in a submariner population-even with acute CO2 exposures more than an order of magnitude greater than those used in previous studies that demonstrated such effects.Rodeheffer CD, Chabal S, Clarke JM, Fothergill DM. Acute exposure to low-to-moderate carbon dioxide levels and submariner decision making. Aerosp Med Hum Perform. 2018; 89(6):520-525.

  18. Experimental and Numerical Investigation of a 60cm Diameter Bladeless Fan

    OpenAIRE

    mohammad jafari; Hossein Afshin; Bijan Farhanieh; Hamidreza bozorgasareh

    2016-01-01

    Bladeless fan is a novel type of fan with an unusual geometry and unique characteristics. This type of fan has been recently developed for domestic applications in sizes typically up to 30cm diameter. In the present study, a Bladeless fan with a diameter of 60cm was designed and constructed, in order to investigate feasibility of its usage in various industries with large dimensions. Firstly, flow field passed through this fan was studied by 3D modeling. Aerodynamic and aeroacoust...

  19. D0 Cryo Ventilation Fan Controls and Monitoring

    International Nuclear Information System (INIS)

    Markley, D.

    1990-01-01

    This engineering note describes how exhaust fan 6 (EF-6) and exhaust fan 7 (EF-7) are controlled and monitored. Since these two fans are a vital link in the ODH safety system, they will be monitored, controlled and periodically operated by the programmable logic controller (PLC). If there should be a fault in the ventilation system, the PLC will print a warning message to the cryo control room printer and flash a descriptive warning on the ODH/ventilation graphics page. This fault is also logged to the Xpresslink graphics alarm page and to an alarm history hard disk file. The ventilation failure is also an input to the auto dialer which will continue it's automatic sequence until acknowledged. EF-6 delivers 13000 C.F.M. and is considered emergency ventilation. EF-7 delivers 4500 C.F.M. and will run 24 hrs a day. Both ventilation fans are located in an enclosed closet in the TRD gas room. Their ductwork, both inlets and outlets run along side the pipe chase, but are separated by an airtight wall. Their combination motor control starter cabinets are located in the TRD room in plain visible sight of the fans with the closet door open. The fans have signs that state they are automatically controlled and can energize at any time.

  20. Development of regularized expectation maximization algorithms for fan-beam SPECT data

    International Nuclear Information System (INIS)

    Kim, Soo Mee; Lee, Jae Sung; Lee, Dong Soo; Lee, Soo Jin; Kim, Kyeong Min

    2005-01-01

    SPECT using a fan-beam collimator improves spatial resolution and sensitivity. For the reconstruction from fan-beam projections, it is necessary to implement direct fan-beam reconstruction methods without transforming the data into the parallel geometry. In this study, various fan-beam reconstruction algorithms were implemented and their performances were compared. The projector for fan-beam SPECT was implemented using a ray-tracing method. The direct reconstruction algorithms implemented for fan-beam projection data were FBP (filtered backprojection), EM (expectation maximization), OS-EM (ordered subsets EM) and MAP-EM OSL (maximum a posteriori EM using the one-step late method) with membrane and thin-plate models as priors. For comparison, the fan-beam projection data were also rebinned into the parallel data using various interpolation methods, such as the nearest neighbor, bilinear and bicubic interpolations, and reconstructed using the conventional EM algorithm for parallel data. Noiseless and noisy projection data from the digital Hoffman brain and Shepp/Logan phantoms were reconstructed using the above algorithms. The reconstructed images were compared in terms of a percent error metric. For the fan-beam data with Poisson noise, the MAP-EM OSL algorithm with the thin-plate prior showed the best result in both percent error and stability. Bilinear interpolation was the most effective method for rebinning from the fan-beam to parallel geometry when the accuracy and computation load were considered. Direct fan-beam EM reconstructions were more accurate than the standard EM reconstructions obtained from rebinned parallel data. Direct fan-beam reconstruction algorithms were implemented, which provided significantly improved reconstructions

  1. Multi-objective optimization design and experimental investigation of centrifugal fan performance

    Science.gov (United States)

    Zhang, Lei; Wang, Songling; Hu, Chenxing; Zhang, Qian

    2013-11-01

    Current studies of fan performance optimization mainly focus on two aspects: one is to improve the blade profile, and another is only to consider the influence of single impeller structural parameter on fan performance. However, there are few studies on the comprehensive effect of the key parameters such as blade number, exit stagger angle of blade and the impeller outlet width on the fan performance. The G4-73 backward centrifugal fan widely used in power plants is selected as the research object. Based on orthogonal design and BP neural network, a model for predicting the centrifugal fan performance parameters is established, and the maximum relative errors of the total pressure and efficiency are 0.974% and 0.333%, respectively. Multi-objective optimization of total pressure and efficiency of the fan is conducted with genetic algorithm, and the optimum combination of impeller structural parameters is proposed. The optimized parameters of blade number, exit stagger angle of blade and the impeller outlet width are seperately 14, 43.9°, and 21 cm. The experiments on centrifugal fan performance and noise are conducted before and after the installation of the new impeller. The experimental results show that with the new impeller, the total pressure of fan increases significantly in total range of the flow rate, and the fan efficiency is improved when the relative flow is above 75%, also the high efficiency area is broadened. Additionally, in 65% -100% relative flow, the fan noise is reduced. Under the design operating condition, total pressure and efficiency of the fan are improved by 6.91% and 0.5%, respectively. This research sheds light on the considering of comprehensive effect of impeller structrual parameters on fan performance, and a new impeller can be designed to satisfy the engineering demand such as energy-saving, noise reduction or solving air pressure insufficiency for power plants.

  2. The Female Vikings, a women's fan group in Denmark

    DEFF Research Database (Denmark)

    Mintert, Svenja-Maria; Pfister, Gertrud Ursula

    2014-01-01

    on the historical development of a Danish women-only fan group called 'The Female Vikings', which support a professional football club, Lyngby Boldklub (BK), in a city north of Copenhagen. The article explores the backgrounds and motivations of female fans, as well as their ways of staging femininity in a man...... of the female fans during the club's 'crisis' and their 'collective memories'....

  3. Fifty shades of exploitation: Fan labor and Fifty Shades of Grey

    Directory of Open Access Journals (Sweden)

    Bethan Jones

    2014-03-01

    Full Text Available This exploration of the debates that have taken place in fandom over the ethics of pulling fan fiction and publishing it as original work draws on the notion of the fannish gift economy, which postulates that gifts such as fan fiction and fan art have value in the fannish community because they are designed to create and cement its social structure. Tension exists between fans who subscribe to the notion of a fannish gift economy and those who exploit fandom by using it to sell their pulled-to-publish works. An examination of E. L. James's 2012 Fifty Shades trilogy (comprising the books Fifty Shades of Grey, Fifty Shades Darker, and Fifty Shades Freed, which began as Twilight fan fiction, in addition to Twilight fan art sold through sites such as Redbubble and Etsy, demonstrates a tension between the two modes of fan expression: sale of artworks appears to be an acceptable practice in fandom, but the commercial sale of fan fic, even when marketed as original fiction, is widely contested.

  4. Uranium in Pacific deep-sea sediments and manganese nodules

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Plueger, W.L.; Friedrich, G.H.

    1983-01-01

    A total of 1344 manganese nodules and 187 pelagic sediments from 9 areas in the North and the South Pacific were analyzed for U by the delayed-neutron counting technique. A strong positive correlation between U and Fe in nodules and sediments suggests a co-precipitative removal from sea water into the Fe-rich (ferromanganese mineral phase MnO 2 . Enrichment of U and Fe in nodules from the northwestern slopes of two submarine hills (U between 6 and 9 ppm) in the equatorial nodule belt is thought to be caused by directional bottom water flow creating elevated oxygenized conditions in areas opposed to the flow. Economically important nodule deposits from the nodule belt and the Peru Basin have generally low U contents, between 3 and 5 ppm. Insignificant resources of U of about 4 x 10 5 in the Pacific manganese nodules are estimated. (orig.)

  5. Improving Fan System Performance: A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    2003-04-01

    This is one of a series of sourcebooks on motor-driven equipment produced by the Industrial Technologies Program. It provides a reference for industrial fan systems users, outlining opportunities to improve fan system performance.

  6. High pressure axial flow fans for modern coal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Cyrus, Vaclav [AHT Energetika s.r.o., Praha (Czech Republic); Koci, Petr [ZVVZ Milevsko a.s. (Czech Republic)

    2008-07-01

    Brown coal fired power stations, located in Northern Bohemia, have mostly older boiler blocks with an output of 110 and 200 MWe. Flue gases are cleaned by the desulphurization plants installed between 1993 and 1997. Usually, each boiler block has two air fans and one to three flue gas fans. Flue gas fans operate in severe conditions; fan blades should be resistant to the flue gases containing sulphur and acid drops with the operating temperature at 170 C to 190 C. Additionally, flue gas also often contains ash particles. Currently, some boiler blocks are gradually being refurbished. New blocks with an electrical power output of 600 to 700 MWe are at the design stage. Submitted paper shows our design study of one stage axial flow fan for the new blocks. Results from the new aerodynamic research of the axial flow stages were used in the fan design. (orig.)

  7. Topology Model of the Flow around a Submarine Hull Form

    Science.gov (United States)

    2015-12-01

    UNCLASSIFIED Topology Model of the Flow around a Submarine Hull Form S.-K. Lee Maritime Division Defence Science and Technology Group DST-Group–TR...3177 ABSTRACT A topology model constructed from surface-streamer visualisation describes the flow around a generic conventional submarine hull form at...pure yaw angles of 0 ◦, 10 ◦ and 18 ◦. The model is used to develop equations for sway-force and yaw-moment coefficients which relate to the hull - form

  8. Mean streamline analysis for performance prediction of cross-flow fans

    International Nuclear Information System (INIS)

    Kim, Jae Won; Oh, Hyoung Woo

    2004-01-01

    This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans

  9. Do river channels decrease in width downstream on Distributive Fluvial Systems? An evaluation of modern mega-fans

    Science.gov (United States)

    Espinoza, T. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Recent studies on aggradational continental sedimentary basins globally show that fluvial deposits in most modern sedimentary basins are dominated Distributive Fluvial Systems (DFS). DFS's are identified by: (1) pattern of channels and floodplain deposits that radiate outward from an apex located where the river enters the sedimentary basin, (2) deposition where an alluvial system becomes unconfined upon entering the sedimentary basin, (3) broadly fan shaped deposit that is convex upward across the DFS and concave upward down-fan, and (4) if the DFS is incised, an intersection point above which the alluvial system is held in an incised valley and below which it distributes sediment across an active depositional lobe. Several papers about DFS hypothesized that rivers on DFS decrease in size down-fan. We are testing this hypothesis through evaluation of LANDSAT and STRM data from large DFS described by Hartley et al (2010). We use ArcGIS to: (1) open the images and merge them together if there are more than one image corresponding to the DFS being studied, (2) use a Maximum Likelihood Analysis in six classes to segment different features on the DFS (e.g. exposed sands, water, vegetation, and other fan environments), (3) isolate the classes that correspond to the active channel belt (e.g., exposed sand bars and water), (4) divide the active channel belt into 1000 m long sections, (5) determine the area of active channel belt in each section, and (6) calculate the average width of the river in each section (e.g., W = area/1000m). We present our result for each DFS river on a graph that shows the change in width downstream. Our final product will be a dataset that contains width versus distance down-fan from the apex for as many of the large DFS from Hartley et al (2010) as possible. If the hypothesis is supported, the decrease in width could have a substantial predictive significance on sandstone geometry in fluvial successions.

  10. Genes2FANs: connecting genes through functional association networks

    Science.gov (United States)

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  11. Should electric fans be used during a heat wave?

    Science.gov (United States)

    Jay, Ollie; Cramer, Matthew N; Ravanelli, Nicholas M; Hodder, Simon G

    2015-01-01

    Heat waves continue to claim lives, with the elderly and poor at greatest risk. A simple and cost-effective intervention is an electric fan, but public health agencies warn against their use despite no evidence refuting their efficacy in heat waves. A conceptual human heat balance model can be used to estimate the evaporative requirement for heat balance, the potential for evaporative heat loss from the skin, and the predicted sweat rate, with and without an electrical fan during heat wave conditions. Using criteria defined by the literature, it is clear that fans increase the predicted critical environmental limits for both the physiological compensation of endogenous/exogenous heat, and the onset of cardiovascular strain by an air temperature of ∼3-4 °C, irrespective of relative humidity (RH) for the young and elderly. Even above these critical limits, fans would apparently still provide marginal benefits at air temperatures as high as 51.1 °C at 10%RH for young adults and 48.1 °C at 10%RH for the elderly. Previous concerns that dehydration would be exacerbated with fan use do not seem likely, except under very hot (>40 °C) and dry (fans by a minor amount (∼20-30 mL/h). Relative to the peak outdoor environmental conditions reported during ten of the most severe heat waves in recent history, fan use would be advisable in all of these situations, even when reducing the predicted maximum sweat output for the elderly. The protective benefit of fans appears to be underestimated by current guidelines. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Nakul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-31

    Ceiling fans contribute significantly to residential electricity consumption, both in an absolute sense and as a proportion of household consumption in many locations, especially in developing countries in warm climates. However, there has been little detailed assessment of the costs and benefits of efficiency improvement options for ceiling fans and the potential resulting electricity consumption and greenhouse gas (GHG) emissions reductions. We analyze the costs and benefits of several options to improve the efficiency of ceiling fans and assess the global potential for electricity savings and GHG emission reductions with more detailed assessments for India, China, and the U.S. We find that ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terrawatt hours per year (TWh/year) could be saved and 25 million metric tons of carbon dioxide (CO2) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize this savings potential.

  13. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    Science.gov (United States)

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  14. Broaching the Ship: Rethinking Submarines as a Signaling Tool in Naval Diplomacy

    Science.gov (United States)

    2015-03-01

    Bateman , “Perils of the Deep: the Dangers of Submarine Proliferation in the Seas of East Asia,” Asian Security 7, no. 1 (Spring 2011), 64. 89 Brent...Science. London: Routledge, 2012. Bateman , Sam. “Perils of the Deep: The Dangers of Submarine Proliferation in the Seas of East Asia.” Asian Security

  15. Information Assurance as a System of Systems in the Submarine Force

    Science.gov (United States)

    2013-09-01

    Shell SSL Secure Socket Layer SSN Submerged Ship Nuclear STDA Submarine Tactical Display Auxiliary SUBLAN Submarine Local Area Network...Internet Protocol TLS T Transport Layer Security TS-SCI Top Secret-Special Compartment Information TYCOM Type Commander USB Universal...administrators or users. Layer 4 and 5: This is the layer that deals with providing a protected connection via a Secure Socket Layer ( SSL ) and Transport Layer

  16. Two studies on the effects of small exhaust fans on indoor air quality: Field study of exhaust fans for mitigating indoor air quality problems; Indoor air quality, exhaust fan mitigation

    International Nuclear Information System (INIS)

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality

  17. Dead links, vaporcuts, and creativity in fan edit replication

    Directory of Open Access Journals (Sweden)

    Joshua Wille

    2015-09-01

    Full Text Available In my examination of a Star Wars prequel trilogy fan edit reportedly made by Topher Grace, I introduce the term vaporcut to describe fan edits with reputations that may generate critical discourse but that are not publicly released. I explore the ways some fan editors attempt to recreate intangible projects but inevitably produce variant works that reflect their own creative perspectives.

  18. A Nuclear Submarine in the South Atlantic: The Framing of Threats and Deterrence

    Directory of Open Access Journals (Sweden)

    Mônica Herz

    Full Text Available Abstract In this article, we analyse one aspect of Brazilian nuclear policy during the tenure of the Workers Party (2003–2016: the development of a nuclear-propelled submarine. We propose that the project of building a nuclear-propelled submarine has become possible partly because of the mobilisation of a set of arguments for the construction of the South Atlantic as a strategic area, framed in terms of security and development. On the other hand, we contend that the need for a nuclear-propelled submarine is framed through the mobilisation of a specific notion of deterrence. In other words, we claim that the notions of ‘strategic area’, ‘general deterrence’, ‘conventional deterrence’, and ‘deterrence by denial’ can help us analyse the fundamental aspects involved in the framing of the South Atlantic as a security concern, justifying the nuclear-propelled submarine project.

  19. SWITCHING POWER FAN CONTROL OF COMPUTER

    Directory of Open Access Journals (Sweden)

    Oleksandr I. Popovskyi

    2010-10-01

    Full Text Available Relevance of material presented in the article, due to extensive use of high-performance computers to create modern information systems, including the NAPS of Ukraine. Most computers in NAPS of Ukraine work on Intel Pentium processors at speeds from 600 MHz to 3 GHz and release a lot of heat, which requires the installation of the system unit 2-3 additional fans. The fan is always works on full power, that leads to rapid deterioration and high level (up to 50 dB noise. In order to meet ergonomic requirements it is proposed to іnstall a computer system unit and an additional control unit ventilators, allowing independent control of each fan. The solution is applied at creation of information systems planning research in the National Academy of Pedagogical Sciences of Ukraine on Internet basis.

  20. Noise Measurements of the VAIIPR Fan

    Science.gov (United States)

    Mendoza, Jeff; Weir, Don

    2012-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period September 2004 through November 2005 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3- 01136, Task Order 6, Noise Measurements of the VAIIPR Fan. The NASA Task Manager was Dr. Joe Grady, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. The NASA Contract Officer was Mr. Albert Spence, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. This report focuses on the evaluation of internal fan noise as generated from various inflow disturbances based on measurements made from a circumferential array of sensors located near the fan and sensors upstream of a serpentine inlet.

  1. Fans of Columbine shooters Eric Harris and Dylan Klebold

    Directory of Open Access Journals (Sweden)

    Andrew Ryan Rico

    2015-09-01

    Full Text Available On April 20, 1999, Eric Harris and Dylan Klebold murdered 12 students and one teacher at Columbine High School in Littleton, Colorado, in what was then the deadliest school shooting in American history. Despite causing a national panic and serving as a flash point for larger narratives on bullying, gun control, and media violence, both boys have gained active online fans. These fandoms dedicated to the Columbine shooters are widely referred to as dark examples of Internet communities, while the fans are also frequently denigrated as unstable and violent outcasts. Such dark online fandoms are yet to permeate mainstream culture or to challenge the preexisting perception of these communities as breeding grounds for the next wave of school shooters. While studies have covered the types of fans and their myriad interests, the field remains focused on more conventional examples of fan communities. In an effort to challenge and expand the object of focus when we study fandom, this qualitative study examines Columbine fans and their activity in order to understand the dominant motives they appear to have for engaging with and around such controversial figures and then concludes by exploring how this community might help us reflect more broadly on our concept of fandom. Redeeming these fans as part of diverse and complex communities of social relevance can demonstrate how even a dark fandom such as that of these Columbine shooters provides valuable cultural insights and benefits the field of fan studies.

  2. The benefits of conducting factory performance tests for main mine fans

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.E.Jr. [PB Americas Inc., New York, NY (United States); Gamble, G.A. [Clarage Twin City Fan Co., Akron, OH (United States)

    2010-07-01

    Axial flow fans used in underground mining are also commonly used in subway tunnel ventilation fans to provide an evacuation path during a tunnel fire emergency. The axial flow fans provide sufficient air velocity to the fire site to prevent backlayering of smoke against the incoming airflow. Since the tunnels are used by the public, advance testing of fans and motors is conducted to confirm that the equipment will perform as specified during a fire. This paper discussed some of the advantages derived from conducting fan factory tests for tunnel projects that would also apply to mining applications. It also described other benefits from testing that are unique to mining. External factors that may cause the fan performance to vary considerably from the predicted performance measured at the factory were also discussed. These included air density changes and system effects produced by poorly designed shaft configurations and fan inlet ductwork. 11 refs., 6 figs.

  3. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  4. Velocity Structure and 3D Finite Element Modeling for Critical Instability of Gas Hydrate-related Slipstream Submarine Slide, offshore Vancouver Island, Canada

    Science.gov (United States)

    LONG, S.; He, T.; Lan, K.; Spence, G.; Yelisetti, S.

    2016-12-01

    The previous study indicated that Slipstream submarine landslide is one of a gas hydrate-related slope failures on the frontal ridges of the Northern Cascadia accretionary margin, off Vancouver Island, Canada. The OBS data collected during SeaJade project were used to derive the subseafloor Vp & Vs structures. The anomalous high Vp of about 2.0 km/s at shallow depths of 100 (± 10) mbsf closely matches the estimated depth of the glide plane. The modelled Vs above the BSR at a depth of 265-275 mbsf is about 100-150 m/s higher than a theoretical 100% water saturated background value, indicating that the hydrate acts as part of the load-bearing matrix to increase the rigidity of the sediment. Also, the Vp & Vs above BSR both indicate a consistent 40% saturation of gas hydrate. On the basis of high accurate submarine bathymetry obtained by multibeam sounding system, the submarine landform before slump is reconstructed by comparing the slump headwall geometry with surrounding ridges. Using the elastic moduli determined from Vp & Vs, the stress status was calculated by the finite element method for different conditions and confirmed that the undersea sliding process related with gas hydrate starts from the toe of the slope and then progressively retreats to the place of current headwall, in a series of triangular blocks or wedges. The shear stress are then compared with the frame shear strength of geological model, which is critical for controlling slope stability of steep frontal ridges The simulation results found that the ridge was stable under its own weight, but gas hydrate saturation decrease and pore-water pressure increase will greatly reduce shear strength of sediments and may cause a landslide. Since the study area is in the earthquake belt, the large seismic acceleration will greatly affect pore pressure distribution within the ridge. The simulation results indicated that the shallow high-velocity gas hydrate layer coincident with glide plane depth is more

  5. Investigation of sediment movement in the North Navigation Channel Area of the estuary of the Yangtze river using natural radiotracers and INAA methods

    International Nuclear Information System (INIS)

    Zhang Yunhui; Li Guiqun; Zhang Qixing, Sun Maoyi

    1996-01-01

    This is a preliminary investigation of sediment in the North Navigation Channel Area of the estuary of the Yangtze river, which has been made by determining the natural radioisotopes and the INAA of 30 natural sand samples. Multivariate statistical method was used to process and analyze the data obtained. It can be seen that there are tow sediment movement routes in the investigation area. The orientation of the main sediment movement is from northwest to southeast in accordance with the results obtained from the field submarine drag-monitorings after the radiotracer injection. Besides, there is also another sand movement route existed. (author). 5 refs., 3 figs., 4 tabs

  6. 30 CFR 57.4131 - Surface fan installations and mine openings.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface fan installations and mine openings. 57... Fire Prevention and Control Prohibitions/precautions/housekeeping § 57.4131 Surface fan installations... stored within 100 feet of mine openings or within 100 feet of fan installations used for underground...

  7. 30 CFR 57.22203 - Main fan operation (I-C mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main fan operation (I-C mines). 57.22203... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22203 Main fan operation (I-C mines). Main fans shall be operated continuously while ore production is in progress. ...

  8. In-service inspection of the vessels of nuclear submarine reactors

    International Nuclear Information System (INIS)

    Saglio, R.; Mercier L'Abbe, G.

    1977-02-01

    Description is given of a machine of automatic inspection of the reactor vessels of nuclear submarines, that was developed by the French Atomic Energy Commission (CEA). A focused ultrasound testing method is used. The equipment such described meets the safety requirements prescribed for the primary circuits of nuclear submarine boiler plants. The sensitivity and resolution power of the apparatus allow such high precision to be obtained as rupture mechanics gains a credibility that could not have been obtained with using conventional apparatus [fr

  9. Performance Testing Of A Modified Centrifugal Fan With Serrated Blade Impeller

    Directory of Open Access Journals (Sweden)

    Zaimar

    2017-10-01

    Full Text Available Changes of shape dimension and component part of impeller might change of characteristic fluid flow so that pressure static in the fan housing changed. Changing some geometric characteristics of the centrifugal fan has more efficiency taking with energy crises into consideration. Several factors that can affect fan performance namely design and type size rotation speed air condition or gas through a fan operating point on the nature of the relationship between a volume of air flow and pressure. The purpose of this research was to test of fan performance of the modified centrifugal fan with the serrated blade impeller. The addition of a percentage of closing the inlet causes the air volumetric rate the airflow energy BHP and total efficiency except for the fan total and static pressure. The experimental test results there are static pressure data and the resulting total pressure is different or distorted 10-17 of deviation from calculation data based on the fan laws. This is possible because of changes in the shape of the blade with serrated on the inside of the impeller. Based on the performance curve shows that the selection of impeller speeds of 800 RPM produces a relatively high air volumetric rate is proportional to the total pressure of the fan and the flow energy so that it is more efficient than other impeller speeds.

  10. Gender constructions and negotiations of female football fans

    DEFF Research Database (Denmark)

    Lenneis, Verena; Pfister, Gertrud Ursula

    2015-01-01

    While both the media and the academic literature focus primarily on male fans, in particular on violence and the prevention of hooliganism, little is known about female football supporters. This is also true of Denmark, a country that is known for its high degree of gender equality. This article...... aims to give insight into gender constructions and negotiations of female football fans in the stands. Drawing on a social constructivist perspective to gender and Bourdieu's (1984) approaches to field, capital and habitus, we explored the experiences and opinions of female fans. The methods employed...

  11. Energy transfer in the Congo deep-sea fan: From terrestrially-derived organic matter to chemosynthetic food webs

    Science.gov (United States)

    Pruski, A. M.; Decker, C.; Stetten, E.; Vétion, G.; Martinez, P.; Charlier, K.; Senyarich, C.; Olu, K.

    2017-08-01

    Large amounts of recent terrestrial organic matter (OM) from the African continent are delivered to the abyssal plain by turbidity currents and accumulate in the Congo deep-sea fan. In the recent lobe complex, large clusters of vesicomyid bivalves are found all along the active channel in areas of reduced sediment. These soft-sediment communities resemble those fuelled by chemoautotrophy in cold-seep settings. The aim of this study was to elucidate feeding strategies in these macrofaunal assemblages as part of a greater effort to understand the link between the inputs of terrestrially-derived OM and the chemosynthetic habitats. The biochemical composition of the sedimentary OM was first analysed in order to evaluate how nutritious the available particulate OM is for the benthic macrofauna. The terrestrial OM is already degraded when it reaches the final depositional area. However, high biopolymeric carbon contents (proteins, carbohydrates and lipids) are found in the channel of the recent lobe complex. In addition, about one to two thirds of the nitrogen can be assigned to peptide-like material. Even if this soil-derived OM is poorly digestible, turbiditic deposits contain such high amounts of organic carbon that there is enough biopolymeric carbon and proteacinous nitrogen to support dense benthic communities that contrast with the usual depauperate abyssal plains. Stable carbon and nitrogen isotopes and fatty acid biomarkers were then used to shed light on the feeding strategies allowing the energy transfer from the terrestrial OM brought by the turbidity currents to the abyssal food web. In the non-reduced sediment, surface detritivorous holothurians and suspension-feeding poriferans rely on detritic OM, thereby depending directly on the turbiditic deposits. The sulphur-oxidising symbiont bearing vesicomyids closely depend on the reprocessing of OM with methane and sulphide as final products. Their carbon and nitrogen isotopic signatures vary greatly among sites

  12. Exercise Aboard Attack Submarines: Rationale and New Options

    National Research Council Canada - National Science Library

    Watenpaugh, Donald

    2004-01-01

    .... However, most submariners do not exercise during deployment for a variety of reasons, including lack of space, time limitations, equipment limitations, lack of entertainment or recreational value...

  13. Precautions against axial fan stall in reactor building to Tianwan NPP

    International Nuclear Information System (INIS)

    Liu Chunlong; Pei Junmin

    2011-01-01

    The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)

  14. Operating Below Crush Depth: The Formation, Evolution, and Collapse of the Imperial Japanese Navy Submarine Force in World War II

    Science.gov (United States)

    2011-06-10

    Subamrine, Medium) LCDR Lieutenant Commander LT Lieutenant NM Nautical Mile RADM Rear Admiral ST Sen- Taka (Submarine, High Speed) STo Sen-Toku...Special Submarine) STS Sen- Taka -Sho (Submarine, High Speed(Victory)) USS United States Ship VADM Vice Admiral 1 CHAPTER 1 INTRODUCTION On...Kirai-Sen meaning Mine-Layer, KT for Kai-Toku-Chu meaning Medium, Special Submarine, ST for Sen- Taka meaning Submarine, High speed, STo for Sen Toku

  15. Portable Life Support System 2.5 Fan Design and Development

    Science.gov (United States)

    Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda

    2016-01-01

    NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.

  16. Submarine Volcanic Eruptions and Potential Analogs for Venus

    Science.gov (United States)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.

    1985-01-01

    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  17. The sinking of the Soviet Mike class nuclear powered submarine

    International Nuclear Information System (INIS)

    1989-01-01

    The purpose of this preliminary study is to assess the quantities of the longer-lived or persistent radioactive materials, or source terms, that have been lost at sea with the sinking of the Soviet MIKE class submarine off Bear Island on 7 April 1989. The report arrives at an assessment of the amount of radioactivity and compares this to the quantities of radioactive materials dumped by the UK from 1953 to 1982 at which time sea dumping of radioactive wastes was suspended by international resolve. This comparison can be used to assess the relative significance of the sinking of this submarine. The study does not extrapolate the estimated radioactive source terms to an environmental or radiological significance of the sinking, although it is concluded that unless the submarine is recovered intact from the ocean floor, the by far greater part of the radioactive materials on board will disperse to the marine environment at some future time, if they are not doing so already. (author)

  18. Recent progress in fan and compressor for aeroengine. Koku engine yo fan asshukuki no saikin no gijutsu shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y [National Aerospace Lab., Chofu, Tokyo (Japan)

    1994-03-10

    As the main components of the aeroengine, the fan and compressor reach to extremely high level stage technologically. Also at present when about 50 years passed after the jet engine was applied in practice, however, an effort for a modification is being continued, and furthermore even in the 1990s, the engines that adopted the new technologies are in succession being put in practical application. New engines in the 1990s are being applied in practice by adopting the study results on fan and compressor from the 1970s to the 1980s. Because, which way the future fan and compressor of the aircraft will go to has a relation with an aircraft trend from now on, and even in the 2000s the high subsonic speed aircrafts will be a center of the private air planes. The engine of high subsonic speed aircraft in the next generation will become an ultrahigh bypass ratio engine, the thrust efficiency is raised and noise is lowered, by lowering a fan pressure ratio and by increasing an air flow quantity compared with the current high bypass ratio turbofan engine. 16 figs.

  19. On-chip grating coupler array on the SOI platform for fan-in/fan-out of multi-core fibers with low insertion loss and crosstalk

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ye, Feihong; Peucheret, Christophe

    2014-01-01

    We design and fabricate a compact multi-core fiber fan-in/fan-out using a fully-etched grating coupler array on the SOI platform. Lowest coupling loss of 6.8 dB with 3 dB bandwidth of 48 nm and crosstalk lower than ×32 dB are demonstrated.......We design and fabricate a compact multi-core fiber fan-in/fan-out using a fully-etched grating coupler array on the SOI platform. Lowest coupling loss of 6.8 dB with 3 dB bandwidth of 48 nm and crosstalk lower than ×32 dB are demonstrated....

  20. Optimization of the Hockey Fans in Training (Hockey FIT) weight loss and healthy lifestyle program for male hockey fans.

    Science.gov (United States)

    Blunt, Wendy; Gill, Dawn P; Sibbald, Shannon L; Riggin, Brendan; Pulford, Roseanne W; Scott, Ryan; Danylchuk, Karen; Gray, Cindy M; Wyke, Sally; Bunn, Christopher; Petrella, Robert J

    2017-11-28

    The health outcomes of men continue to be poorer than women globally. Challenges in addressing this problem include difficulties engaging men in weight loss programs as they tend to view these programs as contrary to the masculine narrative of independence and self-reliance. Researchers have been turning towards sports fans to engage men in health promotion programs as sports fans are typically male, and tend to have poor health habits. Developed from the highly successful gender-sensitized Football Fans in Training program, Hockey Fans in Training (Hockey FIT) recruited 80 male hockey fans of the London Knights and Sarnia Sting who were overweight or obese into a weekly, 90-minute classroom education and group exercise program held over 12 weeks; a 40-week minimally-supported phase followed. A process evaluation of the Hockey FIT program was completed alongside a pragmatic randomized controlled trial and outcome evaluation in order to fully explore the acceptability of the Hockey FIT program from the perspectives of coaches delivering and participants engaged in the program. Data sources included attendance records, participant focus groups, coach interviews, assessment of fidelity (program observations and post-session coach reflections), and 12-month participant interviews. Coaches enjoyed delivering the program and found it simple to deliver. Men valued being among others of similar body shape and similar weight loss goals, and found the knowledge they gained through the program helped them to make and maintain health behaviour changes. Suggested improvements include having more hockey-related information and activities, greater flexibility with timing of program delivery, and greater promotion of technology support tools. We confirmed Hockey FIT was an acceptable "gender-sensitized" health promotion program for male hockey fans who were overweight or obese. Minor changes were required for optimization, which will be evaluated in a future definitive trial

  1. Upper Pleistocene turbidite sand beds and chaotic silt beds in the channelized, distal, outer-fan lobes of the Mississippi fan

    Science.gov (United States)

    Nelson, C.H.; Twichell, D.C.; Schwab, W.C.; Lee, H.J.; Kenyon, Neil H.

    1992-01-01

    Cores from a Mississippi outer-fan depositional lobe demonstrate that sublobes at the distal edge contain a complex local network of channelized-turbidite beds of graded sand and debris-flow beds of chaotic silt. Off-lobe basin plains lack siliciclastic coarse-grained beds. The basin-plain mud facies exhibit low acoustic backscatter on SeaMARC IA sidescan sonar images, whereas high acoustic backscatter characteristic of the lobe sand and silt facies. The depth of the first sand-silt layer correlates with relative backscatter intensity and stratigraphic age of the distal sublobes (i.e., shallowest sand = highest backscatter and youngest sublobe). The high proportion (>50%) of chaotic silt compared to graded sand in the distal, outer-fan sublobes may be related to the unstable, muddy, canyon-wall source areas of the extensive Mississippi delta-fed basin slope. A predominace of chaotic silt in cores or outcrops from outer-fan lobes thus may predict similar settings for ancient fans.

  2. Reactive control of subsonic axial fan noise in a duct.

    Science.gov (United States)

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2014-10-01

    Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.

  3. 30 CFR 75.312 - Main mine fan examinations and records.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan examinations and records. 75.312... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.312 Main mine fan examinations and records. (a) To assure electrical and mechanical reliability of main mine fans, each main mine...

  4. Distal turbidite fan/lobe succession of the Late Oligocene Zuberec Fm. - architecture and hierarchy (Central Western Carpathians, Orava-Podhale basin)

    Science.gov (United States)

    Starek, Dušan; Fuksi, Tomáš

    2017-08-01

    A part of the Upper Oligocene sand-rich turbidite systems of the Central Carpathian Basin is represented by the Zuberec Formation. Sand/mud-mixed deposits of this formation are well exposed in the northern part of the basin, allowing us to interpret the turbidite succession as terminal lobe deposits of a submarine fan. This interpretation is based on the discrimination of three facies associations that are comparable to different components of distributive lobe deposits in deep-water fan systems. They correspond to the lobe off-axis, lobe fringe and lobe distal fringe depositional subenvironments, respectively. The inferences about the depositional paleoenvironment based on sedimentological observations are verified by statistical analyses. The bed-thickness frequency distributions and vertical organization of the facies associations show cyclic trends at different hierarchical levels that enable us to reconstruct architectural elements of a turbidite fan. First, small-scale trends correspond with shift in the lobe element centroid between successive elements. Differences in the distribution and frequency of sandstone bed thicknesses as well as differences in the shape of bed-thickness frequency distributions between individual facies associations reflect a gradual fining and thinning in a down-dip direction. Second, meso-scale trends are identified within lobes and they generally correspond to the significant periodicity identified by the time series analysis of the bed thicknesses. The meso-scale trends demonstrate shifts in the position of the lobe centroid within the lobe system. Both types of trends have a character of a compensational stacking pattern and could be linked to autogenic processes. Third, a largescale trend documented by generally thickening-upward stacking pattern of beds, accompanied by a general increase of the sandstones/mudstones ratio and by a gradual change of percentage of individual facies, could be comparable to lobe-system scale. This

  5. Coastal submarine springs in Lebanon and Syria: Geological, geochemical, and radio-isotopic study

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2004-10-01

    The coastal karst aquifer system (upper Cretaceous) and the submarine springs in the Syrian coast have been studies using chemical and isotopic methods in order to determine the hydraulic connections between the groundwater and the submarine springs. Results show that the groundwater and submarine springs are having the same slope on the σ 18 O/σ 2 H plot indicate the same hydrological origin for both. In addition this relation is very close to the local meteoric water line (LMWL) reflecting a rapid infiltration of rainfall to recharge coastal aquifer. The calculated percentage of freshwater in the two locations (Bassieh and Tartous) range from 20 to 96%. The estimation rate of the permanent submarine springs (BS1, BS2 and TS2, TS3) is 11m 3 /s or 350 million m 3 /y. The maximum residence time of the groundwater in the Cenomanian/Turonian aquifer was estimated at around 8 years, using the piston-flow model.(author)

  6. Representation of American versus non-American fans in Baillie Walsh's Springsteen & I

    NARCIS (Netherlands)

    Wilkinson, M.C.

    2015-01-01

    This article explores the representation of American versus non-American fans in Baillie Walsh's 2013 crowd/fan-sourced documentary Springsteen & I. The film—as much as it was fed by a wide and international range of fan-produced material—ultimately produced and presented one particular type of fan

  7. Losses in armoured three-phase submarine cables

    DEFF Research Database (Denmark)

    Ebdrup, Thomas; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2014-01-01

    The number of offshore wind farms will keep increasing in the future as a part of the shift towards a CO2 free energy production. The energy harvested from the wind farm must be brought to shore, which is often done by using a three-phase armoured submarine power cable. The use of an armour...... increases the losses in armoured cables compared to unarmoured cables. In this paper a thorough state of the art analysis is conducted on armour losses in three-phase armoured submarine power cables. The analysis shows that the IEC 60287-1-1 standard overestimates the armour losses which lead...... to the installation of cables with excessive phase conductor cross section. This paper also presents an example of the potential economic benefits of having a better knowledge of the losses introduced by the armour....

  8. Submarine Groundwater Discharge in the Coastal Zone

    Science.gov (United States)

    Bakti, Hendra

    2018-02-01

    Indonesia is one of the archipelagic countries that has the longest coastline in the world. Because it is located in the tropics, in general it has a very high rainfall. Each island has a different morphology which is composed of a variety of rocks with different hydrogeological properties. This natural condition allows for the presence of groundwater in different amount in each island. The difference in groundwater hydraulics gradients in aquifer continuous to the sea has triggered the discharge of groundwater to offshore known as submarine groundwater discharge (SGD). Its presence can be as seepage or submarine springs with components derived from land and sea and a mixture between them. The understanding of SGD phenomenon is very important because it can be useful as a source of clean water in coastal areas, affecting marine health, and improving marine environment.

  9. Costs and benefits of energy efficiency improvements in ceiling fans

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  10. Sports Fans, Alcohol Use, and Violent Behavior: A Sociological Review.

    Science.gov (United States)

    Ostrowsky, Michael K

    2016-08-31

    This review makes four contributions to the sociological study of sports fans, alcohol use, and violent behavior. First, this article focuses explicitly on the relationship between alcohol use and violent behavior among sports fans. This is a worldwide social problem, yet it is quite understudied. Second, this article synthesizes the fragmented literature on alcohol use and violent behavior among sports fans. Third, this article identifies four broad sets of risk factors-sociocultural, event/venue, police, and crowd-that appear to be closely related to violent behavior among sports fans. Finally, to help explain the possible correlation between alcohol and violence among sports fans, this article draws upon the key understandings from the literature on alcohol and violence in wider society. The article concludes with suggestions for future research. © The Author(s) 2016.

  11. The characters of emergency rescue and the measures to prevent accidents for nuclear-powered submarine

    International Nuclear Information System (INIS)

    Wang Yuexing

    1999-01-01

    The characteristics of emergency rescue and the measures for preventing and decreasing accidents in nuclear-powered submarine have been presented. The breakdown of equipment and human factors are the main reasons which lead to accidents. Four preventive measures are suggested: enhancing capabilities to take precautions against fire, seriously controlling the environmental factors which affect the health of the submariners, reinforcing the constitutions of the submariners, and working out emergency planning against serious accidents in advance

  12. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  13. "The florals": Female fans over 50 in the Sherlock fandom

    Directory of Open Access Journals (Sweden)

    Line Nybro Petersen

    2017-03-01

    Full Text Available This article uses e-mail interviews with nine female fans to explore what it means to be a fan over the age of 50 of the popular BBC drama Sherlock (2010–. The research aims to better understand the role of fandom in later life, in particular how the participants in this study negotiate their perceptions of their subjective age in relation to being a fan in this part of their life course. This study combines theory on cultural gerontology with fan studies and mediatization theory in order to understand the dynamics and processes that guide fans' negotiations of subjective age as well as the role of fan practices and the affordances of social media in these processes. I argue that fandom, as a manifestation of a mediatized culture, augments the relevance of subjective age and informs the way in which participants in middle and later life perceive and negotiate their own subjective age specifically in relation to fandom as youth culture, women's passion, and creativity.

  14. The underground main fan study at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    McDaniel, K.H.; Chmura, K.M.

    1996-01-01

    The Waste Isolation Pilot Plant (WIPP) performed a feasibility analysis for the purpose of either modifying, supplementing, or replacing its two main mine fans. The WIPP, located near Carlsbad, New Mexico, is a US Department of Energy (DOE) facility designed to demonstrate the permanent, safe disposal of US defense-generated transuranic waste in a deep bedded salt deposit. Since the centrifugal fans were installed in 1988, multiple operational and performance concerns have been identified. A comprehensive engineering study was conducted in 1995 to: (1) qualify and quantify operational concerns; (2) evaluate possible alternatives; and (3) recommend an optimum solution. Multiple system modification and/or replacement scenarios were evaluated with associated cost estimates developed. The study considered replacement with either centrifugal or axial fans. Multiple fan duties are required at the WIPP. Therefore, Variable Frequency Drives and Inlet Vane Controls (IVC) were investigated for centrifugal fans. In-flight adjustable blades were investigated for axial fans. The study indicated that replacing the existing system with two double-width, double-inlet centrifugal fans equipped with IVCs was the best choice. This alternative provided the most desirable combination of: (1) ensuring the required operational readiness, and (2) improving system performance. The WIPP is currently planning to replace the first fan in 1997

  15. Flow performance of highly loaded axial fan with bowed rotor blades

    International Nuclear Information System (INIS)

    Chen, L; Liu, X J; Yang, A L; Dai, R

    2013-01-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved

  16. Preliminary Results on Mineralogy and Geochemistry of Loki's Castle Arctic Vents and Host Sediments

    Science.gov (United States)

    Barriga, Fernando; Carvalho, Carlos; Inês Cruz, M.; Dias, Ágata; Fonseca, Rita; Relvas, Jorge; Pedersen, Rolf

    2010-05-01

    The Loki's Castle hydrothermal vent field was discovered in the summer of 2008, during a cruise led by the Centre of Geobiology of the University of Bergen, integrated in the H2Deep Project (Eurocores, ESF). Loki's Castle is the northernmost hydrothermal vent field discovered to date. It is located at the junction between the Mohns Ridge and the South Knipovich Ridge, in the Norwegian-Greenland Sea, at almost 74°N. This junction shows unique features and apparently there is no transform fault to accommodate the deformation generated by the bending of the rift valley from WSW-ENE to almost N-S. The Knipovich Rigde, being a complex structure, is an ultra-slow spreading ridge, with an effective spreading rate of only ~ 6 mm/y. It is partly masked by a substantial cover of glacial and post-glacial sediments, estimated to be between 12 and 20 ky old, derived from the nearby Bear Island fan, to the East of the ridge. The Loki's Castle vent site is composed of several active, over 10 m tall chimneys, producing up to 320°C fluid, at the top of a very large sulphide mound, which is estimated to be around 200 m in diameter. About a dozen gravity cores were obtained in the overall area. From these we collected nearly 200 subsamples. Eh and pH were measured in all subsamples. The Portuguese component of the H2Deep project is aimed at characterizing, chemically and mineralogically, the sulphide chimneys and the collected sediments around the vents (up to 5 meters long gravity cores). These studies are aimed at understanding the ore-forming system, and its implications for submarine mineral exploration, as well as the relation of the microbial population with the hydrothermal component of sediments. Here we present an overview of preliminary data on the mineralogical assemblage found in the analyzed sediments and chimneys. The identification of the different mineral phases was obtained through petrographic observations of polished thin sections under the microscope (with both

  17. The Eastern delta-fan deposits on the Granada Basin as tectonic indicators of the Sierra Nevada uplift (Betic Cordillera, South Spain)

    Science.gov (United States)

    Roldán, Francisco Javier; Azañon, Jose Miguel; Mateos, Rosa Maria

    2014-05-01

    A geological mapping in detail of the Eastern sector of the Granada Basin (South Spain) reveals two different groups of Gilbert delta-fans related to the Sierra Nevada uplift. The first group, in the southern part and with a surface of 6 km2, has three major coarsening-upward sequences. They are composed of very coarse deposits, those of conglomerates, sands and silts. Progradational strata units to the basin have been observed. The dominantly fluvial facies association has locally developed shallow marine foreset deposits (partially with reef colonization) as well as topset red soils (Dabrio, et al., 1978; Braga et a., 1990; García-García, et al., 1999) . All the sequences are discordant over marine facies (calcarenites) dated over 8,26 Ma (Late Tortonian). The second group, in the northern part and with an extension of 12 km2, has similar characteristics, but some of the boulders have ostreids and lamellibranchs species which reveal their former position in a previous marine environment. The Sierra Nevada uplift caused the remobilization of these boulders, being transported by debris-flow inside the delta-fan bodies (García-García, et al., 2006). The dating of ostreids shells with Sr techniques reveals ages over 7,13, 6,61 and 5,45 Ma, from the lower to the upper delta-fan deposits, which are related to the three main sequences observed and with three major tectonic pulses during the Late Miocene. These interpretations are in agreement with apatite fision-track studies carried out in some boulders of these coarse delta-fan deposits (Clark and Dempster, 2013). They reveal a detailed record of Neogene denudation from the Sierra Nevada basement and with uplift periods between 5,45Ma- 2 Ma. The latest pulses affected the delta-fan sediments given rise to new fan systems in the Granada Basin (Alhambra Formation). The thoroughly study of the Miocene delta-fan sediments allows us to conclude that they were related to a sin-sedimentary tectonic activity linked to the

  18. Multiple view fan beam polarimetry on Tokamak devices

    International Nuclear Information System (INIS)

    Geck, W.R.; Domier, C.W.; Luhmann, N.C.

    1997-01-01

    A polarimeter diagnostic is under development which utilizes several fan beams to accumulate line integrated Faraday rotation data in a Tokamak plasma. The utilization of a fan beam configuration over that of conventional vertical view polarimeter systems significantly reduces access requirements. The high angular separation inherent in a fan beam implementation increases plasma coverage and eliminates the necessity of assumed plasma symmetries to generate high quality current density profiles. Codes have been developed to generate these high-resolution two-dimensional images of the plasma current profile from data collected at arbitrary positions and viewing angles. copyright 1997 American Institute of Physics

  19. Distribution and sources of organic matter in surface sediments of the eastern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, M.S.; Naidu, S.A.; Subbaiah, Ch.V.; Sarma, V.V.S.S.; Reddy, N.P.C.

    of the northern and western Gulf of Mexico, the north coast of Alaska and the Niger Delta [Gearing et al., 1977], surface sediments from the Beaufort shelf, Beaufort Sea [Goni et al., 2000], coastal sediments from the Gulf of Trieste, N Adriatic Sea [Ogrinc et... the chemical composition of SOC off the Washington margin [Keil et al. 1994; Prahl et al. 1994], Amazon [Goni, 1997], Bengal fans [Lanord and Derry, 1994], and Gulf of Mexico [Goni et al. 1997]. Other possible reason could be preferential removal of N...

  20. Fan-structure wave as a source of earthquake instability

    Science.gov (United States)

    Tarasov, Boris

    2015-04-01

    Today frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength at confined compression corresponding to the seismogenic layer. This determines the lithospheric strength and the primary earthquake mechanism associated with frictional stick-slip instability on pre-existing faults. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism the rock failure, associated with consecutive creation of small slabs (known as 'domino-blocks') from the intact rock in the rupture tip, is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new domino-blocks), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the lower limit of the lithospheric strength and favours the generation of new faults in pristine rocks in preference to frictional stick-slip instability along pre-existing faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created